1
|
Rowland SN, Green CG, Halliwill JR, Singanayagam A, Heaney LM. Gut feelings on short-chain fatty acids to regulate respiratory health. Trends Endocrinol Metab 2025:S1043-2760(24)00329-1. [PMID: 39757060 DOI: 10.1016/j.tem.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 01/07/2025]
Abstract
Respiratory infections and diseases pose significant challenges to society and healthcare systems, underscoring the need for preventative and therapeutic strategies. Recent research in rodent models indicates that short-chain fatty acids (SCFAs), metabolites produced by gut bacteria, may offer medicinal benefits for respiratory conditions. In this opinion, we summarize the current literature that highlights the potential of SCFAs to enhance immune balance in humans. SCFAs have demonstrated the potential to decrease the risk of primary and secondary respiratory infections, modulate allergic airway exacerbations, and improve overall epithelial pathogen defenses. Therefore, we suggest that systemic SCFA levels could be targeted to support gut and respiratory health in specific groups, such as patients in hospital, women and their offspring, children, older adults, and athletes/military personnel.
Collapse
Affiliation(s)
- Samantha N Rowland
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Christopher G Green
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - John R Halliwill
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Aran Singanayagam
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Liam M Heaney
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.
| |
Collapse
|
2
|
O'Donoghue L, Crognale D, Delahunt E, Smolenski A. Effects of exercise on cAMP-mediated platelet inhibition in young women: a pilot study. Eur J Appl Physiol 2024:10.1007/s00421-024-05673-2. [PMID: 39636435 DOI: 10.1007/s00421-024-05673-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE Exercise has been shown to reduce platelet reactivity and increase platelet sensitivity to prostacyclin, an endothelium-derived inhibitor of platelet activation, in middle-aged men and women. It is currently unknown if these beneficial effects can also be observed in young women and the intracellular mechanisms involved have not been identified. In this study, the feasibility of detecting changes in platelet reactivity, prostacyclin sensitivity and cAMP signalling were tested. METHODS 10 well-trained and 10 sedentary but healthy young women participated in this study. Responses of washed platelets to thrombin receptor activating peptide 6, the thromboxane A2 receptor agonist U46619, and prostaglandin E1 were measured by light transmission aggregometry. Expression levels of proteins in the cAMP pathway including phosphorylation of the vasodilator-stimulated phosphoprotein were analysed by western blotting. RESULTS There was no evidence of reduced basal reactivity in platelets from the well-trained group (V ˙ O 2 max = 51.1 ± 3.6 ml/kg/min) compared to the untrained group (V ˙ O 2 max = 31.1 ± 4.7 ml/kg/min). Platelets from the trained group showed evidence of greater sensitivity to the anti-aggregatory effects of prostaglandin E1. The slope of the aggregation curves indicated an overall faster rate of aggregation in the untrained group. Mean phosphorylation levels of vasodilator-stimulating phosphoprotein were consistently higher in the trained group, indicative of increased protein kinase A activity. CONCLUSION Platelets from young women may exhibit an exercise-induced increase in sensitivity to prostacyclin leading to stimulation of the cAMP pathway. A larger study is warranted to explore this vasoprotective effect further.
Collapse
Affiliation(s)
- Lorna O'Donoghue
- UCD School of Medicine, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin, D02 YN77, Ireland
| | - Domenico Crognale
- Institute for Sport and Health, University College Dublin, Newstead Building C Belfield, Dublin 4, Ireland
| | - Eamonn Delahunt
- School of Public Health, Physiotherapy and Sports Science, UCD, Health Science Centre, Belfield, Dublin 4, Ireland
| | - Albert Smolenski
- UCD School of Medicine, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin, D02 YN77, Ireland.
| |
Collapse
|
3
|
Young J, Wood P, Schwellnus M, Jordaan E, Swanevelder S. Years of running, chronic diseases, and allergies are associated with gradual onset Achilles tendon injuries in 61,252 running race entrants: SAFER XXXIX study. PM R 2024; 16:1202-1211. [PMID: 38845470 DOI: 10.1002/pmrj.13173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/25/2023] [Accepted: 01/23/2024] [Indexed: 11/12/2024]
Abstract
BACKGROUND Gradual-onset Achilles tendon injuries (GoATIs) in runners are common. Data show that chronic diseases are associated with GoATI. OBJECTIVE To determine risk factors associated with a history of GoATIs among long-distance runners (21.1 and 56 km) entering a mass community-based running event. METHODS Online pre-race medical screening questionnaire data from 76,654 consenting Two Ocean Marathon race entrants (71.8% entrants) were collected prospectively over 4 years (2012-2015); this cross-sectional study is a retrospective analysis of these data. A total of 617 entrants (0.8%) reported a GoATI in the last 12 months; 60,635 entrants reported no history of any running injury (controls). Categories of factors associated with GoATI were explored (univariate and multiple regression analyses): demographics (age group, sex, race, distance), training/racing history, and history of allergy, history of chronic disease, and Composite Chronic Disease Score. Prevalence and prevalence ratios (PRs; 95% CI) are reported. RESULTS Factors associated with a higher prevalence of a history of GoATI (univariate analysis vs. controls) were older age (>31 years) (p < .001), male sex (PR = 1.76; p < .001), and longer race distance (56 km vs. 21.1 km) (PR = 2.06; p < .001). Independent factors associated with a history of GoATI (multiple regression) were increased years of recreational running (PR = 1.17 for every 5-year increase, p < .001), higher Composite Chronic Disease Score (PR = 2.07 for every 2-unit increase, p < .001), and allergy history (PR = 1.98 p < .001). CONCLUSION Novel independent factors associated with a history of GoATI in distance runners were increased years of recreational running, chronic disease history, and allergy history. Runners at risk for GoATI could be targeted for injury prevention interventions. Future studies should focus on establishing a causal relationship.
Collapse
Affiliation(s)
- Jonah Young
- Biokinetics and Sports Science Division, Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Sport, Exercise Medicine and Lifestyle Institute (SEMLI), Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Paola Wood
- Biokinetics and Sports Science Division, Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Sport, Exercise Medicine and Lifestyle Institute (SEMLI), Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Martin Schwellnus
- Sport, Exercise Medicine and Lifestyle Institute (SEMLI), Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- International Olympic Committee (IOC) Research Centre, Pretoria, South Africa
- Emeritus Professor, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Esmè Jordaan
- Biostatistics Unit, South African Medical Research Council, Cape Town, South Africa
- Statistics and Population Studies Department, University of the Western Cape, Cape Town, South Africa
| | - Sonja Swanevelder
- Biostatistics Unit, South African Medical Research Council, Cape Town, South Africa
| |
Collapse
|
4
|
Van der Stede T, Van de Loock A, Lievens E, Yigit N, Anckaert J, Van Thienen R, Weyns A, Mestdagh P, Vandesompele J, Derave W. Transcriptomic signatures of human single skeletal muscle fibers in response to high-intensity interval exercise. Am J Physiol Cell Physiol 2024; 327:C1249-C1262. [PMID: 39316684 DOI: 10.1152/ajpcell.00299.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/12/2024] [Accepted: 07/29/2024] [Indexed: 09/26/2024]
Abstract
The heterogeneous fiber type composition of skeletal muscle makes it challenging to decipher the molecular signaling events driving the health- and performance benefits of exercise. We developed an optimized workflow for transcriptional profiling of individual human muscle fibers before, immediately after, and after 3 h of recovery from high-intensity interval cycling exercise. From a transcriptional point-of-view, we observe that there is no dichotomy in fiber activation, which could refer to a fiber being recruited or nonrecruited. Rather, the activation pattern displays a continuum with a more uniform response within fast versus slow fibers during the recovery from exercise. The transcriptome-wide response immediately after exercise is characterized by some distinct signatures for slow versus fast fibers, although the most exercise-responsive genes are common between the two fiber types. The temporal transcriptional waves further converge the gene signatures of both fiber types toward a more similar profile during the recovery from exercise. Furthermore, a large heterogeneity among all resting and exercised fibers was observed, with the principal drivers being independent of a slow/fast typology. This profound heterogeneity extends to distinct exercise responses of fibers beyond a classification based on myosin heavy chains. Collectively, our single-fiber methodological approach points to a substantial between-fiber diversity in muscle fiber responses to high-intensity interval exercise.NEW & NOTEWORTHY By development of a single-fiber transcriptomics technology, we assessed the transcriptional events in individual human skeletal muscle fibers upon high-intensity exercise. We demonstrate a large variability in transcriptional activation of fibers, with shared and distinct gene signatures for slow and fast fibers. The heterogeneous fiber-specific exercise response extends beyond this traditional slow/fast categorization. These findings expand on our understanding of exercise responses and uncover a profound between-fiber diversity in muscle fiber activation and transcriptional perturbations.
Collapse
Affiliation(s)
- Thibaux Van der Stede
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Alexia Van de Loock
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Eline Lievens
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Nurten Yigit
- OncoRNALab, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jasper Anckaert
- OncoRNALab, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Ruud Van Thienen
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Anneleen Weyns
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Pieter Mestdagh
- OncoRNALab, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jo Vandesompele
- OncoRNALab, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Wim Derave
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
5
|
Gad SA, Smith H, Roberts LD. Metabolic small talk during exercise: The role of metabokines and lipokines in interorgan signalling. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2024; 35:100525. [PMID: 39185341 PMCID: PMC11339532 DOI: 10.1016/j.coemr.2024.100525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/04/2024] [Accepted: 04/19/2024] [Indexed: 08/27/2024]
Abstract
Metabolites in exercise have traditionally been viewed as a fuel source, waste product, or anabolic components required for exercise-induced biosynthetic processes. However, it is now recognised that metabolites and lipids may act as mediators of interorgan crosstalk to coordinate the local and systemic physiological adaptations required to meet the complex system-wide challenge of exercise. These bioactive metabolite and lipid signals have been termed metabokines and lipokines, respectively. There is emerging evidence that metabokines and lipokines contribute to the health benefits of exercise. This review highlights several of the key recent discoveries related to metabokine and lipokine signalling during exercise. The discovery of these metabokines and lipokines, and their signalling targets, may provide the basis of future therapies for human disease.
Collapse
Affiliation(s)
- Shaimaa A. Gad
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
- Faculty of Medicine, Mansoura University, Egypt
| | - Hannah Smith
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Lee D. Roberts
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
6
|
Van Vossel K, Hardeel J, Van der Stede T, Weyns A, Boone J, Blemker SS, Derave W, Lievens E. Influence of intramuscular steroid receptor content and fiber capillarization on skeletal muscle hypertrophy. Scand J Med Sci Sports 2024; 34:e14668. [PMID: 38802727 DOI: 10.1111/sms.14668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024]
Abstract
Multiple intramuscular variables have been proposed to explain the high variability in resistance training induced muscle hypertrophy across humans. This study investigated if muscular androgen receptor (AR), estrogen receptor α (ERα) and β (ERβ) content and fiber capillarization are associated with fiber and whole-muscle hypertrophy after chronic resistance training. Male (n = 11) and female (n = 10) resistance training novices (22.1 ± 2.2 years) trained their knee extensors 3×/week for 10 weeks. Vastus lateralis biopsies were taken at baseline and post the training period to determine changes in fiber type specific cross-sectional area (CSA) and fiber capillarization by immunohistochemistry and, intramuscular AR, ERα and ERβ content by Western blotting. Vastus lateralis volume was quantified by MRI-based 3D segmentation. Vastus lateralis muscle volume significantly increased over the training period (+7.22%; range: -1.82 to +18.8%, p < 0.0001) but no changes occurred in all fiber (+1.64%; range: -21 to +34%, p = 0.869), type I fiber (+1.33%; range: -24 to +41%, p = 0.952) and type II fiber CSA (+2.19%; range: -23 to +29%, p = 0.838). However, wide inter-individual ranges were found. Resistance training increased the protein expression of ERα but not ERβ and AR, and the increase in ERα content was positively related to changes in fiber CSA. Only for the type II fibers, the baseline capillary-to-fiber-perimeter index was positively related to type II fiber hypertrophy but not to whole muscle responsiveness. In conclusion, an upregulation of ERα content and an adequate initial fiber capillarization may be contributing factors implicated in muscle fiber hypertrophy responsiveness after chronic resistance training.
Collapse
Affiliation(s)
- Kim Van Vossel
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Julie Hardeel
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Thibaux Van der Stede
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Anneleen Weyns
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Jan Boone
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Silvia Salinas Blemker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
- Springbok Analytics, Charlottesville, VA, USA
| | - Wim Derave
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Eline Lievens
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
7
|
Specht T, Seifert R. Repurposing of H 1-receptor antagonists (levo)cetirizine, (des)loratadine, and fexofenadine as a case study for systematic analysis of trials on clinicaltrials.gov using semi-automated processes with custom-coded software. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2995-3018. [PMID: 37870580 PMCID: PMC11074024 DOI: 10.1007/s00210-023-02796-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023]
Abstract
To gain a comprehensive overview of the landscape of clinical trials for the H1-receptor antagonists (H1R antagonists) cetirizine, levocetirizine, loratadine, desloratadine, and fexofenadine and their potential use cases in drug repurposing (the use of well-known drugs outside the scope of the original medical indication), we analyzed trials from clincialtrials.gov using novel custom-coded software, which itself is also a key emphasis of this paper. To automate data acquisition from clincialtrials.gov via its API, data processing, and storage, we created custom software by leveraging a variety of open-source tools. Data were stored in a relational database and annotated facilitating a specially adapted web application. Through the data analysis, we identified use cases for repurposing and reviewed backgrounds and results in the scientific literature. Even though we found very few trials with published results for repurpose indications, extended literature research revealed some prominent use cases: Cetirizine seems promising in mitigating infusion-associated reactions and is also more effective than placebo in the treatment of androgenetic alopecia. Loratadine may be beneficial in the prophylaxis of G-CSF-related bone pain. In COVID-19, H1R antagonists may be helpful, but placebo-controlled scientific evidence is needed. For asthma, the effect of H1R antagonists only seems to be secondary by alleviating allergy symptoms. Our novel method to find potential use cases for repurposing of H1R antagonists allows for high automation, reduces human error, and was successful in revealing potential areas of interest. The software could be used for similar research questions and analyses in the future.
Collapse
Affiliation(s)
- Tim Specht
- Hannover Medical School, Institute of Pharmacology, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Roland Seifert
- Hannover Medical School, Institute of Pharmacology, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
8
|
Ely MR, Mangum JE, Needham KW, Minson CT, Halliwill JR. Effect of histamine-receptor antagonism on the circulating inflammatory cell and cytokine response to exercise: A pilot study. Physiol Rep 2024; 12:e15936. [PMID: 38307711 PMCID: PMC10837044 DOI: 10.14814/phy2.15936] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/10/2024] [Accepted: 01/24/2024] [Indexed: 02/04/2024] Open
Abstract
The purpose of this study was to gain insight into histamine's role in the exercise inflammatory response and recovery from exercise. To explore this, young healthy participants (n = 12) performed 300 eccentric leg extensions under control (Placebo) versus histamine H1 and H2 receptor antagonism (Blockade) in a randomized cross-over study. Circulating leukocytes and cytokines were measured for 72 h after exercise. Circulating leukocytes were elevated at 6 and 12 h after exercise (p < 0.05) with the peak response being a 44.1 ± 11.7% increase with Blockade versus 13.7 ± 6.6% with Placebo (both p < 0.05 vs. baseline, but also p < 0.05 between Blockade and Placebo). Of the cytokines that were measured, only MCP-1 was elevated following exercise. The response at 6 h post-exercise was a 104.0 ± 72.5% increase with Blockade versus 93.1 ± 41.9% with Placebo (both p < 0.05 vs. baseline, p = 0.82 between Blockade and Placebo). The main findings of the present investigation were that taking combined histamine H1 and H2 receptor antagonists augmented the magnitude but not the duration of the increase of circulating immune cells following exercise. This suggests histamine is not only exerting a local influence within the skeletal muscle but that it may influence the systemic inflammatory patterns.
Collapse
Affiliation(s)
- Matthew R. Ely
- Department of Human PhysiologyUniversity of OregonEugeneOregonUSA
| | - Joshua E. Mangum
- Department of Human PhysiologyUniversity of OregonEugeneOregonUSA
| | | | | | | |
Collapse
|
9
|
Bittel AJ, Bittel DC, Gordish-Dressman H, Chen YW. Voluntary wheel running improves molecular and functional deficits in a murine model of facioscapulohumeral muscular dystrophy. iScience 2024; 27:108632. [PMID: 38188524 PMCID: PMC10770537 DOI: 10.1016/j.isci.2023.108632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/11/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024] Open
Abstract
Endurance exercise training is beneficial for skeletal muscle health, but it is unclear if this type of exercise can target or correct the molecular mechanisms of facioscapulohumeral muscular dystrophy (FSHD). Using the FLExDUX4 murine model of FSHD characterized by chronic, low levels of pathological double homeobox protein 4 (DUX4) gene expression, we show that 6 weeks of voluntary, free wheel running improves running performance, strength, mitochondrial function, and sarcolemmal repair capacity, while slowing/reversing skeletal muscle fibrosis. These improvements are associated with restored transcriptional activity of gene networks/pathways regulating actin cytoskeletal signaling, vascular remodeling, inflammation, fibrosis, and muscle mass toward wild-type (WT) levels. However, FLExDUX4 mice exhibit blunted increases in mitochondrial content with training and persistent transcriptional overactivation of hypoxia, inflammatory, angiogenic, and cytoskeletal pathways. These results identify exercise-responsive and non-responsive molecular pathways in FSHD, while providing support for the use of endurance-type exercise as a non-invasive treatment option.
Collapse
Affiliation(s)
- Adam J. Bittel
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA
| | - Daniel C. Bittel
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA
| | | | - Yi-Wen Chen
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA
- Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA
| |
Collapse
|
10
|
Marandure TT, Schwellnus MP, Grant C, Jansen van Rensburg A, Jordaan E, Boer P. Patellofemoral Pain Syndrome Is Associated With Chronic Disease and Allergies in 60 997 Distance Runner Race Entrants: SAFER XXX Study. Clin J Sport Med 2023; 33:603-610. [PMID: 37389463 DOI: 10.1097/jsm.0000000000001166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 05/22/2023] [Indexed: 07/01/2023]
Abstract
OBJECTIVE Patellofemoral pain syndrome (PFPS) is a common running-related injury. Independent risk factors associated with PFPS have not been described in a large cohort of distance runners. DESIGN Descriptive, cross-sectional study. SETTING 21.1 and 56 km Two Oceans Marathon races (2012-2015). PARTICIPANTS 60 997 race entrants. ASSESSMENT OF RISK FACTORS Participants completed a compulsory prerace medical screening questionnaire (history of PFPS in the past 12 months, n = 362; no injury history, n = 60 635). Selected risk factors associated with a history of PFPS were explored using univariate & multivariate analyses: demographics, training/running variables, history of chronic diseases (composite chronic disease score), and any allergy. MAIN OUTCOME MEASURES Prevalence ratios (PRs, 95% confidence intervals). RESULTS Risk factors associated with PFPS (univariate analysis) were increased years of recreational running (PR = 1.09; P = 0.0107), older age (>50 years), and chronic diseases (PR > 2): gastrointestinal disease (PR = 5.06; P < 0.0001), cardiovascular disease (CVD) (PR = 3.28; P < 0.0001), nervous system/psychiatric disease (PR = 3.04; P < 0.0001), cancer (PR = 2.83; P = 0.0005), risk factors for CVD (PR = 2.42; P < 0.0001), symptoms of CVD (PR = 2.38; P = 0.0397), and respiratory disease (PR = 2.00; P < 0.0001). Independent risk factors (multivariate analysis) associated with PFPS (adjusted for age, sex, and race distance) were a higher chronic disease composite score (PR = 2.68 increased risk for every 2 additional chronic diseases; P < 0.0001) and a history of allergies (PR = 2.33; P < 0.0001). CONCLUSIONS Novel independent risk factors associated with PFPS in distance runners are a history of multiple chronic diseases and a history of allergies. Identification of chronic diseases and allergies should be considered as part of the clinical assessment of a runner presenting with a history of PFPS.
Collapse
Affiliation(s)
- Tsungai Tirivashe Marandure
- Section Sports Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Sport, Exercise Medicine and Lifestyle Institute (SEMLI), Pretoria, South Africa
| | - Martin P Schwellnus
- Sport, Exercise Medicine and Lifestyle Institute (SEMLI), Pretoria, South Africa
- International Olympic Committee (IOC) Research Centre, Pretoria, South Africa
- Emeritus Professor, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Catharina Grant
- Section Sports Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | | | - Esmè Jordaan
- Biostatistics Unit, South African Medical Research Council, Cape Town, South Africa
- Statistics and Population Studies Department, University of the Western Cape, Cape Town, South Africa; and
| | - Pieter Boer
- Department of Human Movement Science, Cape Peninsula University of Technology, Cape Town, South Africa
| |
Collapse
|
11
|
Van der Stede T, Spaas J, de Jager S, De Brandt J, Hansen C, Stautemas J, Vercammen B, De Baere S, Croubels S, Van Assche CH, Pastor BC, Vandenbosch M, Van Thienen R, Verboven K, Hansen D, Bové T, Lapauw B, Van Praet C, Decaestecker K, Vanaudenaerde B, Eijnde BO, Gliemann L, Hellsten Y, Derave W. Extensive profiling of histidine-containing dipeptides reveals species- and tissue-specific distribution and metabolism in mice, rats, and humans. Acta Physiol (Oxf) 2023; 239:e14020. [PMID: 37485756 DOI: 10.1111/apha.14020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/26/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
AIM Histidine-containing dipeptides (HCDs) are pleiotropic homeostatic molecules with potent antioxidative and carbonyl quenching properties linked to various inflammatory, metabolic, and neurological diseases, as well as exercise performance. However, the distribution and metabolism of HCDs across tissues and species are still unclear. METHODS Using a sensitive UHPLC-MS/MS approach and an optimized quantification method, we performed a systematic and extensive profiling of HCDs in the mouse, rat, and human body (in n = 26, n = 25, and n = 19 tissues, respectively). RESULTS Our data show that tissue HCD levels are uniquely produced by carnosine synthase (CARNS1), an enzyme that was preferentially expressed by fast-twitch skeletal muscle fibres and brain oligodendrocytes. Cardiac HCD levels are remarkably low compared to other excitable tissues. Carnosine is unstable in human plasma, but is preferentially transported within red blood cells in humans but not rodents. The low abundant carnosine analogue N-acetylcarnosine is the most stable plasma HCD, and is enriched in human skeletal muscles. Here, N-acetylcarnosine is continuously secreted into the circulation, which is further induced by acute exercise in a myokine-like fashion. CONCLUSION Collectively, we provide a novel basis to unravel tissue-specific, paracrine, and endocrine roles of HCDs in human health and disease.
Collapse
Affiliation(s)
- Thibaux Van der Stede
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
- Department of Nutrition, Exercise and Sports, Copenhagen University, Copenhagen, Denmark
| | - Jan Spaas
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
- University MS Center (UMSC) Hasselt, Pelt, Belgium
- BIOMED Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Sarah de Jager
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Jana De Brandt
- BIOMED Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- REVAL Rehabilitation Research Center, Hasselt University, Hasselt, Belgium
| | - Camilla Hansen
- Department of Nutrition, Exercise and Sports, Copenhagen University, Copenhagen, Denmark
| | - Jan Stautemas
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Bjarne Vercammen
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Siegrid De Baere
- Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, Ghent, Belgium
| | - Siska Croubels
- Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, Ghent, Belgium
| | - Charles-Henri Van Assche
- The Maastricht MultiModal Molecular Imaging (M4I) institute, Maastricht University, Maastricht, The Netherlands
| | - Berta Cillero Pastor
- The Maastricht MultiModal Molecular Imaging (M4I) institute, Maastricht University, Maastricht, The Netherlands
| | - Michiel Vandenbosch
- The Maastricht MultiModal Molecular Imaging (M4I) institute, Maastricht University, Maastricht, The Netherlands
| | - Ruud Van Thienen
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Kenneth Verboven
- BIOMED Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- REVAL Rehabilitation Research Center, Hasselt University, Hasselt, Belgium
| | - Dominique Hansen
- BIOMED Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- REVAL Rehabilitation Research Center, Hasselt University, Hasselt, Belgium
- Heart Center Hasselt, Jessa Hospital Hasselt, Hasselt, Belgium
| | - Thierry Bové
- Department of Cardiac Surgery, Ghent University Hospital, Ghent, Belgium
| | - Bruno Lapauw
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - Charles Van Praet
- Department of Urology, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Karel Decaestecker
- Department of Urology, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Bart Vanaudenaerde
- Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Bert O Eijnde
- University MS Center (UMSC) Hasselt, Pelt, Belgium
- SMRC Sports Medical Research Center, BIOMED Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- Division of Sport Science, Stellenbosch University, Stellenbosch, South Africa
| | - Lasse Gliemann
- Department of Nutrition, Exercise and Sports, Copenhagen University, Copenhagen, Denmark
| | - Ylva Hellsten
- Department of Nutrition, Exercise and Sports, Copenhagen University, Copenhagen, Denmark
| | - Wim Derave
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
12
|
Goto H, Kinoshita M, Oshima N. Heatstroke-induced acute kidney injury and the innate immune system. Front Med (Lausanne) 2023; 10:1250457. [PMID: 37614951 PMCID: PMC10442538 DOI: 10.3389/fmed.2023.1250457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023] Open
Abstract
Heatstroke can cause multiple organ failure and systemic inflammatory response syndrome as the body temperature rises beyond the body's ability to regulate temperature in a hot environment. Previous studies have indicated that heatstroke-induced acute kidney injury (AKI) can lead to chronic kidney disease. Therefore, there is an urgent need to elucidate the mechanism of heatstroke-induced AKI and to establish methods for its prevention and treatment. Recent reports have revealed that innate immunity, including neutrophils, macrophages, lymphocytes, and mast cells, is deeply involved in heat-induced AKI. In this review, we will discuss the roles of each immune cell in heat-induced renal injury and their potential therapeutic use.
Collapse
Affiliation(s)
- Hiroyasu Goto
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Japan
| | - Manabu Kinoshita
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Japan
| | - Naoki Oshima
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Japan
| |
Collapse
|
13
|
Van Vossel K, Hardeel J, Van de Casteele F, Van der Stede T, Weyns A, Boone J, Blemker SS, Lievens E, Derave W. Can muscle typology explain the inter-individual variability in resistance training adaptations? J Physiol 2023; 601:2307-2327. [PMID: 37038845 DOI: 10.1113/jp284442] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/03/2023] [Indexed: 04/12/2023] Open
Abstract
Considerable inter-individual heterogeneity exists in the muscular adaptations to resistance training. It has been proposed that fast-twitch fibres are more sensitive to hypertrophic stimuli and thus that variation in muscle fibre type composition is a contributing factor to the magnitude of training response. This study investigated if the inter-individual variability in resistance training adaptations is determined by muscle typology and if the most appropriate weekly training frequency depends on muscle typology. In strength-training novices, 11 slow (ST) and 10 fast typology (FT) individuals were selected by measuring muscle carnosine with proton magnetic resonance spectroscopy. Participants trained both upper arm and leg muscles to failure at 60% of one-repetition maximum (1RM) for 10 weeks, whereby one arm and leg trained 3×/week and the contralateral arm and leg 2×/week. Muscle volume (MRI-based 3D segmentation), maximal dynamic strength (1RM) and fibre type-specific cross-sectional area (vastus lateralis biopsies) were evaluated. The training response for total muscle volume (+3 to +14%), fibre size (-19 to +22%) and strength (+17 to +47%) showed considerable inter-individual variability, but these could not be attributed to differences in muscle typology. However, ST individuals performed a significantly higher training volume to gain these similar adaptations than FT individuals. The limb that trained 3×/week had generally more pronounced hypertrophy than the limb that trained 2×/week, and there was no interaction with muscle typology. In conclusion, muscle typology cannot explain the high variability in resistance training adaptations when training is performed to failure at 60% of 1RM. KEY POINTS: This study investigated the influence of muscle typology (muscle fibre type composition) on the variability in resistance training adaptations and on its role in the individualization of resistance training frequency. We demonstrate that an individual's muscle typology cannot explain the inter-individual variability in resistance training-induced increases in muscle volume, maximal dynamic strength and fibre cross-sectional area when repetitions are performed to failure. Importantly, slow typology individuals performed a significantly higher training volume to obtain similar adaptations compared to fast typology individuals. Muscle typology does not determine the most appropriate resistance training frequency. However, regardless of muscle typology, an additional weekly training (3×/week vs. 2×/week) increases muscle hypertrophy but not maximal dynamic strength. These findings expand on our understanding of the underlying mechanisms for the large inter-individual variability in resistance training adaptations.
Collapse
Affiliation(s)
- Kim Van Vossel
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Julie Hardeel
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | | | - Thibaux Van der Stede
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Anneleen Weyns
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Jan Boone
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Silvia Salinas Blemker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
- Springbok Analytics, Charlottesville, VA, USA
| | - Eline Lievens
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Wim Derave
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
14
|
Boer PH, Schwellnus MP, Jordaan E. Chronic diseases and allergies are risk factors predictive of a history of Medial Tibial Stress Syndrome (MTSS) in distance runners: SAFER study XXIV. PHYSICIAN SPORTSMED 2023; 51:166-174. [PMID: 35073241 DOI: 10.1080/00913847.2021.2021597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Medial Tibial Stress Syndrome (MTSS) is one of the most common causes of exercise-associated lower leg pain in distance runners. AIM To identify risk factors predictive of a history of MTSS in distance runners entering the Two Oceans Marathon races (21.1 km and 56 km). DESIGN Cross-sectional study. SETTING 2012 to 2015 Two Oceans Marathon races (21.1 km and 56 km). PARTICIPANTS Consenting race entrants. METHODS 106,743 race entrants completed an online pre-race medical screening questionnaire. 76,654 consenting runners (71.8%) were studied. 558 verified MTSS injuries were reported in the previous 12 months. Risk factors predictive of a history of MTSS were explored using uni - & multivariate analyses: demographics (race distance, sex, and age groups), training/racing history, history of chronic diseases, allergies, and medication use. RESULTS Independent risk factors predictive of a history of MTSS (adjusted for sex, age group, and race distance) were a higher chronic disease composite score (PR = 3.1 times increase risk for every two additional chronic diseases; p < 0.0001) and a history of allergies (PR = 1.9; p < 0.0001). Chronic diseases (PR > 2) predictive of a history of MTSS were: symptoms of CVD (PR = 4.2; p < 0.0001); GIT disease (PR = 3.3; p < 0.0001); kidney/bladder disease (PR = 3.3; p < 0.0001); nervous system/psychiatric disease (PR = 3.2; p < 0.0001); respiratory disease (PR = 2.9; p < 0.0001) a history of CVD (PR = 2.9; p < 0.0001); and risk factors of CVD (PR = 2.4; p < 0.0001) (univariate analysis). Average running speed was associated with higher risk of MTSS. CONCLUSION Novel independent risk factors predictive of a history of MTSS in distance runners (56 km, 21.1 km) were multiple chronic diseases and a history of allergies. Identifying athletes at higher risk for MTSS can guide healthcare professionals in their prevention and rehabilitation efforts.
Collapse
Affiliation(s)
- Pieter-Henk Boer
- Department of Human Movement Science, Cape Peninsula University of Technology, Wellington, South Africa
| | - Martin P Schwellnus
- Sport Exercise Medicine and Lifestyle Institute (Semli), Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- International Olympic Committee (IOC) Research Centre, South Africa
- Emeritus Professor, Faculty of Health Sciences, University of Cape Town Rondebosch South Africa
| | - Esmè Jordaan
- Biostatistics Unit, South African Medical Research Council, South Africa
| |
Collapse
|
15
|
du Toit F, Schwellnus M, Jordaan E, Swanevelder S, Wood P. Factors associated with patellofemoral pain in recreational road cyclists: A cross-sectional study in 59953 cyclists - SAFER XXXIII. Phys Ther Sport 2023; 59:136-143. [PMID: 36535111 DOI: 10.1016/j.ptsp.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Patellofemoral pain (PFP) is a common cycling-related injury, and independent factors need to be identified to enable effective injury prevention strategies. We aim to determine factors associated with PFP in cyclists entering mass community-based events. DESIGN Cross-sectional study. SETTING 2016-2020 Cape Town Cycle Tour. PARTICIPANTS Consenting race entrants. MAIN OUTCOME MEASURES 62758 consenting race entrants completed a pre-race medical questionnaire, and 323 reported PFP. Selected factors associated with PFP (demographics, cycling experience and training, chronic disease history) were explored using multivariate analyses. RESULTS Prevalence ratio (PR) of PFP was similar for sex and age groups. Independent factors associated with PFP (adjusted for sex and age) were history of chronic disease [Composite Chronic Disease Score (0-10)(PR = 2.0, p < 0.0001) and any allergies (PR = 2.0, p < 0.0001)]. CONCLUSION A history of chronic diseases and allergies is associated with PFP in cyclists. Practical clinical recommendations are: 1) that prevention programs for PFP be considered when cycling is prescribed as a physical activity intervention for patients with chronic disease, and 2) that older cyclists presenting with PFP be assessed for the presence of risk factors or existing chronic disease.
Collapse
Affiliation(s)
- François du Toit
- Division of Biokinetics and Sports Science, Department of Physiology, Faculty of Health Sciences, University of Pretoria, South Africa; Sport, Exercise Medicine and Lifestyle Institute (SEMLI), Faculty of Health Sciences, University of Pretoria, South Africa
| | - Martin Schwellnus
- Sport, Exercise Medicine and Lifestyle Institute (SEMLI), Faculty of Health Sciences, University of Pretoria, South Africa; International Olympic Committee (IOC) Research Centre, South Africa.
| | - Esme Jordaan
- Biostatistics Unit, South African Medical Research Council, South Africa; Statistics and Population Studies Department, University of the Western Cape, South Africa
| | - Sonja Swanevelder
- Biostatistics Unit, South African Medical Research Council, South Africa
| | - Paola Wood
- Division of Biokinetics and Sports Science, Department of Physiology, Faculty of Health Sciences, University of Pretoria, South Africa; Sport, Exercise Medicine and Lifestyle Institute (SEMLI), Faculty of Health Sciences, University of Pretoria, South Africa
| |
Collapse
|
16
|
MacCannell AD, Roberts LD. Metabokines in the regulation of systemic energy metabolism. Curr Opin Pharmacol 2022; 67:102286. [PMID: 36137304 DOI: 10.1016/j.coph.2022.102286] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 07/05/2022] [Accepted: 08/01/2022] [Indexed: 01/25/2023]
Abstract
Metabolism consists of life-sustaining chemical reactions involving metabolites. Historically, metabolites were defined as the intermediates or end products of metabolism and considered to be passive participants changed by metabolic processes. However, recent research has redefined how we view metabolism. There is emerging evidence of metabolites which function to mediate cellular signalling and interorgan crosstalk, regulating local metabolism and systemic physiology. These bioactive metabolite signals have been termed metabokines. Metabokines regulate diverse energy metabolism pathways across multiple tissues, including fatty acid β-oxidation, mitochondrial oxidative phosphorylation, lipolysis, glycolysis and gluconeogenesis. There is increasing impetus to uncover novel metabokine signalling axes to better understand how these may be perturbed in metabolic diseases and determine their utility as therapeutic targets.
Collapse
Affiliation(s)
- Amanda Dv MacCannell
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Lee D Roberts
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
17
|
Mohammadi‐Pilehdarboni H, Rasouli M. Histamine H1‐ and H2‐receptors participate to provide metabolic energy differently. Fundam Clin Pharmacol 2022; 36:1031-1037. [DOI: 10.1111/fcp.12814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/21/2022] [Accepted: 07/06/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Hanieh Mohammadi‐Pilehdarboni
- Immunogenetic Research Center, Department of Clinical Biochemistry and Genetics, Faculty of Medicine Mazandaran University of Medical Sciences Sari Mazandaran Iran
| | - Mehdi Rasouli
- Immunogenetic Research Center, Department of Clinical Biochemistry and Genetics, Faculty of Medicine Mazandaran University of Medical Sciences Sari Mazandaran Iran
| |
Collapse
|
18
|
de Jager S, Blancquaert L, Van der Stede T, Lievens E, De Baere S, Croubels S, Gilardoni E, Regazzoni LG, Aldini G, Bourgois JG, Derave W. The ergogenic effect of acute carnosine and anserine supplementation: dosing, timing, and underlying mechanism. J Int Soc Sports Nutr 2022; 19:70-91. [PMID: 35599917 PMCID: PMC9116398 DOI: 10.1080/15502783.2022.2053300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background Recent studies suggest that acute-combined carnosine and anserine supplementation has the potential to improve the performance of certain cycling protocols. Yet, data on optimal dose, timing of ingestion, effective exercise range, and mode of action are lacking. Three studies were conducted to establish dosing and timing guidelines concerning carnosine and anserine intake and to unravel the mechanism underlying the ergogenic effects. Methods First, a dose response study A was conducted in which 11 men randomly received placebo, 10, 20, or 30 mg.kg−1 of both carnosine and anserine. They performed 3x maximal voluntary isometric contractions (MVC), followed by a 5 x 6 s repeated cycling sprint ability test (RSA), once before the supplement and 30 and 60 minutes after. In a second study, 15 men performed 3x MVCs with femoral nerve electrical stimulation, followed by an RSA test, once before 30 mg.kg−1 carnosine and anserine and 60 minutes after. Finally, in study C, eight men performed a high intensity cycling training after randomly ingesting 30 mg.kg−1 of carnosine and anserine, a placebo or antihistamines (reduce post-exercise blood flow) to investigate effects on muscle perfusion. Results Study A showed a 3% peak power (p = 0.0005; 95% CI = 0.07 to 0.27; ES = 0.91) and 4.5% peak torque (p = 0.0006; 95% CI = 0.12 to 0.50; ES = 0.87) improvement on RSA and MVC, with 30 mg.kg−1 carnosine + anserine ingestion 60 minutes before the performance yielding the best results. Study B found no performance improvement on group level; however, a negative correlation (r = −0.54; p = 0.0053; 95% CI = −0.77 to −0.19) was found between carnosinase enzyme activity (responsible for carnosine and anserine breakdown) and performance improvement. No effect of the supplement on neuromuscular function nor on muscle perfusion was found. Conclusions These studies reveal that acute ingestion of 30 mg.kg−1 of both carnosine and anserine, 60 minutes before a high intensity exercise, can potentially improve performance, such as short cycling sprints or maximal muscle contractions. Subjects with lower carnosinase activity, and thus a slower breakdown of circulating dipeptides, appear to benefit more from this ergogenic effect. Finally, neither the involvement of a direct effect on neuromuscular function, nor an indirect effect on recovery through increased muscle perfusion could be confirmed as potential mechanism of action. The ergogenic mechanism therefore remains elusive.
Collapse
Affiliation(s)
- Sarah de Jager
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Laura Blancquaert
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | | | - Eline Lievens
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Siegrid De Baere
- Department of Pharmacology, Toxicology and Biochemistry, Ghent University, Merelbeke, Belgium
| | - Siska Croubels
- Department of Pharmacology, Toxicology and Biochemistry, Ghent University, Merelbeke, Belgium
| | - Ettore Gilardoni
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Luca G. Regazzoni
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Jan G. Bourgois
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Wim Derave
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
19
|
Mangum JE, Needham KW, Sieck DC, Ely MR, Larson EA, Peck MC, Minson CT, Halliwill JR. The effect of local passive heating on skeletal muscle histamine concentration: implications for exercise-induced histamine release. J Appl Physiol (1985) 2022; 132:367-374. [PMID: 34941436 PMCID: PMC8799384 DOI: 10.1152/japplphysiol.00740.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Aerobic exercise induces mast cell degranulation and increases histamine formation by histidine decarboxylase, resulting in an ∼150% increase in intramuscular histamine. The purpose of this study was to determine if the increase in skeletal muscle temperature associated with exercise is sufficient to explain this histamine response. Specifically, we hypothesized that local passive heating that mimics the magnitude and time course of changes in skeletal muscle temperature observed during exercise would result in increased intramuscular histamine concentrations comparable to exercising values. Seven subjects participated in the main study in which pulsed short-wave diathermy was used to passively raise the temperature of the vastus lateralis over 60 min. Heating increased intramuscular temperature from 32.6°C [95% confidence interval (CI) 32.0°C to 33.2°C] to 38.9°C (38.7°C to 39.2°C) (P < 0.05) and increased intramuscular histamine concentration from 2.14 ng/mL (1.92 to 2.36 ng/mL) to 2.97 ng/mL (2.57 to 3.36 ng/mL) (P < 0.05), an increase of 41%. In a follow-up in vitro experiment using human-derived cultured mast cells, heating to comparable temperatures did not activate mast cell degranulation. Therefore, it appears that exercise-associated changes in skeletal muscle temperature are sufficient to generate elevations in intramuscular histamine concentration. However, this thermal effect is most likely due to changes in de novo histamine formation via histidine decarboxylase and not due to degranulation of mast cells. In conclusion, physiologically relevant increases in skeletal muscle temperature explain part, but not all, of the histamine response to aerobic exercise. This thermal effect may be important in generating positive adaptations to exercise training.NEW & NOTEWORTHY The "exercise signal" that triggers histamine release within active skeletal muscle during aerobic exercise is unknown. By mimicking the magnitude and time course of increasing skeletal muscle temperature observed during aerobic exercise, we demonstrate that part of the exercise-induced rise in histamine is explained by a thermal effect, with in vitro experiments suggesting this is most likely via de novo histamine formation. This thermal effect may be important in generating positive adaptations to exercise training.
Collapse
Affiliation(s)
- Joshua E. Mangum
- Bowerman Sports Science Center, Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Karen Wiedenfeld Needham
- Bowerman Sports Science Center, Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Dylan C. Sieck
- Bowerman Sports Science Center, Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Matthew R. Ely
- Bowerman Sports Science Center, Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Emily A. Larson
- Bowerman Sports Science Center, Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Mairin C. Peck
- Bowerman Sports Science Center, Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Christopher T. Minson
- Bowerman Sports Science Center, Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - John R. Halliwill
- Bowerman Sports Science Center, Department of Human Physiology, University of Oregon, Eugene, Oregon
| |
Collapse
|
20
|
Pellinger TK, Emhoff CAW. Skeletal Muscle Hyperemia: A Potential Bridge Between Post-exercise Hypotension and Glucose Regulation. Front Physiol 2022; 12:821919. [PMID: 35173625 PMCID: PMC8841576 DOI: 10.3389/fphys.2021.821919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022] Open
Abstract
For both healthy individuals and patients with type 2 diabetes (T2D), the hemodynamic response to regular physical activity is important for regulating blood glucose, protecting vascular function, and reducing the risk of cardiovascular disease. In addition to these benefits of regular physical activity, evidence suggests even a single bout of dynamic exercise promotes increased insulin-mediated glucose uptake and insulin sensitivity during the acute recovery period. Importantly, post-exercise hypotension (PEH), which is defined as a sustained reduction in arterial pressure following a single bout of exercise, appears to be blunted in those with T2D compared to their non-diabetic counterparts. In this short review, we describe research that suggests the sustained post-exercise vasodilation often observed in PEH may sub-serve glycemic regulation following exercise in both healthy individuals and those with T2D. Furthermore, we discuss the interplay of enhanced perfusion, both macrovascular and microvascular, and glucose flux following exercise. Finally, we propose future research directions to enhance our understanding of the relationship between post-exercise hemodynamics and glucose regulation in healthy individuals and in those with T2D.
Collapse
Affiliation(s)
- Thomas K. Pellinger
- Department of Physical Therapy, University of Maryland Eastern Shore, Princess Anne, MD, United States
- *Correspondence: Thomas K. Pellinger,
| | - Chi-An W. Emhoff
- Department of Kinesiology, Saint Mary’s College of California, Moraga, CA, United States
| |
Collapse
|
21
|
Neumann J, Kirchhefer U, Dhein S, Hofmann B, Gergs U. The Roles of Cardiovascular H 2-Histamine Receptors Under Normal and Pathophysiological Conditions. Front Pharmacol 2022; 12:732842. [PMID: 34987383 PMCID: PMC8720924 DOI: 10.3389/fphar.2021.732842] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/02/2021] [Indexed: 12/11/2022] Open
Abstract
This review addresses pharmacological, structural and functional relationships among H2-histamine receptors and H1-histamine receptors in the mammalian heart. The role of both receptors in the regulation of force and rhythm, including their electrophysiological effects on the mammalian heart, will then be discussed in context. The potential clinical role of cardiac H2-histamine-receptors in cardiac diseases will be examined. The use of H2-histamine receptor agonists to acutely increase the force of contraction will be discussed. Special attention will be paid to the potential role of cardiac H2-histamine receptors in the genesis of cardiac arrhythmias. Moreover, novel findings on the putative role of H2-histamine receptor antagonists in treating chronic heart failure in animal models and patients will be reviewed. Some limitations in our biochemical understanding of the cardiac role of H2-histamine receptors will be discussed. Recommendations for further basic and translational research on cardiac H2-histamine receptors will be offered. We will speculate whether new knowledge might lead to novel roles of H2-histamine receptors in cardiac disease and whether cardiomyocyte specific H2-histamine receptor agonists and antagonists should be developed.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Stefan Dhein
- Landratsamt Altenburger Land, Altenburg, Germany
| | - Britt Hofmann
- Herzchirurgie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| |
Collapse
|
22
|
Fan Z, Turiel G, Ardicoglu R, Ghobrial M, Masschelein E, Kocijan T, Zhang J, Tan G, Fitzgerald G, Gorski T, Alvarado-Diaz A, Gilardoni P, Adams CM, Ghesquière B, De Bock K. Exercise-induced angiogenesis is dependent on metabolically primed ATF3/4 + endothelial cells. Cell Metab 2021; 33:1793-1807.e9. [PMID: 34358431 PMCID: PMC8432967 DOI: 10.1016/j.cmet.2021.07.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 05/18/2021] [Accepted: 07/14/2021] [Indexed: 12/21/2022]
Abstract
Exercise is a powerful driver of physiological angiogenesis during adulthood, but the mechanisms of exercise-induced vascular expansion are poorly understood. We explored endothelial heterogeneity in skeletal muscle and identified two capillary muscle endothelial cell (mEC) populations that are characterized by differential expression of ATF3/4. Spatial mapping showed that ATF3/4+ mECs are enriched in red oxidative muscle areas while ATF3/4low ECs lie adjacent to white glycolytic fibers. In vitro and in vivo experiments revealed that red ATF3/4+ mECs are more angiogenic when compared with white ATF3/4low mECs. Mechanistically, ATF3/4 in mECs control genes involved in amino acid uptake and metabolism and metabolically prime red (ATF3/4+) mECs for angiogenesis. As a consequence, supplementation of non-essential amino acids and overexpression of ATF4 increased proliferation of white mECs. Finally, deleting Atf4 in ECs impaired exercise-induced angiogenesis. Our findings illustrate that spatial metabolic angiodiversity determines the angiogenic potential of muscle ECs.
Collapse
Affiliation(s)
- Zheng Fan
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich 8603, Switzerland
| | - Guillermo Turiel
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich 8603, Switzerland
| | - Raphaela Ardicoglu
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich 8603, Switzerland; Laboratory of Molecular and Behavioral Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich 8057, Switzerland
| | - Moheb Ghobrial
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich 8603, Switzerland; Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON M5T 2S8, Canada
| | - Evi Masschelein
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich 8603, Switzerland
| | - Tea Kocijan
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich 8603, Switzerland
| | - Jing Zhang
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich 8603, Switzerland
| | - Ge Tan
- Functional Genomics Center Zürich, ETH/University of Zürich, Zürich 8093, Switzerland
| | - Gillian Fitzgerald
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich 8603, Switzerland
| | - Tatiane Gorski
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich 8603, Switzerland
| | - Abdiel Alvarado-Diaz
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich 8603, Switzerland
| | - Paola Gilardoni
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich 8603, Switzerland
| | - Christopher M Adams
- Division of Endocrinology, Metabolism and Nutrition, Mayo Clinic, Rochester, MN 55905, USA
| | - Bart Ghesquière
- Metabolomics Expertise Center, VIB Center for Cancer Biology, VIB, Leuven, Belgium; Metabolomics Expertise Center, Department of Oncology, Cancer Institute, KU Leuven, Leuven, Belgium
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich 8603, Switzerland.
| |
Collapse
|
23
|
Leuchtmann AB, Adak V, Dilbaz S, Handschin C. The Role of the Skeletal Muscle Secretome in Mediating Endurance and Resistance Training Adaptations. Front Physiol 2021; 12:709807. [PMID: 34456749 PMCID: PMC8387622 DOI: 10.3389/fphys.2021.709807] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022] Open
Abstract
Exercise, in the form of endurance or resistance training, leads to specific molecular and cellular adaptions not only in skeletal muscles, but also in many other organs such as the brain, liver, fat or bone. In addition to direct effects of exercise on these organs, the production and release of a plethora of different signaling molecules from skeletal muscle are a centerpiece of systemic plasticity. Most studies have so far focused on the regulation and function of such myokines in acute exercise bouts. In contrast, the secretome of long-term training adaptation remains less well understood, and the contribution of non-myokine factors, including metabolites, enzymes, microRNAs or mitochondrial DNA transported in extracellular vesicles or by other means, is underappreciated. In this review, we therefore provide an overview on the current knowledge of endurance and resistance exercise-induced factors of the skeletal muscle secretome that mediate muscular and systemic adaptations to long-term training. Targeting these factors and leveraging their functions could not only have broad implications for athletic performance, but also for the prevention and therapy in diseased and elderly populations.
Collapse
|