1
|
Tu Q, Liu G, Liu X, Zhang J, Xiao W, Lv L, Zhao B. Perspective on using non-human primates in Exposome research. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117199. [PMID: 39426107 DOI: 10.1016/j.ecoenv.2024.117199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/02/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
The physiological and pathological changes in the human body caused by environmental pressures are collectively referred to as the Exposome. Human society is facing escalating environmental pollution, leading to a rising prevalence of associated diseases, including respiratory diseases, cardiovascular diseases, neurological disorders, reproductive development disorders, among others. Vulnerable populations to the pathogenic effects of environmental pollution include those in the prenatal, infancy, and elderly stages of life. Conducting Exposome mechanistic research and proposing effective health interventions are urgent in addressing the current severe environmental pollution. In this review, we address the core issues and bottlenecks faced by current Exposome research, specifically focusing on the most toxic ultrafine nanoparticles. We summarize multiple research models being used in Exposome research. Especially, we discuss the limitations of rodent animal models in mimicking human physiopathological phenotypes, and prospect advantages and necessity of non-human primates in Exposome research based on their evolutionary relatedness, anatomical and physiological similarities to human. Finally, we declare the initiation of NHPE (Non-Human Primate Exposome) project for conducting Exposome research using non-human primates and provide insights into its feasibility and key areas of focus. SYNOPSIS: Non-human primate models hold unique advantages in human Exposome research.
Collapse
Affiliation(s)
- Qiu Tu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China
| | - Gaojing Liu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiuyun Liu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jiao Zhang
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China
| | - Wenxian Xiao
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Primate Facility, National Research Facility for Phenotypic & Genetic Analysis of Model Animals, and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
| | - Longbao Lv
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Primate Facility, National Research Facility for Phenotypic & Genetic Analysis of Model Animals, and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China.
| | - Bo Zhao
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China; Primate Facility, National Research Facility for Phenotypic & Genetic Analysis of Model Animals, and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| |
Collapse
|
2
|
Liu Z, Chen J, Ren Y, Liu S, Ba Y, Zuo A, Luo P, Cheng Q, Xu H, Han X. Multi-stage mechanisms of tumor metastasis and therapeutic strategies. Signal Transduct Target Ther 2024; 9:270. [PMID: 39389953 PMCID: PMC11467208 DOI: 10.1038/s41392-024-01955-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/18/2024] [Accepted: 08/24/2024] [Indexed: 10/12/2024] Open
Abstract
The cascade of metastasis in tumor cells, exhibiting organ-specific tendencies, may occur at numerous phases of the disease and progress under intense evolutionary pressures. Organ-specific metastasis relies on the formation of pre-metastatic niche (PMN), with diverse cell types and complex cell interactions contributing to this concept, adding a new dimension to the traditional metastasis cascade. Prior to metastatic dissemination, as orchestrators of PMN formation, primary tumor-derived extracellular vesicles prepare a fertile microenvironment for the settlement and colonization of circulating tumor cells at distant secondary sites, significantly impacting cancer progression and outcomes. Obviously, solely intervening in cancer metastatic sites passively after macrometastasis is often insufficient. Early prediction of metastasis and holistic, macro-level control represent the future directions in cancer therapy. This review emphasizes the dynamic and intricate systematic alterations that occur as cancer progresses, illustrates the immunological landscape of organ-specific PMN creation, and deepens understanding of treatment modalities pertinent to metastasis, thereby identifying some prognostic and predictive biomarkers favorable to early predict the occurrence of metastasis and design appropriate treatment combinations.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingqi Chen
- Department of Clinical Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shutong Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuhao Ba
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Anning Zuo
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Peng Luo
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, China.
| |
Collapse
|
3
|
Zhang X, Zeng W, Yan X, Wang Z, Xu K, Li M, Wang T, Song Y. Association between smoking status and the prognosis of brain metastasis in patients with non-small cell lung cancer. Front Oncol 2024; 14:1403344. [PMID: 39364322 PMCID: PMC11446722 DOI: 10.3389/fonc.2024.1403344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/26/2024] [Indexed: 10/05/2024] Open
Abstract
Objective This study aimed to explore the relationship between smoking status and the interval to brain metastasis in patients with non-small cell lung cancer (NSCLC) and its impact on survival time after brain metastasis. Methods Data were collected from patients with NSCLC with brain metastases who were treated at our centre between January 2005 and December 2017. Clinical indices such as clinicopathological features and smoking status were recorded, and patients were followed up until 1 September 2022. Based on our inclusion and exclusion criteria, 461 patients were analysed and matched using 1:1 propensity score matching. Three balanced groups were formed: non-smoking (n = 113), smoking cessation (n = 113), and smoking (n = 113). The interval to brain metastasis and overall survival were compared between the groups. Results There was a statistically significant difference in the interval to brain metastasis between the non-smoking and smoking cessation groups (p = 0.001), as well as between the non-smoking and smoking groups (p < 0.001). However, the difference between the smoking cessation and smoking groups was not statistically significant (p = 0.106). Multivariate and univariate analyses identified smoking status, clinical stage, lung cancer surgery, chemotherapy, and chest radiotherapy as independent predictors of the interval to brain metastasis. Additionally, the multivariate analysis showed that smoking status, driver gene mutations, and chest radiotherapy independently influenced survival after brain metastasis. Conclusion Smoking status in patients with NSCLC affects the interval to brain metastasis and survival after brain metastasis.
Collapse
Affiliation(s)
- Xiaofang Zhang
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning, China
| | - Weilin Zeng
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning, China
| | - Xingyu Yan
- The First Clinical College of China Medical University, Shenyang, Liaoning, China
| | - Zheng Wang
- Department of Cerebral Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning, China
| | - Ke Xu
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning, China
| | - Mo Li
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning, China
| | - Tianlu Wang
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning, China
| | - Yingqiu Song
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning, China
| |
Collapse
|
4
|
You X, Xie Y, Tan Q, Zhou C, Gu P, Zhang Y, Yang S, Yin H, Shang B, Yao Y, Wang D, Ma J, Chen W, Zhang X. Glycolytic reprogramming governs crystalline silica-induced pyroptosis and inflammation through promoting lactylation modification. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116952. [PMID: 39217895 DOI: 10.1016/j.ecoenv.2024.116952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Prolonged inhalation of environmental crystalline silica (CS) can cause silicosis, characterized by persistent pulmonary inflammation and irreversible fibrosis, but the mechanism has not been elucidated. To uncover the role and underlying mechanism of glycolytic reprogramming in CS-induced pulmonary inflammation, the mouse silicosis models and glycolysis inhibition models were established in vivo. And the CS-induced macrophage activation models were utilized to further explore the underlying mechanism in vitro. The results showed that CS induced lung inflammation accompanied by glycolytic reprogramming and pyroptosis. The application of glycolysis inhibitor (2-DG) suppressed CS-induced pyroptosis and alleviated lung inflammation. In vitro, 2-DG effectively impeded CS-induced macrophage pyroptosis and inflammatory response. Mechanistically, 2-DG suppressed pyroptosis by inhibiting NLRP3 inflammasome activation both in vivo and in vitro. Furtherly, metabolite lactate facilitated NLRP3-dependent pyroptosis synergistically with CS particles, while blocking the source of lactate largely alleviated NLRP3 inflammasome activation and subsequent pyroptosis triggered by CS. More profoundly, the increment of lactate induced by CS might drive NLRP3-dependent pyroptosis by increasing histone lactylation levels. In conclusion, our findings demonstrated inhibiting glycolytic reprogramming could alleviate CS-induced inflammatory response through suppressing NLRP3 -dependent pyroptosis. Increased glycolytic metabolite lactate and protein lactylation modifications might represent significant mechanisms during CS-induced NLRP3 activation and macrophage pyroptosis.
Collapse
Affiliation(s)
- Xiaojie You
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yujia Xie
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qiyou Tan
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chao Zhou
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou 450053, China
| | - Pei Gu
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | | | - Shiyu Yang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Haoyu Yin
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bingxin Shang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuxin Yao
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dongming Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou 450053, China.
| |
Collapse
|
5
|
Mussalo L, Lampinen R, Avesani S, Závodná T, Krejčík Z, Kalapudas J, Penttilä E, Löppönen H, Koivisto AM, Malm T, Topinka J, Giugno R, Jalava P, Kanninen KM. Traffic-related ultrafine particles impair mitochondrial functions in human olfactory mucosa cells - Implications for Alzheimer's disease. Redox Biol 2024; 75:103272. [PMID: 39047637 PMCID: PMC11321383 DOI: 10.1016/j.redox.2024.103272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024] Open
Abstract
Constituents of air pollution, the ultrafine particles (UFP) with a diameter of ≤0.1 μm, are considerably related to traffic emissions. Several studies link air pollution to Alzheimer's disease (AD), yet the exact relationship between the two remains poorly understood. Mitochondria are known targets of environmental toxicants, and their dysfunction is associated with neurodegenerative diseases. The olfactory mucosa (OM), located at the rooftop of the nasal cavity, is directly exposed to the environment and in contact with the brain. Mounting evidence suggests that the UFPs can impact the brain directly through the olfactory tract. By using primary human OM cultures established from nasal biopsies of cognitively healthy controls and individuals diagnosed with AD, we aimed to decipher the effects of traffic-related UFPs on mitochondria. The UFP samples were collected from the exhausts of a modern heavy-duty diesel engine (HDE) without aftertreatment systems, run with renewable diesel (A0) and petroleum diesel (A20), and from an engine of a 2019 model diesel passenger car (DI-E6d) equipped with state-of-the-art aftertreatment devices and run with renewable diesel (Euro6). OM cells were exposed to three different UFPs for 24-h and 72-h, after which cellular processes were assessed on the functional and transcriptomic levels. Our results show that UFPs impair mitochondrial functions in primary human OM cells by hampering oxidative phosphorylation (OXPHOS) and redox balance, and the responses of AD cells differ from cognitively healthy controls. RNA-Seq and IPA® revealed inhibition of OXPHOS and mitochondrial dysfunction in response to UFPs A0 and A20. Functional validation confirmed that A0 and A20 impair cellular respiration, decrease ATP levels, and disturb redox balance by altering NAD and glutathione metabolism, leading to increased ROS and oxidative stress. RNA-Seq and functional assessment revealed the presence of AD-related alterations in human OM cells and that different fuels and engine technologies elicit differential effects.
Collapse
Affiliation(s)
- Laura Mussalo
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Riikka Lampinen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Simone Avesani
- Department of Computer Science, University of Verona, 37134, Verona, Italy
| | - Táňa Závodná
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Zdeněk Krejčík
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Juho Kalapudas
- Department of Neurology, Neuro Centre, Kuopio University Hospital, 70210, Kuopio, Finland
| | - Elina Penttilä
- Department of Otorhinolaryngology, University of Eastern Finland and Kuopio University Hospital, 70210, Kuopio, Finland
| | - Heikki Löppönen
- Department of Otorhinolaryngology, University of Eastern Finland and Kuopio University Hospital, 70210, Kuopio, Finland
| | - Anne M Koivisto
- Department of Neurology, Neuro Centre, Kuopio University Hospital, 70210, Kuopio, Finland; Brain Research Unit, Department of Neurology, School of Medicine, University of Eastern Finland, 70210, Kuopio, Finland; Department of Neurology and Geriatrics, Helsinki University Hospital and Neurosciences, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Tarja Malm
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Jan Topinka
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Rosalba Giugno
- Department of Computer Science, University of Verona, 37134, Verona, Italy
| | - Pasi Jalava
- Inhalation Toxicology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Katja M Kanninen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland.
| |
Collapse
|
6
|
Zhang F, Guo J, Yu S, Zheng Y, Duan M, Zhao L, Wang Y, Yang Z, Jiang X. Cellular senescence and metabolic reprogramming: Unraveling the intricate crosstalk in the immunosuppressive tumor microenvironment. Cancer Commun (Lond) 2024; 44:929-966. [PMID: 38997794 PMCID: PMC11492308 DOI: 10.1002/cac2.12591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 06/23/2024] [Accepted: 07/07/2024] [Indexed: 07/14/2024] Open
Abstract
The intrinsic oncogenic mechanisms and properties of the tumor microenvironment (TME) have been extensively investigated. Primary features of the TME include metabolic reprogramming, hypoxia, chronic inflammation, and tumor immunosuppression. Previous studies suggest that senescence-associated secretory phenotypes that mediate intercellular information exchange play a role in the dynamic evolution of the TME. Specifically, hypoxic adaptation, metabolic dysregulation, and phenotypic shifts in immune cells regulated by cellular senescence synergistically contribute to the development of an immunosuppressive microenvironment and chronic inflammation, thereby promoting the progression of tumor events. This review provides a comprehensive summary of the processes by which cellular senescence regulates the dynamic evolution of the tumor-adapted TME, with focus on the complex mechanisms underlying the relationship between senescence and changes in the biological functions of tumor cells. The available findings suggest that components of the TME collectively contribute to the progression of tumor events. The potential applications and challenges of targeted cellular senescence-based and combination therapies in clinical settings are further discussed within the context of advancing cellular senescence-related research.
Collapse
Affiliation(s)
- Fusheng Zhang
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
- Department of Hepatobiliary and Pancreatic SurgeryPeking University First HospitalBeijingP. R. China
| | - Junchen Guo
- Department of RadiologyThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Shengmiao Yu
- Outpatient DepartmentThe Fourth Affiliated HospitalChina Medical UniversityShenyangLiaoningP. R. China
| | - Youwei Zheng
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Meiqi Duan
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Liang Zhao
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Yihan Wang
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Zhi Yang
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Xiaofeng Jiang
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| |
Collapse
|
7
|
Shi X, Wang X, Yao W, Shi D, Shao X, Lu Z, Chai Y, Song J, Tang W, Wang X. Mechanism insights and therapeutic intervention of tumor metastasis: latest developments and perspectives. Signal Transduct Target Ther 2024; 9:192. [PMID: 39090094 PMCID: PMC11294630 DOI: 10.1038/s41392-024-01885-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 08/04/2024] Open
Abstract
Metastasis remains a pivotal characteristic of cancer and is the primary contributor to cancer-associated mortality. Despite its significance, the mechanisms governing metastasis are not fully elucidated. Contemporary findings in the domain of cancer biology have shed light on the molecular aspects of this intricate process. Tumor cells undergoing invasion engage with other cellular entities and proteins en route to their destination. Insights into these engagements have enhanced our comprehension of the principles directing the movement and adaptability of metastatic cells. The tumor microenvironment plays a pivotal role in facilitating the invasion and proliferation of cancer cells by enabling tumor cells to navigate through stromal barriers. Such attributes are influenced by genetic and epigenetic changes occurring in the tumor cells and their surrounding milieu. A profound understanding of the metastatic process's biological mechanisms is indispensable for devising efficacious therapeutic strategies. This review delves into recent developments concerning metastasis-associated genes, important signaling pathways, tumor microenvironment, metabolic processes, peripheral immunity, and mechanical forces and cancer metastasis. In addition, we combine recent advances with a particular emphasis on the prospect of developing effective interventions including the most popular cancer immunotherapies and nanotechnology to combat metastasis. We have also identified the limitations of current research on tumor metastasis, encompassing drug resistance, restricted animal models, inadequate biomarkers and early detection methods, as well as heterogeneity among others. It is anticipated that this comprehensive review will significantly contribute to the advancement of cancer metastasis research.
Collapse
Affiliation(s)
- Xiaoli Shi
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xinyi Wang
- The First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wentao Yao
- Department of Urology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Dongmin Shi
- Department of Medical Oncology, Shanghai Changzheng Hospital, Shanghai, China
| | - Xihuan Shao
- The Fourth Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhengqing Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Yue Chai
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Jinhua Song
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
| | - Weiwei Tang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
| | - Xuehao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
- School of Medicine, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
8
|
Zhang M, Hu T, Ma T, Huang W, Wang Y. Epigenetics and environmental health. Front Med 2024; 18:571-596. [PMID: 38806988 DOI: 10.1007/s11684-023-1038-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/15/2023] [Indexed: 05/30/2024]
Abstract
Epigenetic modifications including DNA methylation, histone modifications, chromatin remodeling, and RNA modifications complicate gene regulation and heredity and profoundly impact various physiological and pathological processes. In recent years, accumulating evidence indicates that epigenetics is vulnerable to environmental changes and regulates the growth, development, and diseases of individuals by affecting chromatin activity and regulating gene expression. Environmental exposure or induced epigenetic changes can regulate the state of development and lead to developmental disorders, aging, cardiovascular disease, Alzheimer's disease, cancers, and so on. However, epigenetic modifications are reversible. The use of specific epigenetic inhibitors targeting epigenetic changes in response to environmental exposure is useful in disease therapy. Here, we provide an overview of the role of epigenetics in various diseases. Furthermore, we summarize the mechanism of epigenetic alterations induced by different environmental exposures, the influence of different environmental exposures, and the crosstalk between environmental variation epigenetics, and genes that are implicated in the body's health. However, the interaction of multiple factors and epigenetics in regulating the initiation and progression of various diseases complicates clinical treatments. We discuss some commonly used epigenetic drugs targeting epigenetic modifications and methods to prevent or relieve various diseases regulated by environmental exposure and epigenetics through diet.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ting Hu
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tianyu Ma
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Wei Huang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| | - Yan Wang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
9
|
Xu Z, Li J, Su B, Gao H, Ren M, Lin Y, Shen H. A role of ROS-dependent defects in mitochondrial dynamic and autophagy in carbon black nanoparticle-mediated myocardial cell damage. Free Radic Biol Med 2024; 220:249-261. [PMID: 38697491 DOI: 10.1016/j.freeradbiomed.2024.04.241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/04/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Carbon black nanoparticles (CBNPs) are widely distributed in the environment and are increasingly recognized as a contributor in the development of cardiovascular disease. A variety of cardiac injuries and diseases result from structural and functional damage to cardiomyocytes. This study explored the mechanisms of CBNPs-mediated myocardial toxicity. CBNPs were given to mice through intra-tracheal instillation and it was demonstrated that the particles can be taken up into the cardiac tissue. Exposure to CBNPs induced cardiomyocyte inflammation and apoptosis. In combination with in vitro experiments, we showed that CBNPs increased the ROS and induced mitochondria fragmentation. Functionally, CBNPs-exposed cardiomyocyte exhibited depolarization of the mitochondrial membrane potential, release of cytochrome c, and activation of pro-apoptotic BAX, thereby initiating programmed cell death. On the other hand, CBNPs impaired autophagy, leading to the inadequate removal of dysfunctional mitochondria. The excess accumulation of damaged mitochondria further stimulated NF-κB activation and triggered the NLRP3 inflammasome pathway. Both the antioxidant N-acetylcysteine and the autophagy activator rapamycin were effective to attenuate the damage of CBNPs on cardiomyocytes. Taken together, this study elucidated the potential mechanism underlying CBNPs-induced myocardial injury and provided a scientific reference for the evaluation and prevention of the CBNPs-related heart risk.
Collapse
Affiliation(s)
- Zehua Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, PR China.
| | - Jing Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, PR China.
| | - Bowen Su
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Hongying Gao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Miaomiao Ren
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Yi Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, PR China.
| | - Heqing Shen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, PR China; Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, PR China.
| |
Collapse
|
10
|
Armstrong D, Chang CY, Hong MJ, Green L, Hudson W, Shen Y, Song LZ, Jammi S, Casal B, Creighton CJ, Carisey A, Zhang XHF, McKenna NJ, Kang SW, Lee HS, Corry DB, Kheradmand F. MAGE-A4-Responsive Plasma Cells Promote Non-Small Cell Lung Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602985. [PMID: 39071307 PMCID: PMC11275715 DOI: 10.1101/2024.07.10.602985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Adaptive immunity is critical to eliminate malignant cells, while multiple tumor-intrinsic factors can alter this protective function. Melanoma antigen-A4 (MAGE-A4), a cancer-testis antigen, is expressed in several solid tumors and correlates with poor survival in non-small cell lung cancer (NSCLC), but its role in altering antitumor immunity remains unclear. We found that expression of MAGE-A4 was highly associated with the loss of PTEN , a tumor suppressor, in human NSCLC. Here we show that constitutive expression of human MAGE-A4 combined with the loss of Pten in mouse airway epithelial cells results in metastatic adenocarcinoma enriched in CD138 + CXCR4 + plasma cells, predominantly expressing IgA. Consistently, human NSCLC expressing MAGE-A4 showed increased CD138 + IgA + plasma cell density surrounding tumors. The abrogation of MAGE-A4-responsive plasma cells (MARPs) decreased tumor burden, increased T cell infiltration and activation, and reduced CD163 + CD206 + macrophages in mouse lungs. These findings suggest MAGE-A4 promotes NSCLC tumorigenesis, in part, through the recruitment and retention of IgA + MARPs in the lungs.
Collapse
|
11
|
Ammarah U, Pereira‐Nunes A, Delfini M, Mazzone M. From monocyte-derived macrophages to resident macrophages-how metabolism leads their way in cancer. Mol Oncol 2024; 18:1739-1758. [PMID: 38411356 PMCID: PMC11223613 DOI: 10.1002/1878-0261.13618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/24/2024] [Accepted: 02/16/2024] [Indexed: 02/28/2024] Open
Abstract
Macrophages are innate immune cells that play key roles during both homeostasis and disease. Depending on the microenvironmental cues sensed in different tissues, macrophages are known to acquire specific phenotypes and exhibit unique features that, ultimately, orchestrate tissue homeostasis, defense, and repair. Within the tumor microenvironment, macrophages are referred to as tumor-associated macrophages (TAMs) and constitute a heterogeneous population. Like their tissue resident counterpart, TAMs are plastic and can switch function and phenotype according to the niche-derived stimuli sensed. While changes in TAM phenotype are known to be accompanied by adaptive alterations in their cell metabolism, it is reported that metabolic reprogramming of macrophages can dictate their activation state and function. In line with these observations, recent research efforts have been focused on defining the metabolic traits of TAM subsets in different tumor malignancies and understanding their role in cancer progression and metastasis formation. This knowledge will pave the way to novel therapeutic strategies tailored to cancer subtype-specific metabolic landscapes. This review outlines the metabolic characteristics of distinct TAM subsets and their implications in tumorigenesis across multiple cancer types.
Collapse
Affiliation(s)
- Ummi Ammarah
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer BiologyVIBLeuvenBelgium
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, Center for Cancer BiologyKU LeuvenBelgium
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CentreUniversity of TorinoItaly
| | - Andreia Pereira‐Nunes
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer BiologyVIBLeuvenBelgium
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, Center for Cancer BiologyKU LeuvenBelgium
- Life and Health Sciences Research Institute (ICVS), School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B's‐PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Marcello Delfini
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer BiologyVIBLeuvenBelgium
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, Center for Cancer BiologyKU LeuvenBelgium
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer BiologyVIBLeuvenBelgium
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, Center for Cancer BiologyKU LeuvenBelgium
| |
Collapse
|
12
|
Bao L, Liu Q, Wang J, Shi L, Pang Y, Niu Y, Zhang R. The interactions of subcellular organelles in pulmonary fibrosis induced by carbon black nanoparticles: a comprehensive review. Arch Toxicol 2024; 98:1629-1643. [PMID: 38536500 DOI: 10.1007/s00204-024-03719-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/29/2024] [Indexed: 05/21/2024]
Abstract
Owing to the widespread use and improper emissions of carbon black nanoparticles (CBNPs), the adverse effects of CBNPs on human health have attracted much attention. In toxicological research, carbon black is frequently utilized as a negative control because of its low toxicity and poor solubility. However, recent studies have indicated that inhalation exposure to CBNPs could be a risk factor for severe and prolonged pulmonary inflammation and fibrosis. At present, the pathogenesis of pulmonary fibrosis induced by CBNPs is still not fully elucidated, but it is known that with small particle size and large surface area, CBNPs are more easily ingested by cells, leading to organelle damage and abnormal interactions between organelles. Damaged organelle and abnormal organelles interactions lead to cell structure and function disorders, which is one of the important factors in the development and occurrence of various diseases, including pulmonary fibrosis. This review offers a comprehensive analysis of organelle structure, function, and interaction mechanisms, while also summarizing the research advancements in organelles and organelle interactions in CBNPs-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Lei Bao
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, 050017, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Qingping Liu
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
- Department of Toxicology, Hebei Medical University, 361 Zhongshan East Rd, Shijiazhuang, 050017, Hebei, China
| | - Jingyuan Wang
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
- Department of Toxicology, Hebei Medical University, 361 Zhongshan East Rd, Shijiazhuang, 050017, Hebei, China
| | - Lili Shi
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, 050017, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Yaxian Pang
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
- Department of Toxicology, Hebei Medical University, 361 Zhongshan East Rd, Shijiazhuang, 050017, Hebei, China
| | - Yujie Niu
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, 050017, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Rong Zhang
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
- Department of Toxicology, Hebei Medical University, 361 Zhongshan East Rd, Shijiazhuang, 050017, Hebei, China.
| |
Collapse
|
13
|
Erice PA, Huang X, Seasock MJ, Robertson MJ, Tung HY, Perez-Negron MA, Lotlikar SL, Corry DB, Kheradmand F, Rodriguez A. Downregulation of Mirlet7 miRNA family promotes Tc17 differentiation and emphysema via de-repression of RORγt. eLife 2024; 13:RP92879. [PMID: 38722677 PMCID: PMC11081633 DOI: 10.7554/elife.92879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024] Open
Abstract
Environmental air irritants including nanosized carbon black (nCB) can drive systemic inflammation, promoting chronic obstructive pulmonary disease (COPD) and emphysema development. The let-7 microRNA (Mirlet7 miRNA) family is associated with IL-17-driven T cell inflammation, a canonical signature of lung inflammation. Recent evidence suggests the Mirlet7 family is downregulated in patients with COPD, however, whether this repression conveys a functional consequence on emphysema pathology has not been elucidated. Here, we show that overall expression of the Mirlet7 clusters, Mirlet7b/Mirlet7c2 and Mirlet7a1/Mirlet7f1/Mirlet7d, are reduced in the lungs and T cells of smokers with emphysema as well as in mice with cigarette smoke (CS)- or nCB-elicited emphysema. We demonstrate that loss of the Mirlet7b/Mirlet7c2 cluster in T cells predisposed mice to exaggerated CS- or nCB-elicited emphysema. Furthermore, ablation of the Mirlet7b/Mirlet7c2 cluster enhanced CD8+IL17a+ T cells (Tc17) formation in emphysema development in mice. Additionally, transgenic mice overexpressing Mirlet7g in T cells are resistant to Tc17 and CD4+IL17a+ T cells (Th17) development when exposed to nCB. Mechanistically, our findings reveal the master regulator of Tc17/Th17 differentiation, RAR-related orphan receptor gamma t (RORγt), as a direct target of Mirlet7 in T cells. Overall, our findings shed light on the Mirlet7/RORγt axis with Mirlet7 acting as a molecular brake in the generation of Tc17 cells and suggest a novel therapeutic approach for tempering the augmented IL-17-mediated response in emphysema.
Collapse
Affiliation(s)
- Phillip A Erice
- Immunology Graduate Program, Baylor College of MedicineHoustonUnited States
- Department of Medicine, Immunology & Allergy Rheumatology, Baylor College of MedicineHoustonUnited States
| | - Xinyan Huang
- Department of Medicine, Immunology & Allergy Rheumatology, Baylor College of MedicineHoustonUnited States
| | - Matthew J Seasock
- Immunology Graduate Program, Baylor College of MedicineHoustonUnited States
- Department of Medicine, Immunology & Allergy Rheumatology, Baylor College of MedicineHoustonUnited States
| | - Matthew J Robertson
- Dan Duncan Comprehensive Cancer Center, Baylor College of MedicineHoustonUnited States
| | - Hui-Ying Tung
- Department of Pathology and Immunology, Baylor College of MedicineHoustonUnited States
| | - Melissa A Perez-Negron
- Department of Medicine, Immunology & Allergy Rheumatology, Baylor College of MedicineHoustonUnited States
| | - Shivani L Lotlikar
- Department of Medicine, Immunology & Allergy Rheumatology, Baylor College of MedicineHoustonUnited States
| | - David B Corry
- Department of Medicine, Immunology & Allergy Rheumatology, Baylor College of MedicineHoustonUnited States
- Department of Pathology and Immunology, Baylor College of MedicineHoustonUnited States
- Center for Translational Research on Inflammatory Diseases, Michael E Debakey, Baylor College of MedicineHoustonUnited States
| | - Farrah Kheradmand
- Department of Pathology and Immunology, Baylor College of MedicineHoustonUnited States
- Center for Translational Research on Inflammatory Diseases, Michael E Debakey, Baylor College of MedicineHoustonUnited States
- Department of Medicine, Section of Pulmonary and Critical Care, Baylor College of MedicineHoustonUnited States
| | - Antony Rodriguez
- Department of Medicine, Immunology & Allergy Rheumatology, Baylor College of MedicineHoustonUnited States
- Center for Translational Research on Inflammatory Diseases, Michael E Debakey, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
14
|
Richtmann L, Opel T, Maier M, Langhof N, Clemens S. Establishment of a system to analyze effects of airborne ultra-fine particulate matter from brake wear on plants under realistic exposure conditions. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134084. [PMID: 38518700 DOI: 10.1016/j.jhazmat.2024.134084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/20/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024]
Abstract
Research on airborne ultrafine particles (UFP) is driven by an increasing awareness of their potential effects on human health and on ecosystems. Brake wear is an important UFP source releasing largely metallic and potentially hazardous emissions. UFP uptake into plant tissues could mediate entry into food webs. Still, the effects of these particles on plants have barely been studied, especially in a realistic setting with aerial exposure. In this study, we established a system designed to mimic airborne exposure to ultrafine brake dust particles and performed experiments with the model species Arabidopsis thaliana. Using advanced analytical methods, we characterized the conditions in our exposure experiments. A comparison with data we obtained on UFP release at different outdoor stations showed that our controlled exposures are within the same order of magnitude regarding UFP deposition on plants at a traffic-heavy site. In order to assess the physiological implications of exposure to brake derived-particles we generated transcriptomic data with RNA sequencing. The UFP treatment led to diverse changes in gene expression, including the deregulation of genes involved in Fe and Cu homeostasis. This suggests a major contribution of metallic UFPs to the elicitation of physiological responses by brake wear derived emissions.
Collapse
Affiliation(s)
- Ludwig Richtmann
- Plant Physiology, University of Bayreuth, 95447 Bayreuth, Germany
| | - Thorsten Opel
- Ceramic Materials Engineering, University of Bayreuth, 95447 Bayreuth, Germany
| | - Marina Maier
- Bavarian State Office for the Environment, 86179 Augsburg
| | - Nico Langhof
- Ceramic Materials Engineering, University of Bayreuth, 95447 Bayreuth, Germany
| | - Stephan Clemens
- Plant Physiology, University of Bayreuth, 95447 Bayreuth, Germany.
| |
Collapse
|
15
|
Kim J, Cho Y, Oh GJ, Park HB, Yang MJ, Park CM, Kim YH, Choi KC, Go RE, Kim MS. Repeated intratracheal instillation of whole-cigarette smoke condensate to assess lung damage in a rat model. ENVIRONMENTAL TOXICOLOGY 2024; 39:2304-2315. [PMID: 38148711 DOI: 10.1002/tox.24113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/29/2023] [Accepted: 12/11/2023] [Indexed: 12/28/2023]
Abstract
Cigarette smoke induces an inflammatory response in the lungs by recruiting inflammatory cells, leading to lung diseases such as lung cancer, chronic obstructive pulmonary disease, and pulmonary fibrosis. Existing inhalation exposure methods for assessing the adverse effects of cigarette smoke require expensive equipment and are labor-intensive. Therefore, we attempted to develop a novel method to assess these adverse effects using intratracheal instillation (ITI) of whole cigarette smoke condensate (WCSC). The WCSC (0, 5, 10, or 20 mg/mL) was administered by ITI once daily for 6 or 12 days using an automatic video instillator. Repeated WCSC ITI increased the lung weight, and monocyte chemoattractant protein-1 (MCP-1), neutrophil, and lymphocyte levels within bronchoalveolar lavage fluid compared to the control. In the histopathological analysis of the lung tissue, a mild inflammatory response was observed in the 6 and 12 days 20 mg/mL WCSC exposure groups. The genome-wide RNA-seq expression patterns revealed that inflammatory and immune response-related genes, such as the chemokine signaling pathway, Th1/Th2 cell differentiation, and cytokine-cytokine receptor interaction, were employed following WCSC exposure. In addition, MCP-1 was time-dependent and increased in the 10 mg/mL exposure group compared to the control group. These results suggested that the WCSC might induce the potential pulmonary inflammatory response. Furthermore, we proposed that ITI may be a rapid and effective method of evaluating the adverse effects of WCSC within a short exposure period (less than 2 weeks), and it can be used to evaluate cigarette inhalation toxicity studies as an alternative method.
Collapse
Affiliation(s)
- Jinhee Kim
- Inhalation Toxicology Research Group, Korea Institute of Toxicology (KIT), Jeongeup, Jeonbuk, Republic of Korea
| | - Yoon Cho
- Inhalation Toxicology Research Group, Korea Institute of Toxicology (KIT), Jeongeup, Jeonbuk, Republic of Korea
| | - Gi-Jun Oh
- Inhalation Toxicology Research Group, Korea Institute of Toxicology (KIT), Jeongeup, Jeonbuk, Republic of Korea
| | - Hae-Bin Park
- Inhalation Toxicology Research Group, Korea Institute of Toxicology (KIT), Jeongeup, Jeonbuk, Republic of Korea
| | - Mi Jin Yang
- Inhalation Toxicology Research Group, Korea Institute of Toxicology (KIT), Jeongeup, Jeonbuk, Republic of Korea
| | - Chul-Min Park
- Inhalation Toxicology Research Group, Korea Institute of Toxicology (KIT), Jeongeup, Jeonbuk, Republic of Korea
| | - Yong-Hyun Kim
- Inhalation Toxicology Research Group, Korea Institute of Toxicology (KIT), Jeongeup, Jeonbuk, Republic of Korea
- Department of Environment & Energy, Jeonbuk National University, Jeonju, Jeonbuk, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Ryeo-Eun Go
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Min-Seok Kim
- Inhalation Toxicology Research Group, Korea Institute of Toxicology (KIT), Jeongeup, Jeonbuk, Republic of Korea
| |
Collapse
|
16
|
Xia Y, Gao D, Wang X, Liu B, Shan X, Sun Y, Ma D. Role of Treg cell subsets in cardiovascular disease pathogenesis and potential therapeutic targets. Front Immunol 2024; 15:1331609. [PMID: 38558816 PMCID: PMC10978666 DOI: 10.3389/fimmu.2024.1331609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
In the genesis and progression of cardiovascular diseases involving both innate and adaptive immune responses, inflammation plays a pivotal and dual role. Studies in experimental animals indicate that certain immune responses are protective, while others exacerbate the disease. T-helper (Th) 1 cell immune responses are recognized as key drivers of inflammatory progression in cardiovascular diseases. Consequently, the CD4+CD25+FOXP3+ regulatory T cells (Tregs) are gaining increasing attention for their roles in inflammation and immune regulation. Given the critical role of Tregs in maintaining immune-inflammatory balance and homeostasis, abnormalities in their generation or function might lead to aberrant immune responses, thereby initiating pathological changes. Numerous preclinical studies and clinical trials have unveiled the central role of Tregs in cardiovascular diseases, such as atherosclerosis. Here, we review the roles and mechanisms of Treg subsets in cardiovascular conditions like atherosclerosis, hypertension, myocardial infarction and remodeling, myocarditis, dilated cardiomyopathy, and heart failure. While the precise molecular mechanisms of Tregs in cardiac protection remain elusive, therapeutic strategies targeting Tregs present a promising new direction for the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Yunpeng Sun
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, China
| | - Dashi Ma
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
17
|
Gao M, Ge X, Li Y, Zheng G, Cai J, Yao J, Wang T, Gao Y, Yan Y, Chen Y, Pan Y, Hu P. Lysosomal dysfunction in carbon black-induced lung disorders. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167200. [PMID: 37742976 DOI: 10.1016/j.scitotenv.2023.167200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 09/26/2023]
Abstract
Carbon black (CB), a component of environmental particulate pollution derived from carbon sources, poses a significant threat to human health, particularly in the context of lung-related disease. This study aimed to investigate the detrimental effects of aggregated CB in the average micron scale on lung tissues and cells in vitro and in vivo. We observed that CB particles induced lung disorders characterized by enhanced expression of inflammation, necrosis, and fibrosis-related factors in vivo. In alveolar epithelial cells, CB exposure resulted in decreased cell viability, induction of cell death, and generation of reactive oxidative species, along with altered expression of proteins associated with lung disorders. Our findings suggested that the damaging effects of CB on the lung involved the targeting of lysosomes. Specifically, CB promoted lysosomal membrane permeabilization, while lysosomal alkalization mitigated the harmfulness of CB on lung cells. Additionally, we explored the protective effects of alkaloids derived from Nelumbinis plumula, with a focus on neferine, against CB-induced lung disorders. In conclusion, these findings contribute to a deeper understanding of the pathophysiological effects of CB particles on the lungs and propose a potential therapeutic approach for pollution-related diseases.
Collapse
Affiliation(s)
- Mingtong Gao
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Xiao Ge
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China; State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yun Li
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Gege Zheng
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Jun Cai
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Jiani Yao
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Tianyi Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Yichang Gao
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Yuchen Yan
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Yinming Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Yang Pan
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China.
| | - Po Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
18
|
Chang CY, Armstrong D, Corry DB, Kheradmand F. Alveolar macrophages in lung cancer: opportunities challenges. Front Immunol 2023; 14:1268939. [PMID: 37822933 PMCID: PMC10562548 DOI: 10.3389/fimmu.2023.1268939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023] Open
Abstract
Alveolar macrophages (AMs) are critical components of the innate defense mechanism in the lung. Nestled tightly within the alveoli, AMs, derived from the yolk-sac or bone marrow, can phagocytose foreign particles, defend the host against pathogens, recycle surfactant, and promptly respond to inhaled noxious stimuli. The behavior of AMs is tightly dependent on the environmental cues whereby infection, chronic inflammation, and associated metabolic changes can repolarize their effector functions in the lungs. Several factors within the tumor microenvironment can re-educate AMs, resulting in tumor growth, and reducing immune checkpoint inhibitors (ICIs) efficacy in patients treated for non-small cell lung cancer (NSCLC). The plasticity of AMs and their critical function in altering tumor responses to ICIs make them a desirable target in lung cancer treatment. New strategies have been developed to target AMs in solid tumors reprograming their suppressive function and boosting the efficacy of ICIs. Here, we review the phenotypic and functional changes in AMs in response to sterile inflammation and in NSCLC that could be critical in tumor growth and metastasis. Opportunities in altering AMs' function include harnessing their potential function in trained immunity, a concept borrowed from memory response to infections, which could be explored therapeutically in managing lung cancer treatment.
Collapse
Affiliation(s)
- Cheng-Yen Chang
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Dominique Armstrong
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - David B. Corry
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Biology of Inflammation Center, Baylor College of Medicine, Houston, TX, United States
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, TX, United States
| | - Farrah Kheradmand
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Biology of Inflammation Center, Baylor College of Medicine, Houston, TX, United States
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, TX, United States
| |
Collapse
|
19
|
Li X, Cai H, Wu W, Si S, Zhu M. Exposure duration of ambient fine particulate matter determines the polarization of macrophages. Cent Eur J Immunol 2023; 48:219-227. [PMID: 37901863 PMCID: PMC10604645 DOI: 10.5114/ceji.2023.130978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/26/2023] [Indexed: 10/31/2023] Open
Abstract
Ambient fine particulate matter (FPM) promotes airway inflammation and aggravates respiratory and cardiovascular diseases. Macrophage polarization plays an essential role in FPM-induced inflammation and tissue repair. The balance of pro-inflammatory M1-type and anti-inflammatory M2-type macrophages determines the fate of tissues and is involved in the pathogenesis of various FPM-induced diseases. The mechanism of macrophage polarization induced by FPM is still not fully understood. Here, we explored the effect of ambient FPM exposure duration on the polarization of peritoneal macrophages. Mice were exposed to concentrated ambient FPM for different duration. Markers of M1-type macrophage and M2-type macrophage in peritoneal macrophages were detected. We found that macrophage polarization was affected by FPM both in vitro and in vivo. Acute FPM stimulation in vitro and short-term concentrated ambient FPM exposure in vivo promoted the expression of NLRP3 and NOS2 and inhibited the expression of ARG1 and CD206. With the extension of concentrated ambient FPM exposure time, ARG1 was gradually up-regulated, and NLRP3 was gradually down-regulated. These results indicate that FPM exposure duration interferes with macrophage polarization. This may provide new insight into the treatment of patients exposed to FPM.
Collapse
Affiliation(s)
| | | | - Wei Wu
- Strategic Support Force Medical Center, China
| | - Shaoyan Si
- Strategic Support Force Medical Center, China
| | - Minli Zhu
- Strategic Support Force Medical Center, China
| |
Collapse
|
20
|
Yang X, Wang X, Yang Y, Li Z, Chen Y, Shang S, Wang Y. DNMT3A mutation promotes leukemia development through NAM-NAD metabolic reprogramming. J Transl Med 2023; 21:481. [PMID: 37464424 PMCID: PMC10355022 DOI: 10.1186/s12967-023-04323-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/01/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND DNA methyltransferase 3A (DNMT3A) is frequently mutated in acute myeloid leukemia (AML) with Arg882His (R882H) as the hotspot mutation. It has been reported that DNMT3A mutation plays a key role in leukemogenesis through hypomethylation of some target genes associated with cell growth and differentiation. In this study, we investigated the function of DNMT3A R882H in the malignant progression of AML by regulating metabolic reprogramming. METHODS Ultra-High Performance Liquid Chromatography-High Resolution Tandem Mass Spectrometry (UHPLC-HRMS/MS) was used to detect metabolites in the serum of mice harboring Dnmt3a R878H mutation and the wild-type Dnmt3a. Methylated DNA Immunoprecipitation Sequencing (MeDIP-seq) and RNA sequencing (RNA-seq) were used to analyze the levels of DNA methylation and mRNA expression of genes in mouse Gr1+ bone marrow cells respectively. The TCGA and GO databases were used to analyze the differential genes between human samples carrying the DNMT3A R882 mutation and the wild-type DNMT3A. Co-immunoprecipitation and immunoblotting were used to illustrate the binding levels of Cyclins-CDKs and CDK inhibitors including CDKN1A and CDKN1B. Flow cytometry was used to analyze the cell differentiation, division, apoptosis and cell cycle. The effect of NAMPT inhibition on leukemia was evaluated by using in vivo fluorescence imaging in NOG mouse model bearing OCI-AML3 cells. RESULTS DNMT3A mutation caused high expression of nicotinamide phosphoribosyltransferase (NAMPT), a key enzyme in the nicotinamide adenine dinucleotide (NAD) salvage synthetic pathway, through DNA hypomethylation, and finally led to abnormal nicotinamide (NAM) metabolism and NAD synthesis. The NAM-NAD metabolic abnormalities caused accelerated cell cycle progression. Inhibition of NAMPT can reduce the binding degree between Cyclins-CDKs, and increase the binding interaction of the CDK inhibitors with Cyclins-CDKs complexes. Moreover, cells with high expression of NAMPT were more sensitive to the NAMPT inhibitor FK866 with a lower IC50. The inhibition of NAMPT can remarkably extend the survival time of tumor-bearing mice and reduce the infiltration of tumor cells. CONCLUSIONS Taken together, our data showed that DNMT3A mutation caused NAMPT overexpression to induce the reprogramming of NAM-NAD metabolism and contribute to abnormal proliferation, which provided a potential direction for targeted therapy at the metabolic level in AML with DNMT3A mutation.
Collapse
Affiliation(s)
- Xuejiao Yang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiao Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ying Yang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhiyang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430000, Hubei, China
| | - Yunshuo Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Siqi Shang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yueying Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|