1
|
Dvorak NM, Wadsworth PA, Aquino-Miranda G, Wang P, Engelke DS, Zhou J, Nguyen N, Singh AK, Aceto G, Haghighijoo Z, Smith II, Goode N, Zhou M, Avchalumov Y, Troendle EP, Tapia CM, Chen H, Powell RT, Baumgartner TJ, Singh J, Koff L, Di Re J, Wadsworth AE, Marosi M, Azar MR, Elias K, Lehmann P, Mármol Contreras YM, Shah P, Gutierrez H, Green TA, Ulmschneider MB, D'Ascenzo M, Stephan C, Cui G, Do Monte FH, Zhou J, Laezza F. Enhanced motivated behavior mediated by pharmacological targeting of the FGF14/Na v1.6 complex in nucleus accumbens neurons. Nat Commun 2025; 16:110. [PMID: 39747162 PMCID: PMC11696184 DOI: 10.1038/s41467-024-55554-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
Protein/protein interactions (PPI) play crucial roles in neuronal functions. Yet, their potential as drug targets for brain disorders remains underexplored. The fibroblast growth factor 14 (FGF14)/voltage-gated Na+ channel 1.6 (Nav1.6) complex regulates excitability of medium spiny neurons (MSN) of the nucleus accumbens (NAc), a central hub of reward circuitry that controls motivated behaviors. Here, we identified compound 1028 (IUPAC: ethyl 3-(2-(3-(hydroxymethyl)-1H-indol-1-yl)acetamido)benzoate), a brain-permeable small molecule that targets FGF14R117, a critical residue located within a druggable pocket at the FGF14/Nav1.6 PPI interface. We found that 1028 modulates FGF14/Nav1.6 complex assembly and depolarizes the voltage-dependence of Nav1.6 channel inactivation with nanomolar potency by modulating the intramolecular interaction between the III-IV linker and C-terminal domain of the Nav1.6 channel. Consistent with the compound's effects on Nav1.6 channel inactivation, 1028 enhances MSN excitability ex vivo and accumbal neuron firing rate in vivo in murine models. Systemic administration of 1028 maintains behavioral motivation preferentially during motivationally deficient conditions in murine models. These behavioral effects were abrogated by in vivo gene silencing of Fgf14 in the NAc and were accompanied by a selective reduction in accumbal dopamine levels during reward consumption in murine models. These findings underscore the potential to selectively regulate complex behaviors associated with neuropsychiatric disorders through targeting of PPIs in neurons.
Collapse
Affiliation(s)
- Nolan M Dvorak
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Paul A Wadsworth
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
- Department of Pathology, Stanford Medicine, Stanford, CA, USA
| | - Guillermo Aquino-Miranda
- Department of Neurobiology and Anatomy, University of Texas Health Science Center, Houston, TX, USA
| | - Pingyuan Wang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Douglas S Engelke
- Department of Neurobiology and Anatomy, University of Texas Health Science Center, Houston, TX, USA
| | - Jingheng Zhou
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, USA
| | - Nghi Nguyen
- High-Throughput Research and Screening Center, Texas A&M Health Science Center, Houston, TX, USA
| | - Aditya K Singh
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Giuseppe Aceto
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - Zahra Haghighijoo
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Isabella I Smith
- Department of Neurobiology and Anatomy, University of Texas Health Science Center, Houston, TX, USA
| | - Nana Goode
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mingxiang Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yosef Avchalumov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Evan P Troendle
- Department of Chemistry, King's College London 7 Trinity Street, London, UK
| | - Cynthia M Tapia
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Haiying Chen
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Reid T Powell
- High-Throughput Research and Screening Center, Texas A&M Health Science Center, Houston, TX, USA
| | - Timothy J Baumgartner
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jully Singh
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Leandra Koff
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jessica Di Re
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ann E Wadsworth
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mate Marosi
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Marc R Azar
- Behavioral Pharma Inc., 505 Coast Blvd. South, Suite 212, La Jolla, CA, USA
| | - Kristina Elias
- Behavioral Pharma Inc., 505 Coast Blvd. South, Suite 212, La Jolla, CA, USA
| | - Paul Lehmann
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Poonam Shah
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Hector Gutierrez
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Thomas A Green
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Marcello D'Ascenzo
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - Clifford Stephan
- High-Throughput Research and Screening Center, Texas A&M Health Science Center, Houston, TX, USA
| | - Guohong Cui
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, USA
| | - Fabricio H Do Monte
- Department of Neurobiology and Anatomy, University of Texas Health Science Center, Houston, TX, USA
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Fernanda Laezza
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
2
|
Wierda K, Nyitrai H, Lejeune A, Vlaeminck I, Leysen E, Theys T, de Wit J, Vanderhaeghen P, Libé-Philippot B. Protocol to process fresh human cerebral cortex biopsies for patch-clamp recording and immunostaining. STAR Protoc 2024; 5:103313. [PMID: 39292560 PMCID: PMC11424940 DOI: 10.1016/j.xpro.2024.103313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/23/2024] [Accepted: 08/22/2024] [Indexed: 09/20/2024] Open
Abstract
Cerebral cortex biopsies enable the investigation of native developing and mature human brain tissue. Here, we present a protocol to process human cortical biopsies from the surgical theater to the laboratory. We describe steps for the preparation of viable acute slices for patch-clamp recording using dedicated chemical solutions for transport and sectioning. We then explain procedures for tissue fixation and post hoc immunostaining to correlate physiological properties to morphological features and protein detection. For complete details on the use and execution of this protocol, please refer to Libé-Philippot et al.1.
Collapse
Affiliation(s)
- Keimpe Wierda
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Electrophysiology Unit, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium.
| | - Hajnalka Nyitrai
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Amélie Lejeune
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Ine Vlaeminck
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Electrophysiology Unit, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Elke Leysen
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Tom Theys
- KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium; Research Group Experimental Neurosurgery and Neuroanatomy, KUL, 3000 Leuven, Belgium
| | - Joris de Wit
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium.
| | - Pierre Vanderhaeghen
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium.
| | - Baptiste Libé-Philippot
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium.
| |
Collapse
|
3
|
Mittermaier FX, Kalbhenn T, Xu R, Onken J, Faust K, Sauvigny T, Thomale UW, Kaindl AM, Holtkamp M, Grosser S, Fidzinski P, Simon M, Alle H, Geiger JRP. Membrane potential states gate synaptic consolidation in human neocortical tissue. Nat Commun 2024; 15:10340. [PMID: 39668146 PMCID: PMC11638263 DOI: 10.1038/s41467-024-53901-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 10/22/2024] [Indexed: 12/14/2024] Open
Abstract
Synaptic mechanisms that contribute to human memory consolidation remain largely unexplored. Consolidation critically relies on sleep. During slow wave sleep, neurons exhibit characteristic membrane potential oscillations known as UP and DOWN states. Coupling of memory reactivation to these slow oscillations promotes consolidation, though the underlying mechanisms remain elusive. Here, we performed axonal and multineuron patch-clamp recordings in acute human brain slices, obtained from neurosurgeries, to show that sleep-like UP and DOWN states modulate axonal action potentials and temporarily enhance synaptic transmission between neocortical pyramidal neurons. Synaptic enhancement by UP and DOWN state sequences facilitates recruitment of postsynaptic action potentials, which in turn results in long-term stabilization of synaptic strength. In contrast, synapses undergo lasting depression if presynaptic neurons fail to recruit postsynaptic action potentials. Our study offers a mechanistic explanation for how coupling of neural activity to slow waves can cause synaptic consolidation, with potential implications for brain stimulation strategies targeting memory performance.
Collapse
Affiliation(s)
- Franz X Mittermaier
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Berlin, Germany
| | - Thilo Kalbhenn
- Department of Neurosurgery (Evangelisches Klinikum Bethel), University of Bielefeld Medical Center OWL, Bielefeld, Germany
| | - Ran Xu
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julia Onken
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Katharina Faust
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Sauvigny
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich W Thomale
- Pediatric Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Angela M Kaindl
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin Holtkamp
- Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sabine Grosser
- Institute for Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Pawel Fidzinski
- Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, NeuroCure Cluster of Excellence, Berlin, Germany
| | - Matthias Simon
- Department of Neurosurgery (Evangelisches Klinikum Bethel), University of Bielefeld Medical Center OWL, Bielefeld, Germany
| | - Henrik Alle
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Berlin, Germany
| | - Jörg R P Geiger
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Berlin, Germany.
| |
Collapse
|
4
|
Wang X, Zhang H, Wei G, Xing J, Chen S, Quan X. Comediation of voltage gating and ion charge in MXene membrane for controllable and selective monovalent cation separation. SCIENCE ADVANCES 2024; 10:eado3998. [PMID: 39630891 PMCID: PMC11616687 DOI: 10.1126/sciadv.ado3998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
Artificial ion channels with controllable mono/monovalent cation separation fulfill important roles in biomedicine, ion separation, and energy conversion. However, it remains a daunting challenge to develop an artificial ion channel similar to biological ion channels due to ion-ion competitive transport and lack of ion-gating ability of channels. Here, we report a conductive MXene membrane with polydopamine-confined angstrom-scale channels and propose a voltage gating and ion charge comediation strategy to concurrently achieve gated and selective mono/monovalent cation separation. The membrane shows a highly switchable "on-off" ratio of ∼9.9 for K+ transport and an excellent K+/Li+ selectivity of 40.9, outperforming the ion selectivity of reported membranes with electrical gating (typically 1.5 to 6). Theoretical simulations reveal that the introduced high-charge cations such as Mg2+ enable the preferential distribution of target K+ over competing Li+ at the channel entrance, and the surface potential reduces the ionic transport energy barrier for allowing K+ to pass quickly through the channel.
Collapse
Affiliation(s)
| | | | - Gaoliang Wei
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jiajian Xing
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shuo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
5
|
Libé-Philippot B, Polleux F, Vanderhaeghen P. If you please, draw me a neuron - linking evolutionary tinkering with human neuron evolution. Curr Opin Genet Dev 2024; 89:102260. [PMID: 39357501 PMCID: PMC11625661 DOI: 10.1016/j.gde.2024.102260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/23/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024]
Abstract
Animal speciation often involves novel behavioral features that rely on nervous system evolution. Human-specific brain features have been proposed to underlie specialized cognitive functions and to be linked, at least in part, to the evolution of synapses, neurons, and circuits of the cerebral cortex. Here, we review recent results showing that, while the human cortex is composed of a repertoire of cells that appears to be largely similar to the one found in other mammals, human cortical neurons do display specialized features at many levels, from gene expression to intrinsic physiological properties. The molecular mechanisms underlying human species-specific neuronal features remain largely unknown but implicate hominid-specific gene duplicates that encode novel molecular modifiers of neuronal function. The identification of human-specific genetic modifiers of neuronal function brings novel insights on brain evolution and function and, could also provide new insights on human species-specific vulnerabilities to brain disorders.
Collapse
Affiliation(s)
- Baptiste Libé-Philippot
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KUL, 3000 Leuven, Belgium; Aix-Marseille Université, CNRS UMR 7288, Developmental Biology Institute of Marseille (IBDM), NeuroMarseille, Marseille, France.
| | - Franck Polleux
- Department of Neuroscience, Columbia University, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA. https://twitter.com/@fpolleux
| | - Pierre Vanderhaeghen
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KUL, 3000 Leuven, Belgium.
| |
Collapse
|
6
|
Christopoulou E, Charrier C. Molecular mechanisms of the specialization of human synapses in the neocortex. Curr Opin Genet Dev 2024; 89:102258. [PMID: 39255688 DOI: 10.1016/j.gde.2024.102258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/05/2024] [Accepted: 08/18/2024] [Indexed: 09/12/2024]
Abstract
Synapses of the neocortex specialized during human evolution to develop over extended timescales, process vast amounts of information and increase connectivity, which is thought to underlie our advanced social and cognitive abilities. These features reflect species-specific regulations of neuron and synapse cell biology. However, despite growing understanding of the human genome and the brain transcriptome at the single-cell level, linking human-specific genetic changes to the specialization of human synapses has remained experimentally challenging. In this review, we describe recent progress in characterizing divergent morphofunctional and developmental properties of human synapses, and we discuss new insights into the underlying molecular mechanisms. We also highlight intersections between evolutionary innovations and disorder-related dysfunctions at the synapse.
Collapse
Affiliation(s)
- Eirini Christopoulou
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Cécile Charrier
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France.
| |
Collapse
|
7
|
Gordon JA, Dzirasa K, Petzschner FH. The neuroscience of mental illness: Building toward the future. Cell 2024; 187:5858-5870. [PMID: 39423804 PMCID: PMC11490687 DOI: 10.1016/j.cell.2024.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 10/21/2024]
Abstract
Mental illnesses arise from dysfunction in the brain. Although numerous extraneural factors influence these illnesses, ultimately, it is the science of the brain that will lead to novel therapies. Meanwhile, our understanding of this complex organ is incomplete, leading to the oft-repeated trope that neuroscience has yet to make significant contributions to the care of individuals with mental illnesses. This review seeks to counter this narrative, using specific examples of how neuroscientific advances have contributed to progress in mental health care in the past and how current achievements set the stage for further progress in the future.
Collapse
Affiliation(s)
- Joshua A Gordon
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; New York State Psychiatric Institute, New York, NY, USA.
| | - Kafui Dzirasa
- Departments of Psychiatry and Behavioral Sciences, Neurology, and Biomedical Engineering, Duke University Medical Center, Durham, NC, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | |
Collapse
|
8
|
Zhang Z, Huang Y, Chen X, Li J, Yang Y, Lv L, Wang J, Wang M, Wang Y, Wang Z. State-specific Regulation of Electrical Stimulation in the Intralaminar Thalamus of Macaque Monkeys: Network and Transcriptional Insights into Arousal. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402718. [PMID: 38938001 PMCID: PMC11434125 DOI: 10.1002/advs.202402718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/03/2024] [Indexed: 06/29/2024]
Abstract
Long-range thalamocortical communication is central to anesthesia-induced loss of consciousness and its reversal. However, isolating the specific neural networks connecting thalamic nuclei with various cortical regions for state-specific anesthesia regulation is challenging, with the biological underpinnings still largely unknown. Here, simultaneous electroencephalogram-fuctional magnetic resonance imaging (EEG-fMRI) and deep brain stimulation are applied to the intralaminar thalamus in macaques under finely-tuned propofol anesthesia. This approach led to the identification of an intralaminar-driven network responsible for rapid arousal during slow-wave oscillations. A network-based RNA-sequencing analysis is conducted of region-, layer-, and cell-specific gene expression data from independent transcriptomic atlases and identifies 2489 genes preferentially expressed within this arousal network, notably enriched in potassium channels and excitatory, parvalbumin-expressing neurons, and oligodendrocytes. Comparison with human RNA-sequencing data highlights conserved molecular and cellular architectures that enable the matching of homologous genes, protein interactions, and cell types across primates, providing novel insight into network-focused transcriptional signatures of arousal.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Anesthesiology, Huashan Hospital, Fudan University, 12 Urumqi Middle Rd, Jing'an District, Shanghai, 200040, China
| | - Yichun Huang
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, State Key Laboratory of General Artificial Intelligence, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Peking University, 5 Yiheyuan Rd, Haidian District, Beijing, 100871, China
| | - Xiaoyu Chen
- Institute of Natural Sciences and School of Mathematical Sciences, Shanghai Jiao Tong University, 800 Dongchuan RD, Minhang District, Shanghai, 200240, China
| | - Jiahui Li
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, State Key Laboratory of General Artificial Intelligence, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Peking University, 5 Yiheyuan Rd, Haidian District, Beijing, 100871, China
| | - Yi Yang
- Department of Neurosurgery, Brain Computer Interface Transition Research Center, Beijing Tiantan Hospital, Capital Medical University, 119 South Fourth Ring Rd West, Fengtai District, Beijing, 100070, China
| | - Longbao Lv
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East of Jiaochang Rd, Kunming, Yunnan, 650223, China
| | - Jianhong Wang
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East of Jiaochang Rd, Kunming, Yunnan, 650223, China
| | - Meiyun Wang
- Department of Medical Imaging, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China
| | - Yingwei Wang
- Department of Anesthesiology, Huashan Hospital, Fudan University, 12 Urumqi Middle Rd, Jing'an District, Shanghai, 200040, China
| | - Zheng Wang
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, State Key Laboratory of General Artificial Intelligence, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Peking University, 5 Yiheyuan Rd, Haidian District, Beijing, 100871, China
- School of Biomedical Engineering, Hainan University, 58 Renmin Avenue, Haikou, Hainan, 570228, China
| |
Collapse
|
9
|
Nehme R, Pietiläinen O, Barrett LE. Genomic, molecular, and cellular divergence of the human brain. Trends Neurosci 2024; 47:491-505. [PMID: 38897852 DOI: 10.1016/j.tins.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/29/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
While many core biological processes are conserved across species, the human brain has evolved with unique capacities. Current understanding of the neurobiological mechanisms that endow human traits as well as associated vulnerabilities remains limited. However, emerging data have illuminated species divergence in DNA elements and genome organization, in molecular, morphological, and functional features of conserved neural cell types, as well as temporal differences in brain development. Here, we summarize recent data on unique features of the human brain and their complex implications for the study and treatment of brain diseases. We also consider key outstanding questions in the field and discuss the technologies and foundational knowledge that will be required to accelerate understanding of human neurobiology.
Collapse
Affiliation(s)
- Ralda Nehme
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Olli Pietiläinen
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Lindy E Barrett
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
10
|
Szegedi V, Tiszlavicz Á, Furdan S, Douida A, Bakos E, Barzo P, Tamas G, Szucs A, Lamsa K. Aging-associated weakening of the action potential in fast-spiking interneurons in the human neocortex. J Biotechnol 2024; 389:1-12. [PMID: 38697361 DOI: 10.1016/j.jbiotec.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Aging is associated with the slowdown of neuronal processing and cognitive performance in the brain; however, the exact cellular mechanisms behind this deterioration in humans are poorly elucidated. Recordings in human acute brain slices prepared from tissue resected during brain surgery enable the investigation of neuronal changes with age. Although neocortical fast-spiking cells are widely implicated in neuronal network activities underlying cognitive processes, they are vulnerable to neurodegeneration. Herein, we analyzed the electrical properties of 147 fast-spiking interneurons in neocortex samples resected in brain surgery from 106 patients aged 11-84 years. By studying the electrophysiological features of action potentials and passive membrane properties, we report that action potential overshoot significantly decreases and spike half-width increases with age. Moreover, the action potential maximum-rise speed (but not the repolarization speed or the afterhyperpolarization amplitude) significantly changed with age, suggesting a particular weakening of the sodium channel current generated in the soma. Cell passive membrane properties measured as the input resistance, membrane time constant, and cell capacitance remained unaffected by senescence. Thus, we conclude that the action potential in fast-spiking interneurons shows a significant weakening in the human neocortex with age. This may contribute to the deterioration of cortical functions by aging.
Collapse
Affiliation(s)
- Viktor Szegedi
- Hungarian Centre of Excellence for Molecular Medicine Research Group for Human Neuron Physiology and Therapy, Szeged, Hungary; Department of Physiology, Anatomy and Neuroscience, University of Szeged, Hungary
| | - Ádám Tiszlavicz
- Hungarian Centre of Excellence for Molecular Medicine Research Group for Human Neuron Physiology and Therapy, Szeged, Hungary
| | - Szabina Furdan
- Hungarian Centre of Excellence for Molecular Medicine Research Group for Human Neuron Physiology and Therapy, Szeged, Hungary
| | - Abdennour Douida
- Hungarian Centre of Excellence for Molecular Medicine Research Group for Human Neuron Physiology and Therapy, Szeged, Hungary
| | - Emoke Bakos
- Hungarian Centre of Excellence for Molecular Medicine Research Group for Human Neuron Physiology and Therapy, Szeged, Hungary; Department of Physiology, Anatomy and Neuroscience, University of Szeged, Hungary
| | - Pal Barzo
- Department of Neurosurgery, University of Szeged, Hungary
| | - Gabor Tamas
- MTA-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Hungary
| | - Attila Szucs
- Neuronal Cell Biology Research Group, Eötvös Loránd University, Budapest, Hungary
| | - Karri Lamsa
- Hungarian Centre of Excellence for Molecular Medicine Research Group for Human Neuron Physiology and Therapy, Szeged, Hungary; Department of Physiology, Anatomy and Neuroscience, University of Szeged, Hungary.
| |
Collapse
|
11
|
Libé-Philippot B, Lejeune A, Wierda K, Louros N, Erkol E, Vlaeminck I, Beckers S, Gaspariunaite V, Bilheu A, Konstantoulea K, Nyitrai H, De Vleeschouwer M, Vennekens KM, Vidal N, Bird TW, Soto DC, Jaspers T, Dewilde M, Dennis MY, Rousseau F, Comoletti D, Schymkowitz J, Theys T, de Wit J, Vanderhaeghen P. LRRC37B is a human modifier of voltage-gated sodium channels and axon excitability in cortical neurons. Cell 2023; 186:5766-5783.e25. [PMID: 38134874 PMCID: PMC10754148 DOI: 10.1016/j.cell.2023.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/28/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023]
Abstract
The enhanced cognitive abilities characterizing the human species result from specialized features of neurons and circuits. Here, we report that the hominid-specific gene LRRC37B encodes a receptor expressed in human cortical pyramidal neurons (CPNs) and selectively localized to the axon initial segment (AIS), the subcellular compartment triggering action potentials. Ectopic expression of LRRC37B in mouse CPNs in vivo leads to reduced intrinsic excitability, a distinctive feature of some classes of human CPNs. Molecularly, LRRC37B binds to the secreted ligand FGF13A and to the voltage-gated sodium channel (Nav) β-subunit SCN1B. LRRC37B concentrates inhibitory effects of FGF13A on Nav channel function, thereby reducing excitability, specifically at the AIS level. Electrophysiological recordings in adult human cortical slices reveal lower neuronal excitability in human CPNs expressing LRRC37B. LRRC37B thus acts as a species-specific modifier of human neuron excitability, linking human genome and cell evolution, with important implications for human brain function and diseases.
Collapse
Affiliation(s)
- Baptiste Libé-Philippot
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Amélie Lejeune
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Keimpe Wierda
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Electrophysiology Unit, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Nikolaos Louros
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Cellular and Molecular Medicine, KUL, 3000 Leuven, Belgium
| | - Emir Erkol
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Ine Vlaeminck
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Electrophysiology Unit, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Sofie Beckers
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Vaiva Gaspariunaite
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Angéline Bilheu
- Université Libre de Bruxelles (ULB), Institute for Interdisciplinary Research (IRIBHM), 1070 Brussels, Belgium
| | - Katerina Konstantoulea
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Cellular and Molecular Medicine, KUL, 3000 Leuven, Belgium
| | - Hajnalka Nyitrai
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Matthias De Vleeschouwer
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Cellular and Molecular Medicine, KUL, 3000 Leuven, Belgium
| | - Kristel M Vennekens
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Niels Vidal
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Thomas W Bird
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Daniela C Soto
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Tom Jaspers
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Maarten Dewilde
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Megan Y Dennis
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Frederic Rousseau
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Cellular and Molecular Medicine, KUL, 3000 Leuven, Belgium
| | - Davide Comoletti
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; Child Health Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA
| | - Joost Schymkowitz
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Cellular and Molecular Medicine, KUL, 3000 Leuven, Belgium
| | - Tom Theys
- KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium; Research Group Experimental Neurosurgery and Neuroanatomy, KUL, 3000 Leuven, Belgium
| | - Joris de Wit
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium.
| | - Pierre Vanderhaeghen
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium; Université Libre de Bruxelles (ULB), Institute for Interdisciplinary Research (IRIBHM), 1070 Brussels, Belgium.
| |
Collapse
|
12
|
Wilbers R, Galakhova AA, Driessens SL, Heistek TS, Metodieva VD, Hagemann J, Heyer DB, Mertens EJ, Deng S, Idema S, de Witt Hamer PC, Noske DP, van Schie P, Kommers I, Luan G, Li T, Shu Y, de Kock CP, Mansvelder HD, Goriounova NA. Structural and functional specializations of human fast-spiking neurons support fast cortical signaling. SCIENCE ADVANCES 2023; 9:eadf0708. [PMID: 37824618 PMCID: PMC10569701 DOI: 10.1126/sciadv.adf0708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 05/17/2023] [Indexed: 10/14/2023]
Abstract
Fast-spiking interneurons (FSINs) provide fast inhibition that synchronizes neuronal activity and is critical for cognitive function. Fast synchronization frequencies are evolutionary conserved in the expanded human neocortex despite larger neuron-to-neuron distances that challenge fast input-output transfer functions of FSINs. Here, we test in human neurons from neurosurgery tissue, which mechanistic specializations of human FSINs explain their fast-signaling properties in human cortex. With morphological reconstructions, multipatch recordings, and biophysical modeling, we find that despite threefold longer dendritic path, human FSINs maintain fast inhibition between connected pyramidal neurons through several mechanisms: stronger synapse strength of excitatory inputs, larger dendrite diameter with reduced complexity, faster AP initiation, and faster and larger inhibitory output, while Na+ current activation/inactivation properties are similar. These adaptations underlie short input-output delays in fast inhibition of human pyramidal neurons through FSINs, explaining how cortical synchronization frequencies are conserved despite expanded and sparse network topology of human cortex.
Collapse
Affiliation(s)
- René Wilbers
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, de Boelelaan 1085, 1081 HV Amsterdam, Netherlands
| | - Anna A. Galakhova
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, de Boelelaan 1085, 1081 HV Amsterdam, Netherlands
| | - Stan L.W. Driessens
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, de Boelelaan 1085, 1081 HV Amsterdam, Netherlands
| | - Tim S. Heistek
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, de Boelelaan 1085, 1081 HV Amsterdam, Netherlands
| | - Verjinia D. Metodieva
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, de Boelelaan 1085, 1081 HV Amsterdam, Netherlands
| | - Jim Hagemann
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, de Boelelaan 1085, 1081 HV Amsterdam, Netherlands
| | - Djai B. Heyer
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, de Boelelaan 1085, 1081 HV Amsterdam, Netherlands
| | - Eline J. Mertens
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, de Boelelaan 1085, 1081 HV Amsterdam, Netherlands
| | - Suixin Deng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, 19 Xinjiekou Wai Street, Beijing 100875, China
- Department of Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 201508, China
| | - Sander Idema
- Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, VUmc Cancer Center, Amsterdam Brain Tumor Center, de Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - Philip C. de Witt Hamer
- Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, VUmc Cancer Center, Amsterdam Brain Tumor Center, de Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - David P. Noske
- Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, VUmc Cancer Center, Amsterdam Brain Tumor Center, de Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - Paul van Schie
- Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, VUmc Cancer Center, Amsterdam Brain Tumor Center, de Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - Ivar Kommers
- Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, VUmc Cancer Center, Amsterdam Brain Tumor Center, de Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - Guoming Luan
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Xiangshan Yikesong 50, Beijing 100093, China
| | - Tianfu Li
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Xiangshan Yikesong 50, Beijing 100093, China
| | - Yousheng Shu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, 19 Xinjiekou Wai Street, Beijing 100875, China
- Department of Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 201508, China
| | - Christiaan P.J. de Kock
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, de Boelelaan 1085, 1081 HV Amsterdam, Netherlands
| | - Huibert D. Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, de Boelelaan 1085, 1081 HV Amsterdam, Netherlands
| | - Natalia A. Goriounova
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, de Boelelaan 1085, 1081 HV Amsterdam, Netherlands
| |
Collapse
|