1
|
Calarco JA, Taylor SR, Miller DM. Detecting gene expression in Caenorhabditis elegans. Genetics 2025; 229:1-108. [PMID: 39693264 DOI: 10.1093/genetics/iyae167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 09/30/2024] [Indexed: 12/20/2024] Open
Abstract
Reliable methods for detecting and analyzing gene expression are necessary tools for understanding development and investigating biological responses to genetic and environmental perturbation. With its fully sequenced genome, invariant cell lineage, transparent body, wiring diagram, detailed anatomy, and wide array of genetic tools, Caenorhabditis elegans is an exceptionally useful model organism for linking gene expression to cellular phenotypes. The development of new techniques in recent years has greatly expanded our ability to detect gene expression at high resolution. Here, we provide an overview of gene expression methods for C. elegans, including techniques for detecting transcripts and proteins in situ, bulk RNA sequencing of whole worms and specific tissues and cells, single-cell RNA sequencing, and high-throughput proteomics. We discuss important considerations for choosing among these techniques and provide an overview of publicly available online resources for gene expression data.
Collapse
Affiliation(s)
- John A Calarco
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada, M5S 3G5
| | - Seth R Taylor
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - David M Miller
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
- Neuroscience Program, Vanderbilt University, Nashville, TN 37240, USA
| |
Collapse
|
2
|
Kudron M, Gevirtzman L, Victorsen A, Lear BC, Gao J, Xu J, Samanta S, Frink E, Tran-Pearson A, Huynh C, Vafeados D, Hammonds A, Fisher W, Wall M, Wesseling G, Hernandez V, Lin Z, Kasparian M, White K, Allada R, Gerstein M, Hillier L, Celniker SE, Reinke V, Waterston RH. Binding profiles for 961 Drosophila and C. elegans transcription factors reveal tissue-specific regulatory relationships. Genome Res 2024; 34:2319-2334. [PMID: 39438113 DOI: 10.1101/gr.279037.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
A catalog of transcription factor (TF) binding sites in the genome is critical for deciphering regulatory relationships. Here, we present the culmination of the efforts of the modENCODE (model organism Encyclopedia of DNA Elements) and modERN (model organism Encyclopedia of Regulatory Networks) consortia to systematically assay TF binding events in vivo in two major model organisms, Drosophila melanogaster (fly) and Caenorhabditis elegans (worm). These data sets comprise 605 TFs identifying 3.6 M sites in the fly and 356 TFs identifying 0.9 M sites in the worm, and represent the majority of the regulatory space in each genome. We demonstrate that TFs associate with chromatin in clusters termed "metapeaks," that larger metapeaks have characteristics of high-occupancy target (HOT) regions, and that the importance of consensus sequence motifs bound by TFs depends on metapeak size and complexity. Combining ChIP-seq data with single-cell RNA-seq data in a machine-learning model identifies TFs with a prominent role in promoting target gene expression in specific cell types, even differentiating between parent-daughter cells during embryogenesis. These data are a rich resource for the community that should fuel and guide future investigations into TF function. To facilitate data accessibility and utility, all strains expressing green fluorescent protein (GFP)-tagged TFs are available at the stock centers for each organism. The chromatin immunoprecipitation sequencing data are available through the ENCODE Data Coordinating Center, GEO, and through a direct interface that provides rapid access to processed data sets and summary analyses, as well as widgets to probe the cell-type-specific TF-target relationships.
Collapse
Affiliation(s)
- Michelle Kudron
- Department of Genetics, Yale University, New Haven, Connecticut 06520, USA
| | - Louis Gevirtzman
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Alec Victorsen
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Bridget C Lear
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208, USA
| | - Jiahao Gao
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Jinrui Xu
- Department of Biology, Howard University, Washington, District of Columbia 20059, USA
- Center for Applied Data Science and Analytics, Howard University, Washington, District of Columbia 20059, USA
| | - Swapna Samanta
- Department of Genetics, Yale University, New Haven, Connecticut 06520, USA
| | - Emily Frink
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Adri Tran-Pearson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Chau Huynh
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Dionne Vafeados
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Ann Hammonds
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - William Fisher
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Martha Wall
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, Illinois 60637, USA
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
| | - Greg Wesseling
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208, USA
| | - Vanessa Hernandez
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208, USA
| | - Zhichun Lin
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208, USA
| | - Mary Kasparian
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208, USA
| | - Kevin White
- Department of Biochemistry and Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore
| | - Ravi Allada
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208, USA
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
- Department of Statistics and Data Science, Yale University, New Haven, Connecticut 06520, USA
| | - LaDeana Hillier
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Susan E Celniker
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Valerie Reinke
- Department of Genetics, Yale University, New Haven, Connecticut 06520, USA;
| | - Robert H Waterston
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA;
| |
Collapse
|
3
|
St Ange J, Weng Y, Kaletsky R, Stevenson ME, Moore RS, Zhou S, Murphy CT. Adult single-nucleus neuronal transcriptomes of insulin signaling mutants reveal regulators of behavior and learning. CELL GENOMICS 2024; 4:100720. [PMID: 39637862 DOI: 10.1016/j.xgen.2024.100720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/16/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024]
Abstract
Gene expression in individual neurons can change during development to adulthood and can have large effects on behavior. Additionally, the insulin/insulin-like signaling (IIS) pathway regulates many of the adult functions of Caenorhabditis elegans, including learning and memory, via transcriptional changes. We used the deep resolution of single-nucleus RNA sequencing to define the adult transcriptome of each neuron in wild-type and daf-2 mutants, revealing expression differences between L4 larval and adult neurons in chemoreceptors, synaptic genes, and learning/memory genes. We used these data to identify adult new AWC-specific regulators of chemosensory function that emerge upon adulthood. daf-2 gene expression changes correlate with improved cognitive functions, particularly in the AWC sensory neuron that controls learning and associative memory; behavioral assays of AWC-specific daf-2 genes revealed their roles in cognitive function. Combining technology and functional validation, we identified conserved genes that function in specific adult neurons to control behavior, including learning and memory.
Collapse
Affiliation(s)
- Jonathan St Ange
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Yifei Weng
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Rachel Kaletsky
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Morgan E Stevenson
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Rebecca S Moore
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Shiyi Zhou
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Coleen T Murphy
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
4
|
Park YJ, Yeon J, Cho J, Kim DY, Bai X, Oh Y, Kim J, Nam H, Hwang H, Heo W, Kim J, Jun S, Lee K, Kang K, Kim K. PIEZO acts in an intestinal valve to regulate swallowing in C. elegans. Nat Commun 2024; 15:10072. [PMID: 39567502 PMCID: PMC11579399 DOI: 10.1038/s41467-024-54362-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024] Open
Abstract
Sensations of the internal state of the body play crucial roles in regulating the physiological processes and maintaining homeostasis of an organism. However, our understanding of how internal signals are sensed, processed, and integrated to generate appropriate biological responses remains limited. Here, we show that the C. elegans PIEZO channel, encoded by pezo-1, regulates food movement in the intestine by detecting food accumulation in the anterior part of the intestinal lumen, thereby triggering rhythmical movement of the pharynx, referred to as the pharyngeal plunge. pezo-1 deletion mutants exhibit defects in the pharyngeal plunge, which is rescued by PEZO-1 or mouse PIEZO1 expression, but not by PIEZO2, in a single isolated non-neuronal tissue of the digestive tract, the pharyngeal-intestinal valve. Genetic ablation or optogenetic activation of this valve inhibits or induces the pharyngeal plunge, respectively. Moreover, pressure built in the anterior lumen of the intestine results in a pezo-1-dependent pharyngeal plunge, which is driven by head muscle contraction. These findings illustrate how interoceptive processes in a digestive organ regulate swallowing through the PIEZO channel, providing insights into how interoception coordinates ingestive processes in higher animals, including humans.
Collapse
Affiliation(s)
- Yeon-Ji Park
- Department of Brain Sciences, DGIST, Daegu, Republic of Korea
| | - Jihye Yeon
- Department of Brain Sciences, DGIST, Daegu, Republic of Korea
| | - Jihye Cho
- Department of Brain Sciences, DGIST, Daegu, Republic of Korea
| | - Do-Young Kim
- Department of Brain Sciences, DGIST, Daegu, Republic of Korea
| | - Xiaofei Bai
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Yuna Oh
- Advanced Analysis and Data Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Jimin Kim
- Department of Brain Sciences, DGIST, Daegu, Republic of Korea
| | - HoJin Nam
- Department of Brain Sciences, DGIST, Daegu, Republic of Korea
| | | | - Woojung Heo
- Department of Brain Sciences, DGIST, Daegu, Republic of Korea
| | - Jinmahn Kim
- Department of Brain Sciences, DGIST, Daegu, Republic of Korea
| | - Seoyoung Jun
- Department of Brain Sciences, DGIST, Daegu, Republic of Korea
| | - Kyungeun Lee
- Advanced Analysis and Data Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - KyeongJin Kang
- KBRI (Korea Brain Research Institute), Daegu, Republic of Korea
| | - Kyuhyung Kim
- Department of Brain Sciences, DGIST, Daegu, Republic of Korea.
- KBRI (Korea Brain Research Institute), Daegu, Republic of Korea.
| |
Collapse
|
5
|
Sonntag T, Omi S, Andreeva A, Eichelbrenner J, Chisholm AD, Ward JD, Pujol N. A defining member of the new cysteine-cradle family is an aECM protein signalling skin damage in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.11.589058. [PMID: 39574764 PMCID: PMC11580886 DOI: 10.1101/2024.04.11.589058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Apical extracellular matrices (aECMs) act as crucial barriers, and communicate with the epidermis to trigger protective responses following injury or infection. In Caenorhabditis elegans, the skin aECM, the cuticle, is produced by the epidermis and is decorated with periodic circumferential furrows. We previously showed that mutants lacking cuticle furrows exhibit persistent immune activation (PIA). In a genetic suppressor screen, we identified spia-1 as a key gene downstream of furrow collagens and upstream of immune signalling. spia-1 expression oscillates during larval development, peaking between each moult together with patterning cuticular components. It encodes a secreted protein that localises to furrows. SPIA-1 shares a novel cysteine-cradle domain with other aECM proteins. SPIA-1 mediates immune activation in response to furrow loss and is proposed to act as a sensor of cuticle damage. This research provides a molecular insight into intricate interplay between cuticle integrity and epidermal immune activation in C. elegans.
Collapse
Affiliation(s)
- Thomas Sonntag
- Aix Marseille Univ, INSERM, CNRS, CIML, Turing Centre for Living Systems, Marseille, France
| | - Shizue Omi
- Aix Marseille Univ, INSERM, CNRS, CIML, Turing Centre for Living Systems, Marseille, France
| | - Antonina Andreeva
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Jeanne Eichelbrenner
- Aix Marseille Univ, INSERM, CNRS, CIML, Turing Centre for Living Systems, Marseille, France
| | - Andrew D Chisholm
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jordan D Ward
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Nathalie Pujol
- Aix Marseille Univ, INSERM, CNRS, CIML, Turing Centre for Living Systems, Marseille, France
| |
Collapse
|
6
|
Pooranachithra M, Jyo EM, Brouilly N, Pujol N, Ernst AM, Chisholm AD. C. elegans epicuticlins define specific compartments in the apical extracellular matrix and function in wound repair. Development 2024; 151:dev204330. [PMID: 39373389 PMCID: PMC11529277 DOI: 10.1242/dev.204330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 09/22/2024] [Indexed: 10/08/2024]
Abstract
The apical extracellular matrix (aECM) of external epithelia often contains lipid-rich outer layers that contribute to permeability barrier function. The external aECM of nematodes is known as the cuticle and contains an external lipid-rich layer - the epicuticle. Epicuticlins are a family of tandem repeat cuticle proteins of unknown function. Here, we analyze the localization and function of the three C. elegans epicuticlins (EPIC proteins). EPIC-1 and EPIC-2 localize to the surface of the cuticle near the outer lipid layer, as well as to interfacial cuticles and adult-specific struts. EPIC-3 is expressed in dauer larvae and localizes to interfacial aECM in the buccal cavity. Skin wounding in the adult induces epic-3 expression, and EPIC proteins localize to wound sites. Null mutants lacking EPIC proteins are viable with reduced permeability barrier function and normal epicuticle lipid mobility. Loss of function in EPIC genes modifies the skin blistering phenotypes of Bli mutants and reduces survival after skin wounding. Our results suggest EPIC proteins define specific cortical compartments of the aECM and promote wound repair.
Collapse
Affiliation(s)
- Murugesan Pooranachithra
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Erin M. Jyo
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Nathalie Pujol
- Aix-Marseille Université, INSERM, CNRS, CIML, Turing Centre for Living Systems, 13009, Marseille, France
| | - Andreas M. Ernst
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrew D. Chisholm
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
7
|
Purice MD, Lago-Baldaia I, Fernandes VM, Singhvi A. Molecular profiling of invertebrate glia. Glia 2024. [PMID: 39415317 DOI: 10.1002/glia.24623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 10/18/2024]
Abstract
Caenorhabditis elegans and Drosophila melanogaster are powerful experimental models for uncovering fundamental tenets of nervous system organization and function. Findings over the last two decades show that molecular and cellular features are broadly conserved between invertebrates and vertebrates, indicating that insights derived from invertebrate models can broadly inform our understanding of glial operating principles across diverse species. In recent years, these model systems have led to exciting discoveries in glial biology and mechanisms of glia-neuron interactions. Here, we summarize studies that have applied current state-of-the-art "-omics" techniques to C. elegans and D. melanogaster glia. Coupled with the remarkable acceleration in the pace of mechanistic studies of glia biology in recent years, these indicate that invertebrate glia also exhibit striking molecular complexity, specificity, and heterogeneity. We provide an overview of these studies and discuss their implications as well as emerging questions where C. elegans and D. melanogaster are well-poised to fill critical knowledge gaps in our understanding of glial biology.
Collapse
Affiliation(s)
- Maria D Purice
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Biological Structure, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Inês Lago-Baldaia
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Vilaiwan M Fernandes
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Aakanksha Singhvi
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Biological Structure, School of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
8
|
Berndt H, Fuchs S, Kraus-Stojanowic I, Pees B, Gelhaus C, Leippe M. Molecular and functional characterization of ILYS-5, a major invertebrate lysozyme of Caenorhabditis elegans. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 159:105220. [PMID: 38925432 DOI: 10.1016/j.dci.2024.105220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
To overcome bacterial invasion and infection, animals have evolved various antimicrobial effectors such as antimicrobial peptides and lysozymes. Although C. elegans is exposed to a variety of microbes due to its bacterivorous lifestyle, previous work on the components of its immune system mainly based on the description of transcriptional changes during bacterial challenges. Very few effector components of its immune system have been characterized so far. To investigate the role of lysozymes in terms of antibacterial defense and digestion, we studied a member of the widely neglected family of C. elegans invertebrate lysozymes (ILYS). We focused on the so far virtually undescribed ILYS-5, which we purified from protein extracts of C. elegans tracing its peptidoglycan-degrading activity and localized the tissue expression of the gene in vivo using a translational reporter construct. We recombinantly synthesized ILYS-5 and determined the physicochemical activity optimum and the antibacterial spectrum of a lysozyme from C. elegans for the first time. With an activity optimum at low ionic strength (≤100 mM) and at acidic pH (≤ pH 4.0), ILYS-5 is likely to be involved in killing and digestion of bacteria within acidified phagolysosomes and acidic regions of the gut, presumably secreted by lysosome-like vesicles. This notion is supported by potent activity against various live Gram-positive and Gram-negative bacteria. Notably, members of the natural associated microbiome of C. elegans are substantially less susceptible to ILYS-5. Ablation of the ilys-5 gene resulted in reduction of lifespan and fertility when cultured on the standard food bacterium Escherichia coli OP50, whereas exposure of the ilys-5 knock-out mutant to the host-associated bacterium Pseudomonas lurida MYb11 did not have a clear effect. These findings indicate a role of ILYS-5 in immunity and nutrition and a co-evolved adaptation of host and bacteria to the mutualistic nature of their interaction.
Collapse
Affiliation(s)
- Henry Berndt
- Comparative Immunobiology, Zoological Institute, Kiel University, Kiel, Germany
| | - Silja Fuchs
- Comparative Immunobiology, Zoological Institute, Kiel University, Kiel, Germany
| | | | - Barbara Pees
- Comparative Immunobiology, Zoological Institute, Kiel University, Kiel, Germany
| | - Christoph Gelhaus
- Comparative Immunobiology, Zoological Institute, Kiel University, Kiel, Germany
| | - Matthias Leippe
- Comparative Immunobiology, Zoological Institute, Kiel University, Kiel, Germany.
| |
Collapse
|
9
|
Gavrilova A, Boström A, Korabel N, Fedotov S, Poulin GB, Allan VJ. The role of kinesin-1 in neuronal dense core vesicle transport, locomotion and lifespan regulation in C. elegans. J Cell Sci 2024; 137:jcs262148. [PMID: 39171448 PMCID: PMC11423817 DOI: 10.1242/jcs.262148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024] Open
Abstract
Fast axonal transport is crucial for neuronal function and is driven by kinesins and cytoplasmic dynein. Here, we investigated the role of kinesin-1 in dense core vesicle (DCV) transport in C. elegans, using mutants in the kinesin light chains (klc-1 and klc-2) and the motor subunit (unc-116) expressing an ida-1::gfp transgene that labels DCVs. DCV transport in both directions was greatly impaired in an unc-116 mutant and had reduced velocity in a klc-2 mutant. In contrast, the speed of retrograde DCV transport was increased in a klc-1 mutant whereas anterograde transport was unaffected. We identified striking differences between the klc mutants in their effects on worm locomotion and responses to drugs affecting neuromuscular junction activity. We also determined lifespan, finding that unc-116 mutant was short-lived whereas the klc single mutant lifespan was wild type. The ida-1::gfp transgenic strain was also short-lived, but surprisingly, klc-1 and klc-2 extended the ida-1::gfp lifespan beyond that of wild type. Our findings suggest that kinesin-1 not only influences anterograde and retrograde DCV transport but is also involved in regulating lifespan and locomotion, with the two kinesin light chains playing distinct roles.
Collapse
Affiliation(s)
- Anna Gavrilova
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Rumford St, Manchester M13 9PT, UK
- Department of Mathematics, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Astrid Boström
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Rumford St, Manchester M13 9PT, UK
| | - Nickolay Korabel
- Department of Mathematics, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Sergei Fedotov
- Department of Mathematics, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Gino B Poulin
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Rumford St, Manchester M13 9PT, UK
| | - Victoria J Allan
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Rumford St, Manchester M13 9PT, UK
| |
Collapse
|
10
|
Fazyl A, Sawilchik E, Stein W, Vidal-Gadea AG. Muscular expression of pezo-1 differentially contributes to swimming and crawling production in the nematode C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607367. [PMID: 39185200 PMCID: PMC11343145 DOI: 10.1101/2024.08.13.607367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Mechanosensitive PIEZO ion channels are evolutionarily conserved proteins that are widely expressed in neuronal and muscular tissues. This study explores the role of the mechanoreceptor PEZO-1 in the body wall muscles of Caenorhabditis elegans, focusing on its influence on two locomotor behaviors, swimming and crawling. Using confocal imaging, we reveal that PEZO-1 localizes to the sarcolemma and plays a crucial role in modulating calcium dynamics that are important for muscle contraction. When we knocked down pezo-1 expression in striated muscles with RNA interference, calcium levels in head and tail muscles increased. While heightened, the overall trajectory of the calcium signal during the crawl cycle remained the same. While downregulation of pezo-1 led to an increase in crawling speed, it caused a reduction in swimming speed. Reduction in pezo-1 expression also resulted in the increased activation of the ventral tail muscles, and a disruption of dorsoventral movement asymmetry, a critical feature that enables propulsion in water. These alterations were correlated with impaired swimming posture and path curvature, suggesting that PEZO-1 has different functions during swimming and crawling.
Collapse
Affiliation(s)
- A Fazyl
- School of Biological Sciences, Illinois State University, Normal, IL
| | - E Sawilchik
- School of Biological Sciences, Illinois State University, Normal, IL
| | - W Stein
- School of Biological Sciences, Illinois State University, Normal, IL
| | - AG Vidal-Gadea
- School of Biological Sciences, Illinois State University, Normal, IL
| |
Collapse
|
11
|
Batachari LE, Dai AY, Troemel ER. Caenorhabditis elegans RIG-I-like receptor DRH-1 signals via CARDs to activate antiviral immunity in intestinal cells. Proc Natl Acad Sci U S A 2024; 121:e2402126121. [PMID: 38980902 PMCID: PMC11260149 DOI: 10.1073/pnas.2402126121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024] Open
Abstract
Upon sensing viral RNA, mammalian RIG-I-like receptors (RLRs) activate downstream signals using caspase activation and recruitment domains (CARDs), which ultimately promote transcriptional immune responses that have been well studied. In contrast, the downstream signaling mechanisms for invertebrate RLRs are much less clear. For example, the Caenorhabditis elegans RLR DRH-1 lacks annotated CARDs and up-regulates the distinct output of RNA interference. Here, we found that similar to mammal RLRs, DRH-1 signals through two tandem CARDs (2CARD) to induce a transcriptional immune response. Expression of DRH-1(2CARD) alone in the intestine was sufficient to induce immune gene expression, increase viral resistance, and promote thermotolerance, a phenotype previously associated with immune activation in C. elegans. We also found that DRH-1 is required in the intestine to induce immune gene expression, and we demonstrate subcellular colocalization of DRH-1 puncta with double-stranded RNA inside the cytoplasm of intestinal cells upon viral infection. Altogether, our results reveal mechanistic and spatial insights into antiviral signaling in C. elegans, highlighting unexpected parallels in RLR signaling between C. elegans and mammals.
Collapse
Affiliation(s)
- Lakshmi E. Batachari
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA92093
| | - Alyssa Y. Dai
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA92093
| | - Emily R. Troemel
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA92093
| |
Collapse
|
12
|
Lamberti ML, Spangler RK, Cerdeira V, Ares M, Rivollet L, Ashley GE, Coronado AR, Tripathi S, Spiousas I, Ward JD, Partch CL, Bénard CY, Goya ME, Golombek DA. Clock gene homologs lin-42 and kin-20 regulate circadian rhythms in C. elegans. Sci Rep 2024; 14:12936. [PMID: 38839826 PMCID: PMC11153552 DOI: 10.1038/s41598-024-62303-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/15/2024] [Indexed: 06/07/2024] Open
Abstract
Circadian rhythms are endogenous oscillations in nearly all organisms, from prokaryotes to humans, allowing them to adapt to cyclical environments for close to 24 h. Circadian rhythms are regulated by a central clock, based on a transcription-translation feedback loop. One important protein in the central loop in metazoan clocks is PERIOD, which is regulated in part by Casein kinase 1ε/δ (CK1ε/δ) phosphorylation. In the nematode Caenorhabditis elegans, period and casein kinase 1ε/δ are conserved as lin-42 and kin-20, respectively. Here, we studied the involvement of lin-42 and kin-20 in the circadian rhythms of the adult nematode using a bioluminescence-based circadian transcriptional reporter. We show that mutations of lin-42 and kin-20 generate a significantly longer endogenous period, suggesting a role for both genes in the nematode circadian clock, as in other organisms. These phenotypes can be partially rescued by overexpression of either gene under their native promoter. Both proteins are expressed in neurons and epidermal seam cells, as well as in other cells. Depletion of LIN-42 and KIN-20, specifically in neuronal cells after development, was sufficient to lengthen the period of oscillating sur-5 expression. Therefore, we conclude that LIN-42 and KIN-20 are critical regulators of the adult nematode circadian clock through neuronal cells.
Collapse
Affiliation(s)
- Melisa L Lamberti
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Rebecca K Spangler
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, USA
| | - Victoria Cerdeira
- Department of Biological Sciences, Université du Québec à Montréal, CERMO-FC Research Center, Montréal, QC, Canada
| | - Myriam Ares
- Department of Biological Sciences, Université du Québec à Montréal, CERMO-FC Research Center, Montréal, QC, Canada
| | - Lise Rivollet
- Department of Biological Sciences, Université du Québec à Montréal, CERMO-FC Research Center, Montréal, QC, Canada
| | - Guinevere E Ashley
- Department of Molecular, Cell & Developmental Biology, University of California Santa Cruz, Santa Cruz, USA
| | - Andrea Ramos Coronado
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, USA
| | - Sarvind Tripathi
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, USA
| | - Ignacio Spiousas
- Laboratorio Interdisciplinario del Tiempo (LITERA), Universidad de San Andrés/CONICET, Buenos Aires, Argentina
| | - Jordan D Ward
- Department of Molecular, Cell & Developmental Biology, University of California Santa Cruz, Santa Cruz, USA
| | - Carrie L Partch
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, USA
- Center for Circadian Biology, UC San Diego, La Jolla, CA, USA
| | - Claire Y Bénard
- Department of Biological Sciences, Université du Québec à Montréal, CERMO-FC Research Center, Montréal, QC, Canada
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - M Eugenia Goya
- European Institute for the Biology of Aging, University Medical Center Groningen, Groningen, The Netherlands.
| | - Diego A Golombek
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes, Buenos Aires, Argentina.
- Laboratorio Interdisciplinario del Tiempo (LITERA), Universidad de San Andrés/CONICET, Buenos Aires, Argentina.
| |
Collapse
|
13
|
Armingol E, Baghdassarian HM, Lewis NE. The diversification of methods for studying cell-cell interactions and communication. Nat Rev Genet 2024; 25:381-400. [PMID: 38238518 PMCID: PMC11139546 DOI: 10.1038/s41576-023-00685-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2023] [Indexed: 05/20/2024]
Abstract
No cell lives in a vacuum, and the molecular interactions between cells define most phenotypes. Transcriptomics provides rich information to infer cell-cell interactions and communication, thus accelerating the discovery of the roles of cells within their communities. Such research relies heavily on algorithms that infer which cells are interacting and the ligands and receptors involved. Specific pressures on different research niches are driving the evolution of next-generation computational tools, enabling new conceptual opportunities and technological advances. More sophisticated algorithms now account for the heterogeneity and spatial organization of cells, multiple ligand types and intracellular signalling events, and enable the use of larger and more complex datasets, including single-cell and spatial transcriptomics. Similarly, new high-throughput experimental methods are increasing the number and resolution of interactions that can be analysed simultaneously. Here, we explore recent progress in cell-cell interaction research and highlight the diversification of the next generation of tools, which have yielded a rich ecosystem of tools for different applications and are enabling invaluable discoveries.
Collapse
Affiliation(s)
- Erick Armingol
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA.
- Department of Paediatrics, University of California, San Diego, La Jolla, CA, USA.
| | - Hratch M Baghdassarian
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Paediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Nathan E Lewis
- Department of Paediatrics, University of California, San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
14
|
Baghdassarian HM, Dimitrov D, Armingol E, Saez-Rodriguez J, Lewis NE. Combining LIANA and Tensor-cell2cell to decipher cell-cell communication across multiple samples. CELL REPORTS METHODS 2024; 4:100758. [PMID: 38631346 PMCID: PMC11046036 DOI: 10.1016/j.crmeth.2024.100758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/22/2023] [Accepted: 03/22/2024] [Indexed: 04/19/2024]
Abstract
In recent years, data-driven inference of cell-cell communication has helped reveal coordinated biological processes across cell types. Here, we integrate two tools, LIANA and Tensor-cell2cell, which, when combined, can deploy multiple existing methods and resources to enable the robust and flexible identification of cell-cell communication programs across multiple samples. In this work, we show how the integration of our tools facilitates the choice of method to infer cell-cell communication and subsequently perform an unsupervised deconvolution to obtain and summarize biological insights. We explain how to perform the analysis step by step in both Python and R and provide online tutorials with detailed instructions available at https://ccc-protocols.readthedocs.io/. This workflow typically takes ∼1.5 h to complete from installation to downstream visualizations on a graphics processing unit-enabled computer for a dataset of ∼63,000 cells, 10 cell types, and 12 samples.
Collapse
Affiliation(s)
- Hratch M Baghdassarian
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daniel Dimitrov
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, 69120 Heidelberg, Germany
| | - Erick Armingol
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Julio Saez-Rodriguez
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, 69120 Heidelberg, Germany.
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
15
|
Smith JJ, Taylor SR, Blum JA, Feng W, Collings R, Gitler AD, Miller DM, Kratsios P. A molecular atlas of adult C. elegans motor neurons reveals ancient diversity delineated by conserved transcription factor codes. Cell Rep 2024; 43:113857. [PMID: 38421866 PMCID: PMC11091551 DOI: 10.1016/j.celrep.2024.113857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/17/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
Motor neurons (MNs) constitute an ancient cell type targeted by multiple adult-onset diseases. It is therefore important to define the molecular makeup of adult MNs in animal models and extract organizing principles. Here, we generate a comprehensive molecular atlas of adult Caenorhabditis elegans MNs and a searchable database. Single-cell RNA sequencing of 13,200 cells reveals that ventral nerve cord MNs cluster into 29 molecularly distinct subclasses. Extending C. elegans Neuronal Gene Expression Map and Network (CeNGEN) findings, all MN subclasses are delineated by distinct expression codes of either neuropeptide or transcription factor gene families. Strikingly, combinatorial codes of homeodomain transcription factor genes succinctly delineate adult MN diversity in both C. elegans and mice. Further, molecularly defined MN subclasses in C. elegans display distinct patterns of connectivity. Hence, our study couples the connectivity map of the C. elegans motor circuit with a molecular atlas of its constituent MNs and uncovers organizing principles and conserved molecular codes of adult MN diversity.
Collapse
Affiliation(s)
- Jayson J Smith
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA; University of Chicago Neuroscience Institute, Chicago, IL 60637, USA
| | - Seth R Taylor
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA; Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Jacob A Blum
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Weidong Feng
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA; University of Chicago Neuroscience Institute, Chicago, IL 60637, USA
| | - Rebecca Collings
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - David M Miller
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA; Program in Neuroscience, Vanderbilt University, Nashville, TN 37240, USA.
| | - Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA; University of Chicago Neuroscience Institute, Chicago, IL 60637, USA.
| |
Collapse
|
16
|
Batachari LE, Dai AY, Troemel ER. C. elegans RIG-I-like receptor DRH-1 signals via CARDs to activate anti-viral immunity in intestinal cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.578694. [PMID: 38370651 PMCID: PMC10871272 DOI: 10.1101/2024.02.05.578694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Upon sensing viral RNA, mammalian RIG-I-like receptors activate downstream signals using caspase activation and recruitment domains (CARDs), which ultimately promote transcriptional immune responses that have been well-studied. In contrast, the downstream signaling mechanisms for invertebrate RIG-I-like receptors are much less clear. For example, the Caenorhabditis elegans RIG-I-like receptor DRH-1 lacks annotated CARDs and upregulates the distinct output of RNA interference (RNAi). Here we found that, similar to mammal RIG-I-like receptors, DRH-1 signals through two tandem caspase activation and recruitment domains (2CARD) to induce a transcriptional immune response. Expression of DRH-1(2CARD) alone in the intestine was sufficient to induce immune gene expression, increase viral resistance, and promote thermotolerance, a phenotype previously associated with immune activation. We also found that DRH-1 is required in the intestine to induce immune gene expression, and we demonstrate subcellular colocalization of DRH-1 puncta with double-stranded RNA inside the cytoplasm of intestinal cells upon viral infection. Altogether, our results reveal mechanistic and spatial insights into anti-viral signaling in C. elegans, highlighting unexpected parallels in RIG-I-like receptor signaling between C. elegans and mammals.
Collapse
Affiliation(s)
- Lakshmi E Batachari
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States
| | - Alyssa Y Dai
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States
| | - Emily R Troemel
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States
| |
Collapse
|
17
|
Ange JS, Weng Y, Stevenson ME, Kaletsky R, Moore RS, Zhou S, Murphy CT. Adult Single-nucleus Neuronal Transcriptomes of Insulin Signaling Mutants Reveal Regulators of Behavior and Learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.07.579364. [PMID: 38370779 PMCID: PMC10871314 DOI: 10.1101/2024.02.07.579364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The insulin/insulin-like signaling (IIS) pathway regulates many of C. elegans' adult functions, including learning and memory 1 . While whole-worm and tissue-specific transcriptomic analyses have identified IIS targets 2,3 , a higher-resolution single-cell approach is required to identify changes that confer neuron-specific improvements in the long-lived insulin receptor mutant, daf-2 . To understand how behaviors that are controlled by a small number of neurons change in daf-2 mutants, we used the deep resolution of single-nucleus RNA sequencing to define each neuron type's transcriptome in adult wild-type and daf-2 mutants. First, we found surprising differences between wild-type L4 larval neurons and young adult neurons in chemoreceptor expression, synaptic genes, and learning and memory genes. These Day 1 adult neuron transcriptomes allowed us to identify adult AWC-specific regulators of chemosensory function and to predict neuron-to-neuron peptide/receptor pairs. We then identified gene expression changes that correlate with daf-2's improved cognitive functions, particularly in the AWC sensory neuron that controls learning and associative memory 4 , and used behavioral assays to test their roles in cognitive function. Combining deep single-neuron transcriptomics, genetic manipulation, and behavioral analyses enabled us to identify genes that may function in a single adult neuron to control behavior, including conserved genes that function in learning and memory. One-Sentence Summary Single-nucleus sequencing of adult wild-type and daf-2 C. elegans neurons reveals functionally relevant transcriptional changes, including regulators of chemosensation, learning, and memory.
Collapse
|
18
|
Fabrizio P, Alcolei A, Solari F. Considering Caenorhabditis elegans Aging on a Temporal and Tissue Scale: The Case of Insulin/IGF-1 Signaling. Cells 2024; 13:288. [PMID: 38334680 PMCID: PMC10854721 DOI: 10.3390/cells13030288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024] Open
Abstract
The aging process is inherently complex, involving multiple mechanisms that interact at different biological scales. The nematode Caenorhabditis elegans is a simple model organism that has played a pivotal role in aging research following the discovery of mutations extending lifespan. Longevity pathways identified in C. elegans were subsequently found to be conserved and regulate lifespan in multiple species. These pathways intersect with fundamental hallmarks of aging that include nutrient sensing, epigenetic alterations, proteostasis loss, and mitochondrial dysfunction. Here we summarize recent data obtained in C. elegans highlighting the importance of studying aging at both the tissue and temporal scale. We then focus on the neuromuscular system to illustrate the kinetics of changes that take place with age. We describe recently developed tools that enabled the dissection of the contribution of the insulin/IGF-1 receptor ortholog DAF-2 to the regulation of worm mobility in specific tissues and at different ages. We also discuss guidelines and potential pitfalls in the use of these new tools. We further highlight the opportunities that they present, especially when combined with recent transcriptomic data, to address and resolve the inherent complexity of aging. Understanding how different aging processes interact within and between tissues at different life stages could ultimately suggest potential intervention points for age-related diseases.
Collapse
Affiliation(s)
- Paola Fabrizio
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS UMR5239, INSERM 1210, University Claude Bernard Lyon 1, 69364 Lyon, France;
| | - Allan Alcolei
- INMG, MeLiS, CNRS UMR 5284, INSERM U1314, University Claude Bernard Lyon 1, 69008 Lyon, France;
| | - Florence Solari
- INMG, MeLiS, CNRS UMR 5284, INSERM U1314, University Claude Bernard Lyon 1, 69008 Lyon, France;
| |
Collapse
|
19
|
Pooranachithra M, Jyo EM, Ernst AM, Chisholm AD. C. elegans epicuticlins define specific compartments in the apical extracellular matrix and function in wound repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575393. [PMID: 38260454 PMCID: PMC10802564 DOI: 10.1101/2024.01.12.575393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The apical extracellular matrix (aECM) of external epithelia often contains lipid-rich outer layers that contribute to permeability barrier function. The external aECM of nematode is known as the cuticle and contains an external lipid-rich layer, the epicuticle. Epicuticlins are a family of tandem repeat proteins originally identified as components of the insoluble fraction of the cuticular aECM and thought to localize in or near epicuticle. However, there has been little in vivo analysis of epicuticlins. Here, we report the localization analysis of the three C. elegans epicuticlins (EPIC proteins) using fluorescent protein knock-ins to visualize endogenously expressed proteins, and further examine their in vivo function using genetic null mutants. By TIRF microscopy, we find that EPIC-1 and EPIC-2 localize to the surface of the cuticle in larval and adult stages in close proximity to the outer lipid layer. EPIC-1 and EPIC-2 also localize to interfacial cuticles and adult-specific cuticle struts. EPIC-3 expression is restricted to the stress-induced dauer stage, where it localizes to interfacial aECM in the buccal cavity. Strikingly, skin wounding in the adult induces epic-3 expression, and EPIC-3::mNG localizes to wound scars. Null mutants lacking one, two, or all three EPIC proteins display reduced survival after skin wounding yet are viable with low penetrance defects in epidermal morphogenesis. Our results suggest EPIC proteins define specific aECM compartments and have roles in wound repair.
Collapse
Affiliation(s)
- Murugesan Pooranachithra
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Erin M Jyo
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Andreas M Ernst
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Andrew D Chisholm
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
20
|
Kudron M, Gevirtzman L, Victorsen A, Lear BC, Gao J, Xu J, Samanta S, Frink E, Tran-Pearson A, Huynh C, Vafeados D, Hammonds A, Fisher W, Wall M, Wesseling G, Hernandez V, Lin Z, Kasparian M, White K, Allada R, Gerstein M, Hillier L, Celniker SE, Reinke V, Waterston RH. Binding profiles for 954 Drosophila and C. elegans transcription factors reveal tissue specific regulatory relationships. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576242. [PMID: 38293065 PMCID: PMC10827215 DOI: 10.1101/2024.01.18.576242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
A catalog of transcription factor (TF) binding sites in the genome is critical for deciphering regulatory relationships. Here we present the culmination of the modERN (model organism Encyclopedia of Regulatory Networks) consortium that systematically assayed TF binding events in vivo in two major model organisms, Drosophila melanogaster (fly) and Caenorhabditis elegans (worm). We describe key features of these datasets, comprising 604 TFs identifying 3.6M sites in the fly and 350 TFs identifying 0.9 M sites in the worm. Applying a machine learning model to these data identifies sets of TFs with a prominent role in promoting target gene expression in specific cell types. TF binding data are available through the ENCODE Data Coordinating Center and at https://epic.gs.washington.edu/modERNresource, which provides access to processed and summary data, as well as widgets to probe cell type-specific TF-target relationships. These data are a rich resource that should fuel investigations into TF function during development.
Collapse
Affiliation(s)
- Michelle Kudron
- Department of Genetics, Yale University, New Haven, Connecticut 06520
| | - Louis Gevirtzman
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| | - Alec Victorsen
- Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, MN 55455
| | - Bridget C. Lear
- Department of Neurobiology, Northwestern University, Evanston IL 60208
| | - Jiahao Gao
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Jinrui Xu
- Department of Biology, Howard University, Washington, District of Columbia 20059, USA
- Center for Applied Data Science and Analytics, Howard University, Washington, District of Columbia 20059, USA
| | - Swapna Samanta
- Department of Genetics, Yale University, New Haven, Connecticut 06520
| | - Emily Frink
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| | - Adri Tran-Pearson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| | - Chau Huynh
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| | - Dionne Vafeados
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| | - Ann Hammonds
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - William Fisher
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Martha Wall
- Institute for Genomics and Systems Biology, Department of Human Genetics, University of Chicago, Illinois 60637
| | - Greg Wesseling
- Department of Neurobiology, Northwestern University, Evanston IL 60208
| | - Vanessa Hernandez
- Department of Neurobiology, Northwestern University, Evanston IL 60208
| | - Zhichun Lin
- Department of Neurobiology, Northwestern University, Evanston IL 60208
| | - Mary Kasparian
- Department of Neurobiology, Northwestern University, Evanston IL 60208
| | - Kevin White
- Department of Biochemistry and Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Ravi Allada
- Department of Neurobiology, Northwestern University, Evanston IL 60208
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
- Department of Statistics and Data Science, Yale University, New Haven, Connecticut 06520, USA
| | - LaDeana Hillier
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| | - Susan E. Celniker
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Valerie Reinke
- Department of Genetics, Yale University, New Haven, Connecticut 06520
| | - Robert H. Waterston
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| |
Collapse
|
21
|
Shrestha B, Tallila M, Matilainen O. Folate receptor overexpression induces toxicity in a diet-dependent manner in C. elegans. Sci Rep 2024; 14:1066. [PMID: 38212621 PMCID: PMC10784478 DOI: 10.1038/s41598-024-51700-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024] Open
Abstract
Folate receptor (FR) alpha (FOLR1) and beta (FOLR2) are membrane-anchored folate transporters that are expressed at low levels in normal tissues, while their expression is strongly increased in several cancers. Intriguingly, although the function of these receptors in, for example, development and cancer has been studied intensively, their role in aging is still unknown. To address this, we utilized Caenorhabditis elegans, in which FOLR-1 is the sole ortholog of folate receptors. We found that the loss of FOLR-1 does not affect reproduction, physical condition, proteostasis or lifespan, indicating that it is not required for folate transport to maintain health. Interestingly, we found that FOLR-1 is detectably expressed only in uterine-vulval cells, and that the histone-binding protein LIN-53 inhibits its expression in other tissues. Furthermore, whereas knockdown of lin-53 is known to shorten lifespan, we found that the loss of FOLR-1 partially rescues this phenotype, suggesting that elevated folr-1 expression is detrimental for health. Indeed, our data demonstrate that overexpression of folr-1 is toxic, and that this phenotype is dependent on diet. Altogether, this work could serve as a basis for further studies to elucidate the organismal effects of abnormal FR expression in diseases such as cancer.
Collapse
Affiliation(s)
- Bideep Shrestha
- The Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Milla Tallila
- The Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Olli Matilainen
- The Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
22
|
Purice MD, Severs LJ, Singhvi A. Glia in Invertebrate Models: Insights from Caenorhabditis elegans. ADVANCES IN NEUROBIOLOGY 2024; 39:19-49. [PMID: 39190070 DOI: 10.1007/978-3-031-64839-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Glial cells modulate brain development, function, and health across all bilaterian animals, and studies in the past two decades have made rapid strides to uncover the underlying molecular mechanisms of glial functions. The nervous system of the invertebrate genetic model Caenorhabditis elegans (C. elegans) has small cell numbers with invariant lineages, mapped connectome, easy genetic manipulation, and a short lifespan, and the animal is also optically transparent. These characteristics are revealing C. elegans to be a powerful experimental platform for studying glial biology. This chapter discusses studies in C. elegans that add to our understanding of how glia modulate adult neural functions, and thereby animal behaviors, as well as emerging evidence of their roles as autonomous sensory cells. The rapid molecular and cellular advancements in understanding C. elegans glia in recent years underscore the utility of this model in studies of glial biology. We conclude with a perspective on future research avenues for C. elegans glia that may readily contribute molecular mechanistic insights into glial functions in the nervous system.
Collapse
Affiliation(s)
- Maria D Purice
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Liza J Severs
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Aakanksha Singhvi
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
23
|
Komandur A, Fazyl A, Stein W, Vidal-Gadea AG. The mechanoreceptor pezo-1 is required for normal crawling locomotion in the nematode C. elegans. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.001085. [PMID: 38188418 PMCID: PMC10765246 DOI: 10.17912/micropub.biology.001085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/09/2024]
Abstract
The discovery in 2010 of the PIEZO family of mechanoreceptors revolutionized our understanding of the role of proprioceptive feedback in mammalian physiology. Much remains to be elucidated. This study looks at the role this receptor plays in normal locomotion. Like humans, the nematode C. elegans expresses PIEZO-type channels (encoded by the pezo-1 gene) throughout its somatic musculature. Here we use the unbiased automated behavioral software Tierpsy to characterize the effects that mutations removing PEZO-1 from body wall musculature have on C. elegans crawling. We find that loss of PEZO-1 results in disrupted locomotion and posture, consistent with phenotypes associated with loss of PIEZO2 in human musculature. C. elegans is thus an amenable system to study the role of mechanoreception on muscle physiology and function.
Collapse
Affiliation(s)
| | - Adina Fazyl
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States
| | - Wolfgang Stein
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States
| | - Andrés G. Vidal-Gadea
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States
| |
Collapse
|
24
|
Shioda T, Takahashi I, Ikenaka K, Fujita N, Kanki T, Oka T, Mochizuki H, Antebi A, Yoshimori T, Nakamura S. Neuronal MML-1/MXL-2 regulates systemic aging via glutamate transporter and cell nonautonomous autophagic and peroxidase activity. Proc Natl Acad Sci U S A 2023; 120:e2221553120. [PMID: 37722055 PMCID: PMC10523562 DOI: 10.1073/pnas.2221553120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/04/2023] [Indexed: 09/20/2023] Open
Abstract
Accumulating evidence has demonstrated the presence of intertissue-communication regulating systemic aging, but the underlying molecular network has not been fully explored. We and others previously showed that two basic helix-loop-helix transcription factors, MML-1 and HLH-30, are required for lifespan extension in several longevity paradigms, including germlineless Caenorhabditis elegans. However, it is unknown what tissues these factors target to promote longevity. Here, using tissue-specific knockdown experiments, we found that MML-1 and its heterodimer partners MXL-2 and HLH-30 act primarily in neurons to extend longevity in germlineless animals. Interestingly, however, the downstream cascades of MML-1 in neurons were distinct from those of HLH-30. Neuronal RNA interference (RNAi)-based transcriptome analysis revealed that the glutamate transporter GLT-5 is a downstream target of MML-1 but not HLH-30. Furthermore, the MML-1-GTL-5 axis in neurons is critical to prevent an age-dependent collapse of proteostasis and increased oxidative stress through autophagy and peroxidase MLT-7, respectively, in long-lived animals. Collectively, our study revealed that systemic aging is regulated by a molecular network involving neuronal MML-1 function in both neural and peripheral tissues.
Collapse
Affiliation(s)
- Tatsuya Shioda
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka565-0871, Japan
| | - Ittetsu Takahashi
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka565-0871, Japan
| | - Kensuke Ikenaka
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka565-0871, Japan
| | - Naonobu Fujita
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama226-8503, Japan
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama226-8503, Japan
| | - Tomotake Kanki
- Department of Cellular Physiology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata951-8510, Japan
| | - Toshihiko Oka
- Department of Life Science, Rikkyo University, Tokyo171-8501, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka565-0871, Japan
| | - Adam Antebi
- Department of Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, Cologne50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, University of Cologne, Cologne50931, Germany
| | - Tamotsu Yoshimori
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka565-0871, Japan
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka565-0871, Japan
| | - Shuhei Nakamura
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka565-0871, Japan
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka565-0871, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Osaka565-0871, Japan
| |
Collapse
|
25
|
Smith JJ, Taylor SR, Blum JA, Gitler AD, Miller DM, Kratsios P. A molecular atlas of adult C. elegans motor neurons reveals ancient diversity delineated by conserved transcription factor codes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.552048. [PMID: 37577463 PMCID: PMC10418256 DOI: 10.1101/2023.08.04.552048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Motor neurons (MNs) constitute an ancient cell type targeted by multiple adult-onset diseases. It is therefore important to define the molecular makeup of adult MNs in animal models and extract organizing principles. Here, we generated a comprehensive molecular atlas of adult Caenorhabditis elegans MNs and a searchable database (http://celegans.spinalcordatlas.org). Single-cell RNA-sequencing of 13,200 cells revealed that ventral nerve cord MNs cluster into 29 molecularly distinct subclasses. All subclasses are delineated by unique expression codes of either neuropeptide or transcription factor gene families. Strikingly, we found that combinatorial codes of homeodomain transcription factor genes define adult MN diversity both in C. elegans and mice. Further, molecularly defined MN subclasses in C. elegans display distinct patterns of connectivity. Hence, our study couples the connectivity map of the C. elegans motor circuit with a molecular atlas of its constituent MNs, and uncovers organizing principles and conserved molecular codes of adult MN diversity.
Collapse
Affiliation(s)
- Jayson J. Smith
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA
- University of Chicago Neuroscience Institute, Chicago, IL, 60637, USA
| | - Seth R. Taylor
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37240, USA
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, 84602, USA
| | - Jacob A. Blum
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Aaron D. Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - David M. Miller
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37240, USA
- Program in Neuroscience, Vanderbilt University, Nashville, TN, 37240, USA
| | - Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA
- University of Chicago Neuroscience Institute, Chicago, IL, 60637, USA
| |
Collapse
|