1
|
Cks1 enhances transcription efficiency at the GAL1 locus by linking the Paf1 complex to the 19S proteasome. EUKARYOTIC CELL 2013; 12:1192-201. [PMID: 23825181 DOI: 10.1128/ec.00151-13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cks1 was originally identified based on genetic interactions with CDC28, the gene that encodes Cdk1 in the budding yeast Saccharomyces cerevisiae. Subsequent work has shown that Cks1 binds Cdc28 and modulates its activity against certain substrates. However, the Cks1/Cdc28 complex also has a role in transcriptional chromatin remodeling not related to kinase activity. In order to elucidate protein networks associated with Cks1 transcriptional functions, proteomic analysis was performed on immunoaffinity-purified Cks1, identifying a physical interaction with the Paf1 complex. Specifically, we found that the Paf1 complex component Rtf1 interacts directly with Cks1 and that this interaction is essential for efficient recruitment of Cks1 to chromatin in the context of GAL1 gene induction. We further found that Cks1 in this capacity serves as an adaptor allowing Rtf1 to recruit 19S proteasome particles, shown to be required for efficient RNA production from some rapidly inducible genes such as GAL1.
Collapse
|
2
|
Gaur K, Li J, Wang D, Dutta P, Yan SJ, Tsurumi A, Land H, Wu G, Li WX. The Birt-Hogg-Dubé tumor suppressor Folliculin negatively regulates ribosomal RNA synthesis. Hum Mol Genet 2012; 22:284-99. [PMID: 23077212 DOI: 10.1093/hmg/dds428] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Birt-Hogg-Dubé syndrome (BHD) is a human cancer disorder caused by mutations in the tumor suppressor gene Folliculin (FLCN) with unknown biological functions. Here, we show that the Drosophila homolog of FLCN, dFLCN (a.k.a. dBHD) localizes to the nucleolus and physically interacts with the 19S proteasomal ATPase, Rpt4, a nucleolar resident and known regulator of rRNA transcription. Downregulation of dFLCN resulted in an increase in nucleolar volume and upregulation of rRNA synthesis, whereas dFLCN overexpression reduced rRNA transcription and counteracted the effects of Rpt4 on rRNA production by preventing the association of Rpt4 with the rDNA locus. We further show that human FLCN exhibited evolutionarily conserved function and that Rpt4 knockdown inhibits the growth of FLCN-deficient human renal cancer cells in mouse xenografts. Our study suggests that FLCN functions as a tumor suppressor by negatively regulating rRNA synthesis.
Collapse
Affiliation(s)
- Kriti Gaur
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Keppler BR, Archer TK, Kinyamu HK. Emerging roles of the 26S proteasome in nuclear hormone receptor-regulated transcription. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1809:109-18. [PMID: 20728592 DOI: 10.1016/j.bbagrm.2010.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 08/10/2010] [Accepted: 08/16/2010] [Indexed: 02/07/2023]
Abstract
The mechanisms by which nuclear hormone receptors (NHRs) regulate transcription are highly dynamic and require interplay between a myriad of regulatory protein complexes including the 26S proteasome. Protein degradation is the most well-established role of the proteasome; however, an increasing body of evidence suggests that the 26S proteasome may regulate transcription in proteolytic and nonproteolytic mechanisms. Here we review how these mechanisms may apply to NHR-mediated transcriptional regulation. This article is part of a Special Issue entitled The 26S Proteasome: When degradation is just not enough!
Collapse
Affiliation(s)
- Brian R Keppler
- Chromatin and Gene Expression Section, Laboratory of Molecular Carcinogenesis, NIEHS/NIH, Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|
4
|
Pollice A, Vivo M, La Mantia G. The promiscuity of ARF interactions with the proteasome. FEBS Lett 2008; 582:3257-62. [PMID: 18805416 DOI: 10.1016/j.febslet.2008.09.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 09/03/2008] [Accepted: 09/06/2008] [Indexed: 11/30/2022]
Abstract
The tumor suppressor ARF is one of the most important oncogenic stress sensors in mammalian cells. Its effect is exerted through the interaction with different cellular partners, often resulting in their functional inactivation. This review focuses on the role played by the proteasome in ARF regulation of protein turnover and the function of most of its interacting partners. Specific proteasome components appear to be involved in the regulation of ARF turnover, bringing to light a complex network of interactions between ARF and the proteasome.
Collapse
Affiliation(s)
- Alessandra Pollice
- Department of Structural and Functional Biology, University of Naples Federico II, Naples, Italy.
| | | | | |
Collapse
|
5
|
Fátyol K, Grummt I. Proteasomal ATPases are associated with rDNA: the ubiquitin proteasome system plays a direct role in RNA polymerase I transcription. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1779:850-9. [PMID: 18804559 DOI: 10.1016/j.bbagrm.2008.08.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2008] [Revised: 07/29/2008] [Accepted: 08/20/2008] [Indexed: 12/23/2022]
Abstract
Significant amount of data have accumulated in the last several years pointing to the essential role of the ubiquitin proteasome system in the regulation of RNA polymerase II transcription; however, its involvement in RNA polymerase I transcription has remained largely unexplored. In this study, we demonstrate that proteasome activity is required for pre-rRNA synthesis. We can detect the association of proteasomal ATPases with both the rDNA promoter and coding region. Additionally, we show that the RNA polymerase I associated transcription factor, TIF-IA interacts with proteasomal ATPases, representing a potential link via which proteasomes and/or proteasome related complexes are recruited to rRNA genes. In summary, our findings suggest that the ubiquitin proteasome system is directly involved in RNA polymerase I transcription in analogy to the RNA polymerase II system.
Collapse
Affiliation(s)
- Károly Fátyol
- Division of Molecular Biology of the Cell II, German Cancer Research Center, D-69120, Heidelberg, Germany.
| | | |
Collapse
|
6
|
Mavrakis KJ, Andrew RL, Lee KL, Petropoulou C, Dixon JE, Navaratnam N, Norris DP, Episkopou V. Arkadia enhances Nodal/TGF-beta signaling by coupling phospho-Smad2/3 activity and turnover. PLoS Biol 2007; 5:e67. [PMID: 17341133 PMCID: PMC1808117 DOI: 10.1371/journal.pbio.0050067] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 01/03/2007] [Indexed: 11/19/2022] Open
Abstract
Regulation of transforming growth factor-β (TGF-β) signaling is critical in vertebrate development, as several members of the TGF-β family have been shown to act as morphogens, controlling a variety of cell fate decisions depending on concentration. Little is known about the role of intracellular regulation of the TGF-β pathway in development. E3 ubiquitin ligases target specific protein substrates for proteasome-mediated degradation, and several are implicated in signaling. We have shown that Arkadia, a nuclear RING-domain E3 ubiquitin ligase, is essential for a subset of Nodal functions in the embryo, but the molecular mechanism of its action in embryonic cells had not been addressed. Here, we find that Arkadia facilitates Nodal signaling broadly in the embryo, and that it is indispensable for cell fates that depend on maximum signaling. Loss of Arkadia in embryonic cells causes nuclear accumulation of phospho-Smad2/3 (P-Smad2/3), the effectors of Nodal signaling; however, these must be repressed or hypoactive as the expression of their direct target genes is reduced or lost. Molecular and functional analysis shows that Arkadia interacts with and ubiquitinates P-Smad2/3 causing their degradation, and that this is via the same domains required for enhancing their activity. Consistent with this dual function, introduction of Arkadia in homozygous null (−/−) embryonic stem cells activates the accumulated and hypoactive P-Smad2/3 at the expense of their abundance. Arkadia−/− cells, like Smad2−/− cells, cannot form foregut and prechordal plate in chimeras, confirming this functional interaction in vivo. As Arkadia overexpression never represses, and in some cells enhances signaling, the degradation of P-Smad2/3 by Arkadia cannot occur prior to their activation in the nucleus. Therefore, Arkadia provides a mechanism for signaling termination at the end of the cascade by coupling degradation of P-Smad2/3 with the activation of target gene transcription. This mechanism can account for achieving efficient and maximum Nodal signaling during embryogenesis and for rapid resetting of target gene promoters allowing cells to respond to dynamic changes in extracellular signals. In development, cells respond to secreted signals (called morphogens) by turning on or off sets of target genes. How does gene activity adjust quickly in response to rapidly changing extracellular signals? This should require efficient removal of old/used signaling effectors (signal-activated transcription factors) from the promoters of target genes to allow new ones to assume control. We previously discovered Arkadia, an E3 ubiquitin ligase, and showed that it is an essential factor for normal development. (Ubiquitin ligases trigger the addition of ubiquitin residues to proteins, typically marking them for degradation.) Here, we show that Arkadia is required for high activity of the major signaling pathway, TGF-β/Nodal. Arkadia has a dual role to degrade Smads, the TGF-β signaling effectors, and enhance their transcriptional activity. This coupling of degradation with activation provides a mechanism to ensure that only effectors “in use” are degraded, allowing the new ones to proceed. It is possible that very similar mechanisms operate in other pathways to establish dynamic regulation and efficient signaling, while their failure may be associated with developmental abnormalities and disease, including cancer. Arkadia enhances TGF-β family activity by degrading its inhibitory Smads but also stimulating transcription of phospho-Smads.
Collapse
Affiliation(s)
- Konstantinos J Mavrakis
- Mammalian Neurogenesis, Medical Research Council, Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, London, United Kingdom
| | - Rebecca L Andrew
- Mammalian Neurogenesis, Medical Research Council, Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, London, United Kingdom
| | - Kian Leong Lee
- Mammalian Neurogenesis, Medical Research Council, Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, London, United Kingdom
| | - Chariklia Petropoulou
- Mammalian Neurogenesis, Medical Research Council, Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, London, United Kingdom
| | - James E Dixon
- Mammalian Neurogenesis, Medical Research Council, Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, London, United Kingdom
| | - Naveenan Navaratnam
- Mammalian Neurogenesis, Medical Research Council, Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, London, United Kingdom
| | - Dominic P Norris
- Mammalian Genetics Unit, Medical Research Council, Harwell, United Kingdom
| | - Vasso Episkopou
- Mammalian Neurogenesis, Medical Research Council, Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, London, United Kingdom
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
7
|
Sikder D, Johnston SA, Kodadek T. Widespread, but Non-identical, Association of Proteasomal 19 and 20 S Proteins with Yeast Chromatin. J Biol Chem 2006; 281:27346-55. [PMID: 16837462 DOI: 10.1074/jbc.m604706200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
It has recently become clear that various aspects of nucleic acid metabolism and the ubiquitin-proteasome pathway intersect in several direct and important ways. To begin to assess the scope of some of these activities in the yeast Saccharomyces cerevisiae, we assessed the physical and functional association of proteasomal proteins from both the 20 S core and 19 S regulatory particles with approximately 6400 yeast genes. Genome-wide chromatin immunoprecipitation analyses revealed that proteasome substituents are associated with the majority of yeast genes. Many of these associations correlated strongly with expression levels and the presence of RNA polymerase II. Although the data support the presence of the intact 26 S proteasome on most genes, several hundred yeast genes were cross-linked to either the 20 or 19 S complex but not both, consistent with some degree of independent function for the proteasomal subcomplexes.
Collapse
Affiliation(s)
- Devanjan Sikder
- Division of Translational Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8573, USA
| | | | | |
Collapse
|
8
|
Volinic JL, Lee JH, Eto K, Kaur V, Thomas MK. Overexpression of the Coactivator Bridge-1 Results in Insulin Deficiency and Diabetes. Mol Endocrinol 2006; 20:167-82. [PMID: 16099819 DOI: 10.1210/me.2005-0127] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
AbstractMultiple forms of heritable diabetes are associated with mutations in transcription factors that regulate insulin gene transcription and the development and maintenance of pancreatic β-cell mass. The coactivator Bridge-1 (PSMD9) regulates the transcriptional activation of glucose-responsive enhancers in the insulin gene in a dose-dependent manner via PDZ domain-mediated interactions with E2A transcription factors. Here we report that the pancreatic overexpression of Bridge-1 in transgenic mice reduces insulin gene expression and results in insulin deficiency and severe diabetes. Dysregulation of Bridge-1 signaling increases pancreatic apoptosis with a reduction in the number of insulin-expressing pancreatic β-cells and an expansion of the complement of glucagon-expressing pancreatic α-cells in pancreatic islets. Increased expression of Bridge-1 alters pancreatic islet, acinar, and ductal architecture and disrupts the boundaries between endocrine and exocrine cellular compartments in young adult but not neonatal mice, suggesting that signals transduced through this coactivator may influence postnatal pancreatic islet morphogenesis. Signals mediated through the coactivator Bridge-1 may regulate both glucose homeostasis and pancreatic β-cell survival. We propose that coactivator dysfunction in pancreatic β-cells can limit insulin production and contribute to the pathogenesis of diabetes.
Collapse
Affiliation(s)
- Jamie L Volinic
- Laboratory of Molecular Endocrinology and Diabetes Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | |
Collapse
|
9
|
Luo M, Koh M, Feng J, Wu Q, Melamed P. Cross talk in hormonally regulated gene transcription through induction of estrogen receptor ubiquitylation. Mol Cell Biol 2005; 25:7386-98. [PMID: 16055746 PMCID: PMC1190261 DOI: 10.1128/mcb.25.16.7386-7398.2005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Estrogen tightly regulates the levels of circulating gonadotropins, but a direct effect of estrogen receptor alpha (ERalpha) on the mammalian LHbeta gene has remained poorly defined. We demonstrate here that ERalpha can associate with the LHbeta promoter through interactions with Sf-1 and Pitx1 without requiring an estrogen response element (ERE). We show that gonadotropin-releasing hormone (GnRH) promotes ERalpha ubiquitylation and also degradation while stimulating expression of ubc4. GnRH also increases the association and lengthens the cycling time of ERalpha on the LHbeta promoter. The ERalpha association and transactivation of the LHbeta gene, as well as ERalpha degradation, are increased following ubc4 overexpression, while the effects of GnRH are abated following ubc4 knockdown. Our results indicate that ERalpha ubiquitylation and subsequent transactivation of the LHbeta gene can be induced by increasing the levels of the E2 enzyme as a result of signaling by an extracellular hormone, thus providing a new form of cross talk in hormonally stimulated regulation of gene expression.
Collapse
Affiliation(s)
- Min Luo
- Functional Genomics Laboratories, Department of Biological Sciences, National University of Singapore
| | | | | | | | | |
Collapse
|
10
|
Wu X, Zhao SH, Yu M, Zhu ZM, Wang H, Wang HL, Li K. Physical mapping of four porcine 20S proteasome core complex genes (PSMA1, PSMA2, PSMA3 and PSMA6). Cytogenet Genome Res 2004; 108:363. [PMID: 15628037 DOI: 10.1159/000081541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- X Wu
- Department of Gene and Cell Engineering, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | | | | | | | | | | | | |
Collapse
|
11
|
Montenegro JM, Perez-Inestrosa E, Collado D, Vida Y, Suau R. A Natural-Product-Inspired Photonic Logic Gate Based on Photoinduced Electron-Transfer-Generated Dual-Channel Fluorescence. Org Lett 2004; 6:2353-5. [PMID: 15228277 DOI: 10.1021/ol0492748] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[structure: see text] Modified 1-benzylisoquinoline N-oxides can operate as molecular logic gates. The combination of dual-channel fluorescence emissions and the preferred interaction for selected chemical inputs allows one to design multifunction and self-reprogrammable molecular logic gates.
Collapse
Affiliation(s)
- Jose-Maria Montenegro
- Department of Organic Chemistry, Faculty of Sciences, University of Malaga, 29071 Malaga, Spain
| | | | | | | | | |
Collapse
|
12
|
Rome S, Meugnier E, Vidal H. The ubiquitin-proteasome pathway is a new partner for the control of insulin signaling. Curr Opin Clin Nutr Metab Care 2004; 7:249-54. [PMID: 15075914 DOI: 10.1097/00075197-200405000-00002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Insulin signaling is a transitory effect that has to be tightly controlled in magnitude and duration in order to maintain cell homeostasis. Recent reports have demonstrated that members of the ubiquitin-proteasome pathway represent new partners that have to be taken into account for the regulation of insulin action. RECENT FINDINGS The protein amounts of the different signaling molecules involved in insulin action are regulated by their rates of synthesis and degradation. The ubiquitin-proteasome system is involved in the internalization of the insulin receptor, in the control of the amount of insulin receptor substrates 1 and 2, and in insulin degradation. Finally, ubiquitination and sumoylation regulate transcription factors and nuclear receptors that mediate insulin-induced gene expression. SUMMARY It is well known from transgenic models that inappropriate levels of signaling molecules strongly affect insulin action. In humans also, several reports have provided evidence of altered levels of key proteins involved in insulin action in pathologies such as type 2 diabetes. The relationship between these abnormalities and the ubiquitin-proteasome pathway has yet to be clarified, but clarifying the role of ubiquitination in insulin action will certainly lead to a better understanding of insulin resistance.
Collapse
Affiliation(s)
- Sophie Rome
- UMR INRA1235-INSERM 449, Mécanismes moléculaires du diabète, Faculté de Médecine Laënnec, 69008 Lyon, France.
| | | | | |
Collapse
|
13
|
Pollice A, Nasti V, Ronca R, Vivo M, Lo Iacono M, Calogero R, Calabrò V, La Mantia G. Functional and physical interaction of the human ARF tumor suppressor with Tat-binding protein-1. J Biol Chem 2003; 279:6345-53. [PMID: 14665636 DOI: 10.1074/jbc.m310957200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The p14ARF tumor suppressor is a key regulator of cellular proliferation, frequently inactivated in human cancer, whose mode of action is currently not completely understood. We report here that the so-called human immunodeficiency virus Tat-binding protein-1 (TBP-1), a component of the 19 S regulatory subunit of the proteasome 26 S, also involved in transcriptional regulation and with a supposed role in the control of cell proliferation, specifically interacts with ARF, both in yeast and mammalian cells. We present evidence that the overexpression of TBP-1 in various cell lines results in a sharp increase of both transfected and endogenous ARF protein levels. Moreover, this effect depends on the binding between the two proteins and, at least in part, is exerted at the post-translational level. We also show that the ARF increase following TBP-1 overexpression results in an increase in p53 protein levels and activity. Finally, our data underline a clear involvement of TBP-1 in the control of cell proliferation.
Collapse
Affiliation(s)
- Alessandra Pollice
- Department of Genetics, General and Molecular Biology, University of Naples Federico II, Via Mezzocannone 8, 80134 Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Moraitis AN, Giguère V. The Co-repressor Hairless Protects RORα Orphan Nuclear Receptor from Proteasome-mediated Degradation. J Biol Chem 2003; 278:52511-8. [PMID: 14570920 DOI: 10.1074/jbc.m308152200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RORalpha is a constitutively active orphan nuclear receptor essential for cerebellar development and is previously shown to regulate genes involved in both myogenesis and adipogenesis. The transcriptional activity of RORalpha is dependent on the presence of a ubiquitous ligand and can be abolished by interaction with Hairless (Hr), a ligand-oblivious nuclear receptor co-repressor. In this study, we first demonstrate that RORalpha is a short-lived protein and that treatment with the MG-132 proteasome inhibitor results in the accumulation of ubiquitin-conjugated receptor and inhibition of transcription. These data show that RORalpha transcriptional activity and degradation are intrinsically linked. In addition, the introduction of inactivation mutations in the ligand-binding pocket and co-regulator-binding surface of RORalpha significantly increases protein stability, indicating that ligand and/or co-regulator binding perpetuates RORalpha degradation. Strikingly, expression of the co-repressor Hr results in the stabilization of RORalpha because of an inhibition of proteasome-mediated degradation of the receptor. Stabilization of RORalpha by Hr requires intact nuclear receptor recognition LXXLL motifs within Hr. Interestingly, the co-repressor nuclear receptor co-repressor (NCoR) has no effect on RORalpha protein turnover. This study shows that stabilization of RORalpha is an essential component of Hr-mediated repression and suggests a molecular mechanism to achieve transcriptional repression by a liganded receptor-co-repressor complex.
Collapse
Affiliation(s)
- Anna N Moraitis
- Molecular Oncology Group, McGill University Health Center and the Department of Biochemistry, McGill University, Montréal, Québec H3A 1A1, Canada
| | | |
Collapse
|
15
|
Yan H, Feng L, LaBean TH, Reif JH. Parallel Molecular Computations of Pairwise Exclusive-Or (XOR) Using DNA “String Tile” Self-Assembly. J Am Chem Soc 2003; 125:14246-7. [PMID: 14624551 DOI: 10.1021/ja036676m] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Self-assembling DNA nanostructures are an efficient means of executing parallel molecular computations. However, previous experimental demonstrations of computations by DNA tile self-assembly only allowed for one set of distinct input to be processed at a time. Here, we report the multibit, parallel computation of pairwise exclusive-or (XOR) using DNA "string tile" self-assembly. A set of DNA tiles encoding the truth table for the XOR logical operation was constructed. Parallel tile self-assembly and ligation led to the formation of reporter DNA strands which encoded both the input and the output of the computations. These reporter strands provided a molecular look-up table containing all possible pairwise XOR calculations up to a certain input size. The computation was readout by sequencing the cloned reporter strands. This is the first experimental demonstration of a parallel computation by DNA tile self-assembly in which a large number of distinct input were simultaneously processed.
Collapse
Affiliation(s)
- Hao Yan
- Department of Computer Science, Duke University, Durham, NC 27708, USA.
| | | | | | | |
Collapse
|
16
|
McBride WH, Iwamoto KS, Syljuasen R, Pervan M, Pajonk F. The role of the ubiquitin/proteasome system in cellular responses to radiation. Oncogene 2003; 22:5755-73. [PMID: 12947384 DOI: 10.1038/sj.onc.1206676] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the last few years, the ubiquitin(Ub)/proteasome system has become increasingly recognized as a controller of numerous physiological processes, including signal transduction, DNA repair, chromosome maintenance, transcriptional activation, cell cycle progression, cell survival, and certain immune cell functions. This is in addition to its more established roles in the removal of misfolded, damaged, and effete proteins. This review examines the role of the Ub/proteasome system in processes underlying the classical effects of irradiation on cells, such as radiation-induced gene expression, DNA repair and chromosome instability, oxidative damage, cell cycle arrest, and cell death. Furthermore, recent evidence suggests that the proteasome is a redox-sensitive target for ionizing radiation and other oxidative stress signals. In other words, the Ub/proteasome system may not simply be a passive player in radiation-induced responses, but may modulate them. The extent of the modulation will be influenced by the functional and structural diversity that is expressed by the system. Cell types vary in the Ub/proteasome structures they possess and the level at which they function, and this changes as they go from the normal to the cancerous condition. Cancer-related functional changes within the Ub/proteasome system may therefore present unique targets for cancer therapy, especially when targeting agents are used in combination with radio- or chemotherapy. The peptide boronic acid compound PS-341, which was designed to inhibit proteasome chymotryptic activity, is in clinical trials for the treatment of solid and hematogenous tumors. It has shown some efficacy on its own and in combination with chemotherapy. Preclinical studies have shown that PS-341 will also potentiate the cytotoxic effects of radiation therapy. In addition, other drugs in common clinical use have been shown to affect proteasome function, and their activities may be valuably reconsidered from this perspective.
Collapse
Affiliation(s)
- William H McBride
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | | | | | | | | |
Collapse
|
17
|
von der Lehr N, Johansson S, Wu S, Bahram F, Castell A, Cetinkaya C, Hydbring P, Weidung I, Nakayama K, Nakayama KI, Söderberg O, Kerppola TK, Larsson LG. The F-box protein Skp2 participates in c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription. Mol Cell 2003; 11:1189-200. [PMID: 12769844 DOI: 10.1016/s1097-2765(03)00193-x] [Citation(s) in RCA: 388] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The transcription regulatory oncoprotein c-Myc controls genes involved in cell growth, apoptosis, and oncogenesis. c-Myc is turned over very quickly through the ubiquitin/proteasome pathway. The proteins involved in this process are still unknown. We have found that Skp2 interacts with c-Myc and participates in its ubiquitylation and degradation. The interaction between Skp2 and c-Myc occurs during the G1 to S phase transition of the cell cycle in normal lymphocytes. Surprisingly, Skp2 enhances c-Myc-induced S phase transition and activates c-Myc target genes in a Myc-dependent manner. Further, Myc-induced transcription was shown to be Skp2 dependent, suggesting interdependence between c-Myc and Skp2 in activation of transcription. Moreover, Myc-dependent association of Skp2, ubiquitylated proteins, and subunits of the proteasome to a c-Myc target promoter was demonstrated in vivo. The results suggest that Skp2 is a transcriptional cofactor for c-Myc and indicates a close relationship between transcription activation and transcription factor ubiquitination.
Collapse
Affiliation(s)
- Natalie von der Lehr
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Zhang Z, Teng CT. Phosphorylation of Kruppel-like factor 5 (KLF5/IKLF) at the CBP interaction region enhances its transactivation function. Nucleic Acids Res 2003; 31:2196-208. [PMID: 12682370 PMCID: PMC153738 DOI: 10.1093/nar/gkg310] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The Kruppel-like factor 5 (KLF5/IKLF) belongs to the Kruppel family of genes which bind GC-rich DNA elements and activate or repress their target genes in a promoter context and/or cellular environment-dependent manner. In the present study, we used the Gal4 fusion assay system to characterize the mechanism of transactivation by KLF5. We demonstrated that the transactivation function of KLF5 was enhanced by CREB-binding protein (CBP) and blocked by wild-type but not mutant E1A. Over expression of CBP reversed the inhibition effect of E1A. With various lengths of KLF5 fusion protein, the transactivation functions were localized to 156 amino acid residues at the N-terminal region and 133 amino acid residues adjacent to the Zn finger motif. We mapped the CBP and KLF5 interaction domain to the N-terminal region of CBP (amino acids 1-232) and the N-terminal region of KLF5 (amino acids 1-238) where one of the activation functions resides. The histone acetyltransferase (HAT) activity of CBP does not play a role in the transactivation function of KLF5 nor does it acetylate KLF5 in vitro. However, phosphorylation is important in KLF5 transactivation activity. Inhibition of protein kinase activity by H7 or calphostin C blocked both full-length and N-terminal fragment (amino acids 1-238) KLF5 activities. Mutation at a potential protein kinase C phosphorylation site within the CBP interaction domain of KLF5 reduces its transactivation function. Furthermore, using the GST pull-down approach, we showed that phosphorylation of KLF5 enhances its interaction with CBP. The results of the present study provide a mechanism for KLF5 transactivation function.
Collapse
Affiliation(s)
- Zhiping Zhang
- Gene Regulation Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
19
|
Kang Z, Pirskanen A, Jänne OA, Palvimo JJ. Involvement of proteasome in the dynamic assembly of the androgen receptor transcription complex. J Biol Chem 2002; 277:48366-71. [PMID: 12376534 DOI: 10.1074/jbc.m209074200] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have used the chromatin immunoprecipitation technique to analyze the formation of the androgen receptor (AR) transcription complex onto prostate-specific antigen (PSA) and kallikrein 2 promoters in LNCaP cells. Our results show that loading of holo-AR and recruitment of RNA polymerase II to the promoters occur transiently. The cyclic nature of AR transcription complex assembly is also illustrated by transient association of coactivators GRIP1 and CREB-binding protein and acetylated histone H3 with the PSA promoter. Treatment of cells with the pure antiandrogen bicalutamide also elicits occupancy of the promoter by AR. In contrast to the agonist-liganded AR, bicalutamide-bound receptor is not capable of recruiting polymerase II, GRIP1, or CREB-binding protein, indicating that the conformation of AR bound to anti-androgen is not competent to assemble transcription complexes. Proteasome is involved in the regulation of AR-dependent transcription, as a proteasome inhibitor, MG-132, prevents the release of the receptor from the PSA promoter, and it also blocks the androgen-induced PSA mRNA accumulation. Furthermore, occupancy of the PSA promoter by the 19 S proteasome subcomplex parallels that by AR. Collectively, formation of the AR transcription complex, encompassing AR, polymerase II, and coactivators, on a regulated promoter is a cyclic process involving proteasome function.
Collapse
Affiliation(s)
- Zhigang Kang
- Biomedicum Helsinki, Institute of Biomedicine (Physiology), University of Helsinki and Helsinki University Central Hospital, Finland
| | | | | | | |
Collapse
|
20
|
Piva R, Gambari R. Transcription factor decoy (TFD) in breast cancer research and treatment. Technol Cancer Res Treat 2002; 1:405-16. [PMID: 12625767 DOI: 10.1177/153303460200100512] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Synthetic oligonucleotides have recently been the object of many investigations aimed to develop sequence-selective compounds able to modulate, either positively or negatively, transcription of eukaryotic and viral genes. Alteration of transcription could be obtained by using synthetic oligonucleotides mimicking target sites of transcription factors (the transcription factor decoy -TFD- approach). This could lead to either inhibition or activation of gene expression, depending on the biological functions of the target transcription factors. Since several transcription factors are involved in tumor onset and progression, this issue is of great interest in order to design anti-tumor compounds. In addition to oligonucleotides, peptide nucleic acids (PNA) can be proposed for the modulation of gene expression. In this respect, double-stranded PNA-DNA chimeras have been shown to be capable to exhibit strong decoy activity. In the case of treatment of breast cancer cells, decoy oligonucleotides mimicking CRE binding sites, promoter region of estrogen receptor alpha gene, NF-kB binding sites have been used with promising results. Therefore, the transcription factor decoy approach could be object of further studies to develop protocols for the treatment of breast cancer. In the future, transcription factors regulating cell cycle, hormone-dependent differentiation, tumor invasion and metastasis are expected to be suitable targets for transcription factor decoy.
Collapse
Affiliation(s)
- Roberta Piva
- Department of Biochemistry and Molecular Biology, Ferrara University, Via Luigi Borsari, 46, 44100 Ferrara, Italy
| | | |
Collapse
|
21
|
The Transcription of Genes. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50031-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|