1
|
Kim HK, Chung KM, Xing J, Kim HY, Youn DH. The Trigeminal Sensory System and Orofacial Pain. Int J Mol Sci 2024; 25:11306. [PMID: 39457088 PMCID: PMC11508441 DOI: 10.3390/ijms252011306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
The trigeminal sensory system consists of the trigeminal nerve, the trigeminal ganglion, and the trigeminal sensory nuclei (the mesencephalic nucleus, the principal nucleus, the spinal trigeminal nucleus, and several smaller nuclei). Various sensory signals carried by the trigeminal nerve from the orofacial area travel into the trigeminal sensory system, where they are processed into integrated sensory information that is relayed to higher sensory brain areas. Thus, knowledge of the trigeminal sensory system is essential for comprehending orofacial pain. This review elucidates the individual nuclei that comprise the trigeminal sensory system and their synaptic transmission. Additionally, it discusses four types of orofacial pain and their relationship to the system. Consequently, this review aims to enhance the understanding of the mechanisms underlying orofacial pain.
Collapse
Affiliation(s)
- Hyung Kyu Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (H.K.K.); (J.X.)
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Ki-myung Chung
- Department of Physiology and Neuroscience, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea;
| | - Juping Xing
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (H.K.K.); (J.X.)
| | - Hee Young Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (H.K.K.); (J.X.)
| | - Dong-ho Youn
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| |
Collapse
|
2
|
Lee CT, Bell M, Bonilla-Quintana M, Rangamani P. Biophysical Modeling of Synaptic Plasticity. Annu Rev Biophys 2024; 53:397-426. [PMID: 38382115 DOI: 10.1146/annurev-biophys-072123-124954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Dendritic spines are small, bulbous compartments that function as postsynaptic sites and undergo intense biochemical and biophysical activity. The role of the myriad signaling pathways that are implicated in synaptic plasticity is well studied. A recent abundance of quantitative experimental data has made the events associated with synaptic plasticity amenable to quantitative biophysical modeling. Spines are also fascinating biophysical computational units because spine geometry, signal transduction, and mechanics work in a complex feedback loop to tune synaptic plasticity. In this sense, ideas from modeling cell motility can inspire us to develop multiscale approaches for predictive modeling of synaptic plasticity. In this article, we review the key steps in postsynaptic plasticity with a specific focus on the impact of spine geometry on signaling, cytoskeleton rearrangement, and membrane mechanics. We summarize the main experimental observations and highlight how theory and computation can aid our understanding of these complex processes.
Collapse
Affiliation(s)
- Christopher T Lee
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA;
| | - Miriam Bell
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA;
| | - Mayte Bonilla-Quintana
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA;
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA;
| |
Collapse
|
3
|
Deep SN, Seelig S, Paul S, Poddar R. Homocysteine-induced sustained GluN2A NMDA receptor stimulation leads to mitochondrial ROS generation and neurotoxicity. J Biol Chem 2024; 300:107253. [PMID: 38569938 PMCID: PMC11081806 DOI: 10.1016/j.jbc.2024.107253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/11/2024] [Accepted: 03/24/2024] [Indexed: 04/05/2024] Open
Abstract
Homocysteine, a sulfur-containing amino acid derived from methionine metabolism, is a known agonist of N-methyl-D-aspartate receptor (NMDAR) and is involved in neurotoxicity. Our previous findings showed that neuronal exposure to elevated homocysteine levels leads to sustained low-level increase in intracellular Ca2+, which is dependent on GluN2A subunit-containing NMDAR (GluN2A-NMDAR) stimulation. These studies further showed a role of ERK MAPK in homocysteine-GluN2A-NMDAR-mediated neuronal death. However, the intracellular mechanisms associated with such sustained GluN2A-NMDAR stimulation and subsequent Ca2+ influx have remained unexplored. Using live-cell imaging with Fluo3-AM and biochemical approaches, we show that homocysteine-GluN2A NMDAR-induced initial Ca2+ influx triggers sequential phosphorylation and subsequent activation of the proline rich tyrosine kinase 2 (Pyk2) and Src family kinases, which in turn phosphorylates GluN2A-Tyr1325 residue of GluN2A-NMDARs to maintain channel activity. The continuity of this cycle of events leads to sustained Ca2+ influx through GluN2A-NMDAR. Our findings also show that lack of activation of the regulatory tyrosine phosphatase STEP, which can limit Pyk2 and Src family kinase activity further contributes to the maintenance of this cycle. Additional studies using live-cell imaging of neurons expressing a redox-sensitive GFP targeted to the mitochondrial matrix show that treatment with homocysteine leads to a progressive increase in mitochondrial reactive oxygen species generation, which is dependent on GluN2A-NMDAR-mediated sustained ERK MAPK activation. This later finding demonstrates a novel role of GluN2A-NMDAR in homocysteine-induced mitochondrial ROS generation and highlights the role of ERK MAPK as the intermediary signaling pathway between GluN2A-NMDAR stimulation and mitochondrial reactive oxygen species generation.
Collapse
Affiliation(s)
- Satya Narayan Deep
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Sarah Seelig
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Surojit Paul
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Ranjana Poddar
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA.
| |
Collapse
|
4
|
Feng Y, Qin J, Lu Y, Wang M, Wang S, Luo F. Suberoylanilide hydroxamic acid attenuates cognitive impairment in offspring caused by maternal surgery during mid-pregnancy. PLoS One 2024; 19:e0295096. [PMID: 38551911 PMCID: PMC10980197 DOI: 10.1371/journal.pone.0295096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/13/2024] [Indexed: 04/01/2024] Open
Abstract
Some pregnant women have to experience non-obstetric surgery during pregnancy under general anesthesia. Our previous studies showed that maternal exposure to sevoflurane, isoflurane, propofol, and ketamine causes cognitive deficits in offspring. Histone acetylation has been implicated in synaptic plasticity. Propofol is commonly used in non-obstetric procedures on pregnant women. Previous studies in our laboratory showed that maternal propofol exposure in pregnancy impairs learning and memory in offspring by disturbing histone acetylation. The present study aims to investigate whether HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) could attenuate learning and memory deficits in offspring caused by maternal surgery under propofol anesthesia during mid-pregnancy. Maternal rats were exposed to propofol or underwent abdominal surgery under propofol anesthesia during middle pregnancy. The learning and memory abilities of the offspring rats were assessed using the Morris water maze (MWM) test. The protein levels of histone deacetylase 2 (HDAC2), phosphorylated cAMP response-element binding (p-CREB), brain-derived neurotrophic factor (BDNF), and phosphorylated tyrosine kinase B (p-TrkB) in the hippocampus of the offspring rats were evaluated by immunofluorescence staining and western blot. Hippocampal neuroapoptosis was detected by TUNEL staining. Our results showed that maternal propofol exposure during middle pregnancy impaired the water-maze learning and memory of the offspring rats, increased the protein level of HDAC2 and reduced the protein levels of p-CREB, BDNF and p-TrkB in the hippocampus of the offspring, and such effects were exacerbated by surgery. SAHA alleviated the cognitive dysfunction and rescued the changes in the protein levels of p-CREB, BDNF and p-TrkB induced by maternal propofol exposure alone or maternal propofol exposure plus surgery. Therefore, SAHA could be a potential and promising agent for treating the learning and memory deficits in offspring caused by maternal nonobstetric surgery under propofol anesthesia.
Collapse
Affiliation(s)
- Yunlin Feng
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jia Qin
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yanfei Lu
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Mengdie Wang
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Shengqiang Wang
- Department of Anesthesiology, Yichun People’s Hospital, Yichun, China
| | - Foquan Luo
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Wang X, Yang J, Huang P, Wang D, Zhang Z, Zhou Z, Liang L, Yao R, Yang L. Cytisine: State of the art in pharmacological activities and pharmacokinetics. Biomed Pharmacother 2024; 171:116210. [PMID: 38271893 DOI: 10.1016/j.biopha.2024.116210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/02/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024] Open
Abstract
Cytisine is a naturally occurring bioactive compound, an alkaloid mainly isolated from legume plants. In recent years, various biological activities of cytisine have been explored, showing certain effects in smoking cessation, reducing drinking behavior, anti-tumor, cardiovascular protection, blood sugar regulation, neuroprotection, osteoporosis prevention and treatment, etc. At the same time, cytisine has the advantages of high efficiency, safety, and low cost, has broad development prospects, and is a drug of great application value. However, a summary of cytisine's biological activities is currently lacking. Therefore, this paper summarizes the pharmacological action, mechanism, and pharmacokinetics of cytisine by referring to numerous databases, and analyzes the new and core targets of cytisine with the help of computer simulation technology, to provide reference for doctors.
Collapse
Affiliation(s)
- Xuezhen Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiaming Yang
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Peifeng Huang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Dong Wang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhibin Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zehua Zhou
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Leiqin Liang
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Rongmei Yao
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Long Yang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Public Health, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
6
|
Chandravanshi LP, Agrawal P, Darwish HW, Trigun SK. Impairments of Spatial Memory and N-methyl-d-aspartate Receptors and Their Postsynaptic Signaling Molecules in the Hippocampus of Developing Rats Induced by As, Pb, and Mn Mixture Exposure. Brain Sci 2023; 13:1715. [PMID: 38137163 PMCID: PMC10742016 DOI: 10.3390/brainsci13121715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Exposure to metal mixtures is recognized as a real-life scenario, needing novel studies that can assess their complex effects on brain development. There is still a significant public health concern associated with chronic low levels of metal exposure. In contrast to other metals, these three metals (As, Pb, and Mn) are commonly found in various environmental and industrial contexts. In addition to additive or synergistic interactions, concurrent exposure to this metal mixture may also have neurotoxic effects that differ from those caused by exposure to single components. The NMDA receptor and several important signaling proteins are involved in learning, memory, and synaptic plasticity in the hippocampus, including CaMKII, postsynaptic density protein-95 (PSD-95), synaptic Ras GTPase activating protein (SynGAP), a negative regulator of Ras-MAPK activity, and CREB. We hypothesized that alterations in the above molecular players may contribute to metal mixture developmental neurotoxicity. Thus, the aim of this study was to investigate the effect of these metals and their mixture at low doses (As 4 mg, Pb 4 mg, and Mn 10 mg/kg bw/p.o) on NMDA receptors and their postsynaptic signaling proteins during developing periods (GD6 to PD59) of the rat brain. Rats exposed to As, Pb, and Mn individually or at the same doses in a triple-metal mixture (MM) showed impairments in learning and memory functions in comparison to the control group rats. Declined protein expressions of NR2A, PSD-95, p- CaMKII, and pCREB were observed in the metal mix-exposed rats, while the expression of SynGAP was found to be enhanced in the hippocampus as compared to the controls on PD60. Thereby, our data suggest that alterations in the NMDA receptor complex and postsynaptic signaling proteins could explain the cognitive dysfunctions caused by metal-mixture-induced developmental neurotoxicity in rats. These outcomes indicate that incessant metal mixture exposure may have detrimental consequences on brain development.
Collapse
Affiliation(s)
- Lalit P. Chandravanshi
- Department of Forensic Science, Sharda University, Greater Noida 201308, India; (L.P.C.); (P.A.)
| | - Prashant Agrawal
- Department of Forensic Science, Sharda University, Greater Noida 201308, India; (L.P.C.); (P.A.)
| | - Hany W. Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Surendra Kumar Trigun
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
7
|
Katano T, Konno K, Takao K, Abe M, Yoshikawa A, Miyakawa T, Sakimura K, Watanabe M, Ito S, Kobayashi T. Brain-enriched guanylate kinase-associated protein, a component of the post-synaptic density protein complexes, contributes to learning and memory. Sci Rep 2023; 13:22027. [PMID: 38086879 PMCID: PMC10716515 DOI: 10.1038/s41598-023-49537-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/09/2023] [Indexed: 12/18/2023] Open
Abstract
Brain-enriched guanylate kinase-associated protein (BEGAIN) is highly enriched in the post-synaptic density (PSD) fraction and was identified in our previous study as a protein associated with neuropathic pain in the spinal dorsal horn. PSD protein complexes containing N-methyl-D-aspartate receptors are known to be involved in neuropathic pain. Since these PSD proteins also participate in learning and memory, BEGAIN is also expected to play a crucial role in this behavior. To verify this, we first examined the distribution of BEGAIN in the brain. We found that BEGAIN was widely distributed in the brain and highly expressed in the dendritic regions of the hippocampus. Moreover, we found that BEGAIN was concentrated in the PSD fraction of the hippocampus. Furthermore, immunoelectron microscopy confirmed that BEGAIN was localized at the asymmetric synapses. Behavioral tests were performed using BEGAIN-knockout (KO) mice to determine the contribution of BEGAIN toward learning and memory. Spatial reference memory and reversal learning in the Barns circular maze test along with contextual fear and cued fear memory in the contextual and cued fear conditioning test were significantly impaired in BEGAIN-KO mice compared to with those in wild-type mice. Thus, this study reveals that BEGAIN is a component of the post-synaptic compartment of excitatory synapses involved in learning and memory.
Collapse
Affiliation(s)
- Tayo Katano
- Department of Medical Chemistry, Kansai Medical University, Hirakata, Japan.
| | - Kohtarou Konno
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Keizo Takao
- Section of Behavior Patterns, National Institute of Physiological Sciences, NINS, Okazaki, Japan
- Department of Behavioral Physiology, Faculty of Medicine, Life Science Research Center, University of Toyama, Toyama, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akari Yoshikawa
- Department of Medical Chemistry, Kansai Medical University, Hirakata, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Seiji Ito
- Department of Medical Chemistry, Kansai Medical University, Hirakata, Japan
- Department of Anesthesiology, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Takuya Kobayashi
- Department of Medical Chemistry, Kansai Medical University, Hirakata, Japan
| |
Collapse
|
8
|
Zeng X, Cheung SKK, Shi M, Or PMY, Li Z, Liu JYH, Ho WLH, Liu T, Lu K, Rudd JA, Wang Y, Chan AM. Astrocyte-specific knockout of YKL-40/Chi3l1 reduces Aβ burden and restores memory functions in 5xFAD mice. J Neuroinflammation 2023; 20:290. [PMID: 38042775 PMCID: PMC10693711 DOI: 10.1186/s12974-023-02970-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023] Open
Abstract
Glial cell-mediated neuroinflammation and neuronal attrition are highly correlated with cognitive impairment in Alzheimer's disease. YKL-40 is a secreted astrocytic glycoprotein that serves as a diagnostic biomarker of Alzheimer's disease. High levels of YKL-40 are associated with either advanced Alzheimer's disease or the normal aging process. However, the functional role of YKL-40 in Alzheimer's disease development has not been firmly established. In a 5xFAD mouse model of Alzheimer's disease, we observed increased YKL-40 expression in the cerebrospinal fluid of 7-month-old mice and was correlated with activated astrocytes. In primary astrocytes, Aβ1-42 upregulated YKL-40 in a dose-dependent manner and was correlated with PI3-K signaling pathway activation. Furthermore, primary neurons treated with YKL-40 and/or Aβ1-42 resulted in significant synaptic degeneration, reduced dendritic complexity, and impaired electrical parameters. More importantly, astrocyte-specific knockout of YKL-40 over a period of 7 days in symptomatic 5xFAD mice could effectively reduce amyloid plaque deposition in multiple brain regions. This was also associated with attenuated glial activation, reduced neuronal attrition, and restored memory function. These biological phenotypes could be explained by enhanced uptake of Aβ1-42 peptides, increased rate of Aβ1-42 degradation and acidification of lysosomal compartment in YKL-40 knockout astrocytes. Our results provide new insights into the role of YKL-40 in Alzheimer's disease pathogenesis and demonstrate the potential of targeting this soluble biomarker to alleviate cognitive defects in symptomatic Alzheimer's disease patients.
Collapse
Affiliation(s)
- Xiaoyan Zeng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, Hong Kong SAR, China
| | - Stanley K K Cheung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, Hong Kong SAR, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Mengqi Shi
- School of Life Science and Technology, Weifang Medical University, Shandong, China
| | - Penelope M Y Or
- School of Biomedical Sciences, The Chinese University of Hong Kong, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, Hong Kong SAR, China
| | - Zhining Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, Hong Kong SAR, China
| | - Julia Y H Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, Hong Kong SAR, China
| | - Wayne L H Ho
- School of Biomedical Sciences, The Chinese University of Hong Kong, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, Hong Kong SAR, China
| | - Tian Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, Hong Kong SAR, China
| | - Kun Lu
- School of Life Science and Technology, Weifang Medical University, Shandong, China
| | - John A Rudd
- School of Biomedical Sciences, The Chinese University of Hong Kong, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, Hong Kong SAR, China
| | - Yubing Wang
- School of Life Science and Technology, Weifang Medical University, Shandong, China.
| | - Andrew M Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, Hong Kong SAR, China.
| |
Collapse
|
9
|
Chojnacka M, Beroun A, Magnowska M, Stawikowska A, Cysewski D, Milek J, Dziembowska M, Kuzniewska B. Impaired synaptic incorporation of AMPA receptors in a mouse model of fragile X syndrome. Front Mol Neurosci 2023; 16:1258615. [PMID: 38025260 PMCID: PMC10665894 DOI: 10.3389/fnmol.2023.1258615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common monogenetic cause of inherited intellectual disability and autism in humans. One of the well-characterized molecular phenotypes of Fmr1 KO mice, a model of FXS, is increased translation of synaptic proteins. Although this upregulation stabilizes in adulthood, abnormalities during the critical period of plasticity have long-term effects on circuit formation and synaptic properties. Using high-resolution quantitative proteomics of synaptoneurosomes isolated from the adult, developed brains of Fmr1 KO mice, we show a differential abundance of proteins regulating the postsynaptic receptor activity of glutamatergic synapses. We investigated the AMPA receptor composition and shuttling in adult Fmr1 KO and WT mice using a variety of complementary experimental strategies such as surface protein crosslinking, immunostaining of surface receptors, and electrophysiology. We discovered that the activity-dependent synaptic delivery of AMPARs is impaired in adult Fmr1 KO mice. Furthermore, we show that Fmr1 KO synaptic AMPARs contain more GluA2 subunits that can be interpreted as a switch in the synaptic AMPAR subtype toward an increased number of Ca2+-impermeable receptors in adult Fmr1 KO synapses.
Collapse
Affiliation(s)
- Magdalena Chojnacka
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Anna Beroun
- Laboratory of Neuronal Plasticity, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Marta Magnowska
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Aleksandra Stawikowska
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Dominik Cysewski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Jacek Milek
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Magdalena Dziembowska
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Bozena Kuzniewska
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
10
|
Sun J, Cong Q, Sun T, Xi S, Liu Y, Zeng R, Wang J, Zhang W, Gao J, Qian J, Qin S. Prefrontal cortex-specific Dcc deletion induces schizophrenia-related behavioral phenotypes and fail to be rescued by olanzapine treatment. Eur J Pharmacol 2023; 956:175940. [PMID: 37541362 DOI: 10.1016/j.ejphar.2023.175940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 07/09/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Multiple genome studies have discovered that variation in deleted in colorectal carcinoma (Dcc) at transcription and translation level were associated with the occurrences of psychiatric disorders. Yet, little is known about the function of Dcc in schizophrenia (SCZ)-related behavioral abnormalities and the efficacy of antipsychotic drugs in vivo. Here, we used an animal model of prefrontal cortex-specific knockdown (KD) of Dcc in adult C57BL/6 mice to study the attention deficits and impaired locomotor activity. Our results supported a critical role of Dcc deletion in SCZ-related behaviors. Notably, olanzapine rescued the SCZ-related behaviors in the MK801-treated mice but not in the cortex-specific Dcc KD mice, indicating that Dcc play a critical in the mechanism of antipsychotic effects of olanzapine. Knockdown of Dcc in prefrontal cortex results in glutamatergic dysfunction, including defects in glutamine synthetase and postsynaptic maturation. As one of the major risk factors of the degree of antipsychotic response, Dcc deletion-induced glutamatergic dysfunction may be involved in the underlying mechanism of treatment resistance of olanzapine. Our findings identified Dcc deletion-mediated SCZ-related behavioral defects, which serve as a valuable animal model for study of SCZ and amenable to targeted investigations in mechanistic hypotheses of the mechanism underlying glutamatergic dysfunction-induced antipsychotic treatment resistance.
Collapse
Affiliation(s)
- Jing Sun
- Neurobiology & Mitochondrial Key Laboratory, Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Qijie Cong
- Neurobiology & Mitochondrial Key Laboratory, Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Tingkai Sun
- Neurobiology & Mitochondrial Key Laboratory, Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Siyu Xi
- Neurobiology & Mitochondrial Key Laboratory, Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yunxi Liu
- Neurobiology & Mitochondrial Key Laboratory, Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Rongsen Zeng
- Neurobiology & Mitochondrial Key Laboratory, Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jia Wang
- School of Medicine, Jiangsu University, Zhenjiang, 212013, PR China
| | - Weining Zhang
- School of Medicine, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jing Gao
- Neurobiology & Mitochondrial Key Laboratory, Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jinjun Qian
- Department of Neurology, The Fourth People's Hospital of Zhenjiang, Zhenjiang, 212013, PR China.
| | - Shengying Qin
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200030, PR China.
| |
Collapse
|
11
|
Cho H, Yoo T, Moon H, Kang H, Yang Y, Kang M, Yang E, Lee D, Hwang D, Kim H, Kim D, Kim JY, Kim E. Adnp-mutant mice with cognitive inflexibility, CaMKIIα hyperactivity, and synaptic plasticity deficits. Mol Psychiatry 2023; 28:3548-3562. [PMID: 37365244 PMCID: PMC10618100 DOI: 10.1038/s41380-023-02129-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/14/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
ADNP syndrome, involving the ADNP transcription factor of the SWI/SNF chromatin-remodeling complex, is characterized by developmental delay, intellectual disability, and autism spectrum disorders (ASD). Although Adnp-haploinsufficient (Adnp-HT) mice display various phenotypic deficits, whether these mice display abnormal synaptic functions remain poorly understood. Here, we report synaptic plasticity deficits associated with cognitive inflexibility and CaMKIIα hyperactivity in Adnp-HT mice. These mice show impaired and inflexible contextual learning and memory, additional to social deficits, long after the juvenile-stage decrease of ADNP protein levels to ~10% of the newborn level. The adult Adnp-HT hippocampus shows hyperphosphorylated CaMKIIα and its substrates, including SynGAP1, and excessive long-term potentiation that is normalized by CaMKIIα inhibition. Therefore, Adnp haploinsufficiency in mice leads to cognitive inflexibility involving CaMKIIα hyperphosphorylation and excessive LTP in adults long after its marked expressional decrease in juveniles.
Collapse
Affiliation(s)
- Heejin Cho
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Taesun Yoo
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Heera Moon
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Hyojin Kang
- Division of National Supercomputing, Korea Institute of Science and Technology Information, Daejeon, 34141, Korea
| | - Yeji Yang
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, 162 Yeongudanjiro, Ochang, Cheongju, Chungbuk, 28119, Korea
| | - MinSoung Kang
- Therapeutics & Biotechnology Division, Drug discovery platform research center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Korea
| | - Esther Yang
- Department of Anatomy and BK21 Graduate Program, Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Dowoon Lee
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Daehee Hwang
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Hyun Kim
- Department of Anatomy and BK21 Graduate Program, Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Doyoun Kim
- Therapeutics & Biotechnology Division, Drug discovery platform research center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Korea
- Medicinal Chemistry and Pharmacology, Korea University of Science and Technology (UST), Daejeon, 34113, Korea
| | - Jin Young Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, 162 Yeongudanjiro, Ochang, Cheongju, Chungbuk, 28119, Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea.
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea.
| |
Collapse
|
12
|
Werner B, Yadav S. Phosphoregulation of the septin cytoskeleton in neuronal development and disease. Cytoskeleton (Hoboken) 2023; 80:275-289. [PMID: 36127729 PMCID: PMC10025170 DOI: 10.1002/cm.21728] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/13/2022] [Accepted: 09/12/2022] [Indexed: 11/06/2022]
Abstract
Septins are highly conserved GTP-binding proteins that oligomerize and form higher order structures. The septin cytoskeleton plays an important role in cellular organization, intracellular transport, and cytokinesis. Kinase-mediated phosphorylation of septins regulates various aspects of their function, localization, and dynamics. Septins are enriched in the mammalian nervous system where they contribute to neurodevelopment and neuronal function. Emerging research has implicated aberrant changes in septin cytoskeleton in several human diseases. The mechanisms through which aberrant phosphorylation by kinases contributes to septin dysfunction in neurological disorders are poorly understood and represent an important question for future research with therapeutic implications. This review summarizes the current state of knowledge of the diversity of kinases that interact with and phosphorylate mammalian septins, delineates how phosphoregulation impacts septin dynamics, and describes how aberrant septin phosphorylation contributes to neurological disorders.
Collapse
Affiliation(s)
- Bailey Werner
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Smita Yadav
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| |
Collapse
|
13
|
Malakasis N, Chavlis S, Poirazi P. Synaptic turnover promotes efficient learning in bio-realistic spiking neural networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541722. [PMID: 37292929 PMCID: PMC10245885 DOI: 10.1101/2023.05.22.541722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
While artificial machine learning systems achieve superhuman performance in specific tasks such as language processing, image and video recognition, they do so use extremely large datasets and huge amounts of power. On the other hand, the brain remains superior in several cognitively challenging tasks while operating with the energy of a small lightbulb. We use a biologically constrained spiking neural network model to explore how the neural tissue achieves such high efficiency and assess its learning capacity on discrimination tasks. We found that synaptic turnover, a form of structural plasticity, which is the ability of the brain to form and eliminate synapses continuously, increases both the speed and the performance of our network on all tasks tested. Moreover, it allows accurate learning using a smaller number of examples. Importantly, these improvements are most significant under conditions of resource scarcity, such as when the number of trainable parameters is halved and when the task difficulty is increased. Our findings provide new insights into the mechanisms that underlie efficient learning in the brain and can inspire the development of more efficient and flexible machine learning algorithms.
Collapse
Affiliation(s)
- Nikos Malakasis
- School of Medicine, University of Crete, Heraklion 70013, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| | - Spyridon Chavlis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| | - Panayiota Poirazi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| |
Collapse
|
14
|
Zhang B, Wang ML, Huang SM, Cui Y, Li Y. Kaixin-San improves Aβ-induced synaptic plasticity inhibition by affecting the expression of regulation proteins associated with postsynaptic AMPAR expression. Front Pharmacol 2023; 14:1079400. [PMID: 36865910 PMCID: PMC9970989 DOI: 10.3389/fphar.2023.1079400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/26/2023] [Indexed: 02/16/2023] Open
Abstract
Objective: To explore the mechanism underlying Kaixin-San (KXS) regulation of postsynaptic AMPA receptor (AMPAR) expression to mitigate toxic effects of the amyloid-β protein (Aβ). Methods: An animal model was established via intracerebroventricular injection of Aβ1-42. The Morris water maze test was conducted to evaluate learning and memory, while electrophysiological recording was conducted to assess the hippocampal long-term potentiation (LTP). Western blotting was used to detect expression levels of the hippocampal postsynaptic AMPAR and its accessory proteins. Results: The time spent to find the platform was significantly prolonged, the number of mice crossing the target site was significantly reduced, and the maintenance of LTP was inhibited in the Aβ group than in the control group. In the Aβ/KXS group, the time taken to find the platform was significantly shortened and the number of mice crossing the target site was significantly increased than in the Aβ group; furthermore, the inhibition of LTP induced by Aβ was reversed. The expression of GluR1, GluR2, ABP, GRIP1, NSF, and pGluR1-Ser845 was upregulated, while that of pGluR2-Ser880 and PKC δ was downregulated in the Aβ/KXS group. Conclusion: The increased expression of ABP, GRIP1, NSF, and pGluR1-Ser845 and the decreased expression of pGluR2-Ser880 and PKC δ under the influence of KXS, followed by the upregulation of postsynaptic GluR1 and GluR2, alleviated the inhibition of LTP induced by Aβ. Ultimately, the memory function of model animals was improved by KXS. Our study provides novel insights into the mechanism underlying KXS mitigation of Aβ-induced synaptic plasticity inhibition and memory impairment by altering the levels of accessory proteins associated with AMPAR expression.
Collapse
Affiliation(s)
- Bo Zhang
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Meng-Lu Wang
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shu-Ming Huang
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yu Cui
- Department of Veterinary Medicine, Institute of tropical agriculture and forestry, Hainan University, Haikou, China,*Correspondence: Yu Cui, ; Yan Li,
| | - Yan Li
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou, China,*Correspondence: Yu Cui, ; Yan Li,
| |
Collapse
|
15
|
Paschou M, Liaropoulou D, Kalaitzaki V, Efthimiopoulos S, Papazafiri P. Knockdown of Amyloid Precursor Protein Increases Ion Channel Expression and Alters Ca 2+ Signaling Pathways. Int J Mol Sci 2023; 24:ijms24032302. [PMID: 36768625 PMCID: PMC9917207 DOI: 10.3390/ijms24032302] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Although the physiological role of the full-length Amyloid Precursor Protein (APP) and its proteolytic fragments remains unclear, they are definitively crucial for normal synaptic function. Herein, we report that the downregulation of APP in SH-SY5Y cells, using short hairpin RNA (shRNA), alters the expression pattern of several ion channels and signaling proteins that are involved in synaptic and Ca2+ signaling. Specifically, the levels of GluR2 and GluR4 subunits of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid glutamate receptors (AMPAR) were significantly increased with APP knockdown. Similarly, the expression of the majority of endoplasmic reticulum (ER) residing proteins, such as the ER Ca2+ channels IP3R (Inositol 1,4,5-triphosphate Receptor) and RyR (Ryanodine Receptor), the Ca2+ pump SERCA2 (Sarco/endoplasmic reticulum Ca2+ ATPase 2) and the ER Ca2+ sensor STIM1 (Stromal Interaction Molecule 1) was upregulated. A shift towards the upregulation of p-AKT, p-PP2A, and p-CaMKIV and the downregulation of p-GSK, p-ERK1/2, p-CaMKII, and p-CREB was observed, interconnecting Ca2+ signal transduction from the plasma membrane and ER to the nucleus. Interestingly, we detected reduced responses to several physiological stimuli, with the most prominent being the ineffectiveness of SH-SY5Y/APP- cells to mobilize Ca2+ from the ER upon carbachol-induced Ca2+ release through IP3Rs and RyRs. Our data further support an emerging yet perplexing role of APP within a functional molecular network of membrane and cytoplasmic proteins implicated in Ca2+ signaling.
Collapse
Affiliation(s)
- Maria Paschou
- Division of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Danai Liaropoulou
- Division of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Vasileia Kalaitzaki
- Division of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
- Institute of Laboratory Animal Science, University of Zurich, 8952 Schlieren, Switzerland
| | - Spiros Efthimiopoulos
- Division of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
- Correspondence: (S.E.); (P.P.)
| | - Panagiota Papazafiri
- Division of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
- Correspondence: (S.E.); (P.P.)
| |
Collapse
|
16
|
Bell MK, Rangamani P. Crosstalk between biochemical signalling network architecture and trafficking governs AMPAR dynamics in synaptic plasticity. J Physiol 2023. [PMID: 36620889 DOI: 10.1113/jp284029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/03/2023] [Indexed: 01/10/2023] Open
Abstract
Synaptic plasticity involves modification of both biochemical and structural components of neurons. Many studies have revealed that the change in the number density of the glutamatergic receptor AMPAR at the synapse is proportional to synaptic weight update; an increase in AMPAR corresponds to strengthening of synapses while a decrease in AMPAR density weakens synaptic connections. The dynamics of AMPAR are thought to be regulated by upstream signalling, primarily the calcium-CaMKII pathway, trafficking to and from the synapse, and influx from extrasynaptic sources. Previous work in the field of deterministic modelling of CaMKII dynamics has assumed bistable kinetics, while experiments and rule-based modelling have revealed that CaMKII dynamics can be either monostable or ultrasensitive. This raises the following question: how does the choice of model assumptions involving CaMKII dynamics influence AMPAR dynamics at the synapse? To answer this question, we have developed a set of models using compartmental ordinary differential equations to systematically investigate contributions of different signalling and trafficking variations, along with their coupled effects, on AMPAR dynamics at the synaptic site. We find that the properties of the model including network architecture describing different stability features of CaMKII and parameters that capture the endocytosis and exocytosis of AMPAR significantly affect the integration of fast upstream species by slower downstream species. Furthermore, we predict that the model outcome, as determined by bound AMPAR at the synaptic site, depends on (1) the choice of signalling model (bistable CaMKII or monostable CaMKII dynamics), (2) trafficking versus influx contributions and (3) frequency of stimulus. KEY POINTS: The density of AMPA receptors (AMPARs) at the postsynaptic density of the synapse provides a readout of synaptic plasticity, which involves crosstalk between complex biochemical signalling networks including CaMKII dynamics and trafficking pathways including exocytosis and endocytosis. Here we build a model that integrates CaMKII dynamics and AMPAR trafficking to explore this crosstalk. We compare different models of CaMKII that result in monostable or bistable kinetics and their impact on AMPAR dynamics. Our results show that AMPAR density depends on the coupling between aspects of biochemical signalling and trafficking. Specifically, assumptions regarding CaMKII dynamics and its stability features can alter AMPAR density at the synapse. Our model also predicts that the kinetics of trafficking versus influx of AMPAR from the extrasynaptic space can further impact AMPAR density. Thus, the contributions of both signalling and trafficking should be considered in computational models.
Collapse
Affiliation(s)
- Miriam K Bell
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
17
|
Qi C, Luo LD, Feng I, Ma S. Molecular mechanisms of synaptogenesis. Front Synaptic Neurosci 2022; 14:939793. [PMID: 36176941 PMCID: PMC9513053 DOI: 10.3389/fnsyn.2022.939793] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022] Open
Abstract
Synapses are the basic units for information processing and storage in the nervous system. It is only when the synaptic connection is established, that it becomes meaningful to discuss the structure and function of a circuit. In humans, our unparalleled cognitive abilities are correlated with an increase in the number of synapses. Additionally, genes involved in synaptogenesis are also frequently associated with neurological or psychiatric disorders, suggesting a relationship between synaptogenesis and brain physiology and pathology. Thus, understanding the molecular mechanisms of synaptogenesis is the key to the mystery of circuit assembly and neural computation. Furthermore, it would provide therapeutic insights for the treatment of neurological and psychiatric disorders. Multiple molecular events must be precisely coordinated to generate a synapse. To understand the molecular mechanisms underlying synaptogenesis, we need to know the molecular components of synapses, how these molecular components are held together, and how the molecular networks are refined in response to neural activity to generate new synapses. Thanks to the intensive investigations in this field, our understanding of the process of synaptogenesis has progressed significantly. Here, we will review the molecular mechanisms of synaptogenesis by going over the studies on the identification of molecular components in synapses and their functions in synaptogenesis, how cell adhesion molecules connect these synaptic molecules together, and how neural activity mobilizes these molecules to generate new synapses. Finally, we will summarize the human-specific regulatory mechanisms in synaptogenesis and results from human genetics studies on synaptogenesis and brain disorders.
Collapse
Affiliation(s)
- Cai Qi
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
- *Correspondence: Cai Qi,
| | - Li-Da Luo
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
- Department of Cellular and Molecular Physiology, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, United States
| | - Irena Feng
- Boston University School of Medicine, Boston, MA, United States
| | - Shaojie Ma
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
18
|
Beamish SB, Gross KS, Anderson MM, Helmstetter FJ, Frick KM. Sex differences in training-induced activity of the ubiquitin proteasome system in the dorsal hippocampus and medial prefrontal cortex of male and female mice. Learn Mem 2022; 29:302-311. [PMID: 36206392 PMCID: PMC9488027 DOI: 10.1101/lm.053492.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/08/2022] [Indexed: 11/25/2022]
Abstract
The ubiquitin proteasome system (UPS) is a primary mechanism through which proteins are degraded in cells. UPS activity in the dorsal hippocampus (DH) is necessary for multiple types of memory, including object memory, in male rodents. However, sex differences in DH UPS activation after fear conditioning suggest that other forms of learning may also differentially regulate DH UPS activity in males and females. Here, we examined markers of UPS activity in the synaptic and cytoplasmic fractions of DH and medial prefrontal cortex (mPFC) tissue collected 1 h following object training. In males, training increased phosphorylation of proteasomal subunit Rpt6, 20S proteasome activity, and the amount of PSD-95 in the DH synaptic fraction, as well as proteasome activity in the mPFC synaptic fraction. In females, training did not affect measures of UPS or synaptic activity in the DH synaptic fraction or in either mPFC fraction but increased Rpt6 phosphorylation in the DH cytoplasmic fraction. Overall, training-induced UPS activity was greater in males than in females, greater in the DH than in the mPFC, and greater in synaptic fractions than in cytosol. These data suggest that object training drives sex-specific alterations in UPS activity across brain regions and subcellular compartments important for memory.
Collapse
Affiliation(s)
- Sarah B Beamish
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Kellie S Gross
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - McKenna M Anderson
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Fred J Helmstetter
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| |
Collapse
|
19
|
Kwon KM, Pak JH, Jeon CJ. Immunocytochemical localization of the AMPA glutamate receptor subtype GluR2/3 in the squid optic lobe. Acta Histochem 2022; 124:151941. [PMID: 35963117 DOI: 10.1016/j.acthis.2022.151941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022]
Abstract
As a major excitatory neurotransmitter in the cephalopod visual system, glutamate signaling is facilitated by ionotropic receptors, such as α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (AMPAR). In cephalopods with large and well-developed brains, the optic lobes (OL) mainly process visual inputs and are involved in learning and memory. Although the presence of AMPAR in squid OL has been reported, the organization of specific AMPAR-containing neurons remains unknown. This study aimed to investigate the immunocytochemical localization of the AMPA glutamate receptor subtype 2/3-immunoreactive (GluR2/3-IR) neurons in the OL of Pacific flying squid (Tordarodes pacificus). Morphologically diverse GluR2/3-IR neurons were predominantly located in the tangential zone of the medulla. Medium-to-large GluR2/3-IR neurons were also detected. The distribution patterns and cell morphologies of calcium-binding protein (CBP)-IR neurons, specifically calbindin-D28K (CB)-, calretinin (CR)-, and parvalbumin (PV)-IR neurons, were similar to those of GluR2/3-IR neurons. However, two-color immunofluorescence revealed that GluR2/3-IR neurons did not colocalize with the CBP-IR neurons. Furthermore, the specific localizations and diverse types of GluR2/3-IR neurons that do not express CB, CR, or PV in squid OL were determined. These findings further contribute to the existing data on glutamatergic visual systems and provide new insights for understanding the visual processing mechanisms in cephalopods.
Collapse
Affiliation(s)
- Kyung-Min Kwon
- Department of Biology, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Republic of Korea; Research Institute for Dok-do and Ulleung-do Island, Department of Biology, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jae-Hong Pak
- Research Institute for Dok-do and Ulleung-do Island, Department of Biology, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Chang-Jin Jeon
- Department of Biology, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Republic of Korea; Research Institute for Dok-do and Ulleung-do Island, Department of Biology, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
20
|
Yoshida M, Hasegawa S, Taniguchi M, Mouri A, Suzuki C, Yoshimi A, Mamiya T, Ozaki N, Noda Y. Memantine ameliorates the impairment of social behaviors induced by a single social defeat stress as juveniles. Neuropharmacology 2022; 217:109208. [PMID: 35926580 DOI: 10.1016/j.neuropharm.2022.109208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 11/15/2022]
Abstract
Clinically, juveniles are more sensitive to stress than adults, and exposure to stress as juveniles prolongs psychiatric symptoms and causes treatment resistance. However, the efficacy of antidepressants for juveniles with psychiatric disorders is unknown. In the present study, we investigated whether the expression or development of impaired social behavior was attenuated by memantine, a NMDA receptor antagonist. In addition, we clarified the molecular mechanisms related to intracellular signal transduction through NMDA receptors and the ameliorating effect of memantine in mice with impaired social behavior. Acute administration of memantine before the social interaction test, but not before exposure to social defeat stress, attenuated social behavioral impairment. A single social defeat stress increased the phosphorylation of NMDA receptor subunit GluN2A and extracellular-signal-related kinase 1/2 (ERK1/2). Memantine inhibited the increase of phosphorylated GluN2A and ERK1/2 resulting from social interaction behavior. In both GluN2A deficient and pharmacological blockaded mice, social behavioral impairment was not observed in the social interaction test through regulation of ERK1/2 phosphorylation. These findings suggest that memantine ameliorates social behavioral impairment in mice exposed to a single social defeat stress as juveniles by regulating the NMDA receptor and subsequent ERK1/2 signaling activation. Memantine may constitute a novel therapeutic drug for stress-related psychiatric disorders in juveniles with adverse juvenile experiences.
Collapse
Affiliation(s)
- Mikio Yoshida
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, Japan
| | - Sho Hasegawa
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, Japan
| | - Masayuki Taniguchi
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, Japan
| | - Akihiro Mouri
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, Japan
| | - Chiharu Suzuki
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, Japan
| | - Akira Yoshimi
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, Japan
| | - Takayoshi Mamiya
- Department of Chemical Pharmacology, Graduate School of Pharmacy, Meijo University, Nagoya, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukihiro Noda
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, Japan.
| |
Collapse
|
21
|
Vasavda C, Semenza ER, Liew J, Kothari R, Dhindsa RS, Shanmukha S, Lin A, Tokhunts R, Ricco C, Snowman AM, Albacarys L, Pastore F, Ripoli C, Grassi C, Barone E, Kornberg MD, Dong X, Paul BD, Snyder SH. Biliverdin reductase bridges focal adhesion kinase to Src to modulate synaptic signaling. Sci Signal 2022; 15:eabh3066. [PMID: 35536885 PMCID: PMC9281001 DOI: 10.1126/scisignal.abh3066] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Synapses connect discrete neurons into vast networks that send, receive, and encode diverse forms of information. Synaptic function and plasticity, the neuronal process of adapting to diverse and variable inputs, depend on the dynamic nature of synaptic molecular components, which is mediated in part by cell adhesion signaling pathways. Here, we found that the enzyme biliverdin reductase (BVR) physically links together key focal adhesion signaling molecules at the synapse. BVR-null (BVR-/-) mice exhibited substantial deficits in learning and memory on neurocognitive tests, and hippocampal slices in which BVR was postsynaptically depleted showed deficits in electrophysiological responses to stimuli. RNA sequencing, biochemistry, and pathway analyses suggested that these deficits were mediated through the loss of focal adhesion signaling at both the transcriptional and biochemical level in the hippocampus. Independently of its catalytic function, BVR acted as a bridge between the primary focal adhesion signaling kinases FAK and Pyk2 and the effector kinase Src. Without BVR, FAK and Pyk2 did not bind to and stimulate Src, which then did not phosphorylate the N-methyl-d-aspartate (NMDA) receptor, a critical posttranslational modification for synaptic plasticity. Src itself is a molecular hub on which many signaling pathways converge to stimulate NMDAR-mediated neurotransmission, thus positioning BVR at a prominent intersection of synaptic signaling.
Collapse
Affiliation(s)
- Chirag Vasavda
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Evan R. Semenza
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143, USA
| | - Jason Liew
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ruchita Kothari
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ryan S. Dhindsa
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
| | - Shruthi Shanmukha
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Anthony Lin
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Robert Tokhunts
- Department of Anesthesiology, Dartmouth–Hitchcock Medical Center, Lebanon, NH 03766, USA
| | - Cristina Ricco
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Adele M. Snowman
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lauren Albacarys
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Francesco Pastore
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Cristian Ripoli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome 00168, Italy
- Preclinical Neuroscience Lab, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome 00168, Italy
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome 00168, Italy
- Preclinical Neuroscience Lab, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome 00168, Italy
| | - Eugenio Barone
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Rome 00185, Italy
| | - Michael D. Kornberg
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bindu D. Paul
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Solomon H. Snyder
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
22
|
Ortega-de San Luis C, Ryan TJ. Understanding the physical basis of memory: Molecular mechanisms of the engram. J Biol Chem 2022; 298:101866. [PMID: 35346687 PMCID: PMC9065729 DOI: 10.1016/j.jbc.2022.101866] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 12/18/2022] Open
Abstract
Memory, defined as the storage and use of learned information in the brain, is necessary to modulate behavior and critical for animals to adapt to their environments and survive. Despite being a cornerstone of brain function, questions surrounding the molecular and cellular mechanisms of how information is encoded, stored, and recalled remain largely unanswered. One widely held theory is that an engram is formed by a group of neurons that are active during learning, which undergoes biochemical and physical changes to store information in a stable state, and that are later reactivated during recall of the memory. In the past decade, the development of engram labeling methodologies has proven useful to investigate the biology of memory at the molecular and cellular levels. Engram technology allows the study of individual memories associated with particular experiences and their evolution over time, with enough experimental resolution to discriminate between different memory processes: learning (encoding), consolidation (the passage from short-term to long-term memories), and storage (the maintenance of memory in the brain). Here, we review the current understanding of memory formation at a molecular and cellular level by focusing on insights provided using engram technology.
Collapse
Affiliation(s)
- Clara Ortega-de San Luis
- School of Biochemistry and Immunology and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
| | - Tomás J Ryan
- School of Biochemistry and Immunology and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland; Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia; Child & Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario, Canada.
| |
Collapse
|
23
|
Dolgetta A, Johnson M, Fruitman K, Siegel L, Zhou Y, McEwen BS, Kreek MJ, Milner TA. Sex and chronic stress alter the distribution of glutamate receptors within rat hippocampal CA3 pyramidal cells following oxycodone conditioned place preference. Neurobiol Stress 2022; 17:100431. [PMID: 35535260 PMCID: PMC9076964 DOI: 10.1016/j.ynstr.2022.100431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/02/2022] [Accepted: 01/19/2022] [Indexed: 12/01/2022] Open
Abstract
Glutamate receptors have a key role in the neurobiology of opioid addiction. Using electron microscopic immunocytochemical methods, this project elucidates how sex and chronic immobilization stress (CIS) impact the redistribution of GluN1 and GluA1 within rat hippocampal CA3 pyramidal cells following oxycodone (Oxy) conditioned place preference (CPP). Four groups of female and male Sprague-Dawley rats subjected to CPP were used: Saline- (Sal) and Oxy-injected (3 mg/kg, I.P.) naïve rats; and Sal- and Oxy-injected CIS rats. GluN1: In both naive and CIS rats, Sal-females compared to Sal-males had elevated cytoplasmic and total dendritic GluN1. Following Oxy CPP, near plasmalemmal, cytoplasmic, and total GluN1 decreased in CA3 dendrites of unstressed females suggesting reduced pools of GluN1 available for ligand binding. Following CIS, Oxy-males (which did not acquire CPP) had increased GluN1 in all compartments of dendrites and spines of CA3 neurons. GluA1: There were no differences in the distribution GluA1 in any cellular compartments of CA3 dendrites in naïve females and males following either Sal or Oxy CPP. CIS alone increased the percent of GluA1 in CA3 dendritic spines in males compared to females. CIS Oxy-males compared to CIS Sal-males had an increase in cytoplasmic and total dendritic GluA1. Thus, in CIS Oxy-males increased pools of GluN1 and GluA1 are available for ligand binding in CA3 neurons. Together with our prior experiments, these changes in GluN1 and GluA1 following CIS in males may contribute to an increased sensitivity of CA3 neurons to glutamate excitation and a reduced capacity to acquire Oxy CPP.
Collapse
Key Words
- ABC, avidin-biotin complex
- AMPA receptors
- BSA, bovine serum albumin
- CIS, chronic immobilization stress
- CPP, conditioned place preference
- DAB, diaminobenzidine
- DG, dentate gyrus
- DOR, delta opioid receptor
- Drug associative-learning
- Electron microscopy
- GABA, Gamma-amino butyric acid
- GluA1, AMPA glutamate receptor subunit 1
- GluN1, NMDA, glutamate receptor subunit 1
- LTP, long-term potentiation
- MOR, mu opioid receptor
- NMDA receptors
- NMDA, N-methyl-D-aspartate
- NPY, neuropeptide Y
- Oxy, oxycodone
- PARV, parvalbumin
- PB, phosphate buffer
- PFA, paraformaldehyde
- PM, plasma membrane
- Pyramidal cells
- ROI, region of interest
- SLM, stratum lacunosum-moleculare
- SLu, stratum lucidum
- SO, stratum oriens
- SOM, somatostatin
- SR, stratum radiatum
- Sal, saline
- TS, tris-buffered saline
- ir, immunoreactivity
Collapse
Affiliation(s)
- Alexandra Dolgetta
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, USA
| | - Megan Johnson
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, USA
| | - Kate Fruitman
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, USA
| | - Luke Siegel
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, USA
| | - Yan Zhou
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Bruce S. McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Mary Jeanne Kreek
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Teresa A. Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, USA
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| |
Collapse
|
24
|
Wang G, Woods C, Johnson MA, Milner TA, Glass MJ. Angiotensin II Infusion Results in Both Hypertension and Increased AMPA GluA1 Signaling in Hypothalamic Paraventricular Nucleus of Male but not Female Mice. Neuroscience 2022; 485:129-144. [PMID: 34999197 PMCID: PMC9116447 DOI: 10.1016/j.neuroscience.2021.12.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 10/19/2022]
Abstract
The hypothalamic paraventricular nucleus (PVN) plays a key role in hypertension, however the signaling pathways that contribute to the adaptability of the PVN during hypertension are uncertain. We present evidence that signaling at the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) GluA1 receptor contributes to increased blood pressure in a model of neurogenic hypertension induced by 14-day slow-pressor angiotensin II (AngII) infusion in male mice. It was found that AngII hypertension was associated with an increase in plasma membrane affiliation of GluA1, but decreased GluA2, in dendritic profiles of PVN neurons expressing the TNFα type 1 receptor, a modulator of AMPA receptor trafficking. The increased plasma membrane GluA1 was paralleled by heightened AMPA currents in PVN-spinal cord projection neurons from AngII-infused male mice. Significantly, elevated AMPA currents in AngII-treated mice were blocked by 1-Naphthyl acetyl spermine trihydrochloride, pointing to the involvement of GluA2-lacking GluA1 receptors in the heightened AMPA signaling in PVN neurons. A further functional role for GluA1 in the PVN was demonstrated by the attenuated hypertensive response following silencing of GluA1 in the PVN of AngII-infused male mice. In female mice, AngII-infusion did not impact blood pressure or plasma membrane localization of GluA1 . Post-translational modifications that increase the plasma membrane localization of AMPA GluA1 and heighten the rapid excitatory signaling actions of glutamate in PVN neurons may serve as a molecular substrate underlying sex differences in hypertension.
Collapse
Affiliation(s)
- Gang Wang
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065
| | - Clara Woods
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065
| | - Megan A. Johnson
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065
| | - Teresa A. Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065,Harold and Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065
| | - Michael J. Glass
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065,Address correspondence to: Dr. Michael J. Glass, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065; Phone: (646) 962-8253;
| |
Collapse
|
25
|
Beamish SB, Frick KM. A Putative Role for Ubiquitin-Proteasome Signaling in Estrogenic Memory Regulation. Front Behav Neurosci 2022; 15:807215. [PMID: 35145382 PMCID: PMC8821141 DOI: 10.3389/fnbeh.2021.807215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/20/2021] [Indexed: 12/31/2022] Open
Abstract
Sex steroid hormones such as 17β-estradiol (E2) are critical neuromodulators of hippocampal synaptic plasticity and hippocampus-dependent memory in both males and females. However, the mechanisms through which E2 regulates memory formation in both sexes remain unclear. Research to date suggests that E2 regulates hippocampus-dependent memory by activating numerous cell-signaling cascades to promote the synthesis of proteins that support structural changes at hippocampal synapses. However, this work has largely overlooked the equally important contributions of protein degradation mediated by the ubiquitin proteasome system (UPS) in remodeling the synapse. Despite being critically implicated in synaptic plasticity and successful formation of long-term memories, it remains unclear whether protein degradation mediated by the UPS is necessary for E2 to exert its beneficial effects on hippocampal plasticity and memory formation. The present article provides an overview of the receptor and signaling mechanisms so far identified as critical for regulating hippocampal E2 and UPS function in males and females, with a particular emphasis on the ways in which these mechanisms overlap to support structural integrity and protein composition of hippocampal synapses. We argue that the high degree of correspondence between E2 and UPS activity warrants additional study to examine the contributions of ubiquitin-mediated protein degradation in regulating the effects of sex steroid hormones on cognition.
Collapse
|
26
|
Annunziato M, Eeza MNH, Bashirova N, Lawson A, Matysik J, Benetti D, Grosell M, Stieglitz JD, Alia A, Berry JP. An integrated systems-level model of the toxicity of brevetoxin based on high-resolution magic-angle spinning nuclear magnetic resonance (HRMAS NMR) metabolic profiling of zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149858. [PMID: 34482148 DOI: 10.1016/j.scitotenv.2021.149858] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Brevetoxins (PbTx) are a well-recognized group of neurotoxins associated with harmful algal blooms, and specifically recurrent "Florida Red Tides," in marine waters that are linked to impacts on both human and ecosystem health including well-documented "fish kills" and marine mammal mortalities in affected coastal waters. Understanding mechanisms and pathways of PbTx toxicity enables identification of relevant biomarkers to better understand these environmental impacts, and improve monitoring efforts, in relation to this toxin. Toward a systems-level understanding of toxicity, and identification of potential biomarkers, high-resolution magic angle spinning nuclear magnetic resonance (HRMAS NMR) was utilized for metabolic profiling of zebrafish (Danio rerio) embryos, as an established toxicological model, exposed to PbTx-2 (the most common congener in marine waters). Metabolomics studies were, furthermore, complemented by an assessment of the toxicity of PbTx-2 in embryonic stages of zebrafish and mahi-mahi (Coryphaena hippurus), the latter representing an ecologically and geographically relevant marine species of fish, which identified acute embryotoxicity at environmentally relevant (i.e., parts-per-billion) concentrations in both species. HRMAS NMR analysis of intact zebrafish embryos exposed to sub-lethal concentrations of PbTx-2 afforded well-resolved spectra, and in turn, identification of 38 metabolites of which 28 were found to be significantly altered, relative to controls. Metabolites altered by PbTx-2 exposure specifically included those associated with (1) neuronal excitotoxicity, as well as associated neural homeostasis, and (2) interrelated pathways of carbohydrate and energy metabolism. Metabolomics studies, thereby, enabled a systems-level model of PbTx toxicity which integrated multiple metabolic, molecular and cellular pathways, in relation to environmentally relevant concentrations of the toxin, providing insight to not only targets and mechanisms, but potential biomarkers pertinent to environmental risk assessment and monitoring strategies.
Collapse
Affiliation(s)
- Mark Annunziato
- Institute of Environment, Department of Chemistry and Biochemistry, Florida International University, 3000 NE 151st Street, North Miami, FL 33181, USA
| | - Muhamed N H Eeza
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany; Institute for Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Narmin Bashirova
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany; Institute for Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Ariel Lawson
- Institute of Environment, Department of Chemistry and Biochemistry, Florida International University, 3000 NE 151st Street, North Miami, FL 33181, USA
| | - Jörg Matysik
- Institute for Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Daniel Benetti
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL, USA
| | - Martin Grosell
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL, USA
| | - John D Stieglitz
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL, USA
| | - A Alia
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany; Leiden Institute of Chemistry, Leiden University, 2333 Leiden, the Netherlands.
| | - John P Berry
- Institute of Environment, Department of Chemistry and Biochemistry, Florida International University, 3000 NE 151st Street, North Miami, FL 33181, USA; Biomolecular Science Institute, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA.
| |
Collapse
|
27
|
Nardella C, Visconti L, Malagrinò F, Pagano L, Bufano M, Nalli M, Coluccia A, La Regina G, Silvestri R, Gianni S, Toto A. Targeting PDZ domains as potential treatment for viral infections, neurodegeneration and cancer. Biol Direct 2021; 16:15. [PMID: 34641953 PMCID: PMC8506081 DOI: 10.1186/s13062-021-00303-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/24/2021] [Indexed: 02/08/2023] Open
Abstract
The interaction between proteins is a fundamental event for cellular life that is generally mediated by specialized protein domains or modules. PDZ domains are the largest class of protein-protein interaction modules, involved in several cellular pathways such as signal transduction, cell-cell junctions, cell polarity and adhesion, and protein trafficking. Because of that, dysregulation of PDZ domain function often causes the onset of pathologies, thus making this family of domains an interesting pharmaceutical target. In this review article we provide an overview of the structural and functional features of PDZ domains and their involvement in the cellular and molecular pathways at the basis of different human pathologies. We also discuss some of the strategies that have been developed with the final goal to hijack or inhibit the interaction of PDZ domains with their ligands. Because of the generally low binding selectivity of PDZ domain and the scarce efficiency of small molecules in inhibiting PDZ binding, this task resulted particularly difficult to pursue and still demands increasing experimental efforts in order to become completely feasible and successful in vivo.
Collapse
Affiliation(s)
- Caterina Nardella
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Lorenzo Visconti
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Francesca Malagrinò
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Livia Pagano
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Marianna Bufano
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Marianna Nalli
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Antonio Coluccia
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Giuseppe La Regina
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Romano Silvestri
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Stefano Gianni
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy.
| | - Angelo Toto
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy.
| |
Collapse
|
28
|
Robbins M, Clayton E, Kaminski Schierle GS. Synaptic tau: A pathological or physiological phenomenon? Acta Neuropathol Commun 2021; 9:149. [PMID: 34503576 PMCID: PMC8428049 DOI: 10.1186/s40478-021-01246-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022] Open
Abstract
In this review, we discuss the synaptic aspects of Tau pathology occurring during Alzheimer's disease (AD) and how this may relate to memory impairment, a major hallmark of AD. Whilst the clinical diagnosis of AD patients is a loss of working memory and long-term declarative memory, the histological diagnosis is the presence of neurofibrillary tangles of hyperphosphorylated Tau and Amyloid-beta plaques. Tau pathology spreads through synaptically connected neurons to impair synaptic function preceding the formation of neurofibrillary tangles, synaptic loss, axonal retraction and cell death. Alongside synaptic pathology, recent data suggest that Tau has physiological roles in the pre- or post- synaptic compartments. Thus, we have seen a shift in the research focus from Tau as a microtubule-stabilising protein in axons, to Tau as a synaptic protein with roles in accelerating spine formation, dendritic elongation, and in synaptic plasticity coordinating memory pathways. We collate here the myriad of emerging interactions and physiological roles of synaptic Tau, and discuss the current evidence that synaptic Tau contributes to pathology in AD.
Collapse
|
29
|
Ramsey AM, Tang AH, LeGates TA, Gou XZ, Carbone BE, Thompson SM, Biederer T, Blanpied TA. Subsynaptic positioning of AMPARs by LRRTM2 controls synaptic strength. SCIENCE ADVANCES 2021; 7:7/34/eabf3126. [PMID: 34417170 PMCID: PMC8378824 DOI: 10.1126/sciadv.abf3126] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 06/30/2021] [Indexed: 05/07/2023]
Abstract
Recent evidence suggests that nano-organization of proteins within synapses may control the strength of communication between neurons in the brain. The unique subsynaptic distribution of glutamate receptors, which cluster in nanoalignment with presynaptic sites of glutamate release, supports this hypothesis. However, testing it has been difficult because mechanisms controlling subsynaptic organization remain unknown. Reasoning that transcellular interactions could position AMPA receptors (AMPARs), we targeted a key transsynaptic adhesion molecule implicated in controlling AMPAR number, LRRTM2, using engineered, rapid proteolysis. Severing the LRRTM2 extracellular domain led quickly to nanoscale declustering of AMPARs away from release sites, not prompting their escape from synapses until much later. This rapid remodeling of AMPAR position produced significant deficits in evoked, but not spontaneous, postsynaptic receptor activation. These results dissociate receptor numbers from their nanopositioning in determination of synaptic function and support the novel concept that adhesion molecules acutely position receptors to dynamically control synaptic strength.
Collapse
Affiliation(s)
- Austin M Ramsey
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ai-Hui Tang
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Tara A LeGates
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | - Beatrice E Carbone
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Scott M Thompson
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Thomas Biederer
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Thomas A Blanpied
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
30
|
Malpigmentation of Common Sole ( Solea solea) during Metamorphosis Is Associated with Differential Synaptic-Related Gene Expression. Animals (Basel) 2021; 11:ani11082273. [PMID: 34438731 PMCID: PMC8388432 DOI: 10.3390/ani11082273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Common sole (Solea solea) is an important species for the aquaculture industry. Defects in pigmentation of the species are very common in farmed conditions. Differences in gene expression between normally pigmented juveniles and those that present both sides full pigmented, ocular and blind, were investigated. Differentially expressed transcripts were functionally annotated, and gene ontology was carried out. The results indicated that ambicolorated juveniles showed a significant upregulation of genes involved in the signal transmission at the synaptic level and regulation of ion channels, affecting the plasticity and the development of the synapses, as well as the transmission of signals or ions through channels. Abstract In farmed flatfish, such as common sole, color disturbances are common. Dyschromia is a general term that includes the color defects on the blind and ocular sides of the fish. The purpose was to examine the difference in gene expression between normal pigmented and juveniles who present ambicoloration. The analysis was carried out with next-generation sequencing techniques and de novo assembly of the transcriptome. Transcripts that showed significant differences (FDR < 0.05) in the expression between the two groups, were related to those of zebrafish (Danio rerio), functionally identified, and classified into categories of the gene ontology. The results revealed that ambicolorated juveniles exhibit a divergent function, mainly of the central nervous system at the synaptic level, as well as the ionic channels. The close association of chromophore cells with the growth of nerve cells and the nervous system was recorded. The pathway, glutamate binding–activation of AMPA and NMDA receptors–long-term stimulation of postsynaptic potential–LTP (long term potentiation)–plasticity of synapses, appears to be affected. In addition, the development of synapses also seems to be affected by the interaction of the LGI (leucine-rich glioma inactivated) protein family with the ADAM (a disintegrin and metalloprotease) ones.
Collapse
|
31
|
Barbari V, Storari L, Maselli F, Testa M. Applicability of pain neuroscience education: Where are we now? J Back Musculoskelet Rehabil 2021; 34:511-520. [PMID: 33749636 DOI: 10.3233/bmr-200091] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Explaining pain to patients through pain neuroscience education (PNE) is currently a widespread treatment studied in the musculoskeletal context. Presently, there is sufficient evidence supporting the effectiveness of PNE in patients with chronic musculoskeletal disorders. However, clinicians must pay attention to the actual possibility to transfer research findings in their specific clinical context. OBJECTIVE We analysed the applicability of results of studies focused on PNE, which has not been done previously. METHODS A detailed discussion on PNE applicability is provided, starting from published randomized controlled trials that investigated the effectiveness of PNE. RESULTS This paper markedly points out the awareness of clinicians on the need for an accurate contextualization when choosing PNE as an intervention in clinical practice.
Collapse
|
32
|
Fan Y, Chou MC, Liu YC, Liu CK, Chen CH, Chen SL. Intermittent Hypoxia Activates N-Methyl-D-Aspartate Receptors to Induce Anxiety Behaviors in a Mouse Model of Sleep-Associated Apnea. Mol Neurobiol 2021; 58:3238-3251. [PMID: 33660202 DOI: 10.1007/s12035-021-02321-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
Sleep apnea disrupts physiologic homeostasis and causes neuronal dysfunction. In addition to signs of mental disorders and cognitive dysfunction, patients with sleep apnea have a higher anxiety rate. Here, we examined the mechanisms underlying this critical health issue. We used a mouse model with sleep-associated chronic intermittent hypoxia (IH) to verify the effects of sleep apnea on neuronal dysfunction. To evaluate how IH alters neuronal function to yield anxiety-like behavior and cognitive dysfunction, we examined synaptic plasticity and neuronal inflammation in related brain areas, including the medial prefrontal cortex (mPFC), striatum, and hippocampus. Mice subjected to chronic IH for 10 days exhibited significant anxiety-like behaviors in the elevated plus maze test. IH mice spent less travel time in open arms and more travel time in enclosed arms compared to control mice. However, cognitive impairment was minimal in IH mice. Increased glutamate N-methyl-D-aspartate (NMDA) receptor subunits 2B (GluN2B) and phosphorylated-ERK1/2 were seen in the mPFC, striatum, and hippocampus of IH mice, but no significant microglial and astrocyte activation was found in these brain areas. Chronic IH in mice induced compensatory increases in GluN2B to disturb neuronal synaptic plasticity, without neuronal inflammation. The altered synaptic plasticity subsequently led to anxiety-like behavior in mice. Treatment with the NMDA receptor antagonist dextromethorphan attenuated chronic IH-induced anxiety-like behavior and GluN2B expression. Our findings provide mechanistic evidence of how IH may provoke anxiety and support for the importance of early intervention to alleviate anxiety-associated complications in patients with chronic sleep apnea.
Collapse
Affiliation(s)
- Yun Fan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University (KMU), No.100, Shiquan 1st Rd., Sanmin Dist., Kaohsiung City 807, Taiwan, Republic of China
| | - Mei-Chuan Chou
- Graduate Institute of Clinical Medicine, College of Medicine, KMU, Kaohsiung, Taiwan, Republic of China
- Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, KMU, Kaohsiung, Taiwan, Republic of China
- Department of Neurology, KMU Hospital, Kaohsiung, Taiwan, Republic of China
| | - Yen-Chin Liu
- Department of Anesthesiology, College of Medicine, National Cheng Kung University Hospital (NCKU), Tainan, Taiwan, Republic of China
| | - Ching-Kuan Liu
- Department of Neurology, KMU Hospital, Kaohsiung, Taiwan, Republic of China
- Department of Neurology, Faculty of Medicine, College of Medicine, KMU, Kaohsiung, Taiwan, Republic of China
| | - Chu-Huang Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University (KMU), No.100, Shiquan 1st Rd., Sanmin Dist., Kaohsiung City 807, Taiwan, Republic of China
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX, USA
| | - Shiou-Lan Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University (KMU), No.100, Shiquan 1st Rd., Sanmin Dist., Kaohsiung City 807, Taiwan, Republic of China.
- Department of Medical Research, KMU Hospital, Drug Development and Value Creation Research Center & MSc Program in Tropical Medicine, College of Medicine, KMU, Kaohsiung, Taiwan, Republic of China.
| |
Collapse
|
33
|
Feng Z, Wu X, Zhang M. Presynaptic bouton compartmentalization and postsynaptic density-mediated glutamate receptor clustering via phase separation. Neuropharmacology 2021; 193:108622. [PMID: 34051266 DOI: 10.1016/j.neuropharm.2021.108622] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/25/2021] [Accepted: 05/17/2021] [Indexed: 01/21/2023]
Abstract
Neuronal synapses encompass three compartments: presynaptic axon terminal, synaptic cleft, and postsynaptic dendrite. Each compartment contains densely packed molecular machineries that are involved in synaptic transmission. In recent years, emerging evidence indicates that the assembly of these membraneless substructures or assemblies that are not enclosed by membranes are driven by liquid-liquid phase separation. We review here recent studies that suggest the phase separation-mediated organization of these synaptic compartments. We discuss how synaptic function may be linked to its organization as biomolecular condensates. We conclude with a discussion of areas of future interest in the field for better understanding of the structural architecture of neuronal synapses and its contribution to synaptic functions.
Collapse
Affiliation(s)
- Zhe Feng
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xiandeng Wu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
34
|
Naderi M, Puar P, Zonouzi-Marand M, Chivers DP, Niyogi S, Kwong RWM. A comprehensive review on the neuropathophysiology of selenium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144329. [PMID: 33445002 DOI: 10.1016/j.scitotenv.2020.144329] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/05/2020] [Accepted: 12/05/2020] [Indexed: 05/25/2023]
Abstract
As an essential micronutrient, selenium (Se) exerts its biological function as a catalytic entity in a variety of enzymes. From a toxicological perspective, however, Se can become extremely toxic at concentrations slightly above its nutritional levels. Over the last few decades, there has been a growing level of concern worldwide regarding the adverse effects of both inorganic and organic Se compounds on a broad spectrum of neurological functions. A wealth of evidence has shown that exposure to excess Se may compromise the normal functioning of various key proteins, neurotransmitter systems (the glutamatergic, dopaminergic, serotonergic, and cholinergic systems), and signaling molecules involved in the control and regulation of cognitive, behavioral, and neuroendocrine functions. Elevated Se exposure has also been suspected to be a risk factor for the development of several neurodegenerative and neuropsychiatric diseases. Nonetheless, despite the various deleterious effects of excess Se on the central nervous system (CNS), Se neurotoxicity and negative behavioral outcomes are still disregarded at the expense of its beneficial health effects. This review focuses on the current state of knowledge regarding the neurobehavioral effects of Se and discusses its potential mode of action on different aspects of the central and peripheral nervous systems. This review also provides a brief history of Se discovery and uses, its physicochemical properties, biological roles in the CNS, environmental occurrence, and toxicity. We also review potential links between exposure to different forms of Se compounds and aberrant neurobehavioral functions in humans and animals, and identify key knowledge gaps and hypotheses for future research.
Collapse
Affiliation(s)
- Mohammad Naderi
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| | - Pankaj Puar
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | | | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| | | |
Collapse
|
35
|
Yusifov R, Tippmann A, Staiger JF, Schlüter OM, Löwel S. Spine dynamics of PSD-95-deficient neurons in the visual cortex link silent synapses to structural cortical plasticity. Proc Natl Acad Sci U S A 2021; 118:e2022701118. [PMID: 33649238 PMCID: PMC7958355 DOI: 10.1073/pnas.2022701118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Critical periods (CPs) are time windows of heightened brain plasticity during which experience refines synaptic connections to achieve mature functionality. At glutamatergic synapses on dendritic spines of principal cortical neurons, the maturation is largely governed by postsynaptic density protein-95 (PSD-95)-dependent synaptic incorporation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors into nascent AMPA-receptor silent synapses. Consequently, in mouse primary visual cortex (V1), impaired silent synapse maturation in PSD-95-deficient neurons prevents the closure of the CP for juvenile ocular dominance plasticity (jODP). A structural hallmark of jODP is increased spine elimination, induced by brief monocular deprivation (MD). However, it is unknown whether impaired silent synapse maturation facilitates spine elimination and also preserves juvenile structural plasticity. Using two-photon microscopy, we assessed spine dynamics in apical dendrites of layer 2/3 pyramidal neurons (PNs) in binocular V1 during ODP in awake adult mice. Under basal conditions, spine formation and elimination ratios were similar between PSD-95 knockout (KO) and wild-type (WT) mice. However, a brief MD affected spine dynamics only in KO mice, where MD doubled spine elimination, primarily affecting newly formed spines, and caused a net reduction in spine density similar to what has been observed during jODP in WT mice. A similar increase in spine elimination after MD occurred if PSD-95 was knocked down in single PNs of layer 2/3. Thus, structural plasticity is dictated cell autonomously by PSD-95 in vivo in awake mice. Loss of PSD-95 preserves hallmark features of spine dynamics in jODP into adulthood, revealing a functional link of PSD-95 for experience-dependent synapse maturation and stabilization during CPs.
Collapse
Affiliation(s)
- Rashad Yusifov
- Department of Systems Neuroscience, Johann Friedrich Blumenbach Institut für Zoologie und Anthropologie, Universität Göttingen, D-37075 Göttingen, Germany
- Collaborative Research Center 889, Universität Göttingen, D-37075 Göttingen, Germany
- Campus Institute for Dynamics of Biological Networks, Universität Göttingen, D-37075 Göttingen, Germany
| | - Anja Tippmann
- Department of Systems Neuroscience, Johann Friedrich Blumenbach Institut für Zoologie und Anthropologie, Universität Göttingen, D-37075 Göttingen, Germany
- Campus Institute for Dynamics of Biological Networks, Universität Göttingen, D-37075 Göttingen, Germany
| | - Jochen F Staiger
- Collaborative Research Center 889, Universität Göttingen, D-37075 Göttingen, Germany
- Institute for Neuroanatomy, University Medical Center, Universität Göttingen, D-37075 Göttingen, Germany
| | - Oliver M Schlüter
- Collaborative Research Center 889, Universität Göttingen, D-37075 Göttingen, Germany
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Universität Göttingen, D-37075 Göttingen, Germany
| | - Siegrid Löwel
- Department of Systems Neuroscience, Johann Friedrich Blumenbach Institut für Zoologie und Anthropologie, Universität Göttingen, D-37075 Göttingen, Germany;
- Collaborative Research Center 889, Universität Göttingen, D-37075 Göttingen, Germany
- Campus Institute for Dynamics of Biological Networks, Universität Göttingen, D-37075 Göttingen, Germany
| |
Collapse
|
36
|
Lee P. Electrodiffusion with Calcium-Activated Potassium Channels in Dendritic Spine. Bull Math Biol 2021; 83:30. [PMID: 33594481 DOI: 10.1007/s11538-020-00854-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022]
Abstract
We investigate calcium signaling feedback through calcium-activated potassium channels of a dendritic spine by applying the immersed boundary method with electrodiffusion. We simulate the stochastic gating of such ion channels and the resulting spatial distribution of concentration, current, and membrane voltage within the dendritic spine. In this simulation, the permeability to ionic flow across the membrane is regulated by the amplitude of chemical potential barriers. With spatially localized ion channels, chemical potential barriers are locally and stochastically regulated. This regulation represents the ion channel gating with multiple subunits, the open and closed states governed by a continuous-time Markov process. The model simulation recapitulates an inhibitory action on voltage-sensitive calcium channels by the calcium-activated potassium channels in a stochastic manner as a non-local feedback loop. The model predicts amplified calcium influx with more closely placed channel complexes, proposing a potential mechanism of differential calcium handling by channel distributions. This work provides a foundation for future computer simulation studies of dendritic spine motility and structural plasticity.
Collapse
Affiliation(s)
- Pilhwa Lee
- Department of Mathematics, Morgan State University, Baltimore, MD, USA.
| |
Collapse
|
37
|
Potassium: A key modulator for cell homeostasis. J Biotechnol 2020; 324:198-210. [PMID: 33080306 DOI: 10.1016/j.jbiotec.2020.10.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 09/28/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023]
Abstract
Potassium (K) is the most vital and abundant macro element for the overall growth of plants and its deficiency or, excess concentration results in many diseases in plants. It is involved in regulation of many crucial roles in plant development. Depending on soil-root interactions, complex soil dynamics often results in unpredictable availability of the elements. Based on the importance index, K is considered to be the second only to nitrogen for the overall growth of plants. More than 60 enzymes within the plant system depend on K for its activation, in which K act as a key regulator. K helps plants to resist several abiotic and biotic stresses in the environment. We have reviewed the research progress about K's role in plants covering various important considerations of K highlighting the effects of microbes on soil K+; K and its contribution to adsorbed dose in plants; the importance of K+ deficiency; physiological functions of K+ transporters and channels; and interference of abiotic stressor in the regulatory role of K. This review further highlights the scope of future research regarding K.
Collapse
|
38
|
Glutamatergic Receptor Trafficking and Delivery: Role of the Exocyst Complex. Cells 2020; 9:cells9112402. [PMID: 33153008 PMCID: PMC7693776 DOI: 10.3390/cells9112402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/29/2022] Open
Abstract
Cells comprise several intracellular membrane compartments that allow them to function properly. One of these functions is cargo movement, typically proteins and membranes within cells. These cargoes ride microtubules through vesicles from Golgi and recycling endosomes to the plasma membrane in order to be delivered and exocytosed. In neurons, synaptic functions employ this cargo trafficking to maintain inter-neuronal communication optimally. One of the complexes that oversee vesicle trafficking and tethering is the exocyst. The exocyst is a protein complex containing eight subunits first identified in yeast and then characterized in multicellular organisms. This complex is related to several cellular processes, including cellular growth, division, migration, and morphogenesis, among others. It has been associated with glutamatergic receptor trafficking and tethering into the synapse, providing the molecular machinery to deliver receptor-containing vesicles into the plasma membrane in a constitutive manner. In this review, we discuss the evidence so far published regarding receptor trafficking and the exocyst complex in both basal and stimulated levels, comparing constitutive trafficking and long-term potentiation-related trafficking.
Collapse
|
39
|
Rizalar FS, Roosen DA, Haucke V. A Presynaptic Perspective on Transport and Assembly Mechanisms for Synapse Formation. Neuron 2020; 109:27-41. [PMID: 33098763 DOI: 10.1016/j.neuron.2020.09.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/26/2020] [Accepted: 09/25/2020] [Indexed: 01/01/2023]
Abstract
Neurons are highly polarized cells with a single axon and multiple dendrites derived from the cell body to form tightly associated pre- and postsynaptic compartments. As the biosynthetic machinery is largely restricted to the somatodendritic domain, the vast majority of presynaptic components are synthesized in the neuronal soma, packaged into synaptic precursor vesicles, and actively transported along the axon to sites of presynaptic biogenesis. In contrast with the significant progress that has been made in understanding synaptic transmission and processing of information at the post-synapse, comparably little is known about the formation and dynamic remodeling of the presynaptic compartment. We review here our current understanding of the mechanisms that govern the biogenesis, transport, and assembly of the key components for presynaptic neurotransmission, discuss how alterations in presynaptic assembly may impact nervous system function or lead to disease, and outline key open questions for future research.
Collapse
Affiliation(s)
- Filiz Sila Rizalar
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Dorien A Roosen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany; Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany.
| |
Collapse
|
40
|
Broderick TL, Rasool S, Li R, Zhang Y, Anderson M, Al-Nakkash L, Plochocki JH, Geetha T, Babu JR. Neuroprotective Effects of Chronic Resveratrol Treatment and Exercise Training in the 3xTg-AD Mouse Model of Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21197337. [PMID: 33020412 PMCID: PMC7582460 DOI: 10.3390/ijms21197337] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022] Open
Abstract
To date, there is no cure or effective treatment for Alzheimer’s disease (AD), a chronic neurodegenerative condition that affects memory, language, and behavior. AD is characterized by neuroinflammation, accumulation of brain amyloid-beta (Aβ) oligomers and neurofibrillary tangles, increased neuronal apoptosis, and loss of synaptic function. Promoting regular exercise and a diet containing polyphenols are effective non-pharmacological approaches that prevent the progression of neurodegenerative diseases. In this study, we measured various conformational toxic species of Aβ and markers of inflammation, apoptosis, endolysosomal degradation, and neuroprotection after 5 months of exercise training (ET), resveratrol (Resv) treatment, or combination treatment in the 3xTg-AD mouse model of AD. Our main results indicate that Resv decreased neuroinflammation and accumulation of Aβ oligomers, increased levels of neurotrophins, synaptic markers, silent information regulator, and decreased markers of apoptosis, autophagy, endolysosomal degradation and ubiquitination in the brains of 3xTg-AD mice. ET improved some markers related to neuroprotection, but when combined with Resv treatment, the benefits achieved were as effective as Resv treatment alone. Our results show that the neuroprotective effects of Resv, ET or Resv and ET are associated with reduced toxicity of Aβ oligomers, suppression of neuronal autophagy, decreased apoptosis, and upregulation of key growth-related proteins.
Collapse
Affiliation(s)
- Tom L. Broderick
- Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA;
- Laboratory of Diabetes and Exercise Metabolism, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA;
- Correspondence: (T.L.B.); (J.R.B.)
| | - Suhail Rasool
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA; (S.R.); (R.L.); (Y.Z.); (T.G.)
| | - Rongzi Li
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA; (S.R.); (R.L.); (Y.Z.); (T.G.)
| | - Yuxian Zhang
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA; (S.R.); (R.L.); (Y.Z.); (T.G.)
| | - Miranda Anderson
- Laboratory of Diabetes and Exercise Metabolism, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA;
| | - Layla Al-Nakkash
- Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA;
| | - Jeffrey H. Plochocki
- Department of Medical Education, University of Central Florida, College of Medicine, 6850 Lake Nona Blvd, Orlando, FL 32827, USA;
| | - Thangiah Geetha
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA; (S.R.); (R.L.); (Y.Z.); (T.G.)
| | - Jeganathan Ramesh Babu
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA; (S.R.); (R.L.); (Y.Z.); (T.G.)
- Correspondence: (T.L.B.); (J.R.B.)
| |
Collapse
|
41
|
Chou VT, Johnson SA, Van Vactor D. Synapse development and maturation at the drosophila neuromuscular junction. Neural Dev 2020; 15:11. [PMID: 32741370 PMCID: PMC7397595 DOI: 10.1186/s13064-020-00147-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
Synapses are the sites of neuron-to-neuron communication and form the basis of the neural circuits that underlie all animal cognition and behavior. Chemical synapses are specialized asymmetric junctions between a presynaptic neuron and a postsynaptic target that form through a series of diverse cellular and subcellular events under the control of complex signaling networks. Once established, the synapse facilitates neurotransmission by mediating the organization and fusion of synaptic vesicles and must also retain the ability to undergo plastic changes. In recent years, synaptic genes have been implicated in a wide array of neurodevelopmental disorders; the individual and societal burdens imposed by these disorders, as well as the lack of effective therapies, motivates continued work on fundamental synapse biology. The properties and functions of the nervous system are remarkably conserved across animal phyla, and many insights into the synapses of the vertebrate central nervous system have been derived from studies of invertebrate models. A prominent model synapse is the Drosophila melanogaster larval neuromuscular junction, which bears striking similarities to the glutamatergic synapses of the vertebrate brain and spine; further advantages include the simplicity and experimental versatility of the fly, as well as its century-long history as a model organism. Here, we survey findings on the major events in synaptogenesis, including target specification, morphogenesis, and the assembly and maturation of synaptic specializations, with a emphasis on work conducted at the Drosophila neuromuscular junction.
Collapse
Affiliation(s)
- Vivian T Chou
- Department of Cell Biology and Program in Neuroscience, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Seth A Johnson
- Department of Cell Biology and Program in Neuroscience, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| | - David Van Vactor
- Department of Cell Biology and Program in Neuroscience, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
42
|
Dringenberg HC. The history of long-term potentiation as a memory mechanism: Controversies, confirmation, and some lessons to remember. Hippocampus 2020; 30:987-1012. [PMID: 32442358 DOI: 10.1002/hipo.23213] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/24/2020] [Accepted: 04/18/2020] [Indexed: 12/16/2022]
Abstract
The discovery of long-term potentiation (LTP) provided the first, direct evidence for long-lasting synaptic plasticity in the living brain. Consequently, LTP was proposed to serve as a mechanism for information storage among neurons, thus providing the basis for the behavioral and psychological phenomena of learning and long-term memory formation. However, for several decades, the LTP-memory hypothesis remained highly controversial, with inconsistent and contradictory evidence providing a barrier to its general acceptance. This review summarizes the history of these early debates, challenges, and experimental strategies (successful and unsuccessful) to establish a link between LTP and memory. Together, the empirical evidence, gathered over a period of about four decades, strongly suggests that LTP serves as one of the mechanisms affording learning and memory storage in neuronal circuits. Notably, this body of work also offers some important lessons that apply to the broader fields of behavioral and cognitive neuroscience. As such, the history of LTP as a learning mechanism provides valuable insights to neuroscientists exploring the relations between brain and psychological states.
Collapse
Affiliation(s)
- Hans C Dringenberg
- Department of Psychology and Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
43
|
Brock JA, Thomazeau A, Watanabe A, Li SSY, Sjöström PJ. A Practical Guide to Using CV Analysis for Determining the Locus of Synaptic Plasticity. Front Synaptic Neurosci 2020; 12:11. [PMID: 32292337 PMCID: PMC7118219 DOI: 10.3389/fnsyn.2020.00011] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/04/2020] [Indexed: 01/17/2023] Open
Abstract
Long-term synaptic plasticity is widely believed to underlie learning and memory in the brain. Whether plasticity is primarily expressed pre- or postsynaptically has been the subject of considerable debate for many decades. More recently, it is generally agreed that the locus of plasticity depends on a number of factors, such as developmental stage, induction protocol, and synapse type. Since presynaptic expression alters not just the gain but also the short-term dynamics of a synapse, whereas postsynaptic expression only modifies the gain, the locus has fundamental implications for circuits dynamics and computations in the brain. It therefore remains crucial for our understanding of neuronal circuits to know the locus of expression of long-term plasticity. One classical method for elucidating whether plasticity is pre- or postsynaptically expressed is based on analysis of the coefficient of variation (CV), which serves as a measure of noise levels of synaptic neurotransmission. Here, we provide a practical guide to using CV analysis for the purposes of exploring the locus of expression of long-term plasticity, primarily aimed at beginners in the field. We provide relatively simple intuitive background to an otherwise theoretically complex approach as well as simple mathematical derivations for key parametric relationships. We list important pitfalls of the method, accompanied by accessible computer simulations to better illustrate the problems (downloadable from GitHub), and we provide straightforward solutions for these issues.
Collapse
Affiliation(s)
- Jennifer A Brock
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Medicine, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Aurore Thomazeau
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Medicine, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Airi Watanabe
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Medicine, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Sally Si Ying Li
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - P Jesper Sjöström
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Medicine, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| |
Collapse
|
44
|
Hou Y, Qi F, Bai X, Ren T, Shen X, Chu Q, Zhang X, Lu X. Genome-wide analysis reveals molecular convergence underlying domestication in 7 bird and mammals. BMC Genomics 2020; 21:204. [PMID: 32131728 PMCID: PMC7057487 DOI: 10.1186/s12864-020-6613-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 02/24/2020] [Indexed: 12/19/2022] Open
Abstract
Background In response to ecological niche of domestication, domesticated mammals and birds developed adaptively phenotypic homoplasy in behavior modifications like fearlessness, altered sociability, exploration and cognition, which partly or indirectly result in consequences for economic productivity. Such independent adaptations provide an excellent model to investigate molecular mechanisms and patterns of evolutionary convergence driven by artificial selection. Results First performing population genomic and brain transcriptional comparisons in 68 wild and domesticated chickens, we revealed evolutionary trajectories, genetic architectures and physiologic bases of adaptively behavioral alterations. To extensively decipher molecular convergence on behavioral changes thanks to domestication, we investigated selection signatures in hundreds of genomes and brain transcriptomes across chicken and 6 other domesticated mammals. Although no shared substitution was detected, a common enrichment of the adaptive mutations in regulatory sequences was observed, presenting significance to drive adaptations. Strong convergent pattern emerged at levels of gene, gene family, pathway and network. Genes implicated in neurotransmission, semaphorin, tectonic protein and modules regulating neuroplasticity were central focus of selection, supporting molecular repeatability of homoplastic behavior reshapes. Genes at nodal positions in trans-regulatory networks were preferably targeted. Consistent down-regulation of majority brain genes may be correlated with reduced brain size during domestication. Up-regulation of splicesome genes in chicken rather mammals highlights splicing as an efficient way to evolve since avian-specific genomic contraction of introns and intergenics. Genetic burden of domestication elicits a general hallmark. The commonly selected genes were relatively evolutionary conserved and associated with analogous neuropsychiatric disorders in human, revealing trade-off between adaption to life with human at the cost of neural changes affecting fitness in wild. Conclusions After a comprehensive investigation on genomic diversity and evolutionary trajectories in chickens, we revealed basis, pattern and evolutionary significance of molecular convergence in domesticated bird and mammals, highlighted the genetic basis of a compromise on utmost adaptation to the lives with human at the cost of high risk of neurophysiological changes affecting animals’ fitness in wild.
Collapse
Affiliation(s)
- Yali Hou
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China. .,China National Center for Bioinformation, Beijing, People's Republic of China.
| | - Furong Qi
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China.,China National Center for Bioinformation, Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xue Bai
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China.,China National Center for Bioinformation, Beijing, People's Republic of China
| | - Tong Ren
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xu Shen
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Qin Chu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
| | - Xiquan Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, People's Republic of China.
| | - Xuemei Lu
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China. .,University of Chinese Academy of Sciences, Beijing, People's Republic of China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, People's Republic of China.
| |
Collapse
|
45
|
Liu Z, Qiu X, Mak S, Guo B, Hu S, Wang J, Luo F, Xu D, Sun Y, Zhang G, Cui G, Wang Y, Zhang Z, Han Y. Multifunctional memantine nitrate significantly protects against glutamate-induced excitotoxicity via inhibiting calcium influx and attenuating PI3K/Akt/GSK3beta pathway. Chem Biol Interact 2020; 325:109020. [PMID: 32092300 DOI: 10.1016/j.cbi.2020.109020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 10/09/2019] [Accepted: 02/18/2020] [Indexed: 01/30/2023]
Abstract
Overactivation of N-methyl-D-aspartate (NMDA) receptors has been associated with neurodegenerative disorders such as Alzheimer's disease (AD), cerebral vascular disorders and amyotrophic lateral sclerosis (ALS). We have previously designed and synthesized a series of memantine nitrate and some of them have shown vessel dilatory effects and neuroprotective effects; however, the detailed mechanisms have not been elucidated. In this study, we further demonstrated that memantine nitrate-06 (MN-06), one of the novel compounds derived from memantine, possessed significant neuroprotective effects against glutamate-induced excitotoxicity in rat primary cerebellar granule neurons (CGNs). Pretreatment of MN-06 reversed the activation of GSK3b and the suppression of phosphorylated Akt induced by glutamate. In addition, the neuroprotective effects of MN-06 could be abolished by LY294002, the specific phosphatidylinositol 3-kinase (PI3-K) inhibitor. Ca2+ imaging shown that pretreatment of MN-06 prevented Ca2+ influx induced by glutamate. Moreover, MN-06 might inhibit the NMDA-mediated current by antagonizing NDMA receptors, which was further confirmed by molecular docking simulation. Taken together, MN-06 protected against glutamate-induced excitotoxicity by blocking calcium influx and attenuating PI3-K/Akt/GSK-3b pathway, indicating that MN-06 might be a potential drug for treating neurodegenerative disorders.
Collapse
Affiliation(s)
- Zheng Liu
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Xiaoling Qiu
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Shinghung Mak
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Baojian Guo
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Shengquan Hu
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Jiajun Wang
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Fangcheng Luo
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Daping Xu
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Yewei Sun
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Gaoxiao Zhang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Guozhen Cui
- Department of Bioengineering, Zunyi Medical University Zhuhai Campus, Zhuhai, China
| | - Yuqiang Wang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Zaijun Zhang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China.
| | - Yifan Han
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| |
Collapse
|
46
|
Abstract
Synaptic plasticity is a fundamental property of neurons referring to the activity-dependent changes in the strength and efficacy of synaptic transmission at preexisting synapses. Such changes can last from milliseconds to hours, days, or even longer and are involved in learning and memory as well as in development and response of the brain to injuries. Several types of synaptic plasticity have been described across neuronal types, brain regions, and species, but all of them share in one way or another capital importance of Ca2+-mediated processes. In this chapter, we will focus on the Ca2+-dependent events necessary for the induction and expression of multiple forms of synaptic plasticity.
Collapse
|
47
|
Effects of arsenic exposure on d-serine metabolism in the hippocampus of offspring mice at different developmental stages. Arch Toxicol 2019; 94:77-87. [DOI: 10.1007/s00204-019-02616-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022]
|
48
|
Ovalles AC, Contoreggi NH, Marques-Lopes J, Van Kempen TA, Iadecola C, Waters EM, Glass MJ, Milner TA. Plasma Membrane Affiliated AMPA GluA1 in Estrogen Receptor β-containing Paraventricular Hypothalamic Neurons Increases Following Hypertension in a Mouse Model of Post-menopause. Neuroscience 2019; 423:192-205. [PMID: 31682817 DOI: 10.1016/j.neuroscience.2019.09.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022]
Abstract
Sex and ovarian function contribute to hypertension susceptibility, however, the mechanisms are not well understood. Prior studies show that estrogens and neurogenic factors, including hypothalamic glutamatergic NMDA receptor plasticity, play significant roles in rodent hypertension. Here, we investigated the role of sex and ovarian failure on AMPA receptor plasticity in estrogen-sensitive paraventricular nucleus (PVN) neurons in naïve and angiotensin II (AngII) infused male and female mice and female mice at early and late stages of accelerated ovarian failure (AOF). High-resolution electron microscopy was used to assess the subcellular distribution of AMPA GluA1 in age-matched male and female estrogen receptor beta (ERβ) enhanced green fluorescent protein (EGFP) reporter mice as well as female ERβ-EGFP mice treated with 4-vinylcyclohexene diepoxide. In the absence of AngII, female mice at a late stage of AOF displayed higher levels of GluA1 on the plasma membrane, indicative of functional protein, in ERβ-expressing PVN dendrites when compared to male, naïve female and early stage AOF mice. Following slow-pressor AngII infusion, males, as well as early and late stage AOF females had elevated blood pressure. Significantly, only late stage-AOF female mice infused with AngII had an increase in GluA1 near the plasma membrane in dendrites of ERβ-expressing PVN neurons. In contrast, prior studies reported that plasmalemmal NMDA GluN1 increased in ERβ-expressing PVN dendrites in males and early, but not late stage AOF females. Together, these findings reveal that early and late stage AOF female mice display unique molecular signatures of long-lasting synaptic strength prior to, and following hypertension.
Collapse
Affiliation(s)
- Astrid C Ovalles
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Natalina H Contoreggi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Jose Marques-Lopes
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Tracey A Van Kempen
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Elizabeth M Waters
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Michael J Glass
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA.
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA; Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
49
|
Abstract
Rett syndrome (RTT) is a severe neurological disorder caused by mutations in the gene encoding methyl-CpG-binding protein 2 (MeCP2). Almost two decades of research into RTT have greatly advanced our understanding of the function and regulation of the multifunctional protein MeCP2. Here, we review recent advances in understanding how loss of MeCP2 impacts different stages of brain development, discuss recent findings demonstrating the molecular role of MeCP2 as a transcriptional repressor, assess primary and secondary effects of MeCP2 loss and examine how loss of MeCP2 can result in an imbalance of neuronal excitation and inhibition at the circuit level along with dysregulation of activity-dependent mechanisms. These factors present challenges to the search for mechanism-based therapeutics for RTT and suggest specific approaches that may be more effective than others.
Collapse
|
50
|
Bosiacki M, Gąssowska-Dobrowolska M, Kojder K, Fabiańska M, Jeżewski D, Gutowska I, Lubkowska A. Perineuronal Nets and Their Role in Synaptic Homeostasis. Int J Mol Sci 2019; 20:ijms20174108. [PMID: 31443560 PMCID: PMC6747153 DOI: 10.3390/ijms20174108] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/17/2022] Open
Abstract
Extracellular matrix (ECM) molecules that are released by neurons and glial cells form perineuronal nets (PNNs) and modulate many neuronal and glial functions. PNNs, whose structure is still not known in detail, surround cell bodies and dendrites, which leaves free space for synapses to come into contact. A reduction in the expression of many neuronal ECM components adversely affects processes that are associated with synaptic plasticity, learning, and memory. At the same time, increased ECM activity, e.g., as a result of astrogliosis following brain damage or in neuroinflammation, can also have harmful consequences. The therapeutic use of enzymes to attenuate elevated neuronal ECM expression after injury or in Alzheimer’s disease has proven to be beneficial by promoting axon growth and increasing synaptic plasticity. Yet, severe impairment of ECM function can also lead to neurodegeneration. Thus, it appears that to ensure healthy neuronal function a delicate balance of ECM components must be maintained. In this paper we review the structure of PNNs and their components, such as hyaluronan, proteoglycans, core proteins, chondroitin sulphate proteoglycans, tenascins, and Hapln proteins. We also characterize the role of ECM in the functioning of the blood-brain barrier, neuronal communication, as well as the participation of PNNs in synaptic plasticity and some clinical aspects of perineuronal net impairment. Furthermore, we discuss the participation of PNNs in brain signaling. Understanding the molecular foundations of the ways that PNNs participate in brain signaling and synaptic plasticity, as well as how they change in physiological and pathological conditions, may help in the development of new therapies for many degenerative and inflammatory diseases of the brain.
Collapse
Affiliation(s)
- Mateusz Bosiacki
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, Żołnierska 54 Str., 71-210 Szczecin, Poland
| | - Magdalena Gąssowska-Dobrowolska
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5 Str., 02-106 Warsaw, Poland
| | - Klaudyna Kojder
- Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Marta Fabiańska
- Institute of Philosophy, University of Szczecin, Krakowska 71-79 Str., 71-017 Szczecin, Poland
| | - Dariusz Jeżewski
- Department of Neurosurgery and Pediatric Neurosurgery, Department of Applied Neurocognitivistics, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Izabela Gutowska
- Department of Human Nutrition and Metabolomics, Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Broniewskiego 24 Str., 71-252 Szczecin, Poland
| | - Anna Lubkowska
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, Żołnierska 54 Str., 71-210 Szczecin, Poland.
| |
Collapse
|