1
|
Yang S, Ma Y, Gao J, Wang X, Weng F, Zhang Y, Xu Y. Exploring the response and prediction of phytoplankton to environmental factors in eutrophic marine areas using interpretable machine learning methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175600. [PMID: 39159687 DOI: 10.1016/j.scitotenv.2024.175600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 08/10/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
Coastal marine areas are frequently affected by human activities and face ecological and environmental threats, such as algal blooms and climate change. The community structure of phytoplankton-primary producers in marine ecosystems-is highly sensitive to environmental factors, such as temperature, salinity, and nutrients. However, traditional methods for exploring the relationship between phytoplankton communities and environmental factors in eutrophic marine areas are limited by various factors. Therefore, this study employed interpretable machine learning models, integrating high-dimensional data analysis and complex system modeling, to quantitatively and thoroughly analyze the dynamic relationship between phytoplankton communities and environmental variables in high-frequency samples collected over 53 weeks from eutrophic marine areas. The cell abundance of phytoplankton exhibited a distinct "two-peak pattern" variation. Interpretable machine learning model analysis revealed the dynamic contributions of different environmental factors during changes in the phytoplankton community structure. The results showed that temperature was a key environmental factor that affected phytoplankton growth during peak periods. In addition, the contribution of salinity increased during the second peak in phytoplankton abundance, highlighting its central role in the ecological dynamics of this phase. During green tide outbreaks, particularly in Area 01, the contributions of factors such as temperature and salinity increased, whereas those of phosphates and silicates decreased, indicating that green tide outbreaks substantially altered the nutritional dynamics of the ecosystem. Furthermore, different phytoplankton species, such as Skeletonema costatum, Thalassiosira spp., and Nitzschia spp., exhibit varying responses to environmental factors. Hence, the predictions made using random forest and generalized additive models for phytoplankton cell abundance in two marine areas revealed complex nonlinear relationships between environmental factors, such as temperature, salinity, and phytoplankton abundance.
Collapse
Affiliation(s)
- Shimin Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Yuanting Ma
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Jie Gao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiajie Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Futian Weng
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361005, China; Data Mining Research Center, Xiamen University, Xiamen 361005, China
| | - Yan Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yan Xu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
2
|
Yun J, Jung JY, Kwon MJ, Seo J, Nam S, Lee YK, Kang H. Temporal Variations Rather than Long-Term Warming Control Extracellular Enzyme Activities and Microbial Community Structures in the High Arctic Soil. MICROBIAL ECOLOGY 2022; 84:168-181. [PMID: 34498119 DOI: 10.1007/s00248-021-01859-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
In Arctic soils, warming accelerates decomposition of organic matter and increases emission of greenhouse gases (GHGs), contributing to a positive feedback to climate change. Although microorganisms play a key role in the processes between decomposition of organic matter and GHGs emission, the effects of warming on temporal responses of microbial activity are still elusive. In this study, treatments of warming and precipitation were conducted from 2012 to 2018 in Cambridge Bay, Canada. Soils of organic and mineral layers were collected monthly from June to September in 2018 and analyzed for extracellular enzyme activities and bacterial community structures. The activity of hydrolases was the highest in June and decreased thereafter over summer in both organic and mineral layers. Bacterial community structures changed gradually over summer, and the responses were distinct depending on soil layers and environmental factors; water content and soil temperature affected the shift of bacterial community structures in both layers, whereas bacterial abundance, dissolved organic carbon, and inorganic nitrogen did so in the organic layer only. The activity of hydrolases and bacterial community structures did not differ significantly among treatments but among months. Our results demonstrate that temporal variations may control extracellular enzyme activities and microbial community structure rather than the small effect of warming over a long period in high Arctic soil. Although the effects of the treatments on microbial activity were minor, our study provides insight that microbial activity may increase due to an increase in carbon availability, if the growing season is prolonged in the Arctic.
Collapse
Affiliation(s)
- Jeongeun Yun
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Korea
| | - Ji Young Jung
- Korea Polar Research Institute, Incheon, 21990, Korea
| | - Min Jung Kwon
- Laboratoire Des Sciences du Climat Et de I'Environnement, LSCE, 91191, Gif sur Yvette, France
| | - Juyoung Seo
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Korea
| | - Sungjin Nam
- Korea Polar Research Institute, Incheon, 21990, Korea
| | - Yoo Kyung Lee
- Korea Polar Research Institute, Incheon, 21990, Korea
| | - Hojeong Kang
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
3
|
Linking climate and infectious disease trends in the Northern/Arctic Region. Sci Rep 2021; 11:20678. [PMID: 34667214 PMCID: PMC8526576 DOI: 10.1038/s41598-021-00167-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/07/2021] [Indexed: 12/01/2022] Open
Abstract
Recognition of climate-sensitive infectious diseases is crucial for mitigating health threats from climate change. Recent studies have reasoned about potential climate sensitivity of diseases in the Northern/Arctic Region, where climate change is particularly pronounced. By linking disease and climate data for this region, we here comprehensively quantify empirical climate-disease relationships. Results show significant relationships of borreliosis, leptospirosis, tick-borne encephalitis (TBE), Puumala virus infection, cryptosporidiosis, and Q fever with climate variables related to temperature and freshwater conditions. These data-driven results are consistent with previous reasoning-based propositions of climate-sensitive infections as increasing threats for humans, with notable exceptions for TBE and leptospirosis. For the latter, the data imply decrease with increasing temperature and precipitation experienced in, and projected for, the Northern/Arctic Region. This study provides significant data-based underpinning for simplified empirical assessments of the risks of several infectious diseases under future climate change.
Collapse
|
4
|
Piironen A, Paasivaara A, Laaksonen T. Birds of three worlds: moult migration to high Arctic expands a boreal-temperate flyway to a third biome. MOVEMENT ECOLOGY 2021; 9:47. [PMID: 34526145 PMCID: PMC8444479 DOI: 10.1186/s40462-021-00284-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Knowledge on migration patterns and flyways is a key for understanding the dynamics of migratory populations and evolution of migratory behaviour. Bird migration is usually considered to be movements between breeding and wintering areas, while less attention has been paid to other long-distance movements such as moult migration. METHODS We use high-resolution satellite-tracking data from 58 taiga bean geese Anser fabalis fabalis from the years 2019-2020, to study their moult migration during breeding season. We show the moulting sites, estimate the migratory connectivity between the breeding and the moulting sites, and estimate the utilization distributions during moult. We reveal migration routes and compare the length and timing of migration between moult migrants and successful breeders. RESULTS All satellite-tracked non-breeding and unsuccessfully breeding taiga bean geese migrated annually to the island of Novaya Zemlya in the high Arctic for wing moult, meaning that a large part of the population gathers at the moulting sites outside the breeding range annually for approximately three months. Migratory connectivity between breeding and moulting sites was very low (rm = - 0.001, 95% CI - 0.1562-0.2897), indicating that individuals from different breeding grounds mix with each other on the moulting sites. Moult migrants began fall migration later in autumn than successful breeders, and their overall annual migration distance was over twofold compared to the successful breeders. CONCLUSIONS Regular moult migration makes the Arctic an equally relevant habitat for the taiga bean goose population as their boreal breeding and temperate wintering grounds, and links ecological communities in these biomes. Moult migration plays an important role in the movement patterns and spatio-temporal distribution of the population. Low migratory connectivity between breeding and moulting sites can potentially contribute to the gene flow within the population. Moult migration to the high Arctic exposes the population to the rapid impacts of global warming to Arctic ecosystems. Additionally, Novaya Zemlya holds radioactive contaminants from various sources, which might still pose a threat to moult migrants. Generally, these results show that moult migration may essentially contribute to the way we should consider bird migration and migratory flyways.
Collapse
Affiliation(s)
- Antti Piironen
- University of Turku, Vesilinnantie 5, 20500, Turku, Finland.
| | - Antti Paasivaara
- Natural Resource Institute Finland, University of Oulu, P.O. Box 413, 90014, Oulu, Finland
| | - Toni Laaksonen
- University of Turku, Vesilinnantie 5, 20500, Turku, Finland
| |
Collapse
|
5
|
Svendsen L, Keenlyside N, Muilwijk M, Bethke I, Omrani NE, Gao Y. Pacific contribution to decadal surface temperature trends in the Arctic during the twentieth century. CLIMATE DYNAMICS 2021; 57:3223-3243. [PMID: 34744316 PMCID: PMC8531109 DOI: 10.1007/s00382-021-05868-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Instrumental records suggest multidecadal variability in Arctic surface temperature throughout the twentieth century. This variability is caused by a combination of external forcing and internal variability, but their relative importance remains unclear. Since the early twentieth century Arctic warming has been linked to decadal variability in the Pacific, we hypothesize that the Pacific could impact decadal temperature trends in the Arctic throughout the twentieth century. To investigate this, we compare two ensembles of historical all-forcing twentieth century simulations with the Norwegian Earth System Model (NorESM): (1) a fully coupled ensemble and (2) an ensemble where momentum flux anomalies from reanalysis are prescribed over the Indo-Pacific Ocean to constrain Pacific sea surface temperature variability. We find that the combined effect of tropical and extratropical Pacific decadal variability can explain up to ~ 50% of the observed decadal surface temperature trends in the Arctic. The Pacific-Arctic connection involves both lower tropospheric horizontal advection and subsidence-induced adiabatic heating, mediated by Aleutian Low variations. This link is detected across the twentieth century, but the response in Arctic surface temperature is moderated by external forcing and surface feedbacks. Our results also indicate that increased ocean heat transport from the Atlantic to the Arctic could have compensated for the impact of a cooling Pacific at the turn of the twenty-first century. These results have implications for understanding the present Arctic warming and future climate variations.
Collapse
Affiliation(s)
- Lea Svendsen
- Geophysical Institute, University of Bergen and Bjerknes Centre for Climate Research, Bergen, Norway
| | - Noel Keenlyside
- Geophysical Institute, University of Bergen and Bjerknes Centre for Climate Research, Bergen, Norway
- Nansen Environmental and Remote Sensing Center and Bjerknes Centre for Climate Research, Bergen, Norway
| | - Morven Muilwijk
- Geophysical Institute, University of Bergen and Bjerknes Centre for Climate Research, Bergen, Norway
| | - Ingo Bethke
- Geophysical Institute, University of Bergen and Bjerknes Centre for Climate Research, Bergen, Norway
| | - Nour-Eddine Omrani
- Geophysical Institute, University of Bergen and Bjerknes Centre for Climate Research, Bergen, Norway
| | - Yongqi Gao
- Nansen Environmental and Remote Sensing Center and Bjerknes Centre for Climate Research, Bergen, Norway
- Nansen-Zhu International Research Center, Institute of Atmospheric Physics, Chinese Academy of Science, Beijing, China
| |
Collapse
|
6
|
Ectomycorrhizal fungi and trees: brothers in arms in the face of anthropogenic activities and their consequences. Symbiosis 2021. [DOI: 10.1007/s13199-021-00792-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Evaluation of the MODIS (C6) Daily Albedo Products for Livingston Island, Antarctic. REMOTE SENSING 2021. [DOI: 10.3390/rs13122357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although extensive research of Moderate Resolution Imaging Spectroradiometer (MODIS) albedo data is available on the Greenland Ice Sheet, there is a lack of studies evaluating MODIS albedo products over Antarctica. In this paper, MOD10A1, MYD10A1, and MCD43 (C6) daily albedo products were compared with the in situ albedo data on Livingston Island, South Shetland Islands (SSI), Antarctica, from 2006 to 2015, for both all-sky and clear-sky conditions, and for the entire study period and only the southern summer months. This is the first evaluation in which MYD10A1 and MCD43 are also included, which can be used to improve the accuracy of the snow BRDF/albedo modeling. The best correlation was obtained with MOD10A1 in clear-sky conditions (r = 0.7 and RMSE = 0.042). With MCD43, only data from the backup algorithm could be used, so the correlations obtained were lower (r = 0.6). However, it was found that there was no significant difference between the values obtained for all-sky and for clear-sky data. In addition, the MODIS products were found to describe the in situ data trend, with increasing albedo values in the range between 0.04 decade−1 and 0.16 decade−1. We conclude that MODIS daily albedo products can be applied to study the albedo in the study area.
Collapse
|
8
|
Belevich TA, Milyutina IA, Abyzova GA, Troitsky AV. The pico-sized Mamiellophyceae and a novel Bathycoccus clade from the summer plankton of Russian Arctic Seas and adjacent waters. FEMS Microbiol Ecol 2021; 97:6031321. [PMID: 33307552 DOI: 10.1093/femsec/fiaa251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Global climate changes and anthropogenic activity greatly impact Arctic marine biodiversity including phytoplankton which contribute greatly to atmospheric oxygen production. Thus the study of microalgae has rising topicality. Class Mamiellophyceae is an important component of phototrophic picoplankton. To gain more knowledge about Mamiellophyceae distribution and diversity special studies were performed in such remote areas as the Russian Arctic seas. A metabarcoding of pico-sized Mamiellophyceae was undertaken by high-throughput sequencing of the 18S rRNA gene sequence V4 region from samples collected in July-September 2017 in the Barents, Kara and Laptev seas, and in the adjacent waters of the Norwegian Sea. Our study is the first to show that Mamiellophyceae among the summer picoplankton of Russian Arctic seas are diverse and represented by 16 algae species/phylotypes. We discovered a new candidate species of Bathycoccus assigned to a new Bathycoccus clade A-uncultured Bathycoccus Kara 2017. It was found that several Micromonas species can co-exist, with Micromonas polaris dominating north of 72°N. The presence of Ostreococcus tauri, Ostreococcus lucimarinus and Ostreococcus mediterraneus at high latitudes beyond 65°N was documented for the first time, similar to findings for some other taxa. Our results will be important for obtaining a global view of Mamiellophyceae community dynamics.
Collapse
Affiliation(s)
- Tatiana A Belevich
- Lomonosov Moscow State University, Biological Faculty, Moscow, Russia.,Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, Russia
| | - Irina A Milyutina
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, Russia
| | - Galina A Abyzova
- Shirshov Institute of Oceanology, Russian Academy of Science, Moscow, Russia
| | - Aleksey V Troitsky
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, Russia
| |
Collapse
|
9
|
Bruhn CS, Wohlrab S, Krock B, Lundholm N, John U. Seasonal plankton succession is in accordance with phycotoxin occurrence in Disko Bay, West Greenland. HARMFUL ALGAE 2021; 103:101978. [PMID: 33980456 DOI: 10.1016/j.hal.2021.101978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Harmful algal blooms (HABs) are occurring more frequently in the world's oceans, probably as a consequence of climate change. HABs have not been considered a serious concern in the Arctic, even though the Arctic warms faster than any other region. While phycotoxins and toxin-producing phytoplankton have been found in Arctic waters on several occasions, there is a lack of information on seasonal succession of species and whether the occurrence of harmful species correlates with the presence of their respective phycotoxins. Hence, there is no baseline to assess future changes of HABs in this area. Here, we investigated two periods, from winter to spring and from the spring bloom until summer, in Disko Bay, West Greenland and followed the succession of toxins and their producers using metabarcoding, as well as analyses of particulate and dissolved toxins. We observed a typical seasonal succession with a spring bloom dominated by diatoms, followed by dinoflagellates in summer, with the two most important potentially toxic taxa found being Pseudo-nitzschia spp. and Alexandrium ostenfeldii. The Pseudo-nitzschia spp. peak correlated with a clear increase in particulate domoic acid, reaching 0.05 pg/L. Presence of Alexandrium ostenfeldii could be linked to an increase in spirolides, up to 56.4 pg/L in the particulate phase. Generally, the majority of detected dissolved toxins followed the succession pattern of the particulate toxins with a delay in time. Our results further show that Arctic waters are a suitable habitat for various toxin producers and that the strong seasonality of this environment is reflected by changing abundances of different toxins that pose a potential threat to the ecosystem and its beneficiaries.
Collapse
Affiliation(s)
- Claudia Sabine Bruhn
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany.
| | - Sylke Wohlrab
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany; Helmholtz Institute for Functional Marine Biodiversity, Ammerländer Heersstraße 231, 26129 Oldenburg, Germany
| | - Bernd Krock
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Nina Lundholm
- Natural History Museum of Denmark, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen, Denmark
| | - Uwe John
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany; Helmholtz Institute for Functional Marine Biodiversity, Ammerländer Heersstraße 231, 26129 Oldenburg, Germany.
| |
Collapse
|
10
|
Kershaw JL, Ramp CA, Sears R, Plourde S, Brosset P, Miller PJO, Hall AJ. Declining reproductive success in the Gulf of St. Lawrence's humpback whales (Megaptera novaeangliae) reflects ecosystem shifts on their feeding grounds. GLOBAL CHANGE BIOLOGY 2020; 27:1027-1041. [PMID: 33368899 DOI: 10.1111/gcb.15466] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Climate change has resulted in physical and biological changes in the world's oceans. How the effects of these changes are buffered by top predator populations, and therefore how much plasticity lies at the highest trophic levels, are largely unknown. Here endocrine profiling, longitudinal observations of known individuals over 15 years between 2004 and 2018, and environmental data are combined to examine how the reproductive success of a top marine predator is being affected by ecosystem change. The Gulf of St. Lawrence, Canada, is a major summer feeding ground for humpback whales (Megaptera novaeangliae) in the North Atlantic. Blubber biopsy samples (n = 185) of female humpback whales were used to investigate variation in pregnancy rates through the quantification of progesterone. Annual pregnancy rates showed considerable variability, with no overall change detected over the study. However, a total of 457 photo-identified adult female sightings records with/without calves were collated, and showed that annual calving rates declined significantly. The probability of observing cow-calf pairs was related to favourable environmental conditions in the previous year; measured by herring spawning stock biomass, Calanus spp. abundance, overall copepod abundance and phytoplankton bloom magnitude. Approximately 39% of identified pregnancies were unsuccessful over the 15 years, and the average annual pregnancy rate was higher than the average annual calving rate at ~37% and ~23% respectively. Together, these data suggest that the declines in reproductive success could be, at least in part, the result of females being unable to accumulate the energy reserves necessary to maintain pregnancy and/or meet the energetic demands of lactation in years of poorer prey availability rather than solely an inability to become pregnant. The decline in calving rates over a period of major environmental variability may suggest that this population has limited resilience to such ecosystem change.
Collapse
Affiliation(s)
- Joanna L Kershaw
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
- Mingan Island Cetacean Study, Saint Lambert, QC, Canada
| | - Christian A Ramp
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
- Mingan Island Cetacean Study, Saint Lambert, QC, Canada
| | - Richard Sears
- Mingan Island Cetacean Study, Saint Lambert, QC, Canada
| | - Stéphane Plourde
- Department of Fisheries and Oceans Canada, Maurice Lamontagne Institute, Mont-Joli, QC, Canada
| | - Pablo Brosset
- Department of Fisheries and Oceans Canada, Maurice Lamontagne Institute, Mont-Joli, QC, Canada
- Laboratoire de Biologie Halieutique, Ifremer, Plouzané, France
- Laboratoire des Sciences de l'Environnement Marin - IUEM, Université de Brest - UMR 6539 CNRS/UBO/IRD/Ifremer, Plouzané, France
| | - Patrick J O Miller
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
| | - Ailsa J Hall
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
| |
Collapse
|
11
|
Gurarie E, Hebblewhite M, Joly K, Kelly AP, Adamczewski J, Davidson SC, Davison T, Gunn A, Suitor MJ, Fagan WF, Boelman N. Tactical departures and strategic arrivals: Divergent effects of climate and weather on caribou spring migrations. Ecosphere 2019. [DOI: 10.1002/ecs2.2971] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Eliezer Gurarie
- Department of Biology University of Maryland College Park Maryland 20742 USA
- Wildlife Biology Program Department of Ecosystem and Conservation Sciences W.A. Franke College of Forestry and Conservation University of Montana Missoula Montana 59812 USA
| | - Mark Hebblewhite
- Wildlife Biology Program Department of Ecosystem and Conservation Sciences W.A. Franke College of Forestry and Conservation University of Montana Missoula Montana 59812 USA
| | - Kyle Joly
- National Park Service Gates of the Arctic National Park and Preserve Arctic Inventory and Monitoring Network Fairbanks Alaska 99709 USA
| | - Allicia P. Kelly
- Department of Environment and Natural Resources Government of the Northwest Territories Fort Smith Northwest Territories Canada
| | - Jan Adamczewski
- Department of Environment and Natural Resources Government of the Northwest Territories Yellowknife Northwest Territories Canada
| | - Sarah C. Davidson
- Max Planck Institute of Animal Behavior Am Obstberg 1 Radolfzell 78315 Germany
- Department of Civil, Environmental and Geodetic Engineering The Ohio State University Columbus Ohio 43210 USA
| | - Tracy Davison
- Department of Environment and Natural Resources Government of the Northwest Territories Inuvik Northwest Territories Canada
| | - Anne Gunn
- Circumarctic Rangifer Monitoring and Assessment Network (CARMA) Salt Spring Island British Columbia V8K 1V1 Canada
| | - Michael J. Suitor
- Fish and Wildlife Branch Environment Yukon, Yukon Government Dawson City Yukon Canada
| | - William F. Fagan
- Department of Biology University of Maryland College Park Maryland 20742 USA
| | - Natalie Boelman
- Lamont‐Doherty Earth Observatory Columbia University Palisades New York 10964 USA
| |
Collapse
|
12
|
Snow Albedo Seasonality and Trend from MODIS Sensor and Ground Data at Johnsons Glacier, Livingston Island, Maritime Antarctica. SENSORS 2019; 19:s19163569. [PMID: 31443333 PMCID: PMC6720592 DOI: 10.3390/s19163569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 11/17/2022]
Abstract
The aim of this work is to investigate whether snow albedo seasonality and trend under all sky conditions at Johnsons Glacier (Livingston Island, Antarctica) can be tracked using the Moderate Resolution Imaging Spectroradiometer (MODIS) snow albedo daily product MOD10A1. The time span is from December 2006 to February 2015. As the MOD10A1 snow albedo product has never been used in Antarctica before, we also assess the performance for the MOD10A1 cloud mask. The motivation for this work is the need for a description of snow albedo under all sky conditions (including overcast days) using satellite data with mid-spatial resolution. In-situ albedo was filtered with a 5-day windowed moving average, while the MOD10A1 data were filtered using a maximum filter. Both in-situ and MOD10A1 data follow an exponential decay during the melting season, with a maximum decay of 0.049/0.094 day-1 (in-situ/MOD10A1) for the 2006-2007 season and a minimum of 0.016/0.016 day-1 for the 2009-2010 season. The duration of the decay varies from 85 days (2007-2008) to 167 days (2013-2014). Regarding the albedo trend, both data sets exhibit a slight increase of albedo, which may be explained by an increase of snowfall along with a decrease of snowmelt in the study area. Annual albedo increases of 0.2% and 0.7% are obtained for in-situ and MOD10A1 data, respectively, which amount to respective increases of 2% and 6% in the period 2006-2015. We conclude that MOD10A1 can be used to characterize snow albedo seasonality and trend on Livingston Island when filtered with a maximum filter.
Collapse
|
13
|
Rosenstock N, Ellström M, Oddsdottir E, Sigurdsson BD, Wallander H. Carbon sequestration and community composition of ectomycorrhizal fungi across a geothermal warming gradient in an Icelandic spruce forest. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2018.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
14
|
Fabre C, Sauvage S, Tananaev N, Noël GE, Teisserenc R, Probst JL, Pérez JMS. Assessment of sediment and organic carbon exports into the Arctic ocean: The case of the Yenisei River basin. WATER RESEARCH 2019; 158:118-135. [PMID: 31022529 DOI: 10.1016/j.watres.2019.04.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 03/30/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
The export of organic carbon export by the rivers to the oceans either as particulate organic carbon (POC) or dissolved organic carbon (DOC) is very sensitive to climate change especially in permafrost affected catchments where soils are very rich in organic carbon. With global warming, organic carbon export in both forms is expected to increase in Arctic regions. It should affect contemporary biogeochemical cycles in rivers and oceans and therefore modify the whole food web. This study tries to understand complex processes involved in sediment, POC and DOC riverine transport in the Yenisei River basin and to quantify their respective fluxes at the river outlet. The SWAT (Soil and Water Assessment Tool) hydrological model is used in this study to simulate water and suspended sediment transfers in the largest Arctic river. POC and DOC export have been quantified with empirical models, adapted from literature for the study case. First, the hydrological model has been calibrated and validated at a daily time step for the 2003-2008 and the 2009-2016 periods respectively, and its output has been compared with field data for water and sediment fluxes. Based on conceptualization of transfer processes, calibration on climate and soil properties has been performed in order to correctly represent hydrology and sediment transfer in permafrost basins. Second, calibration of empirical models for DOC/POC transport have been performed by comparing their output with field data, available from 2003 to 2016. Our study reveals that SWAT is capable of correctly representing hydrology, sediment transfer, POC and DOC fluxes and their spatial distribution at a daily timescale, and outlines the links between these fluxes and permafrost features. Our simulation effort results in specific sediment, POC and DOC fluxes of 2.97 t km-2 yr-1, 0.13 t km-2 yr-1 and 1.14 t km-2 yr-1 for the period 2003-2016 which are in the range of previous estimates. About 60% of the total fluxes of sediment, DOC and POC to the Arctic Ocean are exported during the two months of the freshet. Spatial analysis show that permafrost-free areas have returned higher daily organic carbon export than permafrost affected zones, highlighting the thawing permafrost effect on carbon cycle in climate change feedback.
Collapse
Affiliation(s)
- C Fabre
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| | - S Sauvage
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - N Tananaev
- P.I. Melnikov Permafrost Institute, SB RAS, 677010, Merzlotnaya Str. 36, Yakutsk, Russia; Ugra Research Institute of Information Technologies, 628011, Khanty-Mansiysk Mira Str. 151, Russia
| | | | - R Teisserenc
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - J L Probst
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | | |
Collapse
|
15
|
Malyan SK, Kumar A, Baram S, Kumar J, Singh S, Kumar SS, Yadav AN. Role of Fungi in Climate Change Abatement Through Carbon Sequestration. RECENT ADVANCEMENT IN WHITE BIOTECHNOLOGY THROUGH FUNGI 2019. [DOI: 10.1007/978-3-030-25506-0_11] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
16
|
Liao L, Liu C, Zeng Y, Zhao B, Zhang J, Chen B. Multipartite genomes and the sRNome in response to temperature stress of an Arctic Pseudoalteromonas fuliginea BSW20308. Environ Microbiol 2018; 21:272-285. [PMID: 30362272 DOI: 10.1111/1462-2920.14455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 11/28/2022]
Abstract
Little is known about the survival and effect of rapid climate warming on Pseudoalteromonas in the Arctic, although it is abundant and important in this ecosystem. Here, we investigated a cold-adapted Pseudoalteromonas fuliginea BSW20308 from the Arctic Ocean, from the genome to its transcriptomic responses towards temperature changes. It contained two circular chromosomes, with the second chromosome probably evolved from an ancestral plasmid. The evolution of multipartite genomes may be advantageous for its survival under changing environments. RNA-seq analysis revealed the extensive involvement of sRNome in response to temperature stress for the first time, especially tmRNA and a novel Pf1 sRNA strongly induced under heat stress. The present study makes significant contributions towards the understanding of Pseudoalteromonas in two aspects: the genome structure and evolution of its two chromosomes, and the important discovery of the sRNome in response to temperature stress.
Collapse
Affiliation(s)
- Li Liao
- SOA Key Laboratory for Polar Science, Division of Polar Biological Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai, 200136, China
| | - Chun Liu
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Yinxin Zeng
- SOA Key Laboratory for Polar Science, Division of Polar Biological Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai, 200136, China
| | - Bin Zhao
- SOA Key Laboratory for Polar Science, Division of Polar Biological Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai, 200136, China.,School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Jin Zhang
- SOA Key Laboratory for Polar Science, Division of Polar Biological Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai, 200136, China
| | - Bo Chen
- SOA Key Laboratory for Polar Science, Division of Polar Biological Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai, 200136, China
| |
Collapse
|
17
|
Behrangi A, Gardner A, Reager JT, Fisher JB, Yang D, Huffman GJ, Adler RF. Using GRACE to estimate snowfall accumulation and assess gauge undercatch corrections in high latitudes. JOURNAL OF CLIMATE 2018; 31:8689-8704. [PMID: 32020987 PMCID: PMC6999696 DOI: 10.1175/jcli-d-18-0163.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ten years of terrestrial water storage anomalies from the Gravity Recovery and Climate Experiment (GRACE) were used to estimate high latitude snowfall accumulation using a mass balance approach. The estimates were used to assess two common gauge-undercatch correction factors (CFs): Legates climatology (CF-L) utilized in the Global Precipitation Climatology Project (GPCP), and Fuchs dynamic correction model (CF-F) used in the Global Precipitation Climatology Centre (GPCC) Monitoring product. The two CFs can be different by more than 50%. CF-L tended to exceed CF-F over northern Asia and Eurasia, while the opposite was observed over North America. Estimates of snowfall from GPCP, GPCC-L (GPCC corrected by CF-L), and GPCC-F (GPCC corrected by CF-F) were 62%, 64%, and 46% more than GPCC over northern Asia and Eurasia. GRACE-based estimate (49% more than GPCC) was the closest to GPCC-F. We found that as near surface air temperature decreases, the products increasingly underestimated the GRACE-based snowfall accumulation. Overall, GRACE showed that CFs are effective in improving GPCC estimates. Furthermore, our case studies and overall statistics suggest that CF-F is likely more effective than CF-L in most of the high latitude regions studied here. GPCP showed generally better skill than GPCC-L, which might be related to the use of satellite data or additional quality controls on gauge inputs to GPCP. This study suggests that GPCP can be improved if it employs CF-L instead of CF-F to correct for gauge undercatch. However, this implementation requires further studies, region-specific analysis, and operational considerations.
Collapse
Affiliation(s)
- Ali Behrangi
- University of Arizona, Department of hydrology and atmospheric sciences, Tucson, AZ, USA
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Alex Gardner
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - John T. Reager
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Joshua B. Fisher
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Daqing Yang
- National Hydrology Research Center, Environment Canada, Saskatoon, Saskatchewan, Canada
| | | | - Robert F. Adler
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
18
|
Mucha J, Peay KG, Smith DP, Reich PB, Stefański A, Hobbie SE. Effect of Simulated Climate Warming on the Ectomycorrhizal Fungal Community of Boreal and Temperate Host Species Growing Near Their Shared Ecotonal Range Limits. MICROBIAL ECOLOGY 2018; 75:348-363. [PMID: 28741266 PMCID: PMC5742605 DOI: 10.1007/s00248-017-1044-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 07/13/2017] [Indexed: 05/05/2023]
Abstract
Ectomycorrhizal (ECM) fungi can influence the establishment and performance of host species by increasing nutrient and water absorption. Therefore, understanding the response of ECM fungi to expected changes in the global climate is crucial for predicting potential changes in the composition and productivity of forests. While anthropogenic activity has, and will continue to, cause global temperature increases, few studies have investigated how increases in temperature will affect the community composition of ectomycorrhizal fungi. The effects of global warming are expected to be particularly strong at biome boundaries and in the northern latitudes. In the present study, we analyzed the effects of experimental manipulations of temperature and canopy structure (open vs. closed) on ectomycorrhizal fungi identified from roots of host seedlings through 454 pyrosequencing. The ecotonal boundary site selected for the study was between the southern boreal and temperate forests in northern Minnesota, USA, which is the southern limit range for Picea glauca and Betula papyrifera and the northern one for Pinus strobus and Quercus rubra. Manipulations that increased air and soil temperature by 1.7 and 3.4 °C above ambient temperatures, respectively, did not change ECM richness but did alter the composition of the ECM community in a manner dependent on host and canopy structure. The prediction that colonization of boreal tree species with ECM symbionts characteristic of temperate species would occur was not substantiated. Overall, only a small proportion of the ECM community appears to be strongly sensitive to warming.
Collapse
Affiliation(s)
- Joanna Mucha
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland.
| | - Kabir G Peay
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Dylan P Smith
- University of California, California Institute for Quantitative Biosciences, Berkeley, CA, USA
| | - Peter B Reich
- Department of Forest Resources, University of Minnesota, St. Paul, MN, USA
- Western Sydney University, Hawkesbury Institute for the Environment, Penrith, NSW, Australia
| | - Artur Stefański
- Department of Forest Resources, University of Minnesota, St. Paul, MN, USA
| | - Sarah E Hobbie
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
19
|
Mazzola M, Viola AP, Lanconelli C, Vitale V. Atmospheric observations at the Amundsen-Nobile Climate Change Tower in Ny-Ålesund, Svalbard. RENDICONTI LINCEI 2016. [DOI: 10.1007/s12210-016-0540-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Mundra S, Halvorsen R, Kauserud H, Bahram M, Tedersoo L, Elberling B, Cooper EJ, Eidesen PB. Ectomycorrhizal and saprotrophic fungi respond differently to long-term experimentally increased snow depth in the High Arctic. Microbiologyopen 2016; 5:856-869. [PMID: 27255701 PMCID: PMC5061721 DOI: 10.1002/mbo3.375] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 04/11/2016] [Accepted: 04/18/2016] [Indexed: 11/24/2022] Open
Abstract
Changing climate is expected to alter precipitation patterns in the Arctic, with consequences for subsurface temperature and moisture conditions, community structure, and nutrient mobilization through microbial belowground processes. Here, we address the effect of increased snow depth on the variation in species richness and community structure of ectomycorrhizal (ECM) and saprotrophic fungi. Soil samples were collected weekly from mid‐July to mid‐September in both control and deep snow plots. Richness of ECM fungi was lower, while saprotrophic fungi was higher in increased snow depth plots relative to controls. [Correction added on 23 September 2016 after first online publication: In the preceding sentence, the richness of ECM and saprotrophic fungi were wrongly interchanged and have been fixed in this current version.] ECM fungal richness was related to soil NO3‐N, NH4‐N, and K; and saprotrophic fungi to NO3‐N and pH. Small but significant changes in the composition of saprotrophic fungi could be attributed to snow treatment and sampling time, but not so for the ECM fungi. Delayed snow melt did not influence the temporal variation in fungal communities between the treatments. Results suggest that some fungal species are favored, while others are disfavored resulting in their local extinction due to long‐term changes in snow amount. Shifts in species composition of fungal functional groups are likely to affect nutrient cycling, ecosystem respiration, and stored permafrost carbon.
Collapse
Affiliation(s)
- Sunil Mundra
- The University Centre in Svalbard, P.O. Box 156, NO-9171, Longyearbyen, Norway. , .,Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, NO-0316, Oslo, Norway. ,
| | - Rune Halvorsen
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Håvard Kauserud
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, NO-0316, Oslo, Norway
| | - Mohammad Bahram
- Institute of Ecology and Earth Sciences, Tartu University, 14A Ravila, 50411, Tartu, Estonia.,Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, SE 75236, Uppsala, Sweden
| | - Leho Tedersoo
- Natural History Museum, University of Tartu, 14A Ravila, 50411, Tartu, Estonia
| | - Bo Elberling
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, DK-1350, Copenhagen, Denmark
| | - Elisabeth J Cooper
- Department of Arctic and Marine Biology, Institute of Biosciences Fisheries and Economics, UiT The Arctic University of Norway, N-9037, Tromsø, Norway
| | | |
Collapse
|
21
|
Novichkova AA, Azovsky AI. Factors affecting regional diversity and distribution of freshwater microcrustaceans (Cladocera, Copepoda) at high latitudes. Polar Biol 2016. [DOI: 10.1007/s00300-016-1943-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Gauthier G, Berteaux D, Bêty J, Tarroux A, Therrien JF, McKinnon L, Legagneux P, Cadieux MC. The tundra food web of Bylot Island in a changing climate and the role of exchanges between ecosystems. ECOSCIENCE 2015. [DOI: 10.2980/18-3-3453] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gilles Gauthier
- Département de biologie and Centre d'études nordiques, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Dominique Berteaux
- Canada Research Chair in Conservation of Northern Ecosystems and Centre d'études nordiques, Université du Québec à Rimouski, Rimouski, Québec G5L 3A1, Canada
| | - Joël Bêty
- Canada Research Chair in Conservation of Northern Ecosystems and Centre d'études nordiques, Université du Québec à Rimouski, Rimouski, Québec G5L 3A1, Canada
| | - Arnaud Tarroux
- Canada Research Chair in Conservation of Northern Ecosystems and Centre d'études nordiques, Université du Québec à Rimouski, Rimouski, Québec G5L 3A1, Canada
| | - Jean-François Therrien
- Département de biologie and Centre d'études nordiques, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Laura McKinnon
- Canada Research Chair in Conservation of Northern Ecosystems and Centre d'études nordiques, Université du Québec à Rimouski, Rimouski, Québec G5L 3A1, Canada
| | - Pierre Legagneux
- Département de biologie and Centre d'études nordiques, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Marie-Christine Cadieux
- Département de biologie and Centre d'études nordiques, Université Laval, Québec, Québec G1V 0A6, Canada
| |
Collapse
|
23
|
Blake LI, Tveit A, Øvreås L, Head IM, Gray ND. Response of Methanogens in Arctic Sediments to Temperature and Methanogenic Substrate Availability. PLoS One 2015; 10:e0129733. [PMID: 26083466 PMCID: PMC4471053 DOI: 10.1371/journal.pone.0129733] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 05/12/2015] [Indexed: 01/06/2023] Open
Abstract
Although cold environments are major contributors to global biogeochemical cycles, comparatively little is known about their microbial community function, structure, and limits of activity. In this study a microcosm based approach was used to investigate the effects of temperature, and methanogenic substrate amendment, (acetate, methanol and H2/CO2) on methanogen activity and methanogen community structure in high Arctic wetlands (Solvatnet and Stuphallet, Svalbard). Methane production was not detected in Stuphallet sediment microcosms (over a 150 day period) and occurred within Solvatnet sediments microcosms (within 24 hours) at temperatures from 5 to 40°C, the maximum temperature being at far higher than in situ maximum temperatures (which range from air temperatures of -1.4 to 14.1°C during summer months). Distinct responses were observed in the Solvatnet methanogen community under different short term incubation conditions. Specifically, different communities were selected at higher and lower temperatures. At lower temperatures (5°C) addition of exogenous substrates (acetate, methanol or H2/CO2) had no stimulatory effect on the rate of methanogenesis or on methanogen community structure. The community in these incubations was dominated by members of the Methanoregulaceae/WCHA2-08 family-level group, which were most similar to the psychrotolerant hydrogenotrophic methanogen Methanosphaerula palustris strain E1-9c. In contrast, at higher temperatures, substrate amendment enhanced methane production in H2/CO2 amended microcosms, and played a clear role in structuring methanogen communities. Specifically, at 30°C members of the Methanoregulaceae/WCHA2-08 predominated following incubation with H2/CO2, and Methanosarcinaceaeand Methanosaetaceae were enriched in response to acetate addition. These results may indicate that in transiently cold environments, methanogen communities can rapidly respond to moderate short term increases in temperature, but not necessarily to the seasonal release of previously frozen organic carbon from thawing permafrost soils. However, as temperatures increase such inputs of carbon will likely have a greater influence on methane production and methanogen community structure. Understanding the action and limitations of anaerobic microorganisms within cold environments may provide information which can be used in defining region-specific differences in the microbial processes; which ultimately control methane flux to the atmosphere.
Collapse
Affiliation(s)
- Lynsay I. Blake
- Newcastle University, School of Civil engineering and Geosciences, Newcastle upon Tyne, United Kingdom
| | - Alexander Tveit
- Department of Arctic and Marine Biology, University of Tromsø, Tromsø, Norway
| | - Lise Øvreås
- Department of Biology and Centre for Geobiology, University of Bergen, Bergen, Norway
| | - Ian M. Head
- Newcastle University, School of Civil engineering and Geosciences, Newcastle upon Tyne, United Kingdom
| | - Neil D. Gray
- Newcastle University, School of Civil engineering and Geosciences, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
24
|
Migratory Patterns of Wild Chinook Salmon Oncorhynchus tshawytscha Returning to a Large, Free-Flowing River Basin. PLoS One 2015; 10:e0123127. [PMID: 25919286 PMCID: PMC4412830 DOI: 10.1371/journal.pone.0123127] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 02/08/2015] [Indexed: 11/19/2022] Open
Abstract
Upriver movements were determined for Chinook salmon Oncorhynchus tshawytscha returning to the Yukon River, a large, virtually pristine river basin. These returns have declined dramatically since the late 1990s, and information is needed to better manage the run and facilitate conservation efforts. A total of 2,860 fish were radio tagged during 2002–2004. Most (97.5%) of the fish tracked upriver to spawning areas displayed continual upriver movements and strong fidelity to the terminal tributaries entered. Movement rates were substantially slower for fish spawning in lower river tributaries (28–40 km d-1) compared to upper basin stocks (52–62 km d-1). Three distinct migratory patterns were observed, including a gradual decline, pronounced decline, and substantial increase in movement rate as the fish moved upriver. Stocks destined for the same region exhibited similar migratory patterns. Individual fish within a stock showed substantial variation, but tended to reflect the regional pattern. Differences between consistently faster and slower fish explained 74% of the within-stock variation, whereas relative shifts in sequential movement rates between “hares” (faster fish becoming slower) and “tortoises” (slow but steady fish) explained 22% of the variation. Pulses of fish moving upriver were not cohesive. Fish tagged over a 4-day period took 16 days to pass a site 872 km upriver. Movement rates were substantially faster and the percentage of atypical movements considerably less than reported in more southerly drainages, but may reflect the pristine conditions within the Yukon River, wild origins of the fish, and discrete run timing of the returns. Movement data can provide numerous insights into the status and management of salmon returns, particularly in large river drainages with widely scattered fisheries where management actions in the lower river potentially impact harvests and escapement farther upstream. However, the substantial variation exhibited among individual fish within a stock can complicate these efforts.
Collapse
|
25
|
Ruthrauff DR, Dekinga A, Gill RE, van Gils JA, Piersma T. Ways to be different: foraging adaptations that facilitate higher intake rates in a northerly wintering shorebird compared with a low-latitude conspecific. ACTA ACUST UNITED AC 2015; 218:1188-97. [PMID: 25714569 DOI: 10.1242/jeb.108894] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 02/12/2015] [Indexed: 11/20/2022]
Abstract
At what phenotypic level do closely related subspecies that live in different environments differ with respect to food detection, ingestion and processing? This question motivated an experimental study on rock sandpipers (Calidris ptilocnemis). The species' nonbreeding range spans 20 deg of latitude, the extremes of which are inhabited by two subspecies: C. p. ptilocnemis that winters primarily in upper Cook Inlet, Alaska (61°N) and C. p. tschuktschorum that overlaps slightly with C. p. ptilocnemis but whose range extends much farther south (∼40°N). In view of the strongly contrasting energetic demands of their distinct nonbreeding distributions, we conducted experiments to assess the behavioral, physiological and sensory aspects of foraging and we used the bivalve Macoma balthica for all trials. C. p. ptilocnemis consumed a wider range of prey sizes, had higher maximum rates of energy intake, processed shell waste at higher maximum rates and handled prey more quickly. Notably, however, the two subspecies did not differ in their abilities to find buried prey. The subspecies were similar in size and had equally sized gizzards, but the more northern ptilocnemis individuals were 10-14% heavier than their same-sex tschuktschorum counterparts. The higher body mass in ptilocnemis probably resulted from hypertrophy of digestive organs (e.g. intestine, liver) related to digestion and nutrient assimilation. Given the previously established equality of the metabolic capacities of the two subspecies, we propose that the high-latitude nonbreeding range of ptilocnemis rock sandpipers is primarily facilitated by digestive (i.e. physiological) aspects of their foraging ecology rather than behavioral or sensory aspects.
Collapse
Affiliation(s)
- Daniel R Ruthrauff
- U.S. Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK 99508, USA Department of Marine Ecology, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, Den Burg, Texel 1790 AB, The Netherlands
| | - Anne Dekinga
- Department of Marine Ecology, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, Den Burg, Texel 1790 AB, The Netherlands
| | - Robert E Gill
- U.S. Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK 99508, USA
| | - Jan A van Gils
- Department of Marine Ecology, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, Den Burg, Texel 1790 AB, The Netherlands
| | - Theunis Piersma
- Department of Marine Ecology, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, Den Burg, Texel 1790 AB, The Netherlands Chair in Global Flyway Ecology, Animal Ecology Group, Centre for Ecological and Evolutionary Studies, University of Groningen, P.O. Box 11103, Groningen 9700 CC, The Netherlands
| |
Collapse
|
26
|
Tiller population dynamics of reciprocally transplanted
Eriophorum vaginatum
L. ecotypes in a changing climate. POPUL ECOL 2014. [DOI: 10.1007/s10144-014-0459-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Giordano D, Coppola D, Russo R, Tinajero-Trejo M, di Prisco G, Lauro F, Ascenzi P, Verde C. The globins of cold-adapted Pseudoalteromonas haloplanktis TAC125: from the structure to the physiological functions. Adv Microb Physiol 2014; 63:329-89. [PMID: 24054800 DOI: 10.1016/b978-0-12-407693-8.00008-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Evolution allowed Antarctic microorganisms to grow successfully under extreme conditions (low temperature and high O2 content), through a variety of structural and physiological adjustments in their genomes and development of programmed responses to strong oxidative and nitrosative stress. The availability of genomic sequences from an increasing number of cold-adapted species is providing insights to understand the molecular mechanisms underlying crucial physiological processes in polar organisms. The genome of Pseudoalteromonas haloplanktis TAC125 contains multiple genes encoding three distinct truncated globins exhibiting the 2/2 α-helical fold. One of these globins has been extensively characterised by spectroscopic analysis, kinetic measurements and computer simulation. The results indicate unique adaptive structural properties that enhance the overall flexibility of the protein, so that the structure appears to be resistant to pressure-induced stress. Recent results on a genomic mutant strain highlight the involvement of the cold-adapted globin in the protection against the stress induced by high O2 concentration. Moreover, the protein was shown to catalyse peroxynitrite isomerisation in vitro. In this review, we first summarise how cold temperatures affect the physiology of microorganisms and focus on the molecular mechanisms of cold adaptation revealed by recent biochemical and genetic studies. Next, since only in a very few cases the physiological role of truncated globins has been demonstrated, we also discuss the structural and functional features of the cold-adapted globin in an attempt to put into perspective what has been learnt about these proteins and their potential role in the biology of cold-adapted microorganisms.
Collapse
|
28
|
Pan-Arctic Climate and Land Cover Trends Derived from Multi-Variate and Multi-Scale Analyses (1981–2012). REMOTE SENSING 2014. [DOI: 10.3390/rs6032296] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Charmantier A, Gienapp P. Climate change and timing of avian breeding and migration: evolutionary versus plastic changes. Evol Appl 2014; 7:15-28. [PMID: 24454545 PMCID: PMC3894895 DOI: 10.1111/eva.12126] [Citation(s) in RCA: 233] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 09/26/2013] [Indexed: 11/27/2022] Open
Abstract
There are multiple observations around the globe showing that in many avian species, both the timing of migration and breeding have advanced, due to warmer springs. Here, we review the literature to disentangle the actions of evolutionary changes in response to selection induced by climate change versus changes due to individual plasticity, that is, the capacity of an individual to adjust its phenology to environmental variables. Within the abundant literature on climate change effects on bird phenology, only a small fraction of studies are based on individual data, yet individual data are required to quantify the relative importance of plastic versus evolutionary responses. While plasticity seems common and often adaptive, no study so far has provided direct evidence for an evolutionary response of bird phenology to current climate change. This assessment leads us to notice the alarming lack of tests for microevolutionary changes in bird phenology in response to climate change, in contrast with the abundant claims on this issue. In short, at present we cannot draw reliable conclusions on the processes underlying the observed patterns of advanced phenology in birds. Rapid improvements in techniques for gathering and analysing individual data offer exciting possibilities that should encourage research activity to fill this knowledge gap.
Collapse
Affiliation(s)
- Anne Charmantier
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 Campus CNRSMontpellier Cedex 5, France
| | - Phillip Gienapp
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW)Wageningen, The Netherlands
| |
Collapse
|
30
|
Fyfe JC, von Salzen K, Gillett NP, Arora VK, Flato GM, McConnell JR. One hundred years of Arctic surface temperature variation due to anthropogenic influence. Sci Rep 2013; 3:2645. [PMID: 24025852 PMCID: PMC3770965 DOI: 10.1038/srep02645] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 08/27/2013] [Indexed: 11/09/2022] Open
Abstract
Observations show that Arctic-average surface temperature increased from 1900 to 1940, decreased from 1940 to 1970, and increased from 1970 to present. Here, using new observational data and improved climate models employing observed natural and anthropogenic forcings, we demonstrate that contributions from greenhouse gas and aerosol emissions, along with explosive volcanic eruptions, explain most of this observed variation in Arctic surface temperature since 1900. In addition, climate model simulations without natural and anthropogenic forcings indicate very low probabilities that the observed trends in each of these periods were due to internal climate variability alone. Arctic climate change has important environmental and economic impacts and these results improve our understanding of past Arctic climate change and our confidence in future projections.
Collapse
Affiliation(s)
- John C Fyfe
- Canadian Centre for Climate Modelling and Analysis, Environment Canada, Victoria BC, V8W 3R4, Canada
| | | | | | | | | | | |
Collapse
|
31
|
McKinney MA, Iverson SJ, Fisk AT, Sonne C, Rigét FF, Letcher RJ, Arts MT, Born EW, Rosing-Asvid A, Dietz R. Global change effects on the long-term feeding ecology and contaminant exposures of East Greenland polar bears. GLOBAL CHANGE BIOLOGY 2013; 19:2360-72. [PMID: 23640921 DOI: 10.1111/gcb.12241] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 03/31/2013] [Indexed: 05/04/2023]
Abstract
Rapid climate changes are occurring in the Arctic, with substantial repercussions for arctic ecosystems. It is challenging to assess ecosystem changes in remote polar environments, but one successful approach has entailed monitoring the diets of upper trophic level consumers. Quantitative fatty acid signature analysis (QFASA) and fatty acid carbon isotope (δ(13) C-FA) patterns were used to assess diets of East Greenland (EG) polar bears (Ursus maritimus) (n = 310) over the past three decades. QFASA-generated diet estimates indicated that, on average, EG bears mainly consumed arctic ringed seals (47.5 ± 2.1%), migratory subarctic harp (30.6 ± 1.5%) and hooded (16.7 ± 1.3%) seals and rarely, if ever, consumed bearded seals, narwhals or walruses. Ringed seal consumption declined by 14%/decade over 28 years (90.1 ± 2.5% in 1984 to 33.9 ± 11.1% in 2011). Hooded seal consumption increased by 9.5%/decade (0.0 ± 0.0% in 1984 to 25.9 ± 9.1% in 2011). This increase may include harp seal, since hooded and harp seal FA signatures were not as well differentiated relative to other prey species. Declining δ(13) C-FA ratios supported shifts from more nearshore/benthic/ice-associated prey to more offshore/pelagic/open-water-associated prey, consistent with diet estimates. Increased hooded seal and decreased ringed seal consumption occurred during years when the North Atlantic Oscillation (NAO) was lower. Thus, periods with warmer temperatures and less sea ice were associated with more subarctic and less arctic seal species consumption. These changes in the relative abundance, accessibility, or distribution of arctic and subarctic marine mammals may have health consequences for EG polar bears. For example, the diet change resulted in consistently slower temporal declines in adipose levels of legacy persistent organic pollutants, as the subarctic seals have higher contaminant burdens than arctic seals. Overall, considerable changes are occurring in the EG marine ecosystem, with consequences for contaminant dynamics.
Collapse
|
32
|
Bailleul F, Grimm V, Chion C, Hammill M. Modeling implications of food resource aggregation on animal migration phenology. Ecol Evol 2013. [DOI: 10.1002/ece3.656] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
| | | | - Clément Chion
- Département de géographie; de l'Université de Montréal; C.P. 6128 succursale centre-ville; Montréal; Quebec; H3C 3J7; Canada
| | - Mike Hammill
- Maurice Lamontagne Institute; 850 route de la Mer; Mont-Joli; Quebec; G5H 3Z4; Canada
| |
Collapse
|
33
|
Comparison of Satellite-Derived Land Surface Temperature and Air Temperature from Meteorological Stations on the Pan-Arctic Scale. REMOTE SENSING 2013. [DOI: 10.3390/rs5052348] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Miller JH, Druckenmiller P, Bahn V. Antlers on the Arctic Refuge: capturing multi-generational patterns of calving ground use from bones on the landscape. Proc Biol Sci 2013; 280:20130275. [PMID: 23536601 DOI: 10.1098/rspb.2013.0275] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bone accumulations faithfully record historical ecological data on animal communities, and owing to millennial-scale bone survival on high-latitude landscapes, have exceptional potential for extending records on arctic ecosystems. For the Porcupine Caribou Herd, maintaining access to calving grounds on the Arctic National Wildlife Refuge (ANWR, Alaska) is a central management concern. However, variability in calving ground geography over the 30+ years of monitoring suggests establishing the impacts of climate change and potential petroleum development on future calving success could benefit from extended temporal perspectives. Using accumulations of female antlers (shed within days of calving) and neonatal skeletons, we test if caribou calving grounds develop measureable and characteristic bone accumulations and if skeletal data may be helpful in establishing a fuller, historically integrated understanding of landscape and habitat needs. Bone surveys of an important ANWR calving area reveal abundant shed antlers (reaching 10(3) km(-2)) and high proportional abundance of newborn skeletal individuals (up to 60% neonate). Openly vegetated riparian terraces, which compose less than 10 per cent of ANWR calving grounds, yield significantly higher antler concentrations than more abundant habitats traditionally viewed as primary calving terrain. Differences between habitats appear robust to potential differences in bone visibility. The distribution of antler weathering stages mirrors known multi-decadal calving histories and highlights portions of the antler accumulation that probably significantly extends records of calving activity. Death assemblages offer historically integrated ecological data valuable for the management and conservation of faunas across polar latitudes.
Collapse
Affiliation(s)
- Joshua H Miller
- Department of Geology, University of Cincinnati, 500 Geology/Physics Building, Cincinnati, OH 45221, USA.
| | | | | |
Collapse
|
35
|
Holden SR, Gutierrez A, Treseder KK. Changes in Soil Fungal Communities, Extracellular Enzyme Activities, and Litter Decomposition Across a Fire Chronosequence in Alaskan Boreal Forests. Ecosystems 2012. [DOI: 10.1007/s10021-012-9594-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
|
37
|
|
38
|
Christensen WF. Filtered kriging for spatial data with heterogeneous measurement error variances. Biometrics 2011; 67:947-57. [PMID: 21361891 DOI: 10.1111/j.1541-0420.2011.01563.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
When predicting values for the measurement-error-free component of an observed spatial process, it is generally assumed that the process has a common measurement error variance. However, it is often the case that each measurement in a spatial data set has a known, site-specific measurement error variance, rendering the observed process nonstationary. We present a simple approach for estimating the semivariogram of the unobservable measurement-error-free process using a bias adjustment of the classical semivariogram formula. We then develop a new kriging predictor that filters the measurement errors. For scenarios where each site's measurement error variance is a function of the process of interest, we recommend an approach that also uses a variance-stabilizing transformation. The properties of the heterogeneous variance measurement-error-filtered kriging (HFK) predictor and variance-stabilized HFK predictor, and the improvement of these approaches over standard measurement-error-filtered kriging are demonstrated using simulation. The approach is illustrated with climate model output from the Hudson Strait area in northern Canada. In the illustration, locations with high or low measurement error variances are appropriately down- or upweighted in the prediction of the underlying process, yielding a realistically smooth picture of the phenomenon of interest.
Collapse
|
39
|
Morgenstern O, Akiyoshi H, Bekki S, Braesicke P, Butchart N, Chipperfield MP, Cugnet D, Deushi M, Dhomse SS, Garcia RR, Gettelman A, Gillett NP, Hardiman SC, Jumelet J, Kinnison DE, Lamarque JF, Lott F, Marchand M, Michou M, Nakamura T, Olivié D, Peter T, Plummer D, Pyle JA, Rozanov E, Saint-Martin D, Scinocca JF, Shibata K, Sigmond M, Smale D, Teyssèdre H, Tian W, Voldoire A, Yamashita Y. Anthropogenic forcing of the Northern Annular Mode in CCMVal-2 models. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd013347] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Li H, Sheffield J, Wood EF. Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd012882] [Citation(s) in RCA: 468] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
41
|
Hobbs WO, Telford RJ, Birks HJB, Saros JE, Hazewinkel RRO, Perren BB, Saulnier-Talbot É, Wolfe AP. Quantifying recent ecological changes in remote lakes of North America and Greenland using sediment diatom assemblages. PLoS One 2010; 5:e10026. [PMID: 20368811 PMCID: PMC2848865 DOI: 10.1371/journal.pone.0010026] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 03/06/2010] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Although arctic lakes have responded sensitively to 20(th)-century climate change, it remains uncertain how these ecological transformations compare with alpine and montane-boreal counterparts over the same interval. Furthermore, it is unclear to what degree other forcings, including atmospheric deposition of anthropogenic reactive nitrogen (Nr), have participated in recent regime shifts. Diatom-based paleolimnological syntheses offer an effective tool for retrospective assessments of past and ongoing changes in remote lake ecosystems. METHODOLOGY/PRINCIPAL FINDINGS We synthesized 52 dated sediment diatom records from lakes in western North America and west Greenland, spanning broad latitudinal and altitudinal gradients, and representing alpine (n = 15), arctic (n = 20), and forested boreal-montane (n = 17) ecosystems. Diatom compositional turnover (beta-diversity) during the 20(th) century was estimated using Detrended Canonical Correspondence Analysis (DCCA) for each site and compared, for cores with sufficiently robust chronologies, to both the 19(th) century and the prior approximately 250 years (Little Ice Age). For both arctic and alpine lakes, beta-diversity during the 20(th) century is significantly greater than the previous 350 years, and increases with both latitude and altitude. Because no correlation is apparent between 20(th)-century diatom beta-diversity and any single physical or limnological parameter (including lake and catchment area, maximum depth, pH, conductivity, [NO(3)(-)], modeled Nr deposition, ambient summer and winter air temperatures, and modeled temperature trends 1948-2008), we used Principal Components Analysis (PCA) to summarize the amplitude of recent changes in relationship to lake pH, lake:catchment area ratio, modeled Nr deposition, and recent temperature trends. CONCLUSIONS/SIGNIFICANCE The ecological responses of remote lakes to post-industrial environmental changes are complex. However, two regions reveal concentrations of sites with elevated 20(th)-century diatom beta-diversity: the Arctic where temperatures are increasing most rapidly, and mid-latitude alpine lakes impacted by high Nr deposition rates. We predict that remote lakes will continue to shift towards new ecological states in the Anthropocene, particularly in regions where these two forcings begin to intersect geographically.
Collapse
Affiliation(s)
- William O. Hobbs
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Richard J. Telford
- Department of Biology, University of Bergen, Bergen, Norway
- Bjerknes Centre for Climate Research, Bergen, Norway
| | - H. John B. Birks
- Department of Biology, University of Bergen, Bergen, Norway
- Bjerknes Centre for Climate Research, Bergen, Norway
- Environmental Change Research Centre, University College London, London, United Kingdom
| | - Jasmine E. Saros
- School of Biology and Ecology, University of Maine, Orono, Maine, United States of America
| | | | - Bianca B. Perren
- Department of Geology, University of Toronto, Toronto, Ontario, Canada
| | | | - Alexander P. Wolfe
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
42
|
Sawicka JE, Robador A, Hubert C, Jørgensen BB, Brüchert V. Effects of freeze-thaw cycles on anaerobic microbial processes in an Arctic intertidal mud flat. ISME JOURNAL 2009; 4:585-94. [PMID: 20033071 DOI: 10.1038/ismej.2009.140] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Insight into the effects of repeated freezing and thawing on microbial processes in sediments and soils is important for understanding sediment carbon cycling at high latitudes acutely affected by global warming. Microbial responses to repeated freeze-thaw conditions were studied in three complementary experiments using arctic sediment collected from an intertidal flat that is exposed to seasonal freeze-thaw conditions (Ymerbukta, Svalbard, Arctic Ocean). The sediment was subjected to oscillating freeze-thaw incubations, either gradual, from -5 to 4 degrees C, or abrupt, from -20 to 10 degrees C. Concentrations of low-molecular weight carboxylic acids (volatile fatty acids) were measured and sulfate reduction was assessed by measuring (35)S sulfate reduction rates (SRRs). Gradual freeze-thaw incubation decreased microbial activity in the frozen state to 0.25 % of initial levels at 4 degrees C, but activity resumed rapidly reaching >60 % of initial activity in the thawed state. Exposure of sediments to successive large temperature changes (-20 versus 10 degrees C) decreased SRR by 80% of the initial activity, suggesting that a fraction of the bacterial community recovered rapidly from extreme temperature fluctuations. This is supported by 16S rRNA gene-based denaturing gradient gel electrophoresis profiles that revealed persistence of the dominant microbial taxa under repeated freeze-thaw cycles. The fast recovery of the SRRs suggests that carbon mineralization in thawing arctic sediment can resume without delay or substantial growth of microbial populations.
Collapse
Affiliation(s)
- Joanna E Sawicka
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | | | | | | | | |
Collapse
|
43
|
|
44
|
Girard L, Weiss J, Molines JM, Barnier B, Bouillon S. Evaluation of high-resolution sea ice models on the basis of statistical and scaling properties of Arctic sea ice drift and deformation. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jc005182] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Rampal P, Weiss J, Marsan D. Positive trend in the mean speed and deformation rate of Arctic sea ice, 1979–2007. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jc005066] [Citation(s) in RCA: 228] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
46
|
Liu X, Penner JE, Wang M. Influence of anthropogenic sulfate and black carbon on upper tropospheric clouds in the NCAR CAM3 model coupled to the IMPACT global aerosol model. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd010492] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
47
|
Zhao C, Garrett TJ. Ground-based remote sensing of precipitation in the Arctic. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009222] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Sullivan PF, Welker JM, Steltzer H, Sletten RS, Hagedorn B, Arens SJT, Horwath JL. Energy and water additions give rise to simple responses in plant canopy and soil microclimates of a high arctic ecosystem. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jg000477] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Agafonov LI, Kukarskikh VV. Climate changes in the past century and radial increment of pine in the Southern Ural steppe. RUSS J ECOL+ 2008. [DOI: 10.1134/s1067413608030028] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
den Herder M, Virtanen R, Roininen H. Reindeer herbivory reduces willow growth and grouse forage in a forest-tundra ecotone. Basic Appl Ecol 2008. [DOI: 10.1016/j.baae.2007.03.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|