1
|
Kojima T. Bio-inspired oxidation catalysis based on proton-coupled electron transfer: Toward efficient and selective oxidation of methane to methanol. J Inorg Biochem 2025; 267:112856. [PMID: 40020428 DOI: 10.1016/j.jinorgbio.2025.112856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/26/2025] [Accepted: 02/13/2025] [Indexed: 03/03/2025]
Abstract
In this paper, a trail of my research is described starting from oxidation of alkanes by FeIII-TPA (TPA = tris(2-pyridylmethyl)amine) complexes with alkyl hydroperoxides to Ru-pyridylamine complexes which can be converted to RuIV-oxo complexes in different spin states (S = 1 or 0) through proton-coupled electron-transfer oxidation of the corresponding RuII-aqua complexes, clarifying that those spin states do not affect the reactivity in water. The introduction of strongly donating N-heterocyclic carbene (NHC) moiety allows us to create a RuIII-oxyl complex showing different reactivity from that of RuIV-oxo complexes. Manipulation of second coordination spheres (SCSs) of Ru-TPA complexes is also described, visualizing unique functionality. The introduction of hydrophobic SCS to a FeII-NHC complex enables to catalyze selective oxidation of methane to form methanol in high selectivity in aqueous media based on the "catch-and-release" strategy, which can also allow us to achieve highly selective two-electron oxidation of aromatic compounds.
Collapse
Affiliation(s)
- Takahiko Kojima
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan.
| |
Collapse
|
2
|
Jiang W, Wu M, Gong Z, Han L, Cheng X, Tang X, Yu X, Dong X, Cheng Y, Ma L, Xing Q. Structure-guided engineering of a Rieske-type aromatic dioxygenase for enhanced consumption of 3-phenylpropionic acid in Escherichia coli. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137954. [PMID: 40120277 DOI: 10.1016/j.jhazmat.2025.137954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
Industrial derived aromatic hydrocarbons are persistent environmental pollutants due to their chemical stability, posing both ecological and health risks. Rieske-type aromatic dioxygenases (RDOs), known for their role in dihydroxylation of aromatic rings, play a pivotal role in microbial consumption and degradation of such compounds. While the industrial application of these enzymes has been impeded by their instability and low biodegradation rate. In this study, we focused on optimization and application of the Rieske-type dioxygenase HcaEF from Escherichia coli (E. coli) K-12, which initializes the degradation of 3-phenylpropionic acid (3-PP) and cinnamic acid (CI). Using cryo-electron microscopy (cryo-EM), we determined the high-resolution structures of the apo-form and 3-PP bound form of HcaEF, revealing key insights into substrate specificity and thermal stability. Leveraging these structural insights, we engineered a Q73I variant of HcaEF. Upon introduction of this mutation, the turnover rate increased from 29.6 % to 43.8 %, showing ∼50 % improvement. Overexpression of this variant in E. coli K-12 significantly enhanced the strain's ability to utilize 3-PP, demonstrating the potential for microbial engineering in environmental bioremediation and industrial applications. Our findings not only deepen the understanding of substrate recognition in RDOs, but also pave the way for developing high-efficiency enzymes for aromatic compound bio-utilization.
Collapse
Affiliation(s)
- Wenxue Jiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan 430074, China
| | - Miao Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan 430074, China
| | - Zhou Gong
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Linhua Han
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan 430074, China
| | - Xiaoqi Cheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan 430074, China
| | - Xiaoqin Tang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan 430074, China
| | - Xiaolong Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan 430074, China
| | - Xu Dong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan 430074, China
| | - Yibin Cheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan 430074, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan 430074, China
| | - Qiong Xing
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan 430074, China.
| |
Collapse
|
3
|
Marchi-Delapierre C, Cavazza C, Ménage S. EcNikA, a versatile tool in the field of artificial metalloenzymes. J Inorg Biochem 2025; 262:112740. [PMID: 39426332 DOI: 10.1016/j.jinorgbio.2024.112740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/14/2024] [Accepted: 09/15/2024] [Indexed: 10/21/2024]
Abstract
This review describes the multiple advantages of using of EcNikA, a nickel transport protein, in the design of artificial metalloenzymes as alternative catalysts for synthetic biology. The rationale behind the strategy of artificial enzyme design is discussed, with particular emphasis on de novo active site reconstitution. The impact of the protein scaffold on the artificial active site and thus the final catalytic properties is detailed, highlighting the considerable aptitude of hybrid systems to catalyze selective reactions, from alkene to thioether transformations (epoxidation, hydroxychlorination, sulfoxidation). The different catalytic approaches - from in vitro to in cristallo - are compared, revealing the considerable advantages of protein crystals in terms of stabilization and acceleration of reaction kinetics. The versatility of proteins, based on metal and ligand diversity and medium/physical conditions, are thus illustrated for oxidation catalysis.
Collapse
Affiliation(s)
| | - Christine Cavazza
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, CBM, F-38000 Grenoble, France
| | - Stéphane Ménage
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, CBM, F-38000 Grenoble, France.
| |
Collapse
|
4
|
Wu P, Zhu W, Chen Y, Wang Z, Kumar A, Wang B, Nam W. cis-Dihydroxylation by Synthetic Iron(III)-Peroxo Intermediates and Rieske Dioxygenases: Experimental and Theoretical Approaches Reveal the Key O-O Bond Activation Step. J Am Chem Soc 2024; 146:30231-30241. [PMID: 39436369 DOI: 10.1021/jacs.4c09354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Dioxygen (O2) activation by iron-containing enzymes and biomimetic compounds generates iron-oxygen intermediates, such as iron-superoxo, -peroxo, -hydroperoxo, and -oxo, that mediate oxidative reactions in biological and abiological systems. Among the iron-oxygen intermediates, iron(III)-peroxo species are less frequently implicated as active intermediates in oxidation reactions. In this study, we present the combined experimental and theoretical investigations on cis-dihydroxylation reactions mediated by synthetic mononuclear nonheme iron-peroxo intermediates, demonstrating the importance of supporting ligands and metal centers in activating the peroxo ligand toward the O-O bond homolysis for the cis-dihydroxylation reactions. We found a significant ring size effect of the TMC ligand in [FeIII(O2)(n-TMC)]+ (TMC = tetramethylated tetraazacycloalkane; n = 12, 13, and 14) on the cis-dihydroxylation reactivity order: [FeIII(O2)(12-TMC)]+ > [FeIII(O2)(13-TMC)]+ > [FeIII(O2)(14-TMC)]+. Additionally, we found that only [FeIII(O2)(n-TMC)]+, but not other metal-peroxo complexes such as [MIII(O2)(n-TMC)]+ (M = Mn, Co, and Ni), is reactive for the cis-dihydroxylation of olefins. Using density functional theory (DFT) calculations, we revealed that electron transfer from the Fe dxz orbital to the peroxo σ*(O-O) orbital facilitates the O-O bond homolysis, with the O-O bond cleavage barrier well correlated with the energy gap between the frontier molecular orbitals of dxz and σ*(O-O). Further computational studies showed that the reactivity of the synthetic [FeIII(O2)(12-TMC)]+ complex is comparable to that of Rieske dioxygenases in cis-dihydroxylation, providing compelling evidence of the potential involvement of Fe(III)-peroxo species in Rieske dioxygenases. Thus, the present results significantly advance our understanding of the cis-dihydroxylation mechanisms by Rieske dioxygenases and synthetic nonheme iron-peroxo models.
Collapse
Affiliation(s)
- Peng Wu
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| | - Wenjuan Zhu
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yanru Chen
- Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Zikuan Wang
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr D-45470, Germany
| | - Akhilesh Kumar
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Binju Wang
- Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| |
Collapse
|
5
|
Betts PC, Blakely SJ, Rutkowski BN, Bender B, Klingler C, Froese JT. Engineering of Rieske dioxygenase variants with improved cis-dihydroxylation activity for benzoates. Biotechnol Bioeng 2024; 121:3144-3154. [PMID: 38951963 DOI: 10.1002/bit.28786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 07/03/2024]
Abstract
Rieske dioxygenases have a long history of being utilized as green chemical tools in the organic synthesis of high-value compounds, due to their capacity to perform the cis-dihydroxylation of a wide variety of aromatic substrates. The practical utility of these enzymes has been hampered however by steric and electronic constraints on their substrate scopes, resulting in limited reactivity with certain substrate classes. Herein, we report the engineering of a widely used member of the Rieske dioxygenase class of enzymes, toluene dioxygenase (TDO), to produce improved variants with greatly increased activity for the cis-dihydroxylation of benzoates. Through rational mutagenesis and screening, TDO variants with substantially improved activity over the wild-type enzyme were identified. Homology modeling, docking studies, molecular dynamics simulations, and substrate tunnel analysis were applied in an effort to elucidate how the identified mutations resulted in improved activity for this polar substrate class. These analyses revealed modification of the substrate tunnel as the likely cause of the improved activity observed with the best-performing enzyme variants.
Collapse
Affiliation(s)
- Phillip C Betts
- Department of Chemistry, Ball State University, Muncie, Indiana, USA
| | - Spencer J Blakely
- Department of Chemistry, Ball State University, Muncie, Indiana, USA
| | | | - Brandon Bender
- Department of Chemistry, Ball State University, Muncie, Indiana, USA
| | - Cole Klingler
- Department of Chemistry, Ball State University, Muncie, Indiana, USA
| | - Jordan T Froese
- Department of Chemistry, Ball State University, Muncie, Indiana, USA
| |
Collapse
|
6
|
Gera R, De P, Singh KK, Jannuzzi SAV, Mohanty A, Velasco L, Kulbir, Kumar P, Marco JF, Nagarajan K, Pecharromán C, Rodríguez-Pascual PM, DeBeer S, Moonshiram D, Gupta SS, Dasgupta J. Trapping an Elusive Fe(IV)-Superoxo Intermediate Inside a Self-Assembled Nanocage in Water at Room Temperature. J Am Chem Soc 2024; 146:21729-21741. [PMID: 39078020 DOI: 10.1021/jacs.4c05849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Molecular cavities that mimic natural metalloenzymes have shown the potential to trap elusive reaction intermediates. Here, we demonstrate the formation of a rare yet stable Fe(IV)-superoxo intermediate at room temperature subsequent to dioxygen binding at the Fe(III) site of a (Et4N)2[FeIII(Cl)(bTAML)] complex confined inside the hydrophobic interior of a water-soluble Pd6L412+ nanocage. Using a combination of electron paramagnetic resonance, Mössbauer, Raman/IR vibrational, X-ray absorption, and emission spectroscopies, we demonstrate that the cage-encapsulated complex has a Fe(IV) oxidation state characterized by a stable S = 1/2 spin state and a short Fe-O bond distance of ∼1.70 Å. We find that the O2 reaction in confinement is reversible, while the formed Fe(IV)-superoxo complex readily reacts when presented with substrates having weak C-H bonds, highlighting the lability of the O-O bond. We envision that such optimally trapped high-valent superoxos can show new classes of reactivities catalyzing both oxygen atom transfer and C-H bond activation reactions.
Collapse
Affiliation(s)
- Rahul Gera
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
- Department of Education in Science and Mathematics, Regional Institute of Education - Mysuru, NCERT, Mysuru 570006, India
| | - Puja De
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Kundan K Singh
- Chemical Engineering Division, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008, India
- Chemistry Department, Indian Institute of Technology, Dharwad 580007, India
| | - Sergio A V Jannuzzi
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, Mülheim an der Ruhr 45470, Germany
| | - Aisworika Mohanty
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Lucia Velasco
- Instituto de Ciencia de Materiales de Madrid Consejo Superior de Investigaciones Científicas Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain
| | - Kulbir
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India
| | - Pankaj Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India
| | - J F Marco
- Instituto de Quimica Fisica Blas Cabrera, Consejo Superior de Investigaciones Científicas, Serrano 119, Madrid 28006, Spain
| | - Kalaivanan Nagarajan
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Carlos Pecharromán
- Instituto de Ciencia de Materiales de Madrid Consejo Superior de Investigaciones Científicas Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain
| | - P M Rodríguez-Pascual
- Instituto de Ciencia de Materiales de Madrid Consejo Superior de Investigaciones Científicas Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain
| | - Serena DeBeer
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, Mülheim an der Ruhr 45470, Germany
| | - Dooshaye Moonshiram
- Instituto de Ciencia de Materiales de Madrid Consejo Superior de Investigaciones Científicas Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain
| | - Sayam Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Jyotishman Dasgupta
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| |
Collapse
|
7
|
Yin Y, Ren H, Wu H, Lu Z. Triclosan Dioxygenase: A Novel Two-component Rieske Nonheme Iron Ring-hydroxylating Dioxygenase Initiates Triclosan Degradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13833-13844. [PMID: 39012163 DOI: 10.1021/acs.est.4c02845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The emerging contaminant triclosan (TCS) is widely distributed both in surface water and in wastewater and poses a threat to aquatic organisms and human health due to its resistance to degradation. The dioxygenase enzyme TcsAB has been speculated to perform the initial degradation of TCS, but its precise catalytic mechanism remains unclear. In this study, the function of TcsAB was elucidated using multiple biochemical and molecular biology methods. Escherichia coli BL21(DE3) heterologously expressing tcsAB from Sphingomonas sp. RD1 converted TCS to 2,4-dichlorophenol. TcsAB belongs to the group IA family of two-component Rieske nonheme iron ring-hydroxylating dioxygenases. The highest amino acid identity of TcsA and the large subunits of other dioxygenases in the same family was only 35.50%, indicating that TcsAB is a novel dioxygenase. Mutagenesis of residues near the substrate binding pocket decreased the TCS-degrading activity and narrowed the substrate spectrum, except for the TcsAF343A mutant. A meta-analysis of 1492 samples from wastewater treatment systems worldwide revealed that tcsA genes are widely distributed. This study is the first to report that the TCS-specific dioxygenase TcsAB is responsible for the initial degradation of TCS. Studying the microbial degradation mechanism of TCS is crucial for removing this pollutant from the environment.
Collapse
Affiliation(s)
- Yiran Yin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Hao Ren
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Hao Wu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
8
|
Kim S, Lee Y, Tripodi GL, Roithová J, Lee S, Cho J. Controlling Reactivity through Spin Manipulation: Steric Bulkiness of Peroxocobalt(III) Complexes. J Am Chem Soc 2024. [PMID: 39031334 DOI: 10.1021/jacs.4c03211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
The intrinsic relationship between spin states and reactivity in peroxocobalt(III) complexes was investigated, specifically focusing on the influence of steric modulation on supporting ligands. Together with the previously reported [CoIII(TBDAP)(O2)]+ (2Tb), which exhibits spin crossover characteristics, two peroxocobalt(III) complexes, [CoIII(MDAP)(O2)]+ (2Me) and [CoIII(ADDAP)(O2)]+ (2Ad), bearing pyridinophane ligands with distinct N-substituents such as methyl and adamantyl groups, were synthesized and characterized. By manipulating the steric bulkiness of the N-substituents, control of spin states in peroxocobalt(III) complexes was demonstrated through various physicochemical analyses. Notably, 2Ad oxidized the nitriles to generate hydroximatocobalt(III) complexes, while 2Me displayed an inability for such oxidation reactions. Furthermore, both 2Ad and 2Tb exhibited similarities in spectroscopic and geometric features, demonstrating spin crossover behavior between S = 0 and S = 1. The steric bulkiness of the adamantyl and tert-butyl group on the axial amines was attributed to inducing a weak ligand field on the cobalt(III) center. Thus, 2Ad and 2Tb are an S = 1 state under the reaction conditions. In contrast, the less bulky methyl group on the amines of 2Me resulted in an S = 0 state. The redox potential of the peroxocobalt(III) complexes was also influenced by the ligand field arising from the steric bulkiness of the N-substituents in the order of 2Me (-0.01 V) < 2Tb (0.29 V) = 2Ad (0.29 V). Theoretical calculations using DFT supported the experimental observations, providing insights into the electronic structure and emphasizing the importance of the spin state of peroxocobalt(III) complexes in nitrile activation.
Collapse
Affiliation(s)
- Seonghan Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
- Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Yuri Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Guilherme L Tripodi
- Department of Spectroscopy and Catalysis, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen 6525 AJ, The Netherlands
| | - Jana Roithová
- Department of Spectroscopy and Catalysis, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen 6525 AJ, The Netherlands
| | - Sunggi Lee
- Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Jaeheung Cho
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| |
Collapse
|
9
|
Beech JL, Fecko JA, Yennawar N, DuBois JL. Functional and spectroscopic approaches to determining thermal limitations of Rieske oxygenases. Methods Enzymol 2024; 703:299-328. [PMID: 39261001 PMCID: PMC11521362 DOI: 10.1016/bs.mie.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The biotechnological potential of Rieske Oxygenases (ROs) and their cognate reductases remains unmet, in part because these systems can be functionally short-lived. Here, we describe a set of experiments aimed at identifying both the functional and structural stability limitations of ROs, using terephthalate (TPA) dioxygenase (from Comamonas strain E6) as a model system. Successful expression and purification of a cofactor-complete, histidine-tagged TPA dioxygenase and reductase protein system requires induction with the Escherichia coli host at stationary phase as well as a chaperone inducing cold-shock and supplementation with additional iron, sulfur, and flavin. The relative stability of the Rieske cluster and mononuclear iron center can then be assessed using spectroscopic and functional measurements following dialysis in an iron chelating buffer. These experiments involve measurements of the overall lifetime of the system via total turnover number using both UV-Visible absorbance and HPLC analyses, as well specific activity as a function of temperature. Important methods for assessing the stability of these multi-cofactor, multi-protein dependent systems at multiple levels of structure (secondary to quaternary) include differential scanning calorimetry, circular dichroism, and metallospectroscopy. Results can be rationalized in terms of three-dimensional structures and bioinformatics. The experiments described here provide a roadmap to a detailed characterization of the limitations of ROs. With a few notable exceptions, these issues are not widely addressed in current literature.
Collapse
Affiliation(s)
- Jessica Lusty Beech
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | - Julia Ann Fecko
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Neela Yennawar
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Jennifer L DuBois
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States.
| |
Collapse
|
10
|
Subramanian R. Methods used to determine the structure of the oxygenase component of naphthalene 1,2 dioxygenase. Methods Enzymol 2024; 704:27-38. [PMID: 39300651 DOI: 10.1016/bs.mie.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Rieske non-heme iron oxygenases are ubiquitously expressed in prokaryotes. These enzymes catalyze a wide variety of reactions, including cis-dihydroxylation, mono-hydroxylation, sulfoxidation, and demethylation. They contain a Rieske-type [2Fe-2S] cluster and an active site with a mono-nuclear iron bound to a 2-His carboxylate triad. Naphthalene 1,2 dioxygenase, a representative of this family, catalyzes the conversion of naphthalene to (+)-cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene. This transformation requires naphthalene, two electrons, and an oxygen molecule. The first structure of the terminal oxygenase component of a Rieske non-heme iron oxygenase to be determined was naphthalene 1,2 dioxygenase (NDO-O). In this article, we describe in detail the methods used to recombinantly express and purify NDO-O in rich and minimal salts media, the crystallization of NDO-O for structure determination by X-ray crystallography, the challenges faced, and the methods used for the preparation of enzyme ligand complexes. The methods used here resulted in the determination of several NDO-O complexes with aromatic substrates, nitric oxide, oxygen molecule, and products, leading to an initial understanding of the mechanism of enzyme catalysis and the molecular determinants of the regio- and stereo-specificity of this class of enzymes.
Collapse
Affiliation(s)
- Ramaswamy Subramanian
- Department of Biological Sciences, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
11
|
Zhang T, Li K, Cheung YH, Grinstaff MW, Liu P. Photo-reduction facilitated stachydrine oxidative N-demethylation reaction: A case study of Rieske non-heme iron oxygenase Stc2 from Sinorhizobium meliloti. Methods Enzymol 2024; 703:263-297. [PMID: 39260999 DOI: 10.1016/bs.mie.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Rieske-type non-heme iron oxygenases (ROs) are an important family of non-heme iron enzymes. They catalyze a diverse range of transformations in secondary metabolite biosynthesis and xenobiotic bioremediation. ROs typically shuttle electrons from NAD(P)H to the oxygenase component via reductase component(s). This chapter describes our recent biochemical characterization of stachydrine demethylase Stc2 from Sinorhizobium meliloti. In this work, the eosin Y/sodium sulfite pair serves as the photoreduction system to replace the NAD(P)H-reductase system. We describe Stc2 protein purification and quality control details as well as a flow-chemistry to separate the photo-reduction half-reaction and the oxidation half-reaction. Our study demonstrates that the eosin Y/sodium sulfite photo-reduction pair is a NAD(P)H-reductase surrogate for Stc2-catalysis in a flow-chemistry setting. Experimental protocols used in this light-driven Stc2 catalysis are likely to be applicable as a photo-reduction system for other redox enzymes.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Chemistry, Boston University, Boston, MA, United States
| | - Kelin Li
- Department of Chemistry, Boston University, Boston, MA, United States
| | - Yuk Hei Cheung
- Department of Chemistry, Boston University, Boston, MA, United States
| | - Mark W Grinstaff
- Department of Chemistry, Boston University, Boston, MA, United States
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, MA, United States.
| |
Collapse
|
12
|
Rogers MS, Lipscomb JD. Approaches to determination of the mechanism of the Rieske monooxygenase salicylate 5-hydroxylase. Methods Enzymol 2024; 704:259-290. [PMID: 39300650 DOI: 10.1016/bs.mie.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Rieske oxygenases catalyze an exceptionally broad range of discrete types of reactions despite the utilization of a highly conserved quaternary structure and metal cofactor complement. Oxygen activation within this family occurs at a mononuclear FeII site, which is located approximately 12 Å from a one-electron reduced Rieske-type iron-sulfur cluster. Electron transfer from the Rieske cluster to the mononuclear iron site occurs during O2 activation and product formation. A key question is whether all Rieske oxygenase reactions involve the same type of activated oxygen species. This question has been explored using the Rieske oxygenase salicylate 5-hydroxylase, which catalyzes both aromatic hydroxylation of salicylate and aromatic methyl hydroxylation when a methyl substituent is placed in the normal position of aromatic ring hydroxylation. We show here that the combined application of kinetic, biophysical, computational, and isotope effect methods reveals a uniform mechanism for initial O2 activation and substrate attack for both types of reactivity. However, the mechanism diverges during the later phases of the reactions in response to the electronic nature and geometry of the substrates as well as the lifetime of intermediates. Similar factors may be encountered broadly in the Rieske oxygenase family.
Collapse
Affiliation(s)
- Melanie S Rogers
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, United States
| | - John D Lipscomb
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
13
|
Xu J, Li T, Huang WE, Zhou NY. Semi-rational design of nitroarene dioxygenase for catalytic ability toward 2,4-dichloronitrobenzene. Appl Environ Microbiol 2024; 90:e0143623. [PMID: 38709097 PMCID: PMC11218619 DOI: 10.1128/aem.01436-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/05/2024] [Indexed: 05/07/2024] Open
Abstract
Rieske non-heme dioxygenase family enzymes play an important role in the aerobic biodegradation of nitroaromatic pollutants, but no active dioxygenases are available in nature for initial reactions in the degradation of many refractory pollutants like 2,4-dichloronitrobenzene (24DCNB). Here, we report the engineering of hotspots in 2,3-dichloronitrobenzene dioxygenase from Diaphorobacter sp. strain JS3051, achieved through molecular dynamic simulation analysis and site-directed mutagenesis, with the aim of enhancing its catalytic activity toward 24DCNB. The computationally predicted activity scores were largely consistent with the detected activities in wet experiments. Among them, the two most beneficial mutations (E204M and M248I) were obtained, and the combined mutant reached up to a 62-fold increase in activity toward 24DCNB, generating a single product, 3,5-dichlorocatechol, which is a naturally occurring compound. In silico analysis confirmed that residue 204 affected the substrate preference for meta-substituted nitroarenes, while residue 248 may influence substrate preference by interaction with residue 295. Overall, this study provides a framework for manipulating nitroarene dioxygenases using computational methods to address various nitroarene contamination problems.IMPORTANCEAs a result of human activities, various nitroaromatic pollutants continue to enter the biosphere with poor degradability, and dioxygenation is an important kickoff step to remove toxic nitro-groups and convert them into degradable products. The biodegradation of many nitroarenes has been reported over the decades; however, many others still lack corresponding enzymes to initiate their degradation. Although rieske non-heme dioxygenase family enzymes play extraordinarily important roles in the aerobic biodegradation of various nitroaromatic pollutants, prediction of their substrate specificity is difficult. This work greatly improved the catalytic activity of dioxygenase against 2,4-dichloronitrobenzene by computer-aided semi-rational design, paving a new way for the evolution strategy of nitroarene dioxygenase. This study highlights the potential for using enzyme structure-function information with computational pre-screening methods to rapidly tailor the catalytic functions of enzymes toward poorly biodegradable contaminants.
Collapse
Affiliation(s)
- Jia Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wei E. Huang
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Ning-Yi Zhou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
14
|
Mahto JK, Kayastha A, Kumar P. Expression, purification, kinetics, and crystallization of non-heme mononuclear iron enzymes: Biphenyl, Phthalate, and Terephthalate dioxygenases. Methods Enzymol 2024; 704:39-58. [PMID: 39300656 DOI: 10.1016/bs.mie.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Non-heme iron oxygenases constitute a versatile enzyme family that is crucial for incorporating molecular oxygen into diverse biomolecules. Despite their importance, only a limited number of these enzymes have been structurally and functionally characterized. Surprisingly, there remains a significant gap in understanding how these enzymes utilize a typical architecture and reaction mechanism to catalyze a wide range of reactions. Improving our understanding of these catalysts holds promise for advancing both fundamental enzymology and practical applications. This chapter aims to outline methods for heterologous expression, enzyme preparation, in vitro enzyme assays, and crystallization of biphenyl dioxygenase, phthalate dioxygenase and terephthalate dioxygenase. These enzymes catalyze the dihydroxylation of biphenyl, phthalate and terephthalate molecules, serving as a model for functional and structural analysis of other non-heme iron oxygenases.
Collapse
Affiliation(s)
- Jai Krishna Mahto
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Arpan Kayastha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India.
| |
Collapse
|
15
|
Bopp CE, Bernet NM, Pati SG, Hofstetter TB. Characterization of O 2 uncoupling in biodegradation reactions of nitroaromatic contaminants catalyzed by rieske oxygenases. Methods Enzymol 2024; 703:3-28. [PMID: 39261002 DOI: 10.1016/bs.mie.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Rieske oxygenases are known as catalysts that enable the cleavage of aromatic and aliphatic C-H bonds in structurally diverse biomolecules and recalcitrant organic environmental pollutants through substrate oxygenations and oxidative heteroatom dealkylations. Yet, the unproductive O2 activation, which is concomitant with the release of reactive oxygen species (ROS), is typically not taken into account when characterizing Rieske oxygenase function. Even if considered an undesired side reaction, this O2 uncoupling allows for studying active site perturbations, enzyme mechanisms, and how enzymes evolve as environmental microorganisms adapt their substrates to alternative carbon and energy sources. Here, we report on complementary methods for quantifying O2 uncoupling based on mass balance or kinetic approaches that relate successful oxygenations to total O2 activation and ROS formation. These approaches are exemplified with data for two nitroarene dioxygenases (nitrobenzene and 2-nitrotoluene dioxygenase) which have been shown to mono- and dioxygenate substituted nitroaromatic compounds to substituted nitrobenzylalcohols and catechols, respectively.
Collapse
Affiliation(s)
- Charlotte E Bopp
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich, Zürich, Switzerland
| | - Nora M Bernet
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich, Zürich, Switzerland
| | - Sarah G Pati
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Thomas B Hofstetter
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
16
|
Ma Y, Qu Y, Yao X, Xia C, Lv M, Lin X, Zhang L, Zhang M, Hu B. Unveiling the unique role of iron in the metabolism of methanogens: A review. ENVIRONMENTAL RESEARCH 2024; 250:118495. [PMID: 38367837 DOI: 10.1016/j.envres.2024.118495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Methanogens are the main participants in the carbon cycle, catalyzing five methanogenic pathways. Methanogens utilize different iron-containing functional enzymes in different methanogenic processes. Iron is a vital element in methanogens, which can serve as a carrier or reactant in electron transfer. Therefore, iron plays an important role in the growth and metabolism of methanogens. In this paper, we cast light on the types and functions of iron-containing functional enzymes involved in different methanogenic pathways, and the roles iron play in energy/substance metabolism of methanogenesis. Furthermore, this review provides certain guiding significance for lowering CH4 emissions, boosting the carbon sink capacity of ecosystems and promoting green and low-carbon development in the future.
Collapse
Affiliation(s)
- Yuxin Ma
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying Qu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiangwu Yao
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, Zhejiang, China; Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chujun Xia
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mengjie Lv
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao Lin
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lili Zhang
- Beijing Enterprises Water Group Limited, Beijing, China
| | - Meng Zhang
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, Zhejiang, China; Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Baolan Hu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, Zhejiang, China; Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
17
|
Li RN, Chen SL. Mechanistic Insights into the N-Hydroxylations Catalyzed by the Binuclear Iron Domain of SznF Enzyme: Key Piece in the Synthesis of Streptozotocin. Chemistry 2024; 30:e202303845. [PMID: 38212866 DOI: 10.1002/chem.202303845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/13/2024]
Abstract
SznF, a member of the emerging family of heme-oxygenase-like (HO-like) di-iron oxidases and oxygenases, employs two distinct domains to catalyze the conversion of Nω-methyl-L-arginine (L-NMA) into N-nitroso-containing product, which can subsequently be transformed into streptozotocin. Using unrestricted density functional theory (UDFT) with the hybrid functional B3LYP, we have mechanistically investigated the two sequential hydroxylations of L-NMA catalyzed by SznF's binuclear iron central domain. Mechanism B primarily involves the O-O bond dissociation, forming Fe(IV)=O, induced by the H+/e- introduction to the FeA side of μ-1,2-peroxo-Fe2(III/III), the substrate hydrogen abstraction by Fe(IV)=O, and the hydroxyl rebound to the substrate N radical. The stochastic addition of H+/e- to the FeB side (mechanism C) can transition to mechanism B, thereby preventing enzyme deactivation. Two other competing mechanisms, involving the direct O-O bond dissociation (mechanism A) and the addition of H2O as a co-substrate (mechanism D), have been ruled out.
Collapse
Affiliation(s)
- Rui-Ning Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Shi-Lu Chen
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
18
|
Choukairi Afailal N, Borrell M, Cianfanelli M, Costas M. Dearomative syn-Dihydroxylation of Naphthalenes with a Biomimetic Iron Catalyst. J Am Chem Soc 2024; 146:240-249. [PMID: 38123164 PMCID: PMC10785824 DOI: 10.1021/jacs.3c08565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/15/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Arenes are interesting feedstocks for organic synthesis because of their natural abundance. However, the stability conferred by aromaticity severely limits their reactivity, mostly to reactions where aromaticity is retained. Methods for oxidative dearomatization of unactivated arenes are exceedingly rare but particularly valuable because the introduction of Csp3-O bonds transforms the flat aromatic ring in 3D skeletons and confers the oxygenated molecules with a very rich chemistry suitable for diversification. Mimicking the activity of naphthalene dioxygenase (NDO), a non-heme iron-dependent bacterial enzyme, herein we describe the catalytic syn-dihydroxylation of naphthalenes with hydrogen peroxide, employing a sterically encumbered and exceedingly reactive yet chemoselective iron catalyst. The high electrophilicity of hypervalent iron oxo species is devised as a key to enabling overcoming the aromatically promoted kinetic stability. Interestingly, the first dihydroxylation of the arene renders a reactive olefinic site ready for further dihydroxylation. Sequential bis-dihydroxylation of a broad range of naphthalenes provides valuable tetrahydroxylated products in preparative yields, amenable for rapid diversification.
Collapse
Affiliation(s)
- Najoua Choukairi Afailal
- Institut de Química
Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| | - Margarida Borrell
- Institut de Química
Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| | - Marco Cianfanelli
- Institut de Química
Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| | - Miquel Costas
- Institut de Química
Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| |
Collapse
|
19
|
Zhu W, Wu P, Larson VA, Kumar A, Li XX, Seo MS, Lee YM, Wang B, Lehnert N, Nam W. Electronic Structure and Reactivity of Mononuclear Nonheme Iron-Peroxo Complexes as a Biomimetic Model of Rieske Oxygenases: Ring Size Effects of Macrocyclic Ligands. J Am Chem Soc 2024; 146:250-262. [PMID: 38147793 DOI: 10.1021/jacs.3c08559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
We report the macrocyclic ring size-electronic structure-electrophilic reactivity correlation of mononuclear nonheme iron(III)-peroxo complexes bearing N-tetramethylated cyclam analogues (n-TMC), [FeIII(O2)(12-TMC)]+ (1), [FeIII(O2)(13-TMC)]+ (2), and [FeIII(O2)(14-TMC)]+ (3), as a model study of Rieske oxygenases. The Fe(III)-peroxo complexes show the same δ and pseudo-σ bonds between iron and the peroxo ligand. However, the strength of these interactions varies depending on the ring size of the n-TMC ligands; the overall Fe-O bond strength and the strength of the Fe-O2 δ bond increase gradually as the ring size of the n-TMC ligands becomes smaller, such as from 14-TMC to 13-TMC to 12-TMC. MCD spectroscopy plays a key role in assigning the characteristic low-energy δ → δ* LMCT band, which provides direct insight into the strength of the Fe-O2 δ bond and which, in turn, is correlated with the superoxo character of the iron-peroxo group. In oxidation reactions, reactivities of 1-3 toward hydrocarbon C-H bond activation are compared, revealing the reactivity order of 1 > 2 > 3; the [FeIII(O2)(n-TMC)]+ complex with a smaller n-TMC ring size, 12-TMC, is much more reactive than that with a larger n-TMC ring size, 14-TMC. DFT analysis shows that the Fe(III)-peroxo complex is not reactive toward C-H bonds, but it is the end-on Fe(II)-superoxo valence tautomer that is responsible for the observed reactivity. The hydrogen atom abstraction (HAA) reactivity of these intermediates is correlated with the overall donicity of the n-TMC ligand, which modulates the energy of the singly occupied π* superoxo frontier orbital that serves as the electron acceptor in the HAA reaction. The implications of these results for the mechanism of Rieske oxygenases are further discussed.
Collapse
Affiliation(s)
- Wenjuan Zhu
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Peng Wu
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| | - Virginia A Larson
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Akhilesh Kumar
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Xiao-Xi Li
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Binju Wang
- Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi Province 716000, P. R. China
| |
Collapse
|
20
|
Chen J, Zhang J, Sun Y, Xu Y, Yang Y, Lee YM, Ji W, Wang B, Nam W, Wang B. Mononuclear Non-Heme Manganese-Catalyzed Enantioselective cis-Dihydroxylation of Alkenes Modeling Rieske Dioxygenases. J Am Chem Soc 2023; 145:27626-27638. [PMID: 38064642 DOI: 10.1021/jacs.3c09508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The practical catalytic enantioselective cis-dihydroxylation of olefins that utilize earth-abundant first-row transition metal catalysts under environmentally friendly conditions is an important yet challenging task. Inspired by the cis-dihydroxylation reactions catalyzed by Rieske dioxygenases and non-heme iron models, we report the biologically inspired cis-dihydroxylation catalysis that employs an inexpensive and readily available mononuclear non-heme manganese complex bearing a tetradentate nitrogen-donor ligand and aqueous hydrogen peroxide (H2O2) and potassium peroxymonosulfate (KHSO5) as terminal oxidants. A wide range of olefins are efficiently oxidized to enantioenriched cis-diols in practically useful yields with excellent cis-dihydroxylation selectivity and enantioselectivity (up to 99% ee). Mechanistic studies, such as isotopically 18O-labeled water experiments, and density functional theory (DFT) calculations support that a manganese(V)-oxo-hydroxo (HO-MnV═O) species, which is formed via the water-assisted heterolytic O-O bond cleavage of putative manganese(III)-hydroperoxide and manganese(III)-peroxysulfate precursors, is the active oxidant that effects the cis-dihydroxylation of olefins; this is reminiscent of the frequently postulated iron(V)-oxo-hydroxo (HO-FeV═O) species in the catalytic arene and alkene cis-dihydroxylation reactions by Rieske dioxygenases and synthetic non-heme iron models. Further, DFT calculations for the mechanism of the HO-MnV═O-mediated enantioselective cis-dihydroxylation of olefins reveal that the first oxo attack step controls the enantioselectivity, which exhibits a high preference for cis-dihydroxylation over epoxidation. In this study, we are able to replicate both the catalytic function and the key chemical principles of Rieske dioxygenases in mononuclear non-heme manganese-catalyzed enantioselective cis-dihydroxylation of olefins.
Collapse
Affiliation(s)
- Jie Chen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Jinyan Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ying Sun
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yuankai Xu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yinan Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wenhua Ji
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Bin Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
21
|
Son Y, Jeong D, Kim K, Cho J. Mechanistic Insights into Nitrile Activation by Cobalt(III)-Hydroperoxo Intermediates: The Influence of Ligand Basicity. JACS AU 2023; 3:3204-3212. [PMID: 38034966 PMCID: PMC10685436 DOI: 10.1021/jacsau.3c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 12/02/2023]
Abstract
The versatile applications of nitrile have led to the widespread use of nitrile activation in the synthesis of pharmacologically and industrially valuable compounds. We reported the activation of nitriles using mononuclear cobalt(III)-hydroperoxo complexes, [CoIII(Me3-TPADP)(O2H)(RCN)]2+ [R = Me (2) and Ph (2Ph)], to form cobalt(III)-peroxyimidato complexes, [CoIII(Me3-TPADP)(R-C(=NH)O2)]2+ [R = Me (3) and Ph (3Ph)]. The independence of the rate on the nitrile concentration and the positive Hammett value of 3.2(2) indicated that the reactions occur via an intramolecular nucleophilic attack of the hydroperoxide ligand to the coordinated nitrile carbon atom. In contrast, the previously reported cobalt(III)-hydroperoxo complex, [CoIII(TBDAP)(O2H)(CH3CN)]2+ (2TBDAP), exhibited the deficiency of reactivity toward nitrile. The comparison of pKa values and redox potentials of 2 and 2TBDAP showed that Me3-TPADP had a stronger ligand field strength than that of TBDAP. The density functional theory calculations for 2 and 2TBDAP support that the strengthened ligand field in 2 is mainly due to the replacement of two tert-butyl amine donors in TBDAP with methyl groups in Me3-TPADP, resulting in the compression of the Co-Nax bond lengths. These results provide mechanistic evidence of nitrile activation by the cobalt(III)-hydroperoxo complex and indicate that the basicity dependent on the ligand framework contributes to the ability of nitrile activation.
Collapse
Affiliation(s)
- Yeongjin Son
- Department
of Chemistry, Ulsan National Institute of
Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department
of Emerging Materials Science, Daegu Gyeongbuk
Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Donghyun Jeong
- Department
of Chemistry, Ulsan National Institute of
Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kyungmin Kim
- Department
of Chemistry, Ulsan National Institute of
Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department
of Emerging Materials Science, Daegu Gyeongbuk
Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jaeheung Cho
- Department
of Chemistry, Ulsan National Institute of
Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Graduate
School of Carbon Neutrality, Ulsan National
Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
22
|
Wang B, Lu Y, Cha L, Chen TY, Palacios PM, Li L, Guo Y, Chang WC, Chen C. Repurposing Iron- and 2-Oxoglutarate-Dependent Oxygenases to Catalyze Olefin Hydration. Angew Chem Int Ed Engl 2023; 62:e202311099. [PMID: 37639670 PMCID: PMC10592062 DOI: 10.1002/anie.202311099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
Mononuclear nonheme iron(II) and 2-oxoglutarate (Fe/2OG)-dependent oxygenases and halogenases are known to catalyze a diverse set of oxidative reactions, including hydroxylation, halogenation, epoxidation, and desaturation in primary metabolism and natural product maturation. However, their use in abiotic transformations has mainly been limited to C-H oxidation. Herein, we show that various enzymes of this family, when reconstituted with Fe(II) or Fe(III), can catalyze Mukaiyama hydration-a redox neutral transformation. Distinct from the native reactions of the Fe/2OG enzymes, wherein oxygen atom transfer (OAT) catalyzed by an iron-oxo species is involved, this nonnative transformation proceeds through a hydrogen atom transfer (HAT) pathway in a 2OG-independent manner. Additionally, in contrast to conventional inorganic catalysts, wherein a dinuclear iron species is responsible for HAT, the Fe/2OG enzymes exploit a mononuclear iron center to support this reaction. Collectively, our work demonstrates that Fe/2OG enzymes have utility in catalysis beyond the current scope of catalytic oxidation.
Collapse
Affiliation(s)
- Bingnan Wang
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Yong Lu
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Lide Cha
- Department of Chemistry, NC State University, 2620 Yarbrough Drive, Raleigh, NC 27695, USA
| | - Tzu-Yu Chen
- Department of Chemistry, NC State University, 2620 Yarbrough Drive, Raleigh, NC 27695, USA
| | - Philip M Palacios
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Liping Li
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Wei-Chen Chang
- Department of Chemistry, NC State University, 2620 Yarbrough Drive, Raleigh, NC 27695, USA
| | - Chuo Chen
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| |
Collapse
|
23
|
Tian J, Liu J, Knapp M, Donnan PH, Boggs DG, Bridwell-Rabb J. Custom tuning of Rieske oxygenase reactivity. Nat Commun 2023; 14:5858. [PMID: 37730711 PMCID: PMC10511449 DOI: 10.1038/s41467-023-41428-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 08/27/2023] [Indexed: 09/22/2023] Open
Abstract
Rieske oxygenases use a Rieske-type [2Fe-2S] cluster and a mononuclear iron center to initiate a range of chemical transformations. However, few details exist regarding how this catalytic scaffold can be predictively tuned to catalyze divergent reactions. Therefore, in this work, using a combination of structural analyses, as well as substrate and rational protein-based engineering campaigns, we elucidate the architectural trends that govern catalytic outcome in the Rieske monooxygenase TsaM. We identify structural features that permit a substrate to be functionalized by TsaM and pinpoint active-site residues that can be targeted to manipulate reactivity. Exploiting these findings allowed for custom tuning of TsaM reactivity: substrates are identified that support divergent TsaM-catalyzed reactions and variants are created that exclusively catalyze dioxygenation or sequential monooxygenation chemistry. Importantly, we further leverage these trends to tune the reactivity of additional monooxygenase and dioxygenase enzymes, and thereby provide strategies to custom tune Rieske oxygenase reaction outcomes.
Collapse
Affiliation(s)
- Jiayi Tian
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jianxin Liu
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Madison Knapp
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Patrick H Donnan
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - David G Boggs
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | | |
Collapse
|
24
|
Runda ME, de Kok NAW, Schmidt S. Rieske Oxygenases and Other Ferredoxin-Dependent Enzymes: Electron Transfer Principles and Catalytic Capabilities. Chembiochem 2023; 24:e202300078. [PMID: 36964978 DOI: 10.1002/cbic.202300078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/27/2023]
Abstract
Enzymes that depend on sophisticated electron transfer via ferredoxins (Fds) exhibit outstanding catalytic capabilities, but despite decades of research, many of them are still not well understood or exploited for synthetic applications. This review aims to provide a general overview of the most important Fd-dependent enzymes and the electron transfer processes involved. While several examples are discussed, we focus in particular on the family of Rieske non-heme iron-dependent oxygenases (ROs). In addition to illustrating their electron transfer principles and catalytic potential, the current state of knowledge on structure-function relationships and the mode of interaction between the redox partner proteins is reviewed. Moreover, we highlight several key catalyzed transformations, but also take a deeper dive into their engineerability for biocatalytic applications. The overall findings from these case studies highlight the catalytic capabilities of these biocatalysts and could stimulate future interest in developing additional Fd-dependent enzyme classes for synthetic applications.
Collapse
Affiliation(s)
- Michael E Runda
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Niels A W de Kok
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Sandy Schmidt
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
25
|
Jin J, Shi Y, Zhang B, Wan D, Zhang Q. An integrated method for studying the biodegradation of benzo[a]pyrene by Citrobacter sp. HJS-1 and interaction mechanism based on the structural model of the initial dioxygenase. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:85558-85568. [PMID: 37389752 DOI: 10.1007/s11356-023-28505-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
A bacterial strain Citrobacter sp. HJS-1 was discovered from the sludge in a drainage canal of a coal mine. Firstly, its biodegradation capacity for benzo[a]pyrene (BaP) was detected under different concentrations. The results proved that the strain possessed excellent biodegradation capacity for BaP with high-efficiency degradation rates ranging from 78.9 to 86.8%. The highest degradation rate was observed in the low-concentration sample, and the high-concentration BaP had a slight influence on the biodegradation capacity due to the potential toxicity of BaP and its oxygen-containing derivatives. Meanwhile, the degradation test for the other five aromatic hydrocarbons (2- to 4-ring) proved that the strain had a comprehensive degradation potential. To clarify the biodegradation mechanism of BaP, a dioxygenase structure was constructed by homology modeling. Then, the interactions between dioxygenase and BaP were researched by molecular simulation. Combined with the identification of the vital BaP-cis-7,8-dihydrodiol intermediate and the interaction analysis, the initial oxidation mode and the binding site of BaP were revealed in the dioxygenase. Taken together, this study has offered a way to understand the biodegradation process of BaP and its interaction mechanism based on experimental and theoretical analysis.
Collapse
Affiliation(s)
- Jingnan Jin
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, No. 100 Lianhua Street, High-tech Industrial Development District, Zhengzhou, 450001, Henan, China.
| | - Yahui Shi
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, No. 100 Lianhua Street, High-tech Industrial Development District, Zhengzhou, 450001, Henan, China
| | - Baozhong Zhang
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, No. 100 Lianhua Street, High-tech Industrial Development District, Zhengzhou, 450001, Henan, China
| | - Dongjin Wan
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, No. 100 Lianhua Street, High-tech Industrial Development District, Zhengzhou, 450001, Henan, China
| | - Qingye Zhang
- College of informatics, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
26
|
Jin J, Shi Y, Zhang B, Wan D, Zhang Q, Li Y. Biotransformation of benzo[ a]pyrene by Pannonibacter sp. JPA3 and the degradation mechanism through the initially oxidized benzo[ a]pyrene-4,5-dihydrodiol to downstream metabolites. RSC Adv 2023; 13:18878-18887. [PMID: 37350855 PMCID: PMC10282733 DOI: 10.1039/d3ra01453c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/07/2023] [Indexed: 06/24/2023] Open
Abstract
Owing to its adverse effects on the environment and human health, benzo[a]pyrene (BaP) has attracted considerable attention and has been used as a model compound in ecotoxicology. In this study, Pannonibacter sp. JPA3 as a BaP-degrading strain was isolated from the production water of an oil well. The strain could remove 80% of BaP at an initial concentration of 100 mg L-1 after 35 d culture. The BaP-4,5-dihydrodiol, BaP-4,5-epoxide, 5-hydroxychrysene, and 2-hydroxy-1-naphthoic acid metabolites were identified in the biodegradation process. Simultaneously, the gene sequence coding for dioxygenase in the strain was amplified and a dioxygenase model was built by homology modeling. Combined with the identification of the metabolites, the interaction mechanism of BaP with dioxygenase was investigated using molecular docking. It was assumed that BaP was initially oxidized at the C4-C5 positions in the active cavity of dioxygenase. Moreover, a hypothesis for the progressive degradation mechanism of BaP by this strain was proposed via the identification of the downstream metabolites. In conclusion, our study provided an efficient BaP degrader and a comprehensive reference for the study of the degradation mechanism in terms of the degrading metabolites and theoretical research at the molecular level.
Collapse
Affiliation(s)
- Jingnan Jin
- School of Environmental Engineering, Henan University of Technology No. 100 Lianhua Street, High-Tech Industrial Development District Zhengzhou Henan 450001 China +86-371-67756982 +86-371-67756982
| | - Yahui Shi
- School of Environmental Engineering, Henan University of Technology No. 100 Lianhua Street, High-Tech Industrial Development District Zhengzhou Henan 450001 China +86-371-67756982 +86-371-67756982
| | - Baozhong Zhang
- School of Environmental Engineering, Henan University of Technology No. 100 Lianhua Street, High-Tech Industrial Development District Zhengzhou Henan 450001 China +86-371-67756982 +86-371-67756982
| | - Dongjin Wan
- School of Environmental Engineering, Henan University of Technology No. 100 Lianhua Street, High-Tech Industrial Development District Zhengzhou Henan 450001 China +86-371-67756982 +86-371-67756982
| | - Qingye Zhang
- College of Informatics, Huazhong Agricultural University Wuhan 430070 China
| | - Ying Li
- School of Environmental Engineering, Henan University of Technology No. 100 Lianhua Street, High-Tech Industrial Development District Zhengzhou Henan 450001 China +86-371-67756982 +86-371-67756982
| |
Collapse
|
27
|
Yesankar PJ, Patil A, Kapley A, Qureshi A. Catalytic resilience of multicomponent aromatic ring-hydroxylating dioxygenases in Pseudomonas for degradation of polycyclic aromatic hydrocarbons. World J Microbiol Biotechnol 2023; 39:166. [PMID: 37076735 DOI: 10.1007/s11274-023-03617-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
Hydrophobic organic compounds, either natural or introduced through anthropogenic activities, pose a serious threat to all spheres of life, including humankind. These hydrophobic compounds are recalcitrant and difficult to degrade by the microbial system; however, microbes have also evolved their metabolic and degradative potential. Pseudomonas species have been reported to have a multipotential role in the biodegradation of aromatic hydrocarbons through aromatic ring-hydroxylating dioxygenases (ARHDs). The structural complexity of different hydrophobic substrates and their chemically inert nature demands the explicit role of evolutionary conserved multicomponent enzyme ARHDs. These enzymes catalyze ring activation and subsequent oxidation by adding two molecular oxygen atoms onto the vicinal carbon of the aromatic nucleus. This critical metabolic step in the aerobic mode of degradation of polycyclic aromatic hydrocarbons (PAHs) catalyzed by ARHDs can also be explored through protein molecular docking studies. Protein data analysis enables an understanding of molecular processes and monitoring complex biodegradation reactions. This review summarizes the molecular characterization of five ARHDs from Pseudomonas species already reported for PAH degradation. Homology modeling for the amino acid sequences encoding the catalytic α-subunit of ARHDs and their docking analyses with PAHs suggested that the enzyme active sites show flexibility around the catalytic pocket for binding of low molecular weight (LMW) and high molecular weight (HMW) PAH substrates (naphthalene, phenanthrene, pyrene, benzo[α]pyrene). The alpha subunit harbours variable catalytic pockets and broader channels, allowing relaxed enzyme specificity toward PAHs. ARHD's ability to accommodate different LMW and HMW PAHs demonstrates its 'plasticity', meeting the catabolic demand of the PAH degraders.
Collapse
Affiliation(s)
- Prerna J Yesankar
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440 020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Ayurshi Patil
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440 020, India
| | - Atya Kapley
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440 020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Asifa Qureshi
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440 020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| |
Collapse
|
28
|
Jeong D, Selverstone Valentine J, Cho J. Bio-inspired mononuclear nonheme metal peroxo complexes: Synthesis, structures and mechanistic studies toward understanding enzymatic reactions. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
29
|
Zhu W, Kumar A, Xiong J, Abernathy MJ, Li XX, Seo MS, Lee YM, Sarangi R, Guo Y, Nam W. Seeing the cis-Dihydroxylating Intermediate: A Mononuclear Nonheme Iron-Peroxo Complex in cis-Dihydroxylation Reactions Modeling Rieske Dioxygenases. J Am Chem Soc 2023; 145:4389-4393. [PMID: 36795537 PMCID: PMC10544271 DOI: 10.1021/jacs.2c13551] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The nature of reactive intermediates and the mechanism of the cis-dihydroxylation of arenes and olefins by Rieske dioxygenases and synthetic nonheme iron catalysts have been the topic of intense research over the past several decades. In this study, we report that a spectroscopically well characterized mononuclear nonheme iron(III)-peroxo complex reacts with olefins and naphthalene derivatives, yielding iron(III) cycloadducts that are isolated and characterized structurally and spectroscopically. Kinetics and product analysis reveal that the nonheme iron(III)-peroxo complex is a nucleophile that reacts with olefins and naphthalenes to yield cis-diol products. The present study reports the first example of the cis-dihydroxylation of substrates by a nonheme iron(III)-peroxo complex that yields cis-diol products.
Collapse
Affiliation(s)
- Wenjuan Zhu
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Akhilesh Kumar
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Jin Xiong
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Macon J Abernathy
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford, California 94025, United States
| | - Xiao-Xi Li
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Ritimukta Sarangi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford, California 94025, United States
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
30
|
Wu Y, Zhao C, Su Y, Shaik S, Lai W. Mechanistic Insight into Peptidyl-Cysteine Oxidation by the Copper-Dependent Formylglycine-Generating Enzyme. Angew Chem Int Ed Engl 2023; 62:e202212053. [PMID: 36545867 DOI: 10.1002/anie.202212053] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The copper-dependent formylglycine-generating enzyme (FGE) catalyzes the oxygen-dependent oxidation of specific peptidyl-cysteine residues to formylglycine. Our QM/MM calculations provide a very likely mechanism for this transformation. The reaction starts with dioxygen binding to the tris-thiolate CuI center to form a triplet CuII -superoxide complex. The rate-determining hydrogen atom abstraction involves a triplet-singlet crossing to form a CuII -OOH species that couples with the substrate radical, leading to a CuI -alkylperoxo intermediate. This is accompanied by proton transfer from the hydroperoxide to the S atom of the substrate via a nearby water molecule. The subsequent O-O bond cleavage is coupled with the C-S bond breaking that generates the formylglycine and a CuII -oxyl complex. Moreover, our results suggest that the aldehyde oxygen of the final product originates from O2 , which will be useful for future experimental work.
Collapse
Affiliation(s)
- Yao Wu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Cong Zhao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Yanzhuang Su
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Wenzhen Lai
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| |
Collapse
|
31
|
Engineering Rieske oxygenase activity one piece at a time. Curr Opin Chem Biol 2023; 72:102227. [PMID: 36410250 PMCID: PMC9939785 DOI: 10.1016/j.cbpa.2022.102227] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022]
Abstract
Enzyme engineering plays a central role in the development of biocatalysts for biotechnology, chemical and pharmaceutical manufacturing, and environmental remediation. Rational design of proteins has historically relied on targeting active site residues to confer a protein with desirable catalytic properties. However, additional "hotspots" are also known to exist beyond the active site. Structural elements such as subunit-subunit interactions, entrance tunnels, and flexible loops influence enzyme catalysis and serve as potential "hotspots" for engineering. For the Rieske oxygenases, which use a Rieske cluster and mononuclear iron center to catalyze a challenging set of reactions, these outside of the active site regions are increasingly being shown to drive catalytic outcomes. Therefore, here, we highlight recent work on structurally characterized Rieske oxygenases that implicates architectural pieces inside and outside of the active site as key dictators of catalysis, and we suggest that these features may warrant attention in efforts aimed at Rieske oxygenase engineering.
Collapse
|
32
|
Biologically inspired nonheme iron complex-catalyzed cis-dihydroxylation of alkenes modeling Rieske dioxygenases. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Rogers MS, Gordon AM, Rappe TM, Goodpaster JD, Lipscomb JD. Contrasting Mechanisms of Aromatic and Aryl-Methyl Substituent Hydroxylation by the Rieske Monooxygenase Salicylate 5-Hydroxylase. Biochemistry 2023; 62:507-523. [PMID: 36583545 PMCID: PMC9854337 DOI: 10.1021/acs.biochem.2c00610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The hydroxylase component (S5HH) of salicylate-5-hydroxylase catalyzes C5 ring hydroxylation of salicylate but switches to methyl hydroxylation when a C5 methyl substituent is present. The use of 18O2 reveals that both aromatic and aryl-methyl hydroxylations result from monooxygenase chemistry. The functional unit of S5HH comprises a nonheme Fe(II) site located 12 Å across a subunit boundary from a one-electron reduced Rieske-type iron-sulfur cluster. Past studies determined that substrates bind near the Fe(II), followed by O2 binding to the iron to initiate catalysis. Stopped-flow-single-turnover reactions (STOs) demonstrated that the Rieske cluster transfers an electron to the iron site during catalysis. It is shown here that fluorine ring substituents decrease the rate constant for Rieske electron transfer, implying a prior reaction of an Fe(III)-superoxo intermediate with a substrate. We propose that the iron becomes fully oxidized in the resulting Fe(III)-peroxo-substrate-radical intermediate, allowing Rieske electron transfer to occur. STO using 5-CD3-salicylate-d8 occurs with an inverse kinetic isotope effect (KIE). In contrast, STO of a 1:1 mixture of unlabeled and 5-CD3-salicylate-d8 yields a normal product isotope effect. It is proposed that aromatic and aryl-methyl hydroxylation reactions both begin with the Fe(III)-superoxo reaction with a ring carbon, yielding the inverse KIE due to sp2 → sp3 carbon hybridization. After Rieske electron transfer, the resulting Fe(III)-peroxo-salicylate intermediate can continue to aromatic hydroxylation, whereas the equivalent aryl-methyl intermediate formation must be reversible to allow the substrate exchange necessary to yield a normal product isotope effect. The resulting Fe(III)-(hydro)peroxo intermediate may be reactive or evolve through a high-valent iron intermediate to complete the aryl-methyl hydroxylation.
Collapse
Affiliation(s)
- Melanie S. Rogers
- Department of Biochemistry, Molecular Biology, and Biophysics and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Adrian M. Gordon
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Todd M. Rappe
- Minnesota NMR Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jason D. Goodpaster
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - John D. Lipscomb
- Department of Biochemistry, Molecular Biology, and Biophysics and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
34
|
Bopp CE, Bernet NM, Kohler HPE, Hofstetter TB. Elucidating the Role of O 2 Uncoupling in the Oxidative Biodegradation of Organic Contaminants by Rieske Non-heme Iron Dioxygenases. ACS ENVIRONMENTAL AU 2022; 2:428-440. [PMID: 36164353 PMCID: PMC9502038 DOI: 10.1021/acsenvironau.2c00023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Oxygenations of aromatic
soil and water contaminants with molecular
O2 catalyzed by Rieske dioxygenases are frequent initial
steps of biodegradation in natural and engineered environments. Many
of these non-heme ferrous iron enzymes are known to be involved in
contaminant metabolism, but the understanding of enzyme–substrate
interactions that lead to successful biodegradation is still elusive.
Here, we studied the mechanisms of O2 activation and substrate
hydroxylation of two nitroarene dioxygenases to evaluate enzyme- and
substrate-specific factors that determine the efficiency of oxygenated
product formation. Experiments in enzyme assays of 2-nitrotoluene
dioxygenase (2NTDO) and nitrobenzene dioxygenase (NBDO) with methyl-,
fluoro-, chloro-, and hydroxy-substituted nitroaromatic substrates
reveal that typically 20–100% of the enzyme’s activity
involves unproductive paths of O2 activation with generation
of reactive oxygen species through so-called O2 uncoupling.
The 18O and 13C kinetic isotope effects of O2 activation and nitroaromatic substrate hydroxylation, respectively,
suggest that O2 uncoupling occurs after generation of FeIII-(hydro)peroxo species in the catalytic cycle. While 2NTDO
hydroxylates ortho-substituted nitroaromatic substrates
more efficiently, NBDO favors meta-substituted, presumably
due to distinct active site residues of the two enzymes. Our data
implies, however, that the O2 uncoupling and hydroxylation
activity cannot be assessed from simple structure–reactivity
relationships. By quantifying O2 uncoupling by Rieske dioxygenases,
our work provides a mechanistic link between contaminant biodegradation,
the generation of reactive oxygen species, and possible adaptation
strategies of microorganisms to the exposure of new contaminants.
Collapse
Affiliation(s)
- Charlotte E. Bopp
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich, 8092 Zürich, Switzerland
| | - Nora M. Bernet
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Hans-Peter E. Kohler
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Thomas B. Hofstetter
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
35
|
Apul OG, Arrowsmith S, Hall CA, Miranda EM, Alam F, Dahlen P, Sra K, Kamath R, McMillen SJ, Sihota N, Westerhoff P, Krajmalnik-Brown R, Delgado AG. Biodegradation of petroleum hydrocarbons in a weathered, unsaturated soil is inhibited by peroxide oxidants. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128770. [PMID: 35364529 DOI: 10.1016/j.jhazmat.2022.128770] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/07/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Field-weathered crude oil-containing soils have a residual concentration of hydrocarbons with complex chemical structure, low solubility, and high viscosity, often poorly amenable to microbial degradation. Hydrogen peroxide (H2O2)-based oxidation can generate oxygenated compounds that are smaller and/or more soluble and thus increase petroleum hydrocarbon biodegradability. In this study, we assessed the efficacy of H2O2-based oxidation under unsaturated soil conditions to promote biodegradation in a field-contaminated and weathered soil containing high concentrations of total petroleum hydrocarbons (25200 mg TPH kg-1) and total organic carbon (80900 mg TOC kg-1). Microcosms amended with three doses of 48 g H2O2 kg-1 soil (unactivated or Fe2+-activated) or 24 g sodium percarbonate kg-1 soil and nutrients did not show substantial TPH changes during the experiment. However, 7.6-41.8% of the TOC concentration was removed. Furthermore, production of DOC was enhanced and highest in the microcosms with oxidants, with approximately 20-40-fold DOC increase by the end of incubation. In the absence of oxidants, biostimulation led to > 50% TPH removal in 42 days. Oxidants limited TPH biodegradation by diminishing the viable concentration of microorganisms, altering the composition of the soil microbial communities, and/or creating inhibitory conditions in soil. Study's findings underscore the importance of soil characteristics and petroleum hydrocarbon properties and inform on potential limitations of combined H2O2 oxidation and biodegradation in weathered soils.
Collapse
Affiliation(s)
- Onur G Apul
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
| | - Sarah Arrowsmith
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| | - Caitlyn A Hall
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA; Engineering Research Center for Bio-mediated and Bio-inspired Geotechnics, Arizona State University, Tempe, AZ, USA
| | - Evelyn M Miranda
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| | - Fabiha Alam
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| | - Paul Dahlen
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
| | - Kanwartej Sra
- Chevron Technical Center (a Chevron USA Inc. division), Houston, TX, USA
| | - Roopa Kamath
- Chevron Technical Center (a Chevron USA Inc. division), Houston, TX, USA
| | - Sara J McMillen
- Chevron Technical Center (a Chevron USA Inc. division), San Ramon, CA, USA
| | - Natasha Sihota
- Chevron Technical Center (a Chevron USA Inc. division), San Ramon, CA, USA
| | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
| | - Rosa Krajmalnik-Brown
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA; Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, USA
| | - Anca G Delgado
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA; Engineering Research Center for Bio-mediated and Bio-inspired Geotechnics, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
36
|
Malik DD, Lee Y, Nam W. Identification of a cobalt(
IV
)–oxo intermediate as an active oxidant in catalytic oxidation reactions. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Deesha D. Malik
- Department of Chemistry and Nano Science Ewha Womans University Seoul South Korea
| | - Yong‐Min Lee
- Department of Chemistry and Nano Science Ewha Womans University Seoul South Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science Ewha Womans University Seoul South Korea
| |
Collapse
|
37
|
Pati SG, Bopp CE, Kohler HPE, Hofstetter TB. Substrate-Specific Coupling of O 2 Activation to Hydroxylations of Aromatic Compounds by Rieske Non-heme Iron Dioxygenases. ACS Catal 2022; 12:6444-6456. [PMID: 35692249 PMCID: PMC9171724 DOI: 10.1021/acscatal.2c00383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/09/2022] [Indexed: 02/07/2023]
Abstract
![]()
Rieske dioxygenases
catalyze the initial steps in the hydroxylation
of aromatic compounds and are critical for the metabolism of xenobiotic
substances. Because substrates do not bind to the mononuclear non-heme
FeII center, elementary steps leading to O2 activation
and substrate hydroxylation are difficult to delineate, thus making
it challenging to rationalize divergent observations on enzyme mechanisms,
reactivity, and substrate specificity. Here, we show for nitrobenzene
dioxygenase, a Rieske dioxygenase capable of transforming nitroarenes
to nitrite and substituted catechols, that unproductive O2 activation with the release of the unreacted substrate and reactive
oxygen species represents an important path in the catalytic cycle.
Through correlation of O2 uncoupling for a series of substituted
nitroaromatic compounds with 18O and 13C kinetic
isotope effects of dissolved O2 and aromatic substrates,
respectively, we show that O2 uncoupling occurs after the
rate-limiting formation of FeIII-(hydro)peroxo species
from which substrates are hydroxylated. Substituent effects on the
extent of O2 uncoupling suggest that the positioning of
the substrate in the active site rather than the susceptibility of
the substrate for attack by electrophilic oxygen species is responsible
for unproductive O2 uncoupling. The proposed catalytic
cycle provides a mechanistic basis for assessing the very different
efficiencies of substrate hydroxylation vs unproductive O2 activation and generation of reactive oxygen species in reactions
catalyzed by Rieske dioxygenases.
Collapse
Affiliation(s)
- Sarah G. Pati
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich, 8092 Zürich, Switzerland
| | - Charlotte E. Bopp
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich, 8092 Zürich, Switzerland
| | - Hans-Peter E. Kohler
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Thomas B. Hofstetter
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
38
|
Cheng M, Chen D, Parales RE, Jiang J. Oxygenases as Powerful Weapons in the Microbial Degradation of Pesticides. Annu Rev Microbiol 2022; 76:325-348. [PMID: 35650666 DOI: 10.1146/annurev-micro-041320-091758] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Oxygenases, which catalyze the reductive activation of O2 and incorporation of oxygen atoms into substrates, are widely distributed in aerobes. They function by switching the redox states of essential cofactors that include flavin, heme iron, Rieske non-heme iron, and Fe(II)/α-ketoglutarate. This review summarizes the catalytic features of flavin-dependent monooxygenases, heme iron-dependent cytochrome P450 monooxygenases, Rieske non-heme iron-dependent oxygenases, Fe(II)/α-ketoglutarate-dependent dioxygenases, and ring-cleavage dioxygenases, which are commonly involved in pesticide degradation. Heteroatom release (hydroxylation-coupled hetero group release), aromatic/heterocyclic ring hydroxylation to form ring-cleavage substrates, and ring cleavage are the main chemical fates of pesticides catalyzed by these oxygenases. The diversity of oxygenases, specificities for electron transport components, and potential applications of oxygenases are also discussed. This article summarizes our current understanding of the catalytic mechanisms of oxygenases and a framework for distinguishing the roles of oxygenases in pesticide degradation. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Minggen Cheng
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs and Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China;
| | - Dian Chen
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Rebecca E Parales
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California, USA
| | - Jiandong Jiang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs and Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China;
| |
Collapse
|
39
|
Morimoto Y, Itoh S. Hydroxylation of Aliphatic and Aromatic C-H Bonds Catalyzed by Biomimetic Transition-metal Complexes. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Shinobu Itoh
- Graduate School of Engineering, Osaka University
| |
Collapse
|
40
|
Biochemical and structural characterization of an aromatic ring-hydroxylating dioxygenase for terephthalic acid catabolism. Proc Natl Acad Sci U S A 2022; 119:e2121426119. [PMID: 35312352 PMCID: PMC9060491 DOI: 10.1073/pnas.2121426119] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
SignificanceMore than 400 million tons of plastic waste is produced each year, the overwhelming majority of which ends up in landfills. Bioconversion strategies aimed at plastics have emerged as important components of enabling a circular economy for synthetic plastics, especially those that exhibit chemically similar linkages to those found in nature, such as polyesters. The enzyme system described in this work is essential for mineralization of the xenobiotic components of poly(ethylene terephthalate) (PET) in the biosphere. Our description of its structure and substrate preferences lays the groundwork for in vivo or ex vivo engineering of this system for PET upcycling.
Collapse
|
41
|
Osifalujo EA, Preston‐Herrera C, Betts PC, Satterwhite LR, Froese JT. Improving Toluene Dioxygenase Activity for Ester‐Functionalized Substrates through Enzyme Engineering. ChemistrySelect 2022. [DOI: 10.1002/slct.202200753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Cristina Preston‐Herrera
- Department of Chemistry Ball State University 1600 W Ashland Avenue Muncie IN USA 47306
- Cristina Preston-Herrera Department of Chemistry and Chemical Biology Cornell University 122 Baker Laboratory Ithaca NY USA 14853
| | - Phillip C. Betts
- Department of Chemistry Ball State University 1600 W Ashland Avenue Muncie IN USA 47306
| | - Louis R. Satterwhite
- Department of Chemistry Ball State University 1600 W Ashland Avenue Muncie IN USA 47306
| | - Jordan T. Froese
- Department of Chemistry Ball State University 1600 W Ashland Avenue Muncie IN USA 47306
| |
Collapse
|
42
|
Csizi K, Eckert L, Brunken C, Hofstetter TB, Reiher M. The Apparently Unreactive Substrate Facilitates the Electron Transfer for Dioxygen Activation in Rieske Dioxygenases. Chemistry 2022; 28:e202103937. [PMID: 35072969 PMCID: PMC9306888 DOI: 10.1002/chem.202103937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Indexed: 12/29/2022]
Abstract
Rieske dioxygenases belong to the non-heme iron family of oxygenases and catalyze important cis-dihydroxylation as well as O-/N-dealkylation and oxidative cyclization reactions for a wide range of substrates. The lack of substrate coordination at the non-heme ferrous iron center, however, makes it particularly challenging to delineate the role of the substrate for productive O 2 activation. Here, we studied the role of the substrate in the key elementary reaction leading to O 2 activation from a theoretical perspective by systematically considering (i) the 6-coordinate to 5-coordinate conversion of the non-heme FeII upon abstraction of a water ligand, (ii) binding of O 2 , and (iii) transfer of an electron from the Rieske cluster. We systematically evaluated the spin-state-dependent reaction energies and structural effects at the active site for all combinations of the three elementary processes in the presence and absence of substrate using naphthalene dioxygenase as a prototypical Rieske dioxygenase. We find that reaction energies for the generation of a coordination vacancy at the non-heme FeII center through thermoneutral H2 O reorientation and exothermic O 2 binding prior to Rieske cluster oxidation are largely insensitive to the presence of naphthalene and do not lead to formation of any of the known reactive Fe-oxygen species. By contrast, the role of the substrate becomes evident after Rieske cluster oxidation and exclusively for the 6-coordinate non-heme FeII sites in that the additional electron is found at the substrate instead of at the iron and oxygen atoms. Our results imply an allosteric control of the substrate on Rieske dioxygenase reactivity to happen prior to changes at the non-heme FeII in agreement with a strategy that avoids unproductive O 2 activation.
Collapse
Affiliation(s)
- Katja‐Sophia Csizi
- EawagSwiss Federal Institute of Aquatic Science and TechnologyÜberlandstrasse 1338600DübendorfSwitzerland
- ETH ZürichLaboratory for Physical ChemistryVladimir-Prelog-Weg 28093ZürichSwitzerland
| | - Lina Eckert
- ETH ZürichLaboratory for Physical ChemistryVladimir-Prelog-Weg 28093ZürichSwitzerland
| | - Christoph Brunken
- EawagSwiss Federal Institute of Aquatic Science and TechnologyÜberlandstrasse 1338600DübendorfSwitzerland
- ETH ZürichLaboratory for Physical ChemistryVladimir-Prelog-Weg 28093ZürichSwitzerland
| | - Thomas B. Hofstetter
- EawagSwiss Federal Institute of Aquatic Science and TechnologyÜberlandstrasse 1338600DübendorfSwitzerland
| | - Markus Reiher
- ETH ZürichLaboratory for Physical ChemistryVladimir-Prelog-Weg 28093ZürichSwitzerland
| |
Collapse
|
43
|
Ferreira P, Fernandes P, Ramos M. The archaeal non-heme iron-containing Sulfur Oxygenase Reductase. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Monooxygenase- and Dioxygenase-Catalyzed Oxidative Dearomatization of Thiophenes by Sulfoxidation, cis-Dihydroxylation and Epoxidation. Int J Mol Sci 2022; 23:ijms23020909. [PMID: 35055091 PMCID: PMC8777831 DOI: 10.3390/ijms23020909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 11/17/2022] Open
Abstract
Enzymatic oxidations of thiophenes, including thiophene-containing drugs, are important for biodesulfurization of crude oil and drug metabolism of mono- and poly-cyclic thiophenes. Thiophene oxidative dearomatization pathways involve reactive metabolites, whose detection is important in the pharmaceutical industry, and are catalyzed by monooxygenase (sulfoxidation, epoxidation) and dioxygenase (sulfoxidation, dihydroxylation) enzymes. Sulfoxide and epoxide metabolites of thiophene substrates are often unstable, and, while cis-dihydrodiol metabolites are more stable, significant challenges are presented by both types of metabolite. Prediction of the structure, relative and absolute configuration, and enantiopurity of chiral metabolites obtained from thiophene enzymatic oxidation depends on the substrate, type of oxygenase selected, and molecular docking results. The racemization and dimerization of sulfoxides, cis/trans epimerization of dihydrodiol metabolites, and aromatization of epoxides are all factors associated with the mono- and di-oxygenase-catalyzed metabolism of thiophenes and thiophene-containing drugs and their applications in chemoenzymatic synthesis and medicine.
Collapse
|
45
|
Design principles for site-selective hydroxylation by a Rieske oxygenase. Nat Commun 2022; 13:255. [PMID: 35017498 PMCID: PMC8752792 DOI: 10.1038/s41467-021-27822-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 12/15/2021] [Indexed: 01/12/2023] Open
Abstract
Rieske oxygenases exploit the reactivity of iron to perform chemically challenging C–H bond functionalization reactions. Thus far, only a handful of Rieske oxygenases have been structurally characterized and remarkably little information exists regarding how these enzymes use a common architecture and set of metallocenters to facilitate a diverse range of reactions. Herein, we detail how two Rieske oxygenases SxtT and GxtA use different protein regions to influence the site-selectivity of their catalyzed monohydroxylation reactions. We present high resolution crystal structures of SxtT and GxtA with the native β-saxitoxinol and saxitoxin substrates bound in addition to a Xenon-pressurized structure of GxtA that reveals the location of a substrate access tunnel to the active site. Ultimately, this structural information allowed for the identification of six residues distributed between three regions of SxtT that together control the selectivity of the C–H hydroxylation event. Substitution of these residues produces a SxtT variant that is fully adapted to exhibit the non-native site-selectivity and substrate scope of GxtA. Importantly, we also found that these selectivity regions are conserved in other structurally characterized Rieske oxygenases, providing a framework for predictively repurposing and manipulating Rieske oxygenases as biocatalysts. SxtT and GxtA are Rieske oxygenases that are involved in paralytic shellfish toxin biosynthesis and catalyze monohydroxylation reactions at different positions on the toxin scaffold. Here, the authors present crystal structures of SxtT and GxtA with the native substrates β-saxitoxinol and saxitoxin as well as a Xenon-pressurized structure of GxtA, which reveal a substrate access tunnel to the active site. Through structure-based mutagenesis studies the authors identify six residues in three different protein regions that determine the substrate specificity and site selectivity of SxtT and GxtA. These findings will aid the rational engineering of other Rieske oxygenases.
Collapse
|
46
|
Structural insights into dihydroxylation of terephthalate, a product of polyethylene terephthalate degradation. J Bacteriol 2022; 204:e0054321. [PMID: 35007143 DOI: 10.1128/jb.00543-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biodegradation of terephthalate (TPA) is a highly desired catabolic process for the bacterial utilization of this Polyethylene terephthalate (PET) depolymerization product, but to date, the structure of terephthalate dioxygenase (TPDO), a Rieske oxygenase (RO) that catalyzes the dihydroxylation of TPA to a cis-diol is unavailable. In this study, we characterized the steady-state kinetics and first crystal structure of TPDO from Comamonas testosteroni KF1 (TPDOKF1). The TPDOKF1 exhibited the substrate specificity for TPA (kcat/Km = 57 ± 9 mM-1s-1). The TPDOKF1 structure harbors characteristics RO features as well as a unique catalytic domain that rationalizes the enzyme's function. The docking and mutagenesis studies reveal that its substrate specificity to TPA is mediated by Arg309 and Arg390 residues, two residues positioned on opposite faces of the active site. Additionally, residue Gln300 is also proven to be crucial for the activity, its substitution to alanine decreases the activity (kcat) by 80%. Together, this study delineates the structural features that dictate the substrate recognition and specificity of TPDO. Importance The global plastic pollution has become the most pressing environmental issue. Recent studies on enzymes depolymerizing polyethylene terephthalate plastic into terephthalate (TPA) show some potential in tackling this. Microbial utilization of this released product, TPA is an emerging and promising strategy for waste-to-value creation. Research from the last decade has discovered terephthalate dioxygenase (TPDO), as being responsible for initiating the enzymatic degradation of TPA in a few Gram-negative and Gram-positive bacteria. Here, we have determined the crystal structure of TPDO from Comamonas testosteroni KF1 and revealed that it possesses a unique catalytic domain featuring two basic residues in the active site to recognize TPA. Biochemical and mutagenesis studies demonstrated the crucial residues responsible for the substrate specificity of this enzyme.
Collapse
|
47
|
Rebilly JN, Herrero C, Sénéchal-David K, Guillot R, Inceoglu T, Maisonneuve H, Banse F. Second-sphere effects on H 2O 2 activation by non-heme Fe II complexes: role of a phenol group in the [H 2O 2]-dependent accumulation of Fe IVO vs. Fe IIIOOH. Chem Sci 2021; 12:15691-15699. [PMID: 35003600 PMCID: PMC8653992 DOI: 10.1039/d1sc03303d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/17/2021] [Indexed: 12/03/2022] Open
Abstract
Redox metalloenzymes achieve very selective oxidation reactions under mild conditions using O2 or H2O2 as oxidants and release harmless side-products like water. Their oxidation selectivity is intrinsically linked to the control of the oxidizing species generated during the catalytic cycle. To do so, a second coordination sphere is used in order to create a pull effect during the activation of O2 or H2O2, thus ensuring a heterolytic O-O bond cleavage. Herein, we report the synthesis and study of a new non-heme FeII complex bearing a pentaazadentate first coordination sphere and a pendant phenol group. Its reaction with H2O2 generates the classical FeIIIOOH species at high H2O2 loading. But at low H2O2 concentrations, an FeIVO species is generated instead. The formation of the latter is directly related to the presence of the 2nd sphere phenol group. Kinetic, variable temperature and labelling studies support the involvement of the attached phenol as a second coordination sphere moiety (weak acid) during H2O2 activation. Our results suggest a direct FeII → FeIVO conversion directed by the 2nd sphere phenol via the protonation of the distal O atom of the FeII/H2O2 adduct leading to a heterolytic O-O bond cleavage.
Collapse
Affiliation(s)
- Jean-Noël Rebilly
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) 91405 Orsay Cedex France
| | - Christian Herrero
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) 91405 Orsay Cedex France
| | - Katell Sénéchal-David
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) 91405 Orsay Cedex France
| | - Régis Guillot
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) 91405 Orsay Cedex France
| | - Tanya Inceoglu
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) 91405 Orsay Cedex France
| | - Hélène Maisonneuve
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) 91405 Orsay Cedex France
| | - Frédéric Banse
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) 91405 Orsay Cedex France
| |
Collapse
|
48
|
Solomon EI, DeWeese DE, Babicz JT. Mechanisms of O 2 Activation by Mononuclear Non-Heme Iron Enzymes. Biochemistry 2021; 60:3497-3506. [PMID: 34266238 PMCID: PMC8768060 DOI: 10.1021/acs.biochem.1c00370] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Two major subclasses of mononuclear non-heme ferrous enzymes use two electron-donating organic cofactors (α-ketoglutarate or pterin) to activate O2 to form FeIV═O intermediates that further react with their substrates through hydrogen atom abstraction or electrophilic aromatic substitution. New spectroscopic methodologies have been developed, enabling the study of the active sites in these enzymes and their oxygen intermediates. Coupled to electronic structure calculations, the results of these spectroscopies provide fundamental insight into mechanism. This Perspective summarizes the results of these studies in elucidating the mechanism of dioxygen activation to form the FeIV═O intermediate and the geometric and electronic structure of this intermediate that enables its high reactivity and selectivity in product formation.
Collapse
Affiliation(s)
- Edward I. Solomon
- Department of Chemistry, Stanford University, 333 Campus Dr. Stanford, CA, 94305, United States,SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, United States
| | - Dory E. DeWeese
- Department of Chemistry, Stanford University, 333 Campus Dr. Stanford, CA, 94305, United States
| | - Jeffrey T. Babicz
- Department of Chemistry, Stanford University, 333 Campus Dr. Stanford, CA, 94305, United States
| |
Collapse
|
49
|
Mahto JK, Neetu N, Waghmode B, Kuatsjah E, Sharma M, Sircar D, Sharma AK, Tomar S, Eltis LD, Kumar P. Molecular insights into substrate recognition and catalysis by phthalate dioxygenase from Comamonas testosteroni. J Biol Chem 2021; 297:101416. [PMID: 34800435 PMCID: PMC8649396 DOI: 10.1016/j.jbc.2021.101416] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/19/2022] Open
Abstract
Phthalate, a plasticizer, endocrine disruptor, and potential carcinogen, is degraded by a variety of bacteria. This degradation is initiated by phthalate dioxygenase (PDO), a Rieske oxygenase (RO) that catalyzes the dihydroxylation of phthalate to a dihydrodiol. PDO has long served as a model for understanding ROs despite a lack of structural data. Here we purified PDOKF1 from Comamonas testosteroni KF1 and found that it had an apparent kcat/Km for phthalate of 0.58 ± 0.09 μM-1s-1, over 25-fold greater than for terephthalate. The crystal structure of the enzyme at 2.1 Å resolution revealed that it is a hexamer comprising two stacked α3 trimers, a configuration not previously observed in RO crystal structures. We show that within each trimer, the protomers adopt a head-to-tail configuration typical of ROs. The stacking of the trimers is stabilized by two extended helices, which make the catalytic domain of PDOKF1 larger than that of other characterized ROs. Complexes of PDOKF1 with phthalate and terephthalate revealed that Arg207 and Arg244, two residues on one face of the active site, position these substrates for regiospecific hydroxylation. Consistent with their roles as determinants of substrate specificity, substitution of either residue with alanine yielded variants that did not detectably turnover phthalate. Together, these results provide critical insights into a pollutant-degrading enzyme that has served as a paradigm for ROs and facilitate the engineering of this enzyme for bioremediation and biocatalytic applications.
Collapse
Affiliation(s)
- Jai Krishna Mahto
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, India
| | - Neetu Neetu
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, India
| | | | - Eugene Kuatsjah
- Department of Microbiology & Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - Monica Sharma
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, India
| | - Debabrata Sircar
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, India
| | | | - Shailly Tomar
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, India
| | - Lindsay D Eltis
- Department of Microbiology & Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, India.
| |
Collapse
|
50
|
Xue SW, Tian YX, Pan JC, Liu YN, Ma YL. Binding interaction of a ring-hydroxylating dioxygenase with fluoranthene in Pseudomonas aeruginosa DN1. Sci Rep 2021; 11:21317. [PMID: 34716364 PMCID: PMC8556375 DOI: 10.1038/s41598-021-00783-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/18/2021] [Indexed: 11/11/2022] Open
Abstract
Pseudomonas aeruginosa DN1 can efficiently utilize fluoranthene as its sole carbon source, and the initial reaction in the biodegradation process is catalyzed by a ring-hydroxylating dioxygenase (RHD). To clarify the binding interaction of RHD with fluoranthene in the strain DN1, the genes encoding alpha subunit (RS30940) and beta subunit (RS05115) of RHD were functionally characterized through multi-technique combination such as gene knockout and homology modeling as well as molecular docking analysis. The results showed that the mutants lacking the characteristic alpha subunit and/or beta subunit failed to degrade fluoranthene effectively. Based on the translated protein sequence and Ramachandran plot, 96.5% of the primary amino-acid sequences of the alpha subunit in the modeled structure of the RHD were in the permitted region, 2.3% in the allowed region, but 1.2% in the disallowed area. The catalytic mechanism mediated by key residues was proposed by the simulations of molecular docking, wherein the active site of alpha subunit constituted a triangle structure of the mononuclear iron atom and the two oxygen atoms coupled with the predicted catalytic ternary of His217-His222-Asp372 for the dihydroxylation reaction with fluoranthene. Those amino acid residues adjacent to fluoranthene were nonpolar groups, and the C7-C8 positions on the fluoranthene ring were estimated to be the best oxidation sites. The distance of C7-O and C8-O was 3.77 Å and 3.04 Å respectively, and both of them were parallel. The results of synchronous fluorescence and site-directed mutagenesis confirmed the roles of the predicted residues during catalysis. This binding interaction could enhance our understanding of the catalytic mechanism of RHDs and provide a solid foundation for further enzymatic modification.
Collapse
Affiliation(s)
- Shu-Wen Xue
- grid.412262.10000 0004 1761 5538Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an, 710069 Shaanxi China ,grid.412262.10000 0004 1761 5538College of Life Science, Northwest University, 229 Taibai North Rd, Xi’an, 710069 Shaanxi China
| | - Yue-Xin Tian
- grid.412262.10000 0004 1761 5538Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an, 710069 Shaanxi China ,grid.412262.10000 0004 1761 5538College of Life Science, Northwest University, 229 Taibai North Rd, Xi’an, 710069 Shaanxi China
| | - Jin-Cheng Pan
- grid.412262.10000 0004 1761 5538Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an, 710069 Shaanxi China ,grid.412262.10000 0004 1761 5538College of Life Science, Northwest University, 229 Taibai North Rd, Xi’an, 710069 Shaanxi China
| | - Ya-Ni Liu
- grid.412262.10000 0004 1761 5538Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an, 710069 Shaanxi China ,grid.412262.10000 0004 1761 5538College of Life Science, Northwest University, 229 Taibai North Rd, Xi’an, 710069 Shaanxi China
| | - Yan-Ling Ma
- grid.412262.10000 0004 1761 5538Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an, 710069 Shaanxi China ,grid.412262.10000 0004 1761 5538College of Life Science, Northwest University, 229 Taibai North Rd, Xi’an, 710069 Shaanxi China
| |
Collapse
|