1
|
Xiao Y, Liang Z, Shyngys M, Baekova A, Cheung S, Muljadi MB, Bai Q, Zeng L, Choi CHJ. In Vivo Interactions of Nucleic Acid Nanostructures With Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2314232. [PMID: 39263835 PMCID: PMC11733725 DOI: 10.1002/adma.202314232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 07/03/2024] [Indexed: 09/13/2024]
Abstract
Nucleic acid nanostructures, derived from the assembly of nucleic acid building blocks (e.g., plasmids and oligonucleotides), are important intracellular carriers of therapeutic cargoes widely utilized in preclinical nanomedicine applications, yet their clinical translation remains scarce. In the era of "translational nucleic acid nanotechnology", a deeper mechanistic understanding of the interactions of nucleic acid nanostructures with cells in vivo will guide the development of more efficacious nanomedicines. This review showcases the recent progress in dissecting the in vivo interactions of four key types of nucleic acid nanostructures (i.e., tile-based, origami, spherical nucleic acid, and nucleic acid nanogel) with cells in rodents over the past five years. Emphasis lies on the cellular-level distribution of nucleic acid nanostructures in various organs and tissues and the cellular responses induced by their cellular entry. Next, in the spirit of preclinical translation, this review features the latest interactions of nucleic acid nanostructures with cells in large animals and humans. Finally, the review offers directions for studying the interactions of nucleic acid nanostructures with cells from both materials and biology perspectives and concludes with some regulatory updates.
Collapse
Affiliation(s)
- Yu Xiao
- Department of Biomedical EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong
| | - Zhihui Liang
- Department of Biomedical EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong
| | - Moldir Shyngys
- Department of Biomedical EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong
| | - Aiana Baekova
- Department of Biomedical EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong
| | - Suen Cheung
- Department of Biomedical EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong
| | - Mathias Billy Muljadi
- Department of Biomedical EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong
| | - Qianqian Bai
- Department of Biomedical EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong
| | - Lula Zeng
- Department of Biomedical EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong
| | - Chung Hang Jonathan Choi
- Department of Biomedical EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkShatinNew TerritoriesHong Kong
| |
Collapse
|
2
|
Yu L, Chen L, Satyabola D, Prasad A, Yan H. NucleoCraft: The Art of Stimuli-Responsive Precision in DNA and RNA Bioengineering. BME FRONTIERS 2024; 5:0050. [PMID: 39290204 PMCID: PMC11407293 DOI: 10.34133/bmef.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/24/2024] [Indexed: 09/19/2024] Open
Abstract
Recent advancements in DNA and RNA bioengineering have paved the way for developing stimuli-responsive nanostructures with remarkable potential across various applications. These nanostructures, crafted through sophisticated bioengineering techniques, can dynamically and precisely respond to both physiological and physical stimuli, including nucleic acids (DNA/RNA), adenosine triphosphate, proteins, ions, small molecules, pH, light, and temperature. They offer high sensitivity and specificity, making them ideal for applications such as biomarker detection, gene therapy, and controlled targeted drug delivery. In this review, we summarize the bioengineering methods used to assemble versatile stimuli-responsive DNA/RNA nanostructures and discuss their emerging applications in structural biology and biomedicine, including biosensing, targeted drug delivery, and therapeutics. Finally, we highlight the challenges and opportunities in the rational design of these intelligent bioengineered nanostructures.
Collapse
Affiliation(s)
- Lu Yu
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Liangxiao Chen
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Deeksha Satyabola
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Abhay Prasad
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Hao Yan
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
3
|
Stewart JM. RNA nanotechnology on the horizon: Self-assembly, chemical modifications, and functional applications. Curr Opin Chem Biol 2024; 81:102479. [PMID: 38889473 DOI: 10.1016/j.cbpa.2024.102479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/20/2024]
Abstract
RNA nanotechnology harnesses the unique chemical and structural properties of RNA to build nanoassemblies and supramolecular structures with dynamic and functional capabilities. This review focuses on design and assembly approaches to building RNA structures, the RNA chemical modifications used to enhance stability and functionality, and modern-day applications in therapeutics, biosensing, and bioimaging.
Collapse
|
4
|
Stewart JM, Li S, Tang AA, Klocke MA, Gobry MV, Fabrini G, Di Michele L, Rothemund PWK, Franco E. Modular RNA motifs for orthogonal phase separated compartments. Nat Commun 2024; 15:6244. [PMID: 39080253 PMCID: PMC11289419 DOI: 10.1038/s41467-024-50003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 06/20/2024] [Indexed: 08/02/2024] Open
Abstract
Recent discoveries in biology have highlighted the importance of protein and RNA-based condensates as an alternative to classical membrane-bound organelles. Here, we demonstrate the design of pure RNA condensates from nanostructured, star-shaped RNA motifs. We generate condensates using two different RNA nanostar architectures: multi-stranded nanostars whose binding interactions are programmed via linear overhangs, and single-stranded nanostars whose interactions are programmed via kissing loops. Through systematic sequence design, we demonstrate that both architectures can produce orthogonal (distinct and immiscible) condensates, which can be individually tracked via fluorogenic aptamers. We also show that aptamers make it possible to recruit peptides and proteins to the condensates with high specificity. Successful co-transcriptional formation of condensates from single-stranded nanostars suggests that they may be genetically encoded and produced in living cells. We provide a library of orthogonal RNA condensates that can be modularly customized and offer a route toward creating systems of functional artificial organelles for the task of compartmentalizing molecules and biochemical reactions.
Collapse
Affiliation(s)
- Jaimie Marie Stewart
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Shiyi Li
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Anli A Tang
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA, USA
| | - Melissa Ann Klocke
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA, USA
| | - Martin Vincent Gobry
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Giacomo Fabrini
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
- fabriCELL, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Lorenzo Di Michele
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
- fabriCELL, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Paul W K Rothemund
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA.
- Department of Bioengineering, California Institute of Technology, Pasadena, USA.
- Department of Computation & Neural Systems, California Institute of Technology, Pasadena, USA.
| | - Elisa Franco
- Department of Bioengineering, University of California, Los Angeles, CA, USA.
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Udono H, Fan M, Saito Y, Ohno H, Nomura SIM, Shimizu Y, Saito H, Takinoue M. Programmable Computational RNA Droplets Assembled via Kissing-Loop Interaction. ACS NANO 2024; 18:15477-15486. [PMID: 38831645 PMCID: PMC11191694 DOI: 10.1021/acsnano.3c12161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 06/05/2024]
Abstract
DNA droplets, artificial liquid-like condensates of well-engineered DNA sequences, allow the critical aspects of phase-separated biological condensates to be harnessed programmably, such as molecular sensing and phase-state regulation. In contrast, their RNA-based counterparts remain less explored despite more diverse molecular structures and functions ranging from DNA-like to protein-like features. Here, we design and demonstrate computational RNA droplets capable of two-input AND logic operations. We use a multibranched RNA nanostructure as a building block comprising multiple single-stranded RNAs. Its branches engaged in RNA-specific kissing-loop (KL) interaction enables the self-assembly into a network-like microstructure. Upon two inputs of target miRNAs, the nanostructure is programmed to break up into lower-valency structures that are interconnected in a chain-like manner. We optimize KL sequences adapted from viral sequences by numerically and experimentally studying the base-wise adjustability of the interaction strength. Only upon receiving cognate microRNAs, RNA droplets selectively show a drastic phase-state change from liquid to dispersed states due to dismantling of the network-like microstructure. This demonstration strongly suggests that the multistranded motif design offers a flexible means to bottom-up programming of condensate phase behavior. Unlike submicroscopic RNA-based logic operators, the macroscopic phase change provides a naked-eye-distinguishable readout of molecular sensing. Our computational RNA droplets can be applied to in situ programmable assembly of computational biomolecular devices and artificial cells from transcriptionally derived RNA within biological/artificial cells.
Collapse
Affiliation(s)
- Hirotake Udono
- Department
of Computer Science, Tokyo Institute of
Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Minzhi Fan
- Department
of Computer Science, Tokyo Institute of
Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Yoko Saito
- Department
of Computer Science, Tokyo Institute of
Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Hirohisa Ohno
- Department
of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shin-ichiro M. Nomura
- Department
of Robotics, Graduate School of Engineering, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yoshihiro Shimizu
- Laboratory
for Cell-Free Protein Synthesis, RIKEN Center
for Biosystems Dynamics Research, Suita, Osaka 565-0874, Japan
| | - Hirohide Saito
- Department
of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Masahiro Takinoue
- Department
of Computer Science, Tokyo Institute of
Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
- Department
of Life Science and Technology, Tokyo Institute
of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
- Research
Center for Autonomous Systems Materialogy (ASMat), Institute of Innovative
Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
6
|
Vallina NS, McRae EKS, Geary C, Andersen ES. An RNA origami robot that traps and releases a fluorescent aptamer. SCIENCE ADVANCES 2024; 10:eadk1250. [PMID: 38507482 PMCID: PMC10954211 DOI: 10.1126/sciadv.adk1250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/15/2024] [Indexed: 03/22/2024]
Abstract
RNA nanotechnology aims to use RNA as a programmable material to create self-assembling nanodevices for application in medicine and synthetic biology. The main challenge is to develop advanced RNA robotic devices that both sense, compute, and actuate to obtain enhanced control over molecular processes. Here, we use the RNA origami method to prototype an RNA robotic device, named the "Traptamer," that mechanically traps the fluorescent aptamer, iSpinach. The Traptamer is shown to sense two RNA key strands, acts as a Boolean AND gate, and reversibly controls the fluorescence of the iSpinach aptamer. Cryo-electron microscopy of the closed Traptamer structure at 5.45-angstrom resolution reveals the mechanical mode of distortion of the iSpinach motif. Our study suggests a general approach to distorting RNA motifs and a path forward to build sophisticated RNA machines that through sensing, computing, and actuation modules can be used to precisely control RNA functionalities in cellular systems.
Collapse
Affiliation(s)
| | - Ewan K. S. McRae
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
- Center for RNA Therapeutics, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6670 Bertner Ave, R10-117, Houston, TX 77030, USA
| | - Cody Geary
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Ebbe S. Andersen
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
7
|
Ratajczyk EJ, Šulc P, Turberfield AJ, Doye JPK, Louis AA. Coarse-grained modeling of DNA-RNA hybrids. J Chem Phys 2024; 160:115101. [PMID: 38497475 DOI: 10.1063/5.0199558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/26/2024] [Indexed: 03/19/2024] Open
Abstract
We introduce oxNA, a new model for the simulation of DNA-RNA hybrids that is based on two previously developed coarse-grained models-oxDNA and oxRNA. The model naturally reproduces the physical properties of hybrid duplexes, including their structure, persistence length, and force-extension characteristics. By parameterizing the DNA-RNA hydrogen bonding interaction, we fit the model's thermodynamic properties to experimental data using both average-sequence and sequence-dependent parameters. To demonstrate the model's applicability, we provide three examples of its use-calculating the free energy profiles of hybrid strand displacement reactions, studying the resolution of a short R-loop, and simulating RNA-scaffolded wireframe origami.
Collapse
Affiliation(s)
- Eryk J Ratajczyk
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Petr Šulc
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85281, USA
- School of Natural Sciences, Department of Bioscience, Technical University Munich, 85748 Garching, Germany
| | - Andrew J Turberfield
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Jonathan P K Doye
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Ard A Louis
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdom
| |
Collapse
|
8
|
Brumett R, Danai L, Coffman A, Radwan Y, Teter M, Hayth H, Doe E, Pranger K, Thornburgh S, Dittmer A, Li Z, Kim TJ, Afonin KA, Khisamutdinov EF. Design and Characterization of Compact, Programmable, Multistranded Nonimmunostimulatory Nucleic Acid Nanoparticles Suitable for Biomedical Applications. Biochemistry 2024; 63:312-325. [PMID: 38271599 PMCID: PMC11587934 DOI: 10.1021/acs.biochem.3c00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
We report a thorough investigation of the role of single-stranded thymidine (ssT) linkers in the stability and flexibility of minimal, multistranded DNA nanostructures. We systematically explore the impact of varying the number of ssTs in three-way junction motifs (3WJs) on their formation and properties. Through various UV melting experiments and molecular dynamics simulations, we demonstrate that while the number of ssTs minimally affects thermodynamic stability, the increasing ssT regions significantly enhance the structural flexibility of 3WJs. Utilizing this knowledge, we design triangular DNA nanoparticles with varying ssTs, all showing exceptional assembly efficiency except for the 0T triangle. All triangles demonstrate enhanced stability in blood serum and are nonimmunostimulatory and nontoxic in mammalian cell lines. The 4T 3WJ is chosen as the building block for constructing other polygons due to its enhanced flexibility and favorable physicochemical characteristics, making it a versatile choice for creating cost-effective, stable, and functional DNA nanostructures that can be stored in the dehydrated forms while retaining their structures. Our study provides valuable insights into the design and application of nucleic acid nanostructures, emphasizing the importance of understanding stability and flexibility in the realm of nucleic acid nanotechnology. Our findings suggest the intricate connection between these ssTs and the structural adaptability of DNA 3WJs, paving the way for more precise design and engineering of nucleic acid nanosystems suitable for broad biomedical applications.
Collapse
Affiliation(s)
- Ross Brumett
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Leyla Danai
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Abigail Coffman
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Yasmine Radwan
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Megan Teter
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Hannah Hayth
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Erwin Doe
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Katelynn Pranger
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Sable Thornburgh
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Allison Dittmer
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Zhihai Li
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Tae Jin Kim
- Department of Physical Sciences, West Virginia University Institute of Technology, Beckley, West Virginia 25801, United States
| | - Kirill A. Afonin
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Emil F. Khisamutdinov
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| |
Collapse
|
9
|
Ripin N, Parker R. Formation, function, and pathology of RNP granules. Cell 2023; 186:4737-4756. [PMID: 37890457 PMCID: PMC10617657 DOI: 10.1016/j.cell.2023.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/28/2023] [Accepted: 09/07/2023] [Indexed: 10/29/2023]
Abstract
Ribonucleoprotein (RNP) granules are diverse membrane-less organelles that form through multivalent RNA-RNA, RNA-protein, and protein-protein interactions between RNPs. RNP granules are implicated in many aspects of RNA physiology, but in most cases their functions are poorly understood. RNP granules can be described through four key principles. First, RNP granules often arise because of the large size, high localized concentrations, and multivalent interactions of RNPs. Second, cells regulate RNP granule formation by multiple mechanisms including posttranslational modifications, protein chaperones, and RNA chaperones. Third, RNP granules impact cell physiology in multiple manners. Finally, dysregulation of RNP granules contributes to human diseases. Outstanding issues in the field remain, including determining the scale and molecular mechanisms of RNP granule function and how granule dysfunction contributes to human disease.
Collapse
Affiliation(s)
- Nina Ripin
- Department of Biochemistry and Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Roy Parker
- Department of Biochemistry and Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303, USA.
| |
Collapse
|
10
|
Ma X, Zhang Y, Huang K, Zhu L, Xu W. Multifunctional rolling circle transcription-based nanomaterials for advanced drug delivery. Biomaterials 2023; 301:122241. [PMID: 37451000 DOI: 10.1016/j.biomaterials.2023.122241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/21/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
As the up-and-comer in the development of RNA nanotechnology, RNA nanomaterials based on functionalized rolling circle transcription (RCT) have become promising carriers for drug production and delivery. This is due to RCT technology can self-produce polyvalent tandem nucleic acid prodrugs for intervention in intracellular gene expression and protein production. RNA component strands participating in de novo assembly enable RCT-based nanomaterials to exhibit good mechanical properties, biostability, and biocompatibility as delivery carriers. The biostability makes it to suitable for thermodynamically/kinetically favorable assembly, enzyme resistance and efficient expression in vivo. Controllable RCT system combined with polymers enables customizable and adjustable size, shape, structure, and stoichiometry of RNA building materials, which provide groundwork for the delivery of advanced drugs. Here, we review the assembly strategies and the dynamic regulation of RCT-based nanomaterials, summarize its functional properties referring to the bottom-up design philosophy, and describe its advancements in tumor gene therapy, synergistic chemotherapy, and immunotherapy. Last, we elaborate on the unique and practical value of RCT-based nanomaterials, namely "self-production and self-sale", and their potential challenges in nanotechnology, material science and biomedicine.
Collapse
Affiliation(s)
- Xuan Ma
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; College of Food Science and Nutrition Engineering, China Agricultural University, Beijing, 100083, China
| | - Yangzi Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; College of Food Science and Nutrition Engineering, China Agricultural University, Beijing, 100083, China
| | - Kunlun Huang
- College of Food Science and Nutrition Engineering, China Agricultural University, Beijing, 100083, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; College of Food Science and Nutrition Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
11
|
Li H, Li R, He S, Wang Y, Fang W, Jin Y, Yang R, Liu Y, Ye Q, Peng X. An Aptamer-Embedded Two-Dimensional DNA Nanoscale Material with the Property of Cells Recruitment. NANO LETTERS 2023; 23:8399-8405. [PMID: 37339058 DOI: 10.1021/acs.nanolett.3c01240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Stem cells possess exceptional proliferation and differentiation abilities, making them highly promising for targeted recruitment research in tissue engineering and other clinical applications. DNA is a naturally water-soluble, biocompatible, and highly editable material that is widely used in cell recruitment research. However, DNA nanomaterials face challenges, such as poor stability, complex synthesis processes, and demanding storage conditions, which limit their potential applications. In this study, we designed a highly stable DNA nanomaterial that embeds nucleic acid aptamers in the single strand region. This material has the ability to specifically bind, recruit, and capture human mesenchymal stem cells. The synthesis process involves rolling circle amplification and topological isomerization, and it can be stored for extended periods under varying temperatures and humidity conditions. This DNA material offers high specificity, ease of fabrication, simple preservation, and low cost, providing a novel approach to stem cell recruitment strategies.
Collapse
Affiliation(s)
- Hongshu Li
- School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Rui Li
- School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Songlin He
- School of Medicine, Nankai University, Tianjin, 300071, P. R. China
- Institute of Orthopedics, the First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100853, P. R. China
| | - Yu Wang
- School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Wenya Fang
- School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Yufeng Jin
- School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Rui Yang
- School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Yin Liu
- School of Medicine, Nankai University, Tianjin, 300071, P. R. China
- Nankai University Eye Institute, Nankai University, Tianjin 300071, P. R. China
| | - Qing Ye
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics, Nankai University, Tianjin 300071, P. R. China
- Nankai University Eye Institute, Nankai University, Tianjin 300071, P. R. China
| | - Xi Peng
- School of Medicine, Nankai University, Tianjin, 300071, P. R. China
- Nankai University Eye Institute, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
12
|
Zhan P, Peil A, Jiang Q, Wang D, Mousavi S, Xiong Q, Shen Q, Shang Y, Ding B, Lin C, Ke Y, Liu N. Recent Advances in DNA Origami-Engineered Nanomaterials and Applications. Chem Rev 2023; 123:3976-4050. [PMID: 36990451 PMCID: PMC10103138 DOI: 10.1021/acs.chemrev.3c00028] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Indexed: 03/31/2023]
Abstract
DNA nanotechnology is a unique field, where physics, chemistry, biology, mathematics, engineering, and materials science can elegantly converge. Since the original proposal of Nadrian Seeman, significant advances have been achieved in the past four decades. During this glory time, the DNA origami technique developed by Paul Rothemund further pushed the field forward with a vigorous momentum, fostering a plethora of concepts, models, methodologies, and applications that were not thought of before. This review focuses on the recent progress in DNA origami-engineered nanomaterials in the past five years, outlining the exciting achievements as well as the unexplored research avenues. We believe that the spirit and assets that Seeman left for scientists will continue to bring interdisciplinary innovations and useful applications to this field in the next decade.
Collapse
Affiliation(s)
- Pengfei Zhan
- 2nd Physics
Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Andreas Peil
- 2nd Physics
Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Qiao Jiang
- National
Center for Nanoscience and Technology, No 11, BeiYiTiao Zhongguancun, Beijing 100190, China
| | - Dongfang Wang
- School
of Biomedical Engineering and Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Shikufa Mousavi
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Qiancheng Xiong
- Department
of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
- Nanobiology
Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
| | - Qi Shen
- Department
of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
- Nanobiology
Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
- Department
of Molecular Biophysics and Biochemistry, Yale University, 266
Whitney Avenue, New Haven, Connecticut 06511, United States
| | - Yingxu Shang
- National
Center for Nanoscience and Technology, No 11, BeiYiTiao Zhongguancun, Beijing 100190, China
| | - Baoquan Ding
- National
Center for Nanoscience and Technology, No 11, BeiYiTiao Zhongguancun, Beijing 100190, China
| | - Chenxiang Lin
- Department
of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
- Nanobiology
Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
- Department
of Biomedical Engineering, Yale University, 17 Hillhouse Avenue, New Haven, Connecticut 06511, United States
| | - Yonggang Ke
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Na Liu
- 2nd Physics
Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Max Planck
Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| |
Collapse
|
13
|
Zhao M, Wang R, Yang K, Jiang Y, Peng Y, Li Y, Zhang Z, Ding J, Shi S. Nucleic acid nanoassembly-enhanced RNA therapeutics and diagnosis. Acta Pharm Sin B 2023; 13:916-941. [PMID: 36970219 PMCID: PMC10031267 DOI: 10.1016/j.apsb.2022.10.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/22/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
RNAs are involved in the crucial processes of disease progression and have emerged as powerful therapeutic targets and diagnostic biomarkers. However, efficient delivery of therapeutic RNA to the targeted location and precise detection of RNA markers remains challenging. Recently, more and more attention has been paid to applying nucleic acid nanoassemblies in diagnosing and treating. Due to the flexibility and deformability of nucleic acids, the nanoassemblies could be fabricated with different shapes and structures. With hybridization, nucleic acid nanoassemblies, including DNA and RNA nanostructures, can be applied to enhance RNA therapeutics and diagnosis. This review briefly introduces the construction and properties of different nucleic acid nanoassemblies and their applications for RNA therapy and diagnosis and makes further prospects for their development.
Collapse
Affiliation(s)
- Mengnan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rujing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Kunmeng Yang
- The First Norman Bethune College of Clinical Medicine, Jilin University, Changchun 130061, China
| | - Yuhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yachen Peng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Yuke Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
14
|
Wang Y, Yuan CL, Huang W, Sun PZ, Liu B, Hu HL, Zheng Z, Lu YQ, Li Q. Programmable Jigsaw Puzzles of Soft Materials Enabled by Pixelated Holographic Surface Reliefs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211521. [PMID: 36744552 DOI: 10.1002/adma.202211521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Manual intervention in the self-organization of soft matter to obtain a desired superstructure is a complex but significant project. Specifically, optical components made fully or partially from reconfigurable and stimuli-responsive soft materials, referred to as soft photonics, are poised to form versatile platforms in various areas; however, a limited scale, narrow spectral adaptability, and poor stability are still formidable challenges. Herein, a facile way is developed to program the optical jigsaw puzzle of nematic liquid crystals via pixelated holographic surface reliefs, leading to an era of manufacturing for programmable soft materials with tailored functions. Multiscale jigsaw puzzles are established and endowed with unprecedented stability and durability, further sketching a prospective framework toward customized adaptive photonic architectures. This work demonstrates a reliable and efficient approach for directly assembling soft matter, unlocking the long-sought full potential of stimuli-responsive soft systems, and providing opportunities to inspire the next generation of soft photonics and relevant areas.
Collapse
Affiliation(s)
- Yifei Wang
- School of Physics, East China University of Science and Technology, Shanghai, 200237, China
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Cong-Long Yuan
- School of Physics, East China University of Science and Technology, Shanghai, 200237, China
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenbin Huang
- School of Optoelectronic Science and Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, China
| | - Pei-Zhi Sun
- School of Physics, East China University of Science and Technology, Shanghai, 200237, China
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Binghui Liu
- School of Physics, East China University of Science and Technology, Shanghai, 200237, China
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hong-Long Hu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhigang Zheng
- School of Physics, East China University of Science and Technology, Shanghai, 200237, China
| | - Yan-Qing Lu
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, Collaborative Innovation Center of Advanced Microstructures and College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Nanjing, 211189, China
- Advanced Materials and Liquid Crystal Institute and Materials Science Graduate Program, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|
15
|
Abstract
Nucleic-acid nanostructures, which have been designed and constructed with atomic precision, have been used as scaffolds for different molecules and proteins, as nanomachines, as computational components, and more. In particular, RNA has garnered tremendous interest as a building block for the self-assembly of sophisticated and functional nanostructures by virtue of its ease of synthesis by in vivo or in vitro transcription, its superior mechanical and thermodynamic properties, and its functional roles in nature. In this Topical Review, we describe recent developments in the use of RNA for the design and construction of nanostructures. We discuss the differences between RNA and DNA that make RNA attractive as a building block for the construction of nucleic-acid nanostructures, and we present the uses of different nanostructures─RNA alone, RNA-DNA, and functional RNA nanostructures.
Collapse
Affiliation(s)
- Ofer I Wilner
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Doron Yesodi
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Yossi Weizmann
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.,Ilse Katz Institute for Nanotechnology Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.,Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
16
|
Vallina NS, Geary C, Jepsen M, Andersen ES. Computer-Aided Design and Production of RNA Origami as Protein Scaffolds and Biosensors. Methods Mol Biol 2023; 2639:51-67. [PMID: 37166710 DOI: 10.1007/978-1-0716-3028-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
RNA nanotechnology is able to take advantage of the modularity of RNA to build a wide variety of structures and functional devices from a common set of structural modules. The RNA origami architecture harnesses the property of RNA to fold as it is being enzymatically synthesized by the RNA polymerase and enables the design of single-stranded devices that integrate multiple structural and functional RNA motifs. Here, we provide detailed procedures on how to design and characterize RNA origami structures. The process is illustrated by two examples: one that forms lattices and another example that acts as biosensors.
Collapse
Affiliation(s)
| | - Cody Geary
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Mette Jepsen
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
17
|
Wang J, Sha CM, Dokholyan NV. Combining Experimental Restraints and RNA 3D Structure Prediction in RNA Nanotechnology. Methods Mol Biol 2023; 2709:51-64. [PMID: 37572272 PMCID: PMC10680996 DOI: 10.1007/978-1-0716-3417-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/14/2023]
Abstract
Precise RNA tertiary structure prediction can aid in the design of RNA nanoparticles. However, most existing RNA tertiary structure prediction methods are limited to small RNAs with relatively simple secondary structures. Large RNA molecules usually have complex secondary structures, including multibranched loops and pseudoknots, allowing for highly flexible RNA geometries and multiple stable states. Various experiments and bioinformatics analyses can often provide information about the distance between atoms (or residues) in RNA, which can be used to guide the prediction of RNA tertiary structure. In this chapter, we will introduce a platform, iFoldNMR, that can incorporate non-exchangeable imino protons resonance data from NMR as restraints for RNA 3D structure prediction. We also introduce an algorithm, DVASS, which optimizes distance restraints for better RNA 3D structure prediction.
Collapse
Affiliation(s)
- Jian Wang
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Congzhou M Sha
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
- Department of Engineering Science and Mechanics, Penn State University, State College, PA, USA
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA.
- Department of Engineering Science and Mechanics, Penn State University, State College, PA, USA.
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA.
- Department of Chemistry, Penn State University, State College, PA, USA.
- Department of Biomedical Engineering, Penn State University, State College, PA, USA.
| |
Collapse
|
18
|
Poppleton E, Urbanek N, Chakraborty T, Griffo A, Monari L, Göpfrich K. RNA origami: design, simulation and application. RNA Biol 2023; 20:510-524. [PMID: 37498217 PMCID: PMC10376919 DOI: 10.1080/15476286.2023.2237719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/20/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023] Open
Abstract
Design strategies for DNA and RNA nanostructures have developed along parallel lines for the past 30 years, from small structural motifs derived from biology to large 'origami' structures with thousands to tens of thousands of bases. With the recent publication of numerous RNA origami structures and improved design methods-even permitting co-transcriptional folding of kilobase-sized structures - the RNA nanotechnolgy field is at an inflection point. Here, we review the key achievements which inspired and enabled RNA origami design and draw comparisons with the development and applications of DNA origami structures. We further present the available computational tools for the design and the simulation, which will be key to the growth of the RNA origami community. Finally, we portray the transition from RNA origami structure to function. Several functional RNA origami structures exist already, their expression in cells has been demonstrated and first applications in cell biology have already been realized. Overall, we foresee that the fast-paced RNA origami field will provide new molecular hardware for biophysics, synthetic biology and biomedicine, complementing the DNA origami toolbox.
Collapse
Affiliation(s)
- Erik Poppleton
- Biophysical Engineering Group, Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg University, Heidelberg, Germany
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Heidelberg, Germany
- Molecular Biomechanics, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| | - Niklas Urbanek
- Biophysical Engineering Group, Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg University, Heidelberg, Germany
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Taniya Chakraborty
- Biophysical Engineering Group, Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg University, Heidelberg, Germany
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Alessandra Griffo
- Biophysical Engineering Group, Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg University, Heidelberg, Germany
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Luca Monari
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Heidelberg, Germany
- Institut de Science Et D’ingénierie Supramoléculaires (ISIS), Université de Strasbourg, Strasbourg, France
| | - Kerstin Göpfrich
- Biophysical Engineering Group, Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg University, Heidelberg, Germany
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Heidelberg, Germany
| |
Collapse
|
19
|
Li Y, Arce A, Lucci T, Rasmussen RA, Lucks JB. Dynamic RNA synthetic biology: new principles, practices and potential. RNA Biol 2023; 20:817-829. [PMID: 38044595 PMCID: PMC10730207 DOI: 10.1080/15476286.2023.2269508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 08/23/2023] [Indexed: 12/05/2023] Open
Abstract
An increased appreciation of the role of RNA dynamics in governing RNA function is ushering in a new wave of dynamic RNA synthetic biology. Here, we review recent advances in engineering dynamic RNA systems across the molecular, circuit and cellular scales for important societal-scale applications in environmental and human health, and bioproduction. For each scale, we introduce the core concepts of dynamic RNA folding and function at that scale, and then discuss technologies incorporating these concepts, covering new approaches to engineering riboswitches, ribozymes, RNA origami, RNA strand displacement circuits, biomaterials, biomolecular condensates, extracellular vesicles and synthetic cells. Considering the dynamic nature of RNA within the engineering design process promises to spark the next wave of innovation that will expand the scope and impact of RNA biotechnologies.
Collapse
Affiliation(s)
- Yueyi Li
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Anibal Arce
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Tyler Lucci
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Rebecca A. Rasmussen
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL, USA
| | - Julius B. Lucks
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL, USA
- Center for Water Research, Northwestern University, Evanston, IL, USA
- Center for Engineering Sustainability and Resilience, Northwestern University, Evanston, IL, USA
| |
Collapse
|
20
|
Hansma HG. DNA and the origins of life in micaceous clay. Biophys J 2022; 121:4867-4873. [PMID: 36130604 PMCID: PMC9808538 DOI: 10.1016/j.bpj.2022.08.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 01/07/2023] Open
Abstract
Reproducible imaging of DNA by atomic force microscopy was a useful predecessor to Ned Seeman's DNA nanotechnology. Many of the products of DNA nanotechnology were imaged in the atomic force microscope. The mica substrate used in this atomic force microscopy research formed the inspiration for the hypothesis that micaceous clay was a likely habitat for the origins of life. Montmorillonite clay has been a successful substrate for the polymerization of amino acids and nucleotides into peptides and DNA oligomers in research on life's origins. Mica and montmorillonite have the same anionic lattice, with a hexagonal spacing of 0.5 nm. Micas are nonswelling clays, with potassium ions (K+) holding the crystal sheets together, providing a stable environment for the processes and molecular complexes needed for the emergence of living cells. Montmorillonite crystal sheets are held together by smaller sodium ions (Na+), which results in swelling and shrinking during wet-dry cycles, providing a less stable environment. Also, the cells in all types of living systems have high intracellular K+ concentrations, which makes mica a more likely habitat for the origins of life than montmorillonite. Finally, moving mica sheets provides mechanical energy at the split edges of the sheets in mica "books." This mechanical energy of mica sheets, moving open and shut, in response to fluid flow, may have preceded chemical energy at life's origins, powering early prebiotic processes, such as the formation of covalent bonds, the interactions of molecular complexes, and the budding off of protocells before the molecular mechanism of cell division had developed.
Collapse
Affiliation(s)
- Helen Greenwood Hansma
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California.
| |
Collapse
|
21
|
Torres-Huerta AL, Antonio-Pérez A, García-Huante Y, Alcázar-Ramírez NJ, Rueda-Silva JC. Biomolecule-Based Optical Metamaterials: Design and Applications. BIOSENSORS 2022; 12:962. [PMID: 36354471 PMCID: PMC9688573 DOI: 10.3390/bios12110962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Metamaterials are broadly defined as artificial, electromagnetically homogeneous structures that exhibit unusual physical properties that are not present in nature. They possess extraordinary capabilities to bend electromagnetic waves. Their size, shape and composition can be engineered to modify their characteristics, such as iridescence, color shift, absorbance at different wavelengths, etc., and harness them as biosensors. Metamaterial construction from biological sources such as carbohydrates, proteins and nucleic acids represents a low-cost alternative, rendering high quantities and yields. In addition, the malleability of these biomaterials makes it possible to fabricate an endless number of structured materials such as composited nanoparticles, biofilms, nanofibers, quantum dots, and many others, with very specific, invaluable and tremendously useful optical characteristics. The intrinsic characteristics observed in biomaterials make them suitable for biomedical applications. This review addresses the optical characteristics of metamaterials obtained from the major macromolecules found in nature: carbohydrates, proteins and DNA, highlighting their biosensor field use, and pointing out their physical properties and production paths.
Collapse
Affiliation(s)
- Ana Laura Torres-Huerta
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Estado de México, Av. Lago de Guadalupe KM 3.5, Margarita Maza de Juárez, Cd. López Mateos, Atizapán de Zaragoza 52926, Mexico
| | - Aurora Antonio-Pérez
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Estado de México, Av. Lago de Guadalupe KM 3.5, Margarita Maza de Juárez, Cd. López Mateos, Atizapán de Zaragoza 52926, Mexico
| | - Yolanda García-Huante
- Departamento de Ciencias Básicas, Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas, Instituto Politécnico Nacional (UPIITA-IPN), Mexico City 07340, Mexico
| | - Nayelhi Julieta Alcázar-Ramírez
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Estado de México, Av. Lago de Guadalupe KM 3.5, Margarita Maza de Juárez, Cd. López Mateos, Atizapán de Zaragoza 52926, Mexico
| | - Juan Carlos Rueda-Silva
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Estado de México, Av. Lago de Guadalupe KM 3.5, Margarita Maza de Juárez, Cd. López Mateos, Atizapán de Zaragoza 52926, Mexico
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| |
Collapse
|
22
|
Elonen A, Natarajan AK, Kawamata I, Oesinghaus L, Mohammed A, Seitsonen J, Suzuki Y, Simmel FC, Kuzyk A, Orponen P. Algorithmic Design of 3D Wireframe RNA Polyhedra. ACS NANO 2022; 16:16608-16616. [PMID: 36178116 PMCID: PMC9620399 DOI: 10.1021/acsnano.2c06035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/26/2022] [Indexed: 06/01/2023]
Abstract
We address the problem of de novo design and synthesis of nucleic acid nanostructures, a challenge that has been considered in the area of DNA nanotechnology since the 1980s and more recently in the area of RNA nanotechnology. Toward this goal, we introduce a general algorithmic design process and software pipeline for rendering 3D wireframe polyhedral nanostructures in single-stranded RNA. To initiate the pipeline, the user creates a model of the desired polyhedron using standard 3D graphic design software. As its output, the pipeline produces an RNA nucleotide sequence whose corresponding RNA primary structure can be transcribed from a DNA template and folded in the laboratory. As case examples, we design and characterize experimentally three 3D RNA nanostructures: a tetrahedron, a triangular bipyramid, and a triangular prism. The design software is openly available and also provides an export of the targeted 3D structure into the oxDNA molecular dynamics simulator for easy simulation and visualization.
Collapse
Affiliation(s)
- Antti Elonen
- Department
of Computer Science, Aalto University, 00076 Aalto, Finland
| | | | - Ibuki Kawamata
- Department
of Robotics, Graduate School of Engineering, Tohoku University, Sendai 980-8577, Japan
- Natural
Science Division, Faculty of Core Research, Ochanomizu University, Tokyo 112-8610, Japan
| | - Lukas Oesinghaus
- Physics
Department E14, Technical University Munich, 85748 Garching, Germany
| | - Abdulmelik Mohammed
- Department
of Computer Science, Aalto University, 00076 Aalto, Finland
- Department
of Biomedical Engineering, San José
State University, San José, California 95192, United States
| | - Jani Seitsonen
- Department
of Applied Physics and Nanomicroscopy Center, Aalto University, 00076 Aalto, Finland
| | - Yuki Suzuki
- Department
of Robotics, Graduate School of Engineering, Tohoku University, Sendai 980-8577, Japan
- Frontier
Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8577, Japan
- Division
of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu 514-8507, Japan
| | - Friedrich C. Simmel
- Physics
Department E14, Technical University Munich, 85748 Garching, Germany
| | - Anton Kuzyk
- Department
of Neuroscience and Biomedical Engineering, Aalto University, 00076 Aalto, Finland
| | - Pekka Orponen
- Department
of Computer Science, Aalto University, 00076 Aalto, Finland
| |
Collapse
|
23
|
Zhang S, Cheng Y, Guo P, Chen SJ. VfoldMCPX: predicting multistrand RNA complexes. RNA (NEW YORK, N.Y.) 2022; 28:596-608. [PMID: 35058350 PMCID: PMC8925972 DOI: 10.1261/rna.079020.121] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Multistrand RNA complexes play a critical role in RNA-related biological processes. The understanding of RNA functions and the rational design of RNA nanostructures require accurate prediction of the structure and folding stability of the complexes, including those containing pseudoknots. Here, we present VfoldMCPX, a new model for predicting two-dimensional (2D) structures and folding stabilities of multistrand RNA complexes. Based on a partition function-based algorithm combined with physical loop free energy parameters, the VfoldMCPX model predicts not only the native structure but also the folding stability of the complex. An important advantage of the model is the ability to treat pseudoknotted structures. Extensive tests on structure predictions show the VfoldMCPX model provides improved accuracy for multistranded RNA complexes, especially for RNA complexes with three or more strands and/or containing pseudoknots. We have developed a freely accessible VfoldMCPX web server at http://rna.physics.missouri.edu/vfoldMCPX2.
Collapse
Affiliation(s)
- Sicheng Zhang
- Department of Physics, Department of Biochemistry, and Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri 65211, USA
| | - Yi Cheng
- Department of Physics, Department of Biochemistry, and Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri 65211, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Shi-Jie Chen
- Department of Physics, Department of Biochemistry, and Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri 65211, USA
| |
Collapse
|
24
|
Kim D, Han S, Ji Y, Moon S, Nam H, Lee JB. Multimeric RNAs for efficient RNA-based therapeutics and vaccines. J Control Release 2022; 345:770-785. [PMID: 35367477 PMCID: PMC8970614 DOI: 10.1016/j.jconrel.2022.03.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 11/17/2022]
Abstract
There has been a growing interest in RNA therapeutics globally, and much progress has been made in this area, which has been further accelerated by the clinical applications of RNA-based vaccines against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Following these successful clinical trials, various technologies have been developed to improve the efficacy of RNA-based drugs. Multimerization of RNA therapeutics is one of the most attractive approaches to ensure high stability, high efficacy, and prolonged action of RNA-based drugs. In this review, we offer an overview of the representative approaches for generating repetitive functional RNAs by chemical conjugation, structural self-assembly, enzymatic elongation, and self-amplification. The therapeutic and vaccine applications of engineered multimeric RNAs in various diseases have also been summarized. By outlining the current status of multimeric RNAs, the potential of multimeric RNA as a promising treatment strategy is highlighted.
Collapse
Affiliation(s)
- Dajeong Kim
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea
| | - Sangwoo Han
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea
| | - Yoonbin Ji
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea
| | - Sunghyun Moon
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea
| | - Hyangsu Nam
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea
| | - Jong Bum Lee
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea.
| |
Collapse
|
25
|
Chen S, Hermann T. RNA-DNA Hybrid Nanoshape Synthesis by Facile Module Exchange. J Am Chem Soc 2021; 143:20356-20362. [PMID: 34818893 DOI: 10.1021/jacs.1c09739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The preparation of nucleic acid nanostructures has relied predominantly on procedures of additive fabrication in which complex architectures are assembled by concerted self-assembly and sequential addition of building blocks. We had previously established RNA-DNA hybrid nanoshapes with modular architectures that enable multistep synthetic approaches inspired by organic molecular synthesis where additive and transformative steps are used to prepare complex molecular architectures. We report the establishment of module replacement and strand exchange as synthetic transformations in nucleic acid hybrid nanoshapes, which are enabled by minimally destabilizing sequence elements such as a single unpaired overhang nucleotide or a mismatch base pair. Module exchange facilitated by thermodynamic lability triggers adds a powerful transformative approach to the repertoire of additive and transformative synthetic methods for the preparation of complex composite materials.
Collapse
|
26
|
Krissanaprasit A, Key CM, Pontula S, LaBean TH. Self-Assembling Nucleic Acid Nanostructures Functionalized with Aptamers. Chem Rev 2021; 121:13797-13868. [PMID: 34157230 DOI: 10.1021/acs.chemrev.0c01332] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Researchers have worked for many decades to master the rules of biomolecular design that would allow artificial biopolymer complexes to self-assemble and function similarly to the diverse biochemical constructs displayed in natural biological systems. The rules of nucleic acid assembly (dominated by Watson-Crick base-pairing) have been less difficult to understand and manipulate than the more complicated rules of protein folding. Therefore, nucleic acid nanotechnology has advanced more quickly than de novo protein design, and recent years have seen amazing progress in DNA and RNA design. By combining structural motifs with aptamers that act as affinity handles and add powerful molecular recognition capabilities, nucleic acid-based self-assemblies represent a diverse toolbox for use by bioengineers to create molecules with potentially revolutionary biological activities. In this review, we focus on the development of self-assembling nucleic acid nanostructures that are functionalized with nucleic acid aptamers and their great potential in wide ranging application areas.
Collapse
Affiliation(s)
- Abhichart Krissanaprasit
- Department of Materials Science and Engineering, College of Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Carson M Key
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Sahil Pontula
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Thomas H LaBean
- Department of Materials Science and Engineering, College of Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
27
|
Mahynski NA, Shen VK. Symmetry-derived structure directing agents for two-dimensional crystals of arbitrary colloids. SOFT MATTER 2021; 17:7853-7866. [PMID: 34382053 PMCID: PMC9793339 DOI: 10.1039/d1sm00875g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We derive properties of self-assembling rings which can template the organization of an arbitrary colloid into any periodic symmetry in two Euclidean dimensions. By viewing this as a tiling problem, we illustrate how the shape and chemical patterning of these rings are derivable, and are explicitly reflected by the symmetry group's orbifold symbol. We performed molecular dynamics simulations to observe their self-assembly and found 5 different characteristics which could be easily rationalized on the basis of this symbol. These include systems which undergo chiral phase separation, are addressably complex, exhibit self-limiting growth into clusters, form ordered "rods" in only one-dimension akin to a smectic phase, and those from symmetry groups which are pluripotent and allow one to select rings which exhibit different behaviors. We discuss how the curvature of the ring's edges plays an integral role in achieving correct self-assembly, and illustrate how to obtain these shapes. This provides a method for patterning colloidal systems at interfaces without explicitly programming this information onto the colloid itself.
Collapse
Affiliation(s)
- Nathan A Mahynski
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8320, USA.
| | | |
Collapse
|
28
|
Rational design for controlled release of Dicer-substrate siRNA harbored in phi29 pRNA-based nanoparticles. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 25:524-535. [PMID: 34589275 PMCID: PMC8463318 DOI: 10.1016/j.omtn.2021.07.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/30/2021] [Indexed: 12/19/2022]
Abstract
Small interfering RNA (siRNA) for silencing genes and treating disease has been a dream since ranking as a top Breakthrough of the Year in 2002 by Science. With the recent FDA approval of four siRNA-based drugs, the potential of RNA therapeutics to become the third milestone in pharmaceutical drug development has become a reality. However, the field of RNA interference (RNAi) therapeutics still faces challenges such as specificity in targeting, intracellular processing, and endosome trapping after targeted delivery. Dicer-substrate siRNAs included onto RNA nanoparticles may be able to overcome these challenges. Here, we show that pRNA-based nanoparticles can be designed to efficiently harbor the Dicer-substrate siRNAs in vitro and in vivo to the cytosol of tumor cells and release the siRNA. The structure optimization and chemical modification for controlled release of Dicer-substrate siRNAs in tumor cells were also evaluated through molecular beacon analysis. Studies on the length requirement of the overhanging siRNA revealed that at least 23 nucleotides at the dweller's arm were needed for dicer processing. The above sequence parameters and structure optimization were confirmed in recent studies demonstrating the release of functional Survivin siRNA from the pRNA-based nanoparticles for cancer inhibition in non-small-cell lung, breast, and prostate cancer animal models.
Collapse
|
29
|
Graczyk A, Pawlowska R, Chworos A. Gold Nanoparticles as Carriers for Functional RNA Nanostructures. Bioconjug Chem 2021; 32:1667-1674. [PMID: 34323473 DOI: 10.1021/acs.bioconjchem.1c00211] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Conjugates of gold nanoparticles and ribonucleic acid are particularly interesting for biological applications to serve as therapeutics or biosensors. In this paper we present, for the first time, a conjugate of gold nanoparticles and structural RNA (tectoRNA), which serves as a tool for gene expression regulation. The tectoRNA trimer was modified to facilitate the introduction of a thiol linker, which aids the formation of stable RNA:AuNP conjugates. We demonstrated that these complexes can penetrate cells, which were observed in TEM analysis and are effective in gene expression regulation evident in GFP expression studies with fluorescence methods. The presented compounds have the potential to become a new generation of therapeutics that utilize the power of self-assembling, biologically active RNAs and gold nanoparticles, with their diagnostically useful optical properties and biocompatibility advantages.
Collapse
Affiliation(s)
- Anna Graczyk
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Lodz 90-363, Poland
| | - Roza Pawlowska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Lodz 90-363, Poland
| | - Arkadiusz Chworos
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Lodz 90-363, Poland
| |
Collapse
|
30
|
Rajendran A, Krishnamurthy K, Giridasappa A, Nakata E, Morii T. Stabilization and structural changes of 2D DNA origami by enzymatic ligation. Nucleic Acids Res 2021; 49:7884-7900. [PMID: 34289063 PMCID: PMC8373134 DOI: 10.1093/nar/gkab611] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/16/2021] [Accepted: 07/06/2021] [Indexed: 12/15/2022] Open
Abstract
The low thermal stability of DNA nanostructures is the major drawback in their practical applications. Most of the DNA nanotubes/tiles and the DNA origami structures melt below 60°C due to the presence of discontinuities in the phosphate backbone (i.e., nicks) of the staple strands. In molecular biology, enzymatic ligation is commonly used to seal the nicks in the duplex DNA. However, in DNA nanotechnology, the ligation procedures are neither optimized for the DNA origami nor routinely applied to link the nicks in it. Here, we report a detailed analysis and optimization of the conditions for the enzymatic ligation of the staple strands in four types of 2D square lattice DNA origami. Our results indicated that the ligation takes overnight, efficient at 37°C rather than the usual 16°C or room temperature, and typically requires much higher concentration of T4 DNA ligase. Under the optimized conditions, up to 10 staples ligation with a maximum ligation efficiency of 55% was achieved. Also, the ligation is found to increase the thermal stability of the origami as low as 5°C to as high as 20°C, depending on the structure. Further, our studies indicated that the ligation of the staple strands influences the globular structure/planarity of the DNA origami, and the origami is more compact when the staples are ligated. The globular structure of the native and ligated origami was also found to be altered dynamically and progressively upon ethidium bromide intercalation in a concentration-dependent manner.
Collapse
Affiliation(s)
| | | | - Amulya Giridasappa
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Eiji Nakata
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Takashi Morii
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
31
|
Panda SS, Shmilovich K, Herringer NSM, Marin N, Ferguson AL, Tovar JD. Computationally Guided Tuning of Peptide-Conjugated Perylene Diimide Self-Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8594-8606. [PMID: 34213333 DOI: 10.1021/acs.langmuir.1c01213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Peptide-π-conjugated materials are important for biointerfacing charge-transporting applications due to their aqueous compatibility and formation of long-range π-electron networks. Perylene diimides (PDIs), well-established charge-transporting π systems, can self-assemble in aqueous solutions when conjugated with amino acids. In this work, we leveraged computational guidance from our previous work to access two different self-assembled architectures from PDI-amino acid conjugates. Furthermore, we expanded the design rule to other sequences to learn that the closest amino acids to the π core have a significant effect on the photophysical properties of the resulting assemblies. By simply altering glycine to alanine at the closest residue position, we observed significantly different electronic properties as revealed through UV-vis, photoluminescence, and circular dichroism spectroscopies. Accompanying molecular dynamics simulations revealed two distinct types of self-assembled architectures: cofacial structures when the smaller glycine residue is at the closest residue position to the π core versus rotationally shifted structures when glycine is substituted for the larger alanine. This study illustrates the use of tandem computations and experiments to unearth and understand new design rules for supramolecular materials and exposes a modest amino acid substitution as a means to predictably modulate the supramolecular organization and engineer the photophysical properties of π-conjugated peptidic materials.
Collapse
Affiliation(s)
- Sayak Subhra Panda
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Kirill Shmilovich
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Nicholas S M Herringer
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Nicolas Marin
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - John D Tovar
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
32
|
Binzel DW, Li X, Burns N, Khan E, Lee WJ, Chen LC, Ellipilli S, Miles W, Ho YS, Guo P. Thermostability, Tunability, and Tenacity of RNA as Rubbery Anionic Polymeric Materials in Nanotechnology and Nanomedicine-Specific Cancer Targeting with Undetectable Toxicity. Chem Rev 2021; 121:7398-7467. [PMID: 34038115 PMCID: PMC8312718 DOI: 10.1021/acs.chemrev.1c00009] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RNA nanotechnology is the bottom-up self-assembly of nanometer-scale architectures, resembling LEGOs, composed mainly of RNA. The ideal building material should be (1) versatile and controllable in shape and stoichiometry, (2) spontaneously self-assemble, and (3) thermodynamically, chemically, and enzymatically stable with a long shelf life. RNA building blocks exhibit each of the above. RNA is a polynucleic acid, making it a polymer, and its negative-charge prevents nonspecific binding to negatively charged cell membranes. The thermostability makes it suitable for logic gates, resistive memory, sensor set-ups, and NEM devices. RNA can be designed and manipulated with a level of simplicity of DNA while displaying versatile structure and enzyme activity of proteins. RNA can fold into single-stranded loops or bulges to serve as mounting dovetails for intermolecular or domain interactions without external linking dowels. RNA nanoparticles display rubber- and amoeba-like properties and are stretchable and shrinkable through multiple repeats, leading to enhanced tumor targeting and fast renal excretion to reduce toxicities. It was predicted in 2014 that RNA would be the third milestone in pharmaceutical drug development. The recent approval of several RNA drugs and COVID-19 mRNA vaccines by FDA suggests that this milestone is being realized. Here, we review the unique properties of RNA nanotechnology, summarize its recent advancements, describe its distinct attributes inside or outside the body and discuss potential applications in nanotechnology, medicine, and material science.
Collapse
Affiliation(s)
- Daniel W Binzel
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xin Li
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nicolas Burns
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Eshan Khan
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, College of Medicine, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Wen-Jui Lee
- TMU Research Center of Cancer Translational Medicine, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Li-Ching Chen
- TMU Research Center of Cancer Translational Medicine, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Satheesh Ellipilli
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Wayne Miles
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, College of Medicine, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yuan Soon Ho
- TMU Research Center of Cancer Translational Medicine, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
33
|
Huang N, Chen M, Chen S, Dang K, Guo H, Wang X, Yan S, Tian J, Liu Y, Ye Q. A Specific Nucleic Acid Microfluidic Capture Device Based on Stable DNA Nanostructure. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24487-24492. [PMID: 34014634 DOI: 10.1021/acsami.1c04157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Benefiting from superior programmability and good biocompatibility, DNA nanomaterials have received considerable attention with promising prospects in biological detection applications. However, their poor stability and operability severely impede further development of the applications of DNA nanomaterials. Here, a thermally stable DNA nanomesh structure is integrated into a microfluidic chip. The specificity of the nucleic acid microfluidic capture device could reach the single-base mismatch level while capturing the ssDNA sample. The microfluidic chip provides a closed environment for the DNA nanomesh, giving the device excellent storage stability. After 6 months of storage at room temperature, the device still has a specific capture function on ssDNA samples with low concentration. The specific nucleic acid microfluidic capture device can be applied to the enrichment of ctDNA in the future and contribute to the early diagnosis of cancer.
Collapse
|
34
|
RNA origami design tools enable cotranscriptional folding of kilobase-sized nanoscaffolds. Nat Chem 2021; 13:549-558. [PMID: 33972754 PMCID: PMC7610888 DOI: 10.1038/s41557-021-00679-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 03/08/2021] [Indexed: 12/18/2022]
Abstract
RNA origami is a framework for the modular design of nanoscaffolds that can be folded from a single strand of RNA, and used to organize molecular components with nanoscale precision. Design of genetically expressible RNA origami, which must cotranscriptionally fold, requires modeling and design tools that simultaneously consider thermodynamics, folding pathway, sequence constraints, and pseudoknot optimization. Here, we describe RNA Origami Automated Design software (ROAD), which builds origami models from a library of structural modules, identifies potential folding barriers, and designs optimized sequences. Using ROAD, we extend the scale and functional diversity of RNA scaffolds, creating 32 designs of up to 2360 nucleotides, five that scaffold two proteins, and seven that scaffold two small molecules at precise distances. Micrographic and chromatographic comparison of optimized and nonoptimized structures validates that our principles for strand routing and sequence design substantially improve yield. By providing efficient design of RNA origami, ROAD may simplify construction of custom RNA scaffolds for nanomedicine and synthetic biology.
Collapse
|
35
|
Kakkanattu A, Eerqing N, Ghamari S, Vollmer F. Review of optical sensing and manipulation of chiral molecules and nanostructures with the focus on plasmonic enhancements [Invited]. OPTICS EXPRESS 2021; 29:12543-12579. [PMID: 33985011 DOI: 10.1364/oe.421839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Chiral molecules are ubiquitous in nature; many important synthetic chemicals and drugs are chiral. Detecting chiral molecules and separating the enantiomers is difficult because their physiochemical properties can be very similar. Here we review the optical approaches that are emerging for detecting and manipulating chiral molecules and chiral nanostructures. Our review focuses on the methods that have used plasmonics to enhance the chiroptical response. We also review the fabrication and assembly of (dynamic) chiral plasmonic nanosystems in this context.
Collapse
|
36
|
Inverse RNA Folding Workflow to Design and Test Ribozymes that Include Pseudoknots. Methods Mol Biol 2021; 2167:113-143. [PMID: 32712918 DOI: 10.1007/978-1-0716-0716-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Ribozymes are RNAs that catalyze reactions. They occur in nature, and can also be evolved in vitro to catalyze novel reactions. This chapter provides detailed protocols for using inverse folding software to design a ribozyme sequence that will fold to a known ribozyme secondary structure and for testing the catalytic activity of the sequence experimentally. This protocol is able to design sequences that include pseudoknots, which is important as all naturally occurring full-length ribozymes have pseudoknots. The starting point is the known pseudoknot-containing secondary structure of the ribozyme and knowledge of any nucleotides whose identity is required for function. The output of the protocol is a set of sequences that have been tested for function. Using this protocol, we were previously successful at designing highly active double-pseudoknotted HDV ribozymes.
Collapse
|
37
|
Zhao Y, Zuo X, Li Q, Chen F, Chen YR, Deng J, Han D, Hao C, Huang F, Huang Y, Ke G, Kuang H, Li F, Li J, Li M, Li N, Lin Z, Liu D, Liu J, Liu L, Liu X, Lu C, Luo F, Mao X, Sun J, Tang B, Wang F, Wang J, Wang L, Wang S, Wu L, Wu ZS, Xia F, Xu C, Yang Y, Yuan BF, Yuan Q, Zhang C, Zhu Z, Yang C, Zhang XB, Yang H, Tan W, Fan C. Nucleic Acids Analysis. Sci China Chem 2020; 64:171-203. [PMID: 33293939 PMCID: PMC7716629 DOI: 10.1007/s11426-020-9864-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
Abstract
Nucleic acids are natural biopolymers of nucleotides that store, encode, transmit and express genetic information, which play central roles in diverse cellular events and diseases in living things. The analysis of nucleic acids and nucleic acids-based analysis have been widely applied in biological studies, clinical diagnosis, environmental analysis, food safety and forensic analysis. During the past decades, the field of nucleic acids analysis has been rapidly advancing with many technological breakthroughs. In this review, we focus on the methods developed for analyzing nucleic acids, nucleic acids-based analysis, device for nucleic acids analysis, and applications of nucleic acids analysis. The representative strategies for the development of new nucleic acids analysis in this field are summarized, and key advantages and possible limitations are discussed. Finally, a brief perspective on existing challenges and further research development is provided.
Collapse
Affiliation(s)
- Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Feng Chen
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Yan-Ru Chen
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108 China
| | - Jinqi Deng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
| | - Da Han
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Changlong Hao
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Fujian Huang
- Faculty of Materials Science and Chemistry, Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074 China
| | - Yanyi Huang
- College of Chemistry and Molecular Engineering, Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871 China
| | - Guoliang Ke
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Hua Kuang
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Fan Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Jiang Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Min Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014 China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Dingbin Liu
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin, 300071 China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1 Canada
| | - Libing Liu
- Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Chunhua Lu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Fang Luo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Jiashu Sun
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014 China
| | - Fei Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Jianbin Wang
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology (ICSB), Chinese Institute for Brain Research (CIBR), Tsinghua University, Beijing, 100084 China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Shu Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1 Canada
| | - Lingling Wu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108 China
| | - Fan Xia
- Faculty of Materials Science and Chemistry, Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074 China
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Yang Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Bi-Feng Yuan
- Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Quan Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Chao Zhang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Huanghao Yang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Weihong Tan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Chunhai Fan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
38
|
Ghimire C, Wang H, Li H, Vieweger M, Xu C, Guo P. RNA Nanoparticles as Rubber for Compelling Vessel Extravasation to Enhance Tumor Targeting and for Fast Renal Excretion to Reduce Toxicity. ACS NANO 2020; 14:13180-13191. [PMID: 32902260 PMCID: PMC7799665 DOI: 10.1021/acsnano.0c04863] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Rubber is a fascinating material in both industry and daily life. The development of elastomeric material in nanotechnology is imperative due to its economic and technological potential. By virtue of their distinctive physicochemical properties, nucleic acids have been extensively explored in material science. The Phi29 DNA packaging motor contains a 3WJ with three angles of 97°, 125°, and 138°. Here, the rubber-like property of RNA architectures was investigated using optical tweezers and in vivo imaging technologies. The 3WJ 97° interior angle was contracted or stretched to 60°, 90°, and 108° at will to build elegant RNA triangles, squares, pentagons, cubes, tetrahedrons, dendrimers, and prisms. RNA nanoarchitecture was stretchable and shrinkable by optical tweezer with multiple extension and relaxation repeats like a rubber. Comparing to gold and iron nanoparticles with the same size, RNA nanoparticles display stronger cancer-targeting outcomes, while less accumulation in healthy organs. Generally, the upper limit of renal excretion is 5.5 nm; however, the 5, 10, and 20 nm RNA nanoparticles passed the renal filtration and resumed their original structure identified in urine. These findings solve two previous mysteries: (1) Why RNA nanoparticles have an unusually high tumor targeting efficiency since their rubber or amoeba-like deformation property enables them to squeeze out of the leaky vasculature to improve the EPR effect; and (2) why RNA nanoparticles remain non-toxic since they can be rapidly cleared from the body via renal excretion into urine with little accumulation in the body. Considering its controllable shape and size plus its rubber-like property, RNA holds great promises for industrial and biomedical applications especially in cancer therapeutics delivery.
Collapse
Affiliation(s)
| | | | | | - Mario Vieweger
- Center for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy; College of Medicine; Dorothy M. Davis Heart and Lung Research Institute; and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Congcong Xu
- Center for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy; College of Medicine; Dorothy M. Davis Heart and Lung Research Institute; and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy; College of Medicine; Dorothy M. Davis Heart and Lung Research Institute; and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
39
|
Hiller J, Mici J, Lipson H. Layered assemblers for scalable parallel integration. J R Soc Interface 2020; 17:20200543. [PMID: 33081644 DOI: 10.1098/rsif.2020.0543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many complex natural and artificial systems are composed of large numbers of elementary building blocks, such as organisms made of many biological cells or processors made of many electronic transistors. This modular substrate is essential to the evolution of biological and technological complexity, but has been difficult to replicate for mechanical systems. This study seeks to answer if layered assembly can engender exponential gains in the speed and efficacy of block or cell-based manufacturing processes. A key challenge is how to deterministically assemble large numbers of small building blocks in a scalable manner. Here, we describe two new layered assembly principles that allow assembly faster than linear time, integrating n modules in O(n2/3) and O(n1/3) time: one process uses a novel opto-capillary effect to selectively deposit entire layers of building blocks at a time, and a second process jets building block rows in rapid succession. We demonstrate the fabrication of multi-component structures out of up to 20 000 millimetre scale spherical building blocks in 3 h. While these building blocks and structures are still simple, we suggest that scalable layered assembly approaches, combined with a growing repertoire of standardized passive and active building blocks could help bridge the meso-scale assembly gap, and open the door to the fabrication of increasingly complex, adaptive and recyclable systems.
Collapse
Affiliation(s)
- Jonathan Hiller
- School of Mechanical and Aerospace Engineering, Ithaca, NY 14853, USA
| | - Joni Mici
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - Hod Lipson
- School of Mechanical and Aerospace Engineering, Ithaca, NY 14853, USA.,Computing and Information Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
40
|
Torelli E, Kozyra J, Shirt-Ediss B, Piantanida L, Voïtchovsky K, Krasnogor N. Cotranscriptional Folding of a Bio-orthogonal Fluorescent Scaffolded RNA Origami. ACS Synth Biol 2020; 9:1682-1692. [PMID: 32470289 DOI: 10.1021/acssynbio.0c00009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The scaffolded origami technique is an attractive tool for engineering nucleic acid nanostructures. This paper demonstrates scaffolded RNA origami folding in vitro in which, for the first time, all components are transcribed simultaneously in a single-pot reaction. Double-stranded DNA sequences are transcribed by T7 RNA polymerase into scaffold and staple strands able to correctly fold in a high synthesis yield into the nanoribbon. Synthesis is successfully confirmed by atomic force microscopy, and the unpurified transcription reaction mixture is analyzed by an in gel-imaging assay where the transcribed RNA nanoribbons are able to capture the specific dye through the reconstituted split Broccoli aptamer showing a clear green fluorescent band. Finally, we simulate the RNA origami in silico using the nucleotide-level coarse-grained model oxRNA to investigate the thermodynamic stability of the assembled nanostructure in isothermal conditions over a period of time. Our work suggests that the scaffolded origami technique is a viable, and potentially more powerful, assembly alternative to the single-stranded origami technique for future in vivo applications.
Collapse
Affiliation(s)
- Emanuela Torelli
- Interdisciplinary Computing and Complex BioSystems (ICOS), Centre for Synthetic Biology and Bioeconomy (CSBB), Devonshire Building, Newcastle University, Newcastle upon Tyne NE1 7RX, United Kingdom
| | - Jerzy Kozyra
- Interdisciplinary Computing and Complex BioSystems (ICOS), Centre for Synthetic Biology and Bioeconomy (CSBB), Devonshire Building, Newcastle University, Newcastle upon Tyne NE1 7RX, United Kingdom
| | - Ben Shirt-Ediss
- Interdisciplinary Computing and Complex BioSystems (ICOS), Centre for Synthetic Biology and Bioeconomy (CSBB), Devonshire Building, Newcastle University, Newcastle upon Tyne NE1 7RX, United Kingdom
| | - Luca Piantanida
- Department of Physics, Durham University, Durham DH1 3LE, United Kingdom
| | - Kislon Voïtchovsky
- Department of Physics, Durham University, Durham DH1 3LE, United Kingdom
| | - Natalio Krasnogor
- Interdisciplinary Computing and Complex BioSystems (ICOS), Centre for Synthetic Biology and Bioeconomy (CSBB), Devonshire Building, Newcastle University, Newcastle upon Tyne NE1 7RX, United Kingdom
| |
Collapse
|
41
|
Structural Insights into RNA Dimerization: Motifs, Interfaces and Functions. Molecules 2020; 25:molecules25122881. [PMID: 32585844 PMCID: PMC7357161 DOI: 10.3390/molecules25122881] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/26/2022] Open
Abstract
In comparison with the pervasive use of protein dimers and multimers in all domains of life, functional RNA oligomers have so far rarely been observed in nature. Their diminished occurrence contrasts starkly with the robust intrinsic potential of RNA to multimerize through long-range base-pairing ("kissing") interactions, self-annealing of palindromic or complementary sequences, and stable tertiary contact motifs, such as the GNRA tetraloop-receptors. To explore the general mechanics of RNA dimerization, we performed a meta-analysis of a collection of exemplary RNA homodimer structures consisting of viral genomic elements, ribozymes, riboswitches, etc., encompassing both functional and fortuitous dimers. Globally, we found that domain-swapped dimers and antiparallel, head-to-tail arrangements are predominant architectural themes. Locally, we observed that the same structural motifs, interfaces and forces that enable tertiary RNA folding also drive their higher-order assemblies. These feature prominently long-range kissing loops, pseudoknots, reciprocal base intercalations and A-minor interactions. We postulate that the scarcity of functional RNA multimers and limited diversity in multimerization motifs may reflect evolutionary constraints imposed by host antiviral immune surveillance and stress sensing. A deepening mechanistic understanding of RNA multimerization is expected to facilitate investigations into RNA and RNP assemblies, condensates, and granules and enable their potential therapeutical targeting.
Collapse
|
42
|
Kasprzak WK, Ahmed NA, Shapiro BA. Modeling ligand docking to RNA in the design of RNA-based nanostructures. Curr Opin Biotechnol 2020; 63:16-25. [DOI: 10.1016/j.copbio.2019.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 10/30/2019] [Indexed: 12/30/2022]
|
43
|
Wang X, Yu J, Lan W, Yang S, Wang S, Mi Y, Ye Q, Li Y, Liu Y. Novel Stable DNA Nanoscale Material and Its Application on Specific Enrichment of DNA. ACS APPLIED MATERIALS & INTERFACES 2020; 12:19834-19839. [PMID: 32250112 DOI: 10.1021/acsami.0c02242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
DNA nanostructures are a new type of technology for constructing nanomaterials that has been developed in recent years. By relying on the complementary pairing of DNA molecules to form a double-stranded property, DNA molecules can construct a variety of nanoscale structures of 2D and 3D shapes. However, most of the previously reported DNA nanostructures rely solely on hydrogen bonds to maintain structural stability, resulting in DNA structures that can be maintained only at low temperature and in the presence of Mg2+, which greatly limits the application of DNA nanostructures. This study designed a DNA nanonetwork structure (nanonet) and changed its topological structure to DNA nanomesh by using DNA topoisomerase to make it thermally stable, while escaping the dependence on Mg2+, and the stability of the structure can be maintained in a nonsolution state. Moreover, the nanomesh also has a large amount of ssDNA (about 50%), providing active sites capable of exerting biological functions. Using the above characteristics, we prepared the nanomesh into a device capable of adsorbing specific DNA molecules, and used the device to enrich DNA. We also tried to mount antibodies using DNA probes. Preliminary results show that the DNA nanomesh also has the ability to enrich specific proteins.
Collapse
Affiliation(s)
- Xueting Wang
- School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Jia Yu
- College of Life Sciences, Qingdao University, Qingdao 266071, P. R. China
| | - Wenjie Lan
- School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Shuo Yang
- Department of Medicine, Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Shiqing Wang
- School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Yue Mi
- School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Qing Ye
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics, Nankai University, Tianjin 300071, P. R. China
| | - Yuan Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Yin Liu
- School of Medicine, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
44
|
Lv X, Cui S, Gu Y, Li J, Du G, Liu L. Enzyme Assembly for Compartmentalized Metabolic Flux Control. Metabolites 2020; 10:E125. [PMID: 32224973 PMCID: PMC7241084 DOI: 10.3390/metabo10040125] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 11/16/2022] Open
Abstract
Enzyme assembly by ligand binding or physically sequestrating enzymes, substrates, or metabolites into isolated compartments can bring key molecules closer to enhance the flux of a metabolic pathway. The emergence of enzyme assembly has provided both opportunities and challenges for metabolic engineering. At present, with the development of synthetic biology and systems biology, a variety of enzyme assembly strategies have been proposed, from the initial direct enzyme fusion to scaffold-free assembly, as well as artificial scaffolds, such as nucleic acid/protein scaffolds, and even some more complex physical compartments. These assembly strategies have been explored and applied to the synthesis of various important bio-based products, and have achieved different degrees of success. Despite some achievements, enzyme assembly, especially in vivo, still has many problems that have attracted significant attention from researchers. Here, we focus on some selected examples to review recent research on scaffold-free strategies, synthetic artificial scaffolds, and physical compartments for enzyme assembly or pathway sequestration, and we discuss their notable advances. In addition, the potential applications and challenges in the applications are highlighted.
Collapse
Affiliation(s)
- Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (X.L.); (S.C.); (Y.G.); (J.L.); (G.D.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Shixiu Cui
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (X.L.); (S.C.); (Y.G.); (J.L.); (G.D.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yang Gu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (X.L.); (S.C.); (Y.G.); (J.L.); (G.D.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (X.L.); (S.C.); (Y.G.); (J.L.); (G.D.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (X.L.); (S.C.); (Y.G.); (J.L.); (G.D.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (X.L.); (S.C.); (Y.G.); (J.L.); (G.D.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
45
|
Mitchell C, Polanco JA, DeWald L, Kress D, Jaeger L, Grabow WW. Responsive self-assembly of tectoRNAs with loop-receptor interactions from the tetrahydrofolate (THF) riboswitch. Nucleic Acids Res 2020; 47:6439-6451. [PMID: 31045210 PMCID: PMC6614920 DOI: 10.1093/nar/gkz304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 03/22/2019] [Accepted: 04/16/2019] [Indexed: 12/17/2022] Open
Abstract
Naturally occurring RNAs are known to exhibit a high degree of modularity, whereby specific structural modules (or motifs) can be mixed and matched to create new molecular architectures. The modular nature of RNA also affords researchers the ability to characterize individual structural elements in controlled synthetic contexts in order to gain new and critical insights into their particular structural features and overall performance. Here, we characterized the binding affinity of a unique loop–receptor interaction found in the tetrahydrofolate (THF) riboswitch using rationally designed self-assembling tectoRNAs. Our work suggests that the THF loop–receptor interaction has been fine-tuned for its particular role as a riboswitch component. We also demonstrate that the thermodynamic stability of this interaction can be modulated by the presence of folinic acid, which induces a local structural change at the level of the loop–receptor. This corroborates the existence of a THF binding site within this tertiary module and paves the way for its potential use as a THF responsive module for RNA nanotechnology and synthetic biology.
Collapse
Affiliation(s)
- Charles Mitchell
- Department of Chemistry and Biochemistry, Seattle Pacific University, Seattle, WA 918119-1997, USA
| | - Julio A Polanco
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9510, USA
| | - Laura DeWald
- Department of Chemistry and Biochemistry, Seattle Pacific University, Seattle, WA 918119-1997, USA
| | - Dustin Kress
- Department of Chemistry and Biochemistry, Seattle Pacific University, Seattle, WA 918119-1997, USA
| | - Luc Jaeger
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9510, USA
| | - Wade W Grabow
- Department of Chemistry and Biochemistry, Seattle Pacific University, Seattle, WA 918119-1997, USA
| |
Collapse
|
46
|
Abstract
Nucleic acids hold great promise for bottom-up construction of nanostructures via programmable self-assembly. Especially, the emerging of advanced sequence design principles and the maturation of chemical synthesis of nucleic acids together have led to the rapid development of structural DNA/RNA nanotechnology. Diverse nucleic acids-based nano objects and patterns have been constructed with near-atomic resolutions and with controllable sizes and geometries. The monodispersed distribution of objects, the up-to-submillimeter scalability of patterns, and the excellent feasibility of carrying other materials with spatial and temporal resolutions have made DNA/RNA assemblies extremely unique in molecular engineering. In this review, we summarize recent advances in nucleic acids-based (mainly DNA-based) near-atomic fabrication by focusing on state-of-the-art design techniques, toolkits for DNA/RNA nanoengineering, and related applications in a range of areas.
Collapse
Affiliation(s)
- Kai Xia
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences , Fudan University , Shanghai 200032 , China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Qian Li
- School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Hongzhou Gu
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences , Fudan University , Shanghai 200032 , China
| |
Collapse
|
47
|
Lee T, Panda SS, Tovar JD, Katz HE. Unusually Conductive Organic-Inorganic Hybrid Nanostructures Derived from Bio-Inspired Mineralization of Peptide/Pi-Electron Assemblies. ACS NANO 2020; 14:1846-1855. [PMID: 31999098 DOI: 10.1021/acsnano.9b07911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Supramolecular materials derived from pi-conjugated peptidic macromolecules are well-established to self-assemble into 1D nanostructures. In the presence of KOH, which was used to more fully dissolve the peptide macromolecules prior to triggering the self-assembly by way of exposure to HCl vapor, we report here an unexpected mineralization of KCl as templated presumably by the glutamic acid residues that were present along the backbone of the peptide macromolecules. In order to decouple the peptidic side chains from the central pi-electron unit, three-carbon spacers were added between them on both sides. The assembled structures that resulted from the collective formation of β-sheets, π-orbital overlaps, and mineralization resulted in highly interconnected dendritic structures under suitable KOH concentrations. Electrical measurements indicated that when well-interconnected, these dendritic structures maintained conductivities comparable to those of metals at around 1800 S/cm. About 50 mA current was measured for 0.5 V/37.5 μm. Varying the gate voltage in a transistor configuration had no effect on the current levels, indicating a conductive instead of a semiconducting pathway. Control experiments without the peptide, measurements of conductivity over time, and conductivity quenching by ammonia suggested the conductivity of these dendritic networks was derived from proton doping of the central π-electron units in a strong acid environment and was facilitated by closely spaced chromophores, as suggested in the literature, leading to facile π-electron transfer along the interconnected dendritic pathways. Our findings suggest that mineralization templated by appropriate amino acids combined with peptide/π-electron self-assembly can lead to highly conductive dendritic macrostructures as well as control of nanowire growth in specific directions.
Collapse
Affiliation(s)
- Taein Lee
- Department of Materials Science and Engineering and Department of Chemistry , Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - Sayak Subhra Panda
- Department of Materials Science and Engineering and Department of Chemistry , Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - John D Tovar
- Department of Materials Science and Engineering and Department of Chemistry , Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - Howard E Katz
- Department of Materials Science and Engineering and Department of Chemistry , Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| |
Collapse
|
48
|
RNA nanotechnology in synthetic biology. Curr Opin Biotechnol 2020; 63:135-141. [PMID: 32035339 DOI: 10.1016/j.copbio.2019.12.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/16/2019] [Indexed: 01/04/2023]
Abstract
We review recent advances in the design and expression of synthetic RNA sequences inside cells, to regulate gene expression and to achieve spatial localization of components. We focus on approaches that exploit the programmability of the secondary and tertiary structure of RNA to build scalable and modular devices that fold spontaneously and have the capacity to respond to environmental inputs.
Collapse
|
49
|
Zakrevsky P, Kasprzak WK, Heinz WF, Wu W, Khant H, Bindewald E, Dorjsuren N, Fields EA, de Val N, Jaeger L, Shapiro BA. Truncated tetrahedral RNA nanostructures exhibit enhanced features for delivery of RNAi substrates. NANOSCALE 2020; 12:2555-2568. [PMID: 31932830 DOI: 10.1039/c9nr08197f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Using RNA as a material for nanoparticle construction provides control over particle size and shape at the nano-scale. RNA nano-architectures have shown promise as delivery vehicles for RNA interference (RNAi) substrates, allowing multiple functional entities to be combined on a single particle in a programmable fashion. Rather than employing a completely bottom-up approach to scaffold design, here multiple copies of an existing synthetic supramolecular RNA nano-architecture serve as building blocks along with additional motifs for the design of a novel truncated tetrahedral RNA scaffold, demonstrating that rationally designed RNA assemblies can themselves serve as modular pieces in the construction of larger rationally designed structures. The resulting tetrahedral scaffold displays enhanced characteristics for RNAi-substrate delivery in comparison to similar RNA-based scaffolds, as evidenced by its increased functional capacity, increased cellular uptake and ultimately an increased RNAi efficacy of its adorned Dicer substrate siRNAs. The unique truncated tetrahedral shape of the nanoparticle core appears to contribute to this particle's enhanced function, indicating the physical characteristics of RNA scaffolds merit significant consideration when designing platforms for delivery of functional RNAs via RNA nanoparticles.
Collapse
Affiliation(s)
- Paul Zakrevsky
- RNA Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA.
| | - Wojciech K Kasprzak
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - William F Heinz
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Weimin Wu
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Htet Khant
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Eckart Bindewald
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Nomongo Dorjsuren
- RNA Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA.
| | - Eric A Fields
- RNA Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA.
| | - Natalia de Val
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA and Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, MD 21701, USA
| | - Luc Jaeger
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9510, USA.
| | - Bruce A Shapiro
- RNA Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
50
|
Liu D, Geary CW, Chen G, Shao Y, Li M, Mao C, Andersen ES, Piccirilli JA, Rothemund PWK, Weizmann Y. Branched kissing loops for the construction of diverse RNA homooligomeric nanostructures. Nat Chem 2020; 12:249-259. [PMID: 31959958 DOI: 10.1038/s41557-019-0406-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 12/06/2019] [Indexed: 01/31/2023]
Abstract
In biological systems, large and complex structures are often assembled from multiple simpler identical subunits. This strategy-homooligomerization-allows efficient genetic encoding of structures and avoids the need to control the stoichiometry of multiple distinct units. It also allows the minimal number of distinct subunits when designing artificial nucleic acid structures. Here, we present a robust self-assembly system in which homooligomerizable tiles are formed from intramolecularly folded RNA single strands. Tiles are linked through an artificially designed branched kissing-loop motif, involving Watson-Crick base pairing between the single-stranded regions of a bulged helix and a hairpin loop. By adjusting the tile geometry to gain control over the curvature, torsion and the number of helices, we have constructed 16 different linear and circular structures, including a finite-sized three-dimensional cage. We further demonstrate cotranscriptional self-assembly of tiles based on branched kissing loops, and show that tiles inserted into a transfer RNA scaffold can be overexpressed in bacterial cells.
Collapse
Affiliation(s)
- Di Liu
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Cody W Geary
- Interdisciplinary Nanoscience Center and Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.,Departments of Bioengineering, Computational and Mathematical Sciences, and Computation and Neural Systems, California Institute of Technology, Pasadena, CA, USA
| | - Gang Chen
- Department of Chemistry, University of Chicago, Chicago, IL, USA.,Department of Chemistry, University of Central Florida, Orlando, FL, USA
| | - Yaming Shao
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Mo Li
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Chengde Mao
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Ebbe S Andersen
- Interdisciplinary Nanoscience Center and Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Joseph A Piccirilli
- Department of Chemistry, University of Chicago, Chicago, IL, USA.,Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Paul W K Rothemund
- Departments of Bioengineering, Computational and Mathematical Sciences, and Computation and Neural Systems, California Institute of Technology, Pasadena, CA, USA.
| | - Yossi Weizmann
- Department of Chemistry, University of Chicago, Chicago, IL, USA. .,Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|