1
|
Guo Q, Parikh K, Zhang J, Brinkley A, Chen G, Jakramonpreeya N, Zhen A, An DS. Anti-HIV-1 HSPC-based gene therapy with safety kill switch to defend against and attack HIV-1 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623476. [PMID: 39605384 PMCID: PMC11601352 DOI: 10.1101/2024.11.13.623476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Hematopoietic stem/progenitor cell (HSPC)-based anti-HIV-1 gene therapy holds promise to provide life-long remission following a single treatment. Here we report a multi-pronged anti-HIV-1 HSPC-based gene therapy designed to defend against and attack HIV-1 infection. We developed a lentiviral vector capable of co-expressing three anti-HIV-1 genes. Two are designed to prevent infection, including a short-hairpin RNA (CCR5sh1005) to knock down HIV-1 co-receptor CCR5 and a membrane anchored HIV-1 fusion inhibitor (C46). The third gene is a CD4-based chimeric antigen receptor (CAR) designed to attack HIV-1 infected cells. Our vector also includes a non-signaling truncated human epidermal growth factor receptor (huEGFRt) which acts as a negative selection-based safety kill switch against transduced cells. Anti-HIV-1 vector-transduced human CD34+ HSPC efficiently reconstituted multi-lineage human hematopoietic cells in humanized bone marrow/liver/thymus (huBLT) mice. HIV-1 viral load was significantly reduced (1-log fold reduction, p <0.001) in transplanted huBLT mice. Anti-huEGFR monoclonal antibody Cetuximab (CTX) administration significantly reduced huEGFRt+ vector-modified cells (>4-fold reduction, p <0.01) in huBLT mice. These results demonstrate that our strategy is highly effective for HIV-1 inhibition, and that CTX-mediated negative selection can deplete anti-HIV-1 vector-modified cells in the event of unwanted adverse effects in huBLT mice.
Collapse
Affiliation(s)
- Qi Guo
- UCLA AIDS Institute, UCLA, Los Angeles, CA, USA, 90024
- UCLA School of Nursing, UCLA, Los Angeles, CA, USA, 90095
- Shanghai Key Laboratory of Tumor System Regulation and Clinical Translation, Jiading Branch, Renji Hospital, Shanghai Cancer Institute, Shanghai, China, 201800
| | - Keval Parikh
- UCLA AIDS Institute, UCLA, Los Angeles, CA, USA, 90024
- UCLA School of Nursing, UCLA, Los Angeles, CA, USA, 90095
| | - Jian Zhang
- UCLA AIDS Institute, UCLA, Los Angeles, CA, USA, 90024
- UCLA School of Nursing, UCLA, Los Angeles, CA, USA, 90095
| | - Alexander Brinkley
- UCLA AIDS Institute, UCLA, Los Angeles, CA, USA, 90024
- UCLA School of Nursing, UCLA, Los Angeles, CA, USA, 90095
| | - Grace Chen
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, CA, USA, 90095
| | - Natnicha Jakramonpreeya
- UCLA AIDS Institute, UCLA, Los Angeles, CA, USA, 90024
- UCLA School of Nursing, UCLA, Los Angeles, CA, USA, 90095
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan 10540, Thailand
| | - Anjie Zhen
- UCLA AIDS Institute, UCLA, Los Angeles, CA, USA, 90024
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA, 90095
| | - Dong Sung An
- UCLA AIDS Institute, UCLA, Los Angeles, CA, USA, 90024
- UCLA School of Nursing, UCLA, Los Angeles, CA, USA, 90095
| |
Collapse
|
2
|
Peng L, Sferruzza G, Yang L, Zhou L, Chen S. CAR-T and CAR-NK as cellular cancer immunotherapy for solid tumors. Cell Mol Immunol 2024; 21:1089-1108. [PMID: 39134804 PMCID: PMC11442786 DOI: 10.1038/s41423-024-01207-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/22/2024] [Indexed: 10/02/2024] Open
Abstract
In the past decade, chimeric antigen receptor (CAR)-T cell therapy has emerged as a promising immunotherapeutic approach for combating cancers, demonstrating remarkable efficacy in relapsed/refractory hematological malignancies in both pediatric and adult patients. CAR-natural killer (CAR-NK) cell complements CAR-T cell therapy by offering several distinct advantages. CAR-NK cells do not require HLA compatibility and exhibit low safety concerns. Moreover, CAR-NK cells are conducive to "off-the-shelf" therapeutics, providing significant logistic advantages over CAR-T cells. Both CAR-T and CAR-NK cells have shown consistent and promising results in hematological malignancies. However, their efficacy against solid tumors remains limited due to various obstacles including limited tumor trafficking and infiltration, as well as an immuno-suppressive tumor microenvironment. In this review, we discuss the recent advances and current challenges of CAR-T and CAR-NK cell immunotherapies, with a specific focus on the obstacles to their application in solid tumors. We also analyze in depth the advantages and drawbacks of CAR-NK cells compared to CAR-T cells and highlight CAR-NK CAR optimization. Finally, we explore future perspectives of these adoptive immunotherapies, highlighting the increasing contribution of cutting-edge biotechnological tools in shaping the next generation of cellular immunotherapy.
Collapse
Affiliation(s)
- Lei Peng
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- System Biology Institute, Yale University, West Haven, CT, USA.
| | - Giacomo Sferruzza
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
| | - Luojia Yang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
| | - Liqun Zhou
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA
- Immunobiology Program, Yale University, New Haven, CT, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- System Biology Institute, Yale University, West Haven, CT, USA.
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA.
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA.
- Immunobiology Program, Yale University, New Haven, CT, USA.
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Liver Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for Biomedical Data Science, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
3
|
Ye L, Lam SZ, Yang L, Suzuki K, Zou Y, Lin Q, Zhang Y, Clark P, Peng L, Chen S. AAV-mediated delivery of a Sleeping Beauty transposon and an mRNA-encoded transposase for the engineering of therapeutic immune cells. Nat Biomed Eng 2024; 8:132-148. [PMID: 37430157 PMCID: PMC11320892 DOI: 10.1038/s41551-023-01058-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/18/2023] [Indexed: 07/12/2023]
Abstract
Engineering cells for adoptive therapy requires overcoming limitations in cell viability and, in the efficiency of transgene delivery, the duration of transgene expression and the stability of genomic integration. Here we report a gene-delivery system consisting of a Sleeping Beauty (SB) transposase encoded into a messenger RNA delivered by an adeno-associated virus (AAV) encoding an SB transposon that includes the desired transgene, for mediating the permanent integration of the transgene. Compared with lentiviral vectors and with the electroporation of plasmids of transposon DNA or minicircle DNA, the gene-delivery system, which we named MAJESTIC (for 'mRNA AAV-SB joint engineering of stable therapeutic immune cells'), offers prolonged transgene expression, as well as higher transgene expression, therapeutic-cell yield and cell viability. MAJESTIC can deliver chimeric antigen receptors (CARs) into T cells (which we show lead to strong anti-tumour activity in vivo) and also transduce natural killer cells, myeloid cells and induced pluripotent stem cells with bi-specific CARs, kill-switch CARs and synthetic T-cell receptors.
Collapse
Affiliation(s)
- Lupeng Ye
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Institute of Modern Biology, Nanjing University, Nanjing, China
| | - Stanley Z Lam
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Luojia Yang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
| | - Kazushi Suzuki
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Yongji Zou
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Qianqian Lin
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Yueqi Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Paul Clark
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Lei Peng
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- System Biology Institute, Yale University, West Haven, CT, USA.
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA.
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA.
- Immunobiology Program, Yale University, New Haven, CT, USA.
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for Biomedical Data Science, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
4
|
Lux S, Milsom MD. EVI1-mediated Programming of Normal and Malignant Hematopoiesis. Hemasphere 2023; 7:e959. [PMID: 37810550 PMCID: PMC10553128 DOI: 10.1097/hs9.0000000000000959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/14/2023] [Indexed: 10/10/2023] Open
Abstract
Ecotropic viral integration site 1 (EVI1), encoded at the MECOM locus, is an oncogenic zinc finger transcription factor with diverse roles in normal and malignant cells, most extensively studied in the context of hematopoiesis. EVI1 interacts with other transcription factors in a context-dependent manner and regulates transcription and chromatin remodeling, thereby influencing the proliferation, differentiation, and survival of cells. Interestingly, it can act both as a transcriptional activator as well as a transcriptional repressor. EVI1 is expressed, and fulfills important functions, during the development of different tissues, including the nervous system and hematopoiesis, demonstrating a rigid spatial and temporal expression pattern. However, EVI1 is regularly overexpressed in a variety of cancer entities, including epithelial cancers such as ovarian and pancreatic cancer, as well as in hematologic malignancies like myeloid leukemias. Importantly, EVI1 overexpression is generally associated with a very poor clinical outcome and therapy-resistance. Thus, EVI1 is an interesting candidate to study to improve the prognosis and treatment of high-risk patients with "EVI1high" hematopoietic malignancies.
Collapse
Affiliation(s)
- Susanne Lux
- Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael D. Milsom
- Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
- DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
5
|
Ye L, Lam SZ, Yang L, Suzuki K, Zou Y, Lin Q, Zhang Y, Clark P, Peng L, Chen S. Therapeutic immune cell engineering with an mRNA : AAV- Sleeping Beauty composite system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532651. [PMID: 36993594 PMCID: PMC10055155 DOI: 10.1101/2023.03.14.532651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Adoptive cell therapy has shown clinical success in patients with hematological malignancies. Immune cell engineering is critical for production, research, and development of cell therapy; however, current approaches for generation of therapeutic immune cells face various limitations. Here, we establish a composite gene delivery system for the highly efficient engineering of therapeutic immune cells. This system, termed MAJESTIC ( m RNA A AV-Sleeping-Beauty J oint E ngineering of S table T herapeutic I mmune C ells), combines the merits of mRNA, AAV vector, and transposon into one composite system. In MAJESTIC, the transient mRNA component encodes a transposase that mediates permanent genomic integration of the Sleeping Beauty (SB) transposon, which carries the gene-of-interest and is embedded within the AAV vector. This system can transduce diverse immune cell types with low cellular toxicity and achieve highly efficient and stable therapeutic cargo delivery. Compared with conventional gene delivery systems, such as lentiviral vector, DNA transposon plasmid, or minicircle electroporation, MAJESTIC shows higher cell viability, chimeric antigen receptor (CAR) transgene expression, therapeutic cell yield, as well as prolonged transgene expression. CAR-T cells generated by MAJESTIC are functional and have strong anti-tumor activity in vivo . This system also demonstrates versatility for engineering different cell therapy constructs such as canonical CAR, bi-specific CAR, kill switch CAR, and synthetic TCR; and for CAR delivery into various immune cells, including T cells, natural killer cells, myeloid cells, and induced pluripotent stem cells.
Collapse
|
6
|
Zhu EY, Dupuy AJ. Machine learning approach informs biology of cancer drug response. BMC Bioinformatics 2022; 23:184. [PMID: 35581546 PMCID: PMC9112473 DOI: 10.1186/s12859-022-04720-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/03/2022] [Indexed: 12/12/2022] Open
Abstract
Background The mechanism of action for most cancer drugs is not clear. Large-scale pharmacogenomic cancer cell line datasets offer a rich resource to obtain this knowledge. Here, we present an analysis strategy for revealing biological pathways that contribute to drug response using publicly available pharmacogenomic cancer cell line datasets. Methods We present a custom machine-learning based approach for identifying biological pathways involved in cancer drug response. We test the utility of our approach with a pan-cancer analysis of ML210, an inhibitor of GPX4, and a melanoma-focused analysis of inhibitors of BRAFV600. We apply our approach to reveal determinants of drug resistance to microtubule inhibitors. Results Our method implicated lipid metabolism and Rac1/cytoskeleton signaling in the context of ML210 and BRAF inhibitor response, respectively. These findings are consistent with current knowledge of how these drugs work. For microtubule inhibitors, our approach implicated Notch and Akt signaling as pathways that associated with response. Conclusions Our results demonstrate the utility of combining informed feature selection and machine learning algorithms in understanding cancer drug response. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04720-z.
Collapse
Affiliation(s)
- Eliot Y Zhu
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA, USA.,Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, USA.,Cancer Biology Graduate Program, The University of Iowa, Iowa City, IA, USA.,The Medical Scientist Training Program, The University of Iowa, Iowa City, IA, USA
| | - Adam J Dupuy
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA, USA. .,Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
7
|
Sun R, Yu L, Xu K, Pu Y, Huang J, Liu M, Zhang J, Yin L, Pu Y. Evi1 involved in benzene-induced haematotoxicity via modulation of PI3K/mTOR pathway and negative regulation Serpinb2. Chem Biol Interact 2022; 354:109836. [PMID: 35092719 DOI: 10.1016/j.cbi.2022.109836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/08/2022] [Accepted: 01/24/2022] [Indexed: 12/11/2022]
Abstract
Benzene is a widely used chemical and an environmental pollutant. Exposure to benzene can cause blood diseases, but the mechanisms underlying benzene haematotoxicity have not been fully clarified. Ecotropic virus integration site-1 (Evi1), a transcription factor, plays important roles in normal haematopoiesis and haematological diseases. In this study, we investigated the role and mechanism of Evi1 in benzene-induced haematotoxicity. We found that benzene exposure significantly increased Evi1 level in white blood cells (WBCs) in occupational benzene workers as well as mouse bone marrow cells. Further in vitro results demonstrated that compared with control cells exposed to same 1,4-benzoquinone (1,4-BQ, an important active metabolite of benzene) concentration, Evi1 downregulation significantly reduced cell proliferation, and disrupted cell viability, apoptosis, erythroid and megakaryotic cell differentiation and cell cycle. Additionally, down-regulation of Evi1 suppressed phosphoinositide 3-kinase (PI3K)/mTOR signalling pathway and elevated its target gene Serpinb2 following 1,4-BQ exposure. Moreover, the PI3K activator could partially relieve the inhibitory effect of down-regulation of Evi1 on cell proliferation and increase cell arrest in in G2/M phase. What's more, downregulation of Serpinb2 could partially alleviate proliferation inhibition and reverse cell cycle changes in G0/G1 phase and S phase induced by Evi1 inhibition. In conclusion, our data revealed that Evi1 downregulation aggravated the inhibition of cell proliferation and arrested cells in the G0/G1 phase when exposed to 1,4-BQ, potentially by inactivating the PI3K/mTOR pathway and upregulating downstream target gene Serpinb2. Our study provides novel insights on mechanism by which Evi1 participates in benzene-induced haematotoxicity.
Collapse
Affiliation(s)
- Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Linling Yu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Kai Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yunqiu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Jiawei Huang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Manman Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
8
|
Shembrey C, Smith J, Grandin M, Williams N, Cho HJ, Mølck C, Behrenbruch C, Thomson BNJ, Heriot AG, Merino D, Hollande F. Longitudinal Monitoring of Intra-Tumoural Heterogeneity Using Optical Barcoding of Patient-Derived Colorectal Tumour Models. Cancers (Basel) 2022; 14:581. [PMID: 35158849 PMCID: PMC8833441 DOI: 10.3390/cancers14030581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 02/01/2023] Open
Abstract
Geno- and phenotypic heterogeneity amongst cancer cell subpopulations are established drivers of treatment resistance and tumour recurrence. However, due to the technical difficulty associated with studying such intra-tumoural heterogeneity, this phenomenon is seldom interrogated in conventional cell culture models. Here, we employ a fluorescent lineage technique termed "optical barcoding" (OBC) to perform simultaneous longitudinal tracking of spatio-temporal fate in 64 patient-derived colorectal cancer subclones. To do so, patient-derived cancer cell lines and organoids were labelled with discrete combinations of reporter constructs, stably integrated into the genome and thus passed on from the founder cell to all its clonal descendants. This strategy enables the longitudinal monitoring of individual cell lineages based upon their unique optical barcodes. By designing a novel panel of six fluorescent proteins, the maximum theoretical subpopulation resolution of 64 discriminable subpopulations was achieved, greatly improving throughput compared with previous studies. We demonstrate that all subpopulations can be purified from complex clonal mixtures via flow cytometry, permitting the downstream isolation and analysis of any lineages of interest. Moreover, we outline an optimized imaging protocol that can be used to image optical barcodes in real-time, allowing for clonal dynamics to be resolved in live cells. In contrast with the limited intra-tumour heterogeneity observed in conventional 2D cell lines, the OBC technique was successfully used to quantify dynamic clonal expansions and contractions in 3D patient-derived organoids, which were previously demonstrated to better recapitulate the heterogeneity of their parental tumour material. In summary, we present OBC as a user-friendly, inexpensive, and high-throughput technique for monitoring intra-tumoural heterogeneity in in vitro cell culture models.
Collapse
Affiliation(s)
- Carolyn Shembrey
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC 3000, Australia; (C.S.); (J.S.); (M.G.); (N.W.); (C.M.); (C.B.)
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Melbourne, VIC 3000, Australia
| | - Jai Smith
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC 3000, Australia; (C.S.); (J.S.); (M.G.); (N.W.); (C.M.); (C.B.)
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Melbourne, VIC 3000, Australia
| | - Mélodie Grandin
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC 3000, Australia; (C.S.); (J.S.); (M.G.); (N.W.); (C.M.); (C.B.)
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Melbourne, VIC 3000, Australia
| | - Nathalia Williams
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC 3000, Australia; (C.S.); (J.S.); (M.G.); (N.W.); (C.M.); (C.B.)
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Melbourne, VIC 3000, Australia
| | - Hyun-Jung Cho
- Biological Optical Microscopy Platform, University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Christina Mølck
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC 3000, Australia; (C.S.); (J.S.); (M.G.); (N.W.); (C.M.); (C.B.)
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Melbourne, VIC 3000, Australia
| | - Corina Behrenbruch
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC 3000, Australia; (C.S.); (J.S.); (M.G.); (N.W.); (C.M.); (C.B.)
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Melbourne, VIC 3000, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3010, Australia;
- Department of General Surgical Specialties, The Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC 3050, Australia;
| | - Benjamin NJ. Thomson
- Department of General Surgical Specialties, The Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC 3050, Australia;
- Department of Surgery, the Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC 3050, Australia
| | - Alexander G. Heriot
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3010, Australia;
- Department of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Department of Surgery, St Vincent’s Hospital, Melbourne, VIC 3065, Australia
| | - Delphine Merino
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia;
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3086, Australia
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia
- Department of Medical Biology, The Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Frédéric Hollande
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC 3000, Australia; (C.S.); (J.S.); (M.G.); (N.W.); (C.M.); (C.B.)
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Melbourne, VIC 3000, Australia
| |
Collapse
|
9
|
Yang M, Pan Z, Huang K, Büsche G, Liu H, Göhring G, Rumpel R, Dittrich-Breiholz O, Talbot S, Scherr M, Chaturvedi A, Eder M, Skokowa J, Zhou J, Welte K, von Neuhoff N, Liu L, Ganser A, Li Z. A unique role of p53 haploinsufficiency or loss in the development of acute myeloid leukemia with FLT3-ITD mutation. Leukemia 2022; 36:675-686. [PMID: 34732858 PMCID: PMC8885416 DOI: 10.1038/s41375-021-01452-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 08/29/2021] [Accepted: 10/08/2021] [Indexed: 12/17/2022]
Abstract
With an incidence of ~50%, the absence or reduced protein level of p53 is much more common than TP53 mutations in acute myeloid leukemia (AML). AML with FLT3-ITD (internal tandem duplication) mutations has an unfavorable prognosis and is highly associated with wt-p53 dysfunction. While TP53 mutation in the presence of FLT3-ITD does not induce AML in mice, it is not clear whether p53 haploinsufficiency or loss cooperates with FLT3-ITD in the induction of AML. Here, we generated FLT3-ITD knock-in; p53 knockout (heterozygous and homozygous) double-transgenic mice and found that both alterations strongly cooperated in the induction of cytogenetically normal AML without increasing the self-renewal potential. At the molecular level, we found the strong upregulation of Htra3 and the downregulation of Lin28a, leading to enhanced proliferation and the inhibition of apoptosis and differentiation. The co-occurrence of Htra3 overexpression and Lin28a knockdown, in the presence of FLT3-ITD, induced AML with similar morphology as leukemic cells from double-transgenic mice. These leukemic cells were highly sensitive to the proteasome inhibitor carfilzomib. Carfilzomib strongly enhanced the activity of targeting AXL (upstream of FLT3) against murine and human leukemic cells. Our results unravel a unique role of p53 haploinsufficiency or loss in the development of FLT3-ITD + AML.
Collapse
Affiliation(s)
- Min Yang
- grid.10423.340000 0000 9529 9877Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Zengkai Pan
- grid.10423.340000 0000 9529 9877Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany ,grid.16821.3c0000 0004 0368 8293Present Address: National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kezhi Huang
- grid.10423.340000 0000 9529 9877Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany ,grid.12981.330000 0001 2360 039XPresent Address: Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, and Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Guntram Büsche
- grid.10423.340000 0000 9529 9877Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Hongyun Liu
- grid.10423.340000 0000 9529 9877Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Gudrun Göhring
- grid.10423.340000 0000 9529 9877Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Regina Rumpel
- grid.10423.340000 0000 9529 9877Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Oliver Dittrich-Breiholz
- grid.10423.340000 0000 9529 9877Research Core Unit Genomics, Hannover Medical School, Hannover, Germany
| | - Steven Talbot
- grid.10423.340000 0000 9529 9877Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Michaela Scherr
- grid.10423.340000 0000 9529 9877Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Anuhar Chaturvedi
- grid.10423.340000 0000 9529 9877Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Matthias Eder
- grid.10423.340000 0000 9529 9877Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Julia Skokowa
- grid.10392.390000 0001 2190 1447Department of Hematology, Oncology, Clinical Immunology, University of Tübingen, Tübingen, Germany
| | - Jianfeng Zhou
- grid.33199.310000 0004 0368 7223Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Karl Welte
- grid.488549.cUniversity Children’s Hospital, Department of General Pediatrics and Pediatric Hematology and Oncology, Tübingen, Germany
| | - Nils von Neuhoff
- grid.5718.b0000 0001 2187 5445AML Diagnostic Laboratory, Department of Pediatric Hematology-Oncology, University of Duisburg-Essen, Essen, Germany
| | - Ligen Liu
- grid.16821.3c0000 0004 0368 8293Department of Hematology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Arnold Ganser
- grid.10423.340000 0000 9529 9877Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Zhixiong Li
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
10
|
Büning H, Fehse B, Ivics Z, Kochanek S, Koehl U, Kupatt C, Mussolino C, Nettelbeck DM, Schambach A, Uckert W, Wagner E, Cathomen T. Gene Therapy "Made in Germany": A Historical Perspective, Analysis of the Status Quo, and Recommendations for Action by the German Society for Gene Therapy. Hum Gene Ther 2021; 32:987-996. [PMID: 34662229 DOI: 10.1089/hum.2021.29178.hbu] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gene therapies have been successfully applied to treat severe inherited and acquired disorders. Although research and development are sufficiently well funded in Germany and while the output of scientific publications and patents is comparable with the leading nations in gene therapy, the country lags noticeably behind with regard to the number of both clinical studies and commercialized gene therapy products. In this article, we give a historical perspective on the development of gene therapy in Germany, analyze the current situation from the standpoint of the German Society for Gene Therapy (DG-GT), and define recommendations for action that would enable our country to generate biomedical and economic advantages from innovations in this sector, instead of merely importing advanced therapy medicinal products. Inter alia, we propose (1) to harmonize and simplify regulatory licensing processes to enable faster access to advanced therapies, and (2) to establish novel coordination, support and funding structures that facilitate networking of the key players. Such a center would provide the necessary infrastructure and know-how to translate cell and gene therapies to patients on the one hand, and pave the way for commercialization of these promising and innovative technologies on the other. Hence, these courses of action would not only benefit the German biotech and pharma landscape but also the society and the patients in need of new treatment options.
Collapse
Affiliation(s)
- Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | | | - Ulrike Koehl
- Fraunhofer Institute for Cell Therapy and Immunology (IZI) and Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany.,Institute for Cellular Therapeutics, Hannover Medical School, Hannover, Germany
| | - Christian Kupatt
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Claudio Mussolino
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Dirk M Nettelbeck
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Wolfgang Uckert
- Department of Molecular Cell Biology and Gene Therapy, Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-based Drug Research, Center for NanoScience (CeNS), Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Faculty, University of Freiburg, Freiburg, Germany
| |
Collapse
|
11
|
Morgan MA, Galla M, Grez M, Fehse B, Schambach A. Retroviral gene therapy in Germany with a view on previous experience and future perspectives. Gene Ther 2021; 28:494-512. [PMID: 33753908 PMCID: PMC8455336 DOI: 10.1038/s41434-021-00237-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/13/2021] [Accepted: 02/01/2021] [Indexed: 02/01/2023]
Abstract
Gene therapy can be used to restore cell function in monogenic disorders or to endow cells with new capabilities, such as improved killing of cancer cells, expression of suicide genes for controlled elimination of cell populations, or protection against chemotherapy or viral infection. While gene therapies were originally most often used to treat monogenic diseases and to improve hematopoietic stem cell transplantation outcome, the advent of genetically modified immune cell therapies, such as chimeric antigen receptor modified T cells, has contributed to the increased numbers of patients treated with gene and cell therapies. The advancement of gene therapy with integrating retroviral vectors continues to depend upon world-wide efforts. As the topic of this special issue is "Spotlight on Germany," the goal of this review is to provide an overview of contributions to this field made by German clinical and research institutions. Research groups in Germany made, and continue to make, important contributions to the development of gene therapy, including design of vectors and transduction protocols for improved cell modification, methods to assess gene therapy vector efficacy and safety (e.g., clonal imbalance, insertion sites), as well as in the design and conduction of clinical gene therapy trials.
Collapse
Affiliation(s)
- Michael A Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Manuel Grez
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Shi T, Cheung M. Urine-derived induced pluripotent/neural stem cells for modeling neurological diseases. Cell Biosci 2021; 11:85. [PMID: 33985584 PMCID: PMC8117626 DOI: 10.1186/s13578-021-00594-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/29/2021] [Indexed: 01/05/2023] Open
Abstract
Neurological diseases are mainly modeled using rodents through gene editing, surgery or injury approaches. However, differences between humans and rodents in terms of genetics, neural development, and physiology pose limitations on studying disease pathogenesis in rodent models for neuroscience research. In the past decade, the generation of induced pluripotent stem cells (iPSCs) and induced neural stem cells (iNSCs) by reprogramming somatic cells offers a powerful alternative for modeling neurological diseases and for testing regenerative medicines. Among the different somatic cell types, urine-derived stem cells (USCs) are an ideal cell source for iPSC and iNSC reprogramming, as USCs are highly proliferative, multipotent, epithelial in nature, and easier to reprogram than skin fibroblasts. In addition, the use of USCs represents a simple, low-cost and non-invasive procedure for generating iPSCs/iNSCs. This review describes the cellular and molecular properties of USCs, their differentiation potency, different reprogramming methods for the generation of iPSCs/iNSCs, and their potential applications in modeling neurological diseases.
Collapse
Affiliation(s)
- Tianyuan Shi
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Martin Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
13
|
Egorova KS, Posvyatenko AV, Larin SS, Ananikov V. Ionic liquids: prospects for nucleic acid handling and delivery. Nucleic Acids Res 2021; 49:1201-1234. [PMID: 33476366 PMCID: PMC7897475 DOI: 10.1093/nar/gkaa1280] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/18/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022] Open
Abstract
Operations with nucleic acids are among the main means of studying the mechanisms of gene function and developing novel methods of molecular medicine and gene therapy. These endeavours usually imply the necessity of nucleic acid storage and delivery into eukaryotic cells. In spite of diversity of the existing dedicated techniques, all of them have their limitations. Thus, a recent notion of using ionic liquids in manipulations of nucleic acids has been attracting significant attention lately. Due to their unique physicochemical properties, in particular, their micro-structuring impact and tunability, ionic liquids are currently applied as solvents and stabilizing media in chemical synthesis, electrochemistry, biotechnology, and other areas. Here, we review the current knowledge on interactions between nucleic acids and ionic liquids and discuss potential advantages of applying the latter in delivery of the former into eukaryotic cells.
Collapse
Affiliation(s)
- Ksenia S Egorova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Alexandra V Posvyatenko
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
- Molecular Immunology Laboratory, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela St 1, Moscow 117997, Russia
| | - Sergey S Larin
- Molecular Immunology Laboratory, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela St 1, Moscow 117997, Russia
| | - Valentine P Ananikov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| |
Collapse
|
14
|
Ha TC, Stahlhut M, Rothe M, Paul G, Dziadek V, Morgan M, Brugman M, Fehse B, Kustikova O, Schambach A, Baum C. Multiple Genes Surrounding Bcl-xL, a Common Retroviral Insertion Site, Can Influence Hematopoiesis Individually or in Concert. Hum Gene Ther 2020; 32:458-472. [PMID: 33012194 DOI: 10.1089/hum.2019.344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Retroviral insertional mutagenesis (RIM) is both a relevant risk in gene therapy and a powerful tool for identifying genes that enhance the competitiveness of repopulating hematopoietic stem and progenitor cells (HSPCs). However, focusing only on the gene closest to the retroviral vector insertion site (RVIS) may underestimate the effects of RIM, as dysregulation of distal and/or multiple genes by a single insertion event was reported in several studies. As a proof of concept, we examined the common insertion site (CIS) Bcl-xL, which revealed seven genes located within ±150 kb from the RVIS for our study. We confirmed that Bcl-xL enhanced the competitiveness of HSPCs, whereas the Bcl-xL neighbor Id1 hindered HSPC long-term repopulation. This negative influence of Id1 could be counteracted by co-expressing Bcl-xL. Interestingly, >90% of early reconstituted myeloid cells were found to originate from transduced HSPCs upon simultaneous overexpression of Bcl-xL and Id1, which implies that Bcl-xL and Id1 can collaborate to rapidly replenish the myeloid compartment under stress conditions. To directly compare the competitiveness of HSPCs conveyed by multiple transgenes, we developed a multiple competitor competitive repopulation (MCCR) assay to simultaneously screen effects on HSPC repopulating capacity in a single mouse. The MCCR assay revealed that multiple genes within a CIS can have positive or negative impact on hematopoiesis. Furthermore, these data highlight the importance of studying multiple genes located within the proximity of an insertion site to understand complex biological effects, especially as the number of gene therapy patients increases.
Collapse
Affiliation(s)
- Teng-Cheong Ha
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany.,Hannover Biomedical Research School, Hannover, Germany
| | - Maike Stahlhut
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Gabi Paul
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Violetta Dziadek
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Martijn Brugman
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center (UKE) Hamburg-Eppendorf, Hamburg, Germany
| | - Olga Kustikova
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany.,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher Baum
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
15
|
Sharma S, Bhonde R. Genetic and epigenetic stability of stem cells: Epigenetic modifiers modulate the fate of mesenchymal stem cells. Genomics 2020; 112:3615-3623. [DOI: 10.1016/j.ygeno.2020.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/08/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022]
|
16
|
Yin Q. Introduction to the Special Issue on Stem Cells and Regenerative Medicine. Eur J Histochem 2020; 64. [PMID: 32705855 PMCID: PMC7388642 DOI: 10.4081/ejh.2020.3152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 11/23/2022] Open
Affiliation(s)
- Qinan Yin
- Clinical center, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
17
|
Bigildeev AE, Petinati NA, Drize NJ. How Methods of Molecular Biology Shape Our Understanding of the Hematopoietic System. Mol Biol 2019. [DOI: 10.1134/s0026893319050029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
18
|
Lee ES, Moon S, Abu-Bonsrah KD, Kim YK, Hwang MY, Kim YJ, Kim S, Hwang NS, Kim HH, Kim BJ. Programmable Nuclease-Based Integration into Novel Extragenic Genomic Safe Harbor Identified from Korean Population-Based CNV Analysis. MOLECULAR THERAPY-ONCOLYTICS 2019; 14:253-265. [PMID: 31463366 PMCID: PMC6708990 DOI: 10.1016/j.omto.2019.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 07/11/2019] [Indexed: 11/26/2022]
Abstract
Here, we found two genomic safe harbor (GSH) candidates from chromosomes 3 and 8, based on large-scale population-based cohort data from 4,694 Koreans by CNV analysis. Furthermore, estimated genotype of these CNVRs was validated by quantitative real-time PCR, and epidemiological data examined no significant genetic association between diseases or traits and two CNVRs. After screening the GSH candidates by in silico approaches, we designed TALEN pairs to integrate EGFP expression cassette into human cell lines in order to confirm the functionality of GSH candidates in an in vitro setting. As a result, transgene insertion into one of the two loci using TALEN showed robust transgene expression comparable to that with an AAVS1 site without significantly perturbing neighboring genes. Changing the promoter or cell type did not noticeably disturb this trend. Thus, we could validate two CNVRs as a site for effective and safe transgene insertion in human cells.
Collapse
Affiliation(s)
- Eun-Seo Lee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03372, Republic of Korea.,School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sanghoon Moon
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Chungcheongbuk-do 28159, Korea
| | - Kwaku Dad Abu-Bonsrah
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Yun Kyoung Kim
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Chungcheongbuk-do 28159, Korea
| | - Mi Yeong Hwang
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Chungcheongbuk-do 28159, Korea
| | - Young Jin Kim
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Chungcheongbuk-do 28159, Korea
| | | | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea.,Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,BioMax Institute of Seoul National University, Seoul 08826, Republic of Korea
| | - Hyongbum Henry Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03372, Republic of Korea.,Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03372, Republic of Korea.,Center for Nanomedicine, Institute of Basic Science (IBS), Seoul 03772, Republic of Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03372, Republic of Korea
| | - Bong-Jo Kim
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Chungcheongbuk-do 28159, Korea
| |
Collapse
|
19
|
Mishra S, Kacin E, Stamatiadis P, Franck S, Van der Jeught M, Mertes H, Pennings G, De Sutter P, Sermon K, Heindryckx B, Geens M. The role of the reprogramming method and pluripotency state in gamete differentiation from patient-specific human pluripotent stem cells. Mol Hum Reprod 2019; 24:173-184. [PMID: 29471503 DOI: 10.1093/molehr/gay007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/10/2018] [Indexed: 12/16/2022] Open
Abstract
The derivation of gametes from patient-specific pluripotent stem cells may provide new perspectives for genetic parenthood for patients currently facing sterility. We use current data to assess the gamete differentiation potential of patient-specific pluripotent stem cells and to determine which reprogramming strategy holds the greatest promise for future clinical applications. First, we compare the two best established somatic cell reprogramming strategies: the production of induced pluripotent stem cells (iPSC) and somatic cell nuclear transfer followed by embryonic stem cell derivation (SCNT-ESC). Recent reports have indicated that these stem cells, though displaying a similar pluripotency potential, show important differences at the epigenomic level, which may have repercussions on their applicability. By comparing data on the genetic and epigenetic stability of these cell types during derivation and in-vitro culture, we assess the reprogramming efficiency of both technologies and possible effects on the subsequent differentiation potential of these cells. Moreover, we discuss possible implications of mitochondrial heteroplasmy. We also address the ethical aspects of both cell types, as well as the safety considerations associated with clinical applications using these cells, e.g. the known genomic instability of human PSCs during long-term culture. Secondly, we discuss the role of the stem cell pluripotency state in germ cell differentiation. In mice, success in germ cell development from pluripotent stem cells could only be achieved when starting from a naive state of pluripotency. It remains to be investigated if the naive state is also crucial for germ cell differentiation in human cells and to what extent human naive pluripotency resembles the naive state in mouse.
Collapse
Affiliation(s)
- S Mishra
- Ghent-Fertility and Stem Cell Team, Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - E Kacin
- Research Group, Reproduction and Genetics, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Brussels, Belgium
| | - P Stamatiadis
- Ghent-Fertility and Stem Cell Team, Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - S Franck
- Research Group, Reproduction and Genetics, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Brussels, Belgium
| | - M Van der Jeught
- Ghent-Fertility and Stem Cell Team, Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - H Mertes
- Bioethics Institute Ghent, Department of Philosophy and Moral Sciences, Blandijnberg 2, 9000 Ghent, Belgium
| | - G Pennings
- Bioethics Institute Ghent, Department of Philosophy and Moral Sciences, Blandijnberg 2, 9000 Ghent, Belgium
| | - P De Sutter
- Ghent-Fertility and Stem Cell Team, Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - K Sermon
- Research Group, Reproduction and Genetics, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Brussels, Belgium
| | - B Heindryckx
- Ghent-Fertility and Stem Cell Team, Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - M Geens
- Research Group, Reproduction and Genetics, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Brussels, Belgium
| |
Collapse
|
20
|
Aalam SMM, Beer PA, Kannan N. Assays for functionally defined normal and malignant mammary stem cells. Adv Cancer Res 2019; 141:129-174. [PMID: 30691682 DOI: 10.1016/bs.acr.2018.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The discovery of rare, heterogeneous self-renewing stem cells with shared developmental and molecular features within epithelial components of mammary gland and breast cancers has provided a conceptual framework to understand cellular composition of these tissues and mechanisms that control their number. These normal mammary epithelial stem cells (MaSCs) and breast cancer stem cells (BCSCs) were identified and analyzed using transplant assays (namely mammary repopulating unit (MRU) assay, mammary tumor-initiating cell (TIC) assay), which reveal their latent ability to regenerate respective normal and malignant epithelial tissues with self-renewing units displaying hierarchical cellular differentiation over multiple generations in recipient mice. "Next-generation" methods using "barcoded" normal and malignant mammary cells, with the help of next-generation sequencing (NGS) technology, have revealed hidden complexity and heterogeneous growth potential of MaSCs and BCSCs. Several single markers or combinations of markers have been reported to prospectively enrich MaSCs and BCSCs. Such markers and the extent to which they enrich for MaSCs and BCSCs activity require a critical appraisal. Also, knowledge of the functional assays and their limitations and harmonious reporting of results is a prerequisite to improve our understanding of MaSCs and BCSCs. This chapter describes evolution of the concept of MaSCs and BCSCs, and specific methodologies to investigate them.
Collapse
Affiliation(s)
- Syed Mohammed Musheer Aalam
- Laboratory of Stem Cell and Cancer Biology, Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Philip Anthony Beer
- Laboratory of Stem Cell and Cancer Biology, Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States; Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Nagarajan Kannan
- Laboratory of Stem Cell and Cancer Biology, Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
21
|
Yabe IM, Truitt LL, Espinoza DA, Wu C, Koelle S, Panch S, Corat MA, Winkler T, Yu KR, Hong SG, Bonifacino A, Krouse A, Metzger M, Donahue RE, Dunbar CE. Barcoding of Macaque Hematopoietic Stem and Progenitor Cells: A Robust Platform to Assess Vector Genotoxicity. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 11:143-154. [PMID: 30547048 PMCID: PMC6258888 DOI: 10.1016/j.omtm.2018.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/19/2018] [Indexed: 12/19/2022]
Abstract
Gene therapies using integrating retrovirus vectors to modify hematopoietic stem and progenitor cells have shown great promise for the treatment of immune system and hematologic diseases. However, activation of proto-oncogenes via insertional mutagenesis has resulted in the development of leukemia. We have utilized cellular bar coding to investigate the impact of different vector designs on the clonal behavior of hematopoietic stem and progenitor cells (HSPCs) during in vivo expansion, as a quantitative surrogate assay for genotoxicity in a non-human primate model with high relevance for human biology. We transplanted two rhesus macaques with autologous CD34+ HSPCs transduced with three lentiviral vectors containing different promoters and/or enhancers of a predicted range of genotoxicities, each containing a high-diversity barcode library that uniquely tags each individual transduced HSPC. Analysis of clonal output from thousands of individual HSPCs transduced with these barcoded vectors revealed sustained clonal diversity, with no progressive dominance of clones containing any of the three vectors for up to almost 3 years post-transplantation. Our data support a low genotoxic risk for lentivirus vectors in HSPCs, even those containing strong promoters and/or enhancers. Additionally, this flexible system can be used for the testing of future vector designs.
Collapse
Affiliation(s)
- Idalia M. Yabe
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Lauren L. Truitt
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Diego A. Espinoza
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Chuanfeng Wu
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Samson Koelle
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
- Department of Statistics, University of Washington, Seattle, WA 98195, USA
| | - Sandhya Panch
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Marcus A.F. Corat
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
- Multidisciplinary Center for Biological Research, University of Campinas, Campinas, SP 13083-877, Brazil
| | - Thomas Winkler
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Kyung-Rok Yu
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - So Gun Hong
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Aylin Bonifacino
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Allen Krouse
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Mark Metzger
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Robert E. Donahue
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Cynthia E. Dunbar
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
- Corresponding author: Cynthia E. Dunbar, National Heart, Lung and Blood Institute, NIH, Building 10 CRC Room 4E-5132, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
22
|
Aranyossy T, Thielecke L, Glauche I, Fehse B, Cornils K. Genetic Barcodes Facilitate Competitive Clonal Analyses In Vivo. Hum Gene Ther 2018; 28:926-937. [PMID: 28847169 DOI: 10.1089/hum.2017.124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Monitoring the fate of individual cell clones is an important task to better understand normal tissue regeneration, for example after hematopoietic stem cell (HSC) transplantation, but also cancerogenesis. Based on their integration into the host cell's genome, retroviral vectors are commonly used to stably mark target cells and their progeny. The development of genetic barcoding techniques has opened new possibilities to determine clonal composition and dynamics in great detail. A modular genetic barcode was recently introduced consisting of 32 variable positions (BC32) with a customized backbone, and its advantages were demonstrated with regard to barcode calling and quantification. The study presented applied the BC32 system in a complex in vivo situation, namely to analyze clonal reconstitution dynamics for HSC grafts consisting of up to three cell populations with distinguishable barcodes using different alpha- and lentiviral vectors. In a competitive transplantation setup, it was possible to follow the differently marked cell populations within individual animals. This enabled the clonal contribution of the different BC32 constructs during reconstitution and long-term hematopoiesis in the peripheral blood and the spatial distribution in bone marrow and spleen to be identified. Thus, it was demonstrated that the system allows the output of individually marked cells to be tracked in vivo and their influence on clonal dynamics to be analyzed. Successful application of the BC32 system in a complex, competitive in vivo situation provided proof-of-principle that its high complexity and the large Hamming distance between individual barcodes, combined with the easy customization, facilitate efficient and precise quantification, even without prior knowledge of individual barcode sequences. Importantly, simultaneous high-sensitivity analyses of different cell populations in single animals may significantly reduce numbers of animals required to investigate specific scientific questions in accordance with RRR principles. It is concluded that this BC32 system will be excellently suited for various research applications in regenerative medicine and cancer biology.
Collapse
Affiliation(s)
- Tim Aranyossy
- 1 Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Lars Thielecke
- 2 Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ingmar Glauche
- 2 Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Boris Fehse
- 1 Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Kerstin Cornils
- 1 Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf , Hamburg, Germany .,3 Department of Pediatric Hematology and Oncology, Division Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf , Hamburg, Germany .,4 Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| |
Collapse
|
23
|
Ma L, Wang Y, Wang H, Hu Y, Chen J, Tan T, Hu M, Liu X, Zhang R, Xing Y, Zhao Y, Hu X, Li N. Screen and Verification for Transgene Integration Sites in Pigs. Sci Rep 2018; 8:7433. [PMID: 29743638 PMCID: PMC5943519 DOI: 10.1038/s41598-018-24481-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/15/2018] [Indexed: 01/01/2023] Open
Abstract
Efficient transgene expression in recipient cells constitutes the primary step in gene therapy. However, random integration in host genome comprises too many uncertainties. Our study presents a strategy combining bioinformatics and functional verification to find transgene integration sites in pig genome. Using an in silico approach, we screen out two candidate sites, namely, Pifs302 and Pifs501, located in actively transcribed intergenic regions with low nucleosome formation potential and without potential non-coding RNAs. After CRISPR/Cas9-mediated site-specific integration on Pifs501, we detected high EGFP expression in different pig cell types and ubiquitous EGFP expression in diverse tissues of transgenic pigs without adversely affecting 600 kb neighboring gene expression. Promoters integrated on Pifs501 exhibit hypomethylated modification, which suggest a permissive epigenetic status of this locus. We establish a versatile master cell line on Pifs501, which allows us to achieve site-specific exchange of EGFP to Follistatin with Cre/loxP system conveniently. Through in vitro and in vivo functional assays, we demonstrate the effectiveness of this screening method, and take Pifs501 as a potential site for transgene insertion in pigs. We anticipate that Pifs501 will have useful applications in pig genome engineering, though the identification of genomic safe harbor should over long-term various functional studies.
Collapse
Affiliation(s)
- Linyuan Ma
- The State Key Laboratory for Agricultural Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Yuzhe Wang
- The State Key Laboratory for Agricultural Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Haitao Wang
- The State Key Laboratory for Agricultural Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Yiqing Hu
- The State Key Laboratory for Agricultural Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Jingyao Chen
- The State Key Laboratory for Agricultural Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Tan Tan
- The State Key Laboratory for Agricultural Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Man Hu
- The State Key Laboratory for Agricultural Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Xiaojuan Liu
- The State Key Laboratory for Agricultural Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Ran Zhang
- The State Key Laboratory for Agricultural Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Yiming Xing
- The State Key Laboratory for Agricultural Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Yiqiang Zhao
- The State Key Laboratory for Agricultural Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China. .,Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.
| | - Xiaoxiang Hu
- The State Key Laboratory for Agricultural Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Ning Li
- The State Key Laboratory for Agricultural Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
24
|
Luc S, Huang J, McEldoon JL, Somuncular E, Li D, Rhodes C, Mamoor S, Hou S, Xu J, Orkin SH. Bcl11a Deficiency Leads to Hematopoietic Stem Cell Defects with an Aging-like Phenotype. Cell Rep 2018; 16:3181-3194. [PMID: 27653684 DOI: 10.1016/j.celrep.2016.08.064] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 07/11/2016] [Accepted: 08/18/2016] [Indexed: 11/25/2022] Open
Abstract
B cell CLL/lymphoma 11A (BCL11A) is a transcription factor and regulator of hemoglobin switching that has emerged as a promising therapeutic target for sickle cell disease and thalassemia. In the hematopoietic system, BCL11A is required for B lymphopoiesis, yet its role in other hematopoietic cells, especially hematopoietic stem cells (HSCs) remains elusive. The extensive expression of BCL11A in hematopoiesis implicates context-dependent roles, highlighting the importance of fully characterizing its function as part of ongoing efforts for stem cell therapy and regenerative medicine. Here, we demonstrate that BCL11A is indispensable for normal HSC function. Bcl11a deficiency results in HSC defects, typically observed in the aging hematopoietic system. We find that downregulation of cyclin-dependent kinase 6 (Cdk6), and the ensuing cell-cycle delay, correlate with HSC dysfunction. Our studies define a mechanism for BCL11A in regulation of HSC function and have important implications for the design of therapeutic approaches to targeting BCL11A.
Collapse
Affiliation(s)
- Sidinh Luc
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Stem Cell Institute, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jialiang Huang
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Stem Cell Institute, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA
| | - Jennifer L McEldoon
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Stem Cell Institute, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Ece Somuncular
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Stem Cell Institute, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Dan Li
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Stem Cell Institute, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Claire Rhodes
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Stem Cell Institute, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Shahan Mamoor
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Stem Cell Institute, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Serena Hou
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Stem Cell Institute, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jian Xu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Stuart H Orkin
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Stem Cell Institute, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
25
|
Pan Z, Yang M, Huang K, Büsche G, Glage S, Ganser A, Li Z. Flow cytometric characterization of acute leukemia reveals a distinctive "blast gate" of murine T-lymphoblastic leukemia/lymphoma. Oncotarget 2018; 9:2320-2328. [PMID: 29416774 PMCID: PMC5788642 DOI: 10.18632/oncotarget.23410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/05/2017] [Indexed: 11/28/2022] Open
Abstract
Immunophenotypic analysis using multiparameter flow cytometry is an indispensable tool for diagnosis and management of acute leukemia. Mouse models have been widely used for medical research for more than 100 years and are indispensable for leukemia research. However, immunophenotypic analysis of murine leukemia was not always performed in published studies, and blast gating for isolation of blasts was shown only in very few studies. No systemic characterization of all types of murine acute leukemia in large cohorts by flow cytometry has been reported. In this study, we used flow cytometry to comprehensively characterize murine acute leukemia in a large cohort of mice. We found that murine T-lymphoblastic leukemia/lymphoma (T-ALL) exhibits a distinctive “blast gate” (CD45bright) with CD45/side scatter gating that differs from the “blast gate” (CD45dim) of human T-ALL. By contrast, murine B-lymphoblastic leukemia and acute myeloid leukemia show the same blast region (CD45dim) as human leukemia. Using blast cell gating, we for first time detected T-ALL development in FLT3-ITD knock-in mice (incidence: 23%). These leukemic cells were selectively killed by the FLT3 inhibitors crenolanib and midostaurin in vitro. These data suggest that FLT3-ITD plays a potential role in the pathogenesis of T-ALL and that FLT3-ITD inhibition is a therapeutic option in the management of patients with T-ALL. Our gating strategy for immunophenotypic analysis can be used for leukemogenesis and preclinical gene therapy studies in mice and may improve the quality of such analyses.
Collapse
Affiliation(s)
- Zengkai Pan
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Min Yang
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Kezhi Huang
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany.,Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Guntram Büsche
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Silke Glage
- Institute of Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Arnold Ganser
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Zhixiong Li
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| |
Collapse
|
26
|
Thomaschewski M, Riecken K, Unrau L, Volz T, Cornils K, Ittrich H, Heim D, Wege H, Akgün E, Lütgehetmann M, Dieckhoff J, Köpke M, Dandri M, Benten D, Fehse B. Multi-color RGB marking enables clonality assessment of liver tumors in a murine xenograft model. Oncotarget 2017; 8:115582-115595. [PMID: 29383183 PMCID: PMC5777795 DOI: 10.18632/oncotarget.23312] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/04/2017] [Indexed: 12/17/2022] Open
Abstract
We recently introduced red-green-blue (RGB) marking for clonal cell tracking based on individual color-coding. Here, we applied RGB marking to study clonal development of liver tumors. Immortalized, non-tumorigenic human fetal hepatocytes expressing the human telomerase reverse transcriptase (FH-hTERT) were RGB-marked by simultaneous transduction with lentiviral vectors encoding mCherry, Venus, and Cerulean. Multi-color fluorescence microscopy was used to analyze growth characteristics of RGB-marked FH-hTERT in vitro and in vivo after transplantation into livers of immunodeficient mice with endogenous liver damage (uPA/SCID). After initially polyclonal engraftment we observed oligoclonal regenerative nodules derived from transplanted RGB-marked FH-hTERT. Some mice developed monochromatic invasive liver tumors; their clonal origin was confirmed both on the molecular level, based on specific lentiviral-vector insertion sites, and by serial transplantation of one tumor. Vector insertions in proximity to the proto-oncogene MCF2 and the transcription factor MITF resulted in strong upregulation of mRNA expression in the respective tumors. Notably, upregulated MCF2 and MITF expression was also observed in 21% and 33% of 24 human hepatocellular carcinomas analyzed. In conclusion, liver repopulation with RGB-marked FH-hTERT is a useful tool to study clonal progression of liver tumors caused by insertional mutagenesis in vivo and will help identifying genes involved in liver cancer.
Collapse
Affiliation(s)
- Michael Thomaschewski
- Research Department of Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center (UMC) Hamburg-Eppendorf, Hamburg, Germany
| | - Kristoffer Riecken
- Research Department of Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center (UMC) Hamburg-Eppendorf, Hamburg, Germany
| | - Ludmilla Unrau
- Research Department of Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center (UMC) Hamburg-Eppendorf, Hamburg, Germany
| | - Tassilo Volz
- Department of Medicine, Gastroenterology and Hepatology, UMC Hamburg-Eppendorf, Hamburg, Germany
| | - Kerstin Cornils
- Research Department of Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center (UMC) Hamburg-Eppendorf, Hamburg, Germany
| | - Harald Ittrich
- Diagnostic and Interventional Radiology, UMC Hamburg-Eppendorf, Hamburg, Germany
| | - Denise Heim
- Department of Medicine, Gastroenterology and Hepatology, UMC Hamburg-Eppendorf, Hamburg, Germany
| | - Henning Wege
- Department of Medicine, Gastroenterology and Hepatology, UMC Hamburg-Eppendorf, Hamburg, Germany
| | - Ercan Akgün
- Research Department of Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center (UMC) Hamburg-Eppendorf, Hamburg, Germany
| | - Marc Lütgehetmann
- Department of Medicine, Gastroenterology and Hepatology, UMC Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Dieckhoff
- Diagnostic and Interventional Radiology, UMC Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Köpke
- Department of Medicine, Gastroenterology and Hepatology, UMC Hamburg-Eppendorf, Hamburg, Germany
| | - Maura Dandri
- Department of Medicine, Gastroenterology and Hepatology, UMC Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel Benten
- Department of Medicine, Gastroenterology and Hepatology, UMC Hamburg-Eppendorf, Hamburg, Germany
- Department of Gastroenterology, Helios Klinikum Duisburg, Duisburg, Germany
| | - Boris Fehse
- Research Department of Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center (UMC) Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
27
|
Foamy Virus Vector Carries a Strong Insulator in Its Long Terminal Repeat Which Reduces Its Genotoxic Potential. J Virol 2017; 92:JVI.01639-17. [PMID: 29046446 DOI: 10.1128/jvi.01639-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 09/29/2017] [Indexed: 12/11/2022] Open
Abstract
Strong viral enhancers in gammaretrovirus vectors have caused cellular proto-oncogene activation and leukemia, necessitating the use of cellular promoters in "enhancerless" self-inactivating integrating vectors. However, cellular promoters result in relatively low transgene expression, often leading to inadequate disease phenotype correction. Vectors derived from foamy virus, a nonpathogenic retrovirus, show higher preference for nongenic integrations than gammaretroviruses/lentiviruses and preferential integration near transcriptional start sites, like gammaretroviruses. We found that strong viral enhancers/promoters placed in foamy viral vectors caused extremely low immortalization of primary mouse hematopoietic stem/progenitor cells compared to analogous gammaretrovirus/lentivirus vectors carrying the same enhancers/promoters, an effect not explained solely by foamy virus' modest insertional site preference for nongenic regions compared to gammaretrovirus/lentivirus vectors. Using CRISPR/Cas9-mediated targeted insertion of analogous proviral sequences into the LMO2 gene and then measuring LMO2 expression, we demonstrate a sequence-specific effect of foamy virus, independent of insertional bias, contributing to reduced genotoxicity. We show that this effect is mediated by a 36-bp insulator located in the foamy virus long terminal repeat (LTR) that has high-affinity binding to the CCCTC-binding factor. Using our LMO2 activation assay, LMO2 expression was significantly increased when this insulator was removed from foamy virus and significantly reduced when the insulator was inserted into the lentiviral LTR. Our results elucidate a mechanism underlying the low genotoxicity of foamy virus, identify a novel insulator, and support the use of foamy virus as a vector for gene therapy, especially when strong enhancers/promoters are required.IMPORTANCE Understanding the genotoxic potential of viral vectors is important in designing safe and efficacious vectors for gene therapy. Self-inactivating vectors devoid of viral long-terminal-repeat enhancers have proven safe; however, transgene expression from cellular promoters is often insufficient for full phenotypic correction. Foamy virus is an attractive vector for gene therapy. We found foamy virus vectors to be remarkably less genotoxic, well below what was expected from their integration site preferences. We demonstrate that the foamy virus long terminal repeats contain an insulator element that binds CCCTC-binding factor and reduces its insertional genotoxicity. Our study elucidates a mechanism behind the low genotoxic potential of foamy virus, identifies a unique insulator, and supports the use of foamy virus as a vector for gene therapy.
Collapse
|
28
|
Ripperger T, Hofmann W, Koch JC, Shirneshan K, Haase D, Wulf G, Issing PR, Karnebogen M, Schmidt G, Auber B, Schlegelberger B, Illig T, Zirn B, Steinemann D. MDS1 and EVI1 complex locus (MECOM): a novel candidate gene for hereditary hematological malignancies. Haematologica 2017; 103:e55-e58. [PMID: 29097497 DOI: 10.3324/haematol.2017.178723] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Tim Ripperger
- Department of Human Genetics, Hannover Medical School, Göttingen, Germany
| | - Winfried Hofmann
- Department of Human Genetics, Hannover Medical School, Göttingen, Germany
| | - Jan C Koch
- Department of Neurology, University Medical Centre, Göttingen, Germany
| | - Katayoon Shirneshan
- Department of Human Genetics, Hannover Medical School, Göttingen, Germany.,Department of Hematology and Oncology, Georg-August University, Göttingen, Germany
| | - Detlef Haase
- Department of Hematology and Oncology, Georg-August University, Göttingen, Germany
| | - Gerald Wulf
- Department of Hematology and Oncology, Georg-August University, Göttingen, Germany
| | - Peter R Issing
- Department of Otorhinolaryngology, Head, Neck and Facial Plastic Surgery, Klinikum Bad Hersfeld, Germany
| | | | - Gunnar Schmidt
- Department of Human Genetics, Hannover Medical School, Göttingen, Germany
| | - Bernd Auber
- Department of Human Genetics, Hannover Medical School, Göttingen, Germany
| | | | - Thomas Illig
- Department of Human Genetics, Hannover Medical School, Göttingen, Germany.,Hannover Unified Biobank, Hannover Medical School, Stuttgart, Germany
| | - Birgit Zirn
- Genetic Counseling and Diagnostics, Genetikum, Stuttgart, Germany
| | - Doris Steinemann
- Department of Human Genetics, Hannover Medical School, Göttingen, Germany
| |
Collapse
|
29
|
Kohlscheen S, Bonig H, Modlich U. Promises and Challenges in Hematopoietic Stem Cell Gene Therapy. Hum Gene Ther 2017; 28:782-799. [DOI: 10.1089/hum.2017.141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Saskia Kohlscheen
- Research Group for Gene Modification in Stem Cells, Center for Cell and Gene Therapy Frankfurt, Paul-Ehrlich-Institute, Langen, Germany
| | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohematology, Goethe University, Frankfurt, Germany
- German Red Cross Blood Service Baden-Württemberg-Hessen, Institute Frankfurt, Germany
- Department of Medicine/Division of Hematology, University of Washington, Seattle, Washington
| | - Ute Modlich
- Research Group for Gene Modification in Stem Cells, Center for Cell and Gene Therapy Frankfurt, Paul-Ehrlich-Institute, Langen, Germany
| |
Collapse
|
30
|
Kebriaei P, Izsvák Z, Narayanavari SA, Singh H, Ivics Z. Gene Therapy with the Sleeping Beauty Transposon System. Trends Genet 2017; 33:852-870. [PMID: 28964527 DOI: 10.1016/j.tig.2017.08.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/24/2017] [Accepted: 08/31/2017] [Indexed: 11/16/2022]
Abstract
The widespread clinical implementation of gene therapy requires the ability to stably integrate genetic information through gene transfer vectors in a safe, effective, and economical manner. The latest generation of Sleeping Beauty (SB) transposon vectors fulfills these requirements, and may overcome limitations associated with viral gene transfer vectors and transient nonviral gene delivery approaches that are prevalent in ongoing clinical trials. The SB system enables high-level stable gene transfer and sustained transgene expression in multiple primary human somatic cell types, thereby representing a highly attractive gene transfer strategy for clinical use. Here, we review the most important aspects of using SB for gene therapy, including vectorization as well as genomic integration features. We also illustrate the path to successful clinical implementation by highlighting the application of chimeric antigen receptor (CAR)-modified T cells in cancer immunotherapy.
Collapse
Affiliation(s)
- Partow Kebriaei
- Department of Stem Cell Transplant and Cellular Therapy, MD Anderson Cancer Center, Houston, TX, USA
| | - Zsuzsanna Izsvák
- Mobile DNA, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Suneel A Narayanavari
- Mobile DNA, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Harjeet Singh
- Department of Pediatrics, MD Anderson Cancer Center, Houston, TX, USA
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany.
| |
Collapse
|
31
|
Yang M, Pan Z, Huang K, Büsche G, Feuerhake F, Chaturvedi A, Nie D, Heuser M, Thol F, von Neuhoff N, Ganser A, Li Z. Activation of TRKA receptor elicits mastocytosis in mice and is involved in the development of resistance to KIT-targeted therapy. Oncotarget 2017; 8:73871-73883. [PMID: 29088753 PMCID: PMC5650308 DOI: 10.18632/oncotarget.18027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/08/2017] [Indexed: 12/03/2022] Open
Abstract
The neurotrophins (NTs) play a key role in neuronal survival and maintenance. The TRK (tropomyosin-related kinase) tyrosine kinase receptors (TRKA, TRKB, TRKC) are high affinity receptors for NTs. There is increasing data demonstrating an important role of the TRK family in cancer initiation and progression. NTs have been known for many years to promote chemotaxis, maturation, and survival of mast cells. However, the role of NT signaling in the pathogenesis of mastocytosis is not well understood. In this study, we demonstrate that activation of TRKA by its ligand nerve growth factor (NGF) is potent to trigger a disease in mice with striking similarities to human systemic mastocytosis (SM). Moreover, activation of TRKA by NGF strongly rescues KIT inhibition-induced cell death of mast cell lines and primary mast cells from patients with SM, and this rescue effect can be efficiently blocked by entrectinib (a new pan TRK specific inhibitor). HMC-1 mast cell leukemia cells that are resistant to KIT inhibition induced by TRKA activation show reactivation of MAPK/ERK (extracellular signal-regulated kinase) and strong upregulation of early growth response 3 (EGR3), suggesting an important role of MAPK-EGR3 axis in the development of resistance to KIT inhibition. Targeting both TRK and KIT significantly prolongs survival of mice xenotransplanted with HMC-1 cells compared with targeting KIT alone. Thus, these data strongly suggest that TRKA signaling can improve neoplastic mast cell fitness. This might explain at least in part why treatment with KIT inhibitors alone so far has been disappointing in most published clinical trials for mastocytosis. Our data suggest that targeting both KIT and TRKs might improve efficacy of molecular therapy in SM with KIT mutations.
Collapse
Affiliation(s)
- Min Yang
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Zengkai Pan
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Kezhi Huang
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany.,Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Guntram Büsche
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | | | - Anuhar Chaturvedi
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Danian Nie
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Felicitas Thol
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Nils von Neuhoff
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Arnold Ganser
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Zhixiong Li
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| |
Collapse
|
32
|
Hudecek M, Izsvák Z, Johnen S, Renner M, Thumann G, Ivics Z. Going non-viral: the Sleeping Beauty transposon system breaks on through to the clinical side. Crit Rev Biochem Mol Biol 2017; 52:355-380. [PMID: 28402189 DOI: 10.1080/10409238.2017.1304354] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Molecular medicine has entered a high-tech age that provides curative treatments of complex genetic diseases through genetically engineered cellular medicinal products. Their clinical implementation requires the ability to stably integrate genetic information through gene transfer vectors in a safe, effective and economically viable manner. The latest generation of Sleeping Beauty (SB) transposon vectors fulfills these requirements, and may overcome limitations associated with viral gene transfer vectors and transient non-viral gene delivery approaches that are prevalent in ongoing pre-clinical and translational research. The SB system enables high-level stable gene transfer and sustained transgene expression in multiple primary human somatic cell types, thereby representing a highly attractive gene transfer strategy for clinical use. Here we review several recent refinements of the system, including the development of optimized transposons and hyperactive SB variants, the vectorization of transposase and transposon as mRNA and DNA minicircles (MCs) to enhance performance and facilitate vector production, as well as a detailed understanding of SB's genomic integration and biosafety features. This review also provides a perspective on the regulatory framework for clinical trials of gene delivery with SB, and illustrates the path to successful clinical implementation by using, as examples, gene therapy for age-related macular degeneration (AMD) and the engineering of chimeric antigen receptor (CAR)-modified T cells in cancer immunotherapy.
Collapse
Affiliation(s)
- Michael Hudecek
- a Medizinische Klinik und Poliklinik II , Universitätsklinikum Würzburg , Würzburg , Germany
| | - Zsuzsanna Izsvák
- b Mobile DNA , Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin , Germany
| | - Sandra Johnen
- c Department of Ophthalmology , University Hospital RWTH Aachen , Aachen , Germany
| | - Matthias Renner
- d Division of Medical Biotechnology , Paul Ehrlich Institute , Langen, Germany
| | - Gabriele Thumann
- e Département des Neurosciences Cliniques Service d'Ophthalmologie , Hôpitaux Universitaires de Genève , Genève , Switzerland
| | - Zoltán Ivics
- d Division of Medical Biotechnology , Paul Ehrlich Institute , Langen, Germany
| |
Collapse
|
33
|
Thrasher AJ, Williams DA. Evolving Gene Therapy in Primary Immunodeficiency. Mol Ther 2017; 25:1132-1141. [PMID: 28366768 DOI: 10.1016/j.ymthe.2017.03.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 03/10/2017] [Accepted: 03/10/2017] [Indexed: 12/29/2022] Open
Abstract
Prior to the first successful bone marrow transplant in 1968, patients born with severe combined immunodeficiency (SCID) invariably died. Today, with a widening availability of newborn screening, major improvements in the application of allogeneic procedures, and the emergence of successful hematopoietic stem and progenitor cell (HSC/P) gene therapy, the majority of these children can be identified and cured. Here, we trace key steps in the development of clinical gene therapy for SCID and other primary immunodeficiencies (PIDs), and review the prospects for adoption of new targets and technologies.
Collapse
Affiliation(s)
- Adrian J Thrasher
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK; University College London Great Ormond Street Institute of Child Health, London WC1N 1EH, UK.
| | - David A Williams
- Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School and Harvard Stem Cell Institute, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
34
|
Maetzig T, Ruschmann J, Lai CK, Ngom M, Imren S, Rosten P, Norddahl GL, von Krosigk N, Sanchez Milde L, May C, Selich A, Rothe M, Dhillon I, Schambach A, Humphries RK. A Lentiviral Fluorescent Genetic Barcoding System for Flow Cytometry-Based Multiplex Tracking. Mol Ther 2017; 25:606-620. [PMID: 28253481 DOI: 10.1016/j.ymthe.2016.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/29/2016] [Accepted: 12/05/2016] [Indexed: 11/25/2022] Open
Abstract
Retroviral integration site analysis and barcoding have been instrumental for multiplex clonal fate mapping, although their use imposes an inherent delay between sample acquisition and data analysis. Monitoring of multiple cell populations in real time would be advantageous, but multiplex assays compatible with flow cytometric tracking of competitive growth behavior are currently limited. We here describe the development and initial validation of three generations of lentiviral fluorescent genetic barcoding (FGB) systems that allow the creation of 26, 14, or 6 unique labels. Color-coded populations could be tracked in multiplex in vitro assays for up to 28 days by flow cytometry using all three vector systems. Those involving lower levels of multiplexing eased color-code generation and the reliability of vector expression and enabled functional in vitro and in vivo studies. In proof-of-principle experiments, FGB vectors facilitated in vitro multiplex screening of microRNA (miRNA)-induced growth advantages, as well as the in vivo recovery of color-coded progeny of murine and human hematopoietic stem cells. This novel series of FGB vectors provides new tools for assessing comparative growth properties in in vitro and in vivo multiplexing experiments, while simultaneously allowing for a reduction in sample numbers by up to 26-fold.
Collapse
Affiliation(s)
- Tobias Maetzig
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada; Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany.
| | - Jens Ruschmann
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Courteney K Lai
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Mor Ngom
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Suzan Imren
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Patricia Rosten
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Gudmundur L Norddahl
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Niklas von Krosigk
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Lea Sanchez Milde
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Christopher May
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Anton Selich
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Ishpreet Dhillon
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - R Keith Humphries
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada; Department of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
35
|
Sugai K, Fukuzawa R, Shofuda T, Fukusumi H, Kawabata S, Nishiyama Y, Higuchi Y, Kawai K, Isoda M, Kanematsu D, Hashimoto-Tamaoki T, Kohyama J, Iwanami A, Suemizu H, Ikeda E, Matsumoto M, Kanemura Y, Nakamura M, Okano H. Pathological classification of human iPSC-derived neural stem/progenitor cells towards safety assessment of transplantation therapy for CNS diseases. Mol Brain 2016; 9:85. [PMID: 27642008 PMCID: PMC5027634 DOI: 10.1186/s13041-016-0265-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/13/2016] [Indexed: 12/18/2022] Open
Abstract
The risk of tumorigenicity is a hurdle for regenerative medicine using induced pluripotent stem cells (iPSCs). Although teratoma formation is readily distinguishable, the malignant transformation of iPSC derivatives has not been clearly defined due to insufficient analysis of histology and phenotype. In the present study, we evaluated the histology of neural stem/progenitor cells (NSPCs) generated from integration-free human peripheral blood mononuclear cell (PBMC)-derived iPSCs (iPSC-NSPCs) following transplantation into central nervous system (CNS) of immunodeficient mice. We found that transplanted iPSC-NSPCs produced differentiation patterns resembling those in embryonic CNS development, and that the microenvironment of the final site of migration affected their maturational stage. Genomic instability of iPSCs correlated with increased proliferation of transplants, although no carcinogenesis was evident. The histological classifications presented here may provide cues for addressing potential safety issues confronting regenerative medicine involving iPSCs.
Collapse
Affiliation(s)
- Keiko Sugai
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan.,Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Ryuji Fukuzawa
- Department of Pathology, Tokyo Metropolitan Children's Medical Center, Fuchu, Tokyo, 183-8561, Japan
| | - Tomoko Shofuda
- Division of Stem Cell Research, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization, Chuo-ku, Osaka, 540-0006, Japan
| | - Hayato Fukusumi
- Division of Regenerative Medicine, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization, Chuo-ku, Osaka, 540-0006, Japan
| | - Soya Kawabata
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan.,Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Yuichiro Nishiyama
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan.,Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Yuichiro Higuchi
- Central Institute for Experimental Animals, Kawasaki, Kanagawa, 210-0821, Japan
| | - Kenji Kawai
- Central Institute for Experimental Animals, Kawasaki, Kanagawa, 210-0821, Japan
| | - Miho Isoda
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan.,Regenerative & Cellular Medicine Office, Sumitomo Dainippon Pharma Co., Ltd., Kobe, Hyogo, 650-0047, Japan
| | - Daisuke Kanematsu
- Division of Regenerative Medicine, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization, Chuo-ku, Osaka, 540-0006, Japan
| | | | - Jun Kohyama
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Akio Iwanami
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| | - Hiroshi Suemizu
- Central Institute for Experimental Animals, Kawasaki, Kanagawa, 210-0821, Japan
| | - Eiji Ikeda
- Department of Pathology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| | - Yonehiro Kanemura
- Division of Regenerative Medicine, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization, Chuo-ku, Osaka, 540-0006, Japan.,Department of Neurosurgery, Osaka National Hospital, National Hospital Organization, Chuo-ku, Osaka, 540-0006, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan.
| |
Collapse
|
36
|
Everson EM, Olzsko ME, Leap DJ, Hocum JD, Trobridge GD. A comparison of foamy and lentiviral vector genotoxicity in SCID-repopulating cells shows foamy vectors are less prone to clonal dominance. Mol Ther Methods Clin Dev 2016; 3:16048. [PMID: 27579335 PMCID: PMC4988344 DOI: 10.1038/mtm.2016.48] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/21/2016] [Accepted: 05/26/2016] [Indexed: 02/01/2023]
Abstract
Hematopoietic stem cell (HSC) gene therapy using retroviral vectors has immense potential, but vector-mediated genotoxicity limits use in the clinic. Lentiviral vectors are less genotoxic than gammaretroviral vectors and have become the vector of choice in clinical trials. Foamy retroviral vectors have a promising integration profile and are less prone to read-through transcription than gammaretroviral or lentiviral vectors. Here, we directly compared the safety and efficacy of foamy vectors to lentiviral vectors in human CD34(+) repopulating cells in immunodeficient mice. To increase their genotoxic potential, foamy and lentiviral vectors with identical transgene cassettes with a known genotoxic spleen focus forming virus promoter were used. Both vectors resulted in efficient marking in vivo and a total of 825 foamy and 460 lentiviral vector unique integration sites were recovered in repopulating cells 19 weeks after transplantation. Foamy vector proviruses were observed less often near RefSeq gene and proto-oncogene transcription start sites than lentiviral vectors. The foamy vector group were also more polyclonal with fewer dominant clones (two out of six mice) than the lentiviral vector group (eight out of eight mice), and only lentiviral vectors had integrants near known proto-oncogenes in dominant clones. Our data further support the relative safety of foamy vectors for HSC gene therapy.
Collapse
Affiliation(s)
- Elizabeth M Everson
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| | - Miles E Olzsko
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| | - David J Leap
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| | - Jonah D Hocum
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| | - Grant D Trobridge
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
37
|
Retroviral vector interactions with hematopoietic cells. Curr Opin Virol 2016; 21:41-46. [PMID: 27521874 DOI: 10.1016/j.coviro.2016.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 07/27/2016] [Accepted: 07/29/2016] [Indexed: 01/01/2023]
Abstract
Hematopoietic stem cell (HSC) gene therapy using retroviral vectors is a powerful and promising approach to permanently correct many hematopoietic disorders. Increasing the transduction of quiescent HSCs and reducing genotoxicity are major challenges in the field. Retroviral vectors, including lentiviral and foamy vectors, have been extensively modified resulting in improved safety and efficacy. This review will focus on recent advances to improve vector entry, transduction efficiency, control of transgene expression and approaches to improve safety by modifying the retroviral integration profile.
Collapse
|
38
|
Höfer T, Busch K, Klapproth K, Rodewald HR. Fate Mapping and Quantitation of Hematopoiesis In Vivo. Annu Rev Immunol 2016; 34:449-78. [DOI: 10.1146/annurev-immunol-032414-112019] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany;
| | - Katrin Busch
- Division of Cellular Immunology, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany;
| | - Kay Klapproth
- Division of Cellular Immunology, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany;
| | - Hans-Reimer Rodewald
- Division of Cellular Immunology, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany;
| |
Collapse
|
39
|
Yin PT, Han E, Lee KB. Engineering Stem Cells for Biomedical Applications. Adv Healthc Mater 2016; 5:10-55. [PMID: 25772134 PMCID: PMC5810416 DOI: 10.1002/adhm.201400842] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/14/2015] [Indexed: 12/19/2022]
Abstract
Stem cells are characterized by a number of useful properties, including their ability to migrate, differentiate, and secrete a variety of therapeutic molecules such as immunomodulatory factors. As such, numerous pre-clinical and clinical studies have utilized stem cell-based therapies and demonstrated their tremendous potential for the treatment of various human diseases and disorders. Recently, efforts have focused on engineering stem cells in order to further enhance their innate abilities as well as to confer them with new functionalities, which can then be used in various biomedical applications. These engineered stem cells can take on a number of forms. For instance, engineered stem cells encompass the genetic modification of stem cells as well as the use of stem cells for gene delivery, nanoparticle loading and delivery, and even small molecule drug delivery. The present Review gives an in-depth account of the current status of engineered stem cells, including potential cell sources, the most common methods used to engineer stem cells, and the utilization of engineered stem cells in various biomedical applications, with a particular focus on tissue regeneration, the treatment of immunodeficiency diseases, and cancer.
Collapse
Affiliation(s)
- Perry T Yin
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ, 08854, USA
| | - Edward Han
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
| | - Ki-Bum Lee
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ, 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
40
|
Serrao E, Engelman AN. Sites of retroviral DNA integration: From basic research to clinical applications. Crit Rev Biochem Mol Biol 2015; 51:26-42. [PMID: 26508664 DOI: 10.3109/10409238.2015.1102859] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
One of the most crucial steps in the life cycle of a retrovirus is the integration of the viral DNA (vDNA) copy of the RNA genome into the genome of an infected host cell. Integration provides for efficient viral gene expression as well as for the segregation of viral genomes to daughter cells upon cell division. Some integrated viruses are not well expressed, and cells latently infected with human immunodeficiency virus type 1 (HIV-1) can resist the action of potent antiretroviral drugs and remain dormant for decades. Intensive research has been dedicated to understanding the catalytic mechanism of integration, as well as the viral and cellular determinants that influence integration site distribution throughout the host genome. In this review, we summarize the evolution of techniques that have been used to recover and map retroviral integration sites, from the early days that first indicated that integration could occur in multiple cellular DNA locations, to current technologies that map upwards of millions of unique integration sites from single in vitro integration reactions or cell culture infections. We further review important insights gained from the use of such mapping techniques, including the monitoring of cell clonal expansion in patients treated with retrovirus-based gene therapy vectors, or patients with acquired immune deficiency syndrome (AIDS) on suppressive antiretroviral therapy (ART). These insights span from integrase (IN) enzyme sequence preferences within target DNA (tDNA) at the sites of integration, to the roles of host cellular proteins in mediating global integration distribution, to the potential relationship between genomic location of vDNA integration site and retroviral latency.
Collapse
Affiliation(s)
- Erik Serrao
- a Department of Cancer Immunology and Virology , Dana-Farber Cancer Institute , Boston , MA , USA
| | - Alan N Engelman
- a Department of Cancer Immunology and Virology , Dana-Farber Cancer Institute , Boston , MA , USA
| |
Collapse
|
41
|
Negre O, Bartholomae C, Beuzard Y, Cavazzana M, Christiansen L, Courne C, Deichmann A, Denaro M, de Dreuzy E, Finer M, Fronza R, Gillet-Legrand B, Joubert C, Kutner R, Leboulch P, Maouche L, Paulard A, Pierciey FJ, Rothe M, Ryu B, Schmidt M, von Kalle C, Payen E, Veres G. Preclinical evaluation of efficacy and safety of an improved lentiviral vector for the treatment of β-thalassemia and sickle cell disease. Curr Gene Ther 2015; 15:64-81. [PMID: 25429463 PMCID: PMC4440358 DOI: 10.2174/1566523214666141127095336] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/05/2014] [Accepted: 11/14/2014] [Indexed: 01/27/2023]
Abstract
A previously published clinical trial demonstrated the benefit of autologous CD34(+) cells transduced with a selfinactivating lentiviral vector (HPV569) containing an engineered β-globin gene (β(A-T87Q)-globin) in a subject with β thalassemia major. This vector has been modified to increase transduction efficacy without compromising safety. In vitro analyses indicated that the changes resulted in both increased vector titers (3 to 4 fold) and increased transduction efficacy (2 to 3 fold). An in vivo study in which 58 β-thalassemic mice were transplanted with vector- or mock-transduced syngenic bone marrow cells indicated sustained therapeutic efficacy. Secondary transplantations involving 108 recipients were performed to evaluate long-term safety. The six month study showed no hematological or biochemical toxicity. Integration site (IS) profile revealed an oligo/polyclonal hematopoietic reconstitution in the primary transplants and reduced clonality in secondary transplants. Tumor cells were detected in the secondary transplant mice in all treatment groups (including the control group), without statistical differences in the tumor incidence. Immunohistochemistry and quantitative PCR demonstrated that tumor cells were not derived from transduced donor cells. This comprehensive efficacy and safety data provided the basis for initiating two clinical trials with this second generation vector (BB305) in Europe and in the USA in patients with β-thalassemia major and sickle cell disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Gabor Veres
- bluebird bio, 150 Second Street, Cambridge, MA 02141, USA.
| |
Collapse
|
42
|
Huston MW, Riegman ARA, Yadak R, van Helsdingen Y, de Boer H, van Til NP, Wagemaker G. Pretransplant mobilization with granulocyte colony-stimulating factor improves B-cell reconstitution by lentiviral vector gene therapy in SCID-X1 mice. Hum Gene Ther 2015; 25:905-14. [PMID: 25222508 DOI: 10.1089/hum.2014.101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hematopoietic stem cell (HSC) gene therapy is a demonstrated effective treatment for X-linked severe combined immunodeficiency (SCID-X1), but B-cell reconstitution and function has been deficient in many of the gene therapy treated patients. Cytoreductive preconditioning is known to improve HSC engraftment, but in general it is not considered for SCID-X1 since the poor health of most of these patients at diagnosis and the risk of toxicity preclude the conditioning used in standard bone marrow stem cell transplantation. We hypothesized that mobilization of HSC by granulocyte colony-stimulating factor (G-CSF) should create temporary space in bone marrow niches to improve engraftment and thereby B-cell reconstitution. In the present pilot study supplementing our earlier preclinical evaluation (Huston et al., 2011), Il2rg(-/-) mice pretreated with G-CSF were transplanted with wild-type lineage negative (Lin(-)) cells or Il2rg(-/-) Lin(-) cells transduced with therapeutic IL2RG lentiviral vectors. Mice were monitored for reconstitution of lymphocyte populations, level of donor cell chimerism, and antibody responses as compared to 2 Gy total body irradiation (TBI), previously found effective in promoting B-cell reconstitution. The results demonstrate that G-CSF promotes B-cell reconstitution similar to low-dose TBI and provides proof of principle for an alternative approach to improve efficacy of gene therapy in SCID patients without adverse effects associated with cytoreductive conditioning.
Collapse
Affiliation(s)
- Marshall W Huston
- 1 Department of Neurology, Erasmus University Medical Center , 3000 CA Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
43
|
Cardona ME, Simonson OE, Oprea II, Moreno PMD, Silva-Lara MF, Mohamed AJ, Christensson B, Gahrton G, Dilber MS, Smith CIE, Arteaga HJ. A murine model of acute myeloid leukemia with Evi1 overexpression and autocrine stimulation by an intracellular form of GM-CSF in DA-3 cells. Leuk Lymphoma 2015; 57:183-92. [PMID: 25907616 DOI: 10.3109/10428194.2015.1043547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The poor treatment response of acute myeloid leukemia (AML) overexpressing high-risk oncogenes such as EVI1, demands specific animal models for new treatment evaluations. Evi1 is a common site of activating integrations in murine leukemia virus (MLV)-induced AML and in retroviral and lentiviral gene-modified HCS. Still, a model of overt AML induced by Evi1 has not been generated. Cell lines from MLV-induced AML are growth factor-dependent and non-transplantable. Hence, for the leukemia maintenance in the infected animals, a growth factor source such as chronic immune response has been suggested. We have investigated whether these leukemias are transplantable if provided with growth factors. We show that the Evi1(+)DA-3 cells modified to express an intracellular form of GM-CSF, acquired growth factor independence and transplantability and caused an overt leukemia in syngeneic hosts, without increasing serum GM-CSF levels. We propose this as a general approach for modeling different forms of high-risk human AML using similar cell lines.
Collapse
Affiliation(s)
- Maria E Cardona
- a Department of Laboratory Medicine , Clinical Research Center, Karolinska Institutet , Huddinge , Sweden
| | - Oscar E Simonson
- a Department of Laboratory Medicine , Clinical Research Center, Karolinska Institutet , Huddinge , Sweden
| | - Iulian I Oprea
- a Department of Laboratory Medicine , Clinical Research Center, Karolinska Institutet , Huddinge , Sweden
| | - Pedro M D Moreno
- a Department of Laboratory Medicine , Clinical Research Center, Karolinska Institutet , Huddinge , Sweden
| | - Maria F Silva-Lara
- b Departament of Basic Science, Medical School, Universidad Industrial de Santander , Colombia
| | - Abdalla J Mohamed
- a Department of Laboratory Medicine , Clinical Research Center, Karolinska Institutet , Huddinge , Sweden.,e Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam , Negara Brunei Darussalam , Brunei
| | - Birger Christensson
- c Department of Laboratory Medicine , Division of Pathology, Karolinska University Hospital , Huddinge , Sweden
| | - Gösta Gahrton
- d Department of Medicine , Division of Hematology, Karolinska University Hospital , Huddinge , Sweden
| | - M Sirac Dilber
- d Department of Medicine , Division of Hematology, Karolinska University Hospital , Huddinge , Sweden
| | - C I Edvard Smith
- a Department of Laboratory Medicine , Clinical Research Center, Karolinska Institutet , Huddinge , Sweden
| | - H Jose Arteaga
- a Department of Laboratory Medicine , Clinical Research Center, Karolinska Institutet , Huddinge , Sweden.,b Departament of Basic Science, Medical School, Universidad Industrial de Santander , Colombia
| |
Collapse
|
44
|
Cianciulli A, Calvello R, Panaro MA. Determinism and randomness in the evolution of introns and sine inserts in mouse and human mitochondrial solute carrier and cytokine receptor genes. Comput Biol Chem 2015; 55:49-59. [PMID: 25707022 DOI: 10.1016/j.compbiolchem.2015.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 02/02/2015] [Accepted: 02/13/2015] [Indexed: 12/16/2022]
Abstract
In the homologous genes studied, the exons and introns alternated in the same order in mouse and human. We studied, in both species: corresponding short segments of introns, whole corresponding introns and complete homologous genes. We considered the total number of nucleotides and the number and orientation of the SINE inserts. Comparisons of mouse and human data series showed that at the level of individual relatively short segments of intronic sequences the stochastic variability prevails in the local structuring, but at higher levels of organization a deterministic component emerges, conserved in mouse and human during the divergent evolution, despite the ample re-editing of the intronic sequences and the fact that processes such as SINE spread had taken place in an independent way in the two species. Intron conservation is negatively correlated with the SINE occupancy, suggesting that virus inserts interfere with the conservation of the sequences inherited from the common ancestor.
Collapse
Affiliation(s)
- Antonia Cianciulli
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari,via Orabona, 4, I-70126 Bari, Italy
| | - Rosa Calvello
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari,via Orabona, 4, I-70126 Bari, Italy
| | - Maria A Panaro
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari,via Orabona, 4, I-70126 Bari, Italy.
| |
Collapse
|
45
|
Abstract
The demonstrated presence in adult tissues of cells with sustained tissue regenerative potential has given rise to the concept of tissue stem cells. Assays to detect and measure such cells indicate that they have enormous proliferative potential and usually an ability to produce all or many of the mature cell types that define the specialized functionality of the tissue. In the hematopoietic system, one or only a few cells can restore lifelong hematopoiesis of the whole organism. To what extent is the maintenance of hematopoietic stem cells required during normal hematopoiesis? How does the constant maintenance of hematopoiesis occur and what is the behavior of the hematopoietic stem cells in the normal organism? How many of the hematopoietic stem cells are created during the development of the organism? How many hematopoietic stem cells are generating more mature progeny at any given moment? What happens to the population of hematopoietic stem cells in aging? This review will attempt to describe the results of recent research which contradict some of the ideas established over the past 30 years about how hematopoiesis is regulated.
Collapse
Affiliation(s)
- Nina Drize
- Federal Government Budget Institution National Research Center for Hematology, Ministry of Health, Moscow, Russian Federation
| | - Nataliya Petinati
- Federal Government Budget Institution National Research Center for Hematology, Ministry of Health, Moscow, Russian Federation
| |
Collapse
|
46
|
Pigtailed macaques as a model to study long-term safety of lentivirus vector-mediated gene therapy for hemoglobinopathies. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2014; 1:14055. [PMID: 26052523 PMCID: PMC4448740 DOI: 10.1038/mtm.2014.55] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 10/19/2014] [Indexed: 12/24/2022]
Abstract
Safely achieving long-term engraftment of genetically modified hematopoietic stem cells (HSCs) that maintain therapeutic transgene expression is the benchmark for successful application of gene therapy for hemoglobinopathies. We used the pigtailed macaque HSC transplantation model to ascertain the long-term safety and stability of a γ-globin lentivirus vector. We observed stable gene-modified cells and fetal hemoglobin expression for 3 years. Retrovirus integration site (RIS) analysis spanning 6 months to 3.1 years revealed vastly disparate integration profiles, and dynamic fluctuation of hematopoietic contribution from different gene-modified HSC clones without evidence for clonal dominance. There were no perturbations of the global gene-expression profile or expression of genes within a 300 kb region of RIS, including genes surrounding the most abundantly marked clones. Overall, a 3-year long follow-up revealed no evidence of genotoxicity of the γ-globin lentivirus vector with multilineage polyclonal hematopoiesis, and HSC clonal fluctuations that were not associated with transcriptome dysregulation.
Collapse
|
47
|
Wu C, Li B, Lu R, Koelle SJ, Yang Y, Jares A, Krouse AE, Metzger M, Liang F, Loré K, Wu CO, Donahue RE, Chen ISY, Weissman I, Dunbar CE. Clonal tracking of rhesus macaque hematopoiesis highlights a distinct lineage origin for natural killer cells. Cell Stem Cell 2014; 14:486-499. [PMID: 24702997 DOI: 10.1016/j.stem.2014.01.020] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 12/09/2013] [Accepted: 01/30/2014] [Indexed: 01/15/2023]
Abstract
Analysis of hematopoietic stem cell function in nonhuman primates provides insights that are relevant for human biology and therapeutic strategies. In this study, we applied quantitative genetic barcoding to track the clonal output of transplanted autologous rhesus macaque hematopoietic stem and progenitor cells over a time period of up to 9.5 months. We found that unilineage short-term progenitors reconstituted myeloid and lymphoid lineages at 1 month but were supplanted over time by multilineage clones, initially myeloid restricted, then myeloid-B clones, and then stable myeloid-B-T multilineage, long-term repopulating clones. Surprisingly, reconstitution of the natural killer (NK) cell lineage, and particularly the major CD16(+)/CD56(-) peripheral blood NK compartment, showed limited clonal overlap with T, B, or myeloid lineages, and therefore appears to be ontologically distinct. Thus, in addition to providing insights into clonal behavior over time, our analysis suggests an unexpected paradigm for the relationship between NK cells and other hematopoietic lineages in primates.
Collapse
Affiliation(s)
- Chuanfeng Wu
- Hematology Branch; National Heart, Lung and Blood Institute; National Institutes of Health, Bethesda, MD 20892, USA
| | - Brian Li
- Hematology Branch; National Heart, Lung and Blood Institute; National Institutes of Health, Bethesda, MD 20892, USA
| | - Rong Lu
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Samson J Koelle
- Hematology Branch; National Heart, Lung and Blood Institute; National Institutes of Health, Bethesda, MD 20892, USA
| | - Yanqin Yang
- DNA Sequencing and Genomics Core; National Heart, Lung and Blood Institute; National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexander Jares
- Hematology Branch; National Heart, Lung and Blood Institute; National Institutes of Health, Bethesda, MD 20892, USA
| | - Alan E Krouse
- Hematology Branch; National Heart, Lung and Blood Institute; National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark Metzger
- Hematology Branch; National Heart, Lung and Blood Institute; National Institutes of Health, Bethesda, MD 20892, USA
| | - Frank Liang
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Karin Loré
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Colin O Wu
- Office of Biostatistics Research, National Heart, Lung and Blood Institute; National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert E Donahue
- Hematology Branch; National Heart, Lung and Blood Institute; National Institutes of Health, Bethesda, MD 20892, USA
| | - Irvin S Y Chen
- UCLA AIDS Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Irving Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Cynthia E Dunbar
- Hematology Branch; National Heart, Lung and Blood Institute; National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
48
|
Niederer HA, Bangham CRM. Integration site and clonal expansion in human chronic retroviral infection and gene therapy. Viruses 2014; 6:4140-64. [PMID: 25365582 PMCID: PMC4246213 DOI: 10.3390/v6114140] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/09/2014] [Accepted: 10/21/2014] [Indexed: 12/20/2022] Open
Abstract
Retroviral vectors have been successfully used therapeutically to restore expression of genes in a range of single-gene diseases, including several primary immunodeficiency disorders. Although clinical trials have shown remarkable results, there have also been a number of severe adverse events involving malignant outgrowth of a transformed clonal population. This clonal expansion is influenced by the integration site profile of the viral integrase, the transgene expressed, and the effect of the viral promoters on the neighbouring host genome. Infection with the pathogenic human retrovirus HTLV-1 also causes clonal expansion of cells containing an integrated HTLV-1 provirus. Although the majority of HTLV-1-infected people remain asymptomatic, up to 5% develop an aggressive T cell malignancy. In this review we discuss recent findings on the role of the genomic integration site in determining the clonality and the potential for malignant transformation of cells carrying integrated HTLV-1 or gene therapy vectors, and how these results have contributed to the understanding of HTLV-1 pathogenesis and to improvements in gene therapy vector safety.
Collapse
Affiliation(s)
- Heather A Niederer
- Department of Immunology, Wright-Fleming Institute, Imperial College London, London W2 1PG, UK.
| | - Charles R M Bangham
- Department of Immunology, Wright-Fleming Institute, Imperial College London, London W2 1PG, UK.
| |
Collapse
|
49
|
Hacein-Bey-Abina S, Pai SY, Gaspar HB, Armant M, Berry CC, Blanche S, Bleesing J, Blondeau J, de Boer H, Buckland KF, Caccavelli L, Cros G, De Oliveira S, Fernández KS, Guo D, Harris CE, Hopkins G, Lehmann LE, Lim A, London WB, van der Loo JCM, Malani N, Male F, Malik P, Marinovic MA, McNicol AM, Moshous D, Neven B, Oleastro M, Picard C, Ritz J, Rivat C, Schambach A, Shaw KL, Sherman EA, Silberstein LE, Six E, Touzot F, Tsytsykova A, Xu-Bayford J, Baum C, Bushman FD, Fischer A, Kohn DB, Filipovich AH, Notarangelo LD, Cavazzana M, Williams DA, Thrasher AJ. A modified γ-retrovirus vector for X-linked severe combined immunodeficiency. N Engl J Med 2014; 371:1407-17. [PMID: 25295500 PMCID: PMC4274995 DOI: 10.1056/nejmoa1404588] [Citation(s) in RCA: 304] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND In previous clinical trials involving children with X-linked severe combined immunodeficiency (SCID-X1), a Moloney murine leukemia virus-based γ-retrovirus vector expressing interleukin-2 receptor γ-chain (γc) complementary DNA successfully restored immunity in most patients but resulted in vector-induced leukemia through enhancer-mediated mutagenesis in 25% of patients. We assessed the efficacy and safety of a self-inactivating retrovirus for the treatment of SCID-X1. METHODS We enrolled nine boys with SCID-X1 in parallel trials in Europe and the United States to evaluate treatment with a self-inactivating (SIN) γ-retrovirus vector containing deletions in viral enhancer sequences expressing γc (SIN-γc). RESULTS All patients received bone marrow-derived CD34+ cells transduced with the SIN-γc vector, without preparative conditioning. After 12.1 to 38.7 months of follow-up, eight of the nine children were still alive. One patient died from an overwhelming adenoviral infection before reconstitution with genetically modified T cells. Of the remaining eight patients, seven had recovery of peripheral-blood T cells that were functional and led to resolution of infections. The patients remained healthy thereafter. The kinetics of CD3+ T-cell recovery was not significantly different from that observed in previous trials. Assessment of insertion sites in peripheral blood from patients in the current trial as compared with those in previous trials revealed significantly less clustering of insertion sites within LMO2, MECOM, and other lymphoid proto-oncogenes in our patients. CONCLUSIONS This modified γ-retrovirus vector was found to retain efficacy in the treatment of SCID-X1. The long-term effect of this therapy on leukemogenesis remains unknown. (Funded by the National Institutes of Health and others; ClinicalTrials.gov numbers, NCT01410019, NCT01175239, and NCT01129544.).
Collapse
Affiliation(s)
- Salima Hacein-Bey-Abina
- From the Departments of Biotherapy (S.H.-B.-A., J. Blondeau, L.C., F.T., M.C.) and Immunology and Pediatric Hematology (S.B., G.C., D.M., B.N., C.P., F.T., A.F.) and the Centre d'Étude des Déficits Immunitaires (C.P.), Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), the Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, AP-HP, INSERM (S.H.-B.-A., J. Blondeau, L.C., F.T., M.C.), Unité de Technologies Chimiques et Biologiques pour la Santé, Centre National de la Recherche Scientifique, 8258-INSERM Unité 1022, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes (S.H.-B.-A.), Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud, AP-HP, Le Kremlin-Bicêtre (S.H.-B.-A.), Imagine Institute, Paris Descartes-Sorbonne Paris Cité University (S.B., J. Blondeau, L.C., D.M., B.N., C.P., E.S., A.F., M.C.), INSERM Unités Mixtes de Recherche 1163, Laboratory of Human Lymphohematopoiesis (J. Blondeau, L.C., E.S., F.T., A.F., M.C.), Groupe Immunoscope, Immunology Department, Institut Pasteur (A.L.), and Collège de France (A.F.) - all in Paris; Division of Hematology-Oncology (S.-Y.P., H.B., D.G., C.E.H., G.H., L.E.L., W.B.L., D.A.W.) and Division of Immunology (L.D.N.), Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute (S.-Y.P., D.G., L.E.L., W.B.L., D.A.W.), Harvard Medical School (S.-Y.P., M.A., L.E.L., W.B.L., J.R., L.E.S., A.T., L.D.N., D.A.W.), Center for Human Cell Therapy, Program in Cellular and Molecular Medicine, Boston Children's Hospital (M.A., J.R., L.E.S., A.T.), Division of Hematologic Malignancies, Dana-Farber Cancer Institute (J.R.), and the Manton Center for Orphan Disease Research (L.D.N.) - all in Boston; Great Ormond Street Hospital for Children NHS Foundation Trust (H.B.G., J.X.-B., A.J.T.) and Section of Molecular and Cellular Immunology, University College London Institute of Child Health (H.B.G., K.F.B., A
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Clonal Dominance With Retroviral Vector Insertions Near the ANGPT1 and ANGPT2 Genes in a Human Xenotransplant Mouse Model. MOLECULAR THERAPY-NUCLEIC ACIDS 2014; 3:e200. [PMID: 25291142 PMCID: PMC4217076 DOI: 10.1038/mtna.2014.51] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 08/10/2014] [Indexed: 12/22/2022]
Abstract
Insertional leukemogenesis represents the major risk factor of hematopoietic stem cell (HSC) based gene therapy utilizing integrating viral vectors. To develop a pre-clinical model for the evaluation of vector-related genotoxicity directly in the relevant human target cells, cord blood CD34+ HSCs were transplanted into immunodeficient NOD.SCID.IL2rg−/− (NSG) mice after transduction with an LTR-driven gammaretroviral vector (GV). Furthermore, we specifically investigated the effect of prolonged in vitro culture in the presence of cytokines recently described to promote HSC expansion or maintenance. Clonality of human hematopoiesis in NSG mice was assessed by high throughput insertion site analyses and validated by insertion site-specific PCR depicting a GV typical integration profile with insertion sites resembling to 25% those of clinical studies. No overrepresentation of integrations in the vicinity of cancer-related genes was observed, however, several dominant clones were identified including two clones harboring integrations in the ANGPT1 and near the ANGPT2 genes associated with deregulated ANGPT1- and ANGPT2-mRNA levels. While these data underscore the potential value of the NSG model, our studies also identified short-comings such as overall low numbers of engrafted HSCs, limited in vivo observation time, and the challenges of in-depth insertion site analyses by low contribution of gene modified hematopoiesis.
Collapse
|