1
|
Zhao J, Yu H, Jin X, Qin B, Mei S, Xu JF, Zhang X. Radical-mediated click-clip reactions. Science 2024; 385:1354-1359. [PMID: 39298588 DOI: 10.1126/science.adn2259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/29/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024]
Abstract
Click reactions, which are characterized by rapid, high-yielding, and highly selective coupling of two reaction partners, are powerful tools in synthesis but are rarely reversible. Innovative strategies that reverse such couplings in a precise and on-demand manner, enabling a click-clip sequence, would greatly expand the technique's versatility. Herein, a click and clip reaction pair is demonstrated by manipulation of a sulfilimine linkage. Phenothiazines and amines are rapidly and quantitatively coupled through oxidative sulfilimine bond formation with N-bromosuccinimide, and the resulting sulfilimine bromides then undergo quantitative reversion to the phenothiazines and amines through photoreduction at 380 nanometers. This protocol enables fabrication of depolymerizable macromolecules and reversible modification of aminosaccharides, demonstrating high selectivity and efficiency for manipulating sulfilimine linkages in complex systems.
Collapse
Affiliation(s)
- Jiantao Zhao
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Huacheng Yu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xingchen Jin
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Bo Qin
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shan Mei
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jiang-Fei Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xi Zhang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Nettles J, Alfarhan S, Pascoe CA, Westover C, Madsen MD, Sintas JI, Subbiah A, Long TE, Jin K. Functional Upcycling of Polyurethane Thermosets into Value-Added Thermoplastics via Small-Molecule Carbamate-Assisted Decross-Linking Extrusion. JACS AU 2024; 4:3058-3069. [PMID: 39211581 PMCID: PMC11350600 DOI: 10.1021/jacsau.4c00403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/22/2024] [Accepted: 06/28/2024] [Indexed: 09/04/2024]
Abstract
The cross-linked structures of most commodity polyurethanes (PUs) hinder their recycling by common mechanical/chemical approaches. Catalyzed dynamic carbamate exchange emerges as a promising PU recycling strategy, which converts traditional static PU thermosets into reprocessable covalent adaptable networks (CANs). However, this approach has been limited to thermoset-to-thermoset reprocessing of PU CANs, accompanied by their well-preserved network structures and extremely high viscosities, which pose challenges to processing and certain applications. This study reports a catalytic decross-linking extrusion process aided by small-molecule carbamates, which can upcycle PU thermosets into easily processable and functional PU thermoplastics in a solvent-free and high-throughput manner. Key to this process is the employment of small-molecule carbamates as decross-linkers to simultaneously deconstruct cross-linked PUs and functionalize the decross-linked PU chains, through catalyzed carbamate exchange reactions in a twin-screw extruder. This strategy applies to both aromatic and aliphatic cross-linked PU films and foams, and the amount of small-molecule carbamates required to decross-link PU networks is determined through thermal, chemical, and structural analyses of the resulting extrudates. This approach is generalizable to small-molecule carbamates with various steric/electronic structures and chemical functionalities including methacrylate, anthracene, and stilbene groups. The chain-end functionalization is confirmed by analyzing the purified decross-linked extrudates after dialysis. This thermoset-to-thermoplastic extrusion process represents a powerful approach for upcycling postconsumer PU thermosets into a library of thermoplastic PUs with controlled molecular weights and chain-end functionalities for diverse applications, including adhesives, photoresins, and stimuli-responsive materials, as demonstrated herein. In the future, this strategy could be extended to upcycle many other step-growth networks capable of undergoing catalytic bond exchange reactions, such as cross-linked polyureas and polyesters, contributing to plastic waste management in general.
Collapse
Affiliation(s)
- Jared
A. Nettles
- Chemical
Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe 85287, Arizona, United States
- Biodesign
Center for Sustainable Macromolecular Materials and Manufacturing, Arizona State University, Tempe 85287, Arizona, United States
| | - Saleh Alfarhan
- Chemical
Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe 85287, Arizona, United States
- Biodesign
Center for Sustainable Macromolecular Materials and Manufacturing, Arizona State University, Tempe 85287, Arizona, United States
| | - Cameron A. Pascoe
- Biodesign
Center for Sustainable Macromolecular Materials and Manufacturing, Arizona State University, Tempe 85287, Arizona, United States
| | - Clarissa Westover
- Biodesign
Center for Sustainable Macromolecular Materials and Manufacturing, Arizona State University, Tempe 85287, Arizona, United States
- Materials
Science and Engineering, School for Engineering of Matter, Transport
and Energy, Arizona State University, Tempe 85287, Arizona, United States
| | - Margaret D. Madsen
- Biodesign
Center for Sustainable Macromolecular Materials and Manufacturing, Arizona State University, Tempe 85287, Arizona, United States
- Chemistry,
School of Molecular Sciences, Arizona State
University, Tempe 85287, Arizona, United States
| | - Jose I. Sintas
- Biodesign
Center for Sustainable Macromolecular Materials and Manufacturing, Arizona State University, Tempe 85287, Arizona, United States
- Chemistry,
School of Molecular Sciences, Arizona State
University, Tempe 85287, Arizona, United States
| | - Aadhi Subbiah
- Department
of Chemical and Biological Engineering, Iowa State University, Ames 50011, Iowa, United States
| | - Timothy E. Long
- Chemical
Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe 85287, Arizona, United States
- Biodesign
Center for Sustainable Macromolecular Materials and Manufacturing, Arizona State University, Tempe 85287, Arizona, United States
- Chemistry,
School of Molecular Sciences, Arizona State
University, Tempe 85287, Arizona, United States
| | - Kailong Jin
- Chemical
Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe 85287, Arizona, United States
- Biodesign
Center for Sustainable Macromolecular Materials and Manufacturing, Arizona State University, Tempe 85287, Arizona, United States
| |
Collapse
|
3
|
Chen Q, Xia X, Huang W, Zhang L, Ni R, Liu J. Topological Programmability of Isomerizable Polymers. PHYSICAL REVIEW LETTERS 2024; 133:048101. [PMID: 39121423 DOI: 10.1103/physrevlett.133.048101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/20/2024] [Indexed: 08/11/2024]
Abstract
Topology isomerizable networks (TINs) can be programmed into numerous polymers exhibiting unique and spatially defined (thermo-) mechanical properties. However, capturing the dynamics in topological transformations and revealing the intrinsic mechanisms of mechanical property modulation at the microscopic level is a significant challenge. Here, we use a combination of coarse-grained molecular dynamics simulations and reaction kinetic theory to reveal the impact of dynamic bond exchange reactions on the topology of branched chains. We find that, the grafted units follow a geometric distribution with a converged uniformity, which depends solely on the average grafted units of branched chains. Furthermore, we demonstrate that the topological structure can lead to spontaneous modulation of mechanical properties. The theoretical framework provides a research paradigm for studying the topology and mechanical properties of TINs.
Collapse
Affiliation(s)
| | - Xiuyang Xia
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, D-80333 München, Germany
| | | | | | | | | |
Collapse
|
4
|
Lei Z, Chen H, Huang S, Wayment LJ, Xu Q, Zhang W. New Advances in Covalent Network Polymers via Dynamic Covalent Chemistry. Chem Rev 2024; 124:7829-7906. [PMID: 38829268 DOI: 10.1021/acs.chemrev.3c00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Covalent network polymers, as materials composed of atoms interconnected by covalent bonds in a continuous network, are known for their thermal and chemical stability. Over the past two decades, these materials have undergone significant transformations, gaining properties such as malleability, environmental responsiveness, recyclability, crystallinity, and customizable porosity, enabled by the development and integration of dynamic covalent chemistry (DCvC). In this review, we explore the innovative realm of covalent network polymers by focusing on the recent advances achieved through the application of DCvC. We start by examining the history and fundamental principles of DCvC, detailing its inception and core concepts and noting its key role in reversible covalent bond formation. Then the reprocessability of covalent network polymers enabled by DCvC is thoroughly discussed, starting from the significant milestones that marked the evolution of these polymers and progressing to their current trends and applications. The influence of DCvC on the crystallinity of covalent network polymers is then reviewed, covering their bond diversity, synthesis techniques, and functionalities. In the concluding section, we address the current challenges faced in the field of covalent network polymers and speculates on potential future directions.
Collapse
Affiliation(s)
- Zepeng Lei
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Hongxuan Chen
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Shaofeng Huang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Lacey J Wayment
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Qiucheng Xu
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
5
|
Yang B, Zhang YM, Wang C, Gu C, Li C, Yin H, Yan Y, Yang G, Zhang SXA. An electrochemically responsive B-O dynamic bond to switch photoluminescence of boron-nitrogen-doped polyaromatics. Nat Commun 2024; 15:5166. [PMID: 38886345 PMCID: PMC11183244 DOI: 10.1038/s41467-024-48918-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/17/2024] [Indexed: 06/20/2024] Open
Abstract
Boron-doped polycyclic aromatic hydrocarbons exhibit excellent optical properties, and regulating their photophysical processes is a powerful strategy to understand the luminescence mechanism and develop new materials and applications. Herein, an electrochemically responsive B-O dynamic coordination bond is proposed, and used to regulate the photophysical processes of boron-nitrogen-doped polyaromatic hydrocarbons. The formation of the B-O coordination bond under a suitable voltage is confirmed by experiments and theoretical calculations, and B-O coordination bond can be broken back to the initial state under opposite voltage. The whole process is accompanied by reversible changes in photophysical properties. Further, electrofluorochromic devices are successfully prepared based on the above electrochemically responsive coordination bond. The success and harvest of this exploration are beneficial to understand the luminescence mechanism of boron-nitrogen-doped polyaromatic hydrocarbons, and provide ideas for design of dynamic covalent bonds and broaden material types and applications.
Collapse
Affiliation(s)
- Baige Yang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, P. R. China
| | - Yu-Mo Zhang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, P. R. China.
| | - Chunyu Wang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, P. R. China
| | - Chang Gu
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, P. R. China
| | - Chenglong Li
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, P. R. China.
| | - Hang Yin
- Institute of Atomic and Molecular Physics, Jilin University, Changchun, P. R. China.
| | - Yan Yan
- College of Instrumentation & Electrical Engineering, Jilin University, Changchun, P. R. China
| | - Guojian Yang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, P. R. China
| | - Sean Xiao-An Zhang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, P. R. China.
| |
Collapse
|
6
|
An B, Zhou L, Liu S, Zheng Y, Li C, Cui F, Yue C, Liu H, Sui Y, Ji C, Yan J, Li Y. Radical Homopolymerization of Linear α-Olefins Enabled by 1,4-Cyano Group Migration. Angew Chem Int Ed Engl 2024; 63:e202402511. [PMID: 38634323 DOI: 10.1002/anie.202402511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 04/19/2024]
Abstract
α-Olefins are valued and abundant building blocks from fossil resources. They are widely used to provide small-molecule or polymeric products. Despite numerous advantages of radical polymerization, it has been well-documented as textbook knowledge that α-olefins and their functionalized derivatives cannot be radically homopolymerized because of the degradative chain transfer side reactions. Herein, we report our studies on the homopolymerization of thiocyanate functionalized α-olefins enabled by 1,4-cyano group migration under radical conditions. By this approach, a library of ABC sequence-controlled polymers with high molecular weights can be prepared. We can also extend this strategy to the homopolymerization of α-substituted styrenic and acylate monomers which are known to be challenging to achieve. Overall, the demonstrated functional group migration radical polymerization could provide new possibilities to synthesize polymers with unprecedented main chain sequences and structures. These polymers are promising candidates for novel polymeric materials.
Collapse
Affiliation(s)
- Bang An
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Litao Zhou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Shuai Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yaxin Zheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Changhu Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Feichen Cui
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Chaowei Yue
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Hua Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yang Sui
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Chonglei Ji
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jiajun Yan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yifan Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
7
|
Choi SH, Kim JH, Ahn J, Kim T, Jung Y, Won D, Bang J, Pyun KR, Jeong S, Kim H, Kim YG, Ko SH. Phase patterning of liquid crystal elastomers by laser-induced dynamic crosslinking. NATURE MATERIALS 2024; 23:834-843. [PMID: 38532072 DOI: 10.1038/s41563-024-01845-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/21/2024] [Indexed: 03/28/2024]
Abstract
Liquid crystal elastomers hold promise in various fields due to their reversible transition of mechanical and optical properties across distinct phases. However, the lack of local phase patterning techniques and irreversible phase programming has hindered their broad implementation. Here we introduce laser-induced dynamic crosslinking, which leverages the precision and control offered by laser technology to achieve high-resolution multilevel patterning and transmittance modulation. Incorporation of allyl sulfide groups enables adaptive liquid crystal elastomers that can be reconfigured into desired phases or complex patterns. Laser-induced dynamic crosslinking is compatible with existing processing methods and allows the generation of thermo- and strain-responsive patterns that include isotropic, polydomain and monodomain phases within a single liquid crystal elastomer film. We show temporary information encryption at body temperature, expanding the functionality of liquid crystal elastomer devices in wearable applications.
Collapse
Affiliation(s)
- Seok Hwan Choi
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Ju Hee Kim
- Department of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Jiyong Ahn
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Taegyeom Kim
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Yeongju Jung
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Daeyeon Won
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Junhyuk Bang
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Kyung Rok Pyun
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Seongmin Jeong
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Hyunsu Kim
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Young Gyu Kim
- Department of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Seung Hwan Ko
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea.
- Institute of Engineering Research / Institute of Advanced Machinery and Design (SNU-IAMD), Seoul National University, Seoul, Republic of Korea.
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Korea.
| |
Collapse
|
8
|
Wei S, Smith-Jones J, Lalisse RF, Hestenes JC, Chen D, Danielsen SPO, Bell RC, Churchill EM, Munich NA, Marbella LE, Gutierrez O, Rubinstein M, Nelson A, Campos LM. Light-Induced Living Polymer Networks with Adaptive Functional Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313961. [PMID: 38593210 PMCID: PMC11209791 DOI: 10.1002/adma.202313961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/27/2024] [Indexed: 04/11/2024]
Abstract
The advent of covalent adaptable networks (CANs) through the incorporation of dynamic covalent bonds has led to unprecedented properties of macromolecular systems, which can be engineered at the molecular level. Among the various types of stimuli that can be used to trigger chemical changes within polymer networks, light stands out for its remote and spatiotemporal control under ambient conditions. However, most examples of photoactive CANs need to be transparent and they exhibit slow response, side reactions, and limited light penetration. In this vein, it is interesting to understand how molecular engineering of optically active dynamic linkages that offer fast response to visible light can impart "living" characteristics to CANs, especially in opaque systems. Here, the use of carbazole-based thiuram disulfides (CTDs) that offer dual reactivity as photoactivated reshuffling linkages and iniferters under visible light irradiation is reported. The fast response to visible light activation of the CTDs leads to temporal control of shape manipulation, healing, and chain extension in the polymer networks, despite the lack of optical transparency. This strategy charts a promising avenue for manipulating multifunctional photoactivated CANs in a controlled manner.
Collapse
Affiliation(s)
- Shixuan Wei
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Julian Smith-Jones
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Remy F Lalisse
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Julia C Hestenes
- Program of Materials Science and Engineering, Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, 10027, USA
| | - Danyang Chen
- NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, NC, 27708, USA
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Scott P O Danielsen
- NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, NC, 27708, USA
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Rowina C Bell
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Emily M Churchill
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Naiara A Munich
- Department of Chemistry, Barnard College, New York, NY, 10027, USA
| | - Lauren E Marbella
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Osvaldo Gutierrez
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Michael Rubinstein
- NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, NC, 27708, USA
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
- Departments of Chemistry, Biomedical Engineering, and Physics, Duke University, Durham, NC, 27708, USA
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, 001-0021, Japan
| | - Alshakim Nelson
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Luis M Campos
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| |
Collapse
|
9
|
Yokoyama K, Guan Z. A Vitrimer Acts as a Compatibilizer for Polyethylene and Polypropylene Blends. Angew Chem Int Ed Engl 2024; 63:e202317264. [PMID: 38407469 DOI: 10.1002/anie.202317264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Polymer compatibilization plays a critical role in achieving polymer blends with favorable mechanical properties and enabling efficient recycling of mixed plastic wastes. Nonetheless, traditional compatibilization methods often require tailored designs based on the specific chemical compositions of the blends. In this study, we propose a new approach for compatibilizing polymer blends using a dynamically crosslinked polymer network, known as vitrimers. By adding a relatively small amount (1-5 w/w%) of a vitrimer made of siloxane-crosslinked high-density polyethylene (HDPE), we successfully compatibilized unmodified HDPE and isotactic polypropylene (iPP). The vitrimer-compatibilized blend exhibited enhanced elongation at break (120 %) and smaller iPP domain sizes (0.4 μm) compared to the control blend (22 % elongation at break, 0.9 μm iPP droplet size). Moreover, the vitrimer-compatibilized blend showed significantly improved microphase stability during annealing at 180 °C. This straightforward method shows promise for applications across various polymer blend systems.
Collapse
Affiliation(s)
- Kosuke Yokoyama
- Department of Chemistry, University of California, Irvine, California, 92697, United States
| | - Zhibin Guan
- Department of Chemistry, University of California, Irvine, California, 92697, United States
- Department of Materials Science and Engineering, Irvine, California, 92697, United States
- Department of Chemical and Biomolecular Engineering, Irvine, California, 92697, United States
| |
Collapse
|
10
|
Wu K, An D, Zhang Z, Zhao G, Cui C, Zhou F, Li J. Relief of Residual Stress in Bulk Thermosets in the Glassy State by Local Bond Exchange. Macromol Rapid Commun 2024; 45:e2300735. [PMID: 38281084 DOI: 10.1002/marc.202300735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/24/2024] [Indexed: 01/29/2024]
Abstract
The covalently cross-linked network gives thermosets superior thermal, mechanical, and electrical properties, which, however, squarely makes the large residual stress that is inevitably induced during preparation hardly relieved in the glassy state. In this work, an incredible reduction in residual stress is successfully achieved in bulk thermosets in the glassy state through introducing highly dynamic thiocarbamate bonds by "click" reactions of thiols and isocyanates. Due to the excellent dynamic behaviors of thiocarbamate bonds, local network rearrangement is achieved through thermal stimulation, while the strong 3D cross-linked network is well maintained. Ultimately, a decrease by 44% in residual stress is detected by simply annealing samples at 30 °C below glass transition temperature (Tg), during which they could well maintain more than 98.4% of the storage modulus. After the annealing, more uniform residual stress distribution is also observed, showing a 32% decline in sample standard deviation. However, the residual stress of epoxy resin, a typical thermoset as a reference, changes little even after annealing at Tg. The results prove it a feasible strategy to reduce residual stress in bulk thermosets in the glassy state by introducing proper dynamic covalent bonds.
Collapse
Affiliation(s)
- Kangning Wu
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Dongxu An
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhuolin Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ge Zhao
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Chenhui Cui
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Fusheng Zhou
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jianying Li
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
11
|
Wang Y, Du J, Huang H. Reversible Thiyl Radical Addition-Fragmentation Chain Transfer Polymerization. Angew Chem Int Ed Engl 2024; 63:e202318898. [PMID: 38284482 DOI: 10.1002/anie.202318898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 01/30/2024]
Abstract
Developing reversible-deactivation radical polymerization (RDRP) methods that could directly control the thiyl radical propagation is highly desirable yet remains challenging in modern polymer chemistry. Here, we reported the first reversible thiyl radical addition-fragmentation chain transfer (SRAFT) polymerization strategy, which utilizes allyl sulfides as chain transfer agents for reversibly deactivating the propagating thiyl radicals, thus allowing us to directly control a challenging thiyl radical chain polymerization to afford polymers with well-defined architectures. A linear dependence of molecular weight on conversion, high chain-end fidelity, and efficient chain extension proved good controllability of the polymerization. In addition, density functional theory calculations provided insight into the reversible deactivation ability of allyl sulfides. The SRAFT strategy developed in this work represents a promising platform for discovering new controlled polymerizations based on thiyl radical chemistry.
Collapse
Affiliation(s)
- Yongjin Wang
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jiaman Du
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Hanchu Huang
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
12
|
Wu Y, Liu P, Liao Q, Jin T, Wu Z, Guomin W, Wang H, Chu PK. Cotton Fibers with a Lactic Acid-Like Surface for Re-establishment of Protective Lactobacillus Microbiota by Selectively Inhibiting Vaginal Pathogens. Adv Healthc Mater 2024; 13:e2302736. [PMID: 38061349 DOI: 10.1002/adhm.202302736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/05/2023] [Indexed: 12/26/2023]
Abstract
Failure to reconstruct the Lactobacillus microbiota is the major reason for the recurrence of vaginal infection. However, most empiric therapies focus on the efficacy of pathogen elimination but do not sufficiently consider the viability of Lactobacillus. Herein, cotton fibers with a lactic acid-like surface (LC) are fabricated by NaIO4 oxidation and L-isoserine grafting. The lactic acid analog chain ends and imine structure of LC can penetrate cell walls to cause protein cleavage in Escherichia coli and Candida albicans and inhibit vaginal pathogens. Meanwhile, the viability of Lactobacillus acidophilus is unaffected by the LC treatment, thus revealing a selective way to suppress pathogens as well as provide a positive route to re-establish protective microbiota in the vaginal tract. Moreover, LC has excellent properties such as good biosafety, antiadhesion, water absorption, and weight retention. The strategy proposed here not only is practical, but also provides insights into the treatment of vaginal infections.
Collapse
Affiliation(s)
- Yuzheng Wu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Pei Liu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Qing Liao
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- School of Nuclear Science and Technology and CAS Key Laboratory of Geospace Environment, University of Science and Technology of China, Hefei, 230026, China
| | - Tao Jin
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- School of Nuclear Science and Technology and CAS Key Laboratory of Geospace Environment, University of Science and Technology of China, Hefei, 230026, China
| | - Zhengwei Wu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Wang Guomin
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
13
|
Leanza S, Wu S, Sun X, Qi HJ, Zhao RR. Active Materials for Functional Origami. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302066. [PMID: 37120795 DOI: 10.1002/adma.202302066] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/13/2023] [Indexed: 06/19/2023]
Abstract
In recent decades, origami has been explored to aid in the design of engineering structures. These structures span multiple scales and have been demonstrated to be used toward various areas such as aerospace, metamaterial, biomedical, robotics, and architectural applications. Conventionally, origami or deployable structures have been actuated by hands, motors, or pneumatic actuators, which can result in heavy or bulky structures. On the other hand, active materials, which reconfigure in response to external stimulus, eliminate the need for external mechanical loads and bulky actuation systems. Thus, in recent years, active materials incorporated with deployable structures have shown promise for remote actuation of light weight, programmable origami. In this review, active materials such as shape memory polymers (SMPs) and alloys (SMAs), hydrogels, liquid crystal elastomers (LCEs), magnetic soft materials (MSMs), and covalent adaptable network (CAN) polymers, their actuation mechanisms, as well as how they have been utilized for active origami and where these structures are applicable is discussed. Additionally, the state-of-the-art fabrication methods to construct active origami are highlighted. The existing structural modeling strategies for origami, the constitutive models used to describe active materials, and the largest challenges and future directions for active origami research are summarized.
Collapse
Affiliation(s)
- Sophie Leanza
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Shuai Wu
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Xiaohao Sun
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - H Jerry Qi
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ruike Renee Zhao
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
14
|
Khan N, Sengupta P. Technological Advancement and Trend in Selective Bioanalytical Sample Extraction through State of the Art 3-D Printing Techniques Aiming 'Sorbent Customization as per need'. Crit Rev Anal Chem 2024:1-21. [PMID: 38319592 DOI: 10.1080/10408347.2024.2305275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The inherent complexity of biological matrices and presence of several interfering substances in biological samples make them unsuitable for direct analysis. An effective sample preparation technique assists in analyte enrichment, improving selectivity and sensitivity of bioanalytical method. Because of several key benefits of employing 3D printed sorbent in sample extraction, it has recently gained popularity across a variety of industries. Applications for 3D printing in the field of bioanalytical research have grown recently, particularly in the areas of miniaturization, (bio)sensing, sample preparation, and separation sciences. Due to the high expense of the solid phase microextraction cartridge, researcher approaches in-lab production of sorbent material for the extraction of analyte from biological samples. Owing to its distinct advantages such as low costs, automation capabilities, capacity to produce products in a variety of shapes, and reduction of tedious steps of sample preparation, 3D printed sorbents are gaining increased attention in the field of bioanalysis. It is also reported to offer high selectivity and assist in achieving a much lower limit of detection. In this review, we have discussed current advancements in different types of 3D printed sorbents, production methods, and their applications in the field of bioanalytical sample preparation.
Collapse
Affiliation(s)
- Nasir Khan
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Government of India, Gandhinagar, Gujarat, India
| | - Pinaki Sengupta
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Government of India, Gandhinagar, Gujarat, India
| |
Collapse
|
15
|
Li K, Tran NV, Pan Y, Wang S, Jin Z, Chen G, Li S, Zheng J, Loh XJ, Li Z. Next-Generation Vitrimers Design through Theoretical Understanding and Computational Simulations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302816. [PMID: 38058273 PMCID: PMC10837359 DOI: 10.1002/advs.202302816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/03/2023] [Indexed: 12/08/2023]
Abstract
Vitrimers are an innovative class of polymers that boast a remarkable fusion of mechanical and dynamic features, complemented by the added benefit of end-of-life recyclability. This extraordinary blend of properties makes them highly attractive for a variety of applications, such as the automotive sector, soft robotics, and the aerospace industry. At their core, vitrimer materials consist of crosslinked covalent networks that have the ability to dynamically reorganize in response to external factors, including temperature changes, pressure variations, or shifts in pH levels. In this review, the aim is to delve into the latest advancements in the theoretical understanding and computational design of vitrimers. The review begins by offering an overview of the fundamental principles that underlie the behavior of these materials, encompassing their structures, dynamic behavior, and reaction mechanisms. Subsequently, recent progress in the computational design of vitrimers is explored, with a focus on the employment of molecular dynamics (MD)/Monte Carlo (MC) simulations and density functional theory (DFT) calculations. Last, the existing challenges and prospective directions for this field are critically analyzed, emphasizing the necessity for additional theoretical and computational advancements, coupled with experimental validation.
Collapse
Affiliation(s)
- Ke Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Nam Van Tran
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yuqing Pan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Sheng Wang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore
| | - Zhicheng Jin
- Laboratory for Biomaterials and Drug Delivery, The Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Guoliang Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Shuzhou Li
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jianwei Zheng
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117576, Singapore
| |
Collapse
|
16
|
Jeong YJ, Park SY. Light-Responsive Actuator of Azobenzene-Containing Main-Chain Liquid Crystal Elastomers with Allyl Sulfide Dynamic Exchangeable Linkages. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2788-2801. [PMID: 38170866 DOI: 10.1021/acsami.3c17068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Herein, a light-responsive and light-induced bond-exchange-reaction (BER)-capable actuator of the monodomain liquid crystal elastomer (xMLCEazo), developed using main-chain mesogenic oligomers containing azobenzene and allyl sulfide linkages, is investigated. Large quantities of the azobenzene and allyl dithiol linkages are incorporated into the main-chain mesogenic oligomer prepared via thiol-acrylate Michael addition polymerization (TAMAP). The xMLCEazo film is generated via visible-light-induced BER of the drawn polydomain xLCEazo (xPLCEazo) film prepared via TAMAP of tetrathiol cross-linkers and diacrylate-terminated mesogenic oligomers. The xMLCEazo film exhibits large length actuation (38%) through the photothermal effect, along with excellent self-healing and reprogramming properties, under ultraviolet (UV) light irradiation. UV light induced BER of the xMLCEazo film is used to develop complex-shaped actuators with a bilayer film, containing the xMLCEazo and xPLCEazo films, which are bonded by the UV light induced BER without glue. The individual arm of the complex eight-arm flower is remotely actuated under UV light irradiation, and a circular band is rolled under blue laser light irradiation, demonstrating the local remote-controlled actuation and fuel-free motion of the motile soft robot using light irradiation, respectively. Thus, the xMLCEazo film can be expanded to other interesting applications requiring reprogrammable, self-healing, reprocessable, patternable, and remote-controlled light-triggered elastic, rubber-like actuators.
Collapse
Affiliation(s)
- You-Jeong Jeong
- Department of Polymer Science and Engineering, Polymeric Nano Materials Laboratory, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Soo-Young Park
- Department of Polymer Science and Engineering, Polymeric Nano Materials Laboratory, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
17
|
Singh AK, Chauhan A, Singh A. Growth kinetics and morphology characterization of binary polymeric fluid under random photo-illumination. J Chem Phys 2024; 160:024907. [PMID: 38193555 DOI: 10.1063/5.0181688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/18/2023] [Indexed: 01/10/2024] Open
Abstract
We present a comprehensive study using dissipative particle dynamics simulations to investigate phase separation kinetics (PSK) in three-dimensional (3d) polymeric fluids under random photo-illumination. We consider two scenarios: polymer blends with active radicals at one end of each immiscible chain and block copolymer (BCP) melts with photosensitive bonds linking incompatible blocks. The phase separation (PS) is induced by temperature quench of the initial homogeneously mixed system. Simultaneously, the system experiences random photo-illumination, simulated by two concurrent random events: (a) the recombination of active radicals in polymer blends and (b) the breaking of photosensitive bonds in BCP chains. Variations in the bond-breaking probability, Pb, mimic the change in light intensity. The length scale follows power law growth, R(t) ∼ tϕ, where ϕ represents the growth exponent. Increasing Pb results in a gradual transition in growth kinetics from micro-PS to macro-PS, accompanied by corresponding transition probabilities for both systems. Micro-PSK dominates the evolution process at low Pb values. The scaling functions exhibit data overlap for most scaled distances, indicating the statistical self-similarity of evolving patterns. Our study enhances the understanding of PSK in polymeric fluids, revealing the impact of photosensitive bonds and active radicals. Furthermore, it suggests the potential for designing novel polymeric materials with desired properties.
Collapse
Affiliation(s)
- Ashish Kumar Singh
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Avinash Chauhan
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Awaneesh Singh
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
18
|
Mineo AM, Katsumata R. A Versatile Comonomer Additive for Radically Recyclable Vinyl-derived Polymers. Angew Chem Int Ed Engl 2024; 63:e202316248. [PMID: 38029360 DOI: 10.1002/anie.202316248] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/01/2023]
Abstract
Radically-formed, vinyl-derived polymers account for over 30 % of polymer production. Connected through stable carbon-carbon bonds, these materials are notoriously challenging to chemically recycle. Herein, we report universal copolymerization of a cyclic allyl sulfide (CAS) additive with multiple monomers under free-radical conditions, to introduce main-chain dynamic motifs. Backbone allyl sulfides undergo post-polymerization radical rearrangement via addition-fragmentation-transfer (AFT) that fosters both chain scission and extension. Scission is selectively induced through allyl sulfide exchange with small molecule thiyl radicals, resulting in oligomers as low as 14 % of the initial molar mass. Crucially, oligomers retain allyl sulfide end groups, enabling their extension with monomer under radical conditions. Extended, i.e., recycled, product molar mass is tunable through the ratio of monomer to oligomer, and can surpass that of the initial copolymer. Two scission-extension cycles are demonstrated in copolymers with methyl methacrylate and styrene without escalation in dispersity. In illustration of forming higher-value products, i.e., upcycling, we synthesized block copolymers through the extension of oligomers with a different vinyl monomer. Collectively, our approach to chemical recycling is unparalleled in its ability to 1) function in a variety of vinyl-derived polymers, 2) complete radical closed-loop cycling, and 3) upcycle waste material.
Collapse
Affiliation(s)
- Autumn M Mineo
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Reika Katsumata
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
19
|
Qin B, Liu S, Xu JF. Reversible Amidation Chemistry Enables Closed-Loop Chemical Recycling of Carbon Fiber Reinforced Polymer Composites to Monomers and Fibers. Angew Chem Int Ed Engl 2023; 62:e202311856. [PMID: 37675859 DOI: 10.1002/anie.202311856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/08/2023]
Abstract
Highly efficient recycling of carbon fiber reinforced polymer composites into monomers and fibers is a formidable challenge. Herein, we present a closed-loop recycling approach for carbon fiber reinforced polymer composites using reversible amidation chemistry, which enables the complete recovery of intact carbon fibers and pure monomers. The polymer network, synthesized by amidation between a macromonomer linear polyethyleneimine and a bifunctional maleic anhydride cross-linker, serves as a matrix for the construction of composites with exceptional mechanical properties, thermal stability and solvent resistance. The matrices can be fully depolymerized under the acidic condition at ambient temperature, allowing the effective separation and recovery of both carbon fibers and the two monomers. The reclaimed carbon fibers retain nearly identical mechanical properties to pristine ones, while pure monomers are recycled with high separation yields (>93 %). They can be reused in for multiple cycles for the manufacture of new composites, whose mechanical properties recover over 95 % of their original properties. This line of research presents a promising approach for the design of high-performance and sustainable thermoset composites, offering significant environmental and economic benefits.
Collapse
Affiliation(s)
- Bo Qin
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Siyuan Liu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jiang-Fei Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
20
|
Wang J, Zhang Z, Chen Y. Supramolecular immunotherapy on diversiform immune cells. J Mater Chem B 2023; 11:8347-8367. [PMID: 37563947 DOI: 10.1039/d3tb00924f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Supramolecular immunotherapy employs supramolecular materials to stimulate the immune system for inhibiting tumor cell growth and metastasis, reducing the cancer recurrence rate, and improving the quality of the patient's life. Additionally, it can lessen patient suffering and the deterioration of their illness, as well as increase their survival rate. This paper will outline the fundamentals of tumor immunotherapy based on supramolecular materials as well as its current state of development and potential applications. To be more specific, we will first introduce the basic principles of supramolecular immunotherapy, including the processes, advantages and limitations of immunotherapy, the construction of supramolecular material structures, and its benefits in treatment. Second, considering the targeting of supramolecular drugs to immune cells, we comprehensively discuss the unique advantages of applying supramolecular drugs with different types of immune cells in tumor immunotherapy. The current research advances in supramolecular immunotherapy, including laboratory research and clinical applications, are also described in detail. Finally, we reveal the tremendous promise of supramolecular materials in tumor immunotherapy, as well as discuss the opportunities and challenges that may be faced in future development.
Collapse
Affiliation(s)
- Jiahui Wang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, P. R. China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, P. R. China
| | - Ziyi Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, P. R. China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, P. R. China
| | - Yueyue Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, P. R. China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, P. R. China
| |
Collapse
|
21
|
Chen H, Hu Y, Luo C, Lei Z, Huang S, Wu J, Jin Y, Yu K, Zhang W. Spiroborate-Linked Ionic Covalent Adaptable Networks with Rapid Reprocessability and Closed-Loop Recyclability. J Am Chem Soc 2023; 145:9112-9117. [PMID: 37058550 DOI: 10.1021/jacs.3c00774] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Covalent adaptable networks (CANs) represent a novel class of polymeric materials crosslinked by dynamic covalent bonds. Since their first discovery, CANs have attracted great attention due to their high mechanical strength and stability like conventional thermosets under service conditions and easy reprocessability like thermoplastics under certain external stimuli. Here, we report the first example of ionic covalent adaptable networks (ICANs), a type of crosslinked ionomers, consisting of negatively charged backbone structures. More specifically, two ICANs with different backbone compositions were prepared through spiroborate chemistry. Given the dynamic nature of the spiroborate linkages, the resulting ionomer thermosets display rapid reprocessability and closed-loop recyclability under mild conditions. The materials mechanically broken into smaller pieces can be reprocessed into coherent solids at 120 °C within only 1 min with nearly 100% recovery of the mechanical properties. Upon treating the ICANs with dilute hydrochloric acid at room temperature, the valuable monomers can be easily chemically recycled in almost quantitative yield. This work demonstrates the great potential of spiroborate bonds as a novel dynamic ionic linkage for development of new reprocessable and recyclable ionomer thermosets.
Collapse
Affiliation(s)
- Hongxuan Chen
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Yiming Hu
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Chaoqian Luo
- Department of Mechanical Engineering, University of Colorado Denver, Denver, Colorado 80217, United States
| | - Zepeng Lei
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Shaofeng Huang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Jingyi Wu
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Yinghua Jin
- RockyTech, Ltd., Boulder, Colorado 80309, United States
| | - Kai Yu
- Department of Mechanical Engineering, University of Colorado Denver, Denver, Colorado 80217, United States
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
22
|
Hu Y, Podgórski M, Mavila S, Sinha J, Fairbanks BD, McLeod RR, Bowman CN. Dynamic Polymer Binder with Light-Regulated Molecular Weight via Addition–Fragmentation Chain Transfer for Holographic Recording. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
- Yunfeng Hu
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Maciej Podgórski
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie-Sklodowska Sq. 5, 20-031 Lublin, Poland
| | - Sudheendran Mavila
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Jasmine Sinha
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Benjamin D. Fairbanks
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Robert R. McLeod
- Department of Electrical, Computer, and Energy Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Christopher N. Bowman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| |
Collapse
|
23
|
von Vacano B, Mangold H, Vandermeulen GWM, Battagliarin G, Hofmann M, Bean J, Künkel A. Sustainable Design of Structural and Functional Polymers for a Circular Economy. Angew Chem Int Ed Engl 2023; 62:e202210823. [PMID: 36197763 DOI: 10.1002/anie.202210823] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
To achieve a sustainable circular economy, polymer production must start transitioning to recycled and biobased feedstock and accomplish CO2 emission neutrality. This is not only true for structural polymers, such as in packaging or engineering applications, but also for functional polymers in liquid formulations, such as adhesives, lubricants, thickeners or dispersants. At their end of life, polymers must be either collected and recycled via a technical pathway, or be biodegradable if they are not collectable. Advances in polymer chemistry and applications, aided by computational material science, open the way to addressing these issues comprehensively by designing for recyclability and biodegradability. This Review explores how scientific progress, together with emerging regulatory frameworks, societal expectations and economic boundary conditions, paint pathways for the transformation towards a circular economy of polymers.
Collapse
Affiliation(s)
| | - Hannah Mangold
- Group Research, BASF SE, 67056, Ludwigshafen am Rhein, Germany
| | - Guido W M Vandermeulen
- Functional Polymers R&D, Care Chemicals Division, BASF SE, 67056, Ludwigshafen am Rhein, Germany
| | | | | | - Jessica Bean
- Group Research, BASF SE, 67056, Ludwigshafen am Rhein, Germany
| | - Andreas Künkel
- Group Research, BASF SE, 67056, Ludwigshafen am Rhein, Germany
| |
Collapse
|
24
|
Bagheri A. Application of RAFT in 3D Printing: Where Are the Future Opportunities? Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Ali Bagheri
- School of Science and Technology, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
25
|
Kuenstler AS, Hernandez JJ, Trujillo-Lemon M, Osterbaan A, Bowman CN. Vat Photopolymerization Additive Manufacturing of Tough, Fully Recyclable Thermosets. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11111-11121. [PMID: 36795439 DOI: 10.1021/acsami.2c22081] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
To advance the capabilities of additive manufacturing, novel resin formulations are needed that produce high-fidelity parts with desired mechanical properties that are also amenable to recycling. In this work, a thiol-ene-based system incorporating semicrystallinity and dynamic thioester bonds within polymer networks is presented. It is shown that these materials have ultimate toughness values >16 MJ cm-3, comparable to high-performance literature precedents. Significantly, the treatment of these networks with excess thiols facilitates thiol-thioester exchange that degrades polymerized networks into functional oligomers. These oligomers are shown to be amenable to repolymerization into constructs with varying thermomechanical properties, including elastomeric networks that recover their shape fully from >100% strain. Using a commercial stereolithographic printer, these resin formulations are printed into functional objects including both stiff (E ∼ 10-100 MPa) and soft (E ∼ 1-10 MPa) lattice structures. Finally, it is shown that the incorporation of both dynamic chemistry and crystallinity further enables advancement in the properties and characteristics of printed parts, including attributes such as self-healing and shape-memory.
Collapse
Affiliation(s)
- Alexa S Kuenstler
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Juan J Hernandez
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Marianela Trujillo-Lemon
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Alexander Osterbaan
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
26
|
Yan M, Zhou J. Pillararene-Based Supramolecular Polymers for Cancer Therapy. Molecules 2023; 28:molecules28031470. [PMID: 36771136 PMCID: PMC9919256 DOI: 10.3390/molecules28031470] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Supramolecular polymers have attracted considerable interest due to their intriguing features and functions. The dynamic reversibility of noncovalent interactions endows supramolecular polymers with tunable physicochemical properties, self-healing, and externally stimulated responses. Among them, pillararene-based supramolecular polymers show great potential for biomedical applications due to their fascinating host-guest interactions and easy modification. Herein, we summarize the state of the art of pillararene-based supramolecular polymers for cancer therapy and illustrate its developmental trend and future perspective.
Collapse
|
27
|
Yavitt FM, Kirkpatrick BE, Blatchley MR, Speckl KF, Mohagheghian E, Moldovan R, Wang N, Dempsey PJ, Anseth KS. In situ modulation of intestinal organoid epithelial curvature through photoinduced viscoelasticity directs crypt morphogenesis. SCIENCE ADVANCES 2023; 9:eadd5668. [PMID: 36662859 PMCID: PMC9858500 DOI: 10.1126/sciadv.add5668] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Spatiotemporally coordinated transformations in epithelial curvature are necessary to generate crypt-villus structures during intestinal development. However, the temporal regulation of mechanotransduction pathways that drive crypt morphogenesis remains understudied. Intestinal organoids have proven useful to study crypt morphogenesis in vitro, yet the reliance on static culture scaffolds limits the ability to assess the temporal effects of changing curvature. Here, a photoinduced hydrogel cross-link exchange reaction is used to spatiotemporally alter epithelial curvature and study how dynamic changes in curvature influence mechanotransduction pathways to instruct crypt morphogenesis. Photopatterned curvature increased membrane tension and depolarization, which was required for subsequent nuclear localization of yes-associated protein 1 (YAP) observed 24 hours following curvature change. Curvature-directed crypt morphogenesis only occurred following a delay in the induction of differentiation that coincided with the delay in spatially restricted YAP localization, indicating that dynamic changes in curvature initiate epithelial curvature-dependent mechanotransduction pathways that temporally regulate crypt morphogenesis.
Collapse
Affiliation(s)
- F. Max Yavitt
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Bruce E. Kirkpatrick
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309, USA
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael R. Blatchley
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Kelly F. Speckl
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Erfan Mohagheghian
- Department of Mechanical Science and Engineering, The Grainger College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Radu Moldovan
- Advanced Light Microscopy Core Facility, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ning Wang
- Department of Mechanical Science and Engineering, The Grainger College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Peter J. Dempsey
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Denver, CO 80204, USA
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
28
|
Recycling Carbon Fiber from Carbon Fiber-Reinforced Polymer and Its Reuse in Photocatalysis: A Review. Polymers (Basel) 2022; 15:polym15010170. [PMID: 36616520 PMCID: PMC9824332 DOI: 10.3390/polym15010170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Driven by various environmental and economic factors, it is emerging to adopt an efficient and sustainable strategy to recycle carbon fibers (rCFs) from carbon fiber-reinforced polymer (CFRP) wastes and reuse them in high-value applications. This review summarized the latest progress of CFRP waste recycling methods (including mechanical, chemical, and thermal methods), discussed their advantages and disadvantages, influence parameters and possible environmental effects, and their potential effects on the mechanical and surface chemical properties of rCFs. In addition, the latest optimization schemes of leading recycling technologies were detailed. According to the literature, CFs are the key points in the structural support of semiconductor-based recyclable photocatalytic systems and the enhancement of performance, which means that rCFs have high reuse potential in sustainable photocatalysis. Therefore, this paper also emphasized the possibility and potential value of reusing recovered fibers for developing recyclable photocatalytic products, which may be a new way of reuse in environmental purification often ignored by researchers and decision-makers in the field of CFs.
Collapse
|
29
|
Zhang V, Kang B, Accardo JV, Kalow JA. Structure-Reactivity-Property Relationships in Covalent Adaptable Networks. J Am Chem Soc 2022; 144:22358-22377. [PMID: 36445040 PMCID: PMC9812368 DOI: 10.1021/jacs.2c08104] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polymer networks built out of dynamic covalent bonds offer the potential to translate the control and tunability of chemical reactions to macroscopic physical properties. Under conditions at which these reactions occur, the topology of covalent adaptable networks (CANs) can rearrange, meaning that they can flow, self-heal, be remolded, and respond to stimuli. Materials with these properties are necessary to fields ranging from sustainability to tissue engineering; thus the conditions and time scale of network rearrangement must be compatible with the intended use. The mechanical properties of CANs are based on the thermodynamics and kinetics of their constituent bonds. Therefore, strategies are needed that connect the molecular and macroscopic worlds. In this Perspective, we analyze structure-reactivity-property relationships for several classes of CANs, illustrating both general design principles and the predictive potential of linear free energy relationships (LFERs) applied to CANs. We discuss opportunities in the field to develop quantitative structure-reactivity-property relationships and open challenges.
Collapse
Affiliation(s)
| | | | | | - Julia A. Kalow
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208
| |
Collapse
|
30
|
Wanasinghe SV, Dodo OJ, Konkolewicz D. Dynamic Bonds: Adaptable Timescales for Responsive Materials. Angew Chem Int Ed Engl 2022; 61:e202206938. [PMID: 36167937 PMCID: PMC10092857 DOI: 10.1002/anie.202206938] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Indexed: 11/05/2022]
Abstract
Dynamic bonds introduce unique properties such as self-healing, recyclability, shape memory, and malleability to polymers. Significant efforts have been made to synthesize a variety of dynamic linkers, creating a diverse library of materials. In addition to the development of new dynamic chemistries, fine-tuning of dynamic bonds has emerged as a technique to modulate dynamic properties. This Review highlights approaches for controlling the timescales of dynamic bonds in polymers. Particularly, eight dynamic bonds are considered, including urea/urethanes, boronic esters, Thiol-Michael exchange, Diels-Alder adducts, transesterification, imine bonds, coordination bonds, and hydrogen bonding. This Review emphasizes how structural modifications and external factors have been used as tools to tune the dynamic character of materials. Finally, this Review proposes strategies for tailoring the timescales of dynamic bonds in polymer materials through both kinetic effects and modulating bond thermodynamics.
Collapse
Affiliation(s)
- Shiwanka V. Wanasinghe
- Department of Chemistry and BiochemistryMiami University651 East High StreetOxfordOH 45056USA
| | - Obed J. Dodo
- Department of Chemistry and BiochemistryMiami University651 East High StreetOxfordOH 45056USA
| | - Dominik Konkolewicz
- Department of Chemistry and BiochemistryMiami University651 East High StreetOxfordOH 45056USA
| |
Collapse
|
31
|
Closed-loop chemical recycling of cross-linked polymeric materials based on reversible amidation chemistry. Nat Commun 2022; 13:7595. [PMID: 36494357 PMCID: PMC9734120 DOI: 10.1038/s41467-022-35365-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Closed-loop chemical recycling provides a solution to the end-of-use problem of synthetic polymers. However, it remains a major challenge to design dynamic bonds, capable of effective bonding and reversible cleaving, for preparing chemically recyclable cross-linked polymers. Herein, we report a dynamic maleic acid tertiary amide bond based upon reversible amidation reaction between maleic anhydrides and secondary amines. This dynamic bond allows for the construction of polymer networks with tailorable and robust mechanical properties, covering strong elastomers with a tensile strength of 22.3 MPa and rigid plastics with a yield strength of 38.3 MPa. Impressively, these robust polymeric materials can be completely depolymerized in an acidic aqueous solution at ambient temperature, leading to efficient monomer recovery with >94% separation yields. Meanwhile, the recovered monomers can be used to remanufacture cross-linked polymeric materials without losing their original mechanical performance. This work unveils a general approach to design polymer networks with tunable mechanical performance and closed-loop recyclability, which will open a new avenue for sustainable polymeric materials.
Collapse
|
32
|
Paladugu SRM, Sreekanth PSR, Sahu SK, Naresh K, Karthick SA, Venkateshwaran N, Ramoni M, Mensah RA, Das O, Shanmugam R. A Comprehensive Review of Self-Healing Polymer, Metal, and Ceramic Matrix Composites and Their Modeling Aspects for Aerospace Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8521. [PMID: 36500017 PMCID: PMC9740628 DOI: 10.3390/ma15238521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/26/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Composites can be divided into three groups based on their matrix materials, namely polymer, metal and ceramic. Composite materials fail due to micro cracks. Repairing is complex and almost impossible if cracks appear on the surface and interior, which minimizes reliability and material life. In order to save the material from failure and prolong its lifetime without compromising mechanical properties, self-healing is one of the emerging and best techniques. The studies to address the advantages and challenges of self-healing properties of different matrix materials are very limited; however, this review addresses all three different groups of composites. Self-healing composites are fabricated to heal cracks, prevent any obstructed failure, and improve the lifetime of structures. They can self-diagnose their structure after being affected by external forces and repair damages and cracks to a certain degree. This review aims to provide information on the recent developments and prospects of self-healing composites and their applications in various fields such as aerospace, automobiles etc. Fabrication and characterization techniques as well as intrinsic and extrinsic self-healing techniques are discussed based on the latest achievements, including microcapsule embedment, fibers embedment, and vascular networks self-healing.
Collapse
Affiliation(s)
| | | | - Santosh Kumar Sahu
- School of Mechanical Engineering, VIT-AP University, Amaravati 522337, India
| | - K. Naresh
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - S. Arun Karthick
- Feynman Nano Laboratory, Department of Biomedical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India
| | - N. Venkateshwaran
- Department of Mechanical Engineering, Rajalakshmi Engineering College, Chennai 600125, India
| | - Monsuru Ramoni
- School of Engineering, Math and Technology, Navajo Technical University, Crownpoint, NM 87313, USA
| | - Rhoda Afriyie Mensah
- Department of Civil, Environmental and Natural Resources Engineering, Lulea University of Technology, 97187 Lulea, Sweden
| | - Oisik Das
- Department of Civil, Environmental and Natural Resources Engineering, Lulea University of Technology, 97187 Lulea, Sweden
| | - Ragavanantham Shanmugam
- School of Engineering, Math and Technology, Navajo Technical University, Crownpoint, NM 87313, USA
| |
Collapse
|
33
|
Lessard JJ, Stewart KA, Sumerlin BS. Controlling Dynamics of Associative Networks through Primary Chain Length. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Jacob J. Lessard
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Kevin A. Stewart
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
34
|
Synthesis of a transesterification vitrimer activated by fluorine from an α,α-difluoro carboxylic acid and a diepoxy. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Guo Z, Wang W, Majeed K, Zhang B, Zhou F, Zhang Q. Fabrication of multi-functional bio-based vitrimer and conductive composites via ugi four-component polymerization. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Liu N, Zhang M, Yang R, Wang B, Yang W, Yang F, Xia M, Luo Y. Polybutadiene derived allophanate as the crosslinker for
Diels–Alder
type
self‐healing
polyurethane networks. J Appl Polym Sci 2022. [DOI: 10.1002/app.53150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ningning Liu
- Advanced Research Institute of Multidisciplinary Sciences Beijing Institute of Technology Beijing China
| | - Minghao Zhang
- School of Materials Science and Engineering Beijing Institute of Technology Beijing China
| | - Rongjie Yang
- Advanced Research Institute of Multidisciplinary Sciences Beijing Institute of Technology Beijing China
| | - Bingyu Wang
- Advanced Research Institute of Multidisciplinary Sciences Beijing Institute of Technology Beijing China
| | - Wei Yang
- School of Materials Science and Engineering Beijing Institute of Technology Beijing China
| | - Fanzhi Yang
- Advanced Research Institute of Multidisciplinary Sciences Beijing Institute of Technology Beijing China
| | - Min Xia
- School of Materials Science and Engineering Beijing Institute of Technology Beijing China
- Key Laboratory of High Energy Density Materials Ministry of Education Beijing China
| | - Yunjun Luo
- School of Materials Science and Engineering Beijing Institute of Technology Beijing China
- Key Laboratory of High Energy Density Materials Ministry of Education Beijing China
| |
Collapse
|
37
|
Nakanishi J, Yamamoto S. Static and photoresponsive dynamic materials to dissect physical regulation of cellular functions. Biomater Sci 2022; 10:6116-6134. [PMID: 36111810 DOI: 10.1039/d2bm00789d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent progress in mechanobiology has highlighted the importance of physical cues, such as mechanics, geometry (size), topography, and porosity, in the determination of cellular activities and fates, in addition to biochemical factors derived from their surroundings. In this review, we will first provide an overview of how such fundamental insights are identified by synchronizing the hierarchical nature of biological systems and static materials with tunable physical cues. Thereafter, we will explain the photoresponsive dynamic biomaterials to dissect the spatiotemporal aspects of the dependence of biological functions on physical cues.
Collapse
Affiliation(s)
- Jun Nakanishi
- Research Center for Functional Materials, National Institute for Materials Science, Japan. .,Graduate School of Advanced Science and Engineering, Waseda University, Japan.,Graduate School of Advanced Engineering, Tokyo University of Science, Japan
| | - Shota Yamamoto
- Research Center for Functional Materials, National Institute for Materials Science, Japan. .,Graduate School of Arts and Sciences, The University of Tokyo, Japan
| |
Collapse
|
38
|
Lu X, Zhang L, Zhang J, Wang C, Zhang A. Facile Preparation of Dual Functional Wearable Devices Based on Hindered Urea Bond-Integrated Reprocessable Polyurea and AgNWs. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41421-41432. [PMID: 36049051 DOI: 10.1021/acsami.2c11875] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With the advancement of material science and electronic technology, wearable devices have been integrated into daily lives, no longer just a stirring idea in science fiction. In the future, robust multifunctionalized wearable devices with low cost and long-term service life are urgently required. However, preparing multifunctional wearable devices robust enough to resist harsh conditions using a commercially available raw material through a simple process still remains challenging. In this work, reprocessable polyurea (HUBTPU) with a hard segment of hindered urea bonds (HUBs) and a soft segment of polyether is synthesized via a facile one-pot method. The robust dual functional wearable devices were obtained by simply spray-coating silver nanowires (AgNWs) on HUBTPU elastomer substrates. Due to the dynamic combination and decomposition of the HUBs and hydrogen bonds at 130 °C, the robust elastomer demonstrates favorable adhesion to various substrates. Especially, the partially embedded AgNW structure is also achieved by using ethanol as a spray solvent. The adhesion of HUBTPU substrates and embedded structure leads to stronger interfacial adhesion and stability compared to non-adhesive substrates. The as-obtained HUBTPU electrodes are able to be heated to 115 °C by applying a low voltage and sensing the strain deformation caused by human movement, which means that the electrodes are endowed with both electrical heating capability and strain sensing functionality. Therefore, this strategy reveals a potential way to prepare multifunctional wearable devices using other conductive particles and adhesive functional polymer substrates.
Collapse
Affiliation(s)
- Xingyuan Lu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chendu 610065, China
| | - Lun Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chendu 610065, China
| | - Jihai Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chendu 610065, China
| | - Chao Wang
- National Engineering Research Center for Synthesis of Novel Rubber and Plastic Materials, SINOPEC, Beijing Research Institute of Chemical Industry, Yanshan Branch, Beijing 102500, China
| | - Aimin Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chendu 610065, China
| |
Collapse
|
39
|
Valle M, Ximenis M, Lopez de Pariza X, Chan JMW, Sardon H. Spotting Trends in Organocatalyzed and Other Organomediated (De)polymerizations and Polymer Functionalizations. Angew Chem Int Ed Engl 2022; 61:e202203043. [PMID: 35700152 PMCID: PMC9545893 DOI: 10.1002/anie.202203043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Indexed: 11/09/2022]
Abstract
Organocatalysis has evolved into an effective complement to metal- or enzyme-based catalysis in polymerization, polymer functionalization, and depolymerization. The ease of removal and greater sustainability of organocatalysts relative to transition-metal-based ones has spurred development in specialty applications, e.g., medical devices, drug delivery, optoelectronics. Despite this, the use of organocatalysis and other organomediated reactions in polymer chemistry is still rapidly developing, and we envisage their rapidly growing application in nascent areas such as controlled radical polymerization, additive manufacturing, and chemical recycling in the coming years. In this Review, we describe ten trending areas where we anticipate paradigm shifts resulting from novel organocatalysts and other transition-metal-free conditions. We highlight opportunities and challenges and detail how new discoveries could lead to previously inaccessible functional materials and a potentially circular plastics economy.
Collapse
Affiliation(s)
- María Valle
- POLYMATUniversity of the Basque Country UPV/EHU Jose Mari Korta CenterAvda Tolosa 7220018Donostia-San SebastianSpain
| | - Marta Ximenis
- POLYMATUniversity of the Basque Country UPV/EHU Jose Mari Korta CenterAvda Tolosa 7220018Donostia-San SebastianSpain
- University of the Balearic Islands UIBDepartment of ChemistryCra. Valldemossa, Km 7.507122Palma de MallorcaSpain
| | - Xabier Lopez de Pariza
- POLYMATUniversity of the Basque Country UPV/EHU Jose Mari Korta CenterAvda Tolosa 7220018Donostia-San SebastianSpain
| | - Julian M. W. Chan
- Institute of Sustainability for ChemicalsEnergy and Environment (ISCE2)Agency for ScienceTechnology and Research (A*STAR)1 Pesek Road, Jurong IslandSingapore627833Singapore
| | - Haritz Sardon
- POLYMATUniversity of the Basque Country UPV/EHU Jose Mari Korta CenterAvda Tolosa 7220018Donostia-San SebastianSpain
| |
Collapse
|
40
|
Esen C, Kumru B. Photocatalyst-Incorporated Cross-Linked Porous Polymer Networks. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Cansu Esen
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Baris Kumru
- Aerospace Structures and Materials Department, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft, The Netherlands
| |
Collapse
|
41
|
Isogai T, Hayashi M. Critical Effects of Branch Numbers at the Cross-Link Point on the Relaxation Behaviors of Transesterification Vitrimers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Taketo Isogai
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Mikihiro Hayashi
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
42
|
Dugas LD, Walker WD, Shankar R, Hoppmeyer KS, Thornell TL, Morgan SE, Storey RF, Patton DL, Simon YC. Diketoenamine-based Vitrimers via Thiol-ene photopolymerization. Macromol Rapid Commun 2022; 43:e2200249. [PMID: 35856189 DOI: 10.1002/marc.202200249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/21/2022] [Indexed: 11/06/2022]
Abstract
Likened to both thermosets and thermoplastics, vitrimers are a unique class of materials that combine remarkable stability, healability, and reprocessability. Herein, we describe a photopolymerized thiol-ene-based vitrimer that undergoes dynamic covalent exchanges through uncatalyzed transamination of enamines derived from cyclic β-triketones, whereby the low energy barrier for exchange facilitates reprocessing and enables rapid depolymerization. Accordingly, we devised an alkene-functionalized β-triketone, 5,5-dimethyl-2-(pent-4-enoyl)cyclohexane-1,3-dione, which was reacted with 1,6-diaminohexane in a stoichiometrically imbalanced fashion (∼1:0.85 primary amine:triketone). The resulting networks exhibited subambient glass transition temperature (Tg = 5.66°C) by differential scanning calorimetry (DSC). Using a Maxwell stress-relaxation fit, the topology freezing temperature (Tv ) was calculated to be -32°C. Small-amplitude oscillatory shear (SAOS) rheological analysis enabled us to identify a practical critical temperature above which the vitrimer could be successfully reprocessed (Tv,eff ). Via the introduction of excess primary amines, we could readily degrade the networks into monomeric precursors, which were in turn reacted with diamines to regenerate reprocessable networks. Photopolymerization provides unique spatiotemporal control over the network topology, thereby opening the path for further investigation of vitrimer properties. As such, this work expands the toolbox of chemical upcycling of networks and enables their wider implementation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Logan D Dugas
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| | - William D Walker
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| | - Rahul Shankar
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| | - Keely S Hoppmeyer
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| | - Travis L Thornell
- US Army, Engineering Research & Development Center, Geotechnical and Structures Laboratory, Vicksburg, MS, 39180, USA
| | - Sarah E Morgan
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| | - Robson F Storey
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| | - Derek L Patton
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| | - Yoan C Simon
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| |
Collapse
|
43
|
Orrillo AG, Furlan RLE. Sulfur in Dynamic Covalent Chemistry. Angew Chem Int Ed Engl 2022; 61:e202201168. [PMID: 35447003 DOI: 10.1002/anie.202201168] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Indexed: 12/21/2022]
Abstract
Sulfur has been important in dynamic covalent chemistry (DCC) since the beginning of the field. Mainly as part of disulfides and thioesters, dynamic sulfur-based bonds (DSBs) have a leading role in several remarkable reactions. Part of this success is due to the almost ideal properties of DSBs for the preparation of dynamic covalent systems, including high reactivity and good reversibility under mild aqueous conditions, the possibility of exploiting supramolecular interactions, access to isolable structures, and easy experimental control to turn the reaction on/off. DCC is currently witnessing an increase in the importance of DSBs. The chemical flexibility offered by DSBs opens the door to multiple applications. This Review presents an overview of all the DSBs used in DCC, their applications, and remarks on the interesting properties that they confer on dynamic chemical systems, especially those containing several DSBs.
Collapse
Affiliation(s)
- A Gastón Orrillo
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 531, Rosario, S2002LRK, Argentina
| | - Ricardo L E Furlan
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 531, Rosario, S2002LRK, Argentina
| |
Collapse
|
44
|
Design, Synthesis and Characterization of Vitrimers with Low Topology Freezing Transition Temperature. Polymers (Basel) 2022; 14:polym14122456. [PMID: 35746032 PMCID: PMC9229622 DOI: 10.3390/polym14122456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 01/30/2023] Open
Abstract
Vitrimers are crosslinked polymeric materials that behave like fluids when heated, regulated by the kinetics of internal covalent bond-exchange that occurs rapidly at or above the topology freezing transition temperature (Tv) of the vitrimer, making these materials readily reprocessable and recyclable. We report two novel multiphase vitrimeric materials prepared by the cross-linking of two polymers, namely poly(triethylene glycol sebacate) and poly(2-hydroxyethyl acrylate), using zinc acetate or tin(II) 2-ethylhexanoate as catalysts, which exhibit significantly low Tv temperatures of 39 °C and 29 °C, respectively. The transesterification reactions allow rapid and pronounced stress relaxation at high temperatures, following the Arrhenius law. The lower Tv of these vitrimers could be attributable to the flexible long chains of these polymers and the significant excess of OH moieties present along the main chain of the polymer. The design of such multiphase vitrimers is not only useful for the practical application of vitrimers to reduce plastic waste but could also facilitate further development of functional polymer materials that can be reprocessed at low temperatures.
Collapse
|
45
|
Miao P, Leng X, Liu J, Song G, He M, Li Y. Regulating the Dynamic Behaviors of Transcarbamoylation-Based Vitrimers via Mono-Variation in Density of Exchangeable Hydroxyl. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00127] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pengcheng Miao
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xuefei Leng
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jie Liu
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Guanjun Song
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Maomao He
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yang Li
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
46
|
Sardon H, Valle M, Lopez de Pariza X, Ximenis M, Chan JM. Spotting Trends in Organocatalyzed and Other Organomediated (De)polymerizations and Polymer Functionalizations. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Haritz Sardon
- University of Basque Country POLYMAT Paseo Manuel Lardizabal n 3 20018 San Sebastian SPAIN
| | - María Valle
- University of the Basque Country: Universidad del Pais Vasco POLYMAT SPAIN
| | | | - Marta Ximenis
- University of the Basque Country: Universidad del Pais Vasco POLYMAT SPAIN
| | - Julian M.W. Chan
- Agency for Science Technology and Research Institue of Chemical and Engineering Science SINGAPORE
| |
Collapse
|
47
|
Affiliation(s)
- Siyang Wang
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Lei Li
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Qianhui Liu
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Marek W. Urban
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
48
|
Li J, Zhang S, Ju B. Soft, fully bio‐based poly‐hydroxyl thermosets based on catalyst‐free transesterification with decent re‐processability. J Appl Polym Sci 2022. [DOI: 10.1002/app.52676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jie Li
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian P. R. China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian P. R. China
| | - Benzhi Ju
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian P. R. China
| |
Collapse
|
49
|
Abstract
:
Polymers have the property to convert the physical stress to covalent bond shuffling,
thereby acting as the healing agents. Polymeric coatings, paints, electronic devices, drug delivery,
and many other applications find self-healing materials as a smart technique to prolong the life cycle
of the end products. The idea behind these artificial materials is to make them behave like the human
body. It should sense the failure and repair it before it becomes worse or irreparable. Researchers
have explored several polymeric materials which can self-heal through intrinsic or extrinsic mechanisms.
This review specifically focuses on extrinsic routes governed by mechanical stress, temperature
change in a covalent bond, humidity, variation in pH, optical sensitivity, and electrochemical effects.
Each possible mechanism is further supported by the molecules or bonds which can undergo
the transformations under given conditions. On a broader scale, bonds that can self-repair by mechanical
force, thermal treatment, chemical modifications, UV irradiation, or electromagnetic phenomenon
are covered under this review. It brings into the notice the shortcomings or challenges in
adopting the technology to the commercial scale. The possible molecules or bonds which can undergo
self-healing under certain conditions have been distinctly presented in a well-segregated manner.
This review is envisaged to act as a guide for researchers working in this area.
Collapse
Affiliation(s)
- Nidhi Agrawal
- Department of Applied Sciences, The NorthCap University, Sector 23A, Gurugram, India
| | - Bharti Arora
- Department of Applied Sciences, The NorthCap University, Sector 23A, Gurugram, India
| |
Collapse
|
50
|
Orrillo AG, Furlan RLE. Sulfur in Dynamic Covalent Chemistry. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alfredo Gastón Orrillo
- Universidad Nacional de Rosario Facultad de Ciencias Bioquimicas y Farmaceuticas Organic Chemistry Suipacha 530 2000 Rosario ARGENTINA
| | - Ricardo L. E. Furlan
- Universidad Nacional de Rosario Facultad de Ciencias Bioquimicas y Farmaceuticas Organic Chemistry Suipacha 530 2000 Rosario ARGENTINA
| |
Collapse
|