1
|
Samorowska K, Wanowska E, Szcześniak MW. Novel lncRNA UGGT1-AS1 Regulates UGGT1 Expression in Breast Cancer Cell Line. Int J Mol Sci 2025; 26:5108. [PMID: 40507918 PMCID: PMC12155537 DOI: 10.3390/ijms26115108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 05/23/2025] [Accepted: 05/23/2025] [Indexed: 06/16/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) are transcripts over 200 nucleotides long that do not encode proteins. Although many lncRNAs remain uncharacterized, they are known to play diverse regulatory roles in gene expression. A group of lncRNAs called natural antisense transcripts can form double-stranded structures with their sense partners due to sequence complementarity. These duplexes can become substrates for A-to-I RNA editing, an epitranscriptomic modification mediated by ADAR enzymes. RNA editing is known to influence transcript splicing, affect the resulting gene expression product or alter RNA stability, all of which can impact cancer cell biology. Here, we show a novel natural antisense transcript, UGGT1-AS1, that we have identified and characterized in terms of its cellular localization and sense partner interactions. Furthermore, we demonstrate that UGGT1-AS1 affects cell proliferation and regulates the stability of the UGGT1 sense transcript. Finally, using publicly available RNA sequencing data, we identify A-to-I RNA editing events in the protein-coding gene UGGT1 and further confirm them by RT-PCR and Sanger sequencing in MCF7 cell lines. We hypothesize that UGGT1-AS1 may act as a triggering factor for the A-to-I RNA editing process in its sense partner. Our findings highlight the regulatory role of UGGT1-AS1 and suggest its involvement in RNA editing and cancer biology.
Collapse
Affiliation(s)
| | - Elżbieta Wanowska
- Faculty of Biology, Institute of Human Biology and Evolution, Adam Mickiewicz University in Poznan, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | | |
Collapse
|
2
|
Celik S, Hyrefelt L, Czuba T, Li Y, Assis J, Martinez J, Johansson M, André O, Synnergren J, Sandstedt J, Nordenfelt P, Vukusic K, Smith JG, Gidlöf O. Antisense-mediated regulation of exon usage in the elastic spring region of Titin modulates sarcomere function. Cardiovasc Res 2025; 121:629-642. [PMID: 40042822 PMCID: PMC12054628 DOI: 10.1093/cvr/cvaf037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/14/2024] [Accepted: 12/12/2024] [Indexed: 05/07/2025] Open
Abstract
AIMS Alternative splicing of Titin (TTN) I-band exons produce protein isoforms with variable size and elasticity, but the mechanisms whereby TTN splice factors regulate exon usage and thereby determining cardiomyocyte passive stiffness and diastolic function, is not well understood. Non-coding RNA transcripts from the antisense strand of protein-coding genes have been shown to regulate alternative splicing of the sense gene. The TTN gene locus harbours >80 natural antisense transcripts (NATs) with unknown function in the human heart. The aim of this study was to determine if TTN antisense transcripts play a role in alternative splicing of TTN. METHODS AND RESULTS RNA-sequencing and RNA in situ hybridization (ISH) of cardiac tissue from heart failure (HF) patients, unused donor hearts, and human iPS-derived cardiomyocytes (iPS-CMs) were used to determine the expression and localization of TTN NATs. Live cell imaging was used to analyse the effect of NATs on sarcomere properties. RNA ISH and immunofluorescence was performed in iPS-CMs to study the interaction between NATs, TTN mRNA, and splice factor protein RBM20. We found that TTN-AS1-276 was the predominant TTN NAT in the human heart and that it was up-regulated in HF. Knockdown of TTN-AS1-276 in human iPS-CMs resulted in decreased interaction between RBM20 and TTN pre-mRNA, decreased TTN I-band exon skipping, and markedly lower expression of the less compliant TTN isoform N2B. The effect on TTN exon usage was independent of sense-antisense exon overlap and polymerase II elongation rate. Furthermore, knockdown resulted in longer sarcomeres with preserved alignment, improved fractional shortening, and relaxation times. CONCLUSIONS We demonstrate a role for TTN-AS1-276 in facilitating alternative splicing of TTN and regulating sarcomere properties. This transcript could constitute a target for improving cardiac passive stiffness and diastolic function in conditions such as heart failure with preserved ejection fraction.
Collapse
Affiliation(s)
- Selvi Celik
- Division of Cardiology, Department of Clinical Sciences, Lund University, BMC D12, Solvegatan 19, Lund SE-221 84, Sweden
- Wallenberg Centre for Molecular Medicine and Lund University Diabetes Centre, Lund University, Lund, Sweden
| | - Ludvig Hyrefelt
- Division of Cardiology, Department of Clinical Sciences, Lund University, BMC D12, Solvegatan 19, Lund SE-221 84, Sweden
| | - Tomasz Czuba
- Division of Cardiology, Department of Clinical Sciences, Lund University, BMC D12, Solvegatan 19, Lund SE-221 84, Sweden
- Wallenberg Centre for Molecular Medicine and Lund University Diabetes Centre, Lund University, Lund, Sweden
- The Wallenberg Laboratory/Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University and The Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Science for Life Laboratory, Gothenburg University, Gothenburg, Sweden
| | - Yuan Li
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Lund University, Lund, Sweden
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Juliana Assis
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Julia Martinez
- Division of Cardiology, Department of Clinical Sciences, Lund University, BMC D12, Solvegatan 19, Lund SE-221 84, Sweden
- Wallenberg Centre for Molecular Medicine and Lund University Diabetes Centre, Lund University, Lund, Sweden
| | - Markus Johansson
- Systems Biology Research Center, School of Bioscience, University of Skövde, SkövdeSweden
| | - Oscar André
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Jane Synnergren
- Systems Biology Research Center, School of Bioscience, University of Skövde, SkövdeSweden
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Joakim Sandstedt
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Pontus Nordenfelt
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Kristina Vukusic
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - J Gustav Smith
- Division of Cardiology, Department of Clinical Sciences, Lund University, BMC D12, Solvegatan 19, Lund SE-221 84, Sweden
- Wallenberg Centre for Molecular Medicine and Lund University Diabetes Centre, Lund University, Lund, Sweden
- The Wallenberg Laboratory/Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University and The Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Science for Life Laboratory, Gothenburg University, Gothenburg, Sweden
| | - Olof Gidlöf
- Division of Cardiology, Department of Clinical Sciences, Lund University, BMC D12, Solvegatan 19, Lund SE-221 84, Sweden
- Wallenberg Centre for Molecular Medicine and Lund University Diabetes Centre, Lund University, Lund, Sweden
| |
Collapse
|
3
|
Li L, Guo Z, Guo X, Dong D, Fan T, Yao L, Zha Y, Kong J, Dai Y, Pan T. Phanerochaete chrysosporium hyphae bio-crack, endocytose and metabolize plastic films. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137154. [PMID: 39798307 DOI: 10.1016/j.jhazmat.2025.137154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/27/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Numerous studies have focused on the effect and mechanism of plastic degradation; due to their high persistence, petroleum-based plastics are difficult for microbes to mineralize. Although such plastics have been demonstrated to be mineralized by white rot fungus, the reactions at the molecular level remain unknown. Here, we show the whole mineralization model of polyethylene film, that can be summarized as follows: 1) white rot fungus colonizes on polyethylene film, using additives as dissimilated carbon sources; 2) the fungus secretes extracellular enzymes protein, combining with stearic acid as electron donor, causes oxidation and cracking of polyethylene film; and 3) partial dissociated sub-microplastic debris access to cells, further oxidizes in sequential actions of intracellular enzymes, and ultimately mineralize via β-oxidation. Our study provides new insight into the causes of polyethylene film cracking degradation model.
Collapse
Affiliation(s)
- Lele Li
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Ecological Civilization Research Institute, Hefei University of Technology, Hefei 230009, China
| | - Zhi Guo
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Ecological Civilization Research Institute, Hefei University of Technology, Hefei 230009, China.
| | - Xingpan Guo
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| | - Dazhuang Dong
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Ecological Civilization Research Institute, Hefei University of Technology, Hefei 230009, China
| | - Ting Fan
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Lin Yao
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Ecological Civilization Research Institute, Hefei University of Technology, Hefei 230009, China
| | - Yuanyuan Zha
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Ecological Civilization Research Institute, Hefei University of Technology, Hefei 230009, China
| | - Jianyu Kong
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Ecological Civilization Research Institute, Hefei University of Technology, Hefei 230009, China
| | - Yaodan Dai
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Ecological Civilization Research Institute, Hefei University of Technology, Hefei 230009, China
| | - Tao Pan
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Ecological Civilization Research Institute, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
4
|
Wiechens E, Vigliotti F, Siniuk K, Schwarz R, Schwab K, Riege K, van Bömmel A, Görlich I, Bens M, Sahm A, Groth M, Sammons MA, Loewer A, Hoffmann S, Fischer M. Gene regulation by convergent promoters. Nat Genet 2025; 57:206-217. [PMID: 39779959 PMCID: PMC11735407 DOI: 10.1038/s41588-024-02025-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/04/2024] [Indexed: 01/11/2025]
Abstract
Convergent transcription, that is, the collision of sense and antisense transcription, is ubiquitous in mammalian genomes and believed to diminish RNA expression. Recently, antisense transcription downstream of promoters was found to be surprisingly prevalent. However, functional characteristics of affected promoters are poorly investigated. Here we show that convergent transcription marks an unexpected positively co-regulated promoter constellation. By assessing transcriptional dynamic systems, we identified co-regulated constituent promoters connected through a distinct chromatin structure. Within these cis-regulatory domains, transcription factors can regulate both constituting promoters by binding to only one of them. Convergent promoters comprise about a quarter of all active transcript start sites and initiate 5'-overlapping antisense RNAs-an RNA class believed previously to be rare. Visualization of nascent RNA molecules reveals convergent cotranscription at these loci. Together, our results demonstrate that co-regulated convergent promoters substantially expand the cis-regulatory repertoire, reveal limitations of the transcription interference model and call for adjusting the promoter concept.
Collapse
Affiliation(s)
- Elina Wiechens
- Hoffmann Lab, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Flavia Vigliotti
- Department of Biology, Systems Biology of the Stress Response, Technical University of Darmstadt, Darmstadt, Germany
| | - Kanstantsin Siniuk
- Hoffmann Lab, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Robert Schwarz
- Hoffmann Lab, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Katjana Schwab
- Hoffmann Lab, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Konstantin Riege
- Hoffmann Lab, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Alena van Bömmel
- Hoffmann Lab, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Ivonne Görlich
- Core Facility Next Generation Sequencing, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Martin Bens
- Core Facility Next Generation Sequencing, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Arne Sahm
- Hoffmann Lab, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
- Computational Phenomics Group, IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
- Computational Phenomics Group, Ruhr University Bochum, Bochum, Germany
| | - Marco Groth
- Core Facility Next Generation Sequencing, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Morgan A Sammons
- Department of Biological Sciences, The RNA Institute, The State University of New York at Albany, Albany, NY, USA
| | - Alexander Loewer
- Department of Biology, Systems Biology of the Stress Response, Technical University of Darmstadt, Darmstadt, Germany
| | - Steve Hoffmann
- Hoffmann Lab, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany.
| | - Martin Fischer
- Hoffmann Lab, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany.
| |
Collapse
|
5
|
Kotey SK, Tan X, Kinser AL, Liu L, Cheng Y. Host Long Noncoding RNAs as Key Players in Mycobacteria-Host Interactions. Microorganisms 2024; 12:2656. [PMID: 39770858 PMCID: PMC11728548 DOI: 10.3390/microorganisms12122656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Mycobacterial infections, caused by various species within the Mycobacterium genus, remain one of the main challenges to global health across the world. Understanding the complex interplay between the host and mycobacterial pathogens is essential for developing effective diagnostic and therapeutic strategies. Host long noncoding RNAs (lncRNAs) have emerged as key regulators in cellular response to bacterial infections within host cells. This review provides an overview of the intricate relationship between mycobacterial infections and host lncRNAs in the context of Mycobacterium tuberculosis and non-tuberculous mycobacterium (NTM) infections. Accumulation of evidence indicates that host lncRNAs play a critical role in regulating cellular response to mycobacterial infection within host cells, such as macrophages, the primary host cells for mycobacterial intracellular survival. The expression of specific host lncRNAs has been implicated in the pathogenesis of mycobacterial infections, providing potential targets for the development of novel host-directed therapies and biomarkers for TB diagnosis. In summary, this review aims to highlight the current state of knowledge regarding the involvement of host lncRNAs in mycobacterial infections. It also emphasizes their potential application as novel diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Stephen K. Kotey
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA; (S.K.K.); (X.T.); (A.L.K.)
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Xuejuan Tan
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA; (S.K.K.); (X.T.); (A.L.K.)
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Audrey L. Kinser
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA; (S.K.K.); (X.T.); (A.L.K.)
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Lin Liu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078, USA;
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yong Cheng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA; (S.K.K.); (X.T.); (A.L.K.)
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078, USA;
| |
Collapse
|
6
|
Pegoraro S, Balduit A, Mangogna A, Kishore U, Ricci G, Agostinis C, Bulla R. Epigenetic regulation of complement C1Q gene expression. Front Immunol 2024; 15:1498097. [PMID: 39697348 PMCID: PMC11653359 DOI: 10.3389/fimmu.2024.1498097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/04/2024] [Indexed: 12/20/2024] Open
Abstract
Human C1q is a multifaceted complement protein whose functions range from activating the complement classical pathway to immunomodulation and promoting placental development and tumorigenesis. It is encoded by the C1QA, C1QB, and C1QC genes located on chromosome 1. C1q, unlike most complement components, has extrahepatic expression by a range of cells including macrophages, monocytes and immature dendritic cells. Its local synthesis under the conditions of inflammation and for the purpose of removal of altered self requires its strict transcriptional regulation. To delve into C1Q transcriptional regulation and unravel potential epigenetic influences, we conducted an in silico analysis utilizing a range of online tools and datasets. Co-expression analysis revealed tight coordination between C1QA, C1QB, and C1QC genes. Strikingly, distinct epigenetic patterns emerged across various cell types expressing or lacking these genes, with unique histone marks and DNA methylation status characterizing their regulatory landscape. Notably, the investigation extended to tumor contexts, unveiled potential epigenetic roles in malignancies. The cell type and tumor-specific histone modifications and chromatin accessibility patterns underscore the dynamic nature of epigenetic regulation of C1Q, providing crucial insights into the intricate mechanisms governing the expression of these immunologically significant genes. The findings provide a foundation for future investigations into targeted epigenetic modulation, offering insights into potential therapeutic avenues for immune-related disorders and cancer mediated via C1q.
Collapse
Affiliation(s)
- Silvia Pegoraro
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, ;Italy
| | - Andrea Balduit
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, ;Italy
| | - Alessandro Mangogna
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, ;Italy
| | - Uday Kishore
- Department of Veterinary Medicine, United Arab Emirates (U.E.A.) University, Al Ain, ;United Arab Emirates
- Zayed Centre for Health Sciences, U.E.A. University, Al Ain, ;United Arab Emirates
| | - Giuseppe Ricci
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, ;Italy
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, ;Italy
| | - Chiara Agostinis
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, ;Italy
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, Trieste, ;Italy
| |
Collapse
|
7
|
Uriu K, Hernandez-Sanchez JP, Kojima S. Impacts of the feedback loop between sense-antisense RNAs in regulating circadian rhythms. NPJ Syst Biol Appl 2024; 10:119. [PMID: 39414861 PMCID: PMC11484753 DOI: 10.1038/s41540-024-00451-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024] Open
Abstract
Antisense transcripts are a unique group of non-coding RNAs and play regulatory roles in a variety of biological processes, including circadian rhythms. Per2AS is an antisense transcript to the sense core clock gene Period2 (Per2) in mouse and its expression is rhythmic and antiphasic to Per2. To understand the impact of Per2AS-Per2 interaction, we developed a new mathematical model that mechanistically described the mutually repressive relationship between Per2 and Per2AS. This mutual repression can regulate both amplitude and period of circadian oscillation by affecting a negative feedback regulation of Per2. Simulations from this model also fit with experimental observations that could not be fully explained by our previous model. Our revised model can not only serve as a foundation to build more detailed models to better understand the impact of Per2AS-Per2 interaction in the future, but also be used to analyze other sense-antisense RNA pairs that mutually repress each other.
Collapse
Affiliation(s)
- Koichiro Uriu
- School of Life Science and Technology, Institute of Science Tokyo, Meguro, Tokyo, Japan.
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa, Japan.
| | - Juan P Hernandez-Sanchez
- Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA
| | - Shihoko Kojima
- Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA.
- Center for the Mathematics of Biosystems, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
8
|
Wei Y, Hu X, Yuan S, Zhao Y, Zhu C, Guo M, Cui H. Identification of plasma exosomal lncRNA as a biomarker for early diagnosis of gastric cancer. Front Genet 2024; 15:1425591. [PMID: 39440243 PMCID: PMC11493672 DOI: 10.3389/fgene.2024.1425591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Background There were about 1,090,000 gastric cancer (GC) cases in 2020 in China. The incidence and mortality rates ranked the fifth and third among all kinds of cancers in China. Early diagnosis plays an important role in the treatment and prognosis of gastric cancer. In recent years, noninvasive diagnosis, especially plasma exosome lncRNAs, has become a promissing biomarkers with high specificity and sensitivity for early diagnosis of cancers. Methods In this study, plasma exosomes of patients with early gastric cancer were extracted efficiently by affinity membrane separation technology, including affinity adsorption, elution, affinity membrane regeneration and other steps. After identified by electron microscopy observation, particle size analysis and Western blot verification, the lncRNAs in the exosomes were extracted and were analysized by high-throughput RNA sequencing (RNA-Seq). The differentially expressed lncRNAs were verified by RT-qPCR in 93 patients with early gastric cancer and 49 normal controls. Results Electron microscopy, particle size analysis and Western blot showed that exosomes were successfully isolated from plasma. RNA-Seq results show that 76 lncRNAs were upregulated and 260 lncRNAs were downregulated in plasma exosomes of early gastric cancer patients compared with normal controls. RT-qPCR analysis indicated that a total of 6 lncRNAs were significantly and differentially expressed in gastric cancer patients compared to normal controls, with 2 (lncmstrg. 1319590, Lncmstrg. 2312697) highly expressed and 4 lowly expressed (lncmstr-g.1004024.1, lncmstrg. 2441832.8, lncmstrg. 315376.1, lncmstrg.907985.2,) (p < 0.05). The survival curve analysis indicated that lncmstrg.2441832.8 and lncmstrg.2312697 had higher sensitivity and specificity for the diagnosis of gastric cancer, respectively and AUC curve areas were 0.6211 and 0.631, p < 0.05, respectively, which were greater than the traditional clinical detection indexes CEA (0.61) and AFP (0.57). When combined lncmstrg.2441832.8 and lncmstrg.2312697 in gastric cancer diagnosis, AUC curve area reached 0.73, which was greater than CA199 (0.71). Conclusion Lncmstrg.2441832.8 and lncmstrg.2312697 may be a potential and promissing biomarkers for early diagnosis of gastric cancer.
Collapse
Affiliation(s)
- Ye Wei
- College of Medicine, Yangzhou University, Yangzhou, China
| | - Xuming Hu
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Shuai Yuan
- Yangzhou center for disease control and prevention, Yangzhou, China
| | - Yue Zhao
- Department of Medical Affaires, Yangzhou Maternity and Child Health Hospital, Yangzhou, China
| | - Chunhui Zhu
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Mingzhou Guo
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, China
| | - Hengmi Cui
- College of Medicine, Yangzhou University, Yangzhou, China
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
9
|
Fu Z, Chen Y, Cai G, Peng H, Wang X, Li P, Gu A, Li Y, Ma D. An Antisense Long Non-Coding RNA, LncRsn, Is Involved in Sexual Reproduction and Full Virulence in Fusarium graminearum. J Fungi (Basel) 2024; 10:692. [PMID: 39452644 PMCID: PMC11508260 DOI: 10.3390/jof10100692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/26/2024] Open
Abstract
Fusarium head blight (FHB), primarily caused by Fusarium graminearum, is a devastating crop disease that leads to significant declines in wheat yield and quality worldwide. Long non-coding RNAs (lncRNAs) are found to play significant functions in various biological processes, but their regulatory functions in the sexual reproduction and pathogenicity of F. graminearum have not been studied extensively. This study identified an antisense lncRNA, named lncRsn, located in the transcription initiation site region between the 5'-flanking gene FgSna and the 3'-flanking gene FgPta. A deletion mutant of lncRsn (ΔlncRsn) was constructed through homologous recombination. ΔlncRsn exhibited huge reductions in pathogen and sexual reproduction. Additionally, the deletion of lncRsn disrupted the biosynthesis of deoxynivalenol (DON) and impaired the formation of infection structures. RT-qPCR analysis reveals that lncRsn may negatively regulate the transcription of the target gene FgSna. This study found that lncRsn plays an important role in sexual and asexual reproduction, pathogenicity, virulence, osmotic stress, and cell wall integrity (CWI) in F. graminearum. Further characterization of pathogenesis-related genes and the reaction between lncRsn and protein-coding genes will aid in developing novel approaches for controlling F. graminearum diseases.
Collapse
Affiliation(s)
- Zhizhen Fu
- Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China; (Z.F.); (Y.C.); (H.P.); (X.W.); (P.L.)
| | - Yanjie Chen
- Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China; (Z.F.); (Y.C.); (H.P.); (X.W.); (P.L.)
| | - Gaolei Cai
- Shiyan Academy of Agricultural Sciences, Shiyan 442000, China;
| | - Huijuan Peng
- Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China; (Z.F.); (Y.C.); (H.P.); (X.W.); (P.L.)
| | - Xiaoyu Wang
- Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China; (Z.F.); (Y.C.); (H.P.); (X.W.); (P.L.)
| | - Ping Li
- Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China; (Z.F.); (Y.C.); (H.P.); (X.W.); (P.L.)
| | - Aiguo Gu
- Jiangsu Product Quality Testing & Inspection Institute, 5 Guanghua Street, Nanjing 210007, China;
| | - Yanli Li
- Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China; (Z.F.); (Y.C.); (H.P.); (X.W.); (P.L.)
| | - Dongfang Ma
- Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China; (Z.F.); (Y.C.); (H.P.); (X.W.); (P.L.)
| |
Collapse
|
10
|
Werner A, Kanhere A, Wahlestedt C, Mattick JS. Natural antisense transcripts as versatile regulators of gene expression. Nat Rev Genet 2024; 25:730-744. [PMID: 38632496 DOI: 10.1038/s41576-024-00723-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 04/19/2024]
Abstract
Long non-coding RNAs (lncRNAs) are emerging as a major class of gene products that have central roles in cell and developmental biology. Natural antisense transcripts (NATs) are an important subset of lncRNAs that are expressed from the opposite strand of protein-coding and non-coding genes and are a genome-wide phenomenon in both eukaryotes and prokaryotes. In eukaryotes, a myriad of NATs participate in regulatory pathways that affect expression of their cognate sense genes. Recent developments in the study of NATs and lncRNAs and large-scale sequencing and bioinformatics projects suggest that whether NATs regulate expression, splicing, stability or translation of the sense transcript is influenced by the pattern and degrees of overlap between the sense-antisense pair. Moreover, epigenetic gene regulatory mechanisms prevail in somatic cells whereas mechanisms dependent on the formation of double-stranded RNA intermediates are prevalent in germ cells. The modulating effects of NATs on sense transcript expression make NATs rational targets for therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - John S Mattick
- University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
11
|
Lin Y, Zhao W, Pu R, Lv Z, Xie H, Li Y, Zhang Z. Long non‑coding RNAs as diagnostic and prognostic biomarkers for colorectal cancer (Review). Oncol Lett 2024; 28:486. [PMID: 39185489 PMCID: PMC11342420 DOI: 10.3892/ol.2024.14619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
Colorectal cancer (CRC) ranks as the 3rd most common cancer globally and is the 2nd leading cause of cancer-related death. Owing to the lack of specific early symptoms and the limitations of existing early diagnostic methods, most patients with CRC are diagnosed at advanced stages. To overcome these challenges, researchers have increasingly focused on molecular biomarkers, with particular interest in long non-coding RNAs (lncRNAs). These non-protein-coding RNAs, which exceed 200 nucleotides in length, play critical roles in the development and progression of CRC. The stability and detectability of lncRNAs in the circulatory system make them promising candidate biomarkers. The analysis of circulating lncRNAs in peripheral blood represents a potential option for minimally invasive diagnostic tests based on liquid biopsy samples. The present review aimed to evaluate the efficacy of lncRNAs with altered expression levels in peripheral blood as diagnostic markers for CRC. Additionally, the clinical significance of lncRNAs as prognostic markers for this disease were summarized.
Collapse
Affiliation(s)
- Yuning Lin
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| | - Wenzhen Zhao
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| | - Ruonan Pu
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| | - Zhenyi Lv
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| | - Hongyan Xie
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| | - Ying Li
- Department of Ultrasonography, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Zhongying Zhang
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| |
Collapse
|
12
|
Yazarlou F, Martinez I, Lipovich L. Radiotherapy and breast cancer: finally, an lncRNA perspective on radiosensitivity and radioresistance. Front Oncol 2024; 14:1437542. [PMID: 39346726 PMCID: PMC11427263 DOI: 10.3389/fonc.2024.1437542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/01/2024] [Indexed: 10/01/2024] Open
Abstract
Radiotherapy (RT) serves as one of the key adjuvant treatments in management of breast cancer. Nevertheless, RT has two major problems: side effects and radioresistance. Given that patients respond differently to RT, it is imperative to understand the molecular mechanisms underlying these differences. Two-thirds of human genes do not encode proteins, as we have realized from genome-scale studies conducted after the advent of the genomic era; nevertheless, molecular understanding of breast cancer to date has been attained almost entirely based on protein-coding genes and their pathways. Long non-coding RNAs (lncRNAs) are a poorly understood but abundant class of human genes that yield functional non-protein-coding RNA transcripts. Here, we canvass the field to seek evidence for the hypothesis that lncRNAs contribute to radioresistance in breast cancer. RT-responsive lncRNAs ranging from "classical" lncRNAs discovered at the dawn of the post-genomic era (such as HOTAIR, NEAT1, and CCAT), to long intergenic lncRNAs such as LINC00511 and LINC02582, antisense lncRNAs such as AFAP-AS1 and FGD5-AS1, and pseudogene transcripts such as DUXAP8 were found during our screen of the literature. Radiation-related pathways modulated by these lncRNAs include DNA damage repair, cell cycle, cancer stem cells phenotype and apoptosis. Thus, providing a clear picture of these lncRNAs' underlying RT-relevant molecular mechanisms should help improve overall survival and optimize the best radiation dose for each individual patient. Moreover, in healthy humans, lncRNAs show greater natural expression variation than protein-coding genes, even across individuals, alluding to their exceptional potential for targeting in truly personalized, precision medicine.
Collapse
Affiliation(s)
- Fatemeh Yazarlou
- Center for Childhood Cancer, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Ivan Martinez
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, United States
| | - Leonard Lipovich
- Department of Biology, College of Science, Mathematics, and Technology, Wenzhou-Kean University, Wenzhou, China
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Wenzhou, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou, China
- Shenzhen Huayuan Biological Science Research Institute, Shenzhen Huayuan Biotechnology Co. Ltd., Shenzhen, China
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, United States
| |
Collapse
|
13
|
Besaratinia A, Blumenfeld H, Tommasi S. Exploring the Utility of Long Non-Coding RNAs for Assessing the Health Consequences of Vaping. Int J Mol Sci 2024; 25:8554. [PMID: 39126120 PMCID: PMC11313266 DOI: 10.3390/ijms25158554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Electronic cigarette (e-cig) use, otherwise known as "vaping", is widespread among adolescent never-smokers and adult smokers seeking a less-harmful alternative to combustible tobacco products. To date, however, the long-term health consequences of vaping are largely unknown. Many toxicants and carcinogens present in e-cig vapor and tobacco smoke exert their biological effects through epigenetic changes that can cause dysregulation of disease-related genes. Long non-coding RNAs (lncRNAs) have emerged as prime regulators of gene expression in health and disease states. A large body of research has shown that lncRNAs regulate genes involved in the pathogenesis of smoking-associated diseases; however, the utility of lncRNAs for assessing the disease-causing potential of vaping remains to be fully determined. A limited but growing number of studies has shown that lncRNAs mediate dysregulation of disease-related genes in cells and tissues of vapers as well as cells treated in vitro with e-cig aerosol extract. This review article provides an overview of the evolution of e-cig technology, trends in use, and controversies on the safety, efficacy, and health risks or potential benefits of vaping relative to smoking. While highlighting the importance of lncRNAs in cell biology and disease, it summarizes the current and ongoing research on the modulatory effects of lncRNAs on gene regulation and disease pathogenesis in e-cig users and in vitro experimental settings. The gaps in knowledge are identified, priorities for future research are highlighted, and the importance of empirical data for tobacco products regulation and public health is underscored.
Collapse
Affiliation(s)
- Ahmad Besaratinia
- Department of Population & Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA; (H.B.); (S.T.)
| | | | | |
Collapse
|
14
|
Lin Y, Zhao W, Lv Z, Xie H, Li Y, Zhang Z. The functions and mechanisms of long non-coding RNA in colorectal cancer. Front Oncol 2024; 14:1419972. [PMID: 39026978 PMCID: PMC11254705 DOI: 10.3389/fonc.2024.1419972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
CRC poses a significant challenge in the global health domain, with a high number of deaths attributed to this disease annually. If CRC is detected only in its advanced stages, the difficulty of treatment increases significantly. Therefore, biomarkers for the early detection of CRC play a crucial role in improving patient outcomes and increasing survival rates. The development of a reliable biomarker for early detection of CRC is particularly important for timely diagnosis and treatment. However, current methods for CRC detection, such as endoscopic examination, blood, and stool tests, have certain limitations and often only detect cases in the late stages. To overcome these constraints, researchers have turned their attention to molecular biomarkers, which are considered a promising approach to improving CRC detection. Non-invasive methods using biomarkers such as mRNA, circulating cell-free DNA, microRNA, LncRNA, and proteins can provide more reliable diagnostic information. These biomarkers can be found in blood, tissue, stool, and volatile organic compounds. Identifying molecular biomarkers with high sensitivity and specificity for the early and safe, economic, and easily measurable detection of CRC remains a significant challenge for researchers.
Collapse
Affiliation(s)
- Yuning Lin
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Wenzhen Zhao
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Zhenyi Lv
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Hongyan Xie
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Ying Li
- Ultrasonography Department, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Zhongying Zhang
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| |
Collapse
|
15
|
Das S, Zea Rojas MP, Tran EJ. Novel insights on the positive correlation between sense and antisense pairs on gene expression. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1864. [PMID: 39087253 PMCID: PMC11626863 DOI: 10.1002/wrna.1864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 08/02/2024]
Abstract
A considerable proportion of the eukaryotic genome undergoes transcription, leading to the generation of noncoding RNA molecules that lack protein-coding information and are not subjected to translation. These noncoding RNAs (ncRNAs) are well recognized to have essential roles in several biological processes. Long noncoding RNAs (lncRNAs) represent the most extensive category of ncRNAs found in the human genome. Much research has focused on investigating the roles of cis-acting lncRNAs in the regulation of specific target gene expression. In the majority of instances, the regulation of sense gene expression by its corresponding antisense pair occurs in a negative (discordant) manner, resulting in the suppression of the target genes. The notion that a negative correlation exists between sense and antisense pairings is, however, not universally valid. In fact, several recent studies have reported a positive relationship between corresponding cis antisense pairs within plants, budding yeast, and mammalian cancer cells. The positive (concordant) correlation between anti-sense and sense transcripts leads to an increase in the level of the sense transcript within the same genomic loci. In addition, mechanisms such as altering chromatin structure, the formation of R loops, and the recruitment of transcription factors can either enhance transcription or stabilize sense transcripts through their antisense pairs. The primary objective of this work is to provide a comprehensive understanding of both aspects of antisense regulation, specifically focusing on the positive correlation between sense and antisense transcripts in the context of eukaryotic gene expression, including its implications towards cancer progression. This article is categorized under: RNA Processing > 3' End Processing Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- Subhadeep Das
- Department of BiochemistryPurdue UniversityWest LafayetteIndianaUSA
- Purdue University Institute for Cancer Research, Purdue UniversityWest LafayetteIndianaUSA
| | | | - Elizabeth J. Tran
- Department of BiochemistryPurdue UniversityWest LafayetteIndianaUSA
- Purdue University Institute for Cancer Research, Purdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
16
|
Ikeda S, Sato K, Fujita H, Ono-Minagi H, Miyaishi S, Nohno T, Ohuchi H. Harderian Gland Development and Degeneration in the Fgf10-Deficient Heterozygous Mouse. J Dev Biol 2024; 12:16. [PMID: 38921483 PMCID: PMC11205083 DOI: 10.3390/jdb12020016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
The mouse Harderian gland (HG) is a secretory gland that covers the posterior portion of the eyeball, opening at the base of the nictitating membrane. The HG serves to protect the eye surface from infection with its secretions. Mice open their eyelids at about 2 weeks of age, and the development of the HG primordium mechanically opens the eye by pushing the eyeball from its rear. Therefore, when HG formation is disturbed, the eye exhibits enophthalmos (the slit-eye phenotype), and a line of Fgf10+/- heterozygous loss-of-function mice exhibits slit-eye due to the HG atrophy. However, it has not been clarified how and when HGs degenerate and atrophy in Fgf10+/- mice. In this study, we observed the HGs in embryonic (E13.5 to E19), postnatal (P0.5 to P18) and 74-week-old Fgf10+/- mice. We found that more than half of the Fgf10+/- mice had markedly degenerated HGs, often unilaterally. The degenerated HG tissue had a melanized appearance and was replaced by connective tissue, which was observed by P10. The development of HGs was delayed or disrupted in the similar proportion of Fgf10+/- embryos, as revealed via histology and the loss of HG-marker expression. In situ hybridization showed Fgf10 expression was observed in the Harderian mesenchyme in wild-type as well as in the HG-lacking heterozygote at E19. These results show that the Fgf10 haploinsufficiency causes delayed or defective HG development, often unilaterally from the unexpectedly early neonatal period.
Collapse
Affiliation(s)
- Shiori Ikeda
- Department of Cytology and Histology, Medical School, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Keita Sato
- Department of Cytology and Histology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Hirofumi Fujita
- Department of Cytology and Histology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Hitomi Ono-Minagi
- Department of Cytology and Histology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Satoru Miyaishi
- Department of Legal Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Tsutomu Nohno
- Department of Cytology and Histology, Medical School, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Hideyo Ohuchi
- Department of Cytology and Histology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| |
Collapse
|
17
|
Yazarlou F, Lipovich L, Loeb JA. Emerging roles of long non-coding RNAs in human epilepsy. Epilepsia 2024; 65:1491-1511. [PMID: 38687769 PMCID: PMC11166529 DOI: 10.1111/epi.17937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 05/02/2024]
Abstract
Genome-scale biological studies conducted in the post-genomic era have revealed that two-thirds of human genes do not encode proteins. Most functional non-coding RNA transcripts in humans are products of long non-coding RNA (lncRNA) genes, an abundant but still poorly understood class of human genes. As a result of their fundamental and multitasking regulatory roles, lncRNAs are associated with a wide range of human diseases, including neurological disorders. Approximately 40% of lncRNAs are specifically expressed in the brain, and many of them exhibit distinct spatiotemporal patterns of expression. Comparative genomics approaches have determined that 65%-75% of human lncRNA genes are primate-specific and hence can be posited as a contributing potential cause of the higher-order complexity of primates, including human, brains relative to those of other mammals. Although lncRNAs present important mechanistic examples of epileptogenic functions, the human/primate specificity of lncRNAs questions their relevance in rodent models. Here, we present an in-depth review that supports the contention that human lncRNAs are direct contributors to the etiology and pathogenesis of human epilepsy, as a means to accelerate the integration of lncRNAs into clinical practice as potential diagnostic biomarkers and therapeutic targets. Meta-analytically, the major finding of our review is the commonality of lncRNAs in epilepsy and cancer pathogenesis through mitogen-activated protein kinase (MAPK)-related pathways. In addition, neuroinflammation may be a relevant part of the common pathophysiology of cancer and epilepsy. LncRNAs affect neuroinflammation-related signaling pathways such as nuclear factor kappa- light- chain- enhancer of activated B cells (NF-κB), Notch, and phosphatidylinositol 3- kinase/ protein kinase B (Akt) (PI3K/AKT), with the NF-κB pathway being the most common. Besides the controversy over lncRNA research in non-primate models, whether neuroinflammation is triggered by injury and/or central nervous system (CNS) toxicity during epilepsy modeling in animals or is a direct consequence of epilepsy pathophysiology needs to be considered meticulously in future studies.
Collapse
Affiliation(s)
- Fatemeh Yazarlou
- Center for Childhood Cancer, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, U.S.A
| | - Leonard Lipovich
- Shenzhen Huayuan Biological Science Research Institute, Shenzhen Huayuan Biotechnology Co. Ltd., 601 Building C1, Guangming Science Park, Fenghuang Street, 518000, Shenzhen, Guangdong, People’s Republic of China
- College of Science, Mathematics, and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai District, 325060, Wenzhou, Zhejiang, People’s Republic of China
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, 3222 Scott Hall, 540 E. Canfield St., Detroit, Michigan 48201, U.S.A
| | - Jeffrey A. Loeb
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, Chicago, Illinois 60612, U.S.A
- University of Illinois NeuroRepository, University of Illinois at Chicago, Chicago, Illinois 60612, U.S.A
| |
Collapse
|
18
|
Zeinelabdeen Y, Abaza T, Yasser MB, Elemam NM, Youness RA. MIAT LncRNA: A multifunctional key player in non-oncological pathological conditions. Noncoding RNA Res 2024; 9:447-462. [PMID: 38511054 PMCID: PMC10950597 DOI: 10.1016/j.ncrna.2024.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/27/2023] [Accepted: 01/14/2024] [Indexed: 03/22/2024] Open
Abstract
The discovery of non-coding RNAs (ncRNAs) has unveiled a wide range of transcripts that do not encode proteins but play key roles in several cellular and molecular processes. Long noncoding RNAs (lncRNAs) are specific class of ncRNAs that are longer than 200 nucleotides and have gained significant attention due to their diverse mechanisms of action and potential involvement in various pathological conditions. In the current review, the authors focus on the role of lncRNAs, specifically highlighting the Myocardial Infarction Associated Transcript (MIAT), in non-oncological context. MIAT is a nuclear lncRNA that has been directly linked to myocardial infarction and is reported to control post-transcriptional processes as a competitive endogenous RNA (ceRNA) molecule. It interacts with microRNAs (miRNAs), thereby limiting the translation and expression of their respective target messenger RNA (mRNA) and regulating protein expression. Yet, MIAT has been implicated in other numerous pathological conditions such as other cardiovascular diseases, autoimmune disease, neurodegenerative diseases, metabolic diseases, and many others. In this review, the authors emphasize that MIAT exhibits distinct expression patterns and functions across different pathological conditions and is emerging as potential diagnostic, prognostic, and therapeutic agent. Additionally, the authors highlight the regulatory role of MIAT and shed light on the involvement of lncRNAs and specifically MIAT in various non-oncological pathological conditions.
Collapse
Affiliation(s)
- Yousra Zeinelabdeen
- Molecular Genetics Research Team, Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Cairo, 11835, Egypt
- Faculty of Medical Sciences/UMCG, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, the Netherlands
| | - Tasneem Abaza
- Molecular Genetics Research Team, Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Cairo, 11835, Egypt
- Biotechnology and Biomolecular Biochemistry Program, Faculty of Science, Cairo University, Cairo, Egypt
| | - Montaser Bellah Yasser
- Bioinformatics Group, Center for Informatics Sciences (CIS), School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt
| | - Noha M. Elemam
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Rana A. Youness
- Molecular Genetics Research Team, Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Cairo, 11835, Egypt
| |
Collapse
|
19
|
Meng X, Bai X, Ke A, Li K, Lei Y, Ding S, Dai D. Long Non-Coding RNAs in Drug Resistance of Gastric Cancer: Complex Mechanisms and Potential Clinical Applications. Biomolecules 2024; 14:608. [PMID: 38927012 PMCID: PMC11201466 DOI: 10.3390/biom14060608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
Gastric cancer (GC) ranks as the third most prevalent malignancy and a leading cause of cancer-related mortality worldwide. However, the majority of patients with GC are diagnosed at an advanced stage, highlighting the urgent need for effective perioperative and postoperative chemotherapy to prevent relapse and metastasis. The current treatment strategies have limited overall efficacy because of intrinsic or acquired drug resistance. Recent evidence suggests that dysregulated long non-coding RNAs (lncRNAs) play a significant role in mediating drug resistance in GC. Therefore, there is an imperative to explore novel molecular mechanisms underlying drug resistance in order to overcome this challenging issue. With advancements in deep transcriptome sequencing technology, lncRNAs-once considered transcriptional noise-have garnered widespread attention as potential regulators of carcinogenesis, including tumor cell proliferation, metastasis, and sensitivity to chemo- or radiotherapy through multiple regulatory mechanisms. In light of these findings, we aim to review the mechanisms by which lncRNAs contribute to drug therapy resistance in GC with the goal of providing new insights and breakthroughs toward overcoming this formidable obstacle.
Collapse
Affiliation(s)
- Xiangyu Meng
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; (X.M.); (X.B.); (K.L.); (Y.L.); (S.D.)
- Department of Gastric Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang 110042, China
| | - Xiao Bai
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; (X.M.); (X.B.); (K.L.); (Y.L.); (S.D.)
| | - Angting Ke
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; (X.M.); (X.B.); (K.L.); (Y.L.); (S.D.)
| | - Kaiqiang Li
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; (X.M.); (X.B.); (K.L.); (Y.L.); (S.D.)
| | - Yun Lei
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; (X.M.); (X.B.); (K.L.); (Y.L.); (S.D.)
| | - Siqi Ding
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; (X.M.); (X.B.); (K.L.); (Y.L.); (S.D.)
| | - Dongqiu Dai
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; (X.M.); (X.B.); (K.L.); (Y.L.); (S.D.)
- Cancer Center, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| |
Collapse
|
20
|
Ferrer J, Dimitrova N. Transcription regulation by long non-coding RNAs: mechanisms and disease relevance. Nat Rev Mol Cell Biol 2024; 25:396-415. [PMID: 38242953 PMCID: PMC11045326 DOI: 10.1038/s41580-023-00694-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 01/21/2024]
Abstract
Long non-coding RNAs (lncRNAs) outnumber protein-coding transcripts, but their functions remain largely unknown. In this Review, we discuss the emerging roles of lncRNAs in the control of gene transcription. Some of the best characterized lncRNAs have essential transcription cis-regulatory functions that cannot be easily accomplished by DNA-interacting transcription factors, such as XIST, which controls X-chromosome inactivation, or imprinted lncRNAs that direct allele-specific repression. A growing number of lncRNA transcription units, including CHASERR, PVT1 and HASTER (also known as HNF1A-AS1) act as transcription-stabilizing elements that fine-tune the activity of dosage-sensitive genes that encode transcription factors. Genetic experiments have shown that defects in such transcription stabilizers often cause severe phenotypes. Other lncRNAs, such as lincRNA-p21 (also known as Trp53cor1) and Maenli (Gm29348) contribute to local activation of gene transcription, whereas distinct lncRNAs influence gene transcription in trans. We discuss findings of lncRNAs that elicit a function through either activation of their transcription, transcript elongation and processing or the lncRNA molecule itself. We also discuss emerging evidence of lncRNA involvement in human diseases, and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Jorge Ferrer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| | - Nadya Dimitrova
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
21
|
Liu Z, Yang J, Wang N, Liu J, Geng J, Zhu J, Cong B, Sun H, Wu R. Integrative lncRNA, circRNA, and mRNA analysis reveals expression profiles of six forensic body fluids/tissue. Int J Legal Med 2024; 138:731-742. [PMID: 37994925 DOI: 10.1007/s00414-023-03131-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023]
Abstract
RNAs have attracted much attention in forensic body fluid/tissue identification (BFID) due to their tissue-specific expression characteristics. Among RNAs, long RNAs (e.g., mRNA) have a higher probability of containing more polymorphic sites that can be used to assign the specific donor of the body fluid/tissue. However, few studies have characterized their overall profiles in forensic science. In this study, we sequenced the transcriptomes of 30 samples from venous blood, menstrual blood, semen, saliva, vaginal secretion, and skin tissue, obtaining a comprehensive picture of mRNA, lncRNA, and circRNA profiles. A total of 90,305 mRNAs, 102,906 lncRNAs (including 19,549 novel lncRNAs), and 40,204 circRNAs were detected. RNA type distribution, length distribution, and expression distribution were presented according to their annotation and expression level, and many novel body fluid/tissue-specific RNA markers were identified. Furthermore, the cognate relations among the three RNAs were analyzed according to gene annotations. Finally, SNPs and InDels from RNA transcripts were genotyped, and 21,611 multi-SNP and 4,471 multi-InDel transcriptomic microhaplotypes (tMHs) were identified. These results provide a comprehensive understanding of transcriptome profiles, which could provide new avenues for tracing the origin of the body fluid/tissue and identifying an individual.
Collapse
Affiliation(s)
- Zhiyong Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jingyi Yang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, China
| | - Nana Wang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiajun Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiaojiao Geng
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jianzhang Zhu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Bin Cong
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, China.
| | - Hongyu Sun
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Riga Wu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
22
|
Uriu K, Hernandez-Sanchez JP, Kojima S. Impacts of the feedback loop between sense-antisense RNAs in regulating circadian rhythms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.28.591560. [PMID: 38746188 PMCID: PMC11092440 DOI: 10.1101/2024.04.28.591560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Antisense transcripts are a unique group of non-coding RNAs that are transcribed from the opposite strand of a sense coding gene in an antisense orientation. Even though they do not encode a protein, these transcripts play a regulatory role in a variety of biological processes, including circadian rhythms. We and others found an antisense transcript, Per2AS , that is transcribed from the strand opposite the sense transcript Period2 ( Per2 ) and exhibits a rhythmic and antiphasic expression pattern compared to Per2 in mouse. By assuming that Per2AS and Per2 mutually repress each other, our previous mathematical model predicted that Per2AS regulates the robustness and the amplitude of circadian rhythms. In this study, we revised our previous model and developed a new mathematical model that mechanistically described the mutually repressive relationship between Per2 and Per2AS via transcriptional interference. We found that the simulation results are largely consistent with experimental observations including the counterintuitive ones that could not be fully explained by our previous model. These results indicate that our revised model serves as a foundation to build more detailed models in the future to better understand the impact of Per2AS-Per2 interaction in the mammalian circadian clock. Our mechanistic description of Per2AS-Per2 interaction can also be extended to other mathematical models that involve sense-antisense RNA pairs that mutually repress each other.
Collapse
|
23
|
Xi S, Nguyen T, Murray S, Lorenz P, Mellor J. Size fractionated NET-Seq reveals a conserved architecture of transcription units around yeast genes. Yeast 2024; 41:222-241. [PMID: 38433440 DOI: 10.1002/yea.3931] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 03/05/2024] Open
Abstract
Genomes from yeast to humans are subject to pervasive transcription. A single round of pervasive transcription is sufficient to alter local chromatin conformation, nucleosome dynamics and gene expression, but is hard to distinguish from background signals. Size fractionated native elongating transcript sequencing (sfNET-Seq) was developed to precisely map nascent transcripts independent of expression levels. RNAPII-associated nascent transcripts are fractionation into different size ranges before library construction. When anchored to the transcription start sites (TSS) of annotated genes, the combined pattern of the output metagenes gives the expected reference pattern. Bioinformatic pattern matching to the reference pattern identified 9542 transcription units in Saccharomyces cerevisiae, of which 47% are coding and 53% are noncoding. In total, 3113 (33%) are unannotated noncoding transcription units. Anchoring all transcription units to the TSS or polyadenylation site (PAS) of annotated genes reveals distinctive architectures of linked pairs of divergent transcripts approximately 200nt apart. The Reb1 transcription factor is enriched 30nt downstream of the PAS only when an upstream (TSS -60nt with respect to PAS) noncoding transcription unit co-occurs with a downstream (TSS +150nt) coding transcription unit and acts to limit levels of upstream antisense transcripts. The potential for extensive transcriptional interference is evident from low abundance unannotated transcription units with variable TSS (median -240nt) initiating within a 500nt window upstream of, and transcribing over, the promoters of protein-coding genes. This study confirms a highly interleaved yeast genome with different types of transcription units altering the chromatin landscape in distinctive ways, with the potential to exert extensive regulatory control.
Collapse
Affiliation(s)
- Shidong Xi
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Tania Nguyen
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Struan Murray
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Phil Lorenz
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Jane Mellor
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
24
|
Gu Y, Jiang Y, Li C, Zhu J, Lu X, Ge J, Hu M, Deng J, Ma J, Yang Z, Sun X, Xue F, Du G, Xu P, Huang H. High titer production of gastrodin enabled by systematic refactoring of yeast genome and an antisense-transcriptional regulation toolkit. Metab Eng 2024; 82:250-261. [PMID: 38428728 DOI: 10.1016/j.ymben.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/07/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
Gastrodin, a phenolic glycoside, is a prominent component of Gastrodia elata, which is renowned for its sedative, hypnotic, anticonvulsant, and neuroprotective activities. Engineering heterologous production of plant natural products in microbial host represents a safe, cost-effective, and scalable alternative to plant extraction. Here, we present the construction of an engineered Yarrowia lipolytica yeast that achieves a high-titer production of gastrodin. We systematically refactored the yeast genome by enhancing the flux of the shikimate pathway and optimizing the glucosyl transfer system. We introduced more than five dozen of genetic modifications onto the yeast genome, including enzyme screening, alleviation of rate-limiting steps, promoter selection, genomic integration site optimization, downregulation of competing pathways, and elimination of gastrodin degradation. Meanwhile, we developed a Copper-induced Antisense-Transcriptional Regulation (CATR) tool. The developed CATR toolkit achieved dynamic repression and activation of violacein synthesis through the addition of copper in Y. lipolytica. This strategy was further used to dynamically regulate the pyruvate kinase node to effectively redirect glycolytic flux towards the shikimate pathway while maintaining cell growth at proper rate. Taken together, these efforts resulted in 9477.1 mg/L of gastrodin in shaking flaks and 13.4 g/L of gastrodin with a yield of 0.149 g/g glucose in a 5-L bioreactor, highlighting the potential for large-scale and sustainable production of gastrodin from microbial fermentation.
Collapse
Affiliation(s)
- Yang Gu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Yaru Jiang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Changfan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Jiang Zhu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Xueyao Lu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Jianyue Ge
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Mengchen Hu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jieying Deng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jingbo Ma
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, Anhui, 237012, China
| | - Zhiliang Yang
- Zhejiang Key Laboratory of Antifungal Drugs, Zhejiang Hisun Pharmaceutical Co., Ltd, Taizhou, 318000, China
| | - Xiaoman Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Feng Xue
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China.
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Peng Xu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong, 515063, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
25
|
Gu J, Li Y, Tian Y, Zhang Y, Cheng Y, Tang Y. Noncanonical functions of microRNAs in the nucleus. Acta Biochim Biophys Sin (Shanghai) 2024; 56:151-161. [PMID: 38167929 PMCID: PMC10984876 DOI: 10.3724/abbs.2023268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/03/2023] [Indexed: 01/05/2024] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs (ncRNAs) that play their roles in the regulation of physiological and pathological processes. Originally, it was assumed that miRNAs only modulate gene expression posttranscriptionally in the cytoplasm by inducing target mRNA degradation. However, with further research, evidence shows that mature miRNAs also exist in the cell nucleus, where they can impact gene transcription and ncRNA maturation in several ways. This review provides an overview of novel models of nuclear miRNA functions. Some of the models remain to be verified by experimental evidence, and more details of the miRNA regulation network remain to be discovered in the future.
Collapse
Affiliation(s)
- Jiayi Gu
- College of Basic Medical SciencesShanghai Jiao Tong University School of MedicineShanghai200001China
| | - Yuanan Li
- College of Basic Medical SciencesShanghai Jiao Tong University School of MedicineShanghai200001China
| | - Youtong Tian
- College of Basic Medical SciencesShanghai Jiao Tong University School of MedicineShanghai200001China
| | - Yehao Zhang
- College of Basic Medical SciencesShanghai Jiao Tong University School of MedicineShanghai200001China
| | - Yongjun Cheng
- Department of Rheumatologythe First People’s Hospital of WenlingWenling317500China
| | - Yuanjia Tang
- Shanghai Institute of Rheumatology/Department of RheumatologyRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200001China
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRenji HospitalShanghai200031China
| |
Collapse
|
26
|
Sabet Sarvestani F, Afshari A, Azarpira N. The role of non-protein-coding RNAs in ischemic acute kidney injury. Front Immunol 2024; 15:1230742. [PMID: 38390339 PMCID: PMC10881863 DOI: 10.3389/fimmu.2024.1230742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Acute kidney injury (AKI) is a condition characterized by a rapid decline in kidney function within a span of 48 hours. It is influenced by various factors including inflammation, oxidative stress, excessive calcium levels within cells, activation of the renin-angiotensin system, and dysfunction in microcirculation. Ischemia-reperfusion injury (IRI) is recognized as a major cause of AKI; however, the precise mechanisms behind this process are not yet fully understood and effective treatments are still needed. To enhance the accuracy of diagnosing AKI during its early stages, the utilization of innovative markers is crucial. Numerous studies suggest that certain noncoding RNAs (ncRNAs), such as long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), play a central role in regulating gene expression and protein synthesis. These ncRNAs are closely associated with the development and recovery of AKI and have been detected in both kidney tissue and bodily fluids. Furthermore, specific ncRNAs may serve as diagnostic markers and potential targets for therapeutic interventions in AKI. This review aims to summarize the functional roles and changes observed in noncoding RNAs during ischemic AKI, as well as explore their therapeutic potential.
Collapse
Affiliation(s)
| | - Afsoon Afshari
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
27
|
Zhuang Q, Dai Z, Xu X, Bai S, Zhang Y, Zheng Y, Xing X, Hu E, Wang Y, Guo W, Zhao B, Zeng Y, Liu X. RNA Methyltransferase FTSJ3 Regulates the Type I Interferon Pathway to Promote Hepatocellular Carcinoma Immune Evasion. Cancer Res 2024; 84:405-418. [PMID: 37963197 DOI: 10.1158/0008-5472.can-23-2049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/29/2023] [Accepted: 11/07/2023] [Indexed: 11/16/2023]
Abstract
UNLABELLED Immunotherapies such as immune checkpoint blockade have achieved remarkable success in treating cancer. Unfortunately, response rates have been limited in multiple cancers including hepatocellular carcinoma (HCC). The critical function of epigenetics in tumor immune evasion and antitumor immunity supports harnessing epigenetic regulators as a potential strategy to enhance the efficacy of immunotherapy. Here, we discovered a tumor-promoting function of FTSJ3, an RNA 2'-O-methyltransferase, in HCC by suppressing antitumor immune responses. FTSJ3 was upregulated in hepatocellular carcinoma, and high FTSJ3 expression correlated with reduced patient survival. Deletion of FTSJ3 blocked HCC growth and induced robust antitumor immune responses. Mechanistically, FTSJ3 suppressed double-stranded RNA (dsRNA)-induced IFNβ signaling in a 2'-O-methyltransferase manner. Deletion of RNA sensors in HCC cells or systemic knockout of type I IFN receptor IFNAR in mice rescued the in vivo tumor growth defect caused by FTSJ3 deficiency, indicating that FTSJ3 deletion suppresses tumor growth by activating the RNA sensor-mediated type I IFN pathway. Furthermore, FTSJ3 deletion significantly enhanced the efficacy of programmed cell death protein 1 (PD-1) immune checkpoint blockade. The combination of FTSJ3 deficiency and anti-PD-1 antibody treatment effectively eradicated tumors and increased the survival time. In conclusion, this study reveals an epigenetic mechanism of tumor immune evasion and, importantly, suggests FTSJ3-targeting therapies as potential approach to overcome immunotherapy resistance in patients with HCC. SIGNIFICANCE Hepatocellular carcinoma cells use 2'-O-methylation catalyzed by FTSJ3 for immune evasion by suppressing abnormal dsRNA-mediated type I IFN responses, providing a potential target to activate antitumor immunity and enhance immunotherapy efficacy.
Collapse
Affiliation(s)
- Qiuyu Zhuang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P.R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, P.R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, P.R. China
| | - Zhiguo Dai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P.R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, P.R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, P.R. China
| | - Xuechun Xu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P.R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, P.R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, P.R. China
| | - Shaoyi Bai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P.R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, P.R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, P.R. China
| | - Yindan Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P.R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, P.R. China
| | - Youshi Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P.R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, P.R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, P.R. China
| | - Xiaohua Xing
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P.R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, P.R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, P.R. China
| | - En Hu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P.R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, P.R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, P.R. China
| | - Yingchao Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P.R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, P.R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, P.R. China
| | - Wuhua Guo
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P.R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, P.R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, P.R. China
| | - Bixing Zhao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P.R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, P.R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, P.R. China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P.R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, P.R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, P.R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P.R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, P.R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, P.R. China
| |
Collapse
|
28
|
Wang L. RNA polymerase collisions and their role in transcription. Transcription 2024; 15:38-47. [PMID: 38357902 PMCID: PMC11093029 DOI: 10.1080/21541264.2024.2316972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024] Open
Abstract
RNA polymerases are the central enzymes of gene expression and function frequently in either a head-on or co-directional manner on the busy DNA track. Whether and how these collisions between RNA polymerases contribute to transcriptional regulation is mysterious. Increasing evidence from biochemical and single-molecule studies suggests that RNA polymerase collisions function as an important regulator to fine-tune transcription, rather than creating deleterious "traffic jams". This review summarizes the recent progress on elucidating the consequences of RNA polymerase collisions during transcription and highlights the significance of cooperation and coordination between RNA polymerases.
Collapse
Affiliation(s)
- Ling Wang
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
29
|
He D, Mount SM, Patro R. scCensus: Off-target scRNA-seq reads reveal meaningful biology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577807. [PMID: 38352549 PMCID: PMC10862729 DOI: 10.1101/2024.01.29.577807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Single-cell RNA-sequencing (scRNA-seq) provides unprecedented insights into cellular heterogeneity. Although scRNA-seq reads from most prevalent and popular tagged-end protocols are expected to arise from the 3' end of polyadenylated RNAs, recent studies have shown that "off-target" reads can constitute a substantial portion of the read population. In this work, we introduced scCensus, a comprehensive analysis workflow for systematically evaluating and categorizing off-target reads in scRNA-seq. We applied scCensus to seven scRNA-seq datasets. Our analysis of intergenic reads shows that these off-target reads contain information about chromatin structure and can be used to identify similar cells across modalities. Our analysis of antisense reads suggests that these reads can be used to improve gene detection and capture interesting transcriptional activities like antisense transcription. Furthermore, using splice-aware quantification, we find that spliced and unspliced reads provide distinct information about cell clusters and biomarkers, suggesting the utility of integrating signals from reads with different splicing statuses. Overall, our results suggest that off-target scRNA-seq reads contain underappreciated information about various transcriptional activities. These observations about yet-unexploited information in existing scRNA-seq data will help guide and motivate the community to improve current algorithms and analysis methods, and to develop novel approaches that utilize off-target reads to extend the reach and accuracy of single-cell data analysis pipelines.
Collapse
Affiliation(s)
- Dongze He
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA
- Program in Computational Biology, Bioinformatics and Genomices, University of Maryland, College Park, MD 20742, USA
| | - Stephen M. Mount
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Rob Patro
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA
- Department of Computer Science, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
30
|
Grandchamp A, Czuppon P, Bornberg-Bauer E. Quantification and modeling of turnover dynamics of de novo transcripts in Drosophila melanogaster. Nucleic Acids Res 2024; 52:274-287. [PMID: 38000384 PMCID: PMC10783523 DOI: 10.1093/nar/gkad1079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/13/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
Most of the transcribed eukaryotic genomes are composed of non-coding transcripts. Among these transcripts, some are newly transcribed when compared to outgroups and are referred to as de novo transcripts. De novo transcripts have been shown to play a major role in genomic innovations. However, little is known about the rates at which de novo transcripts are gained and lost in individuals of the same species. Here, we address this gap and estimate the de novo transcript turnover rate with an evolutionary model. We use DNA long reads and RNA short reads from seven geographically remote samples of inbred individuals of Drosophila melanogaster to detect de novo transcripts that are gained on a short evolutionary time scale. Overall, each sampled individual contains around 2500 unspliced de novo transcripts, with most of them being sample specific. We estimate that around 0.15 transcripts are gained per year, and that each gained transcript is lost at a rate around 5× 10-5 per year. This high turnover of transcripts suggests frequent exploration of new genomic sequences within species. These rate estimates are essential to comprehend the process and timescale of de novo gene birth.
Collapse
Affiliation(s)
- Anna Grandchamp
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Peter Czuppon
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
- Department of Protein Evolution, Max Planck Institute for Biology, Tübingen, Germany
| |
Collapse
|
31
|
Rehman SU, Ullah N, Zhang Z, Zhen Y, Din AU, Cui H, Wang M. Recent insights into the functions and mechanisms of antisense RNA: emerging applications in cancer therapy and precision medicine. Front Chem 2024; 11:1335330. [PMID: 38274897 PMCID: PMC10809404 DOI: 10.3389/fchem.2023.1335330] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
The antisense RNA molecule is a unique DNA transcript consisting of 19-23 nucleotides, characterized by its complementary nature to mRNA. These antisense RNAs play a crucial role in regulating gene expression at various stages, including replication, transcription, and translation. Additionally, artificial antisense RNAs have demonstrated their ability to effectively modulate gene expression in host cells. Consequently, there has been a substantial increase in research dedicated to investigating the roles of antisense RNAs. These molecules have been found to be influential in various cellular processes, such as X-chromosome inactivation and imprinted silencing in healthy cells. However, it is important to recognize that in cancer cells; aberrantly expressed antisense RNAs can trigger the epigenetic silencing of tumor suppressor genes. Moreover, the presence of deletion-induced aberrant antisense RNAs can lead to the development of diseases through epigenetic silencing. One area of drug development worth mentioning is antisense oligonucleotides (ASOs), and a prime example of an oncogenic trans-acting long noncoding RNA (lncRNA) is HOTAIR (HOX transcript antisense RNA). NATs (noncoding antisense transcripts) are dysregulated in many cancers, and researchers are just beginning to unravel their roles as crucial regulators of cancer's hallmarks, as well as their potential for cancer therapy. In this review, we summarize the emerging roles and mechanisms of antisense RNA and explore their application in cancer therapy.
Collapse
Affiliation(s)
- Shahab Ur Rehman
- College of Animals Science and Technology Yangzhou University, Yangzhou, China
| | - Numan Ullah
- College of Animals Science and Technology Yangzhou University, Yangzhou, China
| | - Zhenbin Zhang
- College of Animals Science and Technology Yangzhou University, Yangzhou, China
| | - Yongkang Zhen
- College of Animals Nutrition Yangzhou University, Yangzhou, China
| | - Aziz-Ud Din
- Department of Human Genetics, Hazara University Mansehra, Mansehra, Pakistan
| | - Hengmi Cui
- College of Animals Science and Technology Yangzhou University, Yangzhou, China
- Institute of Epigenetics and Epigenomics Yangzhou University, College of Animal Nutrition Yangzhou University, Yangzhou, China
| | - Mengzhi Wang
- College of Animals Science and Technology Yangzhou University, Yangzhou, China
- College of Animals Nutrition Yangzhou University, Yangzhou, China
| |
Collapse
|
32
|
Wang K, Lu Y, Li H, Zhang J, Ju Y, Ouyang M. Role of long non-coding RNAs in metabolic reprogramming of gastrointestinal cancer cells. Cancer Cell Int 2024; 24:15. [PMID: 38184562 PMCID: PMC10770979 DOI: 10.1186/s12935-023-03194-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/26/2023] [Indexed: 01/08/2024] Open
Abstract
Metabolic reprogramming, which is recognized as a hallmark of cancer, refers to the phenomenon by which cancer cells change their metabolism to support their increased biosynthetic demands. Tumor cells undergo substantial alterations in metabolic pathways, such as glycolysis, oxidative phosphorylation, pentose phosphate pathway, tricarboxylic acid cycle, fatty acid metabolism, and amino acid metabolism. Latest studies have revealed that long non-coding RNAs (lncRNAs), a group of non-coding RNAs over 200 nucleotides long, mediate metabolic reprogramming in tumor cells by regulating the transcription, translation and post-translational modification of metabolic-related signaling pathways and metabolism-related enzymes through transcriptional, translational, and post-translational modifications of genes. In addition, lncRNAs are closely related to the tumor microenvironment, and they directly or indirectly affect the proliferation and migration of tumor cells, drug resistance and other processes. Here, we review the mechanisms of lncRNA-mediated regulation of glucose, lipid, amino acid metabolism and tumor immunity in gastrointestinal tumors, aiming to provide more information on effective therapeutic targets and drug molecules for gastrointestinal tumors.
Collapse
Affiliation(s)
- Kang Wang
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde Foshan), Shunde, Foshan, 528300, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Yan Lu
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde Foshan), Shunde, Foshan, 528300, Guangdong, China
| | - Haibin Li
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde Foshan), Shunde, Foshan, 528300, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Jun Zhang
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde Foshan), Shunde, Foshan, 528300, Guangdong, China
- Guangdong Medical University, Dongguan, 523808, China
| | - Yongle Ju
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde Foshan), Shunde, Foshan, 528300, Guangdong, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510080, Guangdong, China.
| | - Manzhao Ouyang
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde Foshan), Shunde, Foshan, 528300, Guangdong, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
33
|
Yang Z, Huang T, Sheng C, Wang K, Li Y, Feng Y, Huo D, Duan F. Prognostic value of lncRNA AFAP1-AS1 in breast cancer: a meta-analysis and validated study in Chinese population. Cancer Rep (Hoboken) 2024; 7:e1923. [PMID: 37916733 PMCID: PMC10809272 DOI: 10.1002/cnr2.1923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/26/2023] [Accepted: 10/11/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Long non encoding RNA (lncRNA) plays a crucial role in breast cancer. However, the prognostic role of AFAP1-AS1 in breast cancer remains unclear. AIMS To investigate the relationship between the expression of long non-coding RNA actin filament-associated protein1 antisense RNA1 (AFAP1-AS1) and prognosis of breast cancer. METHODS AND RESULTS Meta-analysis was performed to explore the correlation between AFAP1-AS1 and breast cancer. The AFAP1-AS1expression in patients with breast cancer tissue and adjacent normal tissue from 153 patients was determined by qRT-PCR. Bioinformatics and Cox proportional-hazards risk model were used to explore the relationship between expression of AFAP1-AS1 and prognosis. The combined analysis revealed a significant correlation between AFAP1-AS1 expression and both overall survival (hazard ratios, HR = 2.33, 95%Cl: 1.94-2.81, p < 0.001) as well as disease-free survival/progression-free survival (HR = 2.94, 95%CI: 2.35-3.67, p < 0.001). The relation between expression of AFAP1-AS1 and breast cancer was determined in 153 breast cancer and adjacent normal tissues. The findings revealed a significantly higher AFAP1-AS1expression levels in breast cancer tissues compared to adjacent normal tissues (p < 0.001). Additionally, patients exhibiting heightened levels of AFAP1-AS1 expression were correlated with an unfavorable prognosis (HR = 2.35, 95%CI: 1.47-3.74, p < 0.001), which aligns consistently with the findings of the pooled analysis. The subgroup analysis of clinical characteristics revealed a significant association between high expression of AFAP1-AS1 and TNM stage (HR = 1.72, 95%CI: 1.11-2.65, p = 0.015). CONCLUSION This study demonstrated that AFAP1-AS1 acts as an oncogene and may serve as a novel prognostic marker for breast cancer, particularly in the Chinese population.
Collapse
Affiliation(s)
- Zhenxing Yang
- Department of Medical Research Officethe Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhouChina
| | - Tao Huang
- Department of Medical Research Officethe Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhouChina
| | - Chong Sheng
- College of Public HealthZhengzhou UniversityZhengzhouChina
| | - Kaijuan Wang
- College of Public HealthZhengzhou UniversityZhengzhouChina
| | - Yilin Li
- Department of Medical Research Officethe Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhouChina
| | - Yajing Feng
- Department of Hospital Infection Managementthe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Dandan Huo
- Department of Medical Research Officethe Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhouChina
| | - Fujiao Duan
- Department of Medical Research Officethe Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhouChina
| |
Collapse
|
34
|
Ding Y, Lv Y, Pan Y, Li J, Yan K, Yu Z, Shang Q. A masked gene concealed hand in glove in the forkhead protein crocodile regulates the predominant detoxification CYP6DA1 in Aphis gossypii Glover. Int J Biol Macromol 2023; 253:126824. [PMID: 37690634 DOI: 10.1016/j.ijbiomac.2023.126824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Cytochrome P450-mediated metabolism is an important mechanism of insecticide resistance, most studies show upregulated transcript levels of P450s in resistant insect strains. Our previous studies illustrated that some upregulated P450s were associated with cyantraniliprole resistance, and it is more comprehensive to use the tissue specificity of transcriptomes to compare resistant (CyR) and susceptible (SS) strains. In this study, the expression profiles of P450s in a CyR strain compared with a SS strain in remaining carcass or midgut were investigated by RNA sequencing, and candidate genes were selected for functional study. Drosophila melanogaster bioassays suggested that ectopic overexpression of CYP4CK1, CYP6CY5, CYP6CY9, CYP6CY19, CYP6CZ1 and CYP6DA1 in flies was sufficient to confer cyantraniliprole resistance, among which CYP6DA1 was the predominant contributor to resistance (12.24-fold). RNAi suppression of CYP4CK1, CYP6CY5, CYP6CY9 and CYP6DA1 significantly increased CyR aphid sensitivity to cyantraniliprole. The CYP6DA1 promoter had two predicted binding sites for crocodile (CROC), an intron-free ORF with bidirectional transcription yielding CROC (+) and CROC (-). Y1H, RNAi and EMSA found that CROC (-) was a transcription factor directly regulating CYP6DA1 expression. In conclusion, P450 genes contribute to cyantraniliprole resistance, and the transcription factor CROC (-) regulates the expression of CYP6DA1 in A. gossypii.
Collapse
Affiliation(s)
- Yaping Ding
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yuntong Lv
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Jianyi Li
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Kunpeng Yan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Zihan Yu
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, PR China.
| |
Collapse
|
35
|
Ma Y, Zhao T, Wu X, Yang Z, Sun Y. Identification cloning and functional analysis of novel natural antisense lncRNA CFL1-AS1 in cattle. Epigenetics 2023; 18:2231707. [PMID: 37406176 DOI: 10.1080/15592294.2023.2231707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/14/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023] Open
Abstract
Long noncoding RNAs have been identified as important regulators of gene expression and animal development. The expression of natural antisense transcripts (NATs) transcribed in the opposite direction to protein-coding genes is usually positively correlated with the expression of homologous sense genes and is the key factor for expression. Here, we identified a conserved noncoding antisense transcript, CFL1-AS1, that plays an important role in muscle growth and development. CFL1-AS1 overexpression and knockout vectors were constructed and transfected into 293T and C2C12 cells. CFL1-AS1 positively regulated CFL1 gene expression, and the expression of CFL2 was also downregulated when CFL1-AS1 was knocked down. CFL1-AS1 promoted cell proliferation, inhibited apoptosis and participated in autophagy. This study expands the research on NATs in cattle and lays a foundation for the study of the biological function of bovine CFL1 and its natural antisense chain transcript CFL1-AS1 in bovine skeletal muscle development. The discovery of this NAT can provide a reference for subsequent genetic breeding and data on the characteristics and functional mechanisms of NATs.
Collapse
Affiliation(s)
- Yaoyao Ma
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Tianqi Zhao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xinyi Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhangping Yang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yujia Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
36
|
Kumari N, Das K, Sharma S, Dahal S, Desai SS, Roy U, Sharma A, Manjunath M, Gopalakrishnan V, Retheesh ST, Javadekar SM, Choudhary B, Raghavan SC. Evaluation of potential role of R-loop and G-quadruplex DNA in the fragility of c-MYC during chromosomal translocation associated with Burkitt's lymphoma. J Biol Chem 2023; 299:105431. [PMID: 37926284 PMCID: PMC10704377 DOI: 10.1016/j.jbc.2023.105431] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023] Open
Abstract
t(8;14) translocation is the hallmark of Burkitt's lymphoma and results in c-MYC deregulation. During the translocation, c-MYC gene on chromosome 8 gets juxtaposed to the Ig switch regions on chromosome 14. Although the promoter of c-MYC has been investigated for its mechanism of fragility, little is known about other c-MYC breakpoint regions. We have analyzed the translocation break points at the exon 1/intron 1 of c-MYC locus from patients with Burkitt's lymphoma. Results showed that the breakpoint region, when present on a plasmid, could fold into an R-loop confirmation in a transcription-dependent manner. Sodium bisulfite modification assay revealed significant single-strandedness on chromosomal DNA of Burkitt's lymphoma cell line, Raji, and normal lymphocytes, revealing distinct R-loops covering up to 100 bp region. Besides, ChIP-DRIP analysis reveals that the R-loop antibody can bind to the breakpoint region. Further, we show the formation of stable parallel intramolecular G-quadruplex on non-template strand of the genome. Finally, incubation of purified AID in vitro or overexpression of AID within the cells led to enhanced mutation frequency at the c-MYC breakpoint region. Interestingly, anti-γH2AX can bind to DSBs generated at the c-MYC breakpoint region within the cells. The formation of R-loop and G-quadruplex was found to be mutually exclusive. Therefore, our results suggest that AID can bind to the single-stranded region of the R-loop and G4 DNA, leading to the deamination of cytosines to uracil and induction of DNA breaks in one of the DNA strands, leading to double-strand break, which could culminate in t(8;14) chromosomal translocation.
Collapse
Affiliation(s)
- Nitu Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Kohal Das
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Shivangi Sharma
- Department of Biochemistry, Indian Institute of Science, Bangalore, India; Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| | - Sumedha Dahal
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | - Urbi Roy
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Anju Sharma
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Meghana Manjunath
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| | - Vidya Gopalakrishnan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India; Department of Zoology, St Joseph's College, Irinjalakuda, Kerala, India
| | - S T Retheesh
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Saniya M Javadekar
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
37
|
Hazra R, Utama R, Naik P, Dobin A, Spector DL. Identification of glioblastoma stem cell-associated lncRNAs using single-cell RNA sequencing datasets. Stem Cell Reports 2023; 18:2056-2070. [PMID: 37922916 PMCID: PMC10679778 DOI: 10.1016/j.stemcr.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive, heterogeneous brain tumor in which glioblastoma stem cells (GSCs) are known culprits of therapy resistance. Long non-coding RNAs (lncRNAs) have been shown to play a critical role in both cancer and normal biology. A few studies have suggested that aberrant expression of lncRNAs is associated with GSCs. However, a comprehensive single-cell analysis of the GSC-associated lncRNA transcriptome has not been carried out. Here, we analyzed recently published single-cell RNA sequencing datasets of adult GBM tumors, GBM organoids, GSC-enriched GBM tumors, and developing human brain samples to identify lncRNAs highly expressed in GSCs. We further revealed that the GSC-specific lncRNAs GIHCG and LINC01563 promote proliferation, migration, and stemness in the GSC population. Together, this study identified a panel of uncharacterized GSC-enriched lncRNAs and set the stage for future in-depth studies to examine their role in GBM pathology and their potential as biomarkers and/or therapeutic targets in GBM.
Collapse
Affiliation(s)
- Rasmani Hazra
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| | - Raditya Utama
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Payal Naik
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Alexander Dobin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - David L Spector
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
38
|
Downes N, Niskanen H, Tomas Bosch V, Taipale M, Godiwala M, Väänänen MA, Turunen TA, Aavik E, Laham-Karam N, Ylä-Herttuala S, Kaikkonen MU. Hypoxic regulation of hypoxia inducible factor 1 alpha via antisense transcription. J Biol Chem 2023; 299:105291. [PMID: 37748649 PMCID: PMC10630634 DOI: 10.1016/j.jbc.2023.105291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 09/11/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023] Open
Abstract
Impaired oxygen homeostasis is a frequently encountered pathophysiological factor in multiple complex diseases, including cardiovascular disease and cancer. While the canonical hypoxia response pathway is well characterized, less is known about the role of noncoding RNAs in this process. Here, we investigated the nascent and steady-state noncoding transcriptional responses in endothelial cells and their potential roles in regulating the hypoxic response. Notably, we identify a novel antisense long noncoding RNA that convergently overlaps the majority of the hypoxia inducible factor 1 alpha (HIF1A) locus, which is expressed across several cell types and elevated in atherosclerotic lesions. The antisense (HIF1A-AS) is produced as a stable, unspliced, and polyadenylated nuclear retained transcript. HIF1A-AS is highly induced in hypoxia by both HIF1A and HIF2A and exhibits anticorrelation with the coding HIF1A transcript and protein expression. We further characterized this functional relationship by CRISPR-mediated bimodal perturbation of the HIF1A-AS promoter. We provide evidence that HIF1A-AS represses the expression of HIF1a in cis by repressing transcriptional elongation and deposition of H3K4me3, and that this mechanism is dependent on the act of antisense transcription itself. Overall, our results indicate a critical regulatory role of antisense mediated transcription in regulation of HIF1A expression and cellular response to hypoxia.
Collapse
Affiliation(s)
- Nicholas Downes
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, North-Savo, Finland
| | - Henri Niskanen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, North-Savo, Finland
| | - Vanesa Tomas Bosch
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, North-Savo, Finland
| | - Mari Taipale
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, North-Savo, Finland
| | - Mehvash Godiwala
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, North-Savo, Finland
| | - Mari-Anna Väänänen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, North-Savo, Finland
| | - Tiia A Turunen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, North-Savo, Finland
| | - Einari Aavik
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, North-Savo, Finland
| | - Nihay Laham-Karam
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, North-Savo, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, North-Savo, Finland; School of Medicine, University of Eastern Finland, Kuopio, North-Savo, Finland; Heart Center, Kuopio University Hospital, Kuopio, Finland.
| | - Minna U Kaikkonen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, North-Savo, Finland.
| |
Collapse
|
39
|
Li W, Huo Y, Ren Y, Han C, Li S, Wang K, He M, Chen Y, Wang Y, Xu L, Guo Y, Si Y, Gao Y, Xu J, Wang X, Ma Y, Yu J, Wang F. Deciphering the Functional Long Non-Coding RNAs Derived from MicroRNA Loci. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203987. [PMID: 37849233 PMCID: PMC10667839 DOI: 10.1002/advs.202203987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/18/2023] [Indexed: 10/19/2023]
Abstract
Albeit the majority of eukaryotic genomes can be pervasively transcribed to a diverse population of lncRNAs and various subtypes of lncRNA are discovered. However, the genome-wide study of miRNA-derived lncRNAs is still lacking. Here, it is reported that over 800 miRNA gene-originated lncRNAs (molncRNAs) are generated from miRNA loci. One of them, molnc-301b from miR-301b and miR-130b, functions as an "RNA decoy" to facilitate dissociation of the chromatin remodeling protein SMARCA5 from chromatin and thereby sequester transcription and mRNA translation. Specifically, molnc-301b attenuates erythropoiesis by mitigating the transcription of erythropoietic and translation-associated genes, such as GATA1 and FOS. In addition, a useful and powerful CRISPR screen platform to characterize the biological functions of molncRNAs at large-scale and single-cell levels is established and 29 functional molncRNAs in hematopoietic cells are identified. Collectively, the focus is on miRNA-derived lncRNAs, deciphering their landscape during normal hematopoiesis, and comprehensively evaluating their potential roles.
Collapse
Affiliation(s)
- Weiqian Li
- State Key Laboratory of Common Mechanism Research for Major DiseasesInstitute of Basic Medical SciencesHaihe Laboratory of Cell EcosystemThe Key Laboratory of RNA and Hematopoietic RegulationChinese Academy of Medical Sciences / Peking Union Medical CollegeBeijing100005P.R. China
| | - Yue Huo
- State Key Laboratory of Common Mechanism Research for Major DiseasesInstitute of Basic Medical SciencesHaihe Laboratory of Cell EcosystemThe Key Laboratory of RNA and Hematopoietic RegulationChinese Academy of Medical Sciences / Peking Union Medical CollegeBeijing100005P.R. China
| | - Yue Ren
- State Key Laboratory of Common Mechanism Research for Major DiseasesInstitute of Basic Medical SciencesHaihe Laboratory of Cell EcosystemThe Key Laboratory of RNA and Hematopoietic RegulationChinese Academy of Medical Sciences / Peking Union Medical CollegeBeijing100005P.R. China
| | - Chenxi Han
- State Key Laboratory of Common Mechanism Research for Major DiseasesInstitute of Basic Medical SciencesHaihe Laboratory of Cell EcosystemThe Key Laboratory of RNA and Hematopoietic RegulationChinese Academy of Medical Sciences / Peking Union Medical CollegeBeijing100005P.R. China
| | - Shuo Li
- State Key Laboratory of Common Mechanism Research for Major DiseasesInstitute of Basic Medical SciencesHaihe Laboratory of Cell EcosystemThe Key Laboratory of RNA and Hematopoietic RegulationChinese Academy of Medical Sciences / Peking Union Medical CollegeBeijing100005P.R. China
| | - Kangning Wang
- State Key Laboratory of Common Mechanism Research for Major DiseasesInstitute of Basic Medical SciencesHaihe Laboratory of Cell EcosystemThe Key Laboratory of RNA and Hematopoietic RegulationChinese Academy of Medical Sciences / Peking Union Medical CollegeBeijing100005P.R. China
| | - Manman He
- State Key Laboratory of Common Mechanism Research for Major DiseasesInstitute of Basic Medical SciencesHaihe Laboratory of Cell EcosystemThe Key Laboratory of RNA and Hematopoietic RegulationChinese Academy of Medical Sciences / Peking Union Medical CollegeBeijing100005P.R. China
| | - Yiying Chen
- State Key Laboratory of Common Mechanism Research for Major DiseasesInstitute of Basic Medical SciencesHaihe Laboratory of Cell EcosystemThe Key Laboratory of RNA and Hematopoietic RegulationChinese Academy of Medical Sciences / Peking Union Medical CollegeBeijing100005P.R. China
| | - Yanran Wang
- State Key Laboratory of Common Mechanism Research for Major DiseasesInstitute of Basic Medical SciencesHaihe Laboratory of Cell EcosystemThe Key Laboratory of RNA and Hematopoietic RegulationChinese Academy of Medical Sciences / Peking Union Medical CollegeBeijing100005P.R. China
| | - Lingjie Xu
- Emergency Department of West China HospitalSichuan UniversityChengdu610041P.R. China
| | - Yuehong Guo
- State Key Laboratory of Common Mechanism Research for Major DiseasesInstitute of Basic Medical SciencesHaihe Laboratory of Cell EcosystemThe Key Laboratory of RNA and Hematopoietic RegulationChinese Academy of Medical Sciences / Peking Union Medical CollegeBeijing100005P.R. China
| | - Yanmin Si
- State Key Laboratory of Common Mechanism Research for Major DiseasesInstitute of Basic Medical SciencesHaihe Laboratory of Cell EcosystemThe Key Laboratory of RNA and Hematopoietic RegulationChinese Academy of Medical Sciences / Peking Union Medical CollegeBeijing100005P.R. China
| | - Yufeng Gao
- State Key Laboratory of Common Mechanism Research for Major DiseasesInstitute of Basic Medical SciencesHaihe Laboratory of Cell EcosystemThe Key Laboratory of RNA and Hematopoietic RegulationChinese Academy of Medical Sciences / Peking Union Medical CollegeBeijing100005P.R. China
| | - Jiayue Xu
- State Key Laboratory of Common Mechanism Research for Major DiseasesInstitute of Basic Medical SciencesHaihe Laboratory of Cell EcosystemThe Key Laboratory of RNA and Hematopoietic RegulationChinese Academy of Medical Sciences / Peking Union Medical CollegeBeijing100005P.R. China
| | - Xiaoshuang Wang
- State Key Laboratory of Common Mechanism Research for Major DiseasesInstitute of Basic Medical SciencesHaihe Laboratory of Cell EcosystemThe Key Laboratory of RNA and Hematopoietic RegulationChinese Academy of Medical Sciences / Peking Union Medical CollegeBeijing100005P.R. China
- The Institute of Blood TransfusionChinese Academy of Medical Sciences / Peking Union Medical CollegeChengdu610052P.R. China
| | - Yanni Ma
- State Key Laboratory of Common Mechanism Research for Major DiseasesInstitute of Basic Medical SciencesHaihe Laboratory of Cell EcosystemThe Key Laboratory of RNA and Hematopoietic RegulationChinese Academy of Medical Sciences / Peking Union Medical CollegeBeijing100005P.R. China
- The Institute of Blood TransfusionChinese Academy of Medical Sciences / Peking Union Medical CollegeChengdu610052P.R. China
| | - Jia Yu
- State Key Laboratory of Common Mechanism Research for Major DiseasesInstitute of Basic Medical SciencesHaihe Laboratory of Cell EcosystemThe Key Laboratory of RNA and Hematopoietic RegulationChinese Academy of Medical Sciences / Peking Union Medical CollegeBeijing100005P.R. China
- The Institute of Blood TransfusionChinese Academy of Medical Sciences / Peking Union Medical CollegeChengdu610052P.R. China
| | - Fang Wang
- State Key Laboratory of Common Mechanism Research for Major DiseasesInstitute of Basic Medical SciencesHaihe Laboratory of Cell EcosystemThe Key Laboratory of RNA and Hematopoietic RegulationChinese Academy of Medical Sciences / Peking Union Medical CollegeBeijing100005P.R. China
- The Institute of Blood TransfusionChinese Academy of Medical Sciences / Peking Union Medical CollegeChengdu610052P.R. China
| |
Collapse
|
40
|
Dahiya N, Kaur M, Singh V. Potential roles of circulatory microRNAs in the onset and progression of renal and cardiac diseases: a focussed review for clinicians. Acta Cardiol 2023; 78:863-877. [PMID: 37318070 DOI: 10.1080/00015385.2023.2221150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 05/14/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
The signalling mechanisms involving the kidney and heart are a niche of networks causing pathological conditions inducing inflammation, reactive oxidative species, cell apoptosis, and organ dysfunction during the onset of clinical complications. The clinical manifestation of the kidney and heart depends on various biochemical processes that influence organ dysfunction coexistence through circulatory networks, which hold utmost importance. The cells of both organs also influence remote communication, and evidence states that it may be explicitly by circulatory small noncoding RNAs, i.e. microRNAs (miRNAs). Recent developments target miRNAs as marker panels for disease diagnosis and prognosis. Circulatory miRNAs expressed in renal and cardiac disease can reveal relevant information about the niche of networks and gene transcription and regulated networks. In this review, we discuss the pertinent roles of identified circulatory miRNAs regulating signal transduction pathways critical in the onset of renal and cardiac disease, which can hold promising future targets for clinical diagnostic and prognostic purposes.
Collapse
Affiliation(s)
- Neha Dahiya
- Centre for Life Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, India
| | - Manpreet Kaur
- Centre for Life Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, India
| | - Varsha Singh
- Centre for Life Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, India
| |
Collapse
|
41
|
Amaral P, Carbonell-Sala S, De La Vega FM, Faial T, Frankish A, Gingeras T, Guigo R, Harrow JL, Hatzigeorgiou AG, Johnson R, Murphy TD, Pertea M, Pruitt KD, Pujar S, Takahashi H, Ulitsky I, Varabyou A, Wells CA, Yandell M, Carninci P, Salzberg SL. The status of the human gene catalogue. Nature 2023; 622:41-47. [PMID: 37794265 PMCID: PMC10575709 DOI: 10.1038/s41586-023-06490-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/27/2023] [Indexed: 10/06/2023]
Abstract
Scientists have been trying to identify every gene in the human genome since the initial draft was published in 2001. In the years since, much progress has been made in identifying protein-coding genes, currently estimated to number fewer than 20,000, with an ever-expanding number of distinct protein-coding isoforms. Here we review the status of the human gene catalogue and the efforts to complete it in recent years. Beside the ongoing annotation of protein-coding genes, their isoforms and pseudogenes, the invention of high-throughput RNA sequencing and other technological breakthroughs have led to a rapid growth in the number of reported non-coding RNA genes. For most of these non-coding RNAs, the functional relevance is currently unclear; we look at recent advances that offer paths forward to identifying their functions and towards eventually completing the human gene catalogue. Finally, we examine the need for a universal annotation standard that includes all medically significant genes and maintains their relationships with different reference genomes for the use of the human gene catalogue in clinical settings.
Collapse
Affiliation(s)
- Paulo Amaral
- INSPER Institute of Education and Research, Sao Paulo, Brazil
| | | | - Francisco M De La Vega
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
- Tempus Labs, Chicago, IL, USA
| | | | - Adam Frankish
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Thomas Gingeras
- Department of Functional Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Roderic Guigo
- Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jennifer L Harrow
- Centre for Genomics Research, Discovery Sciences, AstraZeneca, Royston, UK
| | - Artemis G Hatzigeorgiou
- Department of Computer Science and Biomedical Informatics, Universithy of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | - Rory Johnson
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Dublin, Ireland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Terence D Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Mihaela Pertea
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Kim D Pruitt
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Shashikant Pujar
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Hazuki Takahashi
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Igor Ulitsky
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Ales Varabyou
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Christine A Wells
- Stem Cell Systems, Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Mark Yandell
- Departent of Human Genetics, Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT, USA
| | - Piero Carninci
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- Human Technopole, Milan, Italy.
| | - Steven L Salzberg
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
42
|
Mukherjee S, Mukherjee SB, Frenkel-Morgenstern M. Functional and regulatory impact of chimeric RNAs in human normal and cancer cells. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1777. [PMID: 36633099 DOI: 10.1002/wrna.1777] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/13/2023]
Abstract
Fusions of two genes can lead to the generation of chimeric RNAs, which may have a distinct functional role from their original molecules. Chimeric RNAs could encode novel functional proteins or serve as novel long noncoding RNAs (lncRNAs). The appearance of chimeric RNAs in a cell could help to generate new functionality and phenotypic diversity that might facilitate this cell to survive against new environmental stress. Several recent studies have demonstrated the functional roles of various chimeric RNAs in cancer progression and are considered as biomarkers for cancer diagnosis and sometimes even drug targets. Further, the growing evidence demonstrated the potential functional association of chimeric RNAs with cancer heterogeneity and drug resistance cancer evolution. Recent studies highlighted that chimeric RNAs also have functional potentiality in normal physiological processes. Several functionally potential chimeric RNAs were discovered in human cancer and normal cells in the last two decades. This could indicate that chimeric RNAs are the hidden layer of the human transcriptome that should be explored from the functional insights to better understand the functional evolution of the genome and disease development that could facilitate clinical practice improvements. This review summarizes the current knowledge of chimeric RNAs and highlights their functional, regulatory, and evolutionary impact on different cancers and normal physiological processes. Further, we will discuss the potential functional roles of a recently discovered novel class of chimeric RNAs named sense-antisense/cross-strand chimeric RNAs generated by the fusion of the bi-directional transcripts of the same gene. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- Sumit Mukherjee
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Department of Computer Science, Ben-Gurion University, Beer-Sheva, Israel
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Sunanda Biswas Mukherjee
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Milana Frenkel-Morgenstern
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
43
|
Ataei A, Tahsili M, Hayadokht G, Daneshvar M, Mohammadi Nour S, Soofi A, Masoudi A, Kabiri M, Natami M. Targeting long noncoding RNAs in neuroblastoma: Progress and prospects. Chem Biol Drug Des 2023; 102:640-652. [PMID: 37291742 DOI: 10.1111/cbdd.14263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 06/10/2023]
Abstract
Neuroblastoma (NB) is the third most prevalent tumor that mostly influences infants and young children. Although different treatments have been developed for the treatment of NB, high-risk patients have been reported to have low survival rates. Currently, long noncoding RNAs (lncRNAs) have shown an attractive potential in cancer research and a party of investigations have been performed to understand mechanisms underlying tumor development through lncRNA dysregulation. Researchers have just newly initiated to exhibit the involvement of lncRNAs in NB pathogenesis. In this review article, we tried to clarify the point we stand with respect to the involvement of lncRNAs in NB. Moreover, implications for the pathologic roles of lncRNAs in the development of NB have been discussed. It seems that some of these lncRNAs have promising potential to be applied as biomarkers for NB prognosis and treatment.
Collapse
Affiliation(s)
- Ali Ataei
- School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | | | - Golsa Hayadokht
- School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | | | - Asma Soofi
- Department of Physical Chemistry, School of Chemistry, College of Sciences, University of Tehran, Tehran, Iran
| | - Alireza Masoudi
- Department of Laboratory Sciences, Faculty of Alied Medical Sciences, Qom University of Medical Sciences, Qom, Iran
| | - Maryam Kabiri
- Faculty of Medicine, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Mohammad Natami
- Department of Urology, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
44
|
Kimura T, Tartaglia GG. Editorial: Mechanisms of action of natural antisense transcripts on the post-transcriptional regulation of sense protein coding gene expression during development and in cancer. Front Mol Biosci 2023; 10:1268124. [PMID: 37711390 PMCID: PMC10499381 DOI: 10.3389/fmolb.2023.1268124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 09/16/2023] Open
Affiliation(s)
- Tominori Kimura
- Laboratory of Microbiology and Cell Biology, Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | | |
Collapse
|
45
|
Liu P, Li D, Zhang J, He M, Li Y, Liu R, Li M. Transcriptomic and lipidomic profiling of subcutaneous and visceral adipose tissues in 15 vertebrates. Sci Data 2023; 10:453. [PMID: 37438471 DOI: 10.1038/s41597-023-02360-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 07/03/2023] [Indexed: 07/14/2023] Open
Abstract
The storage of lipids as energy in adipose tissue (AT) has been conserved over the course of evolution. However, substantial differences in ATs physiological activities were reported among species. Hence, establishing the mechanisms shaping evolutionarily divergence in ATs transcriptomes could provide a deeper understanding of AT regulation and its roles in obesity-related diseases. While previous studies performed anatomical, physiological and morphological comparisons between ATs across different species, little is currently understood at the molecular phenotypic levels. Here, we characterized transcriptional and lipidomic profiles of available subcutaneous and visceral ATs samples across 15 vertebrate species, spanning more than 300 million years of evolution, including placental mammals, birds and reptiles. We provide detailed descriptions of the datasets produced in this study and report gene expression and lipid profiles across samples. We demonstrate these data are robust and reveal the AT transcriptome and lipidome vary greater among species than within the same species. These datasets may serve as a resource for future studies on the functional differences among ATs in vertebrate species.
Collapse
Affiliation(s)
- Pengliang Liu
- School of Pharmacy, Chengdu University, Chengdu, 610106, China
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Diyan Li
- School of Pharmacy, Chengdu University, Chengdu, 610106, China.
| | - Jiaman Zhang
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mengnan He
- Chengdu Research Base of Giant Panda Breeding, Chengdu, 611081, China
| | - Yan Li
- Chengdu Research Base of Giant Panda Breeding, Chengdu, 611081, China
| | - Rui Liu
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mingzhou Li
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
46
|
Khorkova O, Stahl J, Joji A, Volmar CH, Zeier Z, Wahlestedt C. Long non-coding RNA-targeting therapeutics: discovery and development update. Expert Opin Drug Discov 2023; 18:1011-1029. [PMID: 37466388 DOI: 10.1080/17460441.2023.2236552] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023]
Abstract
INTRODUCTION lncRNAs are major players in regulatory networks orchestrating multiple cellular functions, such as 3D chromosomal interactions, epigenetic modifications, gene expression and others. Due to progress in the development of nucleic acid-based therapeutics, lncRNAs potentially represent easily accessible therapeutic targets. AREAS COVERED Currently, significant efforts are directed at studies that can tap the enormous therapeutic potential of lncRNAs. This review describes recent developments in this field, particularly focusing on clinical applications. EXPERT OPINION Extensive druggable target range of lncRNA combined with high specificity and accelerated development process of nucleic acid-based therapeutics open new prospects for treatment in areas of extreme unmet medical need, such as genetic diseases, aggressive cancers, protein deficiencies, and subsets of common diseases caused by known mutations. Although currently wide acceptance of lncRNA-targeting nucleic acid-based therapeutics is impeded by the need for parenteral or direct-to-CNS administration, development of less invasive techniques and orally available/BBB-penetrant nucleic acid-based therapeutics is showing early successes. Recently, mRNA-based COVID-19 vaccines have demonstrated clinical safety of all aspects of nucleic acid-based therapeutic technology, including multiple chemical modifications of nucleic acids and nanoparticle delivery. These trends position lncRNA-targeting drugs as significant players in the future of drug development, especially in the area of personalized medicine.
Collapse
Affiliation(s)
- Olga Khorkova
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Jack Stahl
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Aswathy Joji
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Claude-Henry Volmar
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Zane Zeier
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Claes Wahlestedt
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| |
Collapse
|
47
|
Khorkova O, Stahl J, Joji A, Volmar CH, Wahlestedt C. Amplifying gene expression with RNA-targeted therapeutics. Nat Rev Drug Discov 2023; 22:539-561. [PMID: 37253858 PMCID: PMC10227815 DOI: 10.1038/s41573-023-00704-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2023] [Indexed: 06/01/2023]
Abstract
Many diseases are caused by insufficient expression of mutated genes and would benefit from increased expression of the corresponding protein. However, in drug development, it has been historically easier to develop drugs with inhibitory or antagonistic effects. Protein replacement and gene therapy can achieve the goal of increased protein expression but have limitations. Recent discoveries of the extensive regulatory networks formed by non-coding RNAs offer alternative targets and strategies to amplify the production of a specific protein. In addition to RNA-targeting small molecules, new nucleic acid-based therapeutic modalities that allow highly specific modulation of RNA-based regulatory networks are being developed. Such approaches can directly target the stability of mRNAs or modulate non-coding RNA-mediated regulation of transcription and translation. This Review highlights emerging RNA-targeted therapeutics for gene activation, focusing on opportunities and challenges for translation to the clinic.
Collapse
Affiliation(s)
- Olga Khorkova
- OPKO Health, Miami, FL, USA
- Center for Therapeutic Innovation, University of Miami, Miami, FL, USA
| | - Jack Stahl
- Center for Therapeutic Innovation, University of Miami, Miami, FL, USA
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Aswathy Joji
- Center for Therapeutic Innovation, University of Miami, Miami, FL, USA
- Department of Chemistry, University of Miami, Miami, FL, USA
| | - Claude-Henry Volmar
- Center for Therapeutic Innovation, University of Miami, Miami, FL, USA
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Claes Wahlestedt
- Center for Therapeutic Innovation, University of Miami, Miami, FL, USA.
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA.
- Department of Chemistry, University of Miami, Miami, FL, USA.
| |
Collapse
|
48
|
Pierattini B, D’Agostino S, Bon C, Peruzzo O, Alendar A, Codino A, Ros G, Persichetti F, Sanges R, Carninci P, Santoro C, Espinoza S, Valentini P, Pandolfini L, Gustincich S. SINEUP non-coding RNA activity depends on specific N6-methyladenosine nucleotides. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:402-414. [PMID: 37187707 PMCID: PMC10176434 DOI: 10.1016/j.omtn.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023]
Abstract
SINEUPs are natural and synthetic antisense long non-coding RNAs (lncRNAs) selectively enhancing target mRNAs translation by increasing their association with polysomes. This activity requires two RNA domains: an embedded inverted SINEB2 element acting as effector domain, and an antisense region, the binding domain, conferring target selectivity. SINEUP technology presents several advantages to treat genetic (haploinsufficiencies) and complex diseases restoring the physiological activity of diseased genes and of compensatory pathways. To streamline these applications to the clinic, a better understanding of the mechanism of action is needed. Here we show that natural mouse SINEUP AS Uchl1 and synthetic human miniSINEUP-DJ-1 are N6-methyladenosine (m6A) modified by METTL3 enzyme. Then, we map m6A-modified sites along SINEUP sequence with Nanopore direct RNA sequencing and a reverse transcription assay. We report that m6A removal from SINEUP RNA causes the depletion of endogenous target mRNA from actively translating polysomes, without altering SINEUP enrichment in ribosomal subunit-associated fractions. These results prove that SINEUP activity requires an m6A-dependent step to enhance translation of target mRNAs, providing a new mechanism for m6A translation regulation and strengthening our knowledge of SINEUP-specific mode of action. Altogether these new findings pave the way to a more effective therapeutic application of this well-defined class of lncRNAs.
Collapse
Affiliation(s)
- Bianca Pierattini
- Area of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Sabrina D’Agostino
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Carlotta Bon
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Omar Peruzzo
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Andrej Alendar
- The Gurdon Institute and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Azzurra Codino
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Gloria Ros
- Department of Health Sciences and Research Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Francesca Persichetti
- Department of Health Sciences and Research Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Remo Sanges
- Area of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences (IMS), Yokohama 230-0045, Japan
- Human Technopole, 20157 Milan, Italy
| | - Claudio Santoro
- Department of Health Sciences and Research Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Stefano Espinoza
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
- Department of Health Sciences and Research Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Paola Valentini
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
- Corresponding author: Paola Valentini, Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), via Melen 83, 16152 Genova, Italy.
| | - Luca Pandolfini
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
- Corresponding author: Luca Pandolfini, Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), via Melen 83, 16152 Genova, Italy.
| | - Stefano Gustincich
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
- Corresponding author: Stefano Gustincich, Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), via Melen 83, 16152 Genova, Italy.
| |
Collapse
|
49
|
Liu D, Xu C, Liu Y, Ouyang W, Lin S, Xu A, Zhang Y, Xie Y, Huang Q, Zhao W, Chen Z, Wang L, Chen S, Huang J, Wu ZB, Sun X. A systematic survey of LU domain-containing proteins reveals a novel human gene, LY6A, which encodes the candidate ortholog of mouse Ly-6A/Sca-1 and is aberrantly expressed in pituitary tumors. Front Med 2023; 17:458-475. [PMID: 36928550 DOI: 10.1007/s11684-022-0968-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/12/2022] [Indexed: 03/18/2023]
Abstract
The Ly-6 and uPAR (LU) domain-containing proteins represent a large family of cell-surface markers. In particular, mouse Ly-6A/Sca-1 is a widely used marker for various stem cells; however, its human ortholog is missing. In this study, based on a systematic survey and comparative genomic study of mouse and human LU domain-containing proteins, we identified a previously unannotated human gene encoding the candidate ortholog of mouse Ly-6A/Sca-1. This gene, hereby named LY6A, reversely overlaps with a lncRNA gene in the majority of exonic sequences. We found that LY6A is aberrantly expressed in pituitary tumors, but not in normal pituitary tissues, and may contribute to tumorigenesis. Similar to mouse Ly-6A/Sca-1, human LY6A is also upregulated by interferon, suggesting a conserved transcriptional regulatory mechanism between humans and mice. We cloned the full-length LY6A cDNA, whose encoded protein sequence, domain architecture, and exon-intron structures are all well conserved with mouse Ly-6A/Sca-1. Ectopic expression of the LY6A protein in cells demonstrates that it acts the same as mouse Ly-6A/Sca-1 in their processing and glycosylphosphatidylinositol anchoring to the cell membrane. Collectively, these studies unveil a novel human gene encoding a candidate biomarker and provide an interesting model gene for studying gene regulatory and evolutionary mechanisms.
Collapse
Affiliation(s)
- Dan Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunhui Xu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yanting Liu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wen Ouyang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shaojian Lin
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Aining Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuanliang Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yinyin Xie
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qiuhua Huang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Weili Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Saijuan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jinyan Huang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Biomedical Big Data Center, First Affiliated Hospital, Zhejiang University School of Medicine, and Cancer Center, Zhejiang University, Hangzhou, 310000, China.
| | - Zhe Bao Wu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Xiaojian Sun
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
50
|
Titus-McQuillan JE, Nanni AV, McIntyre LM, Rogers RL. Estimating transcriptome complexities across eukaryotes. BMC Genomics 2023; 24:254. [PMID: 37170194 PMCID: PMC10173493 DOI: 10.1186/s12864-023-09326-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/20/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Genomic complexity is a growing field of evolution, with case studies for comparative evolutionary analyses in model and emerging non-model systems. Understanding complexity and the functional components of the genome is an untapped wealth of knowledge ripe for exploration. With the "remarkable lack of correspondence" between genome size and complexity, there needs to be a way to quantify complexity across organisms. In this study, we use a set of complexity metrics that allow for evaluating changes in complexity using TranD. RESULTS We ascertain if complexity is increasing or decreasing across transcriptomes and at what structural level, as complexity varies. In this study, we define three metrics - TpG, EpT, and EpG- to quantify the transcriptome's complexity that encapsulates the dynamics of alternative splicing. Here we compare complexity metrics across 1) whole genome annotations, 2) a filtered subset of orthologs, and 3) novel genes to elucidate the impacts of orthologs and novel genes in transcript model analysis. Effective Exon Number (EEN) issued to compare the distribution of exon sizes within transcripts against random expectations of uniform exon placement. EEN accounts for differences in exon size, which is important because novel gene differences in complexity for orthologs and whole-transcriptome analyses are biased towards low-complexity genes with few exons and few alternative transcripts. CONCLUSIONS With our metric analyses, we are able to quantify changes in complexity across diverse lineages with greater precision and accuracy than previous cross-species comparisons under ortholog conditioning. These analyses represent a step toward whole-transcriptome analysis in the emerging field of non-model evolutionary genomics, with key insights for evolutionary inference of complexity changes on deep timescales across the tree of life. We suggest a means to quantify biases generated in ortholog calling and correct complexity analysis for lineage-specific effects. With these metrics, we directly assay the quantitative properties of newly formed lineage-specific genes as they lower complexity.
Collapse
Affiliation(s)
- James E Titus-McQuillan
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
| | - Adalena V Nanni
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, 32611, USA
- University of Florida Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Lauren M McIntyre
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, 32611, USA
- University of Florida Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Rebekah L Rogers
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| |
Collapse
|