1
|
Gonzales GA, Huang S, Wilkinson L, Nguyen JA, Sikdar S, Piot C, Naumenko V, Rajwani J, Wood CM, Dinh I, Moore M, Cedeño E, McKenna N, Polyak MJ, Amidian S, Ebacher V, Rosin NL, Carneiro MB, Surewaard B, Peters NC, Mody CH, Biernaskie J, Yates RM, Mahoney DJ, Canton J. The pore-forming apolipoprotein APOL7C drives phagosomal rupture and antigen cross-presentation by dendritic cells. Sci Immunol 2024; 9:eadn2168. [PMID: 39485861 DOI: 10.1126/sciimmunol.adn2168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/23/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024]
Abstract
Conventional dendritic cells (cDCs) generate protective cytotoxic T lymphocyte (CTL) responses against extracellular pathogens and tumors. This is achieved through a process known as cross-presentation (XP), and, despite its biological importance, the mechanism(s) driving XP remains unclear. Here, we show that a cDC-specific pore-forming protein called apolipoprotein L 7C (APOL7C) is up-regulated in response to innate immune stimuli and is recruited to phagosomes. Association of APOL7C with phagosomes led to phagosomal rupture and escape of engulfed antigens to the cytosol, where they could be processed via the endogenous MHC class I antigen processing pathway. Accordingly, mice deficient in APOL7C did not efficiently prime CD8+ T cells in response to immunization with bead-bound and cell-associated antigens. Together, our data indicate the presence of dedicated apolipoproteins that mediate the delivery of phagocytosed proteins to the cytosol of activated cDCs to facilitate XP.
Collapse
Affiliation(s)
- Gerone A Gonzales
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Song Huang
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Liam Wilkinson
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jenny A Nguyen
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Saif Sikdar
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Research Institute, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Research Institute, Calgary, Alberta, Canada
| | - Cécile Piot
- Immunobiology Laboratory, Francis Crick Institute, London, UK
| | - Victor Naumenko
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Research Institute, Calgary, Alberta, Canada
- Riddell Centre for Cancer Immunotherapy, Calgary, Alberta, Canada
| | - Jahanara Rajwani
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Research Institute, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Research Institute, Calgary, Alberta, Canada
| | - Cassandra M Wood
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Irene Dinh
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Melanie Moore
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Eymi Cedeño
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Neil McKenna
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Maria J Polyak
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Calvin, Joan and Phoebe Snyder Institute for Chronic Disease, Calgary, Alberta, Canada
| | - Sara Amidian
- Cell Imaging Core, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Nicole L Rosin
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Matheus B Carneiro
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Calvin, Joan and Phoebe Snyder Institute for Chronic Disease, Calgary, Alberta, Canada
| | - Bas Surewaard
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Calvin, Joan and Phoebe Snyder Institute for Chronic Disease, Calgary, Alberta, Canada
| | - Nathan C Peters
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Calvin, Joan and Phoebe Snyder Institute for Chronic Disease, Calgary, Alberta, Canada
| | - Christopher H Mody
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Calvin, Joan and Phoebe Snyder Institute for Chronic Disease, Calgary, Alberta, Canada
| | - Jeff Biernaskie
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Robin M Yates
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
- Calvin, Joan and Phoebe Snyder Institute for Chronic Disease, Calgary, Alberta, Canada
| | - Douglas J Mahoney
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Research Institute, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Research Institute, Calgary, Alberta, Canada
- Riddell Centre for Cancer Immunotherapy, Calgary, Alberta, Canada
| | - Johnathan Canton
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Riddell Centre for Cancer Immunotherapy, Calgary, Alberta, Canada
- Calvin, Joan and Phoebe Snyder Institute for Chronic Disease, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Calgary, Alberta, Canada
| |
Collapse
|
2
|
Pays E. Apolipoprotein-L1 (APOL1): From Sleeping Sickness to Kidney Disease. Cells 2024; 13:1738. [PMID: 39451256 PMCID: PMC11506758 DOI: 10.3390/cells13201738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
Apolipoprotein-L1 (APOL1) is a membrane-interacting protein induced by inflammation, which confers human resistance to infection by African trypanosomes. APOL1 kills Trypanosoma brucei through induction of apoptotic-like parasite death, but two T. brucei clones acquired resistance to APOL1, allowing them to cause sleeping sickness. An APOL1 C-terminal sequence alteration, such as occurs in natural West African variants G1 and G2, restored human resistance to these clones. However, APOL1 unfolding induced by G1 or G2 mutations enhances protein hydrophobicity, resulting in kidney podocyte dysfunctions affecting renal filtration. The mechanism involved in these dysfunctions is debated. The ability of APOL1 to generate ion pores in trypanosome intracellular membranes or in synthetic membranes was provided as an explanation. However, transmembrane insertion of APOL1 strictly depends on acidic conditions, and podocyte cytopathology mainly results from secreted APOL1 activity on the plasma membrane, which occurs under non-acidic conditions. In this review, I argue that besides inactivation of APOL3 functions in membrane dynamics (fission and fusion), APOL1 variants induce inflammation-linked podocyte toxicity not through pore formation, but through plasma membrane disturbance resulting from increased interaction with cholesterol, which enhances cation channels activity. A natural mutation in the membrane-interacting domain (N264K) abrogates variant APOL1 toxicity at the expense of slightly increased sensitivity to trypanosomes, further illustrating the continuous mutual adaptation between host and parasite.
Collapse
Affiliation(s)
- Etienne Pays
- Laboratory of Molecular Parasitology, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles, 6041 Gosselies, Belgium
| |
Collapse
|
3
|
Vaisar T, Babenko I, Horvath KV, Niisuke K, Asztalos BF. Relationships between HDL subpopulation proteome and HDL function in overweight/obese people with and without coronary heart disease. Atherosclerosis 2024; 397:118565. [PMID: 39260003 PMCID: PMC11539851 DOI: 10.1016/j.atherosclerosis.2024.118565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND AND AIMS The structure-function relationships of high-density lipoprotein (HDL) subpopulations are not well understood. Our aim was to examine the interrelationships between HDL particle proteome and HDL functionality in subjects with and without coronary heart disease (CHD). METHODS We isolated 5 different HDL subpopulations based on charge, size, and apolipoprotein A1 (APOA1) content from the plasma of 33 overweight/obese CHD patients and 33 age-and body mass index (BMI)-matched CHD-free subjects. We measured the relative molar concentration of HDL-associated proteins by liquid chromatography tandem mass spectrometry (LC-MS/MS) and assessed particle functionality. RESULTS We quantified 110 proteins associated with the 5 APOA1-containing HDL subpopulations. The relative molar concentration of these proteins spanned five orders of magnitude. Only 10 proteins were present in >1% while 73 were present in <0.1% concentration. Only 6 of the 10 most abundant proteins were apolipoproteins. Interestingly, the largest (α-1) and the smallest (preβ-1) HDL particles contained the most diverse proteomes. The protein composition of each HDL subpopulation was altered in CHD cases as compared to controls with the most prominent differences in preβ-1 and α-1 particles. APOA2 concentration was positively correlated with preβ-1 particle functionality (ABCA1-CEC/mg APOA1 in preβ-1) (R2 = 0.42, p = 0.005), while APOE concentration was inversely correlated with large-HDL particle functionality (SRBI-CEC/mg APOA1 in α-1+α-2) (R2 = 0.18, p = 0.01). CONCLUSIONS The protein composition of the different HDL subpopulations was altered differentially in CHD patients. The functionality of the small and large HDL particles correlated with the protein content of APOA2 and APOE, respectively. Our data indicate that distinct particle subspecies and specific particle associated proteins provide new information about the role of HDL in CHD.
Collapse
Affiliation(s)
- Tomas Vaisar
- UW Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA, USA.
| | - Ilona Babenko
- UW Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Katalin V Horvath
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Katrin Niisuke
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Bela F Asztalos
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| |
Collapse
|
4
|
Manuja A, Rani R, Devi N, Sihag M, Rani S, Prasad M, Kumar R, Bhattacharya TK, Kumar B. Chitosan-Zinc-Ligated Hydroxychloroquine: Molecular Docking, Synthesis, Characterization, and Trypanocidal Activity against Trypanosoma evansi. Polymers (Basel) 2024; 16:2777. [PMID: 39408487 PMCID: PMC11478425 DOI: 10.3390/polym16192777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 10/20/2024] Open
Abstract
The existing treatments against Trypanosoma evansi are faced with several drawbacks, such as limited drug options, resistance, the relapse of infection, toxicity, etc., which emphasizes the necessity for new alternatives. We synthesized novel metal-based antiparasitic compounds using chitosan, hydroxychloroquine (HC), and ZnO nanoparticles (NPs) and characterized them for size, morphology, chemical interactions, etc. Molecular docking and protein interaction studies were performed in silico to investigate the inhibitory effects of HC, zinc-ligated hydroxychloroquine (HCZnONPs), and chitosan-zinc-ligated hydroxychloroquine (CsHCZnONPs) for two key proteins, i.e., heat shock protein 90 (Hsp90) and trypanothione reductase associated with T. evansi. In vitro trypanocidal activity and the uptake of zinc ions by T. evansi parasites were observed. The formulation was successfully synthesized, as indicated by its size, stability, morphology, elemental analysis, and functional groups. CsHCZnO nanoparticles strongly inhibit both Hsp90 and trypanothione reductase proteins. The inhibition of Hsp90 by these nanoparticles is even stronger than that of trypanothione reductase when compared to HC and HCZnONPs. This suggests that the presence of polymer chitosan enhances the nanoparticles' effectiveness against the parasite. For the first time, CsHCZnO nanoparticles exhibited trypanocidal activity against T. evansi, with complete growth inhibition being observed at various concentrations after 72 h of treatment. Fluorescent microscopy using FluoZin-3 on T. evansi culture confirmed the presence of zinc on the surface of parasites. This innovative approach has shown promising results in the quest to develop improved antiparasitic compounds against T. evansi with enhanced effectiveness and safety, highlighting their potential as therapeutic agents against trypanosomiasis.
Collapse
Affiliation(s)
- Anju Manuja
- ICAR-National Research Centre on Equines, Hisar 125001, India; (R.R.); (N.D.); (M.S.); (S.R.); (M.P.); (R.K.); (T.K.B.)
| | - Ruma Rani
- ICAR-National Research Centre on Equines, Hisar 125001, India; (R.R.); (N.D.); (M.S.); (S.R.); (M.P.); (R.K.); (T.K.B.)
| | - Nisha Devi
- ICAR-National Research Centre on Equines, Hisar 125001, India; (R.R.); (N.D.); (M.S.); (S.R.); (M.P.); (R.K.); (T.K.B.)
| | - Monika Sihag
- ICAR-National Research Centre on Equines, Hisar 125001, India; (R.R.); (N.D.); (M.S.); (S.R.); (M.P.); (R.K.); (T.K.B.)
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani 127021, India
| | - Swati Rani
- ICAR-National Research Centre on Equines, Hisar 125001, India; (R.R.); (N.D.); (M.S.); (S.R.); (M.P.); (R.K.); (T.K.B.)
| | - Minakshi Prasad
- ICAR-National Research Centre on Equines, Hisar 125001, India; (R.R.); (N.D.); (M.S.); (S.R.); (M.P.); (R.K.); (T.K.B.)
| | - Rajender Kumar
- ICAR-National Research Centre on Equines, Hisar 125001, India; (R.R.); (N.D.); (M.S.); (S.R.); (M.P.); (R.K.); (T.K.B.)
| | - Tarun Kumar Bhattacharya
- ICAR-National Research Centre on Equines, Hisar 125001, India; (R.R.); (N.D.); (M.S.); (S.R.); (M.P.); (R.K.); (T.K.B.)
| | - Balvinder Kumar
- ICAR-National Research Centre on Equines, Hisar 125001, India; (R.R.); (N.D.); (M.S.); (S.R.); (M.P.); (R.K.); (T.K.B.)
| |
Collapse
|
5
|
Langbøl M, Saruhanian A, Saruhanian S, Tiedemann D, Baskaran T, Vohra R, Rives AS, Moreira J, Prokosch V, Liu H, Lackmann JW, Müller S, Nielsen CH, Kolko M, Rovelt J. Proteomic and Cytokine Profiling in Plasma from Patients with Normal-Tension Glaucoma and Ocular Hypertension. Cell Mol Neurobiol 2024; 44:59. [PMID: 39150567 PMCID: PMC11329415 DOI: 10.1007/s10571-024-01492-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Primary open-angle glaucoma (POAG) is subdivided depending on eye pressure. Patients with normal-tension glaucoma (NTG) have never had high intraocular pressure (IOP) measured while patients with ocular hypertension (OHT) have high eye pressure but no signs of glaucoma. Although IOP is considered to be a risk factor for all glaucoma patients, it is reasonable to assume that other risk factors such as inflammation play a role. We aimed to characterize the proteome and cytokine profile during hypoxia in plasma from patients with NTG (n = 10), OHT (n = 10), and controls (n = 10). Participants were exposed to hypoxia for two hours, followed by 30 min of normoxia. Samples were taken before ("baseline"), during ("hypoxia"), and after hypoxia ("recovery"). Proteomics based on liquid chromatography coupled with mass spectrometry (LC-MS) was performed. Cytokines were measured by Luminex assays. Bioinformatic analyses indicated the involvement of complement and coagulation cascades in NTG and OHT. Regulation of high-density lipoprotein 3 (HDL3) apolipoproteins suggested that changes in cholesterol metabolism are related to OHT. Hypoxia decreased the level of tumor necrosis factor-α (TNF-α) in OHT patients compared to controls. Circulating levels of interleukin-1β (IL-1β) and C-reactive protein (CRP) were decreased in NTG patients compared to controls during hypoxia. After recovery, plasma interleukin-6 (IL-6) was upregulated in patients with NTG and OHT. Current results indicate an enhanced systemic immune response in patients with NTG and OHT, which correlates with pathogenic events in glaucoma. Apolipoproteins may have anti-inflammatory effects, enabling OHT patients to withstand inflammation and development of glaucoma despite high IOP.
Collapse
Affiliation(s)
- Mia Langbøl
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, Building 22, 2100, Copenhagen Ø, Denmark.
| | - Arevak Saruhanian
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, Building 22, 2100, Copenhagen Ø, Denmark
| | - Sarkis Saruhanian
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, Building 22, 2100, Copenhagen Ø, Denmark
- Department of Veterinary & Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Daniel Tiedemann
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, Building 22, 2100, Copenhagen Ø, Denmark
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup, Denmark
| | - Thisayini Baskaran
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, Building 22, 2100, Copenhagen Ø, Denmark
| | - Rupali Vohra
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, Building 22, 2100, Copenhagen Ø, Denmark
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup, Denmark
| | - Amalie Santaolalla Rives
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, Building 22, 2100, Copenhagen Ø, Denmark
| | - José Moreira
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, Building 22, 2100, Copenhagen Ø, Denmark
| | - Verena Prokosch
- Department of Ophthalmology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50937, Cologne, Germany
| | - Hanhan Liu
- Department of Ophthalmology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50937, Cologne, Germany
| | - Jan-Wilm Lackmann
- CECAD/CMMC Proteomics Facility, CECAD Research Center, University of Cologne, Cologne, Germany
| | - Stefan Müller
- CECAD/CMMC Proteomics Facility, CECAD Research Center, University of Cologne, Cologne, Germany
| | - Claus Henrik Nielsen
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, 2200, Copenhagen, Denmark
- Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Miriam Kolko
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, Building 22, 2100, Copenhagen Ø, Denmark
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup, Denmark
| | - Jens Rovelt
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, Building 22, 2100, Copenhagen Ø, Denmark
| |
Collapse
|
6
|
Itoku A, Isaac J, Wilson S, Reidy K, Kaskel F. APOL1 Nephropathy Risk Variants Through the Life Course: A Review. Am J Kidney Dis 2024; 84:102-110. [PMID: 38341125 DOI: 10.1053/j.ajkd.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/26/2023] [Accepted: 12/05/2023] [Indexed: 02/12/2024]
Abstract
Two variant alleles of the gene apolipoprotein L1 (APOL1), known as risk variants (RVs), are a major contributor to kidney disease burden in those of African descent. The APOL1 protein contributes to innate immunity and may protect against Trypanosoma, HIV, Salmonella, and leishmaniasis. However, the effects of carrying 1 or more RVs contribute to a variety of disease processes starting as early as in utero and can be exacerbated by other factors (or "second hits"). Indeed, these genetic variations interact with environmental exposures, infections, and systemic disease to modify health outcomes across the life span. This review focuses on APOL1-associated diseases through the life-course perspective and discusses how early exposure to second hits can impact long-term outcomes. APOL1-related kidney disease typically presents in adolescents to young adults, and individuals harboring RVs are more likely to progress to kidney failure than are those with kidney disease who lack APOL-1 RVs. Ongoing research is aimed at elucidating the association of APOL1 RV effects with adverse donor and recipient kidney transplant outcomes. Unfortunately, there is currently no established treatment for APOL1-associated nephropathy. Long-term research is needed to evaluate the risk and protective factors associated with APOL1 RVs at different stages of life.
Collapse
Affiliation(s)
- Ai Itoku
- Division of Pediatric Nephrology, Children's Hospital at Montefiore, Bronx, New York
| | - Jaya Isaac
- Division of Pediatric Nephrology, Children's Hospital at Montefiore, Bronx, New York
| | - Scott Wilson
- Albert Einstein College of Medicine, Bronx, New York.
| | - Kimberly Reidy
- Division of Pediatric Nephrology, Children's Hospital at Montefiore, Bronx, New York
| | - Frederick Kaskel
- Division of Pediatric Nephrology, Children's Hospital at Montefiore, Bronx, New York
| |
Collapse
|
7
|
Banerjee S, Minshall N, Webb H, Carrington M. How are Trypanosoma brucei receptors protected from host antibody-mediated attack? Bioessays 2024; 46:e2400053. [PMID: 38713161 DOI: 10.1002/bies.202400053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024]
Abstract
Trypanosoma brucei is the causal agent of African Trypanosomiasis in humans and other animals. It maintains a long-term infection through an antigenic variation based population survival strategy. To proliferate in a mammal, T. brucei acquires iron and haem through the receptor mediated uptake of host transferrin and haptoglobin-hemoglobin respectively. The receptors are exposed to host antibodies but this does not lead to clearance of the infection. Here we discuss how the trypanosome avoids this fate in the context of recent findings on the structure and cell biology of the receptors.
Collapse
Affiliation(s)
- Sourav Banerjee
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Nicola Minshall
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Helena Webb
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
8
|
Olono A, Mitesser V, Happi A, Happi C. Building genomic capacity for precision health in Africa. Nat Med 2024; 30:1856-1864. [PMID: 38961224 DOI: 10.1038/s41591-024-03081-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/21/2024] [Indexed: 07/05/2024]
Abstract
The African continent is poised to have a pivotal role in the global population landscape, with the United Nations projecting a population of 2.5 billion (more than 25% of the global population) by 2050. Amid this demographic shift, Africa faces a unique healthcare challenge-navigating a complex landscape of infectious and non-communicable diseases. This necessitates a departure from the conventional 'one-size-fits-all' medical model toward precision approaches that are efficient and sustainable. Genomic capacity is a pillar of precision health; however, access to up-to-date genetic testing in African countries is limited, compounded by a startling lack of representation of data from populations of African descent in gene discovery studies. In this Review, we delve into the challenges impeding the development of genomic capacity in Africa, such as the lack of electronic clinical and epidemiological records, infrastructural challenges, high supply chain costs and the 'dependency trap' that jeopardizes long-term sustainability. We emphasize the need for strategies hinged on true partnerships, robust infrastructure, workforce development and well-crafted policies. Finally, we outline recent progress and existing initiatives that should be considered as role models for future capacity-building initiatives.
Collapse
Affiliation(s)
- Alhaji Olono
- The African Centre of Excellence for Genomics and Infectious Diseases, ACEGID, Ede, Nigeria
| | - Vera Mitesser
- The African Centre of Excellence for Genomics and Infectious Diseases, ACEGID, Ede, Nigeria
| | - Anise Happi
- The African Centre of Excellence for Genomics and Infectious Diseases, ACEGID, Ede, Nigeria
| | - Christian Happi
- The African Centre of Excellence for Genomics and Infectious Diseases, ACEGID, Ede, Nigeria.
| |
Collapse
|
9
|
Cho KH, Bahuguna A, Lee Y, Lee SH, Dominguez-Horta MDC, Martinez-Donato G. Synergistic Anti-Inflammatory Activity of Lipid-Free Apolipoprotein (apo) A-I and CIGB-258 in Acute-Phase Zebrafish via Stabilization of the apoA-I Structure to Enhance Anti-Glycation and Antioxidant Activities. Int J Mol Sci 2024; 25:5560. [PMID: 38791598 PMCID: PMC11121824 DOI: 10.3390/ijms25105560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
CIGB-258, a 3 kDa peptide from heat shock protein 60, exhibits synergistic anti-inflammatory activity with apolipoprotein A-I (apoA-I) in reconstituted high-density lipoproteins (rHDLs) via stabilization of the rHDL structure. This study explored the interactions between CIGB-258 and apoA-I in the lipid-free state to assess their synergistic effects in the structural and functional enhancement of apoA-I and HDL. A co-treatment of lipid-free apoA-I and CIGB-258 inhibited the cupric ion-mediated oxidation of low-density lipoprotein (LDL) and a lowering of oxidized species in the dose-responsive manner of CIGB-258. The co-presence of CIGB-258 caused a blue shift in the wavelength of maximum fluorescence (WMF) of apoA-I with protection from proteolytic degradation. The addition of apoA-I:CIGB-258, with a molar ratio of 1:0.1, 1:0.5, and 1:1, to HDL2 and HDL3 remarkably enhanced the antioxidant ability against LDL oxidation up to two-fold higher than HDL alone. HDL-associated paraoxonase activities were elevated up to 28% by the co-addition of apoA-I and CIGB-258, which is linked to the suppression of Cu2+-mediated HDL oxidation with the slowest electromobility. Isothermal denaturation by a urea treatment showed that the co-presence of CIGB-258 attenuated the exposure of intrinsic tryptophan (Trp) and increased the mid-points of denaturation from 2.33 M for apoA-I alone to 2.57 M for an apoA-I:CIGB-258 mixture with a molar ratio of 1:0.5. The addition of CIGB-258 to apoA-I protected the carboxymethyllysine (CML)-facilitated glycation of apoA-I with the prevention of Trp exposure. A co-treatment of apoA-I and CIGB-258 synergistically safeguarded zebrafish embryos from acute death by CML-toxicity, suppressing oxidative stress and apoptosis. In adult zebrafish, the co-treatment of apoA-I+CIGB-258 exerted the highest anti-inflammatory activity with a higher recovery of swimming ability and survivability than apoA-I alone or CIGB-258 alone. A co-injection of apoA-I and CIGB-258 led to the lowest infiltration of neutrophils and interleukin (IL)-6 generation in hepatic tissue, with the lowest serum triglyceride, aspartate transaminase, and alanine transaminase levels in plasma. In conclusion, the co-presence of CIGB-258 ameliorated the beneficial functionalities of apoA-I, such as antioxidant and anti-glycation activities, by enhancing the structural stabilization and protection of apoA-I. The combination of apoA-I and CIGB-258 synergistically enforced the anti-inflammatory effect against CML toxicity in embryos and adult zebrafish.
Collapse
Affiliation(s)
- Kyung-Hyun Cho
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Republic of Korea
| | - Ashutosh Bahuguna
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Republic of Korea
| | - Yunki Lee
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Republic of Korea
| | - Sang Hyuk Lee
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Republic of Korea
| | | | - Gillian Martinez-Donato
- Center for Genetic Engineering and Biotechnology, Ave 31, e/158 y 190, Playa, La Havana 10600, Cuba
| |
Collapse
|
10
|
Koehler S, Hengel FE, Dumoulin B, Damashek L, Holzman LB, Susztak K, Huber TB. The 14th International Podocyte Conference 2023: from podocyte biology to glomerular medicine. Kidney Int 2024; 105:935-952. [PMID: 38447880 DOI: 10.1016/j.kint.2024.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/11/2023] [Accepted: 01/02/2024] [Indexed: 03/08/2024]
Abstract
The 14th International Podocyte Conference took place in Philadelphia, Pennsylvania, USA from May 23 to 26, 2023. It commenced with an early-career researchers' meeting on May 23, providing young scientists with a platform to present and discuss their research findings. Throughout the main conference, 29 speakers across 9 sessions shared their insights on podocyte biology, glomerular medicine, novel technologic advancements, and translational approaches. Additionally, the event featured 3 keynote lectures addressing engineered chimeric antigen receptor T cell- and mRNA-based therapies and the use of biobanks for enhanced disease comprehension. Furthermore, 4 brief oral abstract sessions allowed scientists to present their findings to a broad audience. The program also included a panel discussion addressing the challenges of conducting human research within the American Black community. Remarkably, after a 5-year hiatus from in-person conferences, the 14th International Podocyte Conference successfully convened scientists from around the globe, fostering the presentation and discussion of crucial research findings, as summarized in this review. Furthermore, to ensure continuous and sustainable education, research, translation, and trial medicine related to podocyte and glomerular diseases for the benefit of patients, the International Society of Glomerular Disease was officially launched during the conference.
Collapse
Affiliation(s)
- Sybille Koehler
- III. Department of Medicine and Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Felicitas E Hengel
- III. Department of Medicine and Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Bernhard Dumoulin
- III. Department of Medicine and Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Laurel Damashek
- International Society of Glomerular Disease, Florence, Massachusetts, USA
| | - Lawrence B Holzman
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Institute of Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tobias B Huber
- III. Department of Medicine and Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; International Society of Glomerular Disease, Florence, Massachusetts, USA.
| |
Collapse
|
11
|
Casanova JL, MacMicking JD, Nathan CF. Interferon- γ and infectious diseases: Lessons and prospects. Science 2024; 384:eadl2016. [PMID: 38635718 DOI: 10.1126/science.adl2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/13/2024] [Indexed: 04/20/2024]
Abstract
Infectious diseases continue to claim many lives. Prevention of morbidity and mortality from these diseases would benefit not just from new medicines and vaccines but also from a better understanding of what constitutes protective immunity. Among the major immune signals that mobilize host defense against infection is interferon-γ (IFN-γ), a protein secreted by lymphocytes. Forty years ago, IFN-γ was identified as a macrophage-activating factor, and, in recent years, there has been a resurgent interest in IFN-γ biology and its role in human defense. Here we assess the current understanding of IFN-γ, revisit its designation as an "interferon," and weigh its prospects as a therapeutic against globally pervasive microbial pathogens.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, Paris Cité University, 75015 Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, 75015 Paris, France
| | - John D MacMicking
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
- Yale Systems Biology Institute, Yale University, West Haven, CT 06477, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Carl F Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
12
|
Randle RK, Amara VR, Popik W. IFI16 Is Indispensable for Promoting HIF-1α-Mediated APOL1 Expression in Human Podocytes under Hypoxic Conditions. Int J Mol Sci 2024; 25:3324. [PMID: 38542298 PMCID: PMC10970439 DOI: 10.3390/ijms25063324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/28/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Genetic variants in the protein-coding regions of APOL1 are associated with an increased risk and progression of chronic kidney disease (CKD) in African Americans. Hypoxia exacerbates CKD progression by stabilizing HIF-1α, which induces APOL1 transcription in kidney podocytes. However, the contribution of additional mediators to regulating APOL1 expression under hypoxia in podocytes is unknown. Here, we report that a transient accumulation of HIF-1α in hypoxia is sufficient to upregulate APOL1 expression in podocytes through a cGAS/STING/IRF3-independent pathway. Notably, IFI16 ablation impedes hypoxia-driven APOL1 expression despite the nuclear accumulation of HIF-1α. Co-immunoprecipitation assays indicate no direct interaction between IFI16 and HIF-1α. Our studies identify hypoxia response elements (HREs) in the APOL1 gene enhancer/promoter region, showing increased HIF-1α binding to HREs located in the APOL1 gene enhancer. Luciferase reporter assays confirm the role of these HREs in transcriptional activation. Chromatin immunoprecipitation (ChIP)-qPCR assays demonstrate that IFI16 is not recruited to HREs, and IFI16 deletion reduces HIF-1α binding to APOL1 HREs. RT-qPCR analysis indicates that IFI16 selectively affects APOL1 expression, with a negligible impact on other hypoxia-responsive genes in podocytes. These findings highlight the unique contribution of IFI16 to hypoxia-driven APOL1 gene expression and suggest alternative IFI16-dependent mechanisms regulating APOL1 gene expression under hypoxic conditions.
Collapse
Affiliation(s)
- Richaundra K. Randle
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208, USA;
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN 37208, USA;
| | - Venkateswara Rao Amara
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN 37208, USA;
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, Bihar, India
| | - Waldemar Popik
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN 37208, USA;
- Department of Internal Medicine, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|
13
|
Pays E. The Janus-faced functions of Apolipoproteins L in membrane dynamics. Cell Mol Life Sci 2024; 81:134. [PMID: 38478101 PMCID: PMC10937811 DOI: 10.1007/s00018-024-05180-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/06/2024] [Accepted: 02/18/2024] [Indexed: 03/17/2024]
Abstract
The functions of human Apolipoproteins L (APOLs) are poorly understood, but involve diverse activities like lysis of bloodstream trypanosomes and intracellular bacteria, modulation of viral infection and induction of apoptosis, autophagy, and chronic kidney disease. Based on recent work, I propose that the basic function of APOLs is the control of membrane dynamics, at least in the Golgi and mitochondrion. Together with neuronal calcium sensor-1 (NCS1) and calneuron-1 (CALN1), APOL3 controls the activity of phosphatidylinositol-4-kinase-IIIB (PI4KB), involved in both Golgi and mitochondrion membrane fission. Whereas secreted APOL1 induces African trypanosome lysis through membrane permeabilization of the parasite mitochondrion, intracellular APOL1 conditions non-muscular myosin-2A (NM2A)-mediated transfer of PI4KB and APOL3 from the Golgi to the mitochondrion under conditions interfering with PI4KB-APOL3 interaction, such as APOL1 C-terminal variant expression or virus-induced inflammatory signalling. APOL3 controls mitophagy through complementary interactions with the membrane fission factor PI4KB and the membrane fusion factor vesicle-associated membrane protein-8 (VAMP8). In mice, the basic APOL1 and APOL3 activities could be exerted by mAPOL9 and mAPOL8, respectively. Perspectives regarding the mechanism and treatment of APOL1-related kidney disease are discussed, as well as speculations on additional APOLs functions, such as APOL6 involvement in adipocyte membrane dynamics through interaction with myosin-10 (MYH10).
Collapse
Affiliation(s)
- Etienne Pays
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 6041, Gosselies, Belgium.
| |
Collapse
|
14
|
Guo X, Shen R, Lu P, Ma L. Predictive values of novel high‑density lipoprotein‑related inflammatory indices in in‑stent restenosis among patients undergoing elective percutaneous coronary intervention. Exp Ther Med 2024; 27:62. [PMID: 38234621 PMCID: PMC10790166 DOI: 10.3892/etm.2023.12350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/19/2023] [Indexed: 01/19/2024] Open
Abstract
Inflammation and disorders in lipid metabolism play pivotal roles in the development and progression of in-stent restenosis (ISR). The present study aimed to investigate the association between the high-density lipoprotein (HDL)-related inflammatory indices and the risk of developing ISR among patients undergoing elective percutaneous coronary intervention (PCI). A sum of 1,471 patients undergoing elective PCI were retrospectively included and classified by tertiles of HDL-related inflammatory indices. The study endpoint was ISR. The multivariable Cox proportional hazards regression analysis with restricted cubic splines (RCS) was used to assess the associations. During a median follow-up of 62.27 months, 251 (17.06%) patients experienced ISR. The incidence of ISR increased with the increasing white blood cell-to-HDL ratio (WHR) tertiles (log-rank test, overall P=0.0082). After full adjustment, the highest tertile of WHR was significantly associated with a 1.603-fold risk of ISR (hazard ratio, 1.603; 95% confidence interval, 1.152-2.231; P=0.005) in contrast to the lowest tertile of the WHR. Results of RCS further indicated that the association between WHR and ISR was in a non-linear and dose-dependent manner (non-linear P=0.034; P overall=0.019). The lymphocyte-to-HDL ratio (LHR) and neutrophil-to-HDL ratio (NHR) were also significantly and positively associated with the risk of ISR, of which the third tertiles were at increased risk of 41.2 and 44.7% after full adjustment, respectively. Overall, lipid metabolism disorders and inflammation were interconnected in the development of ISR; therefore, HDL-related inflammatory indices, including WHR, LHR and NHR, might be potential predictors in the prognosis of elective PCI.
Collapse
Affiliation(s)
- Xuantong Guo
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, National Clinical Research Center of Cardiovascular Diseases, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P.R. China
| | - Ruihuan Shen
- Department of Cardiology, National Center of Gerontology, Institute of Geriatric Medicine, Beijing Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Peipei Lu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, National Clinical Research Center of Cardiovascular Diseases, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P.R. China
| | - Lihong Ma
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, National Clinical Research Center of Cardiovascular Diseases, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P.R. China
| |
Collapse
|
15
|
Hu Q, Tong Z, Yalikong A, Ge LP, Shi Q, Du X, Wang P, Liu XY, Zhan W, Gao X, Sun D, Fu T, Ye D, Fan C, Liu J, Zhong YS, Jiang YZ, Gu H. DNAzyme-based faithful probing and pulldown to identify candidate biomarkers of low abundance. Nat Chem 2024; 16:122-131. [PMID: 37710046 DOI: 10.1038/s41557-023-01328-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/17/2023] [Indexed: 09/16/2023]
Abstract
Biomarker discovery is essential for the understanding, diagnosis, targeted therapy and prognosis assessment of malignant diseases. However, it remains a huge challenge due to the lack of sensitive methods to identify disease-specific rare molecules. Here we present MORAC, molecular recognition based on affinity and catalysis, which enables the effective identification of candidate biomarkers with low abundance. MORAC relies on a class of DNAzymes, each cleaving a sole RNA linkage embedded in their DNA chain upon specifically sensing a complex system with no prior knowledge of the system's molecular content. We show that signal amplification from catalysis ensures the DNAzymes high sensitivity (for target probing); meanwhile, a simple RNA-to-DNA mutation can shut down their RNA cleavage ability and turn them into a pure affinity tool (for target pulldown). Using MORAC, we identify previously unknown, low-abundance candidate biomarkers with clear clinical value, including apolipoprotein L6 in breast cancer and seryl-tRNA synthetase 1 in polyps preceding colon cancer.
Collapse
Affiliation(s)
- Qinqin Hu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Shanghai Stomatological Hospital, and Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Chemical Biology, School of Chemistry and Chemical Engineering, and School of Global Health, Shanghai Jiao Tong University, Shanghai, China
| | - Zongxuan Tong
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Shanghai Stomatological Hospital, and Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ayimukedisi Yalikong
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Shanghai Stomatological Hospital, and Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li-Ping Ge
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Shanghai Stomatological Hospital, and Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiang Shi
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Shanghai Stomatological Hospital, and Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xinyu Du
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Shanghai Stomatological Hospital, and Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Pu Wang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Shanghai Stomatological Hospital, and Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xi-Yu Liu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Shanghai Stomatological Hospital, and Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wuqiang Zhan
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Shanghai Stomatological Hospital, and Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xia Gao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Shanghai Stomatological Hospital, and Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Di Sun
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Shanghai Stomatological Hospital, and Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tong Fu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Shanghai Stomatological Hospital, and Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dan Ye
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Shanghai Stomatological Hospital, and Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunhai Fan
- Department of Chemical Biology, School of Chemistry and Chemical Engineering, and School of Global Health, Shanghai Jiao Tong University, Shanghai, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
- Zhangjiang Laboratory, Shanghai, China
| | - Jie Liu
- Department of Digestive Disease, Huashan Hospital, Fudan University, Shanghai, China
| | - Yun-Shi Zhong
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Shanghai Stomatological Hospital, and Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Shanghai Stomatological Hospital, and Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Hongzhou Gu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Shanghai Stomatological Hospital, and Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China.
- Department of Chemical Biology, School of Chemistry and Chemical Engineering, and School of Global Health, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
16
|
Paz-Barba M, Muñoz Garcia A, de Winter TJJ, de Graaf N, van Agen M, van der Sar E, Lambregtse F, Daleman L, van der Slik A, Zaldumbide A, de Koning EJP, Carlotti F. Apolipoprotein L genes are novel mediators of inflammation in beta cells. Diabetologia 2024; 67:124-136. [PMID: 37924378 PMCID: PMC10709252 DOI: 10.1007/s00125-023-06033-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/22/2023] [Indexed: 11/06/2023]
Abstract
AIMS/HYPOTHESIS Inflammation induces beta cell dysfunction and demise but underlying molecular mechanisms remain unclear. The apolipoprotein L (APOL) family of genes has been associated with innate immunity and apoptosis in non-pancreatic cell types, but also with metabolic syndrome and type 2 diabetes mellitus. Here, we hypothesised that APOL genes play a role in inflammation-induced beta cell damage. METHODS We used single-cell transcriptomics datasets of primary human pancreatic islet cells to study the expression of APOL genes upon specific stress conditions. Validation of the findings was carried out in EndoC-βH1 cells and primary human islets. Finally, we performed loss- and gain-of-function experiments to investigate the role of APOL genes in beta cells. RESULTS APOL genes are expressed in primary human beta cells and APOL1, 2 and 6 are strongly upregulated upon inflammation via the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway. APOL1 overexpression increases endoplasmic reticulum stress while APOL1 knockdown prevents cytokine-induced beta cell death and interferon-associated response. Furthermore, we found that APOL genes are upregulated in beta cells from donors with type 2 diabetes compared with donors without diabetes mellitus. CONCLUSIONS/INTERPRETATION APOLs are novel regulators of islet inflammation and may contribute to beta cell damage during the development of diabetes. DATA AVAILABILITY scRNAseq data generated by our laboratory and used in this study are available in the Gene Expression Omnibus (GEO; www.ncbi.nlm.nih.gov/geo/ ), accession number GSE218316.
Collapse
Affiliation(s)
- Miriam Paz-Barba
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Amadeo Muñoz Garcia
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Twan J J de Winter
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Natascha de Graaf
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Maarten van Agen
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Elisa van der Sar
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Ferdy Lambregtse
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Lizanne Daleman
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Arno van der Slik
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arnaud Zaldumbide
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Eelco J P de Koning
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Françoise Carlotti
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
17
|
Lecordier L, Heo P, Graversen JH, Hennig D, Skytthe MK, Cornet d'Elzius A, Pincet F, Pérez-Morga D, Pays E. Apolipoproteins L1 and L3 control mitochondrial membrane dynamics. Cell Rep 2023; 42:113528. [PMID: 38041817 PMCID: PMC10765320 DOI: 10.1016/j.celrep.2023.113528] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/08/2023] [Accepted: 11/17/2023] [Indexed: 12/04/2023] Open
Abstract
Apolipoproteins L1 and L3 (APOLs) are associated at the Golgi with the membrane fission factors phosphatidylinositol 4-kinase-IIIB (PI4KB) and non-muscular myosin 2A. Either APOL1 C-terminal truncation (APOL1Δ) or APOL3 deletion (APOL3-KO [knockout]) reduces PI4KB activity and triggers actomyosin reorganization. We report that APOL3, but not APOL1, controls PI4KB activity through interaction with PI4KB and neuronal calcium sensor-1 or calneuron-1. Both APOLs are present in Golgi-derived autophagy-related protein 9A vesicles, which are involved in PI4KB trafficking. Like APOL3-KO, APOL1Δ induces PI4KB dissociation from APOL3, linked to reduction of mitophagy flux and production of mitochondrial reactive oxygen species. APOL1 and APOL3, respectively, can interact with the mitophagy receptor prohibitin-2 and the mitophagosome membrane fusion factor vesicle-associated membrane protein-8 (VAMP8). While APOL1 conditions PI4KB and APOL3 involvement in mitochondrion fission and mitophagy, APOL3-VAMP8 interaction promotes fusion between mitophagosomal and endolysosomal membranes. We propose that APOL3 controls mitochondrial membrane dynamics through interactions with the fission factor PI4KB and the fusion factor VAMP8.
Collapse
Affiliation(s)
- Laurence Lecordier
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Paul Heo
- Laboratoire de Physique de l'Ecole Normale Supérieure, Ecole Normale Supérieure (ENS), Université Paris Sciences et Lettres (PSL), CNRS, Sorbonne Université, Université Paris-Cité, 75005 Paris, France; Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France
| | - Jonas H Graversen
- Department of Molecular Medicine, Cancer and Inflammation Research, University of Southern Denmark, 5000 Odense C, Denmark
| | - Dorle Hennig
- Department of Molecular Medicine, Cancer and Inflammation Research, University of Southern Denmark, 5000 Odense C, Denmark
| | - Maria Kløjgaard Skytthe
- Department of Molecular Medicine, Cancer and Inflammation Research, University of Southern Denmark, 5000 Odense C, Denmark
| | | | - Frédéric Pincet
- Laboratoire de Physique de l'Ecole Normale Supérieure, Ecole Normale Supérieure (ENS), Université Paris Sciences et Lettres (PSL), CNRS, Sorbonne Université, Université Paris-Cité, 75005 Paris, France
| | - David Pérez-Morga
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 6041 Gosselies, Belgium; Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Etienne Pays
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 6041 Gosselies, Belgium.
| |
Collapse
|
18
|
Morrison LJ, Steketee PC, Tettey MD, Matthews KR. Pathogenicity and virulence of African trypanosomes: From laboratory models to clinically relevant hosts. Virulence 2023; 14:2150445. [PMID: 36419235 DOI: 10.1080/21505594.2022.2150445] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
African trypanosomes are vector-borne protozoa, which cause significant human and animal disease across sub-Saharan Africa, and animal disease across Asia and South America. In humans, infection is caused by variants of Trypanosoma brucei, and is characterized by varying rate of progression to neurological disease, caused by parasites exiting the vasculature and entering the brain. Animal disease is caused by multiple species of trypanosome, primarily T. congolense, T. vivax, and T. brucei. These trypanosomes also infect multiple species of mammalian host, and this complexity of trypanosome and host diversity is reflected in the spectrum of severity of disease in animal trypanosomiasis, ranging from hyperacute infections associated with mortality to long-term chronic infections, and is also a main reason why designing interventions for animal trypanosomiasis is so challenging. In this review, we will provide an overview of the current understanding of trypanosome determinants of infection progression and severity, covering laboratory models of disease, as well as human and livestock disease. We will also highlight gaps in knowledge and capabilities, which represent opportunities to both further our fundamental understanding of how trypanosomes cause disease, as well as facilitating the development of the novel interventions that are so badly needed to reduce the burden of disease caused by these important pathogens.
Collapse
Affiliation(s)
- Liam J Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Pieter C Steketee
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Mabel D Tettey
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Keith R Matthews
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
19
|
Wang XK, Guo YX, Wang M, Zhang XD, Liu ZY, Wang MS, Luo K, Huang S, Li RF. Identification and validation of candidate clinical signatures of apolipoprotein L isoforms in hepatocellular carcinoma. Sci Rep 2023; 13:20969. [PMID: 38017264 PMCID: PMC10684526 DOI: 10.1038/s41598-023-48366-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 11/25/2023] [Indexed: 11/30/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a lethal malignancy worldwide with an increasing number of new cases each year. Apolipoprotein (APOL) isoforms have been explored for their associations with HCC.The GSE14520 cohort was used for training data; The Cancer Genome Atlas (TCGA) database was used for validated data. Diagnostic, prognostic significance and mechanisms were explored using these cohorts. Risk score models and nomograms were constructed using prognosis-related isoforms and clinical factors for survival prediction. Oncomine and HCCDB databases were further used for validation of diagnostic, prognostic significance. APOL1, 3, and 6 were differentially expressed in two cohorts (all P ≤ 0.05). APOL1 and APOL6 had diagnostic capacity whereas APOL3 and APOL6 had prognostic capacity in two cohorts (areas under curves [AUCs] > 0.7, P ≤ 0.05). Mechanism studies demonstrated that APOL3 and APOL6 might be involved in humoral chemokine signaling pathways (all P ≤ 0.05). Risk score models and nomograms were constructed and validated for survival prediction of HCC. Moreover, diagnostic values of APOL1 and weak APOL6 were validated in Oncomine database (AUC > 0.700, 0.694); prognostic values of APOL3 and APOL6 were validated in HCCDB database (all P < 0.05). Differentially expressed APOL1 and APOL6 might be diagnostic biomarkers; APOL3 and APOL6 might be prognostic biomarkers of RFS and OS for HCC via chemokine signaling pathways.
Collapse
Affiliation(s)
- Xiang-Kun Wang
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Yu-Xiang Guo
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Miao Wang
- Department of Gastrointestinal Oncology, Nanyang Second General Hospital, Nanyang, 473009, Henan Province, People's Republic of China
| | - Xu-Dong Zhang
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Zhong-Yuan Liu
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Mao-Sen Wang
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Kai Luo
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Shuai Huang
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Ren-Feng Li
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, People's Republic of China.
| |
Collapse
|
20
|
Lee JG, Fu Y, Zhu JY, Wen P, van de Leemput J, Ray PE, Han Z. A SNARE protective pool antagonizes APOL1 renal toxicity in Drosophila nephrocytes. Cell Biosci 2023; 13:199. [PMID: 37925499 PMCID: PMC10625211 DOI: 10.1186/s13578-023-01147-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/12/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND People of Sub-Saharan African ancestry are at higher risk of developing chronic kidney disease (CKD), attributed to the Apolipoprotein L1 (APOL1) gene risk alleles (RA) G1 and G2. The underlying mechanisms by which the APOL1-RA precipitate CKD remain elusive, hindering the development of potential treatments. RESULTS Using a Drosophila genetic modifier screen, we found that SNARE proteins (Syx7, Ykt6, and Syb) play an important role in preventing APOL1 cytotoxicity. Reducing the expression of these SNARE proteins significantly increased APOL1 cytotoxicity in fly nephrocytes, the equivalent of mammalian podocytes, whereas overexpression of Syx7, Ykt6, or Syb attenuated their toxicity in nephrocytes. These SNARE proteins bound to APOL1-G0 with higher affinity than APOL1-G1/G2, and attenuated APOL1-G0 cytotoxicity to a greater extent than either APOL1-RA. CONCLUSIONS Using a Drosophila screen, we identified SNARE proteins (Syx7, Ykt6, and Syb) as antagonists of APOL1-induced cytotoxicity by directly binding APOL1. These data uncovered a new potential protective role for certain SNARE proteins in the pathogenesis of APOL1-CKD and provide novel therapeutic targets for APOL1-associated nephropathies.
Collapse
Affiliation(s)
- Jin-Gu Lee
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine (UMSOM), 670 West Baltimore Street, 4052 HSFIII, Baltimore, MD, 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Yulong Fu
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine (UMSOM), 670 West Baltimore Street, 4052 HSFIII, Baltimore, MD, 21201, USA
- Department of Pathology, University of Alabama Birmingham, Birmingham, AL, 35249, USA
| | - Jun-Yi Zhu
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine (UMSOM), 670 West Baltimore Street, 4052 HSFIII, Baltimore, MD, 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Pei Wen
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine (UMSOM), 670 West Baltimore Street, 4052 HSFIII, Baltimore, MD, 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Joyce van de Leemput
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine (UMSOM), 670 West Baltimore Street, 4052 HSFIII, Baltimore, MD, 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Patricio E Ray
- Child Health Research Center, Department of Pediatrics, University of Virginia School of Medicine, 409 Lane Road, Charlottesville, VA, 22908, USA.
| | - Zhe Han
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine (UMSOM), 670 West Baltimore Street, 4052 HSFIII, Baltimore, MD, 21201, USA.
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
21
|
Guo X, Shen R, Su Y, Ma L. High-density lipoprotein-related inflammatory indices predict repeat revascularization in coronary drug-eluting stenting. Biomark Med 2023; 17:959-969. [PMID: 38230978 DOI: 10.2217/bmm-2023-0399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024] Open
Abstract
Background: HDL-C-related inflammatory indices are potential predictors of repeat revascularization (RR) after coronary drug-eluting stenting. Methods: Multivariable Cox regression with restricted cubic splines and receiver operating curve was used. Results: The median follow-up was 50 months. A total of 521 (35.42%) patients experienced RR. The incidence of RR was positively associated with the monocyte-to-HDL-C ratio, neutrophil-to-HDL-C ratio and lymphocyte-to-HDL-C ratio (log-rank p < 0.05). After being fully adjusted, the largest tertile of monocyte-to-HDL-C ratio, neutrophil-to-HDL-C ratio, white blood cell-to-HDL-C ratio and lymphocyte-to-HDL-C ratio increased the risk by 38, 30, 28 and 37%, respectively. Monocyte-to-HDL-C ratio was dose-responsive and linearly correlated with RR. HDL-C-related inflammatory indices had over 60% predictive ability. Conclusion: HDL-C-related inflammatory indices independently predicted RR after coronary drug-eluting stenting.
Collapse
Affiliation(s)
- Xuantong Guo
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, National Clinical Research Center of Cardiovascular Diseases, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Ruihuan Shen
- Department of Cardiology, National Center of Gerontology, Institute of Geriatric Medicine, Beijing Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Yanni Su
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, National Clinical Research Center of Cardiovascular Diseases, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Lihong Ma
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, National Clinical Research Center of Cardiovascular Diseases, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| |
Collapse
|
22
|
Vasquez-Rios G, De Cos M, Campbell KN. Novel Therapies in APOL1-Mediated Kidney Disease: From Molecular Pathways to Therapeutic Options. Kidney Int Rep 2023; 8:2226-2234. [PMID: 38025220 PMCID: PMC10658239 DOI: 10.1016/j.ekir.2023.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 08/21/2023] [Indexed: 12/01/2023] Open
Abstract
Apolipoprotein L1 (APOL1) high-risk variants confer an increased risk for the development and progression of kidney disease among individuals of recent African ancestry. Over the past several years, significant progress has been made in understanding the pathogenesis of APOL1-mediated kidney diseases (AMKD), including genetic regulation, environmental interactions, immunomodulatory, proinflammatory and apoptotic signaling processes, as well as the complex role of APOL1 as an ion channel. Collectively, these findings have paved the way for novel therapeutic strategies to mitigate APOL1-mediated kidney injury. Precision medicine approaches are being developed to identify subgroups of AMKD patients who may benefit from these targeted interventions, fueling hope for improved clinical outcomes. This review summarizes key mechanistic insights in the pathogenesis of AMKD, emergent therapies, and discusses future challenges.
Collapse
Affiliation(s)
- George Vasquez-Rios
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Marina De Cos
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kirk N. Campbell
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
23
|
Vandorpe DH, Heneghan JF, Waitzman JS, McCarthy GM, Blasio A, Magraner JM, Donovan OG, Schaller LB, Shah SS, Subramanian B, Riella CV, Friedman DJ, Pollak MR, Alper SL. Apolipoprotein L1 (APOL1) cation current in HEK-293 cells and in human podocytes. Pflugers Arch 2023; 475:323-341. [PMID: 36449077 DOI: 10.1007/s00424-022-02767-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 12/05/2022]
Abstract
Two heterozygous missense variants (G1 and G2) of Apolipoprotein L1 (APOL1) found in individuals of recent African ancestry can attenuate the severity of infection by some forms of Trypanosoma brucei. However, these two variants within a broader African haplotype also increase the risk of kidney disease in Americans of African descent. Although overexpression of either variant G1 or G2 causes multiple pathogenic changes in cultured cells and transgenic mouse models, the mechanism(s) promoting kidney disease remain unclear. Human serum APOL1 kills trypanosomes through its cation channel activity, and cation channel activity of recombinant APOL1 has been reconstituted in lipid bilayers and proteoliposomes. Although APOL1 overexpression increases whole cell cation currents in HEK-293 cells, the ion channel activity of APOL1 has not been assessed in glomerular podocytes, the major site of APOL1-associated kidney diseases. We characterize APOL1-associated whole cell and on-cell cation currents in HEK-293 T-Rex cells and demonstrate partial inhibition of currents by anti-APOL antibodies. We detect in primary human podocytes a similar cation current inducible by interferon-γ (IFNγ) and sensitive to inhibition by anti-APOL antibody as well as by a fragment of T. brucei Serum Resistance-Associated protein (SRA). CRISPR knockout of APOL1 in human primary podocytes abrogates the IFNγ-induced, antibody-sensitive current. Our novel characterization in HEK-293 cells of heterologous APOL1-associated cation conductance inhibited by anti-APOL antibody and our documentation in primary human glomerular podocytes of endogenous IFNγ-stimulated, APOL1-mediated, SRA and anti-APOL-sensitive ion channel activity together support APOL1-mediated channel activity as a therapeutic target for treatment of APOL1-associated kidney diseases.
Collapse
Affiliation(s)
- David H Vandorpe
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - John F Heneghan
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02215, USA
| | - Joshua S Waitzman
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Gizelle M McCarthy
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Vertex Pharmaceuticals, Boston, MA, 02210, USA
| | - Angelo Blasio
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Vertex Pharmaceuticals, Boston, MA, 02210, USA
| | - Jose M Magraner
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,, San Diego, CA, USA
| | - Olivia G Donovan
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA
| | - Lena B Schaller
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Ludwig-Maximilians-Universitaet, 80336, Munich, Germany
| | - Shrijal S Shah
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Chroma Medicine, Cambridge, MA, 02142, USA
| | - Balajikarthick Subramanian
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Cristian V Riella
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - David J Friedman
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, 02139, USA
| | - Martin R Pollak
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, 02139, USA
| | - Seth L Alper
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA. .,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA. .,Broad Institute of Harvard and MIT, Cambridge, MA, 02139, USA.
| |
Collapse
|
24
|
Abstract
African trypanosomes are bloodstream protozoan parasites that infect mammals including humans, where they cause sleeping sickness. Long-lasting infection is required to favor parasite transmission between hosts. Therefore, trypanosomes have developed strategies to continuously escape innate and adaptive responses of the immune system, while also preventing premature death of the host. The pathology linked to infection mainly results from inflammation and includes anemia and brain dysfunction in addition to loss of specificity and memory of the antibody response. The serum of humans contains an efficient trypanolytic factor, the membrane pore-forming protein apolipoprotein L1 (APOL1). In the two human-infective trypanosomes, specific parasite resistance factors inhibit APOL1 activity. In turn, many African individuals express APOL1 variants that counteract these resistance factors, enabling them to avoid sleeping sickness. However, these variants are associated with chronic kidney disease, particularly in the context of virus-induced inflammation such as coronavirus disease 2019. Vaccination perspectives are discussed.
Collapse
Affiliation(s)
- Etienne Pays
- Laboratory of Molecular Parasitology, Université Libre de Bruxelles, Gosselies, Belgium;
| | - Magdalena Radwanska
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium;
| | - Stefan Magez
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; .,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
25
|
Valdez Imbert R, Hti Lar Seng NS, Stokes MB, Jim B. Obesity-related glomerulopathy in the presence of APOL1 risk alleles. BMJ Case Rep 2022; 15:e249624. [PMID: 35985743 PMCID: PMC9396144 DOI: 10.1136/bcr-2022-249624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2022] [Indexed: 11/04/2022] Open
Abstract
Nephropathic apolipoprotein L1 (APOL1) risk alleles (G1/G2) have been associated with focal segmental glomerulosclerosis, HIV-associated nephropathy, Systemic lupus erythematosus (SLE)-associated collapsing glomerulopathy and other glomerulonephritides. These alleles confer protection from Trypanosoma brucei infections which are enriched in sub-Saharan African populations. We present a young woman with obesity, hypertension, subnephrotic range proteinuria who was found to have obesity-related glomerulopathy on kidney biopsy while harbouring two high-risk APOL1 alleles (G1/G2). Given the potential effects on lipid metabolism and their association with obesity, the presence of APOL1 risk alleles may impact cardiovascular health in addition to renal disease in these patients.
Collapse
Affiliation(s)
- Ronald Valdez Imbert
- Department of Medicine, Jacobi Medical Center at Albert Einstein College of Medicine, Bronx, New York, USA
| | - Nang San Hti Lar Seng
- Department of Medicine, Jacobi Medical Center at Albert Einstein College of Medicine, Bronx, New York, USA
| | - Michael B Stokes
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - Belinda Jim
- Department of Medicine, Jacobi Medical Center at Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
26
|
Abstract
Apolipoproteins, the protein component of lipoproteins, play an important role in lipid transport, lipoprotein assembly, and receptor recognition. Apolipoproteins are glycosylated and the glycan moieties play an integral role in apolipoprotein function. Changes in apolipoprotein glycosylation correlate with several diseases manifesting in dyslipidemias. Despite their relevance in apolipoprotein function and diseases, the total glycan repertoire of most apolipoproteins remains undefined. This review summarizes the current knowledge and knowledge gaps regarding human apolipoprotein glycan composition, structure, glycosylation site, and functions. Given the relevance of glycosylation to apolipoprotein function, we expect that future studies of apolipoprotein glycosylation will contribute new understanding of disease processes and uncover relevant biomarkers and therapeutic targets. Considering these future efforts, we also provide a brief overview of current mass spectrometry based technologies that can be applied to define detailed glycan structures, site-specific compositions, and the role of emerging approaches for clinical applications in biomarker discovery and personalized medicine.
Collapse
|
27
|
Gerstner L, Chen M, Kampf LL, Milosavljevic J, Lang K, Schneider R, Hildebrandt F, Helmstädter M, Walz G, Hermle T. Inhibition of endoplasmic reticulum stress signaling rescues cytotoxicity of human apolipoprotein-L1 risk variants in Drosophila. Kidney Int 2022; 101:1216-1231. [PMID: 35120995 PMCID: PMC10061223 DOI: 10.1016/j.kint.2021.12.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 01/01/2023]
Abstract
Risk variants of the apolipoprotein-L1 (APOL1) gene are associated with severe kidney disease, putting homozygous carriers at risk. Since APOL1 lacks orthologs in all major model organisms, a wide range of mechanisms frequently in conflict have been described for APOL1-associated nephropathies. The genetic toolkit in Drosophila allows unique in vivo insights into disrupted cellular homeostasis. To perform a mechanistic analysis, we expressed human APOL1 control and gain-of-function kidney risk variants in the podocyte-like garland cells of Drosophila nephrocytes and a wing precursor tissue. Expression of APOL1 risk variants was found to elevate endocytic function of garland cell nephrocytes that simultaneously showed early signs of cell death. Wild-type APOL1 had a significantly milder effect, while a control transgene with deletion of the short BH3 domain showed no overt phenotype. Nephrocyte endo-lysosomal function and slit diaphragm architecture remained unaffected by APOL1 risk variants, but endoplasmic reticulum (ER) swelling, chaperone induction, and expression of the reporter Xbp1-EGFP suggested an ER stress response. Pharmacological inhibition of ER stress diminished APOL1-mediated cell death and direct ER stress induction enhanced nephrocyte endocytic function similar to expression of APOL1 risk variants. We confirmed APOL1-dependent ER stress in the Drosophila wing precursor where silencing the IRE1-dependent branch of ER stress signaling by inhibition with Xbp1-RNAi abrogated cell death, representing the first rescue of APOL1-associated cytotoxicity in vivo. Thus, we uncovered ER stress as an essential consequence of APOL1 risk variant expression in vivo in Drosophila, suggesting a central role of this pathway in the pathogenesis of APOL1-associated nephropathies.
Collapse
Affiliation(s)
- Lea Gerstner
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Mengmeng Chen
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Lina L Kampf
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Julian Milosavljevic
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Konrad Lang
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Ronen Schneider
- Renal Division, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Friedhelm Hildebrandt
- Renal Division, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Martin Helmstädter
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Gerd Walz
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Tobias Hermle
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany.
| |
Collapse
|
28
|
African trypanosome strategies for conquering new hosts and territories: the end of monophyly? Trends Parasitol 2022; 38:724-736. [DOI: 10.1016/j.pt.2022.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022]
|
29
|
Kumar R, Gupta S, Bhutia WD, Vaid RK, Kumar S. Atypical human trypanosomosis: Potentially emerging disease with lack of understanding. Zoonoses Public Health 2022; 69:259-276. [PMID: 35355422 DOI: 10.1111/zph.12945] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 02/03/2023]
Abstract
Trypanosomes are the hemoflagellate kinetoplastid protozoan parasites affecting a wide range of vertebrate hosts having insufficient host specificity. Climatic change, deforestation, globalization, trade agreements, close association and genetic selection in links with environmental, vector, reservoir and potential susceptible hosts' parameters have led to emergence of atypical human trypanosomosis (a-HT). Poor recording of such neglected tropical disease, low awareness in health professions and farming community has approached a serious intimidation for mankind. Reports of animal Trypanosoma species are now gradually increasing in humans, and lack of any compiled literature has diluted the issue. In the present review, global reports of livestock and rodent trypanosomes reported from human beings are assembled and discrepancies with the available literature are discussed along with morphological features of Trypanosoma species. We have described 21 human cases from the published information. Majority of cases 10 (47%) are due to T. lewisi, followed by 5 (24%) cases of T. evansi, 4 (19%) cases of T. brucei and 1 (5%) case each of T. vivax and T. congolense. Indian subcontinent witnessed 13 cases of a-HT, of which 9 cases are reported from India, which includes 7 cases of T. lewisi and 2 cases of T. evansi. Apart from, a-HT case reports, epidemiological investigation and treatment aspects are also discussed. An attempt has been made to provide an overview of the current situation of atypical human trypanosomosis caused by salivarian animal Trypanosoma globally. The probable role of Trypanosoma lytic factors (TLF) present in normal human serum (NHS) in providing innate immunity against salivarian animal Trypanosoma species and the existing paradox in medical science after the finding on intact functional apolipoprotein L1 (ApoL1) in Vietnam T. evansi Type A case is also discussed to provide an update on all aspects of a-HT. Insufficient data and poor reporting in Asian and African countries are the major hurdle resulting in under-reporting of a-HT, which is a potential emerging threat. Therefore, concerted efforts must be directed to address attentiveness, preparedness and regular surveillance in suspected areas with training of field technicians, medical health professionals and veterinarians. Enhancing a one health approach is specifically important in case of trypanosomosis.
Collapse
Affiliation(s)
- Rajender Kumar
- Parasitology Lab, ICAR-National Research Centre on Equines, Hisar, India
| | - Snehil Gupta
- Department of Veterinary Parasitology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | | | | | - Sanjay Kumar
- Parasitology Lab, ICAR-National Research Centre on Equines, Hisar, India
| |
Collapse
|
30
|
Daneshpajouhnejad P, Kopp JB, Winkler CA, Rosenberg AZ. The evolving story of apolipoprotein L1 nephropathy: the end of the beginning. Nat Rev Nephrol 2022; 18:307-320. [PMID: 35217848 PMCID: PMC8877744 DOI: 10.1038/s41581-022-00538-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2022] [Indexed: 01/13/2023]
Abstract
Genetic coding variants in APOL1, which encodes apolipoprotein L1 (APOL1), were identified in 2010 and are relatively common among individuals of sub-Saharan African ancestry. Approximately 13% of African Americans carry two APOL1 risk alleles. These variants, termed G1 and G2, are a frequent cause of kidney disease — termed APOL1 nephropathy — that typically manifests as focal segmental glomerulosclerosis and the clinical syndrome of hypertension and arterionephrosclerosis. Cell culture studies suggest that APOL1 variants cause cell dysfunction through several processes, including alterations in cation channel activity, inflammasome activation, increased endoplasmic reticulum stress, activation of protein kinase R, mitochondrial dysfunction and disruption of APOL1 ubiquitinylation. Risk of APOL1 nephropathy is mostly confined to individuals with two APOL1 risk variants. However, only a minority of individuals with two APOL1 risk alleles develop kidney disease, suggesting the need for a ‘second hit’. The best recognized factor responsible for this ‘second hit’ is a chronic viral infection, particularly HIV-1, resulting in interferon-mediated activation of the APOL1 promoter, although most individuals with APOL1 nephropathy do not have an obvious cofactor. Current therapies for APOL1 nephropathies are not adequate to halt progression of chronic kidney disease, and new targeted molecular therapies are in clinical trials. This Review summarizes current understanding of the role of APOL1 variants in kidney disease. The authors discuss the genetics, protein structure and biological functions of APOL1 variants and provide an overview of promising therapeutic strategies. In contrast to other APOL family members, which are primarily intracellular, APOL1 contains a unique secretory signal peptide, resulting in its secretion into plasma. APOL1 renal risk alleles provide protection from African human trypanosomiasis but are a risk factor for progressive kidney disease in those carrying two risk alleles. APOL1 risk allele frequency is ~35% in the African American population in the United States, with ~13% of individuals having two risk alleles; the highest allele frequencies are found in West African populations and their descendants. Cell and mouse models implicate endolysosomal and mitochondrial dysfunction, altered ion channel activity, altered autophagy, and activation of protein kinase R in the pathogenesis of APOL1-associated kidney disease; however, the relevance of these injury pathways to human disease has not been resolved. APOL1 kidney disease tends to be progressive, and current standard therapies are generally ineffective; targeted therapeutic strategies hold the most promise.
Collapse
Affiliation(s)
- Parnaz Daneshpajouhnejad
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pathology, University of Pennsylvania Hospital, Philadelphia, PA, USA
| | | | - Cheryl A Winkler
- Basic Research Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Avi Z Rosenberg
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
31
|
Muehlig AK, Gies S, Huber TB, Braun F. Collapsing Focal Segmental Glomerulosclerosis in Viral Infections. Front Immunol 2022; 12:800074. [PMID: 35095882 PMCID: PMC8792967 DOI: 10.3389/fimmu.2021.800074] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/20/2021] [Indexed: 01/10/2023] Open
Abstract
Collapsing glomerulopathy represents a special variant of the proteinuric kidney disease focal segmental glomerulosclerosis (FSGS). Histologically, the collapsing form of FSGS (cFSGS) is characterized by segmental or global condensation and obliteration of glomerular capillaries, the appearance of hyperplastic and hypertrophic podocytes and severe tubulointerstitial damage. Clinically, cFSGS patients present with acute kidney injury, nephrotic-range proteinuria and are at a high risk of rapid progression to irreversible kidney failure. cFSGS can be attributed to numerous etiologies, namely, viral infections like HIV, cytomegalovirus, Epstein-Barr-Virus, and parvovirus B19 and also drugs and severe ischemia. Risk variants of the APOL1 gene, predominantly found in people of African descent, increase the risk of developing cFSGS. Patients infected with the new Corona-Virus SARS-CoV-2 display an increased rate of acute kidney injury (AKI) in severe cases of COVID-19. Besides hemodynamic instability, cytokine mediated injury and direct viral entry and infection of renal epithelial cells contributing to AKI, there are emerging reports of cFSGS associated with SARS-CoV-2 infection in patients of mainly African ethnicity. The pathogenesis of cFSGS is proposed to be linked with direct viral infection of podocytes, as described for HIV-associated glomerulopathy. Nevertheless, there is growing evidence that the systemic inflammatory cascade, activated in acute viral infections like COVID-19, is a major contributor to the impairment of basic cellular functions in podocytes. This mini review will summarize the current knowledge on cFSGS associated with viral infections with a special focus on the influence of systemic immune responses and potential mechanisms propagating the development of cFSGS.
Collapse
Affiliation(s)
- Anne K Muehlig
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,University Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,University Children's Research@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sydney Gies
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Braun
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
32
|
Yu X, Xu X, Wu T, Huang W, Xu C, Xie W, Long X. APOA1 Level is Negatively Correlated with the Severity of COVID-19. Int J Gen Med 2022; 15:689-698. [PMID: 35082518 PMCID: PMC8785137 DOI: 10.2147/ijgm.s332956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/01/2021] [Indexed: 01/08/2023] Open
Abstract
Objective We used public data to analyze the proteomics, metabolomics and transcriptomics characteristics of COVID-19 patients to identify potential therapeutic targets. More importantly, we also collected clinical data for verification to make the analysis results more reliable. Methods Download the serum proteomics and metabolomics data of COVID-19 patients and describe their changes in serum proteins and metabolites, and use bioinformatics analysis methods to identify potential biomarkers and therapeutic targets. Finally, clinical data and experimental data of cell infection were combined for verification. Results It was found that the serum apolipoprotein A1 (APOA1) protein level in COVID-19 patients was down-regulated (log2FC = −0.39, false discovery rate (FDR) < 0.001), and the degree of reduction in the severe group was more significant (kruskal-test p = 2.5e-05). What is more, APOA1 was not only expressed lower in male patients (Wilcox-test p = 0.012), but also negatively correlated with C-reactive protein (CRP, r = −0.37, p = 0.019). The experiment data from SARS-CoV-2 infected cells further showed that the protein and transcript level of APOA1 gradually decreased as the infection time increased, and the transcription level (log2FC = −8.3, FDR = 0.0015) was more down-regulated than protein level (log2FC = −0.95, FDR = 0.0014). More importantly, the collected clinical data also confirmed that APOA1 was down-regulated in COVID-19 patients (kruskal-test p = 0.001), and APOA1 levels are negatively correlated with IL6 (r = −0.396, p = 2.22e-07), D-dimers (DD, r = −0.262, p = 8.19e-04), prothrombin time (PT, r = −0.464, p = 6.68e-10) and thrombin time (TT, r = −0.279, p = 3.46e-04). Conclusion The degree of down-regulation of APOA1 is positively correlated with the severity of COVID-19, and the expression level of APOA1 is negatively correlated with CRP, IL6, DD, PT, TT, and positively correlated with HD and LDL. This indicates that APOA1 may be a key molecule in tandem acute inflammatory response, coagulation abnormalities and cholesterol metabolism disorder in COVID-19, and could be a potential therapeutic target.
Collapse
Affiliation(s)
- Xiaosi Yu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Xianqun Xu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Tianpeng Wu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Wenjie Huang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Chen Xu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Wen Xie
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Xinghua Long
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Correspondence: Xinghua Long; Wen Xie Email ;
| |
Collapse
|
33
|
Pays E. Distinct APOL1 functions in trypanosomes and kidney podocytes. Trends Parasitol 2021; 38:104-108. [PMID: 34887168 DOI: 10.1016/j.pt.2021.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 10/19/2022]
Abstract
The human serum protein apolipoprotein L1 (APOL1) kills Trypanosoma brucei but not the sleeping sickness agent Trypanosoma rhodesiense. APOL1 C-terminal variants can kill T. rhodesiense but they also induce kidney disease. Given topological and functional differences between intracellular and extracellular APOL1 isoforms, I propose that trypanolysis and kidney disease result from distinct APOL1 activities.
Collapse
Affiliation(s)
- Etienne Pays
- Laboratory of Molecular Parasitology, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, Gosselies, Belgium.
| |
Collapse
|
34
|
Malone AF. APOL1 risk variants in kidney transplantation: a modulation of immune cell function. J Clin Invest 2021; 131:154676. [PMID: 34779415 DOI: 10.1172/jci154676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
APOL1 G1 and G2 variants are established risk factors for nondiabetic kidney disease. The presence of two APOL1 risk variants in donor kidneys negatively impacts kidney allograft survival. Because of evolutionary pressure, the APOL1 risk variants have become common in people from Africa and in those with recent African ancestry. APOL1 risk variant proteins are expressed in kidney cells and can cause toxicity to these cells. In this issue of the JCI, Zhang, Sun, and colleagues show that recipient APOL1 risk variants negatively affect kidney allograft survival and T cell-mediated rejection rates, independent of donor APOL1 genotype or recipient ancestry. The authors provide evidence that APOL1 risk variants play an immunomodulatory role in T cells and NK cells in the setting of kidney transplantation. These findings have important clinical implications that require further investigation.
Collapse
|
35
|
Müller D, Schmitz J, Fischer K, Granado D, Groh AC, Krausel V, Lüttgenau SM, Amelung TM, Pavenstädt H, Weide T. Evolution of Renal-Disease Factor APOL1 Results in Cis and Trans Orientations at the Endoplasmic Reticulum That Both Show Cytotoxic Effects. Mol Biol Evol 2021; 38:4962-4976. [PMID: 34323996 PMCID: PMC8557400 DOI: 10.1093/molbev/msab220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The recent and exclusively in humans and a few other higher primates expressed APOL1 (apolipoprotein L1) gene is linked to African human trypanosomiasis (also known as African sleeping sickness) as well as to different forms of kidney diseases. Whereas APOL1's role as a trypanolytic factor is well established, pathobiological mechanisms explaining its cytotoxicity in renal cells remain unclear. In this study, we compared the APOL family members using a combination of evolutionary studies and cell biological experiments to detect unique features causal for APOL1 nephrotoxic effects. We investigated available primate and mouse genome and transcriptome data to apply comparative phylogenetic and maximum likelihood selection analyses. We suggest that the APOL gene family evolved early in vertebrates and initial splitting occurred in ancestral mammals. Diversification and differentiation of functional domains continued in primates, including developing the two members APOL1 and APOL2. Their close relationship could be diagnosed by sequence similarity and a shared ancestral insertion of an AluY transposable element. Live-cell imaging analyses showed that both expressed proteins show a strong preference to localize at the endoplasmic reticulum (ER). However, glycosylation and secretion assays revealed that-unlike APOL2-APOL1 membrane insertion or association occurs in different orientations at the ER, with the disease-associated mutants facing either the luminal (cis) or cytoplasmic (trans) side of the ER. The various pools of APOL1 at the ER offer a novel perspective in explaining the broad spectrum of its observed toxic effects.
Collapse
Affiliation(s)
- Daria Müller
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Jürgen Schmitz
- Institute of Experimental Pathology, ZMBE, University of Münster, Münster, Germany
| | - Katharina Fischer
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Daniel Granado
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Ann-Christin Groh
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Vanessa Krausel
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Simona Mareike Lüttgenau
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Till Maximilian Amelung
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Hermann Pavenstädt
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Thomas Weide
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| |
Collapse
|
36
|
Wu J, Raman A, Coffey NJ, Sheng X, Wahba J, Seasock MJ, Ma Z, Beckerman P, Laczkó D, Palmer MB, Kopp JB, Kuo JJ, Pullen SS, Boustany-Kari CM, Linkermann A, Susztak K. The key role of NLRP3 and STING in APOL1-associated podocytopathy. J Clin Invest 2021; 131:e136329. [PMID: 34651582 PMCID: PMC8516463 DOI: 10.1172/jci136329] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
Coding variants in apolipoprotein L1 (APOL1), termed G1 and G2, can explain most excess kidney disease risk in African Americans; however, the molecular pathways of APOL1-induced kidney dysfunction remain poorly understood. Here, we report that expression of G2 APOL1 in the podocytes of Nphs1rtTA/TRE-G2APOL1 (G2APOL1) mice leads to early activation of the cytosolic nucleotide sensor, stimulator of interferon genes (STING), and the NLR family pyrin domain-containing 3 (NLRP3) inflammasome. STING and NLRP3 expression was increased in podocytes from patients with high-risk APOL1 genotypes, and expression of APOL1 correlated with caspase-1 and gasdermin D (GSDMD) levels. To demonstrate the role of NLRP3 and STING in APOL1-associated kidney disease, we generated transgenic mice with the G2 APOL1 risk variant and genetic deletion of Nlrp3 (G2APOL1/Nlrp3 KO), Gsdmd (G2APOL1/Gsdmd KO), and STING (G2APOL1/STING KO). Knockout mice displayed marked reduction in albuminuria, azotemia, and kidney fibrosis compared with G2APOL1 mice. To evaluate the therapeutic potential of targeting NLRP3, GSDMD, and STING, we treated mice with MCC950, disulfiram, and C176, potent and selective inhibitors of NLRP3, GSDMD, and STING, respectively. G2APOL1 mice treated with MCC950, disulfiram, and C176 showed lower albuminuria and improved kidney function even when inhibitor treatment was initiated after the development of albuminuria.
Collapse
Affiliation(s)
- Junnan Wu
- Department of Medicine, Renal-Electrolyte and Hypertension Division, and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Archana Raman
- Department of Medicine, Renal-Electrolyte and Hypertension Division, and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nathan J. Coffey
- Department of Medicine, Renal-Electrolyte and Hypertension Division, and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xin Sheng
- Department of Medicine, Renal-Electrolyte and Hypertension Division, and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph Wahba
- Department of Medicine, Renal-Electrolyte and Hypertension Division, and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matthew J. Seasock
- Department of Medicine, Renal-Electrolyte and Hypertension Division, and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ziyuan Ma
- Department of Medicine, Renal-Electrolyte and Hypertension Division, and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Pazit Beckerman
- Department of Medicine, Renal-Electrolyte and Hypertension Division, and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dorottya Laczkó
- Department of Medicine, Renal-Electrolyte and Hypertension Division, and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matthew B. Palmer
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jeffrey B. Kopp
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jay J. Kuo
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, USA
| | - Steven S. Pullen
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, USA
| | | | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Katalin Susztak
- Department of Medicine, Renal-Electrolyte and Hypertension Division, and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
37
|
Fernandes das Neves M, Batuca JR, Delgado Alves J. The role of high-density lipoprotein in the regulation of the immune response: implications for atherosclerosis and autoimmunity. Immunology 2021; 164:231-241. [PMID: 33934336 PMCID: PMC8442240 DOI: 10.1111/imm.13348] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/29/2021] [Accepted: 04/16/2021] [Indexed: 12/21/2022] Open
Abstract
Inflammation and immune dysfunction have been increasingly recognized as crucial mechanisms in atherogenesis. Modifications in cell lipid metabolism, plasma dyslipidaemia and particularly low high-density lipoprotein (HDL) levels occur both in atherosclerosis and in autoimmune rheumatic diseases (which are strongly associated with an increased risk of atherosclerosis), suggesting the presence of a crucial link. HDL, the plasma lipoprotein responsible for reverse cholesterol transport, is known for its several protective effects in the context of atherosclerosis. Among these, HDL immunomodulatory effects are possibly the less understood. Through the efflux of cholesterol from plasma cell membranes with the consequent disruption of lipid rafts and the interaction with the cholesterol transporters present in the plasma membrane, HDL affects both the innate and adaptive immune responses. Animal and human studies have demonstrated a predominance of HDL anti-inflammatory effects, despite some pro-inflammatory actions having also been reported. The HDL role on the modulation of the immune response is further suggested by the detection of low levels together with a dysfunctional HDL in patients with autoimmune diseases. Here, we review the current knowledge of the immune mechanisms of atherosclerosis and the modulatory effects HDL may have on them.
Collapse
Affiliation(s)
- Marisa Fernandes das Neves
- Center of the Study of Chronic DiseasesNew University of LisbonLisbonPortugal
- Medicine 4 DepartmentFernando Fonseca HospitalAmadoraPortugal
| | - Joana R. Batuca
- Center of the Study of Chronic DiseasesNew University of LisbonLisbonPortugal
| | - José Delgado Alves
- Center of the Study of Chronic DiseasesNew University of LisbonLisbonPortugal
- Medicine 4 DepartmentFernando Fonseca HospitalAmadoraPortugal
| |
Collapse
|
38
|
Pant J, Samanovic M, Nelson MT, Keceli MK, Verdi J, Beverley SM, Raper J. Interplay of Trypanosome Lytic Factor and innate immune cells in the resolution of cutaneous Leishmania infection. PLoS Pathog 2021; 17:e1008768. [PMID: 34559857 PMCID: PMC8494325 DOI: 10.1371/journal.ppat.1008768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/06/2021] [Accepted: 09/09/2021] [Indexed: 11/19/2022] Open
Abstract
Trypanosome Lytic Factor (TLF) is a primate-specific high-density lipoprotein (HDL) complex that, through the cation channel-forming protein apolipoprotein L-1 (APOL1), provides innate immunity to select kinetoplastid parasites. The immunoprotective effects of TLF have been extensively investigated in the context of its interaction with the extracellular protozoan Trypanosoma brucei brucei, to which it confers sterile immunity. We previously showed that TLF could act against an intracellular pathogen Leishmania, and here we dissected the role of TLF and its synergy with host-immune cells. Leishmania major is transmitted by Phlebotomine sand flies, which deposit the parasite intradermally into mammalian hosts, where neutrophils are the predominant phagocytes recruited to the site of infection. Once in the host, the parasites are phagocytosed and shed their surface glycoconjugates during differentiation to the mammalian-resident amastigote stage. Our data show that mice producing TLF have reduced parasite burdens when infected intradermally with metacyclic promastigotes of L. major, the infective, fly-transmitted stage. This TLF-mediated reduction in parasite burden was lost in neutrophil-depleted mice, suggesting that early recruitment of neutrophils is required for TLF-mediated killing of L. major. In vitro we find that only metacyclic promastigotes co-incubated with TLF in an acidic milieu were lysed. However, amastigotes were not killed by TLF at any pH. These findings correlated with binding experiments, revealing that labeled TLF binds specifically to the surface of metacyclic promastigotes, but not to amastigotes. Metacyclic promastigotes of L. major deficient in the synthesis of surface glycoconjugates LPG and/or PPG (lpg1- and lpg5A-/lpg5B- respectively) whose absence mimics the amastigote surface, were resistant to TLF-mediated lysis. We propose that TLF binds to the outer surface glycoconjugates of metacyclic promastigotes, whereupon it kills the parasite in the acidic phagosome of phagocytes. We hypothesize that resistance to TLF requires shedding of the surface glycoconjugates, which occurs several hours after phagocytosis by immune cells, creating a relatively short-lived but effective window for TLF to act against Leishmania. Leishmaniasis, the disease caused by parasites of the genus Leishmania, can be divided into cutaneous, muco-cutaneous and visceral leishmaniasis depending on the parasite species and the clinical outcome of the disease. Of the three, cutaneous leishmaniasis is the most common form, which is usually characterized by a localized lesion due to the infection of immune cells, primarily dermal and lymph node-resident macrophages. The time between infection and lesion appearance ranges from weeks to years, while some individuals never develop lesions. The length of this subclinical stage of leishmaniasis depends on a variety of factors: parasite virulence, infectious dose, and the host immune response. Therefore, it remains crucial to develop our understanding of each component of the host-parasite interface and assess the role that each component plays in the clinical outcome. Here, we analyze the interaction between L. major, a cutaneous strain, and the host innate immune factor Trypanosome Lytic Factor (TLF), a sub-class of circulating High-Density Lipoprotein (HDL). TLF provides sterile immunity to most extracellular African Trypanosomes by osmotically lysing the parasites. Lysis is driven by the primate specific protein apolipoprotein L-1 (APOL1), a cation channel-forming protein that is activated by a series of pH-dependent conformational changes. APOL1 inserts into cellular membranes at acidic pH and forms a closed ion channel that subsequently opens when re-exposed to neutral pH, resulting in ion flux. Using transgenic mice producing primate TLF, we show that both human and baboon TLFs ameliorate cutaneous Leishmania major infection and that this reduction in parasite burden correlates with: 1. infectious dose of metacyclic promastigotes 2. the concentration of circulating TLF in plasma and 3. early recruitment of neutrophils at the site of infection. Our results show that the acidification step is essential for TLF-mediated lysis of axenic metacyclic promastigotes of Leishmania in vitro. The susceptibility of metacyclic promastigotes to TLF-mediated lysis is governed by the surface glycoconjugates of Leishmania. We find that surface glycoconjugate-deficient Leishmania are resistant to TLF-mediated killing. Based on these data, we conclude that the shedding of surface glycoconjugates while transitioning from metacyclic promastigotes to amastigotes, results in parasite resistance to TLF-mediated lysis. Whether TLF is effective at killing metacyclic promastigotes of other experimentally tractable Leishmania sp., such as L. infantum and L. donovani, which have different surface glycoconjugate structures is yet to be tested. Our data raise the possibility that TLF may have lytic activity against a broader range of pathogens such as bacteria, viruses, fungi and parasites with surface glycoconjugates that transit through intracellular acidic compartments.
Collapse
Affiliation(s)
- Jyoti Pant
- Department of Biology, Hunter College, City University of New York, New York, New York, United States of America
- Molecular, Cellular and Developmental biology, The Graduate Center, City University of New York, New York, New York, United States of America
- * E-mail: (JP); (JR)
| | - Marie Samanovic
- Medical Parasitology, New York University Langone Medical Center, New York, New York, United States of America
| | - Maria T. Nelson
- Department of Biology, Hunter College, City University of New York, New York, New York, United States of America
| | - Mert K. Keceli
- Department of Biology, Hunter College, City University of New York, New York, New York, United States of America
| | - Joseph Verdi
- Department of Biology, Hunter College, City University of New York, New York, New York, United States of America
- Molecular, Cellular and Developmental biology, The Graduate Center, City University of New York, New York, New York, United States of America
| | - Stephen M. Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jayne Raper
- Department of Biology, Hunter College, City University of New York, New York, New York, United States of America
- Molecular, Cellular and Developmental biology, The Graduate Center, City University of New York, New York, New York, United States of America
- * E-mail: (JP); (JR)
| |
Collapse
|
39
|
Silva Pereira S, Jackson AP, Figueiredo LM. Evolution of the variant surface glycoprotein family in African trypanosomes. Trends Parasitol 2021; 38:23-36. [PMID: 34376326 DOI: 10.1016/j.pt.2021.07.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 01/22/2023]
Abstract
An intriguing and remarkable feature of African trypanosomes is their antigenic variation system, mediated by the variant surface glycoprotein (VSG) family and fundamental to both immune evasion and disease epidemiology within host populations. Recent studies have revealed that the VSG repertoire has a complex evolutionary history. Sequence diversity, genomic organization, and expression patterns are species-specific, which may explain other variations in parasite virulence and disease pathology. Evidence also shows that we may be underestimating the extent to what VSGs are repurposed beyond their roles as variant antigens, establishing a need to examine VSG functionality more deeply. Here, we review sequence variation within the VSG gene family, and highlight the many opportunities to explore their likely diverse contributions to parasite survival.
Collapse
Affiliation(s)
- Sara Silva Pereira
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Andrew P Jackson
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK
| | - Luísa M Figueiredo
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
40
|
McCarthy GM, Blasio A, Donovan OG, Schaller LB, Bock-Hughes A, Magraner JM, Suh JH, Tattersfield CF, Stillman IE, Shah SS, Zsengeller ZK, Subramanian B, Friedman DJ, Pollak MR. Recessive, gain-of-function toxicity in an APOL1 BAC transgenic mouse model mirrors human APOL1 kidney disease. Dis Model Mech 2021; 14:dmm048952. [PMID: 34350953 PMCID: PMC8353097 DOI: 10.1242/dmm.048952] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/21/2021] [Indexed: 12/26/2022] Open
Abstract
People of recent sub-Saharan African ancestry develop kidney failure much more frequently than other groups. A large fraction of this disparity is due to two coding sequence variants in the APOL1 gene. Inheriting two copies of these APOL1 risk variants, known as G1 and G2, causes high rates of focal segmental glomerulosclerosis (FSGS), HIV-associated nephropathy and hypertension-associated end-stage kidney disease. Disease risk follows a recessive mode of inheritance, which is puzzling given the considerable data that G1 and G2 are toxic gain-of-function variants. We developed coisogenic bacterial artificial chromosome (BAC) transgenic mice harboring either the wild-type (G0), G1 or G2 forms of human APOL1. Expression of interferon gamma (IFN-γ) via plasmid tail vein injection results in upregulation of APOL1 protein levels together with robust induction of heavy proteinuria and glomerulosclerosis in G1/G1 and G2/G2 but not G0/G0 mice. The disease phenotype was greater in G2/G2 mice. Neither heterozygous (G1/G0 or G2/G0) risk variant mice nor hemizygous (G1/-, G2/-) mice had significant kidney injury in response to IFN-γ, although the heterozygous mice had a greater proteinuric response than the hemizygous mice, suggesting that the lack of significant disease in humans heterozygous for G1 or G2 is not due to G0 rescue of G1 or G2 toxicity. Studies using additional mice (multicopy G2 and a non-isogenic G0 mouse) supported the notion that disease is largely a function of the level of risk variant APOL1 expression. Together, these findings shed light on the recessive nature of APOL1-nephropathy and present an important model for future studies.
Collapse
Affiliation(s)
- Gizelle M. McCarthy
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Angelo Blasio
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Olivia G. Donovan
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Lena B. Schaller
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Althea Bock-Hughes
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Jose M. Magraner
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Jung Hee Suh
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Calum F. Tattersfield
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Isaac E. Stillman
- Dept. of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Shrijal S. Shah
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Zsuzsanna K. Zsengeller
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Balajikarthick Subramanian
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - David J. Friedman
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Martin R. Pollak
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
41
|
Pant J, Giovinazzo JA, Tuka LS, Peña D, Raper J, Thomson R. Apolipoproteins L1-6 share key cation channel-regulating residues but have different membrane insertion and ion conductance properties. J Biol Chem 2021; 297:100951. [PMID: 34252458 PMCID: PMC8358165 DOI: 10.1016/j.jbc.2021.100951] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 01/01/2023] Open
Abstract
The human apolipoprotein L gene family encodes the apolipoprotein L1-6 (APOL1-6) proteins, which are effectors of the innate immune response to viruses, bacteria and protozoan parasites. Due to a high degree of similarity between APOL proteins, it is often assumed that they have similar functions to APOL1, which forms cation channels in planar lipid bilayers and membranes resulting in cytolytic activity. However, the channel properties of the remaining APOL proteins have not been reported. Here, we used transient overexpression and a planar lipid bilayer system to study the function of APOL proteins. By measuring lactate dehydrogenase release, we found that APOL1, APOL3, and APOL6 were cytolytic, whereas APOL2, APOL4, and APOL5 were not. Cells expressing APOL1 or APOL3, but not APOL6, developed a distinctive swollen morphology. In planar lipid bilayers, recombinant APOL1 and APOL2 required an acidic environment for the insertion of each protein into the membrane bilayer to form an ion conductance channel. In contrast, recombinant APOL3, APOL4, and APOL5 readily inserted into bilayers to form ion conductance at neutral pH, but required a positive voltage on the side of insertion. Despite these differences in membrane insertion properties, the ion conductances formed by APOL1-4 were similarly pH-dependent and cation-selective, consistent with conservation of the pore-lining region in each protein. Thus, despite structural conservation, the APOL proteins are functionally different. We propose that these proteins interact with different membranes and under different voltage and pH conditions within a cell to effect innate immunity to different microbial pathogens.
Collapse
Affiliation(s)
- Jyoti Pant
- Department of Biological Sciences, Hunter College, City University of New York, New York, New York, USA.
| | - Joseph A Giovinazzo
- Department of Biological Sciences, Hunter College, City University of New York, New York, New York, USA; Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lilit S Tuka
- Department of Biological Sciences, Hunter College, City University of New York, New York, New York, USA
| | - Darwin Peña
- Department of Biological Sciences, Hunter College, City University of New York, New York, New York, USA
| | - Jayne Raper
- Department of Biological Sciences, Hunter College, City University of New York, New York, New York, USA; PhD Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York, USA
| | - Russell Thomson
- Department of Biological Sciences, Hunter College, City University of New York, New York, New York, USA.
| |
Collapse
|
42
|
Xie X, Jiang Y, Miao R, Huang J, Zhou L, Kong J, Yin F. The gill transcriptome reveals unique antimicrobial features that protect Nibea albiflora from Cryptocaryon irritans infection. JOURNAL OF FISH DISEASES 2021; 44:1215-1227. [PMID: 33913520 DOI: 10.1111/jfd.13382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Cryptocaryonosis is the greatest threat to most teleost species among all parasitic diseases, causing mass loss to the marine aquaculture industry. Epidemiological investigation of teleost susceptibility to Cryptocaryon irritans infection revealed that yellow drum (Nibea albiflora) is highly resistant. In order to further understand the activation of the immune system in the gill, which is one of the main mucosal-associated lymphoid tissues and a target of parasites, transcriptome analysis of the yellow drum gill was performed. Gill samples were collected from fish challenged after 24 hr and 72 hr with theronts at a median death rate (2050 theronts per gram fish). Gene expression profiles showed that TLR5 was the only receptor that activated the downstream immune response. The infection activated complement cascade through alternative pathway and increased the expression of C5a anaphylatoxin chemotactic receptor 1. In addition, possible antimicrobial molecules, including lipoprotein and haptoglobin, which are responsible for trypanolysis in humans, were among the top significantly upregulated genes at 24 hr. After 72 hr, the expression of secreted immunoglobulin T-related genes was induced. These results suggested a rapid innate and adaptive immune response at the mucosal level. In conclusion, the results provide new perspectives on mucosal immune resistance in yellow drum against cryptocaryonosis and provide the possibility of mining resistance genes for future therapy.
Collapse
Affiliation(s)
- Xiao Xie
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture; School of Marine Sciences, Ningbo University, Ningbo, China
| | - Yunyan Jiang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture; School of Marine Sciences, Ningbo University, Ningbo, China
| | - Rujiang Miao
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture; School of Marine Sciences, Ningbo University, Ningbo, China
| | - Jiashuang Huang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture; School of Marine Sciences, Ningbo University, Ningbo, China
| | - Liyao Zhou
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture; School of Marine Sciences, Ningbo University, Ningbo, China
| | - Jindong Kong
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture; School of Marine Sciences, Ningbo University, Ningbo, China
| | - Fei Yin
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture; School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
43
|
Schaub C, Lee P, Racho-Jansen A, Giovinazzo J, Terra N, Raper J, Thomson R. Coiled-coil binding of the leucine zipper domains of APOL1 is necessary for the open cation channel conformation. J Biol Chem 2021; 297:101009. [PMID: 34331942 PMCID: PMC8446801 DOI: 10.1016/j.jbc.2021.101009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/12/2021] [Accepted: 07/23/2021] [Indexed: 11/17/2022] Open
Abstract
Apolipoprotein L-I (APOL1) is a channel-forming effector of innate immunity. The common human APOL1 variant G0 provides protection against infection with certain Trypanosoma and Leishmania parasite species, but it cannot protect against the trypanosomes responsible for human African trypanosomiasis. Human APOL1 variants G1 and G2 protect against human-infective trypanosomes but also confer a higher risk of developing chronic kidney disease. Trypanosome-killing activity is dependent on the ability of APOL1 to insert into membranes at acidic pH and form pH-gated cation channels. We previously mapped the channel’s pore-lining region to the C-terminal domain (residues 332–398) and identified a membrane-insertion domain (MID, residues 177–228) that facilitates acidic pH-dependent membrane insertion. In this article, we further investigate structural determinants of cation channel formation by APOL1. Using a combination of site-directed mutagenesis and targeted chemical modification, our data indicate that the C-terminal heptad-repeat sequence (residues 368–395) is a bona fide leucine zipper domain (ZIP) that is required for cation channel formation as well as lysis of trypanosomes and mammalian cells. Using protein-wide cysteine-scanning mutagenesis, coupled with the substituted cysteine accessibility method, we determined that, in the open channel state, both the N-terminal domain and the C-terminal ZIP domain are exposed on the intralumenal/extracellular side of the membrane and provide evidence that each APOL1 monomer contributes four transmembrane domains to the open cation channel conformation. Based on these data, we propose an oligomeric topology model in which the open APOL1 cation channel is assembled from the coiled-coil association of C-terminal ZIP domains.
Collapse
Affiliation(s)
- Charles Schaub
- Department of Biological sciences, Hunter College, City University of New York, USA; The Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York; Vanderbilt University, Nashville, Tennessee, USA
| | - Penny Lee
- Department of Biological sciences, Hunter College, City University of New York, USA; John Jay College, City University of New York, USA
| | - Alisha Racho-Jansen
- Department of Biological sciences, Hunter College, City University of New York, USA
| | - Joe Giovinazzo
- Department of Biological sciences, Hunter College, City University of New York, USA; University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Nada Terra
- Department of Biological sciences, Hunter College, City University of New York, USA; Icahn School of Medicine at Mount Sinai, New York, USA
| | - Jayne Raper
- Department of Biological sciences, Hunter College, City University of New York, USA; The Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York.
| | - Russell Thomson
- Department of Biological sciences, Hunter College, City University of New York, USA.
| |
Collapse
|
44
|
Ekulu PM, Adebayo OC, Decuypere JP, Bellucci L, Elmonem MA, Nkoy AB, Mekahli D, Bussolati B, van den Heuvel LP, Arcolino FO, Levtchenko EN. Novel Human Podocyte Cell Model Carrying G2/G2 APOL1 High-Risk Genotype. Cells 2021; 10:cells10081914. [PMID: 34440683 PMCID: PMC8391400 DOI: 10.3390/cells10081914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 02/01/2023] Open
Abstract
Apolipoprotein L1 (APOL1) high-risk genotypes (HRG), G1 and G2, increase the risk of various non-diabetic kidney diseases in the African population. To date, the precise mechanisms by which APOL1 risk variants induce injury on podocytes and other kidney cells remain unclear. Trying to unravel these mechanisms, most studies have used animal or cell models created by gene editing. We developed and characterised conditionally immortalised human podocyte cell lines derived from urine of a donor carrying APOL1 HRG G2/G2. Following induction of APOL1 expression by polyinosinic-polycytidylic acid (poly(I:C)), we assessed functional features of APOL1-induced podocyte dysfunction. As control, APOL1 wild type (G0/G0) podocyte cell line previously generated from a Caucasian donor was used. Upon exposure to poly(I:C), G2/G2 and G0/G0 podocytes upregulated APOL1 expression resulting in podocytes detachment, decreased cells viability and increased apoptosis rate in a genotype-independent manner. Nevertheless, G2/G2 podocyte cell lines exhibited altered features, including upregulation of CD2AP, alteration of cytoskeleton, reduction of autophagic flux and increased permeability in an in vitro model under continuous perfusion. The human APOL1 G2/G2 podocyte cell model is a useful tool for unravelling the mechanisms of APOL1-induced podocyte injury and the cellular functions of APOL1.
Collapse
Affiliation(s)
- Pepe M. Ekulu
- Department of Development and Regeneration, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (P.M.E.); (O.C.A.); (J.-P.D.); (A.B.N.); (D.M.); (L.P.v.d.H.); (E.N.L.)
- Department of Paediatrics, Division of Nephrology, Faculty of Medicine, University Hospital of Kinshasa, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Oyindamola C. Adebayo
- Department of Development and Regeneration, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (P.M.E.); (O.C.A.); (J.-P.D.); (A.B.N.); (D.M.); (L.P.v.d.H.); (E.N.L.)
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Jean-Paul Decuypere
- Department of Development and Regeneration, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (P.M.E.); (O.C.A.); (J.-P.D.); (A.B.N.); (D.M.); (L.P.v.d.H.); (E.N.L.)
| | - Linda Bellucci
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10124 Turin, Italy; (L.B.); (B.B.)
| | - Mohamed A. Elmonem
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo 11628, Egypt;
| | - Agathe B. Nkoy
- Department of Development and Regeneration, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (P.M.E.); (O.C.A.); (J.-P.D.); (A.B.N.); (D.M.); (L.P.v.d.H.); (E.N.L.)
- Department of Paediatrics, Division of Nephrology, Faculty of Medicine, University Hospital of Kinshasa, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Djalila Mekahli
- Department of Development and Regeneration, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (P.M.E.); (O.C.A.); (J.-P.D.); (A.B.N.); (D.M.); (L.P.v.d.H.); (E.N.L.)
- Department of Paediatrics, Division of Nephrology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10124 Turin, Italy; (L.B.); (B.B.)
| | - Lambertus P. van den Heuvel
- Department of Development and Regeneration, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (P.M.E.); (O.C.A.); (J.-P.D.); (A.B.N.); (D.M.); (L.P.v.d.H.); (E.N.L.)
- Department of Paediatric Nephrology, Radboud University Medical Centre, 6500 Nijmegen, The Netherlands
| | - Fanny O. Arcolino
- Department of Development and Regeneration, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (P.M.E.); (O.C.A.); (J.-P.D.); (A.B.N.); (D.M.); (L.P.v.d.H.); (E.N.L.)
- Correspondence: ; Tel.: +32-16372647
| | - Elena N. Levtchenko
- Department of Development and Regeneration, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (P.M.E.); (O.C.A.); (J.-P.D.); (A.B.N.); (D.M.); (L.P.v.d.H.); (E.N.L.)
- Department of Paediatrics, Division of Nephrology, University Hospitals Leuven, 3000 Leuven, Belgium
| |
Collapse
|
45
|
Ultsch M, Holliday MJ, Gerhardy S, Moran P, Scales SJ, Gupta N, Oltrabella F, Chiu C, Fairbrother W, Eigenbrot C, Kirchhofer D. Structures of the ApoL1 and ApoL2 N-terminal domains reveal a non-classical four-helix bundle motif. Commun Biol 2021; 4:916. [PMID: 34316015 PMCID: PMC8316464 DOI: 10.1038/s42003-021-02387-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Apolipoprotein L1 (ApoL1) is a circulating innate immunity protein protecting against trypanosome infection. However, two ApoL1 coding variants are associated with a highly increased risk of chronic kidney disease. Here we present X-ray and NMR structures of the N-terminal domain (NTD) of ApoL1 and of its closest relative ApoL2. In both proteins, four of the five NTD helices form a four-helix core structure which is different from the classical four-helix bundle and from the pore-forming domain of colicin A. The reactivity with a conformation-specific antibody and structural models predict that this four-helix motif is also present in the NTDs of ApoL3 and ApoL4, suggesting related functions within the small ApoL family. The long helix 5 of ApoL1 is conformationally flexible and contains the BH3-like region. This BH3-like α-helix resembles true BH3 domains only in sequence and structure but not in function, since it does not bind to the pro-survival members of the Bcl-2 family, suggesting a Bcl-2-independent role in cytotoxicity. These findings should expedite a more comprehensive structural and functional understanding of the ApoL immune protein family.
Collapse
Affiliation(s)
- Mark Ultsch
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Michael J Holliday
- Department of Early Discovery Biochemistry, Genentech Inc., South San Francisco, CA, USA
| | - Stefan Gerhardy
- Department of Early Discovery Biochemistry, Genentech Inc., South San Francisco, CA, USA
| | - Paul Moran
- Department of Early Discovery Biochemistry, Genentech Inc., South San Francisco, CA, USA
| | - Suzie J Scales
- Department of Immunology, Genentech Inc., South San Francisco, CA, USA
| | - Nidhi Gupta
- Department of Immunology, Genentech Inc., South San Francisco, CA, USA
| | | | - Cecilia Chiu
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | - Wayne Fairbrother
- Department of Early Discovery Biochemistry, Genentech Inc., South San Francisco, CA, USA
| | - Charles Eigenbrot
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Daniel Kirchhofer
- Department of Early Discovery Biochemistry, Genentech Inc., South San Francisco, CA, USA.
| |
Collapse
|
46
|
Gaudet RG, Zhu S, Halder A, Kim BH, Bradfield CJ, Huang S, Xu D, Mamiñska A, Nguyen TN, Lazarou M, Karatekin E, Gupta K, MacMicking JD. A human apolipoprotein L with detergent-like activity kills intracellular pathogens. Science 2021; 373:eabf8113. [PMID: 34437126 PMCID: PMC8422858 DOI: 10.1126/science.abf8113] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/29/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022]
Abstract
Activation of cell-autonomous defense by the immune cytokine interferon-γ (IFN-γ) is critical to the control of life-threatening infections in humans. IFN-γ induces the expression of hundreds of host proteins in all nucleated cells and tissues, yet many of these proteins remain uncharacterized. We screened 19,050 human genes by CRISPR-Cas9 mutagenesis and identified IFN-γ-induced apolipoprotein L3 (APOL3) as a potent bactericidal agent protecting multiple non-immune barrier cell types against infection. Canonical apolipoproteins typically solubilize mammalian lipids for extracellular transport; APOL3 instead targeted cytosol-invasive bacteria to dissolve their anionic membranes into human-bacterial lipoprotein nanodiscs detected by native mass spectrometry and visualized by single-particle cryo-electron microscopy. Thus, humans have harnessed the detergent-like properties of extracellular apolipoproteins to fashion an intracellular lysin, thereby endowing resident nonimmune cells with a mechanism to achieve sterilizing immunity.
Collapse
Affiliation(s)
- Ryan G Gaudet
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
- Yale Systems Biology Institute, West Haven, CT 06477, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Shiwei Zhu
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
- Yale Systems Biology Institute, West Haven, CT 06477, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Anushka Halder
- Yale Nanobiology Institute, West Haven, CT 06477, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Bae-Hoon Kim
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
- Yale Systems Biology Institute, West Haven, CT 06477, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Clinton J Bradfield
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
- Yale Systems Biology Institute, West Haven, CT 06477, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Shuai Huang
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
- Yale Systems Biology Institute, West Haven, CT 06477, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Dijin Xu
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
- Yale Systems Biology Institute, West Haven, CT 06477, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Agnieszka Mamiñska
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
- Yale Systems Biology Institute, West Haven, CT 06477, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Thanh Ngoc Nguyen
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia
| | - Michael Lazarou
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia
| | - Erdem Karatekin
- Yale Nanobiology Institute, West Haven, CT 06477, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
- Saints-Pères Paris Institute for the Neurosciences, Centre National de la Recherche Scientifique (CNRS), Université de Paris, F-75006 Paris, France
| | - Kallol Gupta
- Yale Nanobiology Institute, West Haven, CT 06477, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - John D MacMicking
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA.
- Yale Systems Biology Institute, West Haven, CT 06477, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
47
|
Choy J, Kan Y, Cifelli S, Johnson J, Chen M, Shiao LL, Zhou H, Previs S, Lei Y, Johnstone R, Liaw A, Saigal A, Hu L, Ramos R, Visconti R, McElroy WT, Kreamer A, Wildey MJ, Peier A, Shin MK, Imbriglio J, Ren Z, Hoek M, Weinglass A, Ai X. High-Throughput Screening to Identify Small Molecules That Selectively Inhibit APOL1 Protein Level in Podocytes. SLAS DISCOVERY 2021; 26:1225-1237. [PMID: 34218698 DOI: 10.1177/24725552211026245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
High-throughput phenotypic screening is a key driver for the identification of novel chemical matter in drug discovery for challenging targets, especially for those with an unclear mechanism of pathology. For toxic or gain-of-function proteins, small-molecule suppressors are a targeting/therapeutic strategy that has been successfully applied. As with other high-throughput screens, the screening strategy and proper assays are critical for successfully identifying selective suppressors of the target of interest. We executed a small-molecule suppressor screen to identify compounds that specifically reduce apolipoprotein L1 (APOL1) protein levels, a genetically validated target associated with increased risk of chronic kidney disease. To enable this study, we developed homogeneous time-resolved fluorescence (HTRF) assays to measure intracellular APOL1 and apolipoprotein L2 (APOL2) protein levels and miniaturized them to 1536-well format. The APOL1 HTRF assay served as the primary assay, and the APOL2 and a commercially available p53 HTRF assay were applied as counterscreens. Cell viability was also measured with CellTiter-Glo to assess the cytotoxicity of compounds. From a 310,000-compound screening library, we identified 1490 confirmed primary hits with 12 different profiles. One hundred fifty-three hits selectively reduced APOL1 in 786-O, a renal cell adenocarcinoma cell line. Thirty-one of these selective suppressors also reduced APOL1 levels in conditionally immortalized human podocytes. The activity and specificity of seven resynthesized compounds were validated in both 786-O and podocytes.
Collapse
Affiliation(s)
- Jonathan Choy
- Cardio-Metabolic Diseases, Merck & Co., Inc., South San Francisco, CA, USA.,Maze Therapeutics, South San Francisco, CA, USA
| | - Yanqing Kan
- Screening, Target and Compound Profiling, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Steve Cifelli
- Screening, Target and Compound Profiling, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Josephine Johnson
- Cardio-Metabolic Diseases, Merck & Co., Inc., South San Francisco, CA, USA
| | - Michelle Chen
- Cardio-Metabolic Diseases, Merck & Co., Inc., South San Francisco, CA, USA
| | - Lin-Lin Shiao
- Screening, Target and Compound Profiling, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Haihong Zhou
- Screening, Target and Compound Profiling, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Stephen Previs
- Screening, Target and Compound Profiling, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Ying Lei
- Screening, Target and Compound Profiling, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Richard Johnstone
- Screening, Target and Compound Profiling, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Andy Liaw
- Biometrics Research, Merck & Co., Inc., Rahway, NJ, USA
| | - Ashmita Saigal
- Cardio-Metabolic Diseases, Merck & Co., Inc., South San Francisco, CA, USA
| | - Lufei Hu
- Cardio-Metabolic Diseases, Merck & Co., Inc., South San Francisco, CA, USA
| | - Robert Ramos
- Screening, Target and Compound Profiling, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Richard Visconti
- Screening, Target and Compound Profiling, Merck & Co., Inc., Kenilworth, NJ, USA.,Bristol Myers Squibb, New York, NY, USA
| | - William T McElroy
- Screening, Target and Compound Profiling, Merck & Co., Inc., Kenilworth, NJ, USA.,Constellation Pharmaceuticals, Cambridge, MA, USA
| | - Anthony Kreamer
- Screening, Target and Compound Profiling, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Mary-Jo Wildey
- Screening, Target and Compound Profiling, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Andrea Peier
- Screening, Target and Compound Profiling, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Myung K Shin
- Genetics and Pharmacogenomics, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Jason Imbriglio
- Screening, Target and Compound Profiling, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Zhao Ren
- Cardio-Metabolic Diseases, Merck & Co., Inc., South San Francisco, CA, USA
| | - Maarten Hoek
- Cardio-Metabolic Diseases, Merck & Co., Inc., South San Francisco, CA, USA.,Maze Therapeutics, South San Francisco, CA, USA
| | - Adam Weinglass
- Screening, Target and Compound Profiling, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Xi Ai
- Screening, Target and Compound Profiling, Merck & Co., Inc., Kenilworth, NJ, USA
| |
Collapse
|
48
|
de Castro Neto AL, da Silveira JF, Mortara RA. Comparative Analysis of Virulence Mechanisms of Trypanosomatids Pathogenic to Humans. Front Cell Infect Microbiol 2021; 11:669079. [PMID: 33937106 PMCID: PMC8085324 DOI: 10.3389/fcimb.2021.669079] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/30/2021] [Indexed: 11/23/2022] Open
Abstract
Trypanosoma brucei, Leishmania spp., and T. cruzi are flagellate protozoans of the family Trypanosomatidae and the causative agents of human African trypanosomiasis, leishmaniasis, and Chagas disease, respectively. These diseases affect humans worldwide and exert a significant impact on public health. Over the course of evolution, the parasites associated with these pathologies have developed mechanisms to circumvent the immune response system throughout the infection cycle. In cases of human infection, this function is undertaken by a group of proteins and processes that allow the parasites to propagate and survive during host invasion. In T. brucei, antigenic variation is promoted by variant surface glycoproteins and other proteins involved in evasion from the humoral immune response, which helps the parasite sustain itself in the extracellular milieu during infection. Conversely, Leishmania spp. and T. cruzi possess a more complex infection cycle, with specific intracellular stages. In addition to mechanisms for evading humoral immunity, the pathogens have also developed mechanisms for facilitating their adhesion and incorporation into host cells. In this review, the different immune evasion strategies at cellular and molecular levels developed by these human-pathogenic trypanosomatids have been discussed, with a focus on the key molecules responsible for mediating the invasion and evasion mechanisms and the effects of these molecules on virulence.
Collapse
Affiliation(s)
- Artur Leonel de Castro Neto
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - José Franco da Silveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Renato Arruda Mortara
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
49
|
Freedman BI, Kopp JB, Sampson MG, Susztak K. APOL1 at 10 years: progress and next steps. Kidney Int 2021; 99:1296-1302. [PMID: 33794228 DOI: 10.1016/j.kint.2021.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/17/2021] [Accepted: 02/25/2021] [Indexed: 12/29/2022]
Abstract
APOL1 kidney risk variants (RVs) were identified in 2010 as major drivers of glomerular, tubulointerstitial, and renal microvascular disease in individuals with sub-Saharan African ancestry. In December 2020, the "APOL1 at Ten" conference summarized the first decade of progress and discussed controversies and uncertainties that remain to be addressed. Topics included trypanosome infection and its role in the evolution of APOL1 kidney RVs, clinical phenotypes in APOL1-associated nephropathy, relationships between APOL1 RVs and background haplotypes on cell injury and molecular mechanisms initiating disease, the role of clinical APOL1 genotyping, and development of novel therapies for kidney disease. Future goals were defined, including improved characterization of various APOL1 RV phenotypes in patients and experimental preclinical models; further dissection of APOL1-mediated pathways to cellular injury and dysfunction in kidney (and other) cells; clarification of gene-gene and gene-environment interactions; and evaluation of the role for existing and novel therapies.
Collapse
Affiliation(s)
- Barry I Freedman
- Section on Nephrology, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jeffrey B Kopp
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Matthew G Sampson
- Division of Pediatric Nephrology, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA; Broad Institute, Cambridge, Massachusetts, USA
| | - Katalin Susztak
- Renal Electrolyte and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
50
|
Gaglione R, Pizzo E, Notomista E, de la Fuente-Nunez C, Arciello A. Host Defence Cryptides from Human Apolipoproteins: Applications in Medicinal Chemistry. Curr Top Med Chem 2021; 20:1324-1337. [PMID: 32338222 DOI: 10.2174/1568026620666200427091454] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022]
Abstract
Several eukaryotic proteins with defined physiological roles may act as precursors of cryptic bioactive peptides released upon protein cleavage by the host and/or bacterial proteases. Based on this, the term "cryptome" has been used to define the unique portion of the proteome encompassing proteins with the ability to generate bioactive peptides (cryptides) and proteins (crypteins) upon proteolytic cleavage. Hence, the cryptome represents a source of peptides with potential pharmacological interest. Among eukaryotic precursor proteins, human apolipoproteins play an important role, since promising bioactive peptides have been identified and characterized from apolipoproteins E, B, and A-I sequences. Human apolipoproteins derived peptides have been shown to exhibit antibacterial, anti-biofilm, antiviral, anti-inflammatory, anti-atherogenic, antioxidant, or anticancer activities in in vitro assays and, in some cases, also in in vivo experiments on animal models. The most interesting Host Defence Peptides (HDPs) identified thus far in human apolipoproteins are described here with a focus on their biological activities applicable to biomedicine. Altogether, reported evidence clearly indicates that cryptic peptides represent promising templates for the generation of new drugs and therapeutics against infectious diseases.
Collapse
Affiliation(s)
- Rosa Gaglione
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Elio Pizzo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Eugenio Notomista
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, and Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Angela Arciello
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy.,Istituto Nazionale di Biostrutture e Biosistemi (INBB), 00136 Rome, Italy
| |
Collapse
|