1
|
Haywood J, Breese KJ, Jordi Muria-Gonzalez M, Bernath-Levin K, Waters M, Stubbs KA, Mylne JS. A Non-Volatile Pro-Dicamba Herbicide Inspired by Meclofenoxate. Chemistry 2025:e202404282. [PMID: 39779471 DOI: 10.1002/chem.202404282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/15/2024] [Accepted: 01/08/2025] [Indexed: 01/11/2025]
Abstract
Dicamba is a popular herbicide with rising use but is also notorious for volatility drift. Inspired by meclofenoxate, which we show to be highly herbicidal, we developed a derivative of dicamba with an ester-bond to 2-dimethylaminoethanol. It remained herbicidal but is non-volatile, entering plants intact and hydrolyzing inside leaves to dicamba and 2-dimethylaminoethanol. This pro-dicamba is compatible with the relatively novel dicamba monooxygenase tolerance technology, suggesting pro-dicamba might be a suitable, non-volatile replacement for dicamba.
Collapse
Affiliation(s)
- Joel Haywood
- School of Molecular Sciences, The, University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley, Perth WA, 6102, Australia
| | - Karen J Breese
- School of Molecular Sciences, The, University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| | - M Jordi Muria-Gonzalez
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley, Perth WA, 6102, Australia
| | - Kalia Bernath-Levin
- School of Molecular Sciences, The, University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| | - Mark Waters
- School of Molecular Sciences, The, University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| | - Keith A Stubbs
- School of Molecular Sciences, The, University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| | - Joshua S Mylne
- School of Molecular Sciences, The, University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley, Perth WA, 6102, Australia
| |
Collapse
|
2
|
Wu C, Xiao Y, Wang N, Huang X, Wang T, Zhou L, Hao H. Cocrystal engineering for sustained release of dicamba: Mitigating secondary drift and reducing leaching. J Control Release 2024; 375:178-192. [PMID: 39245421 DOI: 10.1016/j.jconrel.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
The off-target effects of herbicides present significant challenges in agricultural practices, posing serious threats to both ecological systems and human health. Dicamba, one of the most widely used herbicides, is particularly problematic due to its high volatility and water solubility, which can lead to rapid environmental dispersal, non-target toxicity, and groundwater contamination. To mitigate these issues, we synthesized a novel cocrystal of dicamba and phenazine (DCB-PHE cocrystal) through a combination of theoretical prediction and mechanochemical screening. The DCB-PHE cocrystal was characterized using single-crystal and powder X-ray diffraction, Fourier-transform infrared spectroscopy (FT-IR), and thermal analysis. Compared to pure dicamba, the DCB-PHE cocrystal exhibited a substantial reduction in volatility by 59 % and a decrease in equilibrium solubility by up to 5.4 times across various temperatures (15 °C, 25 °C, 35 °C). Additionally, the dissolution rates were significantly lowered by over 94 %. Leaching experiments demonstrated that the DCB-PHE cocrystal reduced total leachate by 4.9 % and delayed percolation. In greenhouse trials, the DCB-PHE cocrystal caused less damage to exposed soy plants and enhanced herbicidal activity against target weeds, with fresh weight reduction of chicory and ryegrass by 32 % and 28 %, respectively, at the highest dosage. Furthermore, safety assays confirmed that the DCB-PHE cocrystal's safety profile was comparable to that of dicamba in terms of its impact on wheat, and it did not exhibit increased genotoxicity to broad beans. These findings suggest that the DCB-PHE cocrystal is a promising candidate for reducing the environmental impacts of dicamba while maintaining its herbicidal efficacy.
Collapse
Affiliation(s)
- Chuanhua Wu
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yuntian Xiao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Na Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China.
| | - Xin Huang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China
| | - Ting Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China.
| | - Lina Zhou
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China
| | - Hongxun Hao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China
| |
Collapse
|
3
|
Zhang X, Wu N, Geng K, Yuan C, Wang B, Shi J, Qiu J, He J. Identification of a chlorosalicylic acid decarboxylase (CsaD) involved in decarboxylation of 3,6-DCSA from an anaerobic dicamba-degrading sludge. Appl Environ Microbiol 2024; 90:e0131924. [PMID: 39248463 PMCID: PMC11497826 DOI: 10.1128/aem.01319-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
3,6-Dichlorosalicylic acid (3,6-DCSA) is the demethylation metabolite of herbicide 3,6-dichloro-2-methoxy benzoic acid (dicamba). Previous studies have shown that anaerobic sludge further transformed 3,6-DCSA through decarboxylation and dechlorination. However, the anaerobe, enzyme, and gene involved in the anaerobic degradation of 3,6-DCSA are still unknown. In this study, an anaerobic sludge that efficiently degraded dicamba was enriched, and a 3,6-DCSA decarboxylase, designated chlorosalicylic acid decarboxylase (CsaD), was partially purified and identified from the anaerobic sludge. Metagenomic analysis showed that the csaD gene was located in a gene cluster of metagenome-assembled genome 8 (MAG8). MAG8 belonged to an uncultured order, OPB41, in the class Coriobacteriia of the phylum Actinobacteria, and its abundance increased approximately once during the enrichment process. CsaD was a non-oxidative decarboxylase in the amidohydrolase 2 family catalyzing the decarboxylation of 3,6-DCSA and 6-chlorosalicylic acid (6-CSA). Its affinity and catalytic efficiency for 3,6-DCSA were significantly higher than those for 6-CSA. This study provides new insights into the anaerobic catabolism of herbicide dicamba.IMPORTANCEDicamba, an important hormone herbicide, easily migrates to anoxic habitats such as sediment, ground water, and deep soil. Thus, the anaerobic catabolism of dicamba is of importance. Anaerobic bacteria or sludge demethylated dicamba to 3,6-DCSA, and in a previous study, based on metabolite identification, it was proposed that 3,6-DCSA be further degraded via two pathways: decarboxylation to 2,5-dichlorophenol, then dechlorination to 3-chlorophenol (3-CP); or dechlorination to 6-CSA, then decarboxylation to 3-CP. However, there was no physiological and genetic validation for the pathway. In this study, CsaD catalyzed the decarboxylation of both 3,6-DCSA and 6-CSA, providing enzyme-level evidence for the anaerobic catabolism of 3,6-DCSA through the two pathways. CsaD was located in MAG8, which belonged to an uncultured anaerobic actinomycetes order, OPB41, indicating that anaerobic actinomycetes in OPB41 was involved in the decarboxylation of 3,6-DCSA. This study provides a basis for understanding the anaerobic catabolism of dicamba and the demethylation product, 3,6-DCSA.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Ningning Wu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Keke Geng
- College of Rural Revitalization, Jiangsu Open University, Nanjing, China
| | - Cansheng Yuan
- College of Rural Revitalization, Jiangsu Open University, Nanjing, China
| | - Baozhan Wang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Junyu Shi
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Jiguo Qiu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Jian He
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
- Agricultural Microbial Resources Protection and Germplasm Innovation and Utilization Center of Jiangsu Province, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Mortensen DA, Ryan MR, Smith RG. Another step on the transgene-facilitated herbicide treadmill. PEST MANAGEMENT SCIENCE 2024; 80:4145-4149. [PMID: 38527910 DOI: 10.1002/ps.8105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 03/27/2024]
Abstract
Transgenic, dicamba-resistant soybean and cotton were developed to enable farmers to combat weeds that had evolved resistance to the herbicide glyphosate. The dramatic increases in dicamba use these crops facilitated have led to serious problems, including the evolution of dicamba-resistant weeds and widespread damage to susceptible crops and farming communities. Disturbingly, this pattern of dicamba use has unfolded while the total herbicide applied to soybean has nearly doubled since 2006. Without substantive changes to agricultural policy and decision making, the next 'silver-bullet' agrotechnology will likely be no more than another step on the transgene-facilitated herbicide treadmill. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- David A Mortensen
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham, NH, USA
| | - Matthew R Ryan
- School of Integrative Plant Science-Soil and Crop Sciences Section, Cornell University, Ithaca, NY, USA
| | - Richard G Smith
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, USA
| |
Collapse
|
5
|
Sharkey AM, Parker KM. Elucidating Factors Contributing to Dicamba Volatilization by Characterizing Chemical Speciation in Dried Dicamba-Amine Residues. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12062-12072. [PMID: 38917340 DOI: 10.1021/acs.est.4c01591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Dicamba is a semivolatile herbicide that has caused widespread unintentional damage to vegetation due to its volatilization from genetically engineered dicamba-tolerant crops. Strategies to reduce dicamba volatilization rely on the use of formulations containing amines, which deprotonate dicamba to generate a nonvolatile anion in aqueous solution. Dicamba volatilization in the field is also expected to occur after aqueous spray droplets dry to produce a residue; however, dicamba speciation in this phase is poorly understood. We applied Fourier transform infrared (FTIR) spectroscopy to evaluate dicamba protonation state in dried dicamba-amine residues. We first demonstrated that commercially relevant amines such as diglycolamine (DGA) and n,n-bis(3-aminopropyl)methylamine (BAPMA) fully deprotonated dicamba when applied at an equimolar molar ratio, while dimethylamine (DMA) allowed neutral dicamba to remain detectable, which corresponded to greater dicamba volatilization. Expanding the amines tested, we determined that dicamba speciation in the residues was unrelated to solution-phase amine pKa, but instead was affected by other amine characteristics (i.e., number of hydrogen bonding sites) that also correlated with greater dicamba volatilization. Finally, we characterized dicamba-amine residues containing an additional component (i.e., the herbicide S-metolachlor registered for use alongside dicamba) to investigate dicamba speciation in a more complex chemical environment encountered in field applications.
Collapse
Affiliation(s)
- Andromeda M Sharkey
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Kimberly M Parker
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
6
|
Homa J, Stachowiak W, Olejniczak A, Chrzanowski Ł, Niemczak M. Ecotoxicity studies reveal that organic cations in dicamba-derived ionic liquids can pose a greater environmental risk than the herbicide itself. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171062. [PMID: 38401717 DOI: 10.1016/j.scitotenv.2024.171062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/30/2024] [Accepted: 02/16/2024] [Indexed: 02/26/2024]
Abstract
The following research provides novel and relevant insights into potential environmental consequences of combination of various organic cations with commercial systemic herbicide (dicamba), in accordance with a 'herbicidal ionic liquids' (HILs) strategy. Toxicity assays of five dicamba-based HILs comprising different hydrophobic and hydrophilic cations, namely choline [CHOL][DIC], ethyl betainate [BETC2][DIC], decyl betainate [BETC10][DIC], hexadecyl betainate [BETC16][DIC] and didecyldimethylammonium [DDA][DIC]), have been tested towards bacteria (Pseudomonas putida, Escherichia coli, Bacillus subtilis), algae (Chlorella vulgaris), fresh and marine water crustaceans (Daphnia magna, Artemia franciscana). The structure of respective substituents in the cation emerged as a decisive determinant of toxicity in the case of tested species. In consequence, small ions of natural origin ([CHOL] and [BETC2]) demonstrated toxicity numerous orders of magnitude lower compared to fully synthetic [DDA]. These results emphasize the role of cations' hydrophobicity, as well as origin, in the observed acute toxic effect. Time-dependent toxicity assays also indicated that betaine-type cations comprising an ester bond can rapidly transform into less harmful substances, which can generally result in a reduction in toxicity by even several orders of magnitude. Nonetheless, these findings challenge the concept of ionic liquids with herbicidal activity and give apparent parallels to adjuvant-dependent toxicity issues recently noted in typical herbicidal formulations.
Collapse
Affiliation(s)
- Jan Homa
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, Poznan 60-965, Poland
| | - Witold Stachowiak
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, Poznan 60-965, Poland
| | - Adriana Olejniczak
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, Poznan 60-965, Poland
| | - Łukasz Chrzanowski
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, Poznan 60-965, Poland
| | - Michał Niemczak
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, Poznan 60-965, Poland.
| |
Collapse
|
7
|
Wang Y, Zhou H, Fu Y, Wang Z, Gao Q, Yang D, Kang J, Chen L, An Z, Hammock BD, Zhang J, Huo J. Establishment of an indirect competitive immunoassay for the detection of dicamba based on a highly specific nanobody. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170567. [PMID: 38296098 PMCID: PMC10936929 DOI: 10.1016/j.scitotenv.2024.170567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/28/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
Dicamba, a traditional highly effective and low toxicity herbicide, has gained new life with the development of dicamba-tolerant transgenic crops in recent years. However, dicamba is highly volatile and therefore easy to cause drift damage to sensitive crops. The development of efficient and sensitive detection methods is essential for monitoring of trace dicamba in the environment. Nanobody-based immunoassay plays an important role in on-site detection of pesticides. However, now rapid and sensitive immunoassay methods based on nanobody for dicamba detection were lacking. In this study, the nanobodies specifically recognizing dicamba were successfully obtained by immunising camels and phage display library construction, and then an indirect competitive immunoassay based on Nb-242 was constructed with IC50 of 0.93 μg/mL and a linear range of 0.11-8.01 μg/mL. Nb-242 had good specificity with no cross-reactivities against the dicamba analogs other than 2,3,6-trichlorobenzoic acid and the developed immnoassay had a good correlation with the standard HPLC in the spike-recovery studies. Finally, the key amino acid Ala 123, Tyr 55, Tyr 59 and Arg 72 of Nb-242 that specifically recognizing and binding with dicamba were identified by homologous modeling and molecular docking, laying an important foundation for further structural modification of Nb-242. This study has important guiding significance for constructing immunoassay method of dicamba based on nanobody and provides a sensitive, specific, and reliable detection method that is suitable for the detection of dicamba in the environment.
Collapse
Affiliation(s)
- Yasen Wang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, PR China
| | - Hui Zhou
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, PR China
| | - Yining Fu
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, PR China
| | - Zhengzhong Wang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, PR China
| | - Qingqing Gao
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, PR China
| | - Dongchen Yang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, PR China
| | - Jia Kang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, PR China
| | - Lai Chen
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, PR China
| | - Zexiu An
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, PR China
| | - Bruce D Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, United States of America
| | - Jinlin Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, PR China.
| | - Jingqian Huo
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, PR China.
| |
Collapse
|
8
|
Singh R, Shukla A, Kaur G, Girdhar M, Malik T, Mohan A. Systemic Analysis of Glyphosate Impact on Environment and Human Health. ACS OMEGA 2024; 9:6165-6183. [PMID: 38371781 PMCID: PMC10870391 DOI: 10.1021/acsomega.3c08080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/15/2023] [Accepted: 12/29/2023] [Indexed: 02/20/2024]
Abstract
With a growing global population, agricultural scientists are focusing on crop production management and the creation of new strategies for a higher agricultural output. However, the growth of undesirable plants besides the primary crop poses a significant challenge in agriculture, necessitating the massive application of herbicides to eradicate this problem. Several synthetic herbicides are widely utilized, with glyphosate emerging as a potential molecule for solving this emerging issue; however, it has several environmental and health consequences. Several weed species have evolved resistance to this herbicide, therefore lowering agricultural yield. The persistence of glyphosate residue in the environment, such as in water and soil systems, is due to the misuse of glyphosate in agricultural regions, which causes its percolation into groundwater via the vertical soil profile. As a result, it endangers many nontarget organisms existing in the natural environment, which comprises both soil and water. The current Review aims to provide a systemic analysis of glyphosate, its various effects on the environment, its subsequent impact on human health and animals, which will lead us toward a better understanding of the issues about herbicide usage and aid in managing it wisely, as in the near the future glyphosate market is aiming for a positive forecast until 2035.
Collapse
Affiliation(s)
- Reenu Singh
- School
of Bioengineering and Biosciences, Lovely
Professional University, Phagwara, Punjab 144411, India
| | - Akanksha Shukla
- School
of Bioengineering and Biosciences, Lovely
Professional University, Phagwara, Punjab 144411, India
| | - Gurdeep Kaur
- School
of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Madhuri Girdhar
- School
of Bioengineering and Biosciences, Lovely
Professional University, Phagwara, Punjab 144411, India
| | - Tabarak Malik
- Department
of Biomedical Sciences, Institute of Health, Jimma University, Jimma 00000, Ethiopia
| | - Anand Mohan
- School
of Bioengineering and Biosciences, Lovely
Professional University, Phagwara, Punjab 144411, India
| |
Collapse
|
9
|
Zhang X, Wu N, Ke Z, Shi J, Wang L, Yuan C, He J. Anaerobic Degradation of Dicamba via a Novel Catabolic Pathway by a Consortium Enriched from Deep Paddy Soil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1035-1043. [PMID: 38179682 DOI: 10.1021/acs.jafc.3c07903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Dicamba is widely used in the paddy field to control broadleaf weeds. Dicamba easily migrates to deep soil, which is anoxic; however, the anaerobic catabolism of dicamba in paddy soil is still unknown. In this study, an anaerobic dicamba-degrading consortium was enriched from deep paddy soil. The consortium completely degraded 0.83 mM dicamba within 7 days. Five metabolites were identified, one of which is a new metabolite, 2,5-dichlorophenol, and a novel anaerobic dicamba degradation pathway was proposed. 2.5 mM dicamba, 1.5-2.0% NaCl, and 20 mM electron acceptors Na2SO4, NaNO3, and FeCl3, and 0.5 mM or more of metabolites 3-CP and 2,5-DCP strongly inhibited the degradation efficiency. During enrichment, the microbial community of the consortium was significantly changed with OTU numbers, and diversity decreased. The study is valuable to elucidate the catabolism and ecotoxicology studies of dicamba in paddy soil and to facilitate the engineering application of anaerobic technology to treat dicamba-manufacturing wastewater.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Microbiology, College of Life Sciences, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Ningning Wu
- Department of Microbiology, College of Life Sciences, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Zhuang Ke
- College of Rural Revitalization, Jiangsu Open University, Nanjing, Jiangsu 210036, PR China
| | - Junyu Shi
- Department of Microbiology, College of Life Sciences, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Lin Wang
- College of Rural Revitalization, Jiangsu Open University, Nanjing, Jiangsu 210036, PR China
| | - Cansheng Yuan
- College of Rural Revitalization, Jiangsu Open University, Nanjing, Jiangsu 210036, PR China
| | - Jian He
- Department of Microbiology, College of Life Sciences, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
- Agricultural Microbial Resources Protection and Germplasm Innovation and Utilization Center of Jiangsu Province, Nanjing, Jiangsu 210095, PR China
| |
Collapse
|
10
|
Larose J, Bienvenu JF, Bélanger P, Gaudreau É, Yu Y, Guise DM. New sensitive LC-MS/MS method for the simultaneous determination of 13 phenolic and carboxylic acid pesticide biomarkers in human urine, including dicamba. CHEMOSPHERE 2023; 344:140349. [PMID: 37827463 DOI: 10.1016/j.chemosphere.2023.140349] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/14/2023]
Abstract
The commercialization in 2016 of genetically engineered seeds tolerant to dicamba and/or 2,4-dichlorophenoxyacetic acid (2,4-D) has caused a rapid increase in the use of these herbicides. New questions about the reproductive and chronic health effects of long-term exposure to these herbicides have been raised. To assess exposure to dicamba and other pesticides of interest in the Heartland Study, a birth cohort study based in the United States, a new analytical method was needed. The present study describes the development and validation of this new solid phase extraction and liquid chromatography-tandem mass spectrometry method that detects simultaneously 13 pesticides or their metabolites in 250 μL of urine. More specifically, the method allows the analysis of dicamba, 2,4-D and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), which are herbicides, of malathion dicarboxylic acid (MDA), para-nitrophenol (PNP), 3,5,6-trichloro-2-pyridinol (TCPy), 2-diethylamino-6-methylpyrimidin-4-ol (DEAMPY) and 2-isopropyl-6-methyl-4-pyrimidinol (IMPY), which are metabolites of organophosphate insecticides, and finally of cis-3-(2,2-Dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (cis-DCCA), trans-3-(2,2-Dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (trans-DCCA), 3-Phenoxybenzoic acid (3-PBA), 4-Fluoro-3-phenoxybenzoic acid (4-F-3-PBA) and cis-3-(2,2-Dibromovinyl)-2,2-dimethylcyclopropane carboxylic acid (cis-DBCA), which are metabolites of synthetic pyrethroids insecticides. The method was validated under ISO/IEC 17025 guidance. The limit of detection (LOD) in urine samples was 0.10 μg/L for dicamba, while the LOD for other analytes ranged between 0.0038 μg/L and 0.091 μg/L. Accuracy was evaluated by analyzing samples from two External Quality Assessment Schemes, namely G-EQUAS and OSEQAS. Preliminary results obtained following the analysis of 91 urine samples taken from pregnant women enrolled in the Heartland Study are presented here. This method is suitable for human biomonitoring studies.
Collapse
Affiliation(s)
- Jessica Larose
- Centre de Toxicologie du Québec (CTQ), Institut national de santé publique du Québec (INSPQ), 945 avenue Wolfe, Québec, QC, G1V 5B3, Canada.
| | - Jean-François Bienvenu
- Centre de Toxicologie du Québec (CTQ), Institut national de santé publique du Québec (INSPQ), 945 avenue Wolfe, Québec, QC, G1V 5B3, Canada
| | - Patrick Bélanger
- Centre de Toxicologie du Québec (CTQ), Institut national de santé publique du Québec (INSPQ), 945 avenue Wolfe, Québec, QC, G1V 5B3, Canada
| | - Éric Gaudreau
- Centre de Toxicologie du Québec (CTQ), Institut national de santé publique du Québec (INSPQ), 945 avenue Wolfe, Québec, QC, G1V 5B3, Canada
| | - Yunpeng Yu
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David M Guise
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
11
|
Canella Vieira C, Zhou J, Jarquin D, Zhou J, Diers B, Riechers DE, Nguyen HT, Shannon G. Genetic architecture of soybean tolerance to off-target dicamba. FRONTIERS IN PLANT SCIENCE 2023; 14:1230068. [PMID: 37877091 PMCID: PMC10590897 DOI: 10.3389/fpls.2023.1230068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/27/2023] [Indexed: 10/26/2023]
Abstract
The adoption of dicamba-tolerant (DT) soybean in the United States resulted in extensive off-target dicamba damage to non-DT vegetation across soybean-producing states. Although soybeans are highly sensitive to dicamba, the intensity of observed symptoms and yield losses are affected by the genetic background of genotypes. Thus, the objective of this study was to detect novel marker-trait associations and expand on previously identified genomic regions related to soybean response to off-target dicamba. A total of 551 non-DT advanced breeding lines derived from 232 unique bi-parental populations were phenotyped for off-target dicamba across nine environments for three years. Breeding lines were genotyped using the Illumina Infinium BARCSoySNP6K BeadChip. Filtered SNPs were included as predictors in Random Forest (RF) and Support Vector Machine (SVM) models in a forward stepwise selection loop to identify the combination of SNPs yielding the highest classification accuracy. Both RF and SVM models yielded high classification accuracies (0.76 and 0.79, respectively) with minor extreme misclassifications (observed tolerant predicted as susceptible, and vice-versa). Eight genomic regions associated with off-target dicamba tolerance were identified on chromosomes 6 [Linkage Group (LG) C2], 8 (LG A2), 9 (LG K), 10 (LG O), and 19 (LG L). Although the genetic architecture of tolerance is complex, high classification accuracies were obtained when including the major effect SNP identified on chromosome 6 as the sole predictor. In addition, candidate genes with annotated functions associated with phases II (conjugation of hydroxylated herbicides to endogenous sugar molecules) and III (transportation of herbicide conjugates into the vacuole) of herbicide detoxification in plants were co-localized with significant markers within each genomic region. Genomic prediction models, as reported in this study, can greatly facilitate the identification of genotypes with superior tolerance to off-target dicamba.
Collapse
Affiliation(s)
- Caio Canella Vieira
- Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Jing Zhou
- Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Diego Jarquin
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Jianfeng Zhou
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Brian Diers
- Department of Crop Sciences, University of Illinois, Urbana, IL, United States
| | - Dean E. Riechers
- Department of Crop Sciences, University of Illinois, Urbana, IL, United States
| | - Henry T. Nguyen
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Grover Shannon
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
12
|
Widhiastuti F, Rajendram W, Pramanik BK. Understanding the risk of using herbicides for tree root removal into wastewater treatment plant performance. CHEMOSPHERE 2023; 337:139345. [PMID: 37379978 DOI: 10.1016/j.chemosphere.2023.139345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/16/2023] [Accepted: 06/24/2023] [Indexed: 06/30/2023]
Abstract
Adding herbicides to sewer lines, a common practice for controlling root intrusion in sewer pipes, may adversely impact downstream wastewater treatment by inhibiting nitrification and denitrification performance. This study investigated the effects of herbicides, namely diquat, triclopyr, and 2-methyl-4-chlorophenoxyacetic acid (MCPA)-dicamba, on these processes. Various parameters were monitored, including oxygen uptake rate (OUR), nutrients (NH3-N, TP, NO3-N, and NO2-N), chemical oxygen demand (COD), and herbicide concentrations. It was found that nitrification was not affected by OUR in the presence of each herbicide at various concentrations (1, 10, and 100 mg L-1). Additionally, MCPA-dicamba at various concentrations demonstrated minimal inhibition in the nitrification process compared to diquat and triclopyr. COD consumption was not affected by the presence of these herbicides. However, triclopyr significantly inhibited NO3-N formation in the denitrification process at various concentrations. Similar to nitrification process, both COD consumption and herbicide reduction concentration were not affected by the presence of herbicides during the denitrification process. Adenosine triphosphate measurements showed minimal impact on nitrification and denitrification processes when herbicides were present in the solution up to a concentration of 10 mg L-1. Tree root kill efficiency experiments were performed on Acacia melanoxylon. Considering the performance on nitrification and denitrification process, diquat emerged as the best herbicide option (concentration of 10 mg L-1), with a 91.24% root kill efficiency.
Collapse
Affiliation(s)
- Fitri Widhiastuti
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, 3001, Victoria, Australia
| | | | - Biplob Kumar Pramanik
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, 3001, Victoria, Australia.
| |
Collapse
|
13
|
Prusinska J, Uzunova V, Schmitzer P, Weimer M, Bell J, Napier RM. The differential binding and biological efficacy of auxin herbicides. PEST MANAGEMENT SCIENCE 2023; 79:1305-1315. [PMID: 36458868 PMCID: PMC10952535 DOI: 10.1002/ps.7294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Auxin herbicides have been used for selective weed control for 75 years and they continue to be amongst the most widely used weed control agents globally. The auxin herbicides fall into five chemical classes, with two herbicides not classified, and in all cases it is anticipated that recognition in the plant starts with binding to the Transport Inhibitor Response 1 (TIR1) family of auxin receptors. There is evidence that some classes of auxins act selectively with certain clades of receptors, although a comprehensive structure-activity relationship has not been available. RESULTS Using purified receptor proteins to measure binding efficacy we have conducted quantitative structure activity relationship (qSAR) assays using representative members of the three receptor clades in Arabidopsis, TIR1, AFB2 and AFB5. Complementary qSAR data for biological efficacy at the whole-plant level using root growth inhibition and foliar phytotoxicity assays have also been analyzed for each family of auxin herbicides, including for the afb5-1 receptor mutant line. CONCLUSIONS Comparisons of all these assays highlight differences in receptor selectivity and some systematic differences between results for binding in vitro and activity in vivo. The results could provide insights into weed spectrum differences between the different classes of auxin herbicides, as well as the potential resistance and cross-resistance implications for this herbicide class. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - Paul Schmitzer
- Corteva AgriscienceCrop Protection Discovery & DevelopmentIndianapolisIndianaUSA
| | - Monte Weimer
- Corteva AgriscienceCrop Protection Discovery & DevelopmentIndianapolisIndianaUSA
| | - Jared Bell
- Corteva AgriscienceCrop Protection Discovery & DevelopmentIndianapolisIndianaUSA
| | | |
Collapse
|
14
|
Kouame KB, Butts TR, Werle R, Johnson WG. Impact of volatility reduction agents on dicamba and glyphosate spray solution pH, droplet dynamics, and weed control. PEST MANAGEMENT SCIENCE 2023; 79:857-869. [PMID: 36305819 PMCID: PMC10100389 DOI: 10.1002/ps.7258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/29/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Regulations in 2021 required the addition of a volatility reduction agent (VRA) to dicamba spray mixtures for postemergence weed control. Understanding the impact of VRAs on weed control, droplet dynamics, and spray pH is essential. RESULTS Adding glyphosate to dicamba decreased the solution pH by 0.63 to 1.85 units. Across locations, potassium carbonate increased the tank-mixture pH by 0.85 to 1.65 units while potassium acetate raised the pH by 0.46 to 0.53 units. Glyphosate and dicamba in tank-mixture reduced Palmer amaranth control by 14 percentage points compared to dicamba alone and decreased barnyardgrass control by 12 percentage points compared to glyphosate alone 4 weeks after application (WAA). VRAs resulted in a 5-percentage point reduction in barnyardgrass control 4 WAA. Common ragweed, common lambsquarters, and giant ragweed control were unaffected by herbicide solution 4 WAA. Dicamba alone produced a larger average droplet size and had the fewest driftable fines (% volume < 200 μm). Potassium acetate produced a larger droplet size than potassium carbonate for Dv0.1 and Dv0.5 . The addition of glyphosate to dicamba decreased droplet size from the entire spray droplet spectrum (Dv0.1 , Dv0.5 , Dv0.9 ). CONCLUSION A reduction in spray pH, droplet size, and weed control was observed from mixing dicamba and glyphosate. It may be advisable to avoid tank-mixtures of these herbicides and instead, apply them sequentially to maximize effectiveness. VRAs differed in their impacts on spray solution pH and droplet dynamics, but resulted in a minimal negative to no impact on weed control. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Koffi Badou‐Jeremie Kouame
- Postdoctoral Research Fellow, Department of Crop, Soil, and Environmental SciencesUniversity of Arkansas System Division of AgricultureLonokeARUSA
| | - Thomas R. Butts
- Extension Weed Scientist, Department of Crop, Soil, and Environmental SciencesUniversity of Arkansas System Division of AgricultureLonokeARUSA
| | - Rodrigo Werle
- Extension Weed Scientist, Department of AgronomyUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - William G. Johnson
- Weed Scientist, Department of Botany & Plant PathologyPurdue UniversityWest LafayetteINUSA
| |
Collapse
|
15
|
Canella Vieira C, Jarquin D, do Nascimento EF, Lee D, Zhou J, Smothers S, Zhou J, Diers B, Riechers DE, Xu D, Shannon G, Chen P, Nguyen HT. Identification of genomic regions associated with soybean responses to off-target dicamba exposure. FRONTIERS IN PLANT SCIENCE 2022; 13:1090072. [PMID: 36570921 PMCID: PMC9780662 DOI: 10.3389/fpls.2022.1090072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
The widespread adoption of genetically modified (GM) dicamba-tolerant (DT) soybean was followed by numerous reports of off-target dicamba damage and yield losses across most soybean-producing states. In this study, a subset of the USDA Soybean Germplasm Collection consisting of 382 genetically diverse soybean accessions originating from 15 countries was used to identify genomic regions associated with soybean response to off-target dicamba exposure. Accessions were genotyped with the SoySNP50K BeadChip and visually screened for damage in environments with prolonged exposure to off-target dicamba. Two models were implemented to detect significant marker-trait associations: the Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK) and a model that allows the inclusion of population structure in interaction with the environment (G×E) to account for variable patterns of genotype responses in different environments. Most accessions (84%) showed a moderate response, either moderately tolerant or moderately susceptible, with approximately 8% showing tolerance and susceptibility. No differences in off-target dicamba damage were observed across maturity groups and centers of origin. Both models identified significant associations in regions of chromosomes 10 and 19. The BLINK model identified additional significant marker-trait associations on chromosomes 11, 14, and 18, while the G×E model identified another significant marker-trait association on chromosome 15. The significant SNPs identified by both models are located within candidate genes possessing annotated functions involving different phases of herbicide detoxification in plants. These results entertain the possibility of developing non-GM soybean cultivars with improved tolerance to off-target dicamba exposure and potentially other synthetic auxin herbicides. Identification of genetic sources of tolerance and genomic regions conferring higher tolerance to off-target dicamba may sustain and improve the production of other non-DT herbicide soybean production systems, including the growing niche markets of organic and conventional soybean.
Collapse
Affiliation(s)
- Caio Canella Vieira
- Fisher Delta Research, Extension, and Education Center, Division of Plant Science and Technology, University of Missouri, Portageville, MO, United States
| | - Diego Jarquin
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Emanuel Ferrari do Nascimento
- Fisher Delta Research, Extension, and Education Center, Division of Plant Science and Technology, University of Missouri, Portageville, MO, United States
| | - Dongho Lee
- Fisher Delta Research, Extension, and Education Center, Division of Plant Science and Technology, University of Missouri, Portageville, MO, United States
| | - Jing Zhou
- Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Scotty Smothers
- Fisher Delta Research, Extension, and Education Center, Division of Plant Science and Technology, University of Missouri, Portageville, MO, United States
| | - Jianfeng Zhou
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Brian Diers
- Department of Crop Sciences, University of Illinois, Urbana, IL, United States
| | - Dean E. Riechers
- Department of Crop Sciences, University of Illinois, Urbana, IL, United States
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Grover Shannon
- Fisher Delta Research, Extension, and Education Center, Division of Plant Science and Technology, University of Missouri, Portageville, MO, United States
| | - Pengyin Chen
- Fisher Delta Research, Extension, and Education Center, Division of Plant Science and Technology, University of Missouri, Portageville, MO, United States
| | - Henry T. Nguyen
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
16
|
Grant TJ, Fisher KE, Krishnan N, Mullins AN, Hellmich RL, Sappington TW, Adelman JS, Coats JR, Hartzler RG, Pleasants JM, Bradbury SP. Monarch Butterfly Ecology, Behavior, and Vulnerabilities in North Central United States Agricultural Landscapes. Bioscience 2022; 72:1176-1203. [PMID: 36451972 PMCID: PMC9699720 DOI: 10.1093/biosci/biac094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
The North American monarch butterfly (Danaus plexippus) is a candidate species for listing under the Endangered Species Act. Multiple factors are associated with the decline in the eastern population, including the loss of breeding and foraging habitat and pesticide use. Establishing habitat in agricultural landscapes of the North Central region of the United States is critical to increasing reproduction during the summer. We integrated spatially explicit modeling with empirical movement ecology and pesticide toxicology studies to simulate population outcomes for different habitat establishment scenarios. Because of their mobility, we conclude that breeding monarchs in the North Central states should be resilient to pesticide use and habitat fragmentation. Consequently, we predict that adult monarch recruitment can be enhanced even if new habitat is established near pesticide-treated crop fields. Our research has improved the understanding of monarch population dynamics at the landscape scale by examining the interactions among monarch movement ecology, habitat fragmentation, and pesticide use.
Collapse
Affiliation(s)
- Tyler J Grant
- Research scientist, Iowa State University, Ames, Iowa
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
López-Puertollano D, Agulló C, Mercader JV, Abad-Somovilla A, Abad-Fuentes A. Design of a novel hapten and development of a sensitive monoclonal immunoassay for dicamba analysis in environmental water samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157770. [PMID: 35926599 DOI: 10.1016/j.scitotenv.2022.157770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Weed resistance to glyphosate has been a driving force behind the increased use of alternative herbicides in agriculture. Recently, dicamba-tolerant recombinant plants were introduced to the market, which may result in residues of this agrochemical contaminating environmental waters. Given that restrictions on the use of dicamba have consequently been established by regulatory agencies, it is therefore also desirable to conduct extensive controls on dicamba residues. Immunoassays are currently the most powerful bioanalytical technology for the rapid monitoring of chemical residues and contaminants. In the present study, a novel hapten was designed maintaining unaltered all the antigenic moieties of the target molecule, and this was used to generate high-affinity monoclonal antibodies against dicamba for the first time. Additionally, a collection of haptens with different linker composition or linker tethering site was synthesized and conjugated to proteins. Using these novel immunoreagents, a direct competitive enzyme-linked immunosorbent assay with a limit of detection for dicamba of 0.24 ng/mL was developed and validated. Analysis of water samples from different origins afforded recovery values between 90 % and 120 %, and coefficients of variation below 20 % were obtained. These results indicate that the developed immunochemical assay is suitable for the rapid determination of dicamba residues in environmental water samples.
Collapse
Affiliation(s)
- Daniel López-Puertollano
- Department of Organic Chemistry, University of Valencia, Doctor Moliner 50, Burjassot 46100, València, Spain
| | - Consuelo Agulló
- Department of Organic Chemistry, University of Valencia, Doctor Moliner 50, Burjassot 46100, València, Spain
| | - Josep V Mercader
- Institute of Agricultural Chemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Av. Agustí Escardino 7, Paterna 46980, València, Spain
| | - Antonio Abad-Somovilla
- Department of Organic Chemistry, University of Valencia, Doctor Moliner 50, Burjassot 46100, València, Spain
| | - Antonio Abad-Fuentes
- Institute of Agricultural Chemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Av. Agustí Escardino 7, Paterna 46980, València, Spain.
| |
Collapse
|
18
|
Herbicide spray drift from ground and aerial applications: Implications for potential pollinator foraging sources. Sci Rep 2022; 12:18017. [PMID: 36289439 PMCID: PMC9606278 DOI: 10.1038/s41598-022-22916-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023] Open
Abstract
A field spray drift experiment using florpyrauxifen-benzyl was conducted to measure drift from commercial ground and aerial applications, evaluate soybean [Glycine max (L.) Merr.] impacts, and compare to United States Environmental Protection Agency (US EPA) drift models. Collected field data were consistent with US EPA model predictions. Generally, with both systems applying a Coarse spray in a 13-kph average wind speed, the aerial application had a 5.0- to 8.6-fold increase in drift compared to the ground application, and subsequently, a 1.7- to 3.6-fold increase in downwind soybean injury. Soybean reproductive structures were severely reduced following herbicide exposure, potentially negatively impacting pollinator foraging sources. Approximately a 25% reduction of reproductive structures up to 30.5-m downwind and nearly a 100% reduction at 61-m downwind were observed for ground and aerial applications, respectively. Aerial applications would require three to five swath width adjustments upwind to reduce drift potential similar to ground applications.
Collapse
|
19
|
Gazola T, Costa RN, Carbonari CA, Velini ED. Dynamics of 2,4-D and Dicamba Applied to Corn Straw and Their Residual Action in Weeds. PLANTS (BASEL, SWITZERLAND) 2022; 11:2800. [PMID: 36297822 PMCID: PMC9610222 DOI: 10.3390/plants11202800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
2,4-D and dicamba are used in the postemergence management of eudicotyledonous weeds in different crops, most of which are grown under no-tillage systems. Due to the application methods for these products, their dynamics in straw and their residual action in soil have rarely been explored. Thus, the objective of this study was to evaluate the dynamics of 2,4-D and dicamba that have been applied to corn straw and to verify their relationship with residual control action in weeds. In the dynamics experiments, the herbicides were applied to 5 t ha-1 of straw, and rainfall simulations were performed with variable amounts and at different periods after application to evaluate herbicide movement in the straw. In the residual action experiments, the species Digitaria insularis, Conyza spp., Bidens pilosa, Amaranthus hybridus, Euphorbia heterophylla, and Eleusine indica were sown in trays, and 2,4-D and dicamba were applied directly to the soil, to the soil with the subsequent addition of the straw, and to the straw; all of these applications were followed by a simulation of 10 mm of rain. The physical effect of the straw and the efficacy of the herbicides in terms of pre-emergence control of the weed species were evaluated. The leaching of 2,4-D and dicamba from the corn straw increased with a higher volume of rainfall, and the longer the drought period was, the lower the final amount of herbicide that leached. The presence of the corn straw on the soil exerted a physical control effect on Conyza spp.; significantly reduced the infestation of D. insularis, B. pilosa, A. hybridus, and E. indica; and broadened the control spectrum of 2,4-D and dicamba, assisting in its residual action and ensuring high levels of control of the evaluated weeds. In the absence of the straw, 2,4-D effectively controlled the pre-emergence of D. insularis, Conyza spp., and A. hybridus, and dicamba effectively controlled D. insularis, Conyza spp., B. pilosa, A. hybridus, E. heterophylla, and E. indica.
Collapse
|
20
|
Sharkey AM, Hartig AM, Dang AJ, Chatterjee A, Williams BJ, Parker KM. Amine Volatilization from Herbicide Salts: Implications for Herbicide Formulations and Atmospheric Chemistry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13644-13653. [PMID: 36150089 DOI: 10.1021/acs.est.2c03740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Amines are frequently included in formulations of the herbicides glyphosate, 2,4-D, and dicamba to increase herbicide solubility and reduce herbicide volatilization by producing herbicide-amine salts. Amines, which typically have higher vapor pressures than the corresponding herbicides, could potentially volatilize from these salts and enter the atmosphere, where they may impact atmospheric chemistry, human health, and climate. Amine volatilization from herbicide-amine salts may additionally contribute to volatilization of dicamba and 2,4-D. In this study, we established that amines applied in herbicide-amine salt formulations undergo extensive volatilization. Both dimethylamine and isopropylamine volatilized when aqueous salt solutions were dried to a residue at ∼20 °C, while lower-vapor pressure amines like diglycolamine and n,n-bis-(3-aminopropyl)methylamine did not. However, all four amines volatilized from salt residues at 40-80 °C. Because amine loss typically exceeded herbicide loss, we proposed that neutral amines dominated volatilization and that higher temperatures altered their protonation state and vapor pressure. Due to an estimated 4.0 Gg N/yr applied as amines to major U.S. crops, amine emissions from herbicide-amine salts may be important on regional scales. Further characterization of worldwide herbicide-amine use would enable this contribution to be compared to the 285 Gg N/yr of methylamines emitted globally.
Collapse
Affiliation(s)
- Andromeda M Sharkey
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Anna M Hartig
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Audrey J Dang
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Anamika Chatterjee
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Brent J Williams
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Kimberly M Parker
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
21
|
Li N, Chen L, Chen E, Yuan C, Zhang H, He J. Cloning of a novel tetrahydrofolate-dependent dicamba demethylase gene from dicamba-degrading consortium and characterization of the gene product. Front Microbiol 2022; 13:978577. [PMID: 36033860 PMCID: PMC9404685 DOI: 10.3389/fmicb.2022.978577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Dicamba, an important hormone-type systemic herbicide, is widely used to control more than 200 kinds of broadleaf weeds in agriculture. Due to its broad-spectrum, high efficiency and effectively killing glyphosate-resistant weeds, dicamba is considered as an excellent target herbicide for the engineering of herbicide-resistant crops. In this study, an efficient dicamba-degrading microbial consortium was enriched from soil collected from the outfall of a pesticide factory. The enriched consortium could almost completely degrade 500 mg/L of dicamba within 12 h of incubation. A novel tetrahydrofolate (THF)-dependent dicamba demethylase gene, named dmt06, was cloned from the total DNA of the enriched consortium. Dmt06 shared the highest identity (72.3%) with dicamba demethylase Dmt50 from Rhizorhabdus dicambivorans Ndbn-20. Dmt06 was expressed in Escherichia coli BL21 and purified to homogeneity using Co2+-charged nitrilotriacetic acid affinity chromatography. The purified Dmt06 catalyzed the transfer of methyl from dicamba to THF, generating the herbicidally inactive metabolite 3,6-dichlorosalicylate (3,6-DCSA) and 5-methyl-THF. The optimum pH and temperature for Dmt06 were detected to be 7.4 and 35°C, respectively. Under the optimal condition, the specific activity of Dmt06 reached 165 nmol/min/mg toward dicamba, which was much higher than that of Dmt and Dmt50. In conclusion, this study cloned a novel gene, dmt06, encoding an efficient THF-dependent dicamba demethylase, which was a good candidate for dicamba-resistant transgenic engineering.
Collapse
Affiliation(s)
- Na Li
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, China
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Le Chen
- Jiangsu Academy of Agricultural Sciences, Institute of Germplasm Resources and Biotechnology, Nanjing, China
| | - E. Chen
- The Environmental Monitoring Center of Gansu Province, Lanzhou, China
| | - Cansheng Yuan
- College of Rural Revitalization, Jiangsu Open University, Nanjing, China
- Cansheng Yuan,
| | - Hao Zhang
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, China
| | - Jian He
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- College of Rural Revitalization, Jiangsu Open University, Nanjing, China
- *Correspondence: Jian He, ;
| |
Collapse
|
22
|
Cheng M, Chen D, Parales RE, Jiang J. Oxygenases as Powerful Weapons in the Microbial Degradation of Pesticides. Annu Rev Microbiol 2022; 76:325-348. [PMID: 35650666 DOI: 10.1146/annurev-micro-041320-091758] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Oxygenases, which catalyze the reductive activation of O2 and incorporation of oxygen atoms into substrates, are widely distributed in aerobes. They function by switching the redox states of essential cofactors that include flavin, heme iron, Rieske non-heme iron, and Fe(II)/α-ketoglutarate. This review summarizes the catalytic features of flavin-dependent monooxygenases, heme iron-dependent cytochrome P450 monooxygenases, Rieske non-heme iron-dependent oxygenases, Fe(II)/α-ketoglutarate-dependent dioxygenases, and ring-cleavage dioxygenases, which are commonly involved in pesticide degradation. Heteroatom release (hydroxylation-coupled hetero group release), aromatic/heterocyclic ring hydroxylation to form ring-cleavage substrates, and ring cleavage are the main chemical fates of pesticides catalyzed by these oxygenases. The diversity of oxygenases, specificities for electron transport components, and potential applications of oxygenases are also discussed. This article summarizes our current understanding of the catalytic mechanisms of oxygenases and a framework for distinguishing the roles of oxygenases in pesticide degradation. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Minggen Cheng
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs and Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China;
| | - Dian Chen
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Rebecca E Parales
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California, USA
| | - Jiandong Jiang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs and Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China;
| |
Collapse
|
23
|
Vulchi R, Bagavathiannan M, Nolte SA. History of Herbicide-Resistant Traits in Cotton in the U.S. and the Importance of Integrated Weed Management for Technology Stewardship. PLANTS 2022; 11:plants11091189. [PMID: 35567190 PMCID: PMC9104934 DOI: 10.3390/plants11091189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 11/18/2022]
Abstract
This paper reviews the history of herbicide-resistant (HR) traits in U.S. cotton since the beginning, highlighting the shortcomings of each trait over time that has led to the development of their successor and emphasizing the importance of integrated weed management (IWM) going forward to ensure their long-term sustainability. Introduction of glyphosate-resistant cropping systems has allowed for expansion of no-till systems more reliant on herbicides, favored less diverse crop rotations, and heavily relied on a single herbicide mode of action (MOA). With repeated applications of glyphosate over the years, biotypes of glyphosate-resistant (GR) A. palmeri and other weeds became economically damaging pests in cotton production systems throughout the U.S. Moreover, the reported cases of weeds resistant to different MOA across various parts of the United States has increased. The dicamba- (XtendFlex®) and 2,4-D-resistant (Enlist®) cotton traits (with stacks of glyphosate and glufosinate resistance) were introduced and have been highly adopted in the U.S. to manage HR weeds. Given the current rate of novel herbicide MOA discovery and increase in new HR weed cases, the future of sustainable weed management relies on an integrated approach that includes non-herbicidal methods with herbicides to ensure long-term success.
Collapse
Affiliation(s)
- Rohith Vulchi
- AgriLife Extension, Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - Muthukumar Bagavathiannan
- AgriLife Research, Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - Scott A. Nolte
- AgriLife Extension, Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA;
- Correspondence:
| |
Collapse
|
24
|
Canella Vieira B, Sousa Alves G, Vukoja B, Velho V, Zaric M, Houston TW, Fritz BK, Kruger GR. Spray drift potential of dicamba plus S-metolachlor formulations. PEST MANAGEMENT SCIENCE 2022; 78:1538-1546. [PMID: 34964546 DOI: 10.1002/ps.6772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/18/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Early-postemergence herbicide applications in the USA often include residual herbicides such as S-metolachlor to suppress late late-emerging Amaranthus spp. Although this practice benefits weed control, herbicide tankmixes can influence spray droplet size and drift potential during applications. The addition of S-metolachlor products to dicamba spray solutions generally decreases spray droplet size and increases spray drift potential. Advances in formulation technology fostered the development of products with reduced spray drift potential, especially for herbicide premixes containing multiple active ingredients. The objective of this study was to compare the drift potential of a novel dicamba plus S-metolachlor premix formulation (capsule suspension) against a tankmix containing dicamba (soluble liquid) and S-metolachlor (emulsifiable concentrate) using different venturi nozzles. RESULTS The MUG nozzle had greater DV0.5 (1128.6 μm) compared to the ULDM (930.3 μm), TDXL-D (872.9 μm), and TTI nozzles (854.8 μm). The premix formulation had greater DV0.5 (971.0 μm) compared to the tankmix (922.3 μm). Nozzle influenced spray drift deposition (P < 0.0001) and soybean biomass reduction (P = 0.0465). Herbicide formulation influenced spray drift deposition (P < 0.0001), and biomass reduction of soybean (P < 0.0001) and cotton (P = 0.0479). The novel capsule suspension formulation (premix) of dicamba plus S-metolachlor had reduced area under the drift curve (AUDC) (577.6) compared to the tankmix (913.7). Applications using the MUG nozzle reduced AUDC (459.9) compared to the other venturi nozzles (ranging from 677.4 to 1141.7). CONCLUSION Study results evidence that advances in pesticide formulation can improve pesticide drift mitigation. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bruno Canella Vieira
- West Central Research and Extension Center, University of Nebraska-Lincoln, North Platte, Nebraska, USA
| | - Guilherme Sousa Alves
- West Central Research and Extension Center, University of Nebraska-Lincoln, North Platte, Nebraska, USA
| | - Barbara Vukoja
- West Central Research and Extension Center, University of Nebraska-Lincoln, North Platte, Nebraska, USA
| | - Vinicius Velho
- West Central Research and Extension Center, University of Nebraska-Lincoln, North Platte, Nebraska, USA
| | - Milos Zaric
- West Central Research and Extension Center, University of Nebraska-Lincoln, North Platte, Nebraska, USA
| | - Trenton W Houston
- West Central Research and Extension Center, University of Nebraska-Lincoln, North Platte, Nebraska, USA
| | - Bradley K Fritz
- USDA-ARS Aerial Application Technology Research Unit, College Station, Texas, USA
| | - Greg R Kruger
- West Central Research and Extension Center, University of Nebraska-Lincoln, North Platte, Nebraska, USA
| |
Collapse
|
25
|
Zheng T, Yu X, Sun Y, Zhang Q, Zhang X, Tang M, Lin C, Shen Z. Expression of a Cytochrome P450 Gene from Bermuda Grass Cynodon dactylon in Soybean Confers Tolerance to Multiple Herbicides. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11070949. [PMID: 35406929 PMCID: PMC9002376 DOI: 10.3390/plants11070949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 05/27/2023]
Abstract
Bermuda grass (Cynodon dactylon) is notoriously difficult to control with some commonly used herbicides. We cloned a cytochrome P450 gene from Bermuda grass, named P450-N-Z1, which was found to confer tolerance to multiple herbicides in transgenic Arabidopsis. These herbicides include: (1) acetolactate synthase (ALS) inhibitor herbicides nicosulfuron and penoxsulam; (2) p-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting herbicide mesotrione; (3) synthetic auxin herbicide dicamba; (4) photosynthesis inhibitor bentazon. We further generated transgenic soybean plants expressing P450-N-Z1, and found that these transgenic soybean plants gained robust tolerance to nicosulfuron, flazasulfuron, and 2,4-dichlorophenoxyacetic acid (2,4-D) in greenhouse assays. A field trial demonstrated that transgenic soybean is tolerant to flazasulfuron and 2,4-D at 4-fold and 2-fold the recommended rates, respectively. Furthermore, we also demonstrated that flazasulfuron and dicamba are much more rapidly degraded in vivo in the transgenic soybean than in non-transgenic soybean. Therefore, P450-N-Z1 may be utilized for engineering transgenic crops for herbicide tolerance.
Collapse
Affiliation(s)
- Ting Zheng
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, China; (T.Z.); (X.Y.); (Y.S.); (C.L.)
| | - Xiaoxing Yu
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, China; (T.Z.); (X.Y.); (Y.S.); (C.L.)
| | - Yongzheng Sun
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, China; (T.Z.); (X.Y.); (Y.S.); (C.L.)
| | - Qing Zhang
- Hangzhou Ruifeng Biosciences Co., Ltd., 1500 Wenyi Road, Building 1, Room 103, Hangzhou 310000, China; (Q.Z.); (M.T.)
| | - Xianwen Zhang
- Agricultural Experiment Station, Zhejiang University, Hangzhou 310000, China;
| | - Mengzhen Tang
- Hangzhou Ruifeng Biosciences Co., Ltd., 1500 Wenyi Road, Building 1, Room 103, Hangzhou 310000, China; (Q.Z.); (M.T.)
| | - Chaoyang Lin
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, China; (T.Z.); (X.Y.); (Y.S.); (C.L.)
| | - Zhicheng Shen
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, China; (T.Z.); (X.Y.); (Y.S.); (C.L.)
| |
Collapse
|
26
|
An in-frame deletion mutation in the degron tail of auxin coreceptor IAA2 confers resistance to the herbicide 2,4-D in Sisymbrium orientale. Proc Natl Acad Sci U S A 2022; 119:2105819119. [PMID: 35217601 PMCID: PMC8892348 DOI: 10.1073/pnas.2105819119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Synthetic auxin herbicides intersect basic plant developmental biology and applied weed management. We investigated resistance to 2,4-D in the Australian weed Sisymbrium orientale (Indian hedge mustard). We identified a mechanism involving an in-frame 27-bp deletion in the degron tail of auxin coreceptor IAA2, one member of the gene family of Aux/IAA auxin co-receptors. We show that this deletion in IAA2 is a gain-of-function mutation that confers synthetic auxin resistance. This field-evolved mechanism of resistance to synthetic auxin herbicides confirms previous biochemical studies showing the role of the Aux/IAA degron tail in regulating Aux/IAA protein degradation upon auxin perception. The deletion mutation could be generated in crops using gene-editing approaches for cross-resistance to multiple synthetic auxin herbicides. The natural auxin indole-3-acetic acid (IAA) is a key regulator of many aspects of plant growth and development. Synthetic auxin herbicides such as 2,4-D mimic the effects of IAA by inducing strong auxinic-signaling responses in plants. To determine the mechanism of 2,4-D resistance in a Sisymbrium orientale (Indian hedge mustard) weed population, we performed a transcriptome analysis of 2,4-D-resistant (R) and -susceptible (S) genotypes that revealed an in-frame 27-nucleotide deletion removing nine amino acids in the degron tail (DT) of the auxin coreceptor Aux/IAA2 (SoIAA2). The deletion allele cosegregated with 2,4-D resistance in recombinant inbred lines. Further, this deletion was also detected in several 2,4-D-resistant field populations of this species. Arabidopsis transgenic lines expressing the SoIAA2 mutant allele were resistant to 2,4-D and dicamba. The IAA2-DT deletion reduced binding to TIR1 in vitro with both natural and synthetic auxins, causing reduced association and increased dissociation rates. This mechanism of synthetic auxin herbicide resistance assigns an in planta function to the DT region of this Aux/IAA coreceptor for its role in synthetic auxin binding kinetics and reveals a potential biotechnological approach to produce synthetic auxin-resistant crops using gene-editing.
Collapse
|
27
|
Granetto M, Serpella L, Fogliatto S, Re L, Bianco C, Vidotto F, Tosco T. Natural clay and biopolymer-based nanopesticides to control the environmental spread of a soluble herbicide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151199. [PMID: 34699829 DOI: 10.1016/j.scitotenv.2021.151199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/16/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
In this work a novel nano-formulation is proposed to control leaching and volatilization of a broadly used herbicide, dicamba. Dicamba is subject to significant leaching in soils, due to its marked solubility, and to significant volatilization and vapor drift, with consequent risks for operators and neighbouring crops. Natural, biocompatible, low-cost materials were employed to control its dispersion in the environment: among four tested candidate carriers, a nanosized natural clay (namely, K10 montmorillonite) was selected to adsorb the pesticide, and carboxymethyl cellulose (CMC), a food-grade biodegradable polymer, was employed as a coating agent. The synthesis approach is based on direct adsorption at ambient temperature and pressure, with a subsequent particle coating to increase suspension stability and control pesticide release. The nano-formulation showed a controlled release when diluted to field-relevant concentrations: in tap water, the uncoated K10 released approximately 45% of the total loaded dicamba, and the percentage reduced to less than 30% with coating. CMC also contributed to significantly reduce dicamba losses due to volatilization from treated soils (e.g., in medium sand, 9.3% of dicamba was lost in 24 h from the commercial product, 15.1% from the uncoated nanoformulation, and only 4.5% from the coated one). Moreover, the coated nanoformulation showed a dramatic decrease in mobility in porous media (when injected in a 11.6 cm sand-packed column, 99.3% of the commercial formulation was eluted, compared to 88.4% of the uncoated nanoformulation and only 24.5% of the coated one). Greenhouse tests indicated that the clay-based nanoformulation does not hinder the dicamba efficacy toward target weeds, even though differences were observed depending on the treated species. Despite the small (lab and greenhouse) scale of the tests, these preliminary results suggest a good efficacy of the proposed nanoformulation in controlling the environmental spreading of dicamba, without hindering efficacy toward target species.
Collapse
Affiliation(s)
- Monica Granetto
- Department of Environmental, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Luca Serpella
- Department of Environmental, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Silvia Fogliatto
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
| | - Lucia Re
- Department of Environmental, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Carlo Bianco
- Department of Environmental, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Francesco Vidotto
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
| | - Tiziana Tosco
- Department of Environmental, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy.
| |
Collapse
|
28
|
Riter LS, Pai N, Vieira BC, MacInnes A, Reiss R, Hapeman CJ, Kruger GR. Conversations about the Future of Dicamba: The Science Behind Off-Target Movement. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14435-14444. [PMID: 34817161 DOI: 10.1021/acs.jafc.1c05589] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dicamba is an important herbicide for controlling post-emergent resistant weeds in soybean farming. Recently, the scientific community and general public have further examined off-target transport mechanisms (e.g., spray drift, volatilization, and tank contamination) and the visual responses of soybeans to ultralow dicamba concentrations. This paper synthesizes key chemical concepts and environmental processes associated with dicamba formulations, transport mechanisms, drift measurements, and plant responses. This paper proposes additional areas of research and actions to increase our understanding and communicate the science findings, which should provide farmers with more robust tools and practices for sustainable dicamba use.
Collapse
Affiliation(s)
- Leah S Riter
- Crop Science, Bayer U.S., 700 Chesterfield Parkway West, Chesterfield, Missouri 63017, United States
| | - Naresh Pai
- Crop Science, Bayer U.S., 700 Chesterfield Parkway West, Chesterfield, Missouri 63017, United States
| | - Bruno C Vieira
- West Central Research, Extension and Education Center, University of Nebraska─Lincoln, 402 West State Farm Road, North Platte, Nebraska 69101, United States
| | - Alison MacInnes
- Crop Science, Bayer U.S., 700 Chesterfield Parkway West, Chesterfield, Missouri 63017, United States
| | - Richard Reiss
- Chemical Regulation and Food Safety, Exponent, 1800 Diagonal Road, Suite 500, Alexandria, Virginia 22314, United States
| | - Cathleen J Hapeman
- Agricultural Research Service, United States Department of Agriculture, 10300 Baltimore Avenue, Beltsville, Maryland 20705, United States
| | - Greg R Kruger
- BASF, 2 TW Alexander Drive, Durham, North Carolina 27709, United States
| |
Collapse
|
29
|
Dorman SJ, Hopperstad KA, Reich BJ, Majumder S, Kennedy G, Reisig DD, Greene JK, Reay-Jones FP, Collins G, Bacheler JS, Huseth AS. Landscape-level variation in Bt crops predict Helicoverpa zea (Lepidoptera: Noctuidae) resistance in cotton agroecosystems. PEST MANAGEMENT SCIENCE 2021; 77:5454-5462. [PMID: 34333843 DOI: 10.1002/ps.6585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/25/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Helicoverpa zea (Boddie) damage to Bt cotton and maize has increased as a result of widespread Bt resistance across the USA Cotton Belt. Our objective was to link Bt crop production patterns to cotton damage through a series of spatial and temporal surveys of commercial fields to understand how Bt crop production relates to greater than expected H. zea damage to Bt cotton. To do this, we assembled longitudinal cotton damage data that spanned the Bt adoption period, collected cotton damage data since Bt resistance has been detected, and estimated local population susceptibility using replicated on-farm studies that included all Bt pyramids marketed in cotton. RESULTS Significant year effects of H. zea damage frequency in commercial cotton were observed throughout the Bt adoption period, with a recent damage increase after 2012. Landscape-level Bt crop production intensity over time was positively associated with the risk of H. zea damage in two- and three-toxin pyramided Bt cotton. Helicoverpa zea damage also varied across Bt toxin types in spatially replicated on-farm studies. CONCLUSIONS Landscape-level predictors of H. zea damage in Bt cotton can be used to identify heightened Bt resistance risk areas and serves as a model to understand factors that drive pest resistance evolution to Bt toxins in the southeastern United States. These results provide a framework for more effective insect resistance management strategies to be used in combination with conventional pest management practices that improve Bt trait durability while minimizing the environmental footprint of row crop agriculture. © 2021 Society of Chemical Industry. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Seth J Dorman
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
- USDA-ARS Forage Seed and Cereal Research Unit, Corvallis, OR, USA
| | - Kristen A Hopperstad
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Brian J Reich
- Department of Statistics, North Carolina State University, Raleigh, NC, USA
| | - Suman Majumder
- Department of Statistics, North Carolina State University, Raleigh, NC, USA
| | - George Kennedy
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Dominic D Reisig
- Department of Entomology and Plant Pathology, North Carolina State University, Vernon James Research and Extension Center, Plymouth, NC, USA
| | - Jeremy K Greene
- Department of Plant and Environmental Sciences, Clemson University, Edisto Research and Education Center, Blackville, SC, USA
| | - Francis Pf Reay-Jones
- Department of Plant and Environmental Sciences, Clemson University, Pee Dee Research and Education Center, Florence, SC, USA
| | - Guy Collins
- Department of Crop and Soil Science, North Carolina State University, Raleigh, NC, USA
| | - Jack S Bacheler
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Anders S Huseth
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
30
|
Abstract
The recent availability of soybean cultivars with resistance to dicamba herbicide has increased the risk of injury in susceptible cultivars, mainly as a result of particle drift. To predict and identify the damage caused by this herbicide requires great accuracy. The objective of this work was to evaluate the injury caused by the simulated drift of dicamba on soybean (nonresistant to dicamba) plants assessed visually and using the Triangular Greenness Index (TGI) from images obtained from Remotely Piloted Aircraft (RPA). The study was conducted in a randomized complete block design with four replications during the 2019/2020 growing season, and the treatments consisted of the application of six doses of dicamba (0, 0.28, 0.56, 5.6, 28, and 112 g acid equivalent dicamba ha−1) on soybean plants at the third node growth stage. For the evaluation of treatments using the TGI technique, spectral data acquired through a Red Green Blue (RGB) sensor attached to an RPA was used. The variables studied were the visual estimation of injury, TGI response at 7 and 21 days after application, plant height, and crop yield. The exposure to the herbicide caused a reduction in plant height and crop yield. Vegetation indices, such as TGI, have the potential to be used in the evaluation of injury caused by dicamba, and may be used to cover large areas in a less subjective way than visual assessments.
Collapse
|
31
|
Wu C, Paciorek M, Liu K, LeClere S, Perez‐Jones A, Westra P, Sammons RD. Investigating the presence of compensatory evolution in dicamba resistant IAA16 mutated kochia (Bassia scoparia) †. PEST MANAGEMENT SCIENCE 2021; 77:1775-1785. [PMID: 33236492 PMCID: PMC7986355 DOI: 10.1002/ps.6198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 11/02/2020] [Accepted: 11/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Lack of fitness costs has been reported for multiple herbicide resistance traits, but the underlying evolutionary mechanisms are not well understood. Compensatory evolution that ameliorates resistance costs, has been documented in bacteria and insects but rarely studied in weeds. Dicamba resistant IAA16 (G73N) mutated kochia was previously found to have high fecundity in the absence of competition, regardless of significant vegetative growth defects. To understand if costs of dicamba resistance can be compensated through traits promoting reproductive success in kochia, we thoroughly characterized the reproductive growth and development of different G73N kochia biotypes. Flowering phenology, seed production and reproductive allocation were quantified through greenhouse studies, floral (stigma-anthers distance) and seed morphology, as well as resulting mating and seed dispersal systems were studied through time-course microcopy images. RESULTS G73N covaried with multiple phenological, morphological and ecological traits that improve reproductive fitness: (i) 16-60% higher reproductive allocation; (ii) longer reproduction phase through early flowering (2-7 days); (iii) smaller stigma-anthers separation (up to 60% reduction of herkogamy and dichogamy) that can potentially promote selfing and reproductive assurance; (iv) 'winged' seeds with 30-70% longer sepals that facilitate long-distance seed dispersal. CONCLUSION The current study demonstrates that costs of herbicide resistance can be ameliorated through coevolution of other fitness penalty alleviating traits. As illustrated in a hypothetical model, the evolution of herbicide resistance is an ongoing fitness maximization process, which poses challenges to contain the spread of resistance. © 2020 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Chenxi Wu
- Department of Plant BiotechnologyBayer CropScienceChesterfieldMOUSA
| | - Marta Paciorek
- Department of Plant BiotechnologyBayer CropScienceChesterfieldMOUSA
| | - Kang Liu
- Department of Plant BiotechnologyBayer CropScienceChesterfieldMOUSA
| | - Sherry LeClere
- Department of Plant BiotechnologyBayer CropScienceChesterfieldMOUSA
| | | | - Phil Westra
- Department of Agricultural BiologyColorado State UniversityFort CollinsCOUSA
| | | |
Collapse
|
32
|
Huang XX, Zhao SM, Zhang YY, Li YJ, Shen HN, Li X, Hou BK. A novel UDP-glycosyltransferase 91C1 confers specific herbicide resistance through detoxification reaction in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 159:226-233. [PMID: 33387851 DOI: 10.1016/j.plaphy.2020.12.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/22/2020] [Indexed: 05/25/2023]
Abstract
Plants can reduce or eliminate the damage caused by herbicides and gain herbicide resistance, which is an important theoretical basis for the development of herbicide-resistant crops at this stage. Thus, discovering novel herbicide-resistant genes to produce diverse herbicide-resistant crop species is of great value. The glycosyltransferases that commonly exist in plant kingdom modify the receptor molecules to change their physical characteristics and biological activities, and thus possess an important potential to be used in the herbicide-resistance breeding. Here, we identified a novel herbicide-induced UDP-glycosyltransferase 91C1 (UGT91C1) from Arabidopsis thaliana and demonstrated its glucosylating activity toward sulcotrione, a kind of triketone herbicides widely used in the world. Overexpression of UGT91C1 gene enhanced the Arabidopsis tolerance to sulcotrione. While, ugt91c1 mutant displayed serious damage and reduced chlorophyll contents in the presence of sulcotrione, suggesting an important role of UGT91C1 in herbicide detoxification through glycosylation. Moreover, it was also noted that UGT91C1 can affect tyrosine metabolism by reducing the sulcotrione toxicity. Together, our identification of glycosyltransferase UGT91C1, as a potential gene conferring herbicide detoxification through glucosylation, may open up a new possibility for herbicide resistant breeding of crop plants and environmental phytoremediation.
Collapse
Affiliation(s)
- Xu-Xu Huang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Shu-Man Zhao
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Yu-Ying Zhang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Yan-Jie Li
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Han-Nuo Shen
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Xugang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Bing-Kai Hou
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
33
|
Wu C, LeClere S, Liu K, Paciorek M, Perez‐Jones A, Westra P, Sammons RD. A dicamba resistance-endowing IAA16 mutation leads to significant vegetative growth defects and impaired competitiveness in kochia (Bassia scoparia) †. PEST MANAGEMENT SCIENCE 2021; 77:795-804. [PMID: 32909332 PMCID: PMC7821297 DOI: 10.1002/ps.6080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/29/2020] [Accepted: 09/10/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Precise quantification of the fitness cost of synthetic auxin resistance has been impeded by lack of knowledge about the genetic basis of resistance in weeds. Recent elucidation of a resistance-endowing IAA16 mutation (G73N) in the key weed species kochia (Bassia scoparia), allows detailed characterization of the contribution of resistance alleles to weed fitness, both in the presence and absence of herbicides. Different G73N genotypes from a segregating resistant parental line (9425) were characterized for cross-resistance to dicamba, 2,4-d and fluroxypyr, and changes on stem/leaf morphology and plant architecture. Plant competitiveness and dominance of the fitness effects was quantified through measuring biomass and seed production of three F2 lines in two runs of glasshouse replacement series studies. RESULTS G73N confers robust resistance to dicamba but only moderate to weak resistance to 2,4-D and fluroxypyr. G73N mutant plants displayed significant vegetative growth defects: (i) they were 30-50% shorter, with a more tumbling style plant architecture, and (ii) they had thicker and more ovate (versus lanceolate and linear) leaf blades with lower photosynthesis efficiency, and 40-60% smaller stems with less-developed vascular bundle systems. F2 mutant plants had impaired plant competitiveness, which can lead to 80-90% less biomass and seed production in the replacement series study. The pleiotropic effects of G73N were mostly semidominant (0.5) and fluctuated with the environments and traits measured. CONCLUSION G73N is associated with significant vegetative growth defects and reduced competitiveness in synthetic auxin-resistant kochia. Management practices should target resistant kochia's high vulnerability to competition in order to effectively contain the spread of resistance.
Collapse
Affiliation(s)
| | | | - Kang Liu
- Bayer CropScienceChesterfieldMOUSA
| | | | | | - Phil Westra
- Department of Agricultural BiologyColorado State UniversityWentzvilleMOUSA
| | | |
Collapse
|
34
|
Green JM, Siehl DL. History and Outlook for Glyphosate-Resistant Crops. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 255:67-91. [PMID: 34109481 DOI: 10.1007/398_2020_54] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Glyphosate-resistant (GR) crops, commercially referred to as glyphosate-tolerant (GT), started the revolution in crop biotechnology in 1996. Growers rapidly accepted GR crops whenever they became available and made them the most rapidly adopted technology in agriculture history. Adoption usually meant sole reliance on glyphosate [N-(phosphonomethyl)glycine, CAS No. 1071-83-6] for weed control. Not surprisingly, weeds eventually evolved resistance and are forcing growers to change their weed management practices. Today, the widespread dissemination of GR weeds that are also resistant to other herbicide modes-of-action (MoA) has greatly reduced the value of the GR crop weed management systems. However, growers continue to use the technology widely in six major crops throughout North and South America. Integrated chemistry and seed providers seek to sustain glyphosate efficacy by promoting glyphosate combinations with other herbicides and stacking the traits necessary to enable the use of partner herbicides. These include glufosinate {4-[hydroxy(methyl)phosphinoyl]-DL-homoalanine, CAS No. 51276-47-2}, dicamba (3,6-dichloro-2-methoxybenzoic acid, CAS No. 1918-00-9), 2,4-D [2-(2,4-dichlorophenoxy)acetic acid, CAS No. 94-75-7], 4-hydroxyphenyl pyruvate dioxygenase inhibitors, acetyl coenzyme A carboxylase (ACCase) inhibitors, and other herbicides. Unfortunately, herbicide companies have not commercialized a new MoA for over 30 years and have nearly exhausted the useful herbicide trait possibilities. Today, glyphosate-based crop systems are still mainstays of weed management, but they cannot keep up with the capacity of weeds to evolve resistance. Growers desperately need new technologies, but no technology with the impact of glyphosate and GR crops is on the horizon. Although the expansion of GR crop traits is possible into new geographic areas and crops such as wheat and sugarcane and could have high value, the Roundup Ready® revolution is over. Its future is at a nexus and dependent on a variety of issues.
Collapse
Affiliation(s)
| | - Daniel L Siehl
- Sr. Scientist (ret.), Corteva Agriscience, Wilmington, DE, USA
| |
Collapse
|
35
|
Induction, Multiplication, and Evaluation of Antioxidant Activity of Polyalthia bullata Callus, a Woody Medicinal Plant. PLANTS 2020; 9:plants9121772. [PMID: 33327608 PMCID: PMC7765093 DOI: 10.3390/plants9121772] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/28/2020] [Accepted: 12/09/2020] [Indexed: 01/13/2023]
Abstract
Polyalthia bullata is an endangered medicinal plant species. Hence, establishment of P. bullata callus culture is hoped to assist in mass production of secondary metabolites. Leaf and midrib were explants for callus induction. Both of them were cultured on Murashige and Skoog (MS) and Woody Plant Medium (WPM) containing different types and concentrations of auxins (2,4-dichlorophenoxyacetic acid (2,4-D), α-naphthaleneacetic acid (NAA), picloram, and dicamba). The callus produced was further multiplied on MS and WPM supplemented with different concentrations of 2,4-D, NAA, picloram, dicamba, indole-3-acetic acid (IAA), and indole-3-butyric acid (IBA) media. The quantification of total phenolic content (TPC), total flavonoid content (TFC) and antioxidant capacity was further carried out on P. bullata callus, and the results were subjected to correlation analysis. Among the media, the WPM + 16.56 µM picloram (53.33 ± 22.06%) was the best for callus induction while MS + 30 µM dicamba was the best for callus multiplication. The TPC, TFC, and EC50 of DPPH scavenging activity were determined at 0.657 ± 0.07 mg GAE/g FW, 0.491 ± 0.03 mg QE/g, and 85.59 ± 6.09 µg/mL in P. bullata callus, respectively. The positive correlation between DPPH scavenging activity with TPC was determined at r = 0.869, and that of TFC was at r = 0.904. Hence, the P. bullata callus has an ability to accumulate antioxidants. It therefore can be a medium for secondary metabolites production.
Collapse
|
36
|
Mortensen DA, Smith RG. Confronting Barriers to Cropping System Diversification. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.564197] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
37
|
Sharkey AM, Stein A, Parker KM. Hydrogen Bonding Site Number Predicts Dicamba Volatilization from Amine Salts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13630-13637. [PMID: 33054182 DOI: 10.1021/acs.est.0c03303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Amine-based formulations are widely used to decrease volatilization of carboxylic acid-containing herbicides including dicamba. Despite our reliance on these formulations, the underlying amine properties that determine their ability to control herbicide volatilization are poorly understood. In this study, we measured dicamba volatilization from solid (BAMPA) on glass as with dimethylamine (DMA), diglycolamine (DGA), and N,N-bis(3-aminopropyl)methylamine (BAPMA) as a function of temperature and amine-to-dicamba ratio, as well as in the presence of glyphosate. In all cases, we found that BAPMA had a greater ability to lessen dicamba volatilization than DMA or DGA. Even when only 1 BAPMA molecule was present for every 10 dicamba molecules, dicamba volatilization was still decreased by 70% relative to the free acid case. The particular ability for BAPMA to control dicamba volatilization could be attributed to several molecular features (i.e., molecular weight, type and number of amine functional groups). Using a set including 5 additional amines, we determined that dicamba volatilization is primarily influenced by the number of functional groups in the amine that can participate in hydrogen bonding. From these results, we propose that ability of an amine to form multiple intermolecular interactions (i.e., hydrogen bonds) in the residue may best predict their potential to prevent herbicide volatilization.
Collapse
Affiliation(s)
- Andromeda M Sharkey
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis Missouri 63130, United States
| | - Adam Stein
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis Missouri 63130, United States
| | - Kimberly M Parker
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis Missouri 63130, United States
| |
Collapse
|
38
|
Todd OE, Figueiredo MRA, Morran S, Soni N, Preston C, Kubeš MF, Napier R, Gaines TA. Synthetic auxin herbicides: finding the lock and key to weed resistance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 300:110631. [PMID: 33180710 DOI: 10.1016/j.plantsci.2020.110631] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/17/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Synthetic auxin herbicides are designed to mimic indole-3-acetic acid (IAA), an integral plant hormone affecting cell growth, development, and tropism. In this review, we explore target site genes in the auxin signaling pathway including SCFTIR1/AFB, Aux/IAA, and ARFs that are confirmed or proposed mechanisms for weed resistance to synthetic auxin herbicides. Resistance to auxin herbicides by metabolism, either by enhanced cytochrome P450 detoxification or by loss of pro-herbicide activation, is a major non-target-site resistance pathway. We speculate about potential fitness costs of resistance due to effects of resistance-conferring mutations, provide insight into the role of polyploidy in synthetic auxin resistance evolution, and address the genetic resources available for weeds. This knowledge will be the key to unlock the long-standing questions as to which components of the auxin signaling pathway are most likely to have a role in resistance evolution. We propose that an ambitious research effort into synthetic auxin herbicide/target site interactions is needed to 1) explain why some synthetic auxin chemical families have activity on certain dicot plant families but not others and 2) fully elucidate target-site cross-resistance patterns among synthetic auxin chemical families to guide best practices for resistance management.
Collapse
Affiliation(s)
- Olivia E Todd
- Department of Agricultural Biology, 1177 Campus Delivery, Colorado State University, Fort Collins, CO 80525, USA.
| | - Marcelo R A Figueiredo
- Department of Agricultural Biology, 1177 Campus Delivery, Colorado State University, Fort Collins, CO 80525, USA.
| | - Sarah Morran
- Department of Agricultural Biology, 1177 Campus Delivery, Colorado State University, Fort Collins, CO 80525, USA.
| | - Neeta Soni
- Department of Agricultural Biology, 1177 Campus Delivery, Colorado State University, Fort Collins, CO 80525, USA.
| | - Christopher Preston
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, 5005, Australia.
| | - Martin F Kubeš
- School of Life Sciences, The University of Warwick, Coventry, CV4 7AL, UK.
| | - Richard Napier
- School of Life Sciences, The University of Warwick, Coventry, CV4 7AL, UK.
| | - Todd A Gaines
- Department of Agricultural Biology, 1177 Campus Delivery, Colorado State University, Fort Collins, CO 80525, USA.
| |
Collapse
|
39
|
Li N, Peng Q, Yao L, He Q, Qiu J, Cao H, He J, Niu Q, Lu Y, Hui F. Roles of the Gentisate 1,2-Dioxygenases DsmD and GtdA in the Catabolism of the Herbicide Dicamba in Rhizorhabdus dicambivorans Ndbn-20. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9287-9298. [PMID: 32786824 DOI: 10.1021/acs.jafc.0c01523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
3-Chlorogentisate is a key intermediate in the catabolism of the herbicide dicamba in R. dicambivorans Ndbn-20. In this study, we identified two gentisate 1,2-dioxygenases (GDOs), DsmD and GtdA, from Ndbn-20. The amino acid sequence similarity between DsmD and GtdA is 51%. Both of them are dimers and showed activities to gentisate and 3-chlorogentisate but not 3,6-dichlorogentisate (3,6-DCGA) or 6-chlorogentisate in vitro. The kcat/Km of DsmD for 3-chlorogentisate was 28.7 times higher than that of GtdA, whereas the kcat/Km of DsmD for gentisate was only one-fourth of that of GtdA. Transcription of dsmD was dramatically induced by 3-chlorogentisate but not gentisate, whereas gtdA was not induced. Disruption of dsmD resulted in a significant decline in the degradation rates of 3-chlorogentisate and dicamba but had no effect on the degradation of gentisate, whereas the result of disruption of gtdA was converse; the disruption of both dsmD and gtdA led to the inability to degrade 3-chlorogentisate and gentisate. This study revealed that 3-chlorogentisate but not gentisate or 3,6-DCGA is the ring-cleavage substrate in the dicamba degradation pathway in R. dicambivorans Ndbn-20; DsmD is specifically responsible for cleavage of 3-chlorogentisate, whereas GtdA is a general GDO involved in the catabolism of various natural aromatic compounds.
Collapse
Affiliation(s)
- Na Li
- School of Life Science and Technology, Nanyang Normal University, Nanyang, Henan 473061, China
| | - Qian Peng
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Li Yao
- School of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224002, China
| | - Qin He
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jiguo Qiu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hui Cao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jian He
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Qiuhong Niu
- School of Life Science and Technology, Nanyang Normal University, Nanyang, Henan 473061, China
| | - Yunfeng Lu
- School of Life Science and Technology, Nanyang Normal University, Nanyang, Henan 473061, China
- State Key Laboratory of Motor Vehicle Biofuel Technology, Nanyang, Henan 473000, China
| | - Fengli Hui
- School of Life Science and Technology, Nanyang Normal University, Nanyang, Henan 473061, China
| |
Collapse
|
40
|
Meyer CJ, Peter F, Norsworthy JK, Beffa R. Uptake, translocation, and metabolism of glyphosate, glufosinate, and dicamba mixtures in Echinochloa crus-galli and Amaranthus palmeri. PEST MANAGEMENT SCIENCE 2020; 76:3078-3087. [PMID: 32281195 DOI: 10.1002/ps.5859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 04/02/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Echinochloa crus-galli (L.) Beauv. and Amaranthus palmeri S. Wats are two common and problematic weeds prevalent across the Midsouth of the USA. Herbicide absorption, translocation, and metabolism were investigated as potential sources of herbicide antagonism on A. palmeri and E. crus-galli using 14 C-labeled herbicides. Three 14 C-labeled herbicides, glyphosate, glufosinate, and dicamba, were utilized individually in separate experiments. RESULTS Uptake of 14 C-glyphosate in E. crus-galli was 15% of the total applied radioactivity for glyphosate/glufosinate (897 + 595 g a.i./a.e. ha-1 ) compared to 25% for glyphosate alone. Similarly, uptake of 14 C-glyphosate in A. palmeri reduced by 10% when applied with glufosinate. Applying glyphosate/dicamba (897/560 g a.e. ha-1 ) reduced 14 C-glyphosate uptake in both species. In the 14 C-glufosinate experiment, both species absorbed less 14 C-glufosinate when mixed with glyphosate compared to glufosinate alone. No metabolic degradation of glyphosate was observed in either species. E. crus-galli metabolized dicamba 23 times faster than A. palmeri. When glufosinate was applied with dicamba, metabolic degradation of 14 C-dicamba was limited in both species. For example, 99.9% of the applied radioactivity was recovered in A. palmeri as the parent compound when 14 C-glufosinate dicamba was applied with glufosinate, compared to 95.7% for dicamba alone. CONCLUSION These findings demonstrate absorption, translocation, or metabolism of dicamba, glufosinate, and glyphosate can be affected by mixing with another herbicide. As mixing two herbicides is often a critical component of resistance management, careful investigation into the performance of these mixtures in the field is needed. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chris J Meyer
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Falco Peter
- Bayer AG, Division CropScience, Weed Resistance Research, Frankfurt am Main, Germany
| | - Jason K Norsworthy
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Roland Beffa
- Bayer AG, Division CropScience, Weed Resistance Research, Frankfurt am Main, Germany
| |
Collapse
|
41
|
Oseland E, Bish M, Steckel L, Bradley K. Identification of environmental factors that influence the likelihood of off-target movement of dicamba. PEST MANAGEMENT SCIENCE 2020; 76:3282-3291. [PMID: 32385969 DOI: 10.1002/ps.5887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/30/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Commercialization of dicamba-resistant soybean and cotton and subsequent post-emergence applications of dicamba contributed to at least 1.4 and 0.5 million hectares of dicamba-injured soybean in the United States in 2017 and 2018, respectively. This research was initiated to identify environmental factors that contribute to off-target dicamba movement. A survey was conducted following the 2017 growing season to collect information from dicamba applications that remained on the target field and those where dicamba moved. Weather and environmental data surrounding applications were collected and used to identify factors that reduce the likelihood of off-target movement. Soil pH was one factor identified in the model, and field experiments were conducted in 2018 and 2019 to validate the model. Three commercially-available dicamba formulations and one formulation currently in development were applied to soil at five distinct pH values. Sensitive soybean was used as a bioassay plant to detect dicamba volatilization. RESULTS Wind speeds the day of and following application, nearest water source to the field, soybean production acreage in the county, and soil pH were identified as factors that influence the likelihood for off-target movement. In the field study, when dicamba was applied to pH-adjusted soil and placed under low tunnels for 72 h, dicamba volatility increased when soil pH decreased as the model predicted. Dicamba choline, which is not commercially available, had reduced volatility compared to other formulations tested. CONCLUSION Results of this study identified specific factors that contribute to successful and unsuccessful dicamba applications and should be considered prior to applications. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Mandy Bish
- University of Missouri, Columbia, MO, USA
| | | | | |
Collapse
|
42
|
Johnston CR, Malladi A, Vencill WK, Grey TL, Culpepper AS, Henry G, Czarnota MA, Randell TM. Investigation of physiological and molecular mechanisms conferring diurnal variation in auxinic herbicide efficacy. PLoS One 2020; 15:e0238144. [PMID: 32857790 PMCID: PMC7454982 DOI: 10.1371/journal.pone.0238144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/10/2020] [Indexed: 11/18/2022] Open
Abstract
The efficacy of auxinic herbicides, a valuable weed control tool for growers worldwide, has been shown to vary with the time of day in which applications are made. However, little is known about the mechanisms causing this phenomenon. Investigating the differential in planta behavior of these herbicides across different times of application may grant an ability to advise which properties of auxinic herbicides are desirable when applications must be made around the clock. Radiolabeled herbicide experiments demonstrated a likely increase in ATP-binding cassette subfamily B (ABCB)-mediated 2,4-D and dicamba transport in Palmer amaranth (Amaranthus palmeri S. Watson) at simulated dawn compared to mid-day, as dose response models indicated that many orders of magnitude higher concentrations of N-1-naphthylphthalamic acid (NPA) and verapamil, respectively, are required to inhibit translocation by 50% at simulated sunrise compared to mid-day. Gas chromatographic analysis displayed that ethylene evolution in A. palmeri was higher when dicamba was applied during mid-day compared to sunrise. Furthermore, it was found that inhibition of translocation via 2,3,5-triiodobenzoic acid (TIBA) resulted in an increased amount of 2,4-D-induced ethylene evolution at sunrise, and the inhibition of dicamba translocation via NPA reversed the difference in ethylene evolution across time of application. Dawn applications of these herbicides were associated with increased expression of a putative 9-cis-epoxycarotenoid dioxygenase biosynthesis gene NCED1, while there was a notable lack of trends observed across times of day and across herbicides with ACS1, encoding 1-aminocyclopropane-1-carboxylic acid synthase. Overall, this research indicates that translocation is differentially regulated via specific protein-level mechanisms across times of application, and that ethylene release, a chief phytotoxic process involved in the response to auxinic herbicides, is related to translocation. Furthermore, transcriptional regulation of abscisic acid involvement in phytotoxicity and/or translocation are suggested.
Collapse
Affiliation(s)
- Christopher R. Johnston
- Department of Crop & Soil Sciences, University of Georgia, Athens, GA, United States of America
| | - Anish Malladi
- Department of Horticulture, University of Georgia, Athens, GA, United States of America
| | - William K. Vencill
- Department of Crop & Soil Sciences, University of Georgia, Athens, GA, United States of America
| | - Timothy L. Grey
- Department of Crop & Soil Sciences, University of Georgia, Tifton, GA, United States of America
| | - A. Stanley Culpepper
- Department of Crop & Soil Sciences, University of Georgia, Tifton, GA, United States of America
| | - Gerald Henry
- Department of Crop & Soil Sciences, University of Georgia, Athens, GA, United States of America
| | - Mark A. Czarnota
- Department of Horticulture, University of Georgia, Griffin, GA, United States of America
| | - Taylor M. Randell
- Department of Crop & Soil Sciences, University of Georgia, Tifton, GA, United States of America
| |
Collapse
|
43
|
Chu C, Liu B, Liu J, He J, Lv L, Wang H, Xie X, Tao Q, Chen Q. Phytoremediation of acetochlor residue by transgenic Arabidopsis expressing the acetochlor N-dealkylase from Sphingomonas wittichii DC-6. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138687. [PMID: 32361114 DOI: 10.1016/j.scitotenv.2020.138687] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/07/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
Transgenic engineering is an effective way for plants to obtain strong degradation or detoxification abilities to target pollutants. Acetochlor is an important and widely used herbicide, however, its residue is persistent in soil and is toxic to humans and rotation crops. In this study, the degradation ability and tolerance to acetochlor of transgenic Arabidopsis thaliana synthesizing the oxygenase component, CndA, of the bacterial acetochlor N-dealkylase system, CndABC, were investigated. Two transgenic plants, including a cytoplasm transformant, in which the CndA was located in the cytoplasm, and a chloroplast transformant, in which the CndA was located in the chloroplast, were constructed. The cytoplasm transformant acquired only weak acetochlor degradation activity and displayed little acetochlor tolerance. In contrast, the chloroplast transformant exhibited high degradation efficiency and strong tolerance to acetochlor; it could transform 94.3% of 20 μM acetochlor in water within 48 h and eliminate 80.2% of 5 mg/kg acetochlor in soil within 30 d. The metabolite of acetochlor N-dealkylation catalyzed by CndA, 2-chloro-N-(2-methyl-6-ethylphenyl)acetamide (CMEPA), could be released outside the cells by chloroplast transformant and further degraded by indigenous microorganisms in the soil. This study provides an effective strategy for the phytoremediation of acetochlor residue in water and soil.
Collapse
Affiliation(s)
- Cuiwei Chu
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466000, China
| | - Bin Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Junwei Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian He
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lijie Lv
- College of Life Sciences, Zaozhuang University, Zaozhuang 277100, China
| | - Hongmei Wang
- College of Life Sciences, Zaozhuang University, Zaozhuang 277100, China
| | - Xiangting Xie
- DBN Biotech Center, Beijing Dabeinong Technology Group Co., Ltd., 100193, PO Box 5109, Beijing, China
| | - Qing Tao
- DBN Biotech Center, Beijing Dabeinong Technology Group Co., Ltd., 100193, PO Box 5109, Beijing, China
| | - Qing Chen
- College of Life Sciences, Zaozhuang University, Zaozhuang 277100, China.
| |
Collapse
|
44
|
Gaines TA. The quick and the dead: a new model for the essential role of ABA accumulation in synthetic auxin herbicide mode of action. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3383-3385. [PMID: 32569383 PMCID: PMC7307849 DOI: 10.1093/jxb/eraa178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This article comments on: McCauley CL, McAdam SAM, Bhide K, Thimmapuram J, Banks JA, Young BG. 2020. Transcriptomics in Erigeron canadensis reveals rapid photosynthetic and hormonal responses to auxin herbicide application. Journal of Experimental Botany 71,3701–3709.
Collapse
Affiliation(s)
- Todd A Gaines
- Colorado State University, Department of Agricultural Biology, Fort Collins, CO, USA
- Correspondence:
| |
Collapse
|
45
|
Maeda H, Murata K, Sakuma N, Takei S, Yamazaki A, Karim MR, Kawata M, Hirose S, Kawagishi-Kobayashi M, Taniguchi Y, Suzuki S, Sekino K, Ohshima M, Kato H, Yoshida H, Tozawa Y. A rice gene that confers broad-spectrum resistance to β-triketone herbicides. Science 2020; 365:393-396. [PMID: 31346065 DOI: 10.1126/science.aax0379] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 06/28/2019] [Indexed: 01/08/2023]
Abstract
The genetic variation of rice cultivars provides a resource for further varietal improvement through breeding. Some rice varieties are sensitive to benzobicyclon (BBC), a β-triketone herbicide that inhibits 4-hydroxyphenylpyruvate dioxygenase (HPPD). Here we identify a rice gene, HIS1 (HPPD INHIBITOR SENSITIVE 1), that confers resistance to BBC and other β-triketone herbicides. We show that HIS1 encodes an Fe(II)/2-oxoglutarate-dependent oxygenase that detoxifies β-triketone herbicides by catalyzing their hydroxylation. Genealogy analysis revealed that BBC-sensitive rice variants inherited a dysfunctional his1 allele from an indica rice variety. Forced expression of HIS1 in Arabidopsis conferred resistance not only to BBC but also to four additional β-triketone herbicides. HIS1 may prove useful for breeding herbicide-resistant crops.
Collapse
Affiliation(s)
- Hideo Maeda
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8518, Japan
| | - Kazumasa Murata
- Toyama Prefectural Agricultural, Forestry and Fisheries Research Center, Toyama 939-8153, Japan
| | - Nozomi Sakuma
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Satomi Takei
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Akihiko Yamazaki
- Tsukuba Research and Technology Center, SDS Biotech K.K., Tsukuba 300-2646, Japan
| | - Md Rezaul Karim
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8518, Japan
| | - Motoshige Kawata
- Institute of Agrobiological Sciences, NARO, Tsukuba 305-8634, Japan
| | - Sakiko Hirose
- Institute of Agrobiological Sciences, NARO, Tsukuba 305-8634, Japan
| | | | - Yojiro Taniguchi
- Institute of Agrobiological Sciences, NARO, Tsukuba 305-8634, Japan
| | - Satoru Suzuki
- Tsukuba Research and Technology Center, SDS Biotech K.K., Tsukuba 300-2646, Japan
| | - Keisuke Sekino
- Tsukuba Research and Technology Center, SDS Biotech K.K., Tsukuba 300-2646, Japan
| | - Masahiro Ohshima
- Institute of Agrobiological Sciences, NARO, Tsukuba 305-8634, Japan
| | - Hiroshi Kato
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8518, Japan
| | - Hitoshi Yoshida
- Institute of Agrobiological Sciences, NARO, Tsukuba 305-8634, Japan
| | - Yuzuru Tozawa
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan.
| |
Collapse
|
46
|
Vieira BC, Luck JD, Amundsen KL, Werle R, Gaines TA, Kruger GR. Herbicide drift exposure leads to reduced herbicide sensitivity in Amaranthus spp. Sci Rep 2020; 10:2146. [PMID: 32034222 PMCID: PMC7005892 DOI: 10.1038/s41598-020-59126-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/22/2020] [Indexed: 12/22/2022] Open
Abstract
While the introduction of herbicide tolerant crops provided growers new options to manage weeds, the widespread adoption of these herbicides increased the risk for herbicide spray drift to surrounding vegetation. The impact of herbicide drift in sensitive crops is extensively investigated, whereas scarce information is available on the consequences of herbicide drift in non-target plants. Weeds are often abundant in field margins and ditches surrounding agricultural landscapes. Repeated herbicide drift exposure to weeds could be detrimental to long-term management as numerous weeds evolved herbicide resistance following recurrent-selection with low herbicide rates. The objective of this study was to evaluate if glyphosate, 2,4-D, and dicamba spray drift could select Amaranthus spp. biotypes with reduced herbicide sensitivity. Palmer amaranth and waterhemp populations were recurrently exposed to herbicide drift in a wind tunnel study over two generations. Seeds from survival plants were used for the subsequent rounds of herbicide drift exposure. Progenies were subjected to herbicide dose-response studies following drift selection. Herbicide drift exposure rapidly selected for Amaranthus spp. biotypes with reduced herbicide sensitivity over two generations. Weed management programs should consider strategies to mitigate near-field spray drift and suppress the establishment of resistance-prone weeds on field borders and ditches in agricultural landscapes.
Collapse
Affiliation(s)
- Bruno C Vieira
- West Central Research and Extension Center, University of Nebraska-Lincoln, North Platte, NE, USA.
| | - Joe D Luck
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Keenan L Amundsen
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Rodrigo Werle
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, USA
| | - Todd A Gaines
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Greg R Kruger
- West Central Research and Extension Center, University of Nebraska-Lincoln, North Platte, NE, USA
| |
Collapse
|
47
|
Ni H, Li N, Qian M, He J, Chen Q, Huang Y, Zou L, Long ZE, Wang F. Identification of a Novel Nitroreductase LNR and Its Role in Pendimethalin Catabolism in Bacillus subtilis Y3. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12816-12823. [PMID: 31675231 DOI: 10.1021/acs.jafc.9b04354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microbial degradation plays a major role in the dissipation of pendimethalin, and nitroreduction is an initial and detoxicating step. Previously, a pendimethalin nitroreductase, PNR, was identified in Bacillus subtilis Y3. Here, another pendimethalin nitroreductase from strain Y3, LNR, was identified. LNR shares only 40% identity with PNR and reduces the aromatic ring C-6 nitro group of pendimethalin and both nitro groups of trifluralin, butralin, and oryzalin. The catalytic activities against the four dinitroanilines were much higher for LNR than for PNR. lnr deletion significantly reduced the pendimethalin-reduction activity (60% activity loss), while pnr deletion led to only 30% activity loss, indicating that both LNR and PNR were involved in pendimethalin nitroreduction in strain Y3; however, LNR played the major role. This study facilitates the elucidation of pendimethalin catabolism and provides degrading enzyme resources for the removal of dinitroaniline herbicide residues in environment and agricultural products.
Collapse
Affiliation(s)
- Haiyan Ni
- College of Life Sciences , Jiangxi Normal University , Nanchang , Jiangxi 330022 , China
| | - Na Li
- School of Life Science and Technology , Nanyang Normal University , Nanyang , Henan 473061 , China
| | - Meng Qian
- Laboratory Center of Life Science, College of Life Sciences , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , China
| | - Jian He
- Laboratory Center of Life Science, College of Life Sciences , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , China
| | - Qing Chen
- College of Life Sciences , Zaozhuang University , Zaozhuang , Shandong 277160 , China
| | - Yunhong Huang
- College of Life Sciences , Jiangxi Normal University , Nanchang , Jiangxi 330022 , China
| | - Long Zou
- College of Life Sciences , Jiangxi Normal University , Nanchang , Jiangxi 330022 , China
| | - Zhong-Er Long
- College of Life Sciences , Jiangxi Normal University , Nanchang , Jiangxi 330022 , China
| | - Fei Wang
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering , Jiangxi Agricultural University , Nanchang , Jiangxi 330045 , China
| |
Collapse
|
48
|
Jiang Y, Zhong W, Yan W, Yan L. Arsenic mobilization from soils in the presence of herbicides. J Environ Sci (China) 2019; 85:66-73. [PMID: 31471032 DOI: 10.1016/j.jes.2019.04.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 06/10/2023]
Abstract
Arsenic (As) mobilization in soils is a fundamental step controlling its transport and fate, especially in the presence of the co-existing components. In this study, the effect of two commonly used herbicides, glyphosate (PMG) and dicamba, and two competing ions including phosphate and humic acid, on As desorption and release was investigated using batch and column experiments. The batch kinetics results showed that As desorption in the presence of competing factors conformed to the pseudo-second order kinetics at pH range of 5-9. The impact of phosphate on desorption was greatest, followed by PMG. The competitive effect of dicamba and humic acid was at the same level with electrolyte solution. In situ flow cell ATR-FTIR analysis was performed to explore the mechanism of phosphate and PMG impact on As mobilization. The results showed that PMG promoted As(III) desorption by competiting for available adsorption sites with no change in As(III) complexing structure. On the other hand, phophate changed As(III) surface complexes from bidentate to monodentate structures, exhibiting the most siginficant effect on As(III) desorption. As(V) surface complexes remained unchanged in the presence of PMG and phosphate, implying that the competitive effect for As(V) desorption was primarily determined by the available adsorption sites. Long-term (10 days) soil column experiments suggested that the effect of humic acid on As mobilization became pronounced from 3 days (18 PVs). The insights of this study help us understand the transport and fate of As due to herbicides application.
Collapse
Affiliation(s)
- Yuxuan Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Zhong
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Yan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Yan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
49
|
Herbicide Resistance Traits in Maize and Soybean: Current Status and Future Outlook. PLANTS 2019; 8:plants8090337. [PMID: 31505748 PMCID: PMC6784167 DOI: 10.3390/plants8090337] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 11/29/2022]
Abstract
This article reviews, focusing on maize and soybean, previous efforts to develop nontransgenic herbicide-resistant crops (HRCs), currently available transgenic HRC traits and technologies, as well as future chemical weed management options over the horizon. Since the mid twentieth century, herbicides rapidly replaced all other means of weed management. Overreliance on ‘herbicide-only’ weed control strategies hastened evolution of HR weed species. Glyphosate-resistant (GR) crop technology revolutionized weed management in agronomic crops, but GR weeds, led by Palmer amaranth, severely reduced returns from various cropping systems and affected the bottom line of growers across the world. An additional problem was the lack of commercialization of a new herbicide mode of action since the 1990s. Auxinic HRCs offer a short-term alternative for management of GR Palmer amaranth and other weed species. New HRCs stacked with multiple herbicide resistance traits and at least two new herbicide modes of action expected to be available in the mid-2020s provide new chemical options for weed management in row crops in the next decade.
Collapse
|
50
|
VanArsdale E, Tsao CY, Liu Y, Chen CY, Payne GF, Bentley WE. Redox-Based Synthetic Biology Enables Electrochemical Detection of the Herbicides Dicamba and Roundup via Rewired Escherichia coli. ACS Sens 2019; 4:1180-1184. [PMID: 30990313 DOI: 10.1021/acssensors.9b00085] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synthetic biology is typically exploited to endow bacterial cells with new biosynthetic capabilities. It can also serve to create "smart" bacteria such as probiotics that detect and treat disease. Here, we show how minimally rewiring the genetic regulation of bacterial cells can enable their ability to recognize and report on chemical herbicides, including those routinely used to clear weeds from gardens and crops. In so doing, we demonstrate how constructs of synthetic biology, in this case redox-based synthetic biology, can serve as a vector for information flow mediating molecular communication between biochemical systems and microelectronics. We coupled the common genetic reporter, β-galactosidase, with the E. coli superoxide response regulon promoter pSoxS, for detection of the herbicides dicamba and Roundup. Both herbicides activated our genetic construct in a concentration dependent manner. Results indicate robust detection using spectrophotometry, via the Miller assay, and electrochemistry using the enzymatic cleavage of 4-aminophenyl β-d-galactopyranoside into the redox active molecule p-aminophenol. We found that environmental components, in particular, the availability of glucose, are important factors for the cellular detection of dicamba. Importantly, both herbicides were detected at concentrations relevant for aquatic toxicity.
Collapse
|