1
|
Arroyo M, Casas-Delucchi C, Pabba M, Prorok P, Pradhan S, Rausch C, Lehmkuhl A, Maiser A, Buschbeck M, Pasque V, Bernstein E, Luck K, Cardoso M. Histone variant macroH2A1 regulates synchronous firing of replication origins in the inactive X chromosome. Nucleic Acids Res 2024; 52:11659-11688. [PMID: 39189450 PMCID: PMC11514477 DOI: 10.1093/nar/gkae734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024] Open
Abstract
MacroH2A has been linked to transcriptional silencing, cell identity, and is a hallmark of the inactive X chromosome (Xi). However, it remains unclear whether macroH2A plays a role in DNA replication. Using knockdown/knockout cells for each macroH2A isoform, we show that macroH2A-containing nucleosomes slow down replication progression rate in the Xi reflecting the higher nucleosome stability. Moreover, macroH2A1, but not macroH2A2, regulates the number of nano replication foci in the Xi, and macroH2A1 downregulation increases DNA loop sizes corresponding to replicons. This relates to macroH2A1 regulating replicative helicase loading during G1 by interacting with it. We mapped this interaction to a phenylalanine in macroH2A1 that is not conserved in macroH2A2 and the C-terminus of Mcm3 helicase subunit. We propose that macroH2A1 enhances the licensing of pre-replication complexes via DNA helicase interaction and loading onto the Xi.
Collapse
Affiliation(s)
- Maria Arroyo
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Corella S Casas-Delucchi
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Maruthi K Pabba
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Paulina Prorok
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Sunil K Pradhan
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Cathia Rausch
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Anne Lehmkuhl
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Andreas Maiser
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, LMU Munich, Munich 81377, Germany
| | - Marcus Buschbeck
- Program of Myeloid Neoplasms, Program of Applied Epigenetics, Josep Carreras Leukaemia Research Institute (IJC), Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruti, Camí de les Escoles, 08916 Badalona, Barcelona, Spain
| | - Vincent Pasque
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-Cell Omics (LISCO), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| | - Emily Bernstein
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, NY, NY 10029, USA
| | - Katja Luck
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| | - M Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
2
|
Nakata K, Okumura K, Kobayashi T. Application of a Photothermal Microscope To Study the Process of Cutaneous Lesion Formation of Malignant Melanoma. J Phys Chem B 2024; 128:10126-10138. [PMID: 39378363 DOI: 10.1021/acs.jpcb.4c05785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
In this study, we applied a photothermal microscope to study the process of malignant melanoma formation. We analyzed benign papilloma tumors, their metastatic carcinomas, and metastatic melanoma on the preparation of mouse skin using a gray-level co-occurrence matrix (GLCM) method. Based on the analysis of nine GLCM parameters investigated, the characteristics during the degenerative and metastatic processes are clarified by the investigation. The determination of characteristic parameters corresponding to three processes before, during, and after the degeneration indicated that this investigation enables the detection of the malignant transformation and related processes.
Collapse
Affiliation(s)
- K Nakata
- Department of Science, Tokyo University of Science, Kagurazaka 1-3, Sinjuku-ku,Tokyo162-8601,Japan
| | - K Okumura
- Division of Experimental Animal Research, Center of Cancer Genome, Chiba Cancer Center Research Institute, 666-2, Nitonacho, Chuoku, Chiba ,Chiba 2608717,Japan
| | - T Kobayashi
- Department of Science, Tokyo University of Science, Kagurazaka 1-3, Sinjuku-ku,Tokyo162-8601,Japan
- Faculty of Science, The Univ. of Tokyo, 7-3-1 Hongo, Tokyo 113-8654,Japan
- Brain Life Support Center, The Univ. of Electro-Communications, 1-5-1, Chofugaoka, Chofu ,Tokyo182-8585, Japan
- Department of Electro-Physics, National Yang-Min Chao-Tung University, 1001, Daxue Rd. East Dist., Hsinchu City 300093, Taiwan
| |
Collapse
|
3
|
Ortkrass H, Müller M, Engdahl AK, Holst G, Huser T. High sensitivity cameras can lower spatial resolution in high-resolution optical microscopy. Nat Commun 2024; 15:8886. [PMID: 39406700 PMCID: PMC11480200 DOI: 10.1038/s41467-024-53198-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
High-resolution optical fluorescence microscopies and, in particular, super-resolution fluorescence microscopy, are rapidly adopting highly sensitive cameras as their preferred photodetectors. Camera-based parallel detection facilitates high-speed live cell imaging with the highest spatial resolution. Here, we show that the drive to use ever more sensitive, photon-counting image sensors in cameras can, however, have detrimental effects on the spatial resolution of the resulting images. This is particularly noticeable in applications that demand a high space-bandwidth product, where the image magnification is close to the Nyquist sampling limit of the sensor. Most scientists will often select image sensors based on parameters such as pixel size, quantum efficiency, signal-to-noise performance, dynamic range, and frame rate of the sensor. A parameter that is, however, typically overlooked is the sensor's modulation transfer function (MTF). We have determined the wavelength-specific MTF of front- and back-illuminated image sensors and evaluated how it affects the spatial resolution that can be achieved in high-resolution fluorescence microscopy modalities. We find significant differences in image sensor performance that cause the resulting spatial resolution to vary by up to 28%. This result shows that the choice of image sensor has a significant impact on the imaging performance of all camera-based optical microscopy modalities.
Collapse
Affiliation(s)
- Henning Ortkrass
- Biomolecular Photonics, Faculty of Physics, Bielefeld University, Bielefeld, Germany.
| | - Marcel Müller
- Biomolecular Photonics, Faculty of Physics, Bielefeld University, Bielefeld, Germany
| | | | | | - Thomas Huser
- Biomolecular Photonics, Faculty of Physics, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
4
|
McPhee M, Dellaire G, Ridgway ND. Mechanisms for assembly of the nucleoplasmic reticulum. Cell Mol Life Sci 2024; 81:415. [PMID: 39367888 PMCID: PMC11455740 DOI: 10.1007/s00018-024-05437-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/22/2024] [Accepted: 09/03/2024] [Indexed: 10/07/2024]
Abstract
The nuclear envelope consists of an outer membrane connected to the endoplasmic reticulum, an inner membrane facing the nucleoplasm and a perinuclear space separating the two bilayers. The inner and outer nuclear membranes are physically connected at nuclear pore complexes that mediate selective communication and transfer of materials between the cytoplasm and nucleus. The spherical shape of the nuclear envelope is maintained by counterbalancing internal and external forces applied by cyto- and nucleo-skeletal networks, and the nuclear lamina and chromatin that underly the inner nuclear membrane. Despite its apparent rigidity, the nuclear envelope can invaginate to form an intranuclear membrane network termed the nucleoplasmic reticulum (NR) consisting of Type-I NR contiguous with the inner nuclear membrane and Type-II NR containing both the inner and outer nuclear membranes. The NR extends deep into the nuclear interior potentially facilitating communication and exchanges between the nuclear interior and the cytoplasm. This review details the evidence that NR intrusions that regulate cytoplasmic communication and genome maintenance are the result of a dynamic interplay between membrane biogenesis and remodelling, and physical forces exerted on the nuclear lamina derived from the cyto- and nucleo-skeletal networks.
Collapse
Affiliation(s)
- Michael McPhee
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, B3H4R2, Canada
| | - Graham Dellaire
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, B3H4R2, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, B3H4R2, Canada
| | - Neale D Ridgway
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, B3H4R2, Canada.
- Department of Pediatrics, Atlantic Research Centre, Dalhousie University, Halifax, NS, B3H4R2, Canada.
| |
Collapse
|
5
|
Qu L, Zhao S, Huang Y, Ye X, Wang K, Liu Y, Liu X, Mao H, Hu G, Chen W, Guo C, He J, Tan J, Li H, Chen L, Zhao W. Self-inspired learning for denoising live-cell super-resolution microscopy. Nat Methods 2024; 21:1895-1908. [PMID: 39261639 DOI: 10.1038/s41592-024-02400-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/31/2024] [Indexed: 09/13/2024]
Abstract
Every collected photon is precious in live-cell super-resolution (SR) microscopy. Here, we describe a data-efficient, deep learning-based denoising solution to improve diverse SR imaging modalities. The method, SN2N, is a Self-inspired Noise2Noise module with self-supervised data generation and self-constrained learning process. SN2N is fully competitive with supervised learning methods and circumvents the need for large training set and clean ground truth, requiring only a single noisy frame for training. We show that SN2N improves photon efficiency by one-to-two orders of magnitude and is compatible with multiple imaging modalities for volumetric, multicolor, time-lapse SR microscopy. We further integrated SN2N into different SR reconstruction algorithms to effectively mitigate image artifacts. We anticipate SN2N will enable improved live-SR imaging and inspire further advances.
Collapse
Affiliation(s)
- Liying Qu
- Innovation Photonics and Imaging Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, China
| | - Shiqun Zhao
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing, China
| | - Yuanyuan Huang
- Innovation Photonics and Imaging Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, China
| | - Xianxin Ye
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing, China
| | - Kunhao Wang
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing, China
| | - Yuzhen Liu
- Innovation Photonics and Imaging Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, China
| | - Xianming Liu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Heng Mao
- School of Mathematical Sciences, Peking University, Beijing, China
| | - Guangwei Hu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Wei Chen
- School of Mechanical Science and Engineering, Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, China
| | - Changliang Guo
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing, China
| | - Jiaye He
- National Innovation Center for Advanced Medical Devices, Shenzhen, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiubin Tan
- Key Laboratory of Ultra-precision Intelligent Instrumentation of Ministry of Industry and Information Technology, Harbin Institute of Technology, Harbin, China
| | - Haoyu Li
- Innovation Photonics and Imaging Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, China
- Key Laboratory of Ultra-precision Intelligent Instrumentation of Ministry of Industry and Information Technology, Harbin Institute of Technology, Harbin, China
- Frontiers Science Center for Matter Behave in Space Environment, Harbin Institute of Technology, Harbin, China
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin, China
| | - Liangyi Chen
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Beijing Academy of Artificial Intelligence, Beijing, China
| | - Weisong Zhao
- Innovation Photonics and Imaging Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, China.
- Key Laboratory of Ultra-precision Intelligent Instrumentation of Ministry of Industry and Information Technology, Harbin Institute of Technology, Harbin, China.
- Frontiers Science Center for Matter Behave in Space Environment, Harbin Institute of Technology, Harbin, China.
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
6
|
Hu X, Tan Y, Huang Y, Ye J, Liang Y, Yang X, Wang H, Cheng Z, Wang L, Liu S, Li M, He Z, Gao Q, Zhong J. Multi-color two-laser super-resolution structured illumination microscopy for the visualization of multi-organelle in living cells. JOURNAL OF BIOPHOTONICS 2024; 17:e202400154. [PMID: 39098050 DOI: 10.1002/jbio.202400154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 08/06/2024]
Abstract
In this study, we introduced a novel dual-laser multi-color imaging system. Integrated with a multi-channel filter wheel, this system compared three spectral decontamination algorithms (nonnegative matrix factorization [NMF], RCAN, and PICASSO) showcasing its efficacy in achieving four-color imaging with only two laser sources. Combined with a reliable image reconstruction algorithm, the spatial resolution of four channels super-resolution four-color images reached 130, 125, 133, and 132 nm, respectively. Lipid droplets, mitochondria, lysosomes, and nuclei from the mouse hepatocytes (AML12), human neuroblastoma cells (SH-SY5Y), mouse hippocampal neuronal cells (HT-22), and immortalized murine bone marrow-derived macrophages were imaged. At the same time, the chromatin condensation, nuclear contraction, DNA fragmentation, apoptotic body formation, as well as the fusion of Mito and Lyso involved in mitochondrial autophagy were observed in HT-22 and SH-SY5Y cells suffering oxidative stress. Our multi-color SIM imaging system establishes a powerful platform for dynamic organelle studies and other high-resolution investigations in live cells.
Collapse
Affiliation(s)
- Xuejuan Hu
- College of Physics Science and Technology, Guangxi Normal University, Guilin, Guangxi, China
- Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen, Guang-dong, China
| | - Yadan Tan
- College of Physics Science and Technology, Guangxi Normal University, Guilin, Guangxi, China
- Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen, Guang-dong, China
| | - Yujie Huang
- College of Pharmacy, Shenzhen Technology University, Shenzhen, Guangdong, China
| | - Jianze Ye
- Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen, Guang-dong, China
| | - Yifei Liang
- College of Physics Science and Technology, Guangxi Normal University, Guilin, Guangxi, China
- Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen, Guang-dong, China
| | - Xiaokun Yang
- Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen, Guang-dong, China
| | - Hengliang Wang
- Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen, Guang-dong, China
| | - Zihao Cheng
- Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen, Guang-dong, China
| | - Lihu Wang
- College of Physics Science and Technology, Guangxi Normal University, Guilin, Guangxi, China
| | - Shiqian Liu
- Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen, Guang-dong, China
| | - Minfei Li
- Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen, Guang-dong, China
| | - Zhengdi He
- College of Health and Environmental Engineering, Shenzhen Technology University, Shenzhen, Guangdong, China
| | - Qianding Gao
- Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen, Guang-dong, China
| | - Jingli Zhong
- College of Physics Science and Technology, Guangxi Normal University, Guilin, Guangxi, China
- Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen, Guang-dong, China
| |
Collapse
|
7
|
Morgan KJ, Carley E, Coyne AN, Rothstein JD, Lusk CP, King MC. Visualizing nuclear pore complex plasticity with Pan-Expansion Microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613744. [PMID: 39345637 PMCID: PMC11429769 DOI: 10.1101/2024.09.18.613744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Cell-type specific and environmentally-responsive plasticity in nuclear pore complex (NPC) composition and structure is an emerging area of investigation, but its molecular underpinnings remain ill defined. To understand the cause and consequence of NPC plasticity requires technologies to visualize differences within individual NPCs across the thousands in a given nucleus. We evaluate the utility of Pan Expansion Microscopy (Pan-ExM), which enables 16-20 fold isotropic cell enlargement while preserving the proteome, to reveal NPC plasticity. NPCs are robustly identified by deep learning-facilitated segmentation as tripartite structures corresponding to the nucleoplasmic ring, inner ring with central transport channel, and cytoplasmic ring, as confirmed by immunostaining. We demonstrate a range of NPC diameters with a bias for dilated NPCs at the basal nuclear surface, often in local clusters. These diameter biases are eliminated by disrupting linker of nucleoskeleton and cytoskeleton (LINC) complex-dependent connections between the nuclear envelope (NE) and the cytoskeleton, supporting that they reflect local variations in NE tension. Pan-ExM further reveals that the transmembrane nucleoporin/nup POM121 resides specifically at the nuclear ring in multiple model cell lines, surprising given the expectation that it would be a component of the inner ring like other transmembrane nups. Remarkably, however, POM121 shifts from the nuclear ring to the inner ring specifically in aged induced pluripotent stem cell derived neurons (iPSNs) from a patient with C9orf72 amyotrophic lateral sclerosis (ALS). Thus, Pan-ExM allows the visualization of changes in NPC architecture that may underlie early steps in an ALS pathomechanism. Taken together, Pan-ExM is a powerful and accessible tool to visualize NPC plasticity in physiological and pathological contexts at single NPC resolution.
Collapse
Affiliation(s)
- Kimberly J. Morgan
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Emma Carley
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Alyssa N. Coyne
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Jeffrey D. Rothstein
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - C. Patrick Lusk
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Megan C. King
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Molecular, Cell and Developmental Biology, Yale University, New Haven, CT, 06520, USA
| |
Collapse
|
8
|
Zhou Q, Yang C, Lin P, Zhang Y, Zhao A, Zhang H, Ren Y, Long Z, Lu YQ, Xu T. Far-Field Phase-Shifting Structured Light Illumination Enabled by Polarization Multiplexing Metasurface for Super-Resolution Imaging. NANO LETTERS 2024; 24:11036-11042. [PMID: 39185718 DOI: 10.1021/acs.nanolett.4c03142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
The phase-shifting structured light illumination technique is widely used in imaging but often relies on mechanical translation stages or spatial light modulators, leading to system instability, low displacement accuracy, and limited integration feasibility. In response to these challenges, we propose and demonstrate an approach for generating far-field phase-shifting structured light using a polarization multiplexing metasurface. By controlling the polarization states of incident and transmitted light, the metasurface creates a three-step displacement of structured light, eliminating the need to move samples or illumination sources. As a proof of concept, we experimentally demonstrate microscopic imaging using structured light illumination generated by metasurfaces, extracting high-frequency information from objects, and surpassing the diffraction limit. The proposed metasurface platform offers a promising approach for developing compact and robust phase-shifting imaging systems, with broad prospects in quantitative detection, machine vision, and beyond.
Collapse
Affiliation(s)
- Qianwei Zhou
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Cheng Yang
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Peicheng Lin
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yanzeng Zhang
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Airong Zhao
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Hui Zhang
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yongze Ren
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Zhongwen Long
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yan-Qing Lu
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
- Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Nanjing University, Nanjing 210093, China
| | - Ting Xu
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
- Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Nanjing University, Nanjing 210093, China
| |
Collapse
|
9
|
Abe Y, Erchinger VJ, Ousdal OT, Oltedal L, Tanaka KF, Takamiya A. Neurobiological mechanisms of electroconvulsive therapy for depression: Insights into hippocampal volumetric increases from clinical and preclinical studies. J Neurochem 2024; 168:1738-1750. [PMID: 38238933 DOI: 10.1111/jnc.16054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/26/2023] [Accepted: 01/08/2024] [Indexed: 10/04/2024]
Abstract
Depression is a highly prevalent and disabling psychiatric disorder. The hippocampus, which plays a central role in mood regulation and memory, has received considerable attention in depression research. Electroconvulsive therapy (ECT) is the most effective treatment for severe pharmacotherapy-resistant depression. Although the working mechanism of ECT remains unclear, recent magnetic resonance imaging (MRI) studies have consistently reported increased hippocampal volumes following ECT. The clinical implications of these volumetric increases and the specific cellular and molecular significance are not yet fully understood. This narrative review brings together evidence from animal models and human studies to provide a detailed examination of hippocampal volumetric increases following ECT. In particular, our preclinical MRI research using a mouse model is consistent with human findings, demonstrating a marked increase in hippocampal volume following ECT. Notable changes were observed in the ventral hippocampal CA1 region, including dendritic growth and increased synaptic density at excitatory synapses. Interestingly, inhibition of neurogenesis did not affect the ECT-related hippocampal volumetric increases detected on MRI. However, it remains unclear whether these histological and volumetric changes would be correlated with the clinical effect of ECT. Hence, future research on the relationships between cellular changes, ECT-related brain volumetric changes, and antidepressant effect could benefit from a bidirectional translational approach that integrates human and animal models. Such translational research may provide important insights into the mechanisms and potential biomarkers associated with ECT-induced hippocampal volumetric changes, thereby advancing our understanding of ECT for the treatment of depression.
Collapse
Affiliation(s)
- Yoshifumi Abe
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Vera J Erchinger
- Department of Biomedicine, The Faculty of Medicine, University of Bergen, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Olga Therese Ousdal
- Department of Biomedicine, The Faculty of Medicine, University of Bergen, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Leif Oltedal
- Department of Biomedicine, The Faculty of Medicine, University of Bergen, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Kenji F Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Akihiro Takamiya
- Neuropsychiatry, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
- Hills Joint Research Laboratory for Future Preventive Medicine and Wellness, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
North AJ, Sharma VP, Pyrgaki C, Lim S Y J, Atwal S, Saharat K, Wright GD, Salje J. A comparison of super-resolution microscopy techniques for imaging tightly packed microcolonies of an obligate intracellular bacterium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607698. [PMID: 39211076 PMCID: PMC11361006 DOI: 10.1101/2024.08.12.607698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Conventional optical microscopy imaging of obligate intracellular bacteria is hampered by the small size of bacterial cells, tight clustering exhibited by some bacterial species and challenges relating to labelling such as background from host cells, a lack of validated reagents, and a lack of tools for genetic manipulation. In this study we imaged intracellular bacteria from the species Orientia tsutsugamushi (Ot) using five different fluorescence microscopy techniques: standard confocal, Airyscan confocal, instant Structured Illumination Microscopy (iSIM), three-dimensional Structured Illumination Microscopy (3D-SIM) and Stimulated Emission Depletion Microscopy (STED). We compared the ability of each to resolve bacterial cells in intracellular clumps in the lateral (xy) axis, using full width half maximum (FWHM) measurements of a labelled outer membrane protein (ScaA) and the ability to detect small, outer membrane vesicles external to the cells. We next compared the ability of each technique to sufficiently resolve bacteria in the axial (z) direction and found 3D-STED to be the most successful method for this. We then combined this approach with a custom 3D cell segmentation and analysis pipeline using the open-source, deep learning software, Cellpose to segment the cells and subsequently the commercial software Imaris to analyze their 3D shape and size. Using this combination, we demonstrated differences in bacterial shape, but not their size, when grown in different mammalian cell lines. Overall, we compare the advantages and disadvantages of different super-resolution microscopy techniques for imaging this cytoplasmic obligate intracellular bacterium based on the specific research question being addressed.
Collapse
|
11
|
Fang H, Wang M, Wei P, Liu Q, Su Y, Liu H, Chen Y, Su Z, He W. Molecular probes for super-resolution imaging of drug dynamics. Adv Drug Deliv Rev 2024; 210:115330. [PMID: 38735627 DOI: 10.1016/j.addr.2024.115330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/09/2024] [Accepted: 05/05/2024] [Indexed: 05/14/2024]
Abstract
Super-resolution molecular probes (SRMPs) are essential tools for visualizing drug dynamics within cells, transcending the resolution limits of conventional microscopy. In this review, we provide an overview of the principles and design strategies of SRMPs, emphasizing their role in accurately tracking drug molecules. By illuminating the intricate processes of drug distribution, diffusion, uptake, and metabolism at a subcellular and molecular level, SRMPs offer crucial insights into therapeutic interventions. Additionally, we explore the practical applications of super-resolution imaging in disease treatment, highlighting the significance of SRMPs in advancing our understanding of drug action. Finally, we discuss future perspectives, envisioning potential advancements and innovations in this field. Overall, this review serves to inform and practitioners about the utility of SRMPs in driving innovation and progress in pharmacology, providing valuable insights for drug development and optimization.
Collapse
Affiliation(s)
- Hongbao Fang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Mengmeng Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; College of Life Science and Chemistry, Jiangsu Key Laboratory of Biological Functional Molecules, Jiangsu Second Normal University, Nanjing, Jiangsu 210013, China
| | - Pengfan Wei
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Qian Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yan Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Hongke Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China; Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, PR China.
| | - Zhi Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| |
Collapse
|
12
|
Presman DM, Benítez B, Lafuente AL, Vázquez Lareu A. Chromatin structure and dynamics: one nucleosome at a time. Histochem Cell Biol 2024; 162:79-90. [PMID: 38607419 DOI: 10.1007/s00418-024-02281-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2024] [Indexed: 04/13/2024]
Abstract
Eukaryotic genomes store information on many levels, including their linear DNA sequence, the posttranslational modifications of its constituents (epigenetic modifications), and its three-dimensional folding. Understanding how this information is stored and read requires multidisciplinary collaborations from many branches of science beyond biology, including physics, chemistry, and computer science. Concurrent recent developments in all these areas have enabled researchers to image the genome with unprecedented spatial and temporal resolution. In this review, we focus on what single-molecule imaging and tracking of individual proteins in live cells have taught us about chromatin structure and dynamics. Starting with the basics of single-molecule tracking (SMT), we describe some advantages over in situ imaging techniques and its current limitations. Next, we focus on single-nucleosome studies and what they have added to our current understanding of the relationship between chromatin dynamics and transcription. In celebration of Robert Feulgen's ground-breaking discovery that allowed us to start seeing the genome, we discuss current models of chromatin structure and future challenges ahead.
Collapse
Affiliation(s)
- Diego M Presman
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Facultad de Ciencias Exactas y Naturales, CONICET-Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina.
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina.
| | - Belén Benítez
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Facultad de Ciencias Exactas y Naturales, CONICET-Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina
- Instituto de Química Biológica (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, CONICET-Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina
| | - Agustina L Lafuente
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Facultad de Ciencias Exactas y Naturales, CONICET-Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina
| | - Alejo Vázquez Lareu
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Facultad de Ciencias Exactas y Naturales, CONICET-Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina
- Instituto de Química Biológica (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, CONICET-Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina
| |
Collapse
|
13
|
Illand A, Jouchet P, Fort E, Lévêque-Fort S. Flexible implementation of modulated localisation microscopy based on DMD. J Microsc 2024; 295:21-32. [PMID: 38353429 DOI: 10.1111/jmi.13274] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 06/19/2024]
Abstract
Localisation microscopy of individual molecules allows one to bypass the diffraction limit, revealing cellular organisation on a nanometric scale. This method, which relies on spatial analysis of the signal emitted by molecules, is often limited to the observation of biological objects at shallow depths, or with very few aberrations. The introduction of a temporal parameter into the localisation process through a time-modulated excitation was recently proposed to address these limitations. This method, called ModLoc, is demonstrated here with an alternative flexible strategy. In this implementation, to encode the time-modulated excitation a digital micromirror device (DMD) is used in combination with a fast demodulation approach, and provides a twofold enhancement in localisation precision. Layout: Nowadays, we can use an optical microscope to observe how proteins are organised in 3D within a cell at the nanoscale. By carefully controlling the emission of molecules in both space and time, we can overcome the limitations set by the diffraction limit. This allows us to pinpoint the exact location of molecules more precisely. However, the usual spatial analysis method limits observations to shallow depths or causing low distortion of optical waves. To overcome these restrictions, a recent approach introduces a temporal element to the localisation process. This involves changing the illumination over time to enhance the precision of localisation. This method, known as ModLoc, is showcased here using a flexible and alternative strategy. In this setup, a matrix of micrometric mirrors, working together with a fast demodulation optical module, is used to encode and decode the time-modulated information. This combination results in a twofold improvement in localisation precision.
Collapse
Affiliation(s)
- Abigail Illand
- Institut des Sciences Moléculaires d'Orsay, Université Paris Saclay, CNRS UMR8214, Orsay, France
| | - Pierre Jouchet
- Institut des Sciences Moléculaires d'Orsay, Université Paris Saclay, CNRS UMR8214, Orsay, France
| | - Emmanuel Fort
- Institut Langevin, ESPCI Paris, Université PSL, CNRS, Paris, France
| | - Sandrine Lévêque-Fort
- Institut des Sciences Moléculaires d'Orsay, Université Paris Saclay, CNRS UMR8214, Orsay, France
| |
Collapse
|
14
|
Liu J, Tan YY, Zheng W, Wang Y, Ju LA, Su QP. Nanoscale insights into hematology: super-resolved imaging on blood cell structure, function, and pathology. J Nanobiotechnology 2024; 22:363. [PMID: 38910248 PMCID: PMC11194919 DOI: 10.1186/s12951-024-02605-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/30/2024] [Indexed: 06/25/2024] Open
Abstract
Fluorescence nanoscopy, also known as super-resolution microscopy, has transcended the conventional resolution barriers and enabled visualization of biological samples at nanometric resolutions. A series of super-resolution techniques have been developed and applied to investigate the molecular distribution, organization, and interactions in blood cells, as well as the underlying mechanisms of blood-cell-associated diseases. In this review, we provide an overview of various fluorescence nanoscopy technologies, outlining their current development stage and the challenges they are facing in terms of functionality and practicality. We specifically explore how these innovations have propelled forward the analysis of thrombocytes (platelets), erythrocytes (red blood cells) and leukocytes (white blood cells), shedding light on the nanoscale arrangement of subcellular components and molecular interactions. We spotlight novel biomarkers uncovered by fluorescence nanoscopy for disease diagnosis, such as thrombocytopathies, malignancies, and infectious diseases. Furthermore, we discuss the technological hurdles and chart out prospective avenues for future research directions. This review aims to underscore the significant contributions of fluorescence nanoscopy to the field of blood cell analysis and disease diagnosis, poised to revolutionize our approach to exploring, understanding, and managing disease at the molecular level.
Collapse
Affiliation(s)
- Jinghan Liu
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Yuping Yolanda Tan
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
- Heart Research Institute, Newtown, NSW, 2042, Australia
| | - Wen Zheng
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Yao Wang
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Lining Arnold Ju
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
- Heart Research Institute, Newtown, NSW, 2042, Australia
| | - Qian Peter Su
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia.
- Heart Research Institute, Newtown, NSW, 2042, Australia.
| |
Collapse
|
15
|
Gao Z, Han K, Hua X, Liu W, Jia S. hydroSIM: super-resolution speckle illumination microscopy with a hydrogel diffuser. BIOMEDICAL OPTICS EXPRESS 2024; 15:3574-3585. [PMID: 38867780 PMCID: PMC11166422 DOI: 10.1364/boe.521521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/27/2024] [Accepted: 04/18/2024] [Indexed: 06/14/2024]
Abstract
Super-resolution microscopy has emerged as an indispensable methodology for probing the intricacies of cellular biology. Structured illumination microscopy (SIM), in particular, offers an advantageous balance of spatial and temporal resolution, allowing for visualizing cellular processes with minimal disruption to biological specimens. However, the broader adoption of SIM remains hampered by the complexity of instrumentation and alignment. Here, we introduce speckle-illumination super-resolution microscopy using hydrogel diffusers (hydroSIM). The study utilizes the high scattering and optical transmissive properties of hydrogel materials and realizes a remarkably simplified approach to plug-in super-resolution imaging via a common epi-fluorescence platform. We demonstrate the hydroSIM system using various phantom and biological samples, and the results exhibited effective 3D resolution doubling, optical sectioning, and high contrast. We foresee hydroSIM, a cost-effective, biocompatible, and user-accessible super-resolution methodology, to significantly advance a wide range of biomedical imaging and applications.
Collapse
Affiliation(s)
- Zijun Gao
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Keyi Han
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | - Xuanwen Hua
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | - Wenhao Liu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | - Shu Jia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
16
|
Zhu FY, Mei LJ, Tian R, Li C, Wang YL, Xiang SL, Zhu MQ, Tang BZ. Recent advances in super-resolution optical imaging based on aggregation-induced emission. Chem Soc Rev 2024; 53:3350-3383. [PMID: 38406832 DOI: 10.1039/d3cs00698k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Super-resolution imaging has rapidly emerged as an optical microscopy technique, offering advantages of high optical resolution over the past two decades; achieving improved imaging resolution requires significant efforts in developing super-resolution imaging agents characterized by high brightness, high contrast and high sensitivity to fluorescence switching. Apart from technical requirements in optical systems and algorithms, super-resolution imaging relies on fluorescent dyes with special photophysical or photochemical properties. The concept of aggregation-induced emission (AIE) was proposed in 2001, coinciding with unprecedented advancements and innovations in super-resolution imaging technology. AIE probes offer many advantages, including high brightness in the aggregated state, low background signal, a larger Stokes shift, ultra-high photostability, and excellent biocompatibility, making them highly promising for applications in super-resolution imaging. In this review, we summarize the progress in implementation methods and provide insights into the mechanism of AIE-based super-resolution imaging, including fluorescence switching resulting from photochemically-converted aggregation-induced emission, electrostatically controlled aggregation-induced emission and specific binding-regulated aggregation-induced emission. Particularly, the aggregation-induced emission principle has been proposed to achieve spontaneous fluorescence switching, expanding the selection and application scenarios of super-resolution imaging probes. By combining the aggregation-induced emission principle and specific molecular design, we offer some comprehensive insights to facilitate the applications of AIEgens (AIE-active molecules) in super-resolution imaging.
Collapse
Affiliation(s)
- Feng-Yu Zhu
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Li-Jun Mei
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Rui Tian
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Chong Li
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Ya-Long Wang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| | - Shi-Li Xiang
- Hubei Jiufengshan Laboratory, Wuhan, 430206, China
| | - Ming-Qiang Zhu
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China.
| |
Collapse
|
17
|
Baskerville V, Rapuri S, Mehlhop E, Coyne AN. SUN1 facilitates CHMP7 nuclear influx and injury cascades in sporadic amyotrophic lateral sclerosis. Brain 2024; 147:109-121. [PMID: 37639327 PMCID: PMC10766250 DOI: 10.1093/brain/awad291] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/16/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023] Open
Abstract
We have recently identified the aberrant nuclear accumulation of the ESCRT-III protein CHMP7 as an initiating event that leads to a significant injury to the nuclear pore complex (NPC) characterized by the reduction of specific nucleoporins from the neuronal NPC in sporadic amyotrophic lateral sclerosis (sALS) and C9orf72 ALS/frontotemporal dementia (FTD)-induced pluripotent stem cell-derived neurons (iPSNs), a phenomenon also observed in post-mortem patient tissues. Importantly, this NPC injury is sufficient to contribute to TDP-43 dysfunction and mislocalization, a common pathological hallmark of neurodegenerative diseases. However, the molecular mechanisms and events that give rise to increased nuclear translocation and/or retention of CHMP7 to initiate this pathophysiological cascade remain largely unknown. Here, using an iPSN model of sALS, we demonstrate that impaired NPC permeability barrier integrity and interactions with the LINC complex protein SUN1 facilitate CHMP7 nuclear localization and the subsequent 'activation' of NPC injury cascades. Collectively, our data provide mechanistic insights in the pathophysiological underpinnings of ALS/FTD and highlight SUN1 as a potent contributor to and modifier of CHMP7-mediated toxicity in sALS pathogenesis.
Collapse
Affiliation(s)
- Victoria Baskerville
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sampath Rapuri
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Emma Mehlhop
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alyssa N Coyne
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
18
|
Bell K, Oparka K, Knox K. Preparation and Imaging of Specialized ER Using Super-Resolution and TEM Techniques. Methods Mol Biol 2024; 2772:39-48. [PMID: 38411805 DOI: 10.1007/978-1-0716-3710-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The plant endoplasmic reticulum (ER) forms several specialized structures. These include the sieve element reticulum (SER) and the desmotubule formed as the ER passes through plasmodesmata. Imaging both of these structures has been inhibited by the resolution limits of light microscopy and their relatively inaccessible locations, combined with the fragile nature of the ER. Here we describe methods to view desmotubules in live cells under 3D-structured illumination microscopy (3D-SIM) and methods to fix and prepare phloem tissue for both 3D-SIM and transmission electron microscopy (TEM), which preserve the fragile structure and allow the detailed imaging of the SER.
Collapse
Affiliation(s)
- Karen Bell
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Karl Oparka
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Kirsten Knox
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
19
|
Maeshima K, Iida S, Shimazoe MA, Tamura S, Ide S. Is euchromatin really open in the cell? Trends Cell Biol 2024; 34:7-17. [PMID: 37385880 DOI: 10.1016/j.tcb.2023.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 07/01/2023]
Abstract
Genomic DNA is wrapped around a core histone octamer and forms a nucleosome. In higher eukaryotic cells, strings of nucleosomes are irregularly folded as chromatin domains that act as functional genome units. According to a typical textbook model, chromatin can be categorized into two types, euchromatin and heterochromatin, based on its degree of compaction. Euchromatin is open, while heterochromatin is closed and condensed. However, is euchromatin really open in the cell? New evidence from genomics and advanced imaging studies has revealed that euchromatin consists of condensed liquid-like domains. Condensed chromatin seems to be the default chromatin state in higher eukaryotic cells. We discuss this novel view of euchromatin in the cell and how the revealed organization is relevant to genome functions.
Collapse
Affiliation(s)
- Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan; Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan.
| | - Shiori Iida
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan; Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | - Masa A Shimazoe
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan; Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | - Sachiko Tamura
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Satoru Ide
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan; Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
20
|
Jain R, Epstein JA. Epigenetics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:341-364. [PMID: 38884720 DOI: 10.1007/978-3-031-44087-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Epigenetics is the study of heritable changes to the genome and gene expression patterns that are not caused by direct changes to the DNA sequence. Examples of these changes include posttranslational modifications to DNA-bound histone proteins, DNA methylation, and remodeling of nuclear architecture. Collectively, epigenetic changes provide a layer of regulation that affects transcriptional activity of genes while leaving DNA sequences unaltered. Sequence variants or mutations affecting enzymes responsible for modifying or sensing epigenetic marks have been identified in patients with congenital heart disease (CHD), and small-molecule inhibitors of epigenetic complexes have shown promise as therapies for adult heart diseases. Additionally, transgenic mice harboring mutations or deletions of genes encoding epigenetic enzymes recapitulate aspects of human cardiac disease. Taken together, these findings suggest that the evolving field of epigenetics will inform our understanding of congenital and adult cardiac disease and offer new therapeutic opportunities.
Collapse
Affiliation(s)
- Rajan Jain
- Departments of Medicine and Cell and Developmental Biology, Institute for Regenerative Medicine, Epigenetics Institute and the Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Jonathan A Epstein
- Departments of Medicine and Cell and Developmental Biology, Institute for Regenerative Medicine, Epigenetics Institute and the Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
21
|
Paiè P, Calisesi G, Candeo A, Comi A, Sala F, Ceccarelli F, De Luigi A, Veglianese P, Muhlberger K, Fokine M, Valentini G, Osellame R, Neil M, Bassi A, Bragheri F. Structured-light-sheet imaging in an integrated optofluidic platform. LAB ON A CHIP 2023; 24:34-46. [PMID: 37791882 DOI: 10.1039/d3lc00639e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Heterogeneity investigation at the single-cell level reveals morphological and phenotypic characteristics in cell populations. In clinical research, heterogeneity has important implications in the correct detection and interpretation of prognostic markers and in the analysis of patient-derived material. Among single-cell analysis, imaging flow cytometry allows combining information retrieved by single cell images with the throughput of fluidic platforms. Nevertheless, these techniques might fail in a comprehensive heterogeneity evaluation because of limited image resolution and bidimensional analysis. Light sheet fluorescence microscopy opened new ways to study in 3D the complexity of cellular functionality in samples ranging from single-cells to micro-tissues, with remarkably fast acquisition and low photo-toxicity. In addition, structured illumination microscopy has been applied to single-cell studies enhancing the resolution of imaging beyond the conventional diffraction limit. The combination of these techniques in a microfluidic environment, which permits automatic sample delivery and translation, would allow exhaustive investigation of cellular heterogeneity with high throughput image acquisition at high resolution. Here we propose an integrated optofluidic platform capable of performing structured light sheet imaging flow cytometry (SLS-IFC). The system encompasses a multicolor directional coupler equipped with a thermo-optic phase shifter, cylindrical lenses and a microfluidic network to generate and shift a patterned light sheet within a microchannel. The absence of moving parts allows a stable alignment and an automated fluorescence signal acquisition during the sample flow. The platform enables 3D imaging of an entire cell in about 1 s with a resolution enhancement capable of revealing sub-cellular features and sub-diffraction limit details.
Collapse
Affiliation(s)
- Petra Paiè
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy.
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy.
| | - Gianmaria Calisesi
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy.
| | - Alessia Candeo
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy.
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy.
| | - Andrea Comi
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy.
| | - Federico Sala
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy.
| | - Francesco Ceccarelli
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy.
| | - Ada De Luigi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milano, 20156, Italy
| | - Pietro Veglianese
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milano, 20156, Italy
| | - Korbinian Muhlberger
- Department of Applied Physics, KTH Royal Institute of Technology, Roslagstullsbacken 21, Stockholm, 11421, Sweden
| | - Michael Fokine
- Department of Applied Physics, KTH Royal Institute of Technology, Roslagstullsbacken 21, Stockholm, 11421, Sweden
| | - Gianluca Valentini
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy.
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy.
| | - Roberto Osellame
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy.
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy.
| | - Mark Neil
- Physics Department, Imperial College London, Prince Consort Road, London, SW7 2BB, UK
| | - Andrea Bassi
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy.
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy.
| | - Francesca Bragheri
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy.
| |
Collapse
|
22
|
Baumann C, Zhang X, Kandasamy MK, Mei X, Chen S, Tehrani KF, Mortensen LJ, Watford W, Lall A, De La Fuente R. Acute irradiation induces a senescence-like chromatin structure in mammalian oocytes. Commun Biol 2023; 6:1258. [PMID: 38086992 PMCID: PMC10716162 DOI: 10.1038/s42003-023-05641-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The mechanisms leading to changes in mesoscale chromatin organization during cellular aging are unknown. Here, we used transcriptional activator-like effectors, RNA-seq and superresolution analysis to determine the effects of genotoxic stress on oocyte chromatin structure. Major satellites are organized into tightly packed globular structures that coalesce into chromocenters and dynamically associate with the nucleolus. Acute irradiation significantly enhanced chromocenter mobility in transcriptionally inactive oocytes. In transcriptionally active oocytes, irradiation induced a striking unfolding of satellite chromatin fibers and enhanced the expression of transcripts required for protection from oxidative stress (Fermt1, Smg1), recovery from DNA damage (Tlk2, Rad54l) and regulation of heterochromatin assembly (Zfp296, Ski-oncogene). Non-irradiated, senescent oocytes exhibit not only high chromocenter mobility and satellite distension but also a high frequency of extra chromosomal satellite DNA. Notably, analysis of biological aging using an oocyte-specific RNA clock revealed cellular communication, posttranslational protein modifications, chromatin and histone dynamics as the top cellular processes that are dysregulated in both senescent and irradiated oocytes. Our results indicate that unfolding of heterochromatin fibers following acute genotoxic stress or cellular aging induced the formation of distended satellites and that abnormal chromatin structure together with increased chromocenter mobility leads to chromosome instability in senescent oocytes.
Collapse
Affiliation(s)
- Claudia Baumann
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Regenerative Biosciences Center (RBC), University of Georgia, Athens, GA, USA
| | - Xiangyu Zhang
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Regenerative Biosciences Center (RBC), University of Georgia, Athens, GA, USA
| | | | - Xiaohan Mei
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Division of Surgical Research, University of Missouri, School of Medicine, Columbia, MO, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Shiyou Chen
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Division of Surgical Research, University of Missouri, School of Medicine, Columbia, MO, USA
| | - Kayvan F Tehrani
- Regenerative Biosciences Center (RBC), University of Georgia, Athens, GA, USA
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA, USA
- University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Luke J Mortensen
- Regenerative Biosciences Center (RBC), University of Georgia, Athens, GA, USA
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA, USA
| | - Wendy Watford
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Ashley Lall
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Regenerative Biosciences Center (RBC), University of Georgia, Athens, GA, USA
| | - Rabindranath De La Fuente
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
- Regenerative Biosciences Center (RBC), University of Georgia, Athens, GA, USA.
| |
Collapse
|
23
|
Zhao B, Mertz J. Resolution enhancement with deblurring by pixel reassignment. ADVANCED PHOTONICS 2023; 5:066004. [PMID: 38884067 PMCID: PMC11178354 DOI: 10.1117/1.ap.5.6.066004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Improving the spatial resolution of a fluorescence microscope has been an ongoing challenge in the imaging community. To address this challenge, a variety of approaches have been taken, ranging from instrumentation development to image postprocessing. An example of the latter is deconvolution, where images are numerically deblurred based on a knowledge of the microscope point spread function. However, deconvolution can easily lead to noise-amplification artifacts. Deblurring by postprocessing can also lead to negativities or fail to conserve local linearity between sample and image. We describe here a simple image deblurring algorithm based on pixel reassignment that inherently avoids such artifacts and can be applied to general microscope modalities and fluorophore types. Our algorithm helps distinguish nearby fluorophores, even when these are separated by distances smaller than the conventional resolution limit, helping facilitate, for example, the application of single-molecule localization microscopy in dense samples. We demonstrate the versatility and performance of our algorithm under a variety of imaging conditions.
Collapse
Affiliation(s)
- Bingying Zhao
- Boston University, Department of Electrical and Computer Engineering, Boston, Massachusetts, United States
| | - Jerome Mertz
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| |
Collapse
|
24
|
Zhang N, Häring M, Wolf F, Großhans J, Kong D. Dynamics and functions of E-cadherin complexes in epithelial cell and tissue morphogenesis. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:585-601. [PMID: 38045551 PMCID: PMC10689684 DOI: 10.1007/s42995-023-00206-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 10/31/2023] [Indexed: 12/05/2023]
Abstract
Cell-cell adhesion is at the center of structure and dynamics of epithelial tissue. E-cadherin-catenin complexes mediate Ca2+-dependent trans-homodimerization and constitute the kernel of adherens junctions. Beyond the basic function of cell-cell adhesion, recent progress sheds light the dynamics and interwind interactions of individual E-cadherin-catenin complex with E-cadherin superclusters, contractile actomyosin and mechanics of the cortex and adhesion. The nanoscale architecture of E-cadherin complexes together with cis-interactions and interactions with cortical actomyosin adjust to junctional tension and mechano-transduction by reinforcement or weakening of specific features of the interactions. Although post-translational modifications such as phosphorylation and glycosylation have been implicated, their role for specific aspects of in E-cadherin function has remained unclear. Here, we provide an overview of the E-cadherin complex in epithelial cell and tissue morphogenesis focusing on nanoscale architectures by super-resolution approaches and post-translational modifications from recent, in particular in vivo, studies. Furthermore, we review the computational modelling in E-cadherin complexes and highlight how computational modelling has contributed to a deeper understanding of the E-cadherin complexes.
Collapse
Affiliation(s)
- Na Zhang
- Department of Biology, Philipps University, 35043 Marburg, Germany
| | - Matthias Häring
- Göttingen Campus Institute for Dynamics of Biological Networks (CIDBN), Georg August University Göttingen, 37073 Göttingen, Germany
| | - Fred Wolf
- Göttingen Campus Institute for Dynamics of Biological Networks (CIDBN), Georg August University Göttingen, 37073 Göttingen, Germany
| | - Jörg Großhans
- Department of Biology, Philipps University, 35043 Marburg, Germany
- Göttingen Campus Institute for Dynamics of Biological Networks (CIDBN), Georg August University Göttingen, 37073 Göttingen, Germany
| | - Deqing Kong
- Department of Biology, Philipps University, 35043 Marburg, Germany
- Göttingen Campus Institute for Dynamics of Biological Networks (CIDBN), Georg August University Göttingen, 37073 Göttingen, Germany
| |
Collapse
|
25
|
Yoon K, Han K, Tadesse K, Mandracchia B, Jia S. Simultaneous Multicolor Multifocal Scanning Microscopy. ACS PHOTONICS 2023; 10:3035-3041. [PMID: 37743934 PMCID: PMC10515623 DOI: 10.1021/acsphotonics.3c00205] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Indexed: 09/26/2023]
Abstract
Super-resolution fluorescence microscopy has revolutionized cell biology over the past decade, enabling the visualization of subcellular complexity with unparalleled clarity and detail. However, the rapid development of image-scanning-based super-resolution systems still restrains convenient access to commonly used instruments such as epi-fluorescence microscopes. Here, we present multifocal scanning microscopy (MSM) for super-resolution imaging with simultaneous multicolor acquisition and minimal instrumental complexity. MSM implements a stationary, interposed multifocal multicolor excitation by exploiting the motion of the specimens, realizing super-resolution microscopy through a general epi-fluorescence platform without compromising the image-scanning mechanism or inducing complex instrument alignment. The system is demonstrated with various phantom and biological specimens, and the results present effective resolution doubling, optical sectioning, and contrast enhancement. We anticipate MSM, as a highly accessible and compatible super-resolution technique, to offer a promising methodological pathway for broad cell biological discoveries.
Collapse
Affiliation(s)
- Kyungduck Yoon
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- Parker
H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- George
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Keyi Han
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Kidan Tadesse
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- Parker
H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Biagio Mandracchia
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Shu Jia
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- Parker
H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
26
|
Zhao B, Mertz J. Resolution enhancement with deblurring by pixel reassignment (DPR). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.24.550382. [PMID: 37546886 PMCID: PMC10402078 DOI: 10.1101/2023.07.24.550382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Improving the spatial resolution of a fluorescence microscope has been an ongoing challenge in the imaging community. To address this challenge, a variety of approaches have been taken, ranging from instrumentation development to image post-processing. An example of the latter is deconvolution, where images are numerically deblurred based on a knowledge of the microscope point spread function. However, deconvolution can easily lead to noise-amplification artifacts. Deblurring by post-processing can also lead to negativities or fail to conserve local linearity between sample and image. We describe here a simple image deblurring algorithm based on pixel reassignment that inherently avoids such artifacts and can be applied to general microscope modalities and fluorophore types. Our algorithm helps distinguish nearby fluorophores even when these are separated by distances smaller than the conventional resolution limit, helping facilitate, for example, the application of single-molecule localization microscopy in dense samples. We demonstrate the versatility and performance of our algorithm under a variety of imaging conditions.
Collapse
Affiliation(s)
- Bingying Zhao
- Department of Electrical and Computer Engineering, Boston University, MA 02215
| | - Jerome Mertz
- Department of Biomedical Engineering, Boston University, MA 02215
| |
Collapse
|
27
|
Paul TC, Johnson KA, Hagen GM. Super-Resolution Imaging of Neuronal Structures with Structured Illumination Microscopy. Bioengineering (Basel) 2023; 10:1081. [PMID: 37760183 PMCID: PMC10525192 DOI: 10.3390/bioengineering10091081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Super-resolution structured illumination microscopy (SR-SIM) is an optical fluorescence microscopy method which is suitable for imaging a wide variety of cells and tissues in biological and biomedical research. Typically, SIM methods use high spatial frequency illumination patterns generated by laser interference. This approach provides high resolution but is limited to thin samples such as cultured cells. Using a different strategy for processing raw data and coarser illumination patterns, we imaged through a 150-micrometer-thick coronal section of a mouse brain expressing GFP in a subset of neurons. The resolution reached 144 nm, an improvement of 1.7-fold beyond conventional widefield imaging.
Collapse
Affiliation(s)
| | | | - Guy M. Hagen
- UCCS BioFrontiers Center, University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO 80918, USA; (T.C.P.); (K.A.J.)
| |
Collapse
|
28
|
Li X, Wu Y, Su Y, Rey-Suarez I, Matthaeus C, Updegrove TB, Wei Z, Zhang L, Sasaki H, Li Y, Guo M, Giannini JP, Vishwasrao HD, Chen J, Lee SJJ, Shao L, Liu H, Ramamurthi KS, Taraska JW, Upadhyaya A, La Riviere P, Shroff H. Three-dimensional structured illumination microscopy with enhanced axial resolution. Nat Biotechnol 2023; 41:1307-1319. [PMID: 36702897 PMCID: PMC10497409 DOI: 10.1038/s41587-022-01651-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/16/2022] [Indexed: 01/27/2023]
Abstract
The axial resolution of three-dimensional structured illumination microscopy (3D SIM) is limited to ∼300 nm. Here we present two distinct, complementary methods to improve axial resolution in 3D SIM with minimal or no modification to the optical system. We show that placing a mirror directly opposite the sample enables four-beam interference with higher spatial frequency content than 3D SIM illumination, offering near-isotropic imaging with ∼120-nm lateral and 160-nm axial resolution. We also developed a deep learning method achieving ∼120-nm isotropic resolution. This method can be combined with denoising to facilitate volumetric imaging spanning dozens of timepoints. We demonstrate the potential of these advances by imaging a variety of cellular samples, delineating the nanoscale distribution of vimentin and microtubule filaments, observing the relative positions of caveolar coat proteins and lysosomal markers and visualizing cytoskeletal dynamics within T cells in the early stages of immune synapse formation.
Collapse
Affiliation(s)
- Xuesong Li
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA.
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA.
| | - Yicong Wu
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA.
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA.
| | - Yijun Su
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
- Leica Microsystems, Inc., Deerfield, IL, USA
- SVision, LLC, Bellevue, WA, USA
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Ivan Rey-Suarez
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, USA
| | - Claudia Matthaeus
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Taylor B Updegrove
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zhuang Wei
- Section on Biophotonics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Lixia Zhang
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Hideki Sasaki
- Leica Microsystems, Inc., Deerfield, IL, USA
- SVision, LLC, Bellevue, WA, USA
| | - Yue Li
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Min Guo
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - John P Giannini
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Harshad D Vishwasrao
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Jiji Chen
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Shih-Jong J Lee
- Leica Microsystems, Inc., Deerfield, IL, USA
- SVision, LLC, Bellevue, WA, USA
| | - Lin Shao
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Huafeng Liu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Kumaran S Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Justin W Taraska
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Arpita Upadhyaya
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, USA
- Department of Physics, University of Maryland, College Park, MD, USA
| | - Patrick La Riviere
- Department of Radiology, University of Chicago, Chicago, IL, USA
- MBL Fellows, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Hari Shroff
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
- MBL Fellows, Marine Biological Laboratory, Woods Hole, MA, USA
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| |
Collapse
|
29
|
Ortkrass H, Schürstedt J, Wiebusch G, Szafranska K, McCourt P, Huser T. High-speed TIRF and 2D super-resolution structured illumination microscopy with a large field of view based on fiber optic components. OPTICS EXPRESS 2023; 31:29156-29165. [PMID: 37710721 DOI: 10.1364/oe.495353] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/07/2023] [Indexed: 09/16/2023]
Abstract
Super-resolved structured illumination microscopy (SR-SIM) is among the most flexible, fast, and least perturbing fluorescence microscopy techniques capable of surpassing the optical diffraction limit. Current custom-built instruments are easily able to deliver two-fold resolution enhancement at video-rate frame rates, but the cost of the instruments is still relatively high, and the physical size of the instruments based on the implementation of their optics is still rather large. Here, we present our latest results towards realizing a new generation of compact, cost-efficient, and high-speed SR-SIM instruments. Tight integration of the fiber-based structured illumination microscope capable of multi-color 2D- and TIRF-SIM imaging, allows us to demonstrate SR-SIM with a field of view of up to 150 × 150 µm2 and imaging rates of up to 44 Hz while maintaining highest spatiotemporal resolution of less than 100 nm. We discuss the overall integration of optics, electronics, and software that allowed us to achieve this, and then present the fiberSIM imaging capabilities by visualizing the intracellular structure of rat liver sinusoidal endothelial cells, in particular by resolving the structure of their trans-cellular nanopores called fenestrations.
Collapse
|
30
|
Li W, He P, Lei D, Fan Y, Du Y, Gao B, Chu Z, Li L, Liu K, An C, Yuan W, Yu Y. Super-resolution multicolor fluorescence microscopy enabled by an apochromatic super-oscillatory lens with extended depth-of-focus. Nat Commun 2023; 14:5107. [PMID: 37607942 PMCID: PMC10444772 DOI: 10.1038/s41467-023-40725-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 08/07/2023] [Indexed: 08/24/2023] Open
Abstract
Planar super-oscillatory lens (SOL), a far-field subwavelength-focusing diffractive device, holds great potential for achieving sub-diffraction-limit imaging at multiple wavelengths. However, conventional SOL devices suffer from a numerical-aperture-related intrinsic tradeoff among the depth of focus (DoF), chromatic dispersion and focusing spot size. Here, we apply a multi-objective genetic algorithm (GA) optimization approach to design an apochromatic binary-phase SOL having a prolonged DoF, customized working distance (WD), minimized main-lobe size, and suppressed side-lobe intensity. Experimental implementation demonstrates simultaneous focusing of blue, green and red light beams into an optical needle of ~0.5λ in diameter and DOF > 10λ at WD = 428 μm. By integrating this SOL device with a commercial fluorescence microscope, we perform, for the first time, three-dimensional super-resolution multicolor fluorescence imaging of the "unseen" fine structures of neurons. The present study provides not only a practical route to far-field multicolor super-resolution imaging but also a viable approach for constructing imaging systems avoiding complex sample positioning and unfavorable photobleaching.
Collapse
Affiliation(s)
- Wenli Li
- Ningbo Institute of Northwestern Polytechnical University, College of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
- Key Laboratory of Micro/Nano Systems for Aerospace (Ministry of Education), Northwestern Polytechnical University, Xi'an, 710072, China
- Shaanxi Province Key Laboratory of Micro and Nano Electro-Mechanical Systems, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Pei He
- Ningbo Institute of Northwestern Polytechnical University, College of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
- Key Laboratory of Micro/Nano Systems for Aerospace (Ministry of Education), Northwestern Polytechnical University, Xi'an, 710072, China
- Shaanxi Province Key Laboratory of Micro and Nano Electro-Mechanical Systems, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Dangyuan Lei
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China.
| | - Yulong Fan
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Yangtao Du
- The Institute of AI and Robotics, Fudan University, Shanghai, 200433, China
| | - Bo Gao
- Key Laboratory of Spectral Imaging Technology of Chinese Academy of Sciences, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering, Joint Appointment with School of Biomedical Sciences, The University of Hong Kong, Hong Kong, 999077, China
| | - Longqiu Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Kaipeng Liu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Chengxu An
- Ningbo Institute of Northwestern Polytechnical University, College of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
- Key Laboratory of Micro/Nano Systems for Aerospace (Ministry of Education), Northwestern Polytechnical University, Xi'an, 710072, China
- Shaanxi Province Key Laboratory of Micro and Nano Electro-Mechanical Systems, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Weizheng Yuan
- Ningbo Institute of Northwestern Polytechnical University, College of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
- Key Laboratory of Micro/Nano Systems for Aerospace (Ministry of Education), Northwestern Polytechnical University, Xi'an, 710072, China
- Shaanxi Province Key Laboratory of Micro and Nano Electro-Mechanical Systems, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yiting Yu
- Ningbo Institute of Northwestern Polytechnical University, College of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China.
- Key Laboratory of Micro/Nano Systems for Aerospace (Ministry of Education), Northwestern Polytechnical University, Xi'an, 710072, China.
- Shaanxi Province Key Laboratory of Micro and Nano Electro-Mechanical Systems, Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
31
|
Senapati S, Irshad IU, Sharma AK, Kumar H. Fundamental insights into the correlation between chromosome configuration and transcription. Phys Biol 2023; 20:051002. [PMID: 37467757 DOI: 10.1088/1478-3975/ace8e5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/19/2023] [Indexed: 07/21/2023]
Abstract
Eukaryotic chromosomes exhibit a hierarchical organization that spans a spectrum of length scales, ranging from sub-regions known as loops, which typically comprise hundreds of base pairs, to much larger chromosome territories that can encompass a few mega base pairs. Chromosome conformation capture experiments that involve high-throughput sequencing methods combined with microscopy techniques have enabled a new understanding of inter- and intra-chromosomal interactions with unprecedented details. This information also provides mechanistic insights on the relationship between genome architecture and gene expression. In this article, we review the recent findings on three-dimensional interactions among chromosomes at the compartment, topologically associating domain, and loop levels and the impact of these interactions on the transcription process. We also discuss current understanding of various biophysical processes involved in multi-layer structural organization of chromosomes. Then, we discuss the relationships between gene expression and genome structure from perturbative genome-wide association studies. Furthermore, for a better understanding of how chromosome architecture and function are linked, we emphasize the role of epigenetic modifications in the regulation of gene expression. Such an understanding of the relationship between genome architecture and gene expression can provide a new perspective on the range of potential future discoveries and therapeutic research.
Collapse
Affiliation(s)
- Swayamshree Senapati
- School of Basic Sciences, Indian Institute of Technology, Bhubaneswar, Argul, Odisha 752050, India
| | - Inayat Ullah Irshad
- Department of Physics, Indian Institute of Technology, Jammu, Jammu 181221, India
| | - Ajeet K Sharma
- Department of Physics, Indian Institute of Technology, Jammu, Jammu 181221, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Jammu, Jammu 181221, India
| | - Hemant Kumar
- School of Basic Sciences, Indian Institute of Technology, Bhubaneswar, Argul, Odisha 752050, India
| |
Collapse
|
32
|
Paul TC, Johnson KA, Hagen GM. Super-resolution imaging of neuronal structure with structured illumination microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542523. [PMID: 37292949 PMCID: PMC10245995 DOI: 10.1101/2023.05.26.542523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Super-resolution structured illumination microscopy (SR-SIM) is a method in optical fluorescence microscopy which is suitable for imaging a wide variety of cells and tissues in biological and biomedical research. Typically, SIM methods use high spatial frequency illumination patterns generated by laser interference. This approach provides high resolution but is limited to thin samples such as cultured cells. Using a different strategy for processing the raw data and coarser illumination patterns, we imaged through a 150 µm thick coronal section of a mouse brain expressing GFP in a subset of neurons. The resolution reached 144 nm, an improvement of 1.7 fold beyond conventional widefield imaging.
Collapse
Affiliation(s)
- Tristan C. Paul
- UCCS BioFrontiers Center, University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, Colorado, 80918
| | - Karl A. Johnson
- UCCS BioFrontiers Center, University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, Colorado, 80918
| | - Guy M. Hagen
- UCCS BioFrontiers Center, University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, Colorado, 80918
| |
Collapse
|
33
|
Wang X, Clavier G, Zhang Y, Batra K, Xiao N, Maurin G, Ding B, Tissot A, Serre C. A MOF/DNA luminescent sensing platform for detection of potential COVID-19 biomarkers and drugs. Chem Sci 2023; 14:5386-5395. [PMID: 37234896 PMCID: PMC10207894 DOI: 10.1039/d3sc00106g] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/02/2023] [Indexed: 05/28/2023] Open
Abstract
COVID-19 has afflicted people's lives worldwide. Interleukin-6 (IL-6) is an important COVID-19 biomarker in human body fluids that can be used as a reference to monitor COVID-19 in real-time and therefore to reduce the risk of virus transmission. On the other hand, oseltamivir is a potential COVID-19 curing drug, but its overuse easily leads to hazardous side effects, calling for its real time monitoring in body fluids. For these purposes, a new yttrium metal-organic framework (Y-MOF) has been synthesized, in which the 5-(4-(imidazole-1-yl)phenyl)isophthalic linker contains a large aromatic backbone capable of strongly interacting with DNA sequences through π-π stacking interactions, which makes it appealing to build a unique sensor based on DNA functionalized MOFs. The MOF/DNA sequence hybrid luminescent sensing platform presents excellent optical properties associated with a high Förster resonance energy transfer (FRET) efficiency. Furthermore, to construct a dual emission sensing platform, a 5'-carboxylfluorescein (FAM) labeled DNA sequence (S2) with a stem-loop structure that can specifically interact with IL-6 has been associated with the Y-MOF. The resulting Y-MOF@S2 exhibits an efficient ratiometric detection of IL-6 in human body fluids with an extremely high Ksv value 4.3 × 108 M-1 and a low detection limit (LOD) of 70 pM. Finally, the Y-MOF@S2@IL-6 hybrid platform allows the detection of oseltamivir with high sensitivity (Ksv value is as high as 5.6 × 105 M-1 and LOD is 54 nM), due to the fact that oseltamivir can disconnect the loop stem structure constructed by S2, leading to a strong quenching effect towards Y-MOF@S2@IL-6. The nature of the interactions between oseltamivir and Y-MOF has been elucidated using density functional theory calculations while the sensing mechanism for the dual detection of IL-6 and oseltamivir has been deciphered based on luminescence lifetime tests and confocal laser scanning microscopy.
Collapse
Affiliation(s)
- Xinrui Wang
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University 75005 Paris France
| | - Gilles Clavier
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM 91190 Gif-sur-Yvette France
| | - Yan Zhang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Kamal Batra
- ICGM, Univ. Montpellier, CNRS, ENSCM Montpellier 34095 France
| | - Nanan Xiao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | | | - Bin Ding
- Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University 393 Binshui West Road Tianjin 300387 P. R. China
| | - Antoine Tissot
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University 75005 Paris France
| | - Christian Serre
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University 75005 Paris France
| |
Collapse
|
34
|
Luo H, Wang X, Wen Y, Li S, Zhang T, Jiang C, Wang F, Liu L, Yu H. Self-Sensing Scanning Superlens for Three-Dimensional Noninvasive Visible-Light Nanoscale Imaging on Complex Surfaces. NANO LETTERS 2023; 23:4311-4317. [PMID: 37155371 DOI: 10.1021/acs.nanolett.3c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Microsphere-assisted super-resolution imaging technology offers label-free, real-time dynamic imaging via white light, which has potential applications in living systems and the nanoscale detection of semiconductor chips. Scanning can aid in overcoming the limitations of the imaging area of a single microsphere superlens. However, the current scanning imaging method based on the microsphere superlens cannot achieve super-resolution optical imaging of complex curved surfaces. Unfortunately, most natural surfaces are composed of complex curved surfaces at the microscale. In this study, we developed a method to overcome this limitation through a microsphere superlens with a feedback capability. By maintaining a constant force between the microspheres and the sample, noninvasive super-resolution optical imaging of complex abiotic and biological surfaces was achieved, and the three-dimensional information on the sample was simultaneously obtained. The proposed method significantly expands the universality of scanning microsphere superlenses for samples and promotes their widespread use.
Collapse
Affiliation(s)
- Hao Luo
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoduo Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
| | - Yangdong Wen
- Institute of Urban Rail Transportation, Southwest Jiaotong University, Chengdu 610000, China
| | - Shendi Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Shenyang Ligong University, Shenyang 110159, China
| | - Tianyao Zhang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaodi Jiang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Shenyang Jianzhu University, Shenyang 110168, China
| | - Feifei Wang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong 999077, Hong Kong
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
| | - Haibo Yu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
35
|
Tayal S, Tiwari S, Mehta DS. Label-free high-resolution white light quantitative phase nanoscopy system. JOURNAL OF BIOPHOTONICS 2023; 16:e202200298. [PMID: 36602467 DOI: 10.1002/jbio.202200298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/17/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
We present a high-resolution white light quantitative phase nanoscopy (WLQPN) system that can be utilized to visualize nanoparticles and subcellular features of the biological specimens. The five-phase shifting technique, along with deconvolution, is adopted to obtain super-resolution in phase imaging. The phase shifting technique can provide full detector resolution, making it beneficial as compared to the well-known Fourier analysis method. The Fourier transform method requires minimum angle of sin - 1 3 f x λ , where f x is maximum achievable spatial frequency. It limits the highest achievable resolution to much below the actual diffraction limit of the system. Thus, to obtain a high-resolution phase map of the biological specimen, a two-step process is adopted. First, the phase map is recovered using the five-phase shifting algorithm, with full detector spatial resolution. Second, the complex field is obtained from the recovered phase map and further processed using the Richardson Lucy total variation deconvolution algorithm to obtain super-resolution phase images. The present technique was tested on 1951 USAF resolution chart, 200 nm polystyrene beads and Escherichia coli bacteria using a 50×, 0.55NA objective lens. The 200 nm polystyrene beads are visually resolvable and subcellular features of the E. coli bacteria are also observed, suggesting a significant improvement in the resolution.
Collapse
Affiliation(s)
- Shilpa Tayal
- Bio-photonics and Green Photonics Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi, India
| | - Shubham Tiwari
- Bio-photonics and Green Photonics Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi, India
| | - Dalip Singh Mehta
- Bio-photonics and Green Photonics Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
36
|
Sun N, Jia Y, Bai S, Li Q, Dai L, Li J. The power of super-resolution microscopy in modern biomedical science. Adv Colloid Interface Sci 2023; 314:102880. [PMID: 36965225 DOI: 10.1016/j.cis.2023.102880] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Super-resolution microscopy (SRM) technology that breaks the diffraction limit has revolutionized the field of cell biology since its appearance, which enables researchers to visualize cellular structures with nanometric resolution, multiple colors and single-molecule sensitivity. With the flourishing development of hardware and the availability of novel fluorescent probes, the impact of SRM has already gone beyond cell biology and extended to nanomedicine, material science and nanotechnology, and remarkably boosted important breakthroughs in these fields. In this review, we will mainly highlight the power of SRM in modern biomedical science, discussing how these SRM techniques revolutionize the way we understand cell structures, biomaterials assembly and how assembled biomaterials interact with cellular organelles, and finally their promotion to the clinical pre-diagnosis. Moreover, we also provide an outlook on the current technical challenges and future improvement direction of SRM. We hope this review can provide useful information, inspire new ideas and propel the development both from the perspective of SRM techniques and from the perspective of SRM's applications.
Collapse
Affiliation(s)
- Nan Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Shiwei Bai
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049
| | - Qi Li
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences, Beijing 100190, China
| | - Luru Dai
- Wenzhou Institute and Wenzhou Key Laboratory of Biophysics, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049.
| |
Collapse
|
37
|
Gong J, Jin Z, Chen H, He J, Zhang Y, Yang X. Super-resolution fluorescence microscopic imaging in pathogenesis and drug treatment of neurological disease. Adv Drug Deliv Rev 2023; 196:114791. [PMID: 37004939 DOI: 10.1016/j.addr.2023.114791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/16/2023] [Accepted: 03/19/2023] [Indexed: 04/03/2023]
Abstract
Since super-resolution fluorescence microscopic technology breaks the diffraction limit that has existed for a long time in optical imaging, it can observe the process of synapses formed between nerve cells and the protein aggregation related to neurological disease. Thus, super-resolution fluorescence microscopic imaging has significantly impacted several industries, including drug development and pathogenesis research, and it is anticipated that it will significantly alter the future of life science research. Here, we focus on several typical super-resolution fluorescence microscopic technologies, introducing their benefits and drawbacks, as well as applications in several common neurological diseases, in the hope that their services will be expanded and improved in the pathogenesis and drug treatment of neurological diseases.
Collapse
|
38
|
Galiani S, Eggeling C, Reglinski K. Super-resolution microscopy and studies of peroxisomes. Biol Chem 2023; 404:87-106. [PMID: 36698322 DOI: 10.1515/hsz-2022-0314] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/06/2023] [Indexed: 01/27/2023]
Abstract
Fluorescence microscopy is an important tool for studying cellular structures such as organelles. Unfortunately, many details in the corresponding images are hidden due to the resolution limit of conventional lens-based far-field microscopy. An example is the study of peroxisomes, where important processes such as molecular organization during protein important can simply not be studied with conventional far-field microscopy methods. A remedy is super-resolution fluorescence microscopy, which is nowadays a well-established technique for the investigation of inner-cellular structures but has so far to a lesser extent been applied to the study of peroxisomes. To help advancing the latter, we here give an overview over the different super-resolution microscopy approaches and their potentials and challenges in cell-biological research, including labelling issues and a focus on studies on peroxisomes. Here, we also highlight experiments beyond simple imaging such as observations of diffusion dynamics of peroxisomal proteins.
Collapse
Affiliation(s)
- Silvia Galiani
- Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, UK
| | - Christian Eggeling
- Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, UK.,Leibniz Institute of Photonic Technology e.V., Albert-Einstein Strasse 9, D-07745 Jena, Germany, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena, Germany.,Institute of Applied Optics and Biophysics, Friedrich Schiller University Jena, Max-Wien-Platz 1, D-07743 Jena, Germany.,Jena Center for Soft Matter, Philosophenweg 7, D-07743 Jena, Germany
| | - Katharina Reglinski
- Leibniz Institute of Photonic Technology e.V., Albert-Einstein Strasse 9, D-07745 Jena, Germany, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena, Germany.,Institute of Applied Optics and Biophysics, Friedrich Schiller University Jena, Max-Wien-Platz 1, D-07743 Jena, Germany.,University Clinics Jena, Bachstraße 18, D-07743 Jena, Germany
| |
Collapse
|
39
|
Light Microscopy Technologies and the Plant Cytoskeleton. Methods Mol Biol 2023; 2604:337-352. [PMID: 36773248 DOI: 10.1007/978-1-0716-2867-6_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The cytoskeleton is a dynamic and diverse subcellular filament network, and as such microscopy is an essential technology to enable researchers to study and characterize these systems. Microscopy has a long history of observing the plant world not least as the subject where Robert Hooke coined the term "cell" in his publication Micrographia. From early observations of plant morphology to today's advanced super-resolution technologies, light microscopy is the indispensable tool for the plant cell biologist. In this mini review, we will discuss some of the major modalities used to examine the plant cytoskeleton and the theory behind them.
Collapse
|
40
|
Boukhatem H, Durel B, Raimbault M, Laurent A, Olivier N. Evaluation of Slowfade Diamond as a buffer for STORM microscopy. BIOMEDICAL OPTICS EXPRESS 2023; 14:550-558. [PMID: 36874488 PMCID: PMC9979685 DOI: 10.1364/boe.473463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
We study the potential of the commercial mounting medium Slowfade diamond as a buffer for STORM microscopy. We show that although it does not work with the popular far-red dyes typically used for STORM imaging, such as Alexa Fluor 647, it performs really well with a wide variety of green-excited dyes such as Alexa Fluor 532, Alexa Fluor 555 or CF 568. Moreover, imaging can be performed several months after the samples are mounted in this environment and kept in the fridge, providing a convenient way to preserve samples for STORM imaging, as well as to keep calibration samples, for example for metrology or teaching in particular in imaging facilities.
Collapse
Affiliation(s)
- Hadjer Boukhatem
- Laboratory for Optics and Biosciences (LOB), CNRS, INSERM, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Beatrice Durel
- Cell Imaging Platform, Structure Fédérative de Recherche Necker, INSERM US24, CNRS UMS3633, Paris, F-75015, France
| | - Manon Raimbault
- Cell Imaging Platform, Structure Fédérative de Recherche Necker, INSERM US24, CNRS UMS3633, Paris, F-75015, France
| | - Audrey Laurent
- Université de Paris, Institut-Necker-Enfants-Malades, Inserm, CNRS, Paris, France
- École Doctorale BioSPC 562, Université de Paris, Paris, France
| | - Nicolas Olivier
- Laboratory for Optics and Biosciences (LOB), CNRS, INSERM, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| |
Collapse
|
41
|
Samanta K, Ahmad A, Tinguely JC, Ahluwalia BS, Joseph J. Transmission structured illumination microscopy with tunable frequency illumination using tilt mirror assembly. Sci Rep 2023; 13:1453. [PMID: 36702876 PMCID: PMC9879979 DOI: 10.1038/s41598-023-27814-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
We present experimental demonstration of tilt-mirror assisted transmission structured illumination microscopy (tSIM) that offers a large field of view super resolution imaging. An assembly of custom-designed tilt-mirrors are employed as the illumination module where the sample is excited with the interference of two beams reflected from the opposite pair of mirror facets. Tunable frequency structured patterns are generated by changing the mirror-tilt angle and the hexagonal-symmetric arrangement is considered for the isotropic resolution in three orientations. Utilizing high numerical aperture (NA) objective in standard SIM provides super-resolution compromising with the field-of-view (FOV). Employing low NA (20X/0.4) objective lens detection, we experimentally demonstrate [Formula: see text] (0.56 mm[Formula: see text]0.35 mm) size single FOV image with [Formula: see text]1.7- and [Formula: see text]2.4-fold resolution improvement (exploiting various illumination by tuning tilt-mirrors) over the diffraction limit. The results are verified both for the fluorescent beads as well as biological samples. The tSIM geometry decouples the illumination and the collection light paths consequently enabling free change of the imaging objective lens without influencing the spatial frequency of the illumination pattern that are defined by the tilt-mirrors. The large and scalable FOV supported by tSIM will find usage for applications where scanning large areas are necessary as in pathology and applications where images must be correlated both in space and time.
Collapse
Affiliation(s)
- Krishnendu Samanta
- grid.417967.a0000 0004 0558 8755Department of Physics, Indian Institute of Technology Delhi, New Delhi, 110016 India ,grid.10919.300000000122595234Department of Physics and Technology, UiT-The Arctic University of Norway, 9037 Tromsö, Norway
| | - Azeem Ahmad
- grid.10919.300000000122595234Department of Physics and Technology, UiT-The Arctic University of Norway, 9037 Tromsö, Norway
| | - Jean-Claude Tinguely
- grid.10919.300000000122595234Department of Physics and Technology, UiT-The Arctic University of Norway, 9037 Tromsö, Norway
| | - Balpreet Singh Ahluwalia
- grid.10919.300000000122595234Department of Physics and Technology, UiT-The Arctic University of Norway, 9037 Tromsö, Norway
| | - Joby Joseph
- grid.417967.a0000 0004 0558 8755Department of Physics, Indian Institute of Technology Delhi, New Delhi, 110016 India ,grid.417967.a0000 0004 0558 8755Optics and Photonics Centre, Indian Institute of Technology Delhi, New Delhi, 110016 India
| |
Collapse
|
42
|
He Y, Yao Y, He Y, Huang Z, Luo F, Zhang C, Qi D, Jia T, Wang Z, Sun Z, Yuan X, Zhang S. Surpassing the resolution limitation of structured illumination microscopy by an untrained neural network. BIOMEDICAL OPTICS EXPRESS 2023; 14:106-117. [PMID: 36698670 PMCID: PMC9842007 DOI: 10.1364/boe.479621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Structured illumination microscopy (SIM), as a flexible tool, has been widely applied to observing subcellular dynamics in live cells. It is noted, however, that SIM still encounters a problem with theoretical resolution limitation being only twice over wide-field microscopy, where imaging of finer biological structures and dynamics are significantly constrained. To surpass the resolution limitation of SIM, we developed an image postprocessing method to further improve the lateral resolution of SIM by an untrained neural network, i.e., deep resolution-enhanced SIM (DRE-SIM). DRE-SIM can further extend the spatial frequency components of SIM by employing the implicit priors based on the neural network without training datasets. The further super-resolution capability of DRE-SIM is verified by theoretical simulations as well as experimental measurements. Our experimental results show that DRE-SIM can achieve the resolution enhancement by a factor of about 1.4 compared with conventional SIM. Given the advantages of improving the lateral resolution while keeping the imaging speed, DRE-SIM will have a wide range of applications in biomedical imaging, especially when high-speed imaging mechanisms are integrated into the conventional SIM system.
Collapse
Affiliation(s)
- Yu He
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
- Contributed equally
| | - Yunhua Yao
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
- Contributed equally
| | - Yilin He
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Zhengqi Huang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Fan Luo
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Chonglei Zhang
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Dalong Qi
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Tianqing Jia
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Zhiyong Wang
- School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zhenrong Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Xiaocong Yuan
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Shian Zhang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
| |
Collapse
|
43
|
Golmohammadzadeh M, Sexton DL, Parmar S, Tocheva EI. Advanced imaging techniques: Microscopy. ADVANCES IN APPLIED MICROBIOLOGY 2023; 122:1-25. [PMID: 37085191 DOI: 10.1016/bs.aambs.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
For decades, bacteria were thought of as "bags" of enzymes, lacking organelles and significant subcellular structures. This stood in sharp contrast with eukaryotes, where intracellular compartmentalization and the role of large-scale order had been known for a long time. However, the emerging field of Bacterial Cell Biology has established that bacteria are in fact highly organized, with most macromolecular components having specific subcellular locations that can change depending on the cell's physiological state (Barry & Gitai, 2011; Lenz & Søgaard-Andersen, 2011; Thanbichler & Shapiro, 2008). For example, we now know that many processes in bacteria are orchestrated by cytoskeletal proteins, which polymerize into surprisingly diverse superstructures, such as rings, sheets, and tread-milling rods (Pilhofer & Jensen, 2013). These superstructures connect individual proteins, macromolecular assemblies, and even two neighboring cells, to affect essential higher-order processes including cell division, DNA segregation, and motility. Understanding these processes requires resolving the in vivo dynamics and ultrastructure at different functional stages of the cell, at macromolecular resolution and in 3-dimensions (3D). Fluorescence light microscopy (fLM) of tagged proteins is highly valuable for investigating protein localization and dynamics, and the resolution power of transmission electron microscopy (TEM) is required to elucidate the structure of macromolecular complexes in vivo and in vitro. This chapter summarizes the most recent advances in LM and TEM approaches that have revolutionized our knowledge and understanding of the microbial world.
Collapse
Affiliation(s)
- Mona Golmohammadzadeh
- Department of Microbiology and Immunology, Life Sciences Institute, Health Sciences Mall, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Danielle L Sexton
- Department of Microbiology and Immunology, Life Sciences Institute, Health Sciences Mall, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Shweta Parmar
- Department of Microbiology and Immunology, Life Sciences Institute, Health Sciences Mall, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Elitza I Tocheva
- Department of Microbiology and Immunology, Life Sciences Institute, Health Sciences Mall, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
44
|
Shah R, Gallardo CM, Jung YH, Clock B, Dixon JR, McFadden WM, Majumder K, Pintel DJ, Corces VG, Torbett BE, Tedbury PR, Sarafianos SG. Activation of HIV-1 proviruses increases downstream chromatin accessibility. iScience 2022; 25:105490. [PMID: 36505924 PMCID: PMC9732416 DOI: 10.1016/j.isci.2022.105490] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/15/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
It is unclear how the activation of HIV-1 transcription affects chromatin structure. We interrogated chromatin organization both genome-wide and nearby HIV-1 integration sites using Hi-C and ATAC-seq. In conjunction, we analyzed the transcription of the HIV-1 genome and neighboring genes. We found that long-range chromatin contacts did not differ significantly between uninfected cells and those harboring an integrated HIV-1 genome, whether the HIV-1 genome was actively transcribed or inactive. Instead, the activation of HIV-1 transcription changes chromatin accessibility immediately downstream of the provirus, demonstrating that HIV-1 can alter local cellular chromatin structure. Finally, we examined HIV-1 and neighboring host gene transcripts with long-read sequencing and found populations of chimeric RNAs both virus-to-host and host-to-virus. Thus, multiomics profiling revealed that the activation of HIV-1 transcription led to local changes in chromatin organization and altered the expression of neighboring host genes.
Collapse
Affiliation(s)
- Raven Shah
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30329, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30329, USA
| | - Christian M. Gallardo
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Yoonhee H. Jung
- Department of Biology, Emory University, Atlanta, GA 30329, USA
| | - Ben Clock
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jesse R. Dixon
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - William M. McFadden
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30329, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30329, USA
| | - Kinjal Majumder
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - David J. Pintel
- Department of Molecular Microbiology and Immunology, Christopher S. Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | | | - Bruce E. Torbett
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98101, USA
| | - Philip R. Tedbury
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30329, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30329, USA
| | - Stefan G. Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30329, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30329, USA
| |
Collapse
|
45
|
Porciello N, Cipria D, Masi G, Lanz AL, Milanetti E, Grottesi A, Howie D, Cobbold SP, Schermelleh L, He HT, D'Abramo M, Destainville N, Acuto O, Nika K. Role of the membrane anchor in the regulation of Lck activity. J Biol Chem 2022; 298:102663. [PMID: 36372231 PMCID: PMC9763865 DOI: 10.1016/j.jbc.2022.102663] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022] Open
Abstract
Theoretical work suggests that collective spatiotemporal behavior of integral membrane proteins should be modulated by boundary lipids sheathing their membrane anchors. Here, we show evidence for this prediction while investigating the mechanism for maintaining a steady amount of the active form of integral membrane protein Lck kinase (LckA) by Lck trans-autophosphorylation regulated by the phosphatase CD45. We used super-resolution microscopy, flow cytometry, and pharmacological and genetic perturbation to gain insight into the spatiotemporal context of this process. We found that LckA is generated exclusively at the plasma membrane, where CD45 maintains it in a ceaseless dynamic equilibrium with its unphosphorylated precursor. Steady LckA shows linear dependence, after an initial threshold, over a considerable range of Lck expression levels. This behavior fits a phenomenological model of trans-autophosphorylation that becomes more efficient with increasing LckA. We then challenged steady LckA formation by genetically swapping the Lck membrane anchor with structurally divergent ones, such as that of Src or the transmembrane domains of LAT, CD4, palmitoylation-defective CD4 and CD45 that were expected to drastically modify Lck boundary lipids. We observed small but significant changes in LckA generation, except for the CD45 transmembrane domain that drastically reduced LckA due to its excessive lateral proximity to CD45. Comprehensively, LckA formation and maintenance can be best explained by lipid bilayer critical density fluctuations rather than liquid-ordered phase-separated nanodomains, as previously thought, with "like/unlike" boundary lipids driving dynamical proximity and remoteness of Lck with itself and with CD45.
Collapse
Affiliation(s)
- Nicla Porciello
- T Cell Signalling Laboratory, Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
| | - Deborah Cipria
- T Cell Signalling Laboratory, Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
| | - Giulia Masi
- T Cell Signalling Laboratory, Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
| | - Anna-Lisa Lanz
- T Cell Signalling Laboratory, Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
| | - Edoardo Milanetti
- Department of Physics, University of Rome "La Sapienza", Rome, Italy
| | | | - Duncan Howie
- Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
| | - Steve P Cobbold
- Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
| | - Lothar Schermelleh
- Micron Advanced Bioimaging Unit, Department of Biochemistry, Oxford University, Oxford, United Kingdom
| | - Hai-Tao He
- Aix Marseille Université, CNRS, INSERM, CINL, Marseille, France
| | - Marco D'Abramo
- Department of Chemistry, University of Rome "La Sapienza", Rome, Italy
| | - Nicolas Destainville
- Laboratoire de Physique Théorique, Université Paul Sabatier, CNRS, UPS, Toulouse, France.
| | - Oreste Acuto
- T Cell Signalling Laboratory, Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom.
| | - Konstantina Nika
- T Cell Signalling Laboratory, Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom; Department of Biochemistry, School of Medicine, University of Patras, Patras, Greece.
| |
Collapse
|
46
|
Ringel AR, Szabo Q, Chiariello AM, Chudzik K, Schöpflin R, Rothe P, Mattei AL, Zehnder T, Harnett D, Laupert V, Bianco S, Hetzel S, Glaser J, Phan MHQ, Schindler M, Ibrahim DM, Paliou C, Esposito A, Prada-Medina CA, Haas SA, Giere P, Vingron M, Wittler L, Meissner A, Nicodemi M, Cavalli G, Bantignies F, Mundlos S, Robson MI. Repression and 3D-restructuring resolves regulatory conflicts in evolutionarily rearranged genomes. Cell 2022; 185:3689-3704.e21. [PMID: 36179666 PMCID: PMC9567273 DOI: 10.1016/j.cell.2022.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 06/03/2022] [Accepted: 08/30/2022] [Indexed: 01/26/2023]
Abstract
Regulatory landscapes drive complex developmental gene expression, but it remains unclear how their integrity is maintained when incorporating novel genes and functions during evolution. Here, we investigated how a placental mammal-specific gene, Zfp42, emerged in an ancient vertebrate topologically associated domain (TAD) without adopting or disrupting the conserved expression of its gene, Fat1. In ESCs, physical TAD partitioning separates Zfp42 and Fat1 with distinct local enhancers that drive their independent expression. This separation is driven by chromatin activity and not CTCF/cohesin. In contrast, in embryonic limbs, inactive Zfp42 shares Fat1's intact TAD without responding to active Fat1 enhancers. However, neither Fat1 enhancer-incompatibility nor nuclear envelope-attachment account for Zfp42's unresponsiveness. Rather, Zfp42's promoter is rendered inert to enhancers by context-dependent DNA methylation. Thus, diverse mechanisms enabled the integration of independent Zfp42 regulation in the Fat1 locus. Critically, such regulatory complexity appears common in evolution as, genome wide, most TADs contain multiple independently expressed genes.
Collapse
Affiliation(s)
- Alessa R Ringel
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Quentin Szabo
- Institute of Human Genetics, University of Montpellier, CNRS, Montpellier, France
| | - Andrea M Chiariello
- Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Konrad Chudzik
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Robert Schöpflin
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Patricia Rothe
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alexandra L Mattei
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Tobias Zehnder
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Dermot Harnett
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Verena Laupert
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Simona Bianco
- Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Sara Hetzel
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Juliane Glaser
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Mai H Q Phan
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Charité-Universitätsmedizin Berlin, BCRT-Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Magdalena Schindler
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel M Ibrahim
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany; Charité-Universitätsmedizin Berlin, BCRT-Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Christina Paliou
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Seville, Spain
| | - Andrea Esposito
- Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Cesar A Prada-Medina
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Stefan A Haas
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Peter Giere
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Martin Vingron
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Lars Wittler
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alexander Meissner
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mario Nicodemi
- Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy; Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Giacomo Cavalli
- Institute of Human Genetics, University of Montpellier, CNRS, Montpellier, France
| | - Frédéric Bantignies
- Institute of Human Genetics, University of Montpellier, CNRS, Montpellier, France
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany; Charité-Universitätsmedizin Berlin, BCRT-Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany.
| | - Michael I Robson
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany; Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
47
|
Liu W, Rask-Andersen H. GJB2 and GJB6 gene transcripts in the human cochlea: A study using RNAscope, confocal, and super-resolution structured illumination microscopy. Front Mol Neurosci 2022; 15:973646. [PMID: 36204137 PMCID: PMC9530750 DOI: 10.3389/fnmol.2022.973646] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022] Open
Abstract
Background Gap junction (GJ) proteins, connexin26 and 30, are highly prevalent in the human cochlea (HC), where they are involved in transcellular signaling, metabolic supply, and fluid homeostasis. Their genes, GJB2 and GJB6, are both located at the DFNB1 locus on chromosome 13q12. Mutations in GJB2 may cause mild to profound non-syndromic deafness. Here, we analyzed for the first time the various expressions of GJB2 and GJB6 gene transcripts in the different cell networks in the HC using the RNAscope technique. Materials and methods Archival paraformaldehyde-fixed sections of surgically obtained HC were used to label single mRNA oligonucleotides using the sensitive multiplex RNAscope® technique with fluorescent-tagged probes. Positive and negative controls also included the localization of ATP1A1, ATP1A2, and KCNJ10 gene transcripts in order to validate the specificity of labeling. Results Confocal and super-resolution structured illumination microscopy (SR-SIM) detected single gene transcripts as brightly stained puncta. The GJB2 and GJB6 gene transcripts were distributed in the epithelial and connective tissue systems in all three cochlear turns. The largest number of GJB2 and GJB6 gene transcripts was in the outer sulcus, spiral ligament, and stria vascularis (SV). Oligonucleotides were present in the supporting cells of the organ of Corti (OC), spiral limbus fibrocytes, and the floor of the scala vestibuli. Multiplex gene data suggest that cells in the cochlear lateral wall contain either GJB2 or GJB6 gene transcripts or both. The GJB6, but not GJB2, gene transcripts were found in the intermediate cells but none were found in the marginal cells. There were no GJB2 or GJB6 gene transcripts found in the hair cells and only a few in the spiral ganglion cells. Conclusion Both GJB2 and GJB6 mRNA gene transcripts were localized in cells in the adult HC using RNAscope®in situ hybridization (ISH) and high resolution microscopy. Generally, GJB6 dominated over GJB2, except in the basal cells. Results suggest that cells may contain either GJB2 or GJB6 gene transcripts or both. This may be consistent with specialized GJ plaques having separate channel permeability and gating properties. A reduction in the number of GJB2 gene transcripts was found in the basal turn. Such information may be useful for future gene therapy.
Collapse
|
48
|
Zhang X, Fujita Y, Kaneda N, Tokutsu R, Ye S, Minagawa J, Shibata Y. State transition is quiet around pyrenoid and LHCII phosphorylation is not essential for thylakoid deformation in Chlamydomonas 137c. Proc Natl Acad Sci U S A 2022; 119:e2122032119. [PMID: 36067315 PMCID: PMC9478649 DOI: 10.1073/pnas.2122032119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 08/10/2022] [Indexed: 11/18/2022] Open
Abstract
Photosynthetic organisms have developed a regulation mechanism called state transition (ST) to rapidly adjust the excitation balance between the two photosystems by light-harvesting complex II (LHCII) movement. Though many researchers have assumed coupling of the dynamic transformations of the thylakoid membrane with ST, evidence of that remains elusive. To clarify the above-mentioned coupling in a model organism Chlamydomonas, here we used two advanced microscope techniques, the excitation-spectral microscope (ESM) developed recently by us and the superresolution imaging based on structured-illumination microscopy (SIM). The ESM observation revealed ST-dependent spectral changes upon repeated ST inductions. Surprisingly, it clarified a less significant ST occurrence in the region surrounding the pyrenoid, which is a subcellular compartment specialized for the carbon-fixation reaction, than that in the other domains. Further, we found a species dependence of this phenomenon: 137c strain showed the significant intracellular inhomogeneity of ST occurrence, whereas 4A+ strain hardly did. On the other hand, the SIM observation resolved partially irreversible fine thylakoid transformations caused by the ST-inducing illumination. This fine, irreversible thylakoid transformation was also observed in the STT7 kinase-lacking mutant. This result revealed that the fine thylakoid transformation is not induced solely by the LHCII phosphorylation, suggesting the highly susceptible nature of the thylakoid ultrastructure to the photosynthetic light reactions.
Collapse
Affiliation(s)
- XianJun Zhang
- Department of Chemistry, Graduate School of Sciences, Tohoku University, 980-8578 Sendai, Japan
- Division for Interdisciplinary Advanced Research and Education, Tohoku University, 980-8578 Sendai, Japan
| | - Yuki Fujita
- Department of Chemistry, Graduate School of Sciences, Tohoku University, 980-8578 Sendai, Japan
| | - Naoya Kaneda
- Department of Chemistry, Graduate School of Sciences, Tohoku University, 980-8578 Sendai, Japan
| | - Ryutaro Tokutsu
- Division of Environmental Photobiology, National Institute for Basic Biology, 444-8585 Okazaki, Japan
| | - Shen Ye
- Department of Chemistry, Graduate School of Sciences, Tohoku University, 980-8578 Sendai, Japan
| | - Jun Minagawa
- Division of Environmental Photobiology, National Institute for Basic Biology, 444-8585 Okazaki, Japan
| | - Yutaka Shibata
- Department of Chemistry, Graduate School of Sciences, Tohoku University, 980-8578 Sendai, Japan
| |
Collapse
|
49
|
La Torre M, Merigliano C, Maccaroni K, Chojnowski A, Goh WI, Giubettini M, Vernì F, Capanni C, Rhodes D, Wright G, Burke B, Soddu S, Burla R, Saggio I. Combined alteration of lamin and nuclear morphology influences the localization of the tumor-associated factor AKTIP. J Exp Clin Cancer Res 2022; 41:273. [PMID: 36096808 PMCID: PMC9469526 DOI: 10.1186/s13046-022-02480-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
Background Lamins, key nuclear lamina components, have been proposed as candidate risk biomarkers in different types of cancer but their accuracy is still debated. AKTIP is a telomeric protein with the property of being enriched at the nuclear lamina. AKTIP has similarity with the tumor susceptibility gene TSG101. AKTIP deficiency generates genome instability and, in p53−/− mice, the reduction of the mouse counterpart of AKTIP induces the exacerbation of lymphomas. Here, we asked whether the distribution of AKTIP is altered in cancer cells and whether this is associated with alterations of lamins. Methods We performed super-resolution imaging, quantification of lamin expression and nuclear morphology on HeLa, MCF7, and A549 tumor cells, and on non-transformed fibroblasts from healthy donor and HGPS (LMNA c.1824C > T p.Gly608Gly) and EDMD2 (LMNA c.775 T > G) patients. As proof of principle model combining a defined lamin alteration with a tumor cell setting, we produced HeLa cells exogenously expressing the HGPS lamin mutant progerin that alters nuclear morphology. Results In HeLa cells, AKTIP locates at less than 0.5 µm from the nuclear rim and co-localizes with lamin A/C. As compared to HeLa, there is a reduced co-localization of AKTIP with lamin A/C in both MCF7 and A549. Additionally, MCF7 display lower amounts of AKTIP at the rim. The analyses in non-transformed fibroblasts show that AKTIP mislocalizes in HGPS cells but not in EDMD2. The integrated analysis of lamin expression, nuclear morphology, and AKTIP topology shows that positioning of AKTIP is influenced not only by lamin expression, but also by nuclear morphology. This conclusion is validated by progerin-expressing HeLa cells in which nuclei are morphologically altered and AKTIP is mislocalized. Conclusions Our data show that the combined alteration of lamin and nuclear morphology influences the localization of the tumor-associated factor AKTIP. The results also point to the fact that lamin alterations per se are not predictive of AKTIP mislocalization, in both non-transformed and tumor cells. In more general terms, this study supports the thesis that a combined analytical approach should be preferred to predict lamin-associated changes in tumor cells. This paves the way of next translational evaluation to validate the use of this combined analytical approach as risk biomarker. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02480-5.
Collapse
|
50
|
Chen X, Li Y, Wang J, Sun J, Czajkowsky DM, Shao Z. Expansion microscopy with carboxylic trifunctional linkers. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1386-1389. [PMID: 36017892 PMCID: PMC9828645 DOI: 10.3724/abbs.2022113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Xuecheng Chen
- Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Yaqian Li
- State Key Laboratory for Oncogenes and Bio-ID CenterSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - Jiabin Wang
- Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Jielin Sun
- Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghai200240China,Correspondence address. Tel: +86-21-34206632; (J.S.) / Tel: +86-21-34206632; (D.C.) @sjtu.edu.cn
| | - Daniel M. Czajkowsky
- State Key Laboratory for Oncogenes and Bio-ID CenterSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200240China,Correspondence address. Tel: +86-21-34206632; (J.S.) / Tel: +86-21-34206632; (D.C.) @sjtu.edu.cn
| | - Zhifeng Shao
- State Key Laboratory for Oncogenes and Bio-ID CenterSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200240China
| |
Collapse
|