1
|
Wang PY, Zuo LL, Wu JD, Li CY, Li JF. Nanocavity-based single-molecule plasmon-enhanced Raman spectroscopy: Features and advancements. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 330:125664. [PMID: 39787801 DOI: 10.1016/j.saa.2024.125664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/04/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025]
Abstract
Since 1997, driven by advancements in nanoscience, single-molecule plasmon-enhanced Raman spectroscopy (SM-PERS) has developed into a powerful technique for ultrasensitive trace analysis through fingerprint vibrational chemical information. The nanocavity between the coupled plasmonic nanostructures, offering an exceptionally high Raman signal enhancement factor (i.e., plasmonic field hotspot), is crucial for the achievement of SM-PERS. Herein, we first briefly review the development of SM-PERS, followed by an introduction of the features and methodologies of SM-PERS, as well as the applications of SM-PERS in biological analysis, high-resolution chemical imaging, and the investigations of single-molecule reactions. Finally, a perspective highlighting the advancement of new methods and applications of nano-driven SM-PERS is presented.
Collapse
Affiliation(s)
- Peng-Yu Wang
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Liao-Liao Zuo
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Jie-Du Wu
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Chao-Yu Li
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China.
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| |
Collapse
|
2
|
Yang J, Jin L, Wang Y, Pan Z, Xia X, Wang K. Monitoring molecule translocation through plasmonic nanopores based on surface enhanced Raman scattering. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125511. [PMID: 39642624 DOI: 10.1016/j.saa.2024.125511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/13/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
To study the translocation behavior of molecules through nanopores, the gold plasmonic nanopores (GPNs) structures with high Raman activity are fabricated. The process of molecule translocation (via potential, concentration and pH) is studied by Surface Enhanced Raman Scattering (SERS). The electrostatic effect is found critical for the translocation direction and speed of model molecule. What's more, the characteristic blinking signal of rhodamine 6G (R6G) molecules translocating through the nanopores is observed with millisecond temporal resolution.
Collapse
Affiliation(s)
- Jinmei Yang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| | - Lei Jin
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhongqin Pan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xinghua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Kang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
3
|
Qin M, Ma M, Deng L, Wang C, Wang C. Surface-enhanced Raman spectroscopy method for active capture of targets by interlayer small-gap hot spot structures. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125509. [PMID: 39637569 DOI: 10.1016/j.saa.2024.125509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Surface-enhanced Raman scattering (SERS) technology has been widely used in the field of analytical detection owing to its high sensitivity and fingerprint-recognition ability. However, SERS faces challenges in practical applications related to the precise control of the location of hot spots and molecules entering the hot spot regions. In this study, silver nanoparticles (AgNPs) were used to construct a novel AgNP/AgNP structure by assembling two layers of AgNP thin films using a liquid-liquid interface self-assembly method to obtain a large number of interlayer nanogap structures. A single layer of tungsten disulfide (WS2) was inserted between the two layers of the AgNP thin films, and the electromagnetic field enhancement effect of the interlayer ultrasmall gaps was studied using the Raman signal of WS2. The results showed that the strong near-field enhancement, generated by WS2 as a sub-nanometer spacer layer, mainly originated from the plasmon coupling effect between the AgNP layers; the corresponding SERS enhancement factor reached 9.72 × 104, which was much greater than the enhancement effect when WS2 was on a single layer of AgNPs. Finite element theoretical simulations confirmed this result. In addition, using the AgNP/AgNP interlayer small-gap structure, highly sensitive SERS detection of various target molecules was achieved. This method was also successfully applied for the detection of antibiotic residues in poultry feathers, providing a new approach for food safety monitoring. The interlayer small-gap structure proposed in this study provides a new strategy for constructing high-performance SERS substrates and is expected to promote the practical application of SERS technology in fields such as environmental monitoring and food safety.
Collapse
Affiliation(s)
- Miao Qin
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, China.
| | - Mingwen Ma
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, China
| | - Likun Deng
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, China
| | - Chenxu Wang
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, China
| | - Cong Wang
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, China
| |
Collapse
|
4
|
Li A, Mo X, Lu Y, Zhu G, Liu C, Yang X, Huang Y, Sheng J, Zhang H, Meng D, Zhao X. Digital SERS immunoassay of Interleukin-6 based on Au@Ag-Au nanotags. Biosens Bioelectron 2025; 270:116973. [PMID: 39581067 DOI: 10.1016/j.bios.2024.116973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/29/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
Interleukin-6 (IL-6) is a crucial cytokine involved in inflammation and immune regulation. However, the detection of IL-6 with ultrasensitivity and high specificity remains a significant challenge due to the inherent complexity of biofluids. Herein, we present a digital surface enhanced Raman scattering (SERS) immunoassay using core-shell Au@Ag-Au nanotags for IL-6 detection with ultrasensitivity and high reliability. A low-cost silicon chip was functionalized as capture substrates, employing novel SERS nanotags that exhibit strong, robust and reproducible signals at single-nanoparticle resolution as the amplification element. We proposed two analytical methods to validate single-molecule events follow a Poisson distribution and to quantify protein biomarkers over a broad linear dynamic range, respectively. The strong alignment between theoretical and experimental results enhances the method's reliability. Our assay provides two readouts: colorimetric analysis by naked eyes for high concentrations (>1 ng/mL) and digital SERS analysis for low concentrations. Following method optimization, we obtained a linear range from 100 fg/mL to 1 ng/mL (R2 = 0.994) with a limit of detection (LOD) of 12.4 fg/mL, suitable for clinical applications. The method was tested for IL-6 quantification in healthy human serum and saliva, with recoveries from 92.4% to 105.3%. Finally, the immunoassay demonstrated strong consistency with the standard clinical laboratory method when tested with clinical serum samples. Thus, our proposed the digital SERS immunoassay is a promising tool for the precision clinical diagnosis of IL-6-related diseases or other conditions.
Collapse
Affiliation(s)
- Ao Li
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, China; Southeast University Shenzhen Research Institute, Shenzhen, 518000, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, 215163, China
| | - Xiufang Mo
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, China; Southeast University Shenzhen Research Institute, Shenzhen, 518000, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, 215163, China
| | - Yu Lu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, China; Southeast University Shenzhen Research Institute, Shenzhen, 518000, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, 215163, China
| | - Geng Zhu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, China; Southeast University Shenzhen Research Institute, Shenzhen, 518000, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, 215163, China
| | - Chang Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, China; Southeast University Shenzhen Research Institute, Shenzhen, 518000, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, 215163, China
| | - Xi Yang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, China; Southeast University Shenzhen Research Institute, Shenzhen, 518000, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, 215163, China
| | - Yan Huang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, China; Southeast University Shenzhen Research Institute, Shenzhen, 518000, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, 215163, China
| | - Jinliang Sheng
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China
| | - Hui Zhang
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China
| | - Dianhuai Meng
- Rehabilitation Medical Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Xiangwei Zhao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, China; Southeast University Shenzhen Research Institute, Shenzhen, 518000, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, 215163, China.
| |
Collapse
|
5
|
Sun B, Wu H, Fang T, Wang Z, Xu K, Yan H, Cao J, Wang Y, Wang L. Dual-Mode Colorimetric/SERS Lateral Flow Immunoassay with Machine Learning-Driven Optimization for Ultrasensitive Mycotoxin Detection. Anal Chem 2025. [PMID: 39951511 DOI: 10.1021/acs.analchem.4c06582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2025]
Abstract
Detecting and quantifying mycotoxins using LFIA are challenging due to the need for high sensitivity and accuracy. To address this, a dual-mode colorimetric-SERS LFIA was developed for detecting deoxynivalenol (DON). Rhodium nanocores provided strong plasmonic properties as the SERS substrate, while silver nanoparticles created electromagnetic "hotspots" to enhance signal sensitivity. Finite element modeling optimized the electromagnetic field intensity, and Prussian blue generated a distinct signal at 2156 cm-1, effectively reducing background interference. This dual-mode LFIA achieved a detection limit of 4.21 pg/mL, 37 times lower than that of colloidal gold-based LFIA (0.156 ng/mL). Machine learning algorithms, including ANN and KNN, enabled precise classification and quantification of contamination, achieving 98.8% classification accuracy and an MSE of 0.57. These results underscore the platform's potential for analyzing harmful substances in complex matrices and demonstrate the important role of machine learning-enhanced nanosensors in advancing detection technologies.
Collapse
Affiliation(s)
- Boyang Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, Guangdong, P. R. China
| | - Haiyu Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, Guangdong, P. R. China
| | - Tianrui Fang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, Guangdong, P. R. China
| | - Zihan Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, Guangdong, P. R. China
| | - Ke Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, Guangdong, P. R. China
| | - Huiqi Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, Guangdong, P. R. China
| | - Jinbo Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, Guangdong, P. R. China
| | - Ying Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, Guangdong, P. R. China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, Guangdong, P. R. China
| |
Collapse
|
6
|
Fan M, Brolo AG. Factors that Affect Quantification in Surface-Enhanced Raman Scattering. ACS NANO 2025; 19:3969-3996. [PMID: 39855155 DOI: 10.1021/acsnano.4c15183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
Surface-enhanced Raman scattering (SERS) is an analytical technique capable of detecting trace amounts of specific species. The uniqueness of vibrational signatures is a major advantage of SERS. This combination of sensitivity and specificity has motivated researchers to develop diverse analytical methodologies leveraging SERS. However, even 50 years after its first observation, SERS is still perceived as an unreliable technique for quantification. This perception has precluded the application of SERS in laboratories that rely on consistent quantification (for regulatory purposes, for instance). In this review, we describe some of the aspects that lead to SERS intensity variations and how those challenges were addressed in the 50 years of the technique. The goal is to identify the sources of variations in SERS intensities and then demonstrate that, even with these pitfalls, the technique can be used for quantification when factors such as nature of the substrate, experimental conditions, sample preparation, surface chemistry, and data analysis are carefully considered and tailored for a particular application.
Collapse
Affiliation(s)
- Meikun Fan
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Alexandre G Brolo
- Department of Chemistry, University of Victoria, Victoria, BC V8N 4Y3, Canada
- Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
7
|
Kim GH, Son J, Nam JM. Advances, Challenges, and Opportunities in Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles. ACS NANO 2025; 19:2992-3007. [PMID: 39812822 DOI: 10.1021/acsnano.4c14557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Surface-enhanced Raman scattering has been widely used for molecular/material characterization and chemical and biological sensing and imaging applications. In particular, plasmonic nanogap-enhanced Raman scattering (NERS) is based on the highly localized electric field formed within the nanogap between closely spaced metallic surfaces to more strongly amplify Raman signals than the cases with molecules on metal surfaces. Nanoparticle-based NERS offers extraordinarily strong Raman signals and a plethora of opportunities in sensing, imaging and many different types of biomedical applications. Despite its potential, several challenges still remain for NERS to be widely useful in real-world applications. This Perspective introduces various plasmonic nanogap configurations with nanoparticles, discusses key advances and critical challenges while addressing possible misunderstandings in this field, and provides future directions for NERS to generate stronger, more uniform, and stable signals over a large number of structures for practical applications.
Collapse
Affiliation(s)
- Gyeong-Hwan Kim
- The Research Institute of Basic Sciences, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, South Korea
| | - Jiwoong Son
- Department of Chemistry, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, South Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, South Korea
| |
Collapse
|
8
|
Liu X, Li H, Wang D, Lu J, Wu Y, Sun W. Highly Stable Flexible SERS-Imprinted Membrane Based on Plasmonic MOF Material for the Selective Detection of Chrysoidin in Environmental Water. Polymers (Basel) 2024; 17:81. [PMID: 39795484 PMCID: PMC11723279 DOI: 10.3390/polym17010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Chrysoidin (CG) can be ingested into the human body through the skin and cause chronic toxicity, so the detection of CG levels in the environment is crucial. In this study, we synthesize F-Ag@ZIF-8/PVC molecular-imprinted membranes (FZAP-MIM) by an innovative combination of SERS detection, membrane separation, and a molecular-imprinted technique in order to perform the analysis of CG in water. The plasmonic MOF material as a SERS substrate helps to enrich the target and realize the spatial overlap of the target with the nanoparticle tip "hotspot". To avoid the poor reproducibility of Raman signals caused by the random arrangement of the powder substrate, polyvinyl chloride (PVC) is used to provide support and protection for the powder substrate. PVC has excellent dirt immunity and chemical stability, enabling the substrate to maintain Raman performance under complex and extreme detection conditions. FAZP-MIM has outstanding sensitivity and selectivity and can quickly and accurately capture targets even in the presence of similar structural interferences. The method showed superior recoveries in spiked recovery tests of real water samples and is expected to be practically applied to the trace detection of organic dye molecules in the environment.
Collapse
Affiliation(s)
- Xinyi Liu
- Hainan Engineering Research Center of Tropical Ocean Advanced Opto-Electrical Functional Materials, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.L.); (W.S.)
| | - Hongji Li
- Hainan Engineering Research Center of Tropical Ocean Advanced Opto-Electrical Functional Materials, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.L.); (W.S.)
| | - Dandan Wang
- Hainan Engineering Research Center of Tropical Ocean Advanced Opto-Electrical Functional Materials, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.L.); (W.S.)
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Jian Lu
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong 999077, China;
| | - Yilin Wu
- Institute of Green Chemistry and Chemical Technology, Advanced Chemical Engineering Laboratory of Green Materials and Energy of Jiangsu Province, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Wei Sun
- Hainan Engineering Research Center of Tropical Ocean Advanced Opto-Electrical Functional Materials, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.L.); (W.S.)
| |
Collapse
|
9
|
Xie Y, Xu J, Shao D, Liu Y, Qu X, Hu S, Dong B. SERS-Based Local Field Enhancement in Biosensing Applications. Molecules 2024; 30:105. [PMID: 39795162 PMCID: PMC11722145 DOI: 10.3390/molecules30010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Surface-enhanced Raman scattering (SERS) stands out as a highly effective molecular identification technique, renowned for its exceptional sensitivity, specificity, and non-destructive nature. It has become a main technology in various sectors, including biological detection and imaging, environmental monitoring, and food safety. With the development of material science and the expansion of application fields, SERS substrate materials have also undergone significant changes: from precious metals to semiconductors, from single crystals to composite particles, from rigid to flexible substrates, and from two-dimensional to three-dimensional structures. This report delves into the advancements of the three latest types of SERS substrates: colloidal, chip-based, and tip-enhanced Raman spectroscopy. It explores the design principles, distinctive functionalities, and factors that influence SERS signal enhancement within various SERS-active nanomaterials. Furthermore, it provides an outlook on the future challenges and trends in the field. The insights presented are expected to aid researchers in the development and fabrication of SERS substrates that are not only more efficient but also more cost-effective. This progress is crucial for the multifunctionalization of SERS substrates and for their successful implementation in real-world applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China; (Y.X.); (J.X.); (D.S.); (Y.L.); (X.Q.); (S.H.)
| |
Collapse
|
10
|
Cheng H, Wang K, Gao R, Fu SY, Wang XT, Lin JS, Liu Y, Sun X, Yang Z, Duan X, Zhang YJ, Hu J, Li JF. Monodisperse, Highly Spherical, Single Crystalline Au Nanospheres for Uniform and Reproducible Hot Spots in Surface-Enhanced Raman Scattering at the Single-Particle Level. NANO LETTERS 2024; 24:16374-16382. [PMID: 39670567 DOI: 10.1021/acs.nanolett.4c04951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Hot spots can generate intense local electromagnetic (EM) fields, thereby boosting diverse innovative applications. However, these applications may face challenges due to their subtle structural changes that can significantly impact their EM field strength. Herein, we report a large-scale synthesis of monodisperse, highly spherical, single crystalline (SC) Au nanospheres (Au NSs) with tunable sizes ranging from 38 to 92 nm for constructing uniform and reproducible hot spots with a nanosphere-on-mirror (NSoM) configuration. Surface-enhanced Raman scattering tests reveal that single NSoM hot spots generate homogeneous EM fields with intensity variation of <4.0% due to their identical "point-to-mirror" configuration. Moreover, the SC nature of the Au NSs can further increase the EM field by 9% because of their higher quality factor, resulting in less energy dissipation in the plasmon. Therefore, these Au NSs may serve as ideal building blocks for the construction of hot spots with homogeneous EM fields.
Collapse
Affiliation(s)
- Huan Cheng
- Hunan Key Laboratory of Two-Dimensional Materials, Advanced Catalytic Engineering Research Center of the Ministry of Education, and College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Kun Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Physical Science and Technology, and College of Materials, Xiamen University, Xiamen 361005, China
| | - Renxian Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Physical Science and Technology, and College of Materials, Xiamen University, Xiamen 361005, China
| | - Shi-Ying Fu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Physical Science and Technology, and College of Materials, Xiamen University, Xiamen 361005, China
| | - Xiao-Ting Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Physical Science and Technology, and College of Materials, Xiamen University, Xiamen 361005, China
| | - Jia-Sheng Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Physical Science and Technology, and College of Materials, Xiamen University, Xiamen 361005, China
| | - Yingying Liu
- Hunan Key Laboratory of Two-Dimensional Materials, Advanced Catalytic Engineering Research Center of the Ministry of Education, and College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xuguang Sun
- Hunan Key Laboratory of Two-Dimensional Materials, Advanced Catalytic Engineering Research Center of the Ministry of Education, and College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zhilin Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Physical Science and Technology, and College of Materials, Xiamen University, Xiamen 361005, China
| | - Xidong Duan
- Hunan Key Laboratory of Two-Dimensional Materials, Advanced Catalytic Engineering Research Center of the Ministry of Education, and College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yue-Jiao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Physical Science and Technology, and College of Materials, Xiamen University, Xiamen 361005, China
| | - Jiawen Hu
- Hunan Key Laboratory of Two-Dimensional Materials, Advanced Catalytic Engineering Research Center of the Ministry of Education, and College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Physical Science and Technology, and College of Materials, Xiamen University, Xiamen 361005, China
| |
Collapse
|
11
|
Zhang Y, Wang H, Ni C, Wang Q, Lin T. Three-dimensional nanoporous gold/gold nanoparticles substrate for surface-enhanced Raman scattering detection of illegal additives in food. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124879. [PMID: 39067360 DOI: 10.1016/j.saa.2024.124879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/02/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Owing to their nanoscale size and porous structure, both colloidal gold nanoparticles (AuNPs) and nanoporous gold (NPG) have demonstrated good and stable surface-enhanced Raman scattering (SERS) activity, and are therefore widely used as SERS substrates for the rapid detection of various components in food, environmental, biological, and other samples. In this study, we fabricated a novel, sensitive, and reproducible composite three-dimensional (3D) substrate for rapid SERS-based detection of illegal additives in food products. AuNPs and NPGs were prepared by chemical reduction and chemical dealloying methods, with the particle size of AuNPs about 60 nm and the pore size of NPG in the range of 5-36 nm. The AuNPs were then assembled on the surface of NPG to form the composite substrate 3D-NPG/AuNPs, which was characterized by transmission electron microscopy, scanning electron microscopy, X-ray diffraction, and other methods. Finally, the new SERS substrate combined with a portable Raman spectrometer was used to detect the illegal food additives 6-benzylaminopurine and melamine, with detection limits of 1 × 10-9 M and 5 × 10-7 M respectively. We further analyzed the relationship between the dealloying time-controlled morphology and the SERS properties of NPG, demonstrating that 3D-NPG/AuNPs as a novel SERS substrate have strong practical application potential in the rapid detection of food additives and other substances.
Collapse
Affiliation(s)
- Yumiao Zhang
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, PR China.
| | - Huiqin Wang
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, PR China.
| | - Chengliang Ni
- Beijing Baonuokang Pharmaceutical Technology Co., Ltd., Beijing 102600, PR China.
| | - Qihui Wang
- Environmental Monitoring Centre, Sinochem Environment Holdings Co., Ltd., Beijing 100045, PR China.
| | - Taifeng Lin
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
12
|
Fan X, Zhao X, Tang X, Li G, Wei Y, Chen D, Kong F, Lan L, Wang J, Hao Q, Qiu T. High-specificity SERS sensing with magnet-powered hierarchically structured micromotors. OPTICS LETTERS 2024; 49:7106-7109. [PMID: 39671653 DOI: 10.1364/ol.543066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/10/2024] [Indexed: 12/15/2024]
Abstract
This work reports a hierarchically structured micromotor (HSM) surface-enhanced Raman scattering (SERS) platform comprising 3D tubular configurations with nanostructured outer walls. The HSMs can be powered by an external magnetic field in solution to enrich molecules with promoted adsorption efficiency. The nanostructured outer wall serves as containers to collect molecules and produce strong localized surface plasmon resonance to intensify Raman of the enriched molecules. Further coupling of HSMs after molecular enrichment can produce additional plasmonic hotspots at the sites where the molecules were enriched, providing a solution to manipulate molecules to enter the plasmonic hotspot region. Moreover, functionalizing specific molecules on the outer wall of HSMs enables high-specificity SERS sensing for benzaldehyde (BA) and Cu2+ ions in liquid. This SERS platform demonstrates great potential for practical applications in biochemical analysis and environmental monitoring, offering a rapid and sensitive tool for detecting low-concentration analytes in liquid.
Collapse
|
13
|
Li Y, Chen W, He X, Shi J, Cui X, Sun J, Xu H. Boosting Light-Matter Interactions in Plasmonic Nanogaps. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405186. [PMID: 39410718 DOI: 10.1002/adma.202405186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/20/2024] [Indexed: 12/06/2024]
Abstract
Plasmonic nanogaps in strongly coupled metal nanostructures can confine light to nanoscale regions, leading to huge electric field enhancement. This unique capability makes plasmonic nanogaps powerful platforms for boosting light-matter interactions, thereby enabling the rapid development of novel phenomena and applications. This review traces the progress of nanogap systems characterized by well-defined morphologies, controllable optical responses, and a focus on achieving extreme performance. The properties of plasmonic gap modes in far-field resonance and near-field enhancement are explored and a detailed comparative analysis of nanogap fabrication techniques down to sub-nanometer scales is provided, including bottom-up, top-down, and their combined approaches. Additionally, recent advancements and applications across various frontier research areas are highlighted, including surface-enhanced spectroscopy, plasmon-exciton strong coupling, nonlinear optics, optoelectronic devices, and other applications beyond photonics. Finally, the challenges and promising emerging directions in the field are discussed, such as light-driven atomic effects, molecular optomechanics, and alternative new materials.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen, 518060, China
| | - Wen Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Xiaobo He
- Institute of Physics, Henan Academy of Sciences, Zhengzhou, 450046, China
| | - Junjun Shi
- Henan Key Laboratory of Quantum Materials and Quantum Energy, School of Quantum Information Future Technology, Henan University, Kaifeng, 475001, China
| | - Ximin Cui
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen, 518060, China
| | - Jiawei Sun
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen, 518060, China
| | - Hongxing Xu
- School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- School of Microelectronics, Wuhan University, Wuhan, 430072, China
- Henan Academy of Sciences, Zhengzhou, Henan, 450046, China
- Wuhan Institute of Quantum Technology, Wuhan, 430206, China
| |
Collapse
|
14
|
Huang X, Xia L, Li G. Gold-grafted melamine sponge as surface-enhanced Raman spectroscopy substrate for enzyme-linked immunoassay of mycotoxins in cereal samples. Mikrochim Acta 2024; 191:758. [PMID: 39581912 DOI: 10.1007/s00604-024-06831-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 11/07/2024] [Indexed: 11/26/2024]
Abstract
Gold-grafted melamine sponge (AuSp) was fabricated and applied as surface-enhanced Raman spectroscopy (SERS) substrate for enzyme-linked immunoassay of 2 typical mycotoxins, zearalenone (ZEN) and T-2 toxin. The gold nanoparticles were in situ grown on the sponge, and the product showed good effect in enhancing Raman signal and good stability. COMSOL and Gaussian simulations were used to analyze the enhancing effect. Some of the experimental conditions that may affect the determination results were studied in order to meet the maximum response to mycotoxins. At optimized conditions, the limits of detection of the method were 1 μg·kg-1 and 0.05 μg·kg-1 for ZEN and T-2 toxin, with linear ranges of 5-100 μg·kg-1 and 0.1-20 μg·kg-1, respectively, and relative standard deviations lower than 7.0%. The established method was used to determine ZEN and T-2 toxin in six kinds of cereal samples, the recoveries were 85-120%, and relative errors were less than 13.0%. These results indicated the accuracy of the established method. After 1-year storage, signal strength of AuSp for mycotoxins determination decreased by less than 10%, showing stability over a long time. Our work provided a new method for SERS determination of mycotoxins, which reduces the complexity of substrate preparation and the sample consumption compared with traditional methods, and thus has potential for on-line SERS determination.
Collapse
Affiliation(s)
- Xianzhi Huang
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Ling Xia
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Gongke Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
15
|
Yi L, Zhang J, Wu J, Zhuang Y, Song Q, Zhao L, Liang M, Li G, Hu B, Yin P, Castel H, Maciuk A, Figadere B. Micro-macro SERS strategy for highly sensitive paper cartridge with trace-level molecular detection. Biosens Bioelectron 2024; 264:116665. [PMID: 39173336 DOI: 10.1016/j.bios.2024.116665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/18/2024] [Accepted: 08/10/2024] [Indexed: 08/24/2024]
Abstract
Surface-enhanced Raman Scattering (SERS) has become a powerful spectroscopic technology for highly sensitive detection. However, SERS is still limited in the lab because it either requires complicated preparation or is limited to specific compounds, causing poor applicability for practical applications. Herein, a micro-macro SERS strategy, synergizing polymer-assisted printed process with paper-tip enrichment process, is proposed to fabricate highly sensitive paper cartridges for sensitive practical applications. The polymer-assisted printed process finely aggregates nanoparticles with a discrete degree of 1.77, and SERS results are matched with theoretical enhancement, indicating small cluster-dominated hotspots at the micro-scale and thus 41-fold SERS increase compared to other aggregation methods. The paper-tip enrichment process moves molecules in a fluid into small tips filled with plasmonic clusters, and molecular localization at hotspots is achieved by the simulation and optimization of fluidic velocity at the macro-scale, generating a 39.5-fold SERS sensibility increase in comparison with other flow methods. A highly sensitive paper cartridge contains a paper-tip and a 3D-printed cartridge, which is simple, easy-to-operate, and costs around 2 US dollars. With a detection limit of 10 -12 M for probe molecules, the application of real samples and multiple analytes achieves single-molecule level sensitivity and reliable repeatability with a 30-min standardized procedure. The micro-macro SERS strategy demonstrates its potential in practical applications that require point-of-care detection.
Collapse
Affiliation(s)
- LangLang Yi
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Jie Zhang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Jianduo Wu
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Yuan Zhuang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Qin Song
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Lei Zhao
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Minghui Liang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Guoqian Li
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Bo Hu
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; School of Mathematics and Physics, Hebei University of Engineering, Handan, Hebei, 056038, China; Xi'an Intelligent Precision Diagnosis and Treatment International Science and Technology Cooperation Base, Xidian University, Xi'an, Shaanxi, 710126, China.
| | - Pengju Yin
- School of Mathematics and Physics, Hebei University of Engineering, Handan, Hebei, 056038, China.
| | - Helene Castel
- Institute of Research and Biomedical Innovation, University of Rouen Normandy, Mont-Saint-Aignan, 76821, France
| | | | - Bruno Figadere
- BioCIS, CNRS, Université Paris-Saclay, Orsay, 91400, France.
| |
Collapse
|
16
|
Lu Z, Ji J, Ye H, Zhang H, Zhang S, Xu H. Quantifying the ultimate limit of plasmonic near-field enhancement. Nat Commun 2024; 15:8803. [PMID: 39394215 PMCID: PMC11470092 DOI: 10.1038/s41467-024-53210-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024] Open
Abstract
Quantitatively probing the ultimate limit of near-field enhancement around plasmonic nanostructures remains elusive, despite more than five decades since the discovery of surface-enhanced Raman scattering. Theoretical calculations have predicted an ultimate near-field enhancement exceeding 1000 using the best plasmonic material silver, but experimental estimations disperse by orders of magnitude. Here, we design a high-quality silver plasmonic nanocavity with atomic precision and precisely quantify the upper limit of near-field enhancement in ~1 nm junctions. A hot-spot averaged Raman enhancement of 4.27 × 1010 is recorded with a small fluctuation, corresponding to an averaged electric field enhancement larger than 1000 times. This result quantitatively delineates the ultimate limit of plasmonic field enhancement around plasmonic nanostructures, establishing a foundation for diverse plasmon-enhanced processes and strong light-matter interactions at the atomic scale.
Collapse
Affiliation(s)
- Zhengyi Lu
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Jiamin Ji
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Haiming Ye
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Hao Zhang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Shunping Zhang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China.
- Wuhan Institute of Quantum Technology, Wuhan, China.
| | - Hongxing Xu
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
- Wuhan Institute of Quantum Technology, Wuhan, China
- School of Microelectronics, Wuhan University, Wuhan, China
- Henan Academy of Sciences, Zhengzhou, China
| |
Collapse
|
17
|
Contessa CR, Moreira EC, Moraes CC, de Medeiros Burkert JF. Production and SERS characterization of bacteriocin-like inhibitory substances by latilactobacillus sakei in whey permeate powder: exploring natural antibacterial potential. Bioprocess Biosyst Eng 2024; 47:1723-1734. [PMID: 39014172 DOI: 10.1007/s00449-024-03065-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024]
Abstract
Bacteriocins are antimicrobial compounds that have awakened interest across several industries due to their effectiveness. However, their large-scale production often becomes unfeasible on an industrial scale, primarily because of high process costs. Addressing this challenge, this work analyzes the potential of using low-cost whey permeate powder, without any supplementation, to produce bacteriocin-like inhibitory substances (BLIS) through the fermentation of Latilactobacillus sakei. For this purpose, different concentrations of whey permeate powder (55.15 gL-1, 41.3 gL-1 and 27.5 gL-1) were used. The ability of L. sakei to produce BLIS was evaluated, as well as the potential of crude cell-free supernatant to act as a preservative. Raman spectroscopy and surface-enhanced Raman scattering (SERS) provided detailed insights into the composition and changes occurring during fermentation. SERS, in particular, enhanced peak definition significantly, allowing for the identification of key components, such as lactose, proteins, and phenylalanine, which are crucial in understanding the fermentation process and BLIS characteristics. The results revealed that the concentration of 55.15 gL-1 of whey permeate powder, in flasks without agitation and a culture temperature of 32.5 °C, presented the highest biological activity of BLIS, reaching 99% of inhibition of Escherichia coli and Staphylococcus aureus with minimum inhibitory concentration of 36-45%, respectively. BLIS production began within 60 h of cultivation and was associated with class II bacteriocins. The results demonstrate a promising approach for producing BLIS in an economical and environmentally sustainable manner, with potential implications for various industries.
Collapse
Affiliation(s)
- Camila Ramão Contessa
- Engineering and Science of Food Graduate Program, College of Chemistry and Food Engineering, Laboratory Bioprocess Engineering, Federal University of Rio Grande, PO Box 474, Rio Grande, RS, 96203-900, Brazil.
| | - Eduardo Ceretta Moreira
- Science and Engineering of Materials Graduate Program, Spectroscopy Laboratory, Federal University of Pampa, PO Box 1650, Bagé, RS, 96413170, Brazil
| | - Caroline Costa Moraes
- Science and Engineering of Materials Graduate Program, Laboratory of Microbiology and Food Toxicology, Federal University of Pampa, PO Box 1650, Bagé, RS, 96413170, Brazil
| | - Janaína Fernandes de Medeiros Burkert
- Engineering and Science of Food Graduate Program, College of Chemistry and Food Engineering, Laboratory Bioprocess Engineering, Federal University of Rio Grande, PO Box 474, Rio Grande, RS, 96203-900, Brazil
| |
Collapse
|
18
|
Schmidt MM, Brolo AG, Lindquist NC. Single-Molecule Surface-Enhanced Raman Spectroscopy: Challenges, Opportunities, and Future Directions. ACS NANO 2024. [PMID: 39258860 DOI: 10.1021/acsnano.4c09483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Single-molecule surface-enhanced Raman spectroscopy (SM-SERS) is a powerful experimental technique for label-free sensing, imaging, and chemical analysis. Although Raman spectroscopy itself is an extremely "feeble" phenomenon, the intense interaction of optical fields with metallic nanostructures in the form of plasmonic hotspots can generate Raman signals from single molecules. While what constitutes a true single-molecule signal has taken some years for the scientific community to establish, many SERS experiments, even those not specifically attempting single-molecule sensitivity, have observed fluctuation in both the SERS intensity and spectral features. In this Perspective, we discuss the impact that fluctuating SERS signals have had on the continuing advancement of SM-SERS, along with challenges and current and potential future applications.
Collapse
Affiliation(s)
- Makayla Maxine Schmidt
- Department of Physics and Engineering, Bethel University, St Paul, Minnesota 55112, United States
| | - Alexandre G Brolo
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Nathan C Lindquist
- Department of Physics and Engineering, Bethel University, St Paul, Minnesota 55112, United States
| |
Collapse
|
19
|
Wang Y, Zhang F, Du Z, Fan X, Huang X, Zhang L, Li S, Liu Z, Wang C. Insights into the Mechanisms of Single-Photon and Two-Photon Excited Surface Enhanced Fluorescence by Submicrometer Silver Particles. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1451. [PMID: 39269113 PMCID: PMC11397608 DOI: 10.3390/nano14171451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
Surface enhanced fluorescence (SEF) based on noble metal nanoparticles is an effective means to achieve high sensitivity in fluorescence detection. Currently, the physical mechanism behind enhanced fluorescence is not fully understood. This paper measures the fluorescence signals of Dihydroporphyrin f methyl ether (CPD4) under both single-photon and two-photon excitation based on submicrometer silver particles with rough morphologies, achieving enhancement factors of 34 and 45 times, respectively. On this basis, by combining the radiative field characteristics produced by the silver particles, a stimulated radiation model of molecules is established to elucidate the changes in the molecular photophysical process when influenced by silver particles. Moreover, the fluorescence lifetime of the molecules was measured, showing that the presence of silver particles induces an increase in the molecular radiative decay rate, causing the fluorescence lifetime to decay from 3.8 ns to 3 ns. The results indicate that the fluorescence enhancement primarily originates from the submicrometer silver particles' enhancement effect on the excitation light. Additionally, the fluorescence signal emitted by the molecules couples with the silver particles, causing the local surface plasmon resonances generated by the silver particles to also emit light signals of the same frequency. Under the combined effect, the fluorescence of the molecules is significantly enhanced. The findings provide a theoretical foundation for understanding the fluorescence enhancement mechanism of silver particles, adjusting the enhancement effect, and developing enhanced fluorescence detection devices based on submicrometer silver particles, holding significant practical importance.
Collapse
Affiliation(s)
- Yan Wang
- School of Physics and Electronic Information, Weifang University, Weifang 261061, China
- Weifang Key Laboratory of Laser Technology and Application, Weifang University, Weifang 261061, China
| | - Feng Zhang
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Zaifa Du
- School of Physics and Electronic Information, Weifang University, Weifang 261061, China
- Weifang Key Laboratory of Laser Technology and Application, Weifang University, Weifang 261061, China
| | - Xinmin Fan
- School of Physics and Electronic Information, Weifang University, Weifang 261061, China
- Weifang Key Laboratory of Laser Technology and Application, Weifang University, Weifang 261061, China
| | - Xiaodong Huang
- School of Physics and Electronic Information, Weifang University, Weifang 261061, China
- Weifang Key Laboratory of Laser Technology and Application, Weifang University, Weifang 261061, China
| | - Lujun Zhang
- School of Physics and Electronic Information, Weifang University, Weifang 261061, China
- Weifang Key Laboratory of Laser Technology and Application, Weifang University, Weifang 261061, China
| | - Sensen Li
- Science and Technology on Electro-Optical Information Security Control Laboratory, Tianjin 300308, China
| | - Zhaohong Liu
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China
| | - Chunyan Wang
- School of Physics and Electronic Information, Weifang University, Weifang 261061, China
- Weifang Key Laboratory of Laser Technology and Application, Weifang University, Weifang 261061, China
| |
Collapse
|
20
|
Zhang H, Yang L, Zhang M, Wei H, Tong L, Xu H, Li Z. A Statistical Route to Robust SERS Quantitation Beyond the Single-Molecule Level. NANO LETTERS 2024; 24:11116-11123. [PMID: 39116042 DOI: 10.1021/acs.nanolett.4c03507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Single-molecule surface-enhanced Raman spectroscopy (SM-SERS) holds great potential to revolutionize ultratrace quantitative analysis. However, achieving quantitative SM-SERS is challenging because of strong intensity fluctuation and blinking characteristics. In this study, we reveal the relation P = 1 - e-α between the statistical SERS probability P and the microscopic average molecule number α in SERS spectra, which lays the physical foundation for a statistical route to implement SM-SERS quantitation. Utilizing SERS probability calibration, we achieve quantitative SERS analysis with batch-to-batch robustness, extremely wide detection range of concentration covering 9 orders of magnitude, and ultralow detection limit far below the single-molecule level. These results indicate the physical feasibility of robust SERS quantitation through statistical route and certainly open a new avenue for implementing SERS as a practical analysis tool in various application scenarios.
Collapse
Affiliation(s)
- Hao Zhang
- Beijing Key Laboratory for Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University, Beijing 100048, China
| | - Longkun Yang
- Beijing Key Laboratory for Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University, Beijing 100048, China
| | - Meng Zhang
- Beijing Key Laboratory for Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University, Beijing 100048, China
| | - Hong Wei
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Lianming Tong
- Center for Nano-chemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hongxing Xu
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
- School of Microelectronics, Wuhan University, Wuhan 430072, China
- Henan Academy of Sciences, Zhengzhou 450046, China
| | - Zhipeng Li
- Beijing Key Laboratory for Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University, Beijing 100048, China
| |
Collapse
|
21
|
Sloan-Dennison S, Wallace GQ, Hassanain WA, Laing S, Faulds K, Graham D. Advancing SERS as a quantitative technique: challenges, considerations, and correlative approaches to aid validation. NANO CONVERGENCE 2024; 11:33. [PMID: 39154073 PMCID: PMC11330436 DOI: 10.1186/s40580-024-00443-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
Surface-enhanced Raman scattering (SERS) remains a significant area of research since it's discovery 50 years ago. The surface-based technique has been used in a wide variety of fields, most prominently in chemical detection, cellular imaging and medical diagnostics, offering high sensitivity and specificity when probing and quantifying a chosen analyte or monitoring nanoparticle uptake and accumulation. However, despite its promise, SERS is mostly confined to academic laboratories and is not recognised as a gold standard analytical technique. This is due to the variations that are observed in SERS measurements, mainly caused by poorly characterised SERS substrates, lack of universal calibration methods and uncorrelated results. To convince the wider scientific community that SERS should be a routinely used analytical technique, the field is now focusing on methods that will increase the reproducibility of the SERS signals and how to validate the results with more well-established techniques. This review explores the difficulties experienced by SERS users, the methods adopted to reduce variation and suggestions of best practices and strategies that should be adopted if one is to achieve absolute quantification.
Collapse
Affiliation(s)
- Sian Sloan-Dennison
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Gregory Q Wallace
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Waleed A Hassanain
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Stacey Laing
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Karen Faulds
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Duncan Graham
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| |
Collapse
|
22
|
Chaudhry I, Hu G, Ye H, Jensen L. Toward Modeling the Complexity of the Chemical Mechanism in SERS. ACS NANO 2024. [PMID: 39087679 DOI: 10.1021/acsnano.4c07198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Surface-enhanced Raman scattering (SERS) provides detailed information about the binding of molecules at interfaces and their interactions with the local environment due to the large enhancement of Raman scattering. This enhancement arises from a combination of the electromagnetic mechanism (EM) and chemical mechanism (CM). While it is commonly accepted that EM gives rise to most of the enhancement, large spectral changes originate from CM. To elucidate the rich information contained in SERS spectra about molecules at interfaces, a comprehensive understanding of the enhancement mechanisms is necessary. In this Perspective, we discuss the current understanding of the enhancement mechanisms and highlight their interplay in complex local environments. We will also discuss emerging areas where the development of computational and theoretical models is needed with specific attention given to how the CM contributes to the spectral changes. Future efforts in modeling should focus on overcoming the challenges presented in this review in order to capture the complexity of CM in SERS.
Collapse
Affiliation(s)
- Imran Chaudhry
- Department of Chemistry, The Pennsylvania State University, 104 Benkovic Building, University Park, Pennsylvania 16802, United States
| | - Gaohe Hu
- Department of Chemistry, The Pennsylvania State University, 104 Benkovic Building, University Park, Pennsylvania 16802, United States
| | - Hepeng Ye
- Department of Chemistry, The Pennsylvania State University, 104 Benkovic Building, University Park, Pennsylvania 16802, United States
| | - Lasse Jensen
- Department of Chemistry, The Pennsylvania State University, 104 Benkovic Building, University Park, Pennsylvania 16802, United States
| |
Collapse
|
23
|
Zhang N, Liang D, Shen Y, She X, Jin C. Grating-Integrated Gold Nanograsses Encapsulated with ZIF-8: A Quantitative and Ultrasensitive Surface-Enhanced Raman Scattering Substrate. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39917-39926. [PMID: 39016554 DOI: 10.1021/acsami.4c09535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
We proposed and demonstrated highly sensitive hybrid surface-enhanced Raman scattering (SERS) substrates, which are grating-integrated gold nanograsses (GIGN) that are tip-selectively encapsulated by ZIF-8 nanospheres (GIGN/tip-ZIF). This unique structure is realized through the tip-selective modification of GIGN by polyvinylpyrrolidone (PVP), and then, the tips of the GIGN were encapsulated by ZIF-8 nanospheres. The ZIF-8 nanospheres can adsorb analyte molecules, resulting in the spatial overlap between the analyte molecules and the "hotspots" on the tips of GIGN. Such a unique GIGN/tip-ZIF hybrid SERS substrate exhibits high sensitivity and quantitative detection ability. The detection limits can reach as low as 10-11 M, and the relative standard deviation is 5.59% for 4-aminothiophenol (4-ATP). In a wide range of concentrations from 10-5 to 10-11 M, the SERS intensity and concentration relationship can be fitted as a sigmoidal curve with R2 = 0.988. These indicate that the GIGN/tip-ZIF hybrid SERS substrates have broad applications in detecting toxic and harmful substances in food safety, disease diagnosis, and environmental monitoring.
Collapse
Affiliation(s)
- Ni Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Dongyi Liang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yang Shen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaoyi She
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Chongjun Jin
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
24
|
Li S, Ling Y, Chen J, Yuan X, Zhang Z. Portable Copper-Based Electrochemical SERS Sensor for Point-of-Care Testing of Paraquat and Diquat by On-Site Electrostatic Preconcentration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39008657 DOI: 10.1021/acs.langmuir.4c01437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
With the advent of portable Raman spectrometers, the deployment of surface-enhanced Raman spectroscopy (SERS) in point-of-care testing (POCT) has been initiated. Within any analytical framework employing SERS, the acuity and selectivity inherent to the SERS substrate are of paramount importance. In this article, we utilize in situ electrochemical passivation technology to fabricate CuI passivation film, which serves as a flexible copper-based SERS substrate. Furthermore, portable electrochemical SERS (EC-SERS) sensors were prepared by combining this with laser direct writing technology. The detection signal was amplified using electrostatic preconcentration technology, showcasing impressive sensitivity, selectivity, and stability in pesticide detection. The detected concentrations of paraquat and diquat in tea reached as low as 3.36 and 2.43 μg/kg, respectively. Furthermore, the application of electrostatic preconcentration facilitated selective target molecule aggregation on the SERS sensor, markedly increasing Raman signal strength and enabling single-molecule detection. This research introduces an innovative POCT method for pesticides, promising to advance environmental monitoring's analytical capabilities.
Collapse
Affiliation(s)
- Shilin Li
- Lab of Advanced Materials, School of Materials Sciences and Engineering, Tsinghua University, Beijing 100084, PR China
| | - Yunhan Ling
- Lab of Advanced Materials, School of Materials Sciences and Engineering, Tsinghua University, Beijing 100084, PR China
| | - Jianyue Chen
- Institute of New Functional Materials Co., Ltd, Guangxi Institute of Industrial Technology, Nanning 530200, China
| | - Xiaoming Yuan
- School of Science, China University of Geosciences, Beijing 100083, PR China
| | - Zhengjun Zhang
- Lab of Advanced Materials, School of Materials Sciences and Engineering, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
25
|
Zhao X, Liu X, Chen D, Shi G, Li G, Tang X, Zhu X, Li M, Yao L, Wei Y, Song W, Sun Z, Fan X, Zhou Z, Qiu T, Hao Q. Plasmonic trimers designed as SERS-active chemical traps for subtyping of lung tumors. Nat Commun 2024; 15:5855. [PMID: 38997298 PMCID: PMC11245553 DOI: 10.1038/s41467-024-50321-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
Plasmonic materials can generate strong electromagnetic fields to boost the Raman scattering of surrounding molecules, known as surface-enhanced Raman scattering. However, these electromagnetic fields are heterogeneous, with only molecules located at the 'hotspots', which account for ≈ 1% of the surface area, experiencing efficient enhancement. Herein, we propose patterned plasmonic trimers, consisting of a pair of plasmonic dimers at the bilateral sides and a trap particle positioned in between, to address this challenge. The trimer configuration selectively directs probe molecules to the central traps where 'hotspots' are located through chemical affinity, ensuring a precise spatial overlap between the probes and the location of maximum field enhancement. We investigate the Raman enhancement of the Au@Al2O3-Au-Au@Al2O3 trimers, achieving a detection limit of 10-14 M of 4-methylbenzenethiol, 4-mercaptopyridine, and 4-aminothiophenol. Moreover, single-molecule SERS sensitivity is demonstrated by a bi-analyte method. Benefiting from this sensitivity, our approach is employed for the early detection of lung tumors using fresh tissues. Our findings suggest that this approach is sensitive to adenocarcinoma but not to squamous carcinoma or benign cases, offering insights into the differentiation between lung tumor subtypes.
Collapse
Affiliation(s)
- Xing Zhao
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, PR China
| | - Xiaojing Liu
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Qingdao University, Qingdao, 266003, PR China
| | - Dexiang Chen
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, PR China
| | - Guodong Shi
- Department of Thoracic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266003, PR China
| | - Guoqun Li
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, PR China
| | - Xiao Tang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, PR China
| | - Xiangnan Zhu
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, PR China
| | - Mingze Li
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, PR China
| | - Lei Yao
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, PR China
| | - Yunjia Wei
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, PR China
| | - Wenzhe Song
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, PR China
| | - Zixuan Sun
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, PR China
| | - Xingce Fan
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, PR China
| | - Zhixin Zhou
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China
| | - Teng Qiu
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, PR China.
| | - Qi Hao
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, PR China.
| |
Collapse
|
26
|
Lin J, Ma X, Li A, Akakuru OU, Pan C, He M, Yao C, Ren W, Li Y, Zhang D, Cao Y, Chen T, Wu A. Multiple valence states of Fe boosting SERS activity of Fe 3O 4 nanoparticles and enabling effective SERS-MRI bimodal cancer imaging. FUNDAMENTAL RESEARCH 2024; 4:858-867. [PMID: 39156566 PMCID: PMC11330100 DOI: 10.1016/j.fmre.2022.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 04/12/2022] [Accepted: 04/23/2022] [Indexed: 11/30/2022] Open
Abstract
Developing novel nanoparticle-based bioprobes utilized in clinical settings with imaging resolutions ranging from cell to tissue levels is a major challenge for tumor diagnosis and treatment. Herein, an optimized strategy for designing a Fe3O4-based bioprobe for dual-modal cancer imaging based on surface-enhanced Raman scattering (SERS) and magnetic resonance imaging (MRI) is introduced. Excellent SERS activity of ultrasmall Fe3O4 nanoparticles (NPs) was discovered, and a 5 × 10-9 M limit of detection for crystal violet molecules was successfully obtained. The high-efficiency interfacial photon-induced charge transfer in Fe3O4 NPs was promoted by multiple electronic energy levels ascribed to the multiple valence states of Fe, which was observed using ultraviolet-visible diffuse reflectance spectroscopy. Density functional theory calculations were utilized to reveal that the narrow band gap and high electron density of states of ultrasmall Fe3O4 NPs significantly boosted the vibronic coupling resonances in the SERS system upon illumination. The subtypes of cancer cells were accurately recognized via high-resolution SERS imaging in vitro using the prepared Fe3O4-based bioprobe with high sensitivity and good specificity. Notably, Fe3O4-based bioprobes simultaneously exhibited T1 -weighted MRI contrast enhancement with an active targeting capability for tumors in vivo. To the best of our knowledge, this is the first report on the use of pure semiconductor-based SERS-MRI dual-modal nanoprobes in tumor imaging in vivo and in vitro, which has been previously realized only using semiconductor-metal complex materials. The non-metallic materials with SERS-MRI dual-modal imaging established in this report are a promising cancer diagnostic platform, which not only showed excellent performance in early tumor diagnosis but also possesses great potential for image-guided tumor treatment.
Collapse
Affiliation(s)
- Jie Lin
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
| | - Xuehua Ma
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anran Li
- School of Engineering Medicine, Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beihang University, Beijing 100191, China
| | - Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
| | - Chunshu Pan
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
| | - Meng He
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
| | - Chenyang Yao
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
| | - Wenzhi Ren
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
| | - Yanying Li
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
| | - Dinghu Zhang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
| | - Yi Cao
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
| | - Tianxiang Chen
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
| |
Collapse
|
27
|
Wang J, Ma S, Ge K, Xu R, Shen F, Gao X, Yao Y, Chen Y, Chen Y, Gao F, Wu G. Face-to-face Assembly Strategy of Au Nanocubes: Induced Generation of Broad Hotspot Regions for SERS-Fluorescence Dual-Signal Detection of Intracellular miRNAs. Anal Chem 2024; 96:8922-8931. [PMID: 38758935 DOI: 10.1021/acs.analchem.3c05743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
While designing anisotropic noble metal nanoparticles (NPs) can enhance the signal intensity of Raman dyes, more sensitive surface-enhanced Raman scattering (SERS) probes can be designed by oriented self-assembly of noble metal nanomaterials into dimers or higher-order nanoclusters. In this study, we engineered a self-assembly strategy in living cells for real-time fluorescence and SERS dual-channel detection of intracellular microRNAs (miRNAs), using Mg2+-dependent 8-17E DNAzyme sequences as the driving motors, gold nanocubes (AuNCs) as the driver components, and three-branched double-stranded DNA as the linking tool. The assembly selects adenine in DNA as a reporter molecule, simplifying the labeling process of Raman reporter molecules and reducing the synthesis process. In addition, adenine is stably distributed between the faces of AuNCs and the wide hotspot region gives good reproducibility of the adenine SERS signal. In this strategy, the SERS channel was consistently stable and more sensitive compared to the fluorescence channel. Among them, the detection limit of the SERS channel was 2.1 pM and the coefficient of variation was 1.26% in the in vitro liquid phase and 1.49% in MCF-7 cells. The strategy successfully achieved accurate tracking and quantification of miRNA-21 in cancer cells, showing good reproducibility in complex samples as well as cells. The reported strategy provides ideas for exploring intracellular specific triggering of nanoparticles for precise control of self-assembly.
Collapse
Affiliation(s)
- Jiwei Wang
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu 210009, China
| | - Shuo Ma
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, China
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu 210009, China
| | - Kezhen Ge
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu 210009, China
| | - Ran Xu
- The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Fuzhi Shen
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xun Gao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, China
| | - Yuming Yao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, China
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu 210009, China
| | - Yaya Chen
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, China
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu 210009, China
| | - Yuxin Chen
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Guoqiu Wu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, China
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
28
|
Pei Q, Zheng X, Tan J, Luo Y, Ye S. Probing the Local Near-Field Intensity of Plasmonic Nanoparticles in the Mid-infrared Spectral Region. J Phys Chem Lett 2024; 15:5390-5396. [PMID: 38739421 DOI: 10.1021/acs.jpclett.4c00964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The enhanced local field of gold nanoparticles (AuNPs) in mid-infrared spectral regions is essential for improving the detection sensitivity of vibrational spectroscopy and mediating photochemical reactions. However, it is still challenging to measure its intensity at subnanometer scales. Here, using the NO2 symmetric stretching mode (νNO2) of self-assembled 4-nitrothiophenol (4-NTP) monolayers on AuNPs as a model, we demonstrated that the percentage of excited νNO2 mode, determined by femtosecond time-resolved sum-frequency generation vibrational spectroscopy, allows us to directly detect the local field intensity of the AuNP surface in subnanometer ranges. The local-field intensity is tuned by AuNP diameters. An approximate 17-fold enhancement was observed for the local field on 80 nm AuNPs compared to the Au film. Additionally, the local field can regulate the anharmonicity of the νNO2 mode by synergistic effect with molecular orientation. This work offers a promising approach to probe the local field intensity distribution around plasmonic NP surfaces at subnanometer scales.
Collapse
Affiliation(s)
- Quanbing Pei
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaoxuan Zheng
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Junjun Tan
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Yi Luo
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| |
Collapse
|
29
|
Duan S, Tian G, Luo Y. Theoretical and computational methods for tip- and surface-enhanced Raman scattering. Chem Soc Rev 2024; 53:5083-5117. [PMID: 38596836 DOI: 10.1039/d3cs01070h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Raman spectroscopy is a versatile tool for acquiring molecular structure information. The incorporation of plasmonic fields has significantly enhanced the sensitivity and resolution of surface-enhanced Raman scattering (SERS) and tip-enhanced Raman spectroscopy (TERS). The strong spatial confinement effect of plasmonic fields has challenged the conventional Raman theory, in which a plane wave approximation for the light has been adopted. In this review, we comprehensively survey the progress of a generalized theory for SERS and TERS in the framework of effective field Hamiltonian (EFH). With this approach, all characteristics of localized plasmonic fields can be well taken into account. By employing EFH, quantitative simulations at the first-principles level for state-of-the-art experimental observations have been achieved, revealing the underlying intrinsic physics in the measurements. The predictive power of EFH is demonstrated by several new phenomena generated from the intrinsic spatial, momentum, time, and energy structures of the localized plasmonic field. The corresponding experimental verifications are also carried out briefly. A comprehensive computational package for modeling of SERS and TERS at the first-principles level is introduced. Finally, we provide an outlook on the future developments of theory and experiments for SERS and TERS.
Collapse
Affiliation(s)
- Sai Duan
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Guangjun Tian
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Yi Luo
- Hefei National Research Center for Physical Science at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China
| |
Collapse
|
30
|
Troncoso-Afonso L, Vinnacombe-Willson GA, García-Astrain C, Liz-Márzan LM. SERS in 3D cell models: a powerful tool in cancer research. Chem Soc Rev 2024; 53:5118-5148. [PMID: 38607302 PMCID: PMC11104264 DOI: 10.1039/d3cs01049j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Indexed: 04/13/2024]
Abstract
Unraveling the cellular and molecular mechanisms underlying tumoral processes is fundamental for the diagnosis and treatment of cancer. In this regard, three-dimensional (3D) cancer cell models more realistically mimic tumors compared to conventional 2D cell cultures and are more attractive for performing such studies. Nonetheless, the analysis of such architectures is challenging because most available techniques are destructive, resulting in the loss of biochemical information. On the contrary, surface-enhanced Raman spectroscopy (SERS) is a non-invasive analytical tool that can record the structural fingerprint of molecules present in complex biological environments. The implementation of SERS in 3D cancer models can be leveraged to track therapeutics, the production of cancer-related metabolites, different signaling and communication pathways, and to image the different cellular components and structural features. In this review, we highlight recent progress in the use of SERS for the evaluation of cancer diagnosis and therapy in 3D tumoral models. We outline strategies for the delivery and design of SERS tags and shed light on the possibilities this technique offers for studying different cellular processes, through either biosensing or bioimaging modalities. Finally, we address current challenges and future directions, such as overcoming the limitations of SERS and the need for the development of user-friendly and robust data analysis methods. Continued development of SERS 3D bioimaging and biosensing systems, techniques, and analytical strategies, can provide significant contributions for early disease detection, novel cancer therapies, and the realization of patient-tailored medicine.
Collapse
Affiliation(s)
- Lara Troncoso-Afonso
- BioNanoPlasmonics Laboratory, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain.
- Department of Applied Chemistry, University of the Basque Country, 20018 Donostia-San Sebastián, Gipuzkoa, Spain
| | - Gail A Vinnacombe-Willson
- BioNanoPlasmonics Laboratory, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain.
| | - Clara García-Astrain
- BioNanoPlasmonics Laboratory, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales, y Nanomedicina (CIBER-BBN), Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
| | - Luis M Liz-Márzan
- BioNanoPlasmonics Laboratory, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales, y Nanomedicina (CIBER-BBN), Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
- Ikerbasque Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
31
|
Liu X, Li T, Liu Y, Sun Y, Han Y, Lee TC, Zada A, Yuan Z, Ye F, Chen J, Dang A. Hybrid plasmonic aerogel with tunable hierarchical pores for size-selective multiplexed detection of VOCs with ultrahigh sensitivity. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133893. [PMID: 38452684 DOI: 10.1016/j.jhazmat.2024.133893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/09/2024]
Abstract
Sensitive and rapid identification of volatile organic compounds (VOCs) at ppm level with complex composition is vital in various fields ranging from respiratory diagnosis to environmental safety. Herein, we demonstrate a SERS gas sensor with size-selective and multiplexed identification capabilities for VOCs by executing the pre-enrichment strategy. In particular, the macro-mesoporous structure of graphene aerogel and micropores of metal-organic frameworks (MOFs) significantly improved the enrichment capacity (1.68 mmol/g for toluene) of various VOCs near the plasmonic hotspots. On the other hand, molecular MOFs-based filters with different pore sizes could be realized by adjusting the ligands to exclude undesired interfering molecules in various detection environments. Combining these merits, graphene/AuNPs@ZIF-8 aerogel gas sensor exhibited outstanding label-free sensitivity (up to 0.1 ppm toluene) and high stability (RSD=14.8%, after 45 days storage at room temperature for 10 cycles) and allowed simultaneous identification of multiple VOCs in a single SERS measurement with high accuracy (error < 7.2%). We visualize that this work will tackle the dilemma between sensitivity and detection efficiency of gas sensors and will inspire the design of next-generation SERS technology for selective and multiplexed detection of VOCs.
Collapse
Affiliation(s)
- Xin Liu
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China; Shannxi Engineering laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Tiehu Li
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China; Shannxi Engineering laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Yuhui Liu
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China; Shannxi Engineering laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Yiting Sun
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China; Shannxi Engineering laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Yanying Han
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Tung Chun Lee
- Department of Chemistry, University College London (UCL), London WC1H 0AJ, UK; Institute for Materials Discovery, University College London (UCL), London WC1H 0AJ, UK
| | - Amir Zada
- Department of Chemistry, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Zeqi Yuan
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China; Shannxi Engineering laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Fei Ye
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China; Shannxi Engineering laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Jiahe Chen
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China; Shannxi Engineering laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Alei Dang
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China; Shannxi Engineering laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| |
Collapse
|
32
|
Jeon MJ, Kim SK, Hwang SH, Lee JU, Sim SJ. Lateral flow immunoassay based on surface-enhanced Raman scattering using pH-induced phage-templated hierarchical plasmonic assembly for point-of-care diagnosis of infectious disease. Biosens Bioelectron 2024; 250:116061. [PMID: 38278123 DOI: 10.1016/j.bios.2024.116061] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
The outbreak of emerging infectious diseases gave rise to the demand for reliable point-of-care testing methods to diagnose and manage those diseases in early onset. However, the current on-site testing methods including lateral flow immunoassay (LFIA) suffer from the inaccurate diagnostic result due to the low sensitivity. Herein, we present the surface-enhanced Raman scattering-based lateral flow immunoassay (SERS-LFIA) by introducing phage-templated hierarchical plasmonic assembly (PHPA) nanoprobes to diagnose a contagious disease. The PHPA was fabricated using gold nanoparticles (AuNPs) assembled on bacteriophage MS2, where inter-particle gap sizes can be adjusted by pH-induced morphological alteration of MS2 coat proteins to provide the maximum SERS amplification efficiency via plasmon coupling. The plasmonic probes based on the PHPA produce strong and reproducible SERS signal that leads to sensitive and reliable diagnostic results in SERS-LFIA. The developed SERS-LFIA targeting severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) antibodies for a proof of concept had <100 pg/mL detection limits with high specificity in serum, proving it as an effective diagnostic device for the infectious diseases. Clinical validation using human serum samples further confirmed that the PHPA-based SERS-LFIA can distinguish the patients with COVID-19 from healthy controls with significant accuracy. These outcomes prove that the developed SERS-LFIA biosensor can be an alternative point-of-care testing (POCT) method against the emerging infectious diseases, in combination with the commercially available portable Raman devices.
Collapse
Affiliation(s)
- Myeong Jin Jeon
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Soo-Kyung Kim
- Department of Laboratory Medicine, Ewha Womans University Mokdong Hospital, Seoul, 09785, Republic of Korea
| | - Sang-Hyun Hwang
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Jong Uk Lee
- Department of Chemical Engineering, Sunchon National University, 225 Jungang-ro, Suncheon, Jeollanam-do, 57922, Republic of Korea.
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
33
|
Le Ru EC, Auguié B. Enhancement Factors: A Central Concept during 50 Years of Surface-Enhanced Raman Spectroscopy. ACS NANO 2024; 18:9773-9783. [PMID: 38529815 DOI: 10.1021/acsnano.4c01474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
In this Perspective, we provide an overview of the core concepts around surface-enhanced Raman spectroscopy (SERS) enhancement factors (EFs), including both theoretical and experimental considerations: EF definitions, the distinction between maximum and average EFs, EF distribution and hot-spot localization, EF measurement and its order of magnitude. We then highlight some of the current challenges in this field, focusing on a selection of topics that we feel are both topical and important: analyte-capture onto a SERS substrate, surface-enhanced resonant Raman scattering, orientation/tensorial effects, and nonradiative effects. We hope this Perspective can provide a platform to reflect on the past 50 years of SERS and its future.
Collapse
Affiliation(s)
- Eric C Le Ru
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| | - Baptiste Auguié
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| |
Collapse
|
34
|
Salam MA, Alsultany FH, Al-Bermany E, Sabri MM, Abdali K, Ahmed NM. Impact of graphene oxide nanosheets and polymethyl methacrylate on nano/hybrid-based restoration dental filler composites: ultrasound behavior and antibacterial activity. J Ultrasound 2024:10.1007/s40477-023-00855-8. [PMID: 38324099 DOI: 10.1007/s40477-023-00855-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/03/2023] [Indexed: 02/08/2024] Open
Abstract
PURPOSE Graphene-polymer nanocomposites significantly impact dental filler and antibacterial applications. The study aims to overcome some problems dental filers present and improve their properties and antibacterial activity. Synthesis graphene oxide (GO) and poly (methyl methacrylate) (PMMA) were used to reinforce two types of commercial hybrid/nano-dental fillings. METHODS Developed acoustic-solution-sonication-casting methods were applied to fabricate the new graphene-polymer-dental filler nanocomposites. The structure, morphology, rheological and mechanical properties, and antibacterial of the newly fabricated filling-PMMA/ GO nanocomposites were investigated. RESULTS Fourier transform infrared (FTIR) showed a significant interaction between the filling and the additional materials. The X-ray diffraction (XRD) analysis revealed a considerable change in crystalline behavior. Optical microscope (OM) with field emission scanning electron microscopy (FESEM) pictures demonstrated a substantial change in the morphology of the samples with a homogeneous and fine dispersion of the nanomaterials in the filler matrix. Multi-frequency ultrasound mechanical properties measured the ultrasonic velocity, absorption coefficient, compressibility, bulk modulus, and other mechanical properties that notably enhanced after GO contributed up to 325% of the ultrasonic absorption coefficient compared with hybrid/nano-fillers. Rheological properties were measured as viscosity, absorption coefficient, and specific viscosity, which significantly improved after adding PMMA and incorporating GO up to 57% of the viscosity, compared with hybrid/nano-fillers. The inhibition zone of moth bacteria, such as Enterococcus faecalis and E. staph bacteria, improved after the contribution of GO nanosheets up to 46%. CONCLUSION Nanofillers nanocomposites presented better properties and inhabitances zone diameter of antibacterial.
Collapse
Affiliation(s)
- Mohanad Abdul Salam
- Department of Physics, College of Education for Pure Sciences, University of Babylon, Babylon, Iraq
- Ministry of Education, Baghdad, Iraq
| | - Forat H Alsultany
- Medical Physics Department, Al-Mustaqbal University, Babil, 51001, Iraq
| | - Ehssan Al-Bermany
- Department of Physics, College of Education for Pure Sciences, University of Babylon, Babylon, Iraq.
| | - Mohammed M Sabri
- Department of Physics, Faculty of Science and Health, Koya University, Koya, Kurdistan Region, KOY45, Iraq
| | | | - Naser Mahmoud Ahmed
- School of Physics, Universiti Sains Malaysia, 11800, George Town, Penang, Malaysia
| |
Collapse
|
35
|
Xu CX, Song P, Yu Z, Wang YH. Surface-enhanced Raman spectroscopy as a powerful method for the analysis of Chinese herbal medicines. Analyst 2023; 149:46-58. [PMID: 37966012 DOI: 10.1039/d3an01466e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Chinese herbal medicines (CHMs) derived from nature have received increasing attention and become more popular. Due to their diverse production processes, complex ingredients, and different storage conditions, it is highly desirable to develop simple, rapid, efficient and trace detection methods to ensure the drug quality. Surface-enhanced Raman spectroscopy has the advantages of being time-saving, non-destructive, usable in aqueous environments, and highly compatible with various biomolecular samples, providing a promising analytical method for CHM. In this review, we outline the major advances in the application of SERS to the identification of raw materials, detection of bioactive constituents, characterization of adulterants, and detection of contaminants. This clearly shows that SERS has strong potential in the quality control of CHM, which greatly promotes the modernization of CHM.
Collapse
Affiliation(s)
- Cai-Xia Xu
- Hangzhou Gongshu Hospital of Integrated Traditional and Western Medicine, NO.57 Sandun Road, Gongshu District, Hangzhou, Zhejiang 310011, China
| | - Pei Song
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China.
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Zhou Yu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Ya-Hao Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
36
|
Yan S, Sun J, Chen B, Wang L, Bian S, Sawan M, Tang H, Wen L, Meng G. Manipulating Coupled Field Enhancement in Slot-under-Groove Nanoarrays for Universal Surface-Enhanced Raman Scattering. ACS NANO 2023; 17:22766-22777. [PMID: 37782470 DOI: 10.1021/acsnano.3c07458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is an ultrasensitive spectroscopic technique that can identify materials and chemicals based on their inelastic light-scattering properties. In general, SERS relies on sub-10 nm nanogaps to amplify the Raman signals and achieve ultralow-concentration identification of analytes. However, large-sized analytes, such as proteins and viruses, usually cannot enter these tiny nanogaps, limiting the practical applications of SERS. Herein, we demonstrate a universal SERS platform for the reliable and sensitive identification of a wide range of analytes. The key to this success is the prepared "slot-under-groove" nanoarchitecture arrays, which could realize a strongly coupled field enhancement with a large spatial mode distribution via the hybridization of gap-surface plasmons in the upper V-groove and localized surface plasmon resonance in the lower slot. Therefore, our slot-under-groove platform can simultaneously deliver high sensitivity for small-sized analytes and the identification of large-sized analytes with a large Raman gain.
Collapse
Affiliation(s)
- Sisi Yan
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Jiacheng Sun
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
| | - Bin Chen
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Lang Wang
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
| | - Sumin Bian
- CenBRAIN Lab, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
| | - Mohamad Sawan
- CenBRAIN Lab, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
| | - Haibin Tang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Liaoyong Wen
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
| | - Guowen Meng
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| |
Collapse
|
37
|
Cheng HW, Tsai HM, Wang YL. Exploiting Purine as an Internal Standard for SERS Quantification of Purine Derivative Molecules Released by Bacteria. Anal Chem 2023; 95:16967-16975. [PMID: 37931018 PMCID: PMC10666080 DOI: 10.1021/acs.analchem.3c03259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/08/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is a highly sensitive technique used in diverse biomedical applications including rapid antibiotic susceptibility testing (AST). However, signal fluctuation in SERS, particularly the widespread of signals measured from different batches of SERS substrates, compromises its reliability and introduces potential errors in SERS-AST. In this study, we investigate the use of purine as an internal standard (IS) to recalibrate SERS signals and quantify the concentrations of two important purine derivatives, adenine and hypoxanthine, which are the most important biomarkers used in SERS-AST. Our findings demonstrate that purine IS effectively mitigates SERS signal fluctuations and enables accurate prediction of adenine and hypoxanthine concentrations across a wide range (5 orders of magnitude). Calibrations with purine as an IS outperform those without, exhibiting a 10-fold increase in predictive accuracy. Additionally, the calibration curve obtained from the first batch of SERS substrates remains effective for 64 additional substrates fabricated over a half-year period. Measurements of adenine and hypoxanthine concentrations in bacterial supernatants using SERS with purine IS closely align with the liquid chromatography-mass spectrometry results. The use of purine as an IS offers a simple and robust platform to enhance the speed and accuracy of SERS-AST, while also paving the way for in situ SERS quantification of purine derivatives released by bacteria under various stress conditions.
Collapse
Affiliation(s)
- Ho-Wen Cheng
- Molecular
Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 106319, Taiwan
- International
Graduate Program of Molecular Science and Technology, National Taiwan University, Taipei 106319, Taiwan
- Institute
of Atomic and Molecular Sciences, Academia Sinica, Taipei 106319, Taiwan
| | - Hsin-Mei Tsai
- Institute
of Atomic and Molecular Sciences, Academia Sinica, Taipei 106319, Taiwan
| | - Yuh-Lin Wang
- Institute
of Atomic and Molecular Sciences, Academia Sinica, Taipei 106319, Taiwan
| |
Collapse
|
38
|
Kanehira Y, Tapio K, Wegner G, Kogikoski S, Rüstig S, Prietzel C, Busch K, Bald I. The Effect of Nanoparticle Composition on the Surface-Enhanced Raman Scattering Performance of Plasmonic DNA Origami Nanoantennas. ACS NANO 2023; 17:21227-21239. [PMID: 37847540 DOI: 10.1021/acsnano.3c05464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
A versatile generation of plasmonic nanoparticle dimers for surface-enhanced Raman scattering (SERS) is presented by combining a DNA origami nanofork and spherical and nonspherical Au or Ag nanoparticles. Combining different nanoparticle species with a DNA origami nanofork to form DNA origami nanoantennas (DONAs), the plasmonic nanoparticle dimers can be optimized for a specific excitation wavelength in SERS. The preparation of such nanoparticle dimers is robust enough to enable the characterization of SERS intensities and SERS enhancement factors of dye-modified DONAs on a single dimer level by measuring in total several thousands of dimers from five different dimer designs, each functionalized with three different Raman reporter molecules and measured at four different excitation wavelengths. Based on these data, SERS enhancement factor (EF) distributions have been determined for each dimer design and excitation wavelengths. The structures and measurement conditions with the highest EFs are suitable for single-molecule SERS (SM-SERS), which is realized by placing single dye molecules into hot spots. We demonstrate that the probability of placing single molecules in a strongly enhancing hot spot for SM-SERS can be increased by using anisotropic nanoparticles with several sharp edges, such as nanoflowers. Combining a Ag nanoparticle with a Au particle in one dimer structure allows for a broadband excitation covering almost the whole visible range. The most versatile plasmonic dimer structure for SERS combines a spherical Ag nanoparticle with a Au nanoflower. Employing the discontinuous Galerkin time domain method, we numerically investigate the bare, symmetric dimers with respect to spectral and near-field properties, showing that, indeed, the nanoflowers induce multiple hot spots located at the edges which surpass the intensity of the spherical dimers, indicating the possibility for SM-SERS. The presented DONA structures and SERS data provide a robust basis for applying such designs as versatile SERS tags and as substrates for SM-SERS measurements.
Collapse
Affiliation(s)
- Yuya Kanehira
- Hybrid Nanostructures Lab, Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Kosti Tapio
- Hybrid Nanostructures Lab, Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Gino Wegner
- AG Theoretical Optics & Photonics, Institute of Physics, Humboldt University of Berlin, 12489 Berlin, Germany
- Institute of Condensed Matter Theory and Optics, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Sergio Kogikoski
- Hybrid Nanostructures Lab, Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Sibylle Rüstig
- Hybrid Nanostructures Lab, Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Claudia Prietzel
- Hybrid Nanostructures Lab, Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Kurt Busch
- AG Theoretical Optics & Photonics, Institute of Physics, Humboldt University of Berlin, 12489 Berlin, Germany
- Max Born Institute, 12489 Berlin, Germany
| | - Ilko Bald
- Hybrid Nanostructures Lab, Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
39
|
Warkentin CL, Frontiera RR. Quantifying the ultrafast and steady-state molecular reduction potential of a plasmonic photocatalyst. Proc Natl Acad Sci U S A 2023; 120:e2305932120. [PMID: 37874859 PMCID: PMC10623017 DOI: 10.1073/pnas.2305932120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/15/2023] [Indexed: 10/26/2023] Open
Abstract
Plasmonic materials are promising photocatalysts as they are well suited to convert light into hot carriers and heat. Hot electron transfer is suggested as the driving force in many plasmon-driven reactions. However, to date, there are no direct molecular measures of the rate and yield of plasmon-to-molecule electron transfer or energy of these electrons on the timescale of plasmon decay. Here, we use ultrafast and spectroelectrochemical surface-enhanced Raman spectroscopy to quantify electron transfer from a plasmonic substrate to adsorbed methyl viologen molecules. We observe a reduction yield of 2.4 to 3.5% on the picosecond timescale, with plasmon-induced potentials ranging from [Formula: see text]3.1 to [Formula: see text]4.5 mV. Excitingly, some of these reduced species are stabilized and persist for tens of minutes. This work provides concrete metrics toward optimizing material-molecule interactions for efficient plasmon-driven photocatalysis.
Collapse
|
40
|
Wang H, Wei Y, Wang L, Qu C, Liu H, He S. Portable SERS sensing of volatile aldehydes in alcohols by aldol condensation reaction on liquid interfacial plasmonic arrays. Chem Commun (Camb) 2023; 59:12342-12345. [PMID: 37767818 DOI: 10.1039/d3cc02228e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
An aldol condensation reaction on oil-in-water (O/W) liquid interfacial plasmonic arrays was developed for sensing volatile aldehydes in alcohols by using an aromatic aldehyde as the probe for portable SERS assays. The detection limit was 10-8 M. The substrate exhibited an RSD value of 6.9%, and the probe showed good selectivity to four common interferences.
Collapse
Affiliation(s)
- Hao Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230039, P. R. China.
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, P. R. China
| | - Yujiao Wei
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230039, P. R. China.
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, P. R. China
| | - Liming Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230039, P. R. China.
| | - Cheng Qu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, P. R. China
| | - Honglin Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, P. R. China
| | - Shengnan He
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230039, P. R. China.
| |
Collapse
|
41
|
Simas MV, Olaniyan PO, Hati S, Davis GA, Anspach G, Goodpaster JV, Manicke NE, Sardar R. Superhydrophobic Surface Modification of Polymer Microneedles Enables Fabrication of Multimodal Surface-Enhanced Raman Spectroscopy and Mass Spectrometry Substrates for Synthetic Drug Detection in Blood Plasma. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46681-46696. [PMID: 37769194 DOI: 10.1021/acsami.3c10174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Microneedles are widely used substrates for various chemical and biological sensing applications utilizing surface-enhanced Raman spectroscopy (SERS), which is indeed a highly sensitive and specific analytical approach. This article reports the fabrication of a nanoparticle (NP)-decorated microneedle substrate that is both a SERS substrate and a substrate-supported electrospray ionization (ssESI) mass spectrometry (MS) sample ionization platform. Polymeric ligand-functionalized gold nanorods (Au NRs) are adsorbed onto superhydrophobic surface-modified polydimethylsiloxane (PDMS) microneedles through the control of various interfacial interactions. We show that the chain length of the polymer ligands dictates the NR adsorption process. Importantly, assembling Au NRs onto the micrometer-diameter needle tips allows the formation of highly concentrated electromagnetic hot spots, which provide the SERS enhancement factor as high as 1.0 × 106. The micrometer-sized area of the microneedle top and high electromagnetic field enhancement of our system can be loosely compared with tip-enhanced Raman spectroscopy, where the apex of a plasmonic NP-functionalized sharp probe produces high-intensity plasmonic hot spots. Utilizing our NR-decorated microneedle substrates, the synthetic drugs fentanyl and alprazolam are analyzed with a subpicomolar limit of detection. Further analysis of drug-molecule interactions on the NR surface utilizing the Langmuir adsorption model suggests that the higher polarizability of fentanyl allows for a stronger interaction with hydrophilic polymer layers on the NR surface. We further demonstrate the translational aspect of the microneedle substrate for both SERS- and ssESI-MS-based detection of these two potent drugs in 10 drug-of-abuse (DOA) patient plasma samples with minimal preanalysis sample preparation steps. Chemometric analysis for the SERS-based detection shows a very good classification between fentanyl, alprazolam, or a mixture thereof in our selected 10 samples. Most importantly, ssESI-MS analysis also successfully identifies fentanyl or alprazolam in these same 10 DOA plasma samples. We believe that our multimodal detection approach presented herein is a highly versatile detection technology that can be applicable to the detection of any analyte type without performing any complicated sample preparation.
Collapse
Affiliation(s)
- M Vitoria Simas
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Philomena O Olaniyan
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Sumon Hati
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Gregory A Davis
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Gavin Anspach
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - John V Goodpaster
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Nicholas E Manicke
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Rajesh Sardar
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| |
Collapse
|
42
|
Liu X, Dang A, Li T, Lee TC, Sun Y, Liu Y, Ye F, Ma S, Yang Y, Deng W. Triple-enhanced Raman scattering sensors from flexible MXene/Au nanocubes platform via attenuating the coffee ring effect. Biosens Bioelectron 2023; 237:115531. [PMID: 37473547 DOI: 10.1016/j.bios.2023.115531] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023]
Abstract
Developing substrates that combine sensitivity and signal stability is a major challenge in surface enhanced Raman scattering (SERS) research. Herein, we present a flexible triple-enhanced Raman Scattering MXene/Au nanocubes (AuNCs) sensor fabricated by selective filtration of Ti3C2Tx MXene/AuNCs hybrid on the Ti3C2Tx MXene membrane and subsequent treatment with 1H,1H,2H,2H-perfluoro-octyltriethoxysilane (FOTS). The resultant superhydrophobic MXene/AuNCs-FOTS membrane not only provides the SERS substrate with environmental stability, but also imparts analyte enrichment to enhance the sensitivity (LOD = 1 × 10-14 M) and reliability (RSD = 6.41%) for Rhodamine 6G (R6G) molecules owing to the attenuation of the coffee ring effect. Moreover, the triple enhancement mechanism of combining plasmonic coupling enhancement from plasmonic coupling (EM) of nearby AuNCs at lateral and longitudinal direction of MXene/AuNCs-FOTS membrane, charge transfer (CT) from Ti3C2Tx MXene and target molecules and analyte enrichment function provides the substrate with excellent SERS performance (EF = 3.19 × 109), and allows efficient quantification of biomarkers in urine. This work could provide new insights into MXenes as building blocks for high-performance substrates and fill existing gaps in SERS techniques.
Collapse
Affiliation(s)
- Xin Liu
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China; Shannxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Alei Dang
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China; Shannxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China.
| | - Tiehu Li
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China; Shannxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China.
| | - Tung-Chun Lee
- Department of Chemistry, University College London (UCL), London, WC1H 0AJ, UK; Institute for Materials Discovery, University College London, London, WC1H 0AJ, UK
| | - Yiting Sun
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China; Shannxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Yuhui Liu
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China; Shannxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Fei Ye
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China; Shannxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Shuze Ma
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Yong Yang
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Weibin Deng
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China; Shannxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| |
Collapse
|
43
|
Xu Y, Chen R, Jiang S, Zhou L, Jiang T, Gu C, Ang DS, Petti L, Zhang Q, Shen X, Han J, Zhou J. Insights into the Semiconductor SERS Activity: The Impact of the Defect-Induced Energy Band Offset and Electron Lifetime Change. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42026-42036. [PMID: 37612785 DOI: 10.1021/acsami.3c06363] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
The significant boost in surface-enhanced Raman scattering (SERS) by the chemical enhancement of semiconducting oxides is a pivotal finding. It offers a prospective path toward high uniformity and low-cost SERS substrates. However, a detailed understanding of factors that influence the charge transfer process is still insufficient. Herein, we reveal the important role of defect-induced band offset and electron lifetime change in SERS evolution observed in a MoO3 oxide semiconductor. By modulating the density of oxygen vacancy defects using ultraviolet (UV) light irradiation, SERS is found to be improved with irradiation time in the first place, but such improvement later deteriorates for prolonged irradiation even if more defects are generated. Insights into the observed SERS evolution are provided by ultraviolet photoelectron spectroscopy and femtosecond time-resolved transient absorption spectroscopy measurements. Results reveal that (1) a suitable offset between the energy band of the substrate and the orbitals of molecules is facilitated by a certain defect density and (2) defect states with relatively long electron lifetime are essential to achieve optimal SERS performance.
Collapse
Affiliation(s)
- Yinghao Xu
- Institute of Photonics, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Renli Chen
- Department of Chemical Physics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Shenlong Jiang
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, P. R. China
| | - Lu Zhou
- Centre for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
- Institute of Applied Sciences and Intelligent Systems-ISASI, CNR, via Campi Flegrei, 34, 80078 Pozzuoli, Napoli Italy
| | - Tao Jiang
- Institute of Photonics, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Chenjie Gu
- Institute of Photonics, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Diing Shenp Ang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Lucia Petti
- Institute of Applied Sciences and Intelligent Systems-ISASI, CNR, via Campi Flegrei, 34, 80078 Pozzuoli, Napoli Italy
| | - Qun Zhang
- Department of Chemical Physics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, P. R. China
| | - Xiang Shen
- Institute of Photonics, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Jiaguang Han
- Centre for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Jun Zhou
- Institute of Photonics, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| |
Collapse
|
44
|
Wu JZ, Ghopry SA, Liu B, Shultz A. Metallic and Non-Metallic Plasmonic Nanostructures for LSPR Sensors. MICROMACHINES 2023; 14:1393. [PMID: 37512705 PMCID: PMC10386751 DOI: 10.3390/mi14071393] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023]
Abstract
Localized surface plasmonic resonance (LSPR) provides a unique scheme for light management and has been demonstrated across a large variety of metallic nanostructures. More recently, non-metallic nanostructures of two-dimensional atomic materials and heterostructures have emerged as a promising, low-cost alternative in order to generate strong LSPR. In this paper, a review of the recent progress made on non-metallic LSPR nanostructures will be provided in comparison with their metallic counterparts. A few applications in optoelectronics and sensors will be highlighted. In addition, the remaining challenges and future perspectives will be discussed.
Collapse
Affiliation(s)
- Judy Z Wu
- Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045, USA
| | - Samar Ali Ghopry
- Department of Physics, Jazan University, Jazan 45142, Saudi Arabia
| | - Bo Liu
- Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045, USA
| | - Andrew Shultz
- Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
45
|
Ying Y, Tang Z, Liu Y. Material design, development, and trend for surface-enhanced Raman scattering substrates. NANOSCALE 2023. [PMID: 37335252 DOI: 10.1039/d3nr01456h] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is a powerful and non-invasive spectroscopic technique that can provide rich and specific chemical fingerprint information for various target molecules through effective SERS substrates. In view of the strong dependence of the SERS signals on the properties of the SERS substrates, design, exploration, and construction of novel SERS-active nanomaterials with low cost and excellent performance as the SERS substrates have always been the foundation and the top priority for the development and application of the SERS technology. This review specifically focuses on the extensive progress made in the SERS-active nanomaterials and their enhancement mechanism since the first discovery of SERS on the nanostructured plasmonic metal substrates. The design principles, unique functions, and influencing factors on the SERS signals of different types of SERS-active nanomaterials are highlighted, and insight into their future challenge and development trends is also suggested. It is highly expected that this review could benefit a complete understanding of the research status of the SERS-active nanomaterials and arouse the research enthusiasm for them, leading to further development and wider application of the SERS technology.
Collapse
Affiliation(s)
- Yue Ying
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaling Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
46
|
Cao M, Chen J, Sun X, Xie F, Li B. Theoretical predictions and experimental verifications of SERS detection in colorants. RSC Adv 2023; 13:15086-15098. [PMID: 37207097 PMCID: PMC10189245 DOI: 10.1039/d3ra01584j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/25/2023] [Indexed: 05/21/2023] Open
Abstract
Synthetic colorants added during food processing not only fail to provide nutrients, but also can be harmful to human health when used in excess. To establish a simple, convenient, rapid and low-cost surface-enhanced Raman spectroscopy (SERS) detection method for colorants, an active surface-enhanced substrate of colloidal gold nanoparticles (AuNPs) was prepared in this study. The density functional theory (DFT) method of B3LYP with 6-31G(d) was applied to determine the theoretical Raman spectra of erythrosine, basic orange 2, 21 and 22, and to attribute their characteristic spectral peaks. The SERS spectra of the four colorants were pre-processed using local least squares (LLS) and morphological weighted penalized least squares (MWPLS), and multiple linear regression (MLR) models were established to quantify the four colorants in beverages. The results showed that the prepared AuNPs with a particle size of about 50 nm were reproducible and stable, with a good enhancement of the SERS spectrum of rhodamine 6G at 10-8 mol L-1. The theoretical Raman frequencies were in good agreement with the experimental Raman frequencies, and the peak position differences of the main characteristic peaks of the four colorants were within 20 cm-1. The MLR calibration models for the concentrations of the four colorants showed relative errors of prediction (REP) of 2.97-8.96%, root mean square errors of prediction (RMSEP) of 0.03-0.94, R2 of 0.973-0.999, and limits of detection of 0.06 μg mL-1. The present method could be used to quantify erythrosine, basic orange 2, 21, and 22, revealing its wide range of applications in food safety.
Collapse
Affiliation(s)
- Mingyan Cao
- School of Public Health/Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University Boya Building, University Town, Gui'an New District Guiyang 550025 China
| | - Jiamin Chen
- School of Public Health/Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University Boya Building, University Town, Gui'an New District Guiyang 550025 China
| | - Xiaohong Sun
- School of Public Health/Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University Boya Building, University Town, Gui'an New District Guiyang 550025 China
| | - Feng Xie
- School of Public Health/Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University Boya Building, University Town, Gui'an New District Guiyang 550025 China
- Guizhou Academy of Testing and Analysis Guiyang 550000 China
| | - Boyan Li
- School of Public Health/Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University Boya Building, University Town, Gui'an New District Guiyang 550025 China
| |
Collapse
|
47
|
Tian L, Chen C, Gong J, Han Q, Shi Y, Li M, Cheng L, Wang L, Dong B. The Convenience of Polydopamine in Designing SERS Biosensors with a Sustainable Prospect for Medical Application. SENSORS (BASEL, SWITZERLAND) 2023; 23:4641. [PMID: 37430555 PMCID: PMC10223239 DOI: 10.3390/s23104641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 07/12/2023]
Abstract
Polydopamine (PDA) is a multifunctional biomimetic material that is friendly to biological organisms and the environment, and surface-enhanced Raman scattering (SERS) sensors have the potential to be reused. Inspired by these two factors, this review summarizes examples of PDA-modified materials at the micron or nanoscale to provide suggestions for designing intelligent and sustainable SERS biosensors that can quickly and accurately monitor disease progression. Undoubtedly, PDA is a kind of double-sided adhesive, introducing various desired metals, Raman signal molecules, recognition components, and diverse sensing platforms to enhance the sensitivity, specificity, repeatability, and practicality of SERS sensors. Particularly, core-shell and chain-like structures could be constructed by PDA facilely, and then combined with microfluidic chips, microarrays, and lateral flow assays to provide excellent references. In addition, PDA membranes with special patterns, and hydrophobic and strong mechanical properties can be used as independent platforms to carry SERS substances. As an organic semiconductor material capable of facilitating charge transfer, PDA may possess the potential for chemical enhancement in SERS. In-depth research on the properties of PDA will be helpful for the development of multi-mode sensing and the integration of diagnosis and treatment.
Collapse
Affiliation(s)
- Lulu Tian
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China; (L.T.); (J.G.); (Q.H.)
| | - Cong Chen
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China; (L.T.); (J.G.); (Q.H.)
| | - Jing Gong
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China; (L.T.); (J.G.); (Q.H.)
| | - Qi Han
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China; (L.T.); (J.G.); (Q.H.)
| | - Yujia Shi
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China; (L.T.); (J.G.); (Q.H.)
| | - Meiqi Li
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China; (L.T.); (J.G.); (Q.H.)
| | - Liang Cheng
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China; (L.T.); (J.G.); (Q.H.)
| | - Lin Wang
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China; (L.T.); (J.G.); (Q.H.)
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130021, China
| |
Collapse
|
48
|
Zając MA, Budner B, Liszewska M, Bartosewicz B, Gutowski Ł, Weyher JL, Jankiewicz BJ. SERS performance of GaN/Ag substrates fabricated by Ag coating of GaN platforms. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:552-564. [PMID: 37179592 PMCID: PMC10167859 DOI: 10.3762/bjnano.14.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
The results of comparative studies on the fabrication and characterization of GaN/Ag substrates using pulsed laser deposition (PLD) and magnetron sputtering (MS) and their evaluation as potential substrates for surface-enhanced Raman spectroscopy (SERS) are reported. Ag layers of comparable thicknesses were deposited using PLD and MS on nanostructured GaN platforms. All fabricated SERS substrates were examined regarding their optical properties using UV-vis spectroscopy and regarding their morphology using scanning electron microscopy. SERS properties of the fabricated GaN/Ag substrates were evaluated by measuring SERS spectra of 4-mercaptobenzoic acid molecules adsorbed on them. For all PLD-made GaN/Ag substrates, the estimated enhancement factors were higher than for MS-made substrates with a comparable thickness of the Ag layer. In the best case, the PLD-made GaN/Ag substrate exhibited an approximately 4.4 times higher enhancement factor than the best MS-made substrate.
Collapse
Affiliation(s)
- Magdalena A Zając
- Institute of High-Pressure Physics, Polish Academy of Sciences, Sokołowska 29/37, 01-142 Warsaw, Poland
- Faculty of Advanced Technologies and Chemistry, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
| | - Bogusław Budner
- Institute of Optoelectronics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
| | - Malwina Liszewska
- Institute of Optoelectronics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
| | - Bartosz Bartosewicz
- Institute of Optoelectronics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
| | - Łukasz Gutowski
- Institute of Optoelectronics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
| | - Jan L Weyher
- Institute of High-Pressure Physics, Polish Academy of Sciences, Sokołowska 29/37, 01-142 Warsaw, Poland
| | - Bartłomiej J Jankiewicz
- Institute of Optoelectronics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
| |
Collapse
|
49
|
Falamas A, Cuibus D, Tosa N, Brezestean I, Muntean CM, Milenko K, Vereshchagina E, Moldovan R, Bodoki E, Farcau C. Toward microfluidic SERS and EC-SERS applications via tunable gold films over nanospheres. DISCOVER NANO 2023; 18:73. [PMID: 37382835 PMCID: PMC10214914 DOI: 10.1186/s11671-023-03851-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/25/2023] [Indexed: 06/30/2023]
Abstract
Many promising applications of surface-enhanced Raman scattering (SERS), such as microfluidic SERS and electrochemical (EC)-SERS, require immersion of plasmonic nanostructured films in aqueous media. Correlational investigations of the optical response and SERS efficiency of solid SERS substrates immersed in water are absent in the literature. This work presents an approach for tuning the efficiency of gold films over nanospheres (AuFoN) as SERS substrates for applications in aqueous environment. AuFoN are fabricated by convective self-assembly of colloidal polystyrene nanospheres of various diameters (300-800 nm), followed by magnetron sputtering of gold films. The optical reflectance of the AuFoN and Finite-Difference Time-Domain simulations in both water and air reveal the dependence of the surface plasmon band on nanospheres' diameter and environment. SERS enhancement of a common Raman reporter on AuFoN immersed in water is analyzed under 785 nm laser excitation, but also using the 633 nm line for the films in air. The provided correlations between the SERS efficiency and optical response in both air and water indicate the best structural parameters for high SERS efficiency and highlight a route for predicting and optimizing the SERS response of AuFoN in water based on the behavior in air, which is more practical. Finally, the AuFoN are successfully tested as electrodes for EC-SERS detection of the thiabendazole pesticide and as SERS substrates integrated in a flow-through microchannel format. The obtained results represent an important step toward the development of microfluidic EC-SERS devices for sensing applications.
Collapse
Grants
- RO-NO-2019-0517 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- RO-NO-2019-0517 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- RO-NO-2019-0517 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- RO-NO-2019-0517 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- RO-NO-2019-0517 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- RO-NO-2019-0517 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- RO-NO-2019-0517 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- RO-NO-2019-0517 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- RO-NO-2019-0517 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- RO-NO-2019-0517 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
Collapse
Affiliation(s)
- Alexandra Falamas
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293, Cluj-Napoca, Romania
| | - Denisa Cuibus
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293, Cluj-Napoca, Romania
| | - Nicoleta Tosa
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293, Cluj-Napoca, Romania
| | - Ioana Brezestean
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293, Cluj-Napoca, Romania
| | - Cristina M Muntean
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293, Cluj-Napoca, Romania
| | - Karolina Milenko
- Department of Smart Sensors and Microsystems, SINTEF Digital, Gaustadalléen 23C, 0373, Oslo, Norway
| | - Elizaveta Vereshchagina
- Department of Smart Sensors and Microsystems, SINTEF Digital, Gaustadalléen 23C, 0373, Oslo, Norway
| | - Rebeca Moldovan
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Hațieganu" University of Medicine and Pharmacy, 4 Louis Pasteur, 400349, Cluj-Napoca, Romania
| | - Ede Bodoki
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Hațieganu" University of Medicine and Pharmacy, 4 Louis Pasteur, 400349, Cluj-Napoca, Romania
| | - Cosmin Farcau
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293, Cluj-Napoca, Romania.
- Institute for Interdisciplinary Research in Nano-Bio-Sciences, Babes-Bolyai University, 42 T Laurian, 400271, Cluj-Napoca, Romania.
| |
Collapse
|
50
|
Zhang M, Yang J, Yang L, Li Z. A robust SERS calibration using a pseudo-internal intensity reference. NANOSCALE 2023; 15:7403-7409. [PMID: 36970765 DOI: 10.1039/d2nr07161d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Surface-enhanced Raman scattering (SERS) with high molecular sensitivity and specificity is a powerful nondestructive analytical tool. Since its discovery, SERS measurements have suffered from the vulnerability of calibration curve, which makes quantification analysis a great challenge. In this work, we report a robust calibration method by introducing a referenced measurement as the intensity standard. This intensity reference not only has the advantages of the internal standard method such as reflecting the SERS substrate enhancement, but also avoids the introduction of competing adsorption between target molecules and the internal standard. Based on the normalized calibration curve, the magnitude of the R6G concentration can be well evaluated from 10-7 M to 10-12 M. Furthermore, we demonstrate that this pseudo-internal standard method can also work well using a different type of molecule as the reference. This SERS calibration method would be beneficial for the development of quantitative SERS analysis.
Collapse
Affiliation(s)
- Meng Zhang
- Beijing Key Laboratory of Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University, Beijing 100048, China.
| | - Jingran Yang
- Beijing Key Laboratory of Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University, Beijing 100048, China.
| | - Longkun Yang
- Beijing Key Laboratory of Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University, Beijing 100048, China.
| | - Zhipeng Li
- Beijing Key Laboratory of Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University, Beijing 100048, China.
| |
Collapse
|