1
|
Tellegen AR, Beukers M, Meij BP, Tryfonidou MA, Veraa S. Prevalence of presumed endplate junction failure at the lumbosacral intervertebral junction in dogs on computed tomography. Vet Radiol Ultrasound 2024; 65:567-577. [PMID: 39387314 DOI: 10.1111/vru.13398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/21/2024] [Accepted: 05/29/2024] [Indexed: 10/15/2024] Open
Abstract
Lumbosacral intervertebral disc herniation (IVDH) is a common cause of lower back pain in dogs and humans. In humans, the vertebral endplate to annulus fibrosus (AF) attachment was implicated as an alternative failure site besides rupture through the dorsal AF (AFF). Endplate junction failure (EPJF) is characterized by IVDH, accompanied by endplate irregularities (type A), rim avulsions (type B), or larger bony avulsions on one (type C) or both endplates (type D), associated with an adjacent endplate defect. This retrospective study reports the CT prevalence of presumed EPJF in dogs and its associations with signalment and other lumbosacral CT abnormalities. CT scans, including the lumbosacral spine of dogs obtained at two institutions, were assessed, yielding 324 scans. Presumed EPJF was found in 69 dogs (21%) and AFF in 68 dogs (21%), commonly at the caudal endplate of the last lumbar vertebra (71%). The remaining 187 dogs did not show presumed EPJF or AFF. Presumed EPJF type A occurred in 49/69, type B in 19/69, and type C in 1/69 dogs. Univariable logistic regression showed that presumed EPJF was associated with significantly higher IVDH grades than AFF. In the multiple regression model, presumed EPJF and AFF remained associated with increasing age and spondylosis deformans. Presumed EPJF was associated with vertebral endplate sclerosis and AFF with zygapophyseal joint osteoarthritis. In conclusion, presumed EPJF was observed on CT in 21% of dogs with lumbosacral IVDH. Prospective studies correlating EPJF on CT with clinical, surgical, and histopathological findings are needed for a better understanding of the underlying pathology and clinical relevance.
Collapse
Affiliation(s)
- Anna R Tellegen
- Division of Diagnostic Imaging, Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht, The Netherlands
| | - Martijn Beukers
- Evidensia Dierenziekenhuis Barendrecht, Barendrecht, The Netherlands
| | - Björn P Meij
- Division of Surgery of Companion Animals, Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht, The Netherlands
| | - Marianna A Tryfonidou
- Division of Surgery of Companion Animals, Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht, The Netherlands
| | - Stefanie Veraa
- Division of Diagnostic Imaging, Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht, The Netherlands
| |
Collapse
|
2
|
Tandon D, Kubinyi E, Sándor S, Faughnan H, Miklósi Á, vonHoldt BM. Canine hyper-sociability structural variants associated with altered three-dimensional chromatin state. BMC Genomics 2024; 25:767. [PMID: 39112925 PMCID: PMC11305043 DOI: 10.1186/s12864-024-10614-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/11/2024] [Indexed: 08/11/2024] Open
Abstract
Strong selection on complex traits can lead to skewed trait means and reduced trait variability in populations. An example of this phenomenon can be evidenced in allele frequency changes and skewed trait distributions driven by persistent human-directed selective pressures in domesticated species. Dog domestication is linked to several genomic variants; however, the functional impacts of these variants may not always be straightforward when found in non-coding regions of the genome. Four polymorphic transposable elements (TE) found within non-coding sites along a 5 Mb region on canine CFA6 have evolved due to directional selection associated with heightened human-directed hyper-sociability in domesticated dogs. We found that the polymorphic TE in intron 17 of the canine GTF2I gene, which was previously reported to be negatively correlated with canid human-directed hyper-sociability, is associated with altered chromatin looping and hence distinct cis-regulatory landscapes. We reported supporting evidence of an E2F1-DNA binding peak concordant with the altered loop and higher expression of GTF2I exon 18, indicative of alternative splicing. Globally, we discovered differences in pathways regulating the extra-cellular matrix with respect to TE copy number. Overall, we reported evidence suggesting an intriguing molecular convergence between the emergence of hypersocial behaviors in dogs and the same genes that, when hemizygous, produce human Williams Beuren Syndrome characterized by cranio-facial defects and heightened social behaviors. Our results additionally emphasize the often-overlooked potential role of chromatin architecture in social evolution.
Collapse
Affiliation(s)
- Dhriti Tandon
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.
| | - Enikő Kubinyi
- Department of Ethology, ELTE Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE Lendület "Momentum" Companion Animal Research Group, Budapest, Hungary
- ELTE NAP Canine Brain Research Group, Budapest, Hungary
| | - Sára Sándor
- MTA-ELTE Lendület "Momentum" Companion Animal Research Group, Budapest, Hungary
| | - Hannah Faughnan
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Ádám Miklósi
- Department of Ethology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Bridgett M vonHoldt
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
3
|
Kozłowska-Masłoń J, Ciomborowska-Basheer J, Kubiak MR, Makałowska I. Evolution of retrocopies in the context of HUSH silencing. Biol Direct 2024; 19:60. [PMID: 39095906 PMCID: PMC11295320 DOI: 10.1186/s13062-024-00507-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
Retrotransposition is one of the main factors responsible for gene duplication and thus genome evolution. However, the sequences that undergo this process are not only an excellent source of biological diversity, but in certain cases also pose a threat to the integrity of the DNA. One of the mechanisms that protects against the incorporation of mobile elements is the HUSH complex, which is responsible for silencing long, intronless, transcriptionally active transposed sequences that are rich in adenine on the sense strand. In this study, broad sets of human and porcine retrocopies were analysed with respect to the above factors, taking into account evolution of these molecules. Analysis of expression pattern, genomic structure, transcript length, and nucleotide substitution frequency showed the strong relationship between the expression level and exon length as well as the protective nature of introns. The results of the studies also showed that there is no direct correlation between the expression level and adenine content. However, protein-coding retrocopies, which have a lower adenine content, have a significantly higher expression level than the adenine-rich non-coding but expressed retrocopies. Therefore, although the mechanism of HUSH silencing may be an important part of the regulation of retrocopy expression, it is one component of a more complex molecular network that remains to be elucidated.
Collapse
Affiliation(s)
- Joanna Kozłowska-Masłoń
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, Poznań, Poland
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Garbary 15, Poznań, Poland
| | - Joanna Ciomborowska-Basheer
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, Poznań, Poland
- Laboratory of Nature Education and Conservation, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, Poznań, Poland
| | - Magdalena Regina Kubiak
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, Poznań, Poland
| | - Izabela Makałowska
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, Poznań, Poland.
| |
Collapse
|
4
|
Buckley RM, Ostrander EA. Large-scale genomic analysis of the domestic dog informs biological discovery. Genome Res 2024; 34:811-821. [PMID: 38955465 PMCID: PMC11293549 DOI: 10.1101/gr.278569.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Recent advances in genomics, coupled with a unique population structure and remarkable levels of variation, have propelled the domestic dog to new levels as a system for understanding fundamental principles in mammalian biology. Central to this advance are more than 350 recognized breeds, each a closed population that has undergone selection for unique features. Genetic variation in the domestic dog is particularly well characterized compared with other domestic mammals, with almost 3000 high-coverage genomes publicly available. Importantly, as the number of sequenced genomes increases, new avenues for analysis are becoming available. Herein, we discuss recent discoveries in canine genomics regarding behavior, morphology, and disease susceptibility. We explore the limitations of current data sets for variant interpretation, tradeoffs between sequencing strategies, and the burgeoning role of long-read genomes for capturing structural variants. In addition, we consider how large-scale collections of whole-genome sequence data drive rare variant discovery and assess the geographic distribution of canine diversity, which identifies Asia as a major source of missing variation. Finally, we review recent comparative genomic analyses that will facilitate annotation of the noncoding genome in dogs.
Collapse
Affiliation(s)
- Reuben M Buckley
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Elaine A Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
5
|
Ostrander EA. Dogs and their genes: what ever will they think of next? Genetics 2024; 227:iyae079. [PMID: 39255411 DOI: 10.1093/genetics/iyae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
The Edward Novitski Prize recognizes creativity and intellectual ingenuity in the solution of problems in genetics research. The prize honors scientific experimental work-either a single experimental accomplishment or a body of work. Ostrander is recognized for work developing the domestic dog as an experimental system for solving fundamental biological problems and identifying genetic sequences of relevance to human health and disease. Including work on disease and behavioral health, Ostrander has shown a dedication to creative methods for understanding canine genetics and the value of translating research organisms to human genetics.
Collapse
Affiliation(s)
- Elaine A Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Cars BS, Kessler C, Hoffman EA, Côté SD, Koelsch D, Shafer ABA. Island demographics and trait associations in white-tailed deer. Heredity (Edinb) 2024; 133:1-10. [PMID: 38802598 PMCID: PMC11222433 DOI: 10.1038/s41437-024-00685-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
When a population is isolated and composed of few individuals, genetic drift is the paramount evolutionary force and results in the loss of genetic diversity. Inbreeding might also occur, resulting in genomic regions that are identical by descent, manifesting as runs of homozygosity (ROHs) and the expression of recessive traits. Likewise, the genes underlying traits of interest can be revealed by comparing fixed SNPs and divergent haplotypes between affected and unaffected individuals. Populations of white-tailed deer (Odocoileus virginianus) on islands of Saint Pierre and Miquelon (SPM, France) have high incidences of leucism and malocclusions, both considered genetic defects; on the Florida Keys islands (USA) deer exhibit smaller body sizes, a polygenic trait. Here we aimed to reconstruct island demography and identify the genes associated with these traits in a pseudo case-control design. The two island populations showed reduced levels of genomic diversity and a build-up of deleterious mutations compared to mainland deer; there was also significant genome-wide divergence in Key deer. Key deer showed higher inbreeding levels, but not longer ROHs, consistent with long-term isolation. We identified multiple trait-related genes in ROHs including LAMTOR2 which has links to pigmentation changes, and NPVF which is linked to craniofacial abnormalities. Our mixed approach of linking ROHs, fixed SNPs and haplotypes matched a high number (~50) of a-priori body size candidate genes in Key deer. This suite of biomarkers and candidate genes should prove useful for population monitoring, noting all three phenotypes show patterns consistent with a complex trait and non-Mendelian inheritance.
Collapse
Affiliation(s)
- Brooklyn S Cars
- Environmental and Life Sciences Graduate Program, Trent University, 2140 East Bank Drive, Peterborough, ON, K9J 7B8, Canada
- Department of Forensics, Trent University, 2140 East Bank Drive, Peterborough, ON, K9J 7B8, Canada
| | - Camille Kessler
- Environmental and Life Sciences Graduate Program, Trent University, 2140 East Bank Drive, Peterborough, ON, K9J 7B8, Canada
| | - Eric A Hoffman
- Department of Biology, University of Central Florida, 4000, Central Florida Blvd, Orlando, FL, USA
| | - Steeve D Côté
- Département de Biologie and Centre d'Études Nordiques, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Daniel Koelsch
- Fédération des chasseurs de Saint-Pierre et Miquelon, Saint-Pierre et Miquelon, France
- Direction des Territoires de l'Alimentation et de la Mer, service Biodiversité, Saint-Pierre et Miquelon, France
| | - Aaron B A Shafer
- Environmental and Life Sciences Graduate Program, Trent University, 2140 East Bank Drive, Peterborough, ON, K9J 7B8, Canada.
- Department of Forensics, Trent University, 2140 East Bank Drive, Peterborough, ON, K9J 7B8, Canada.
| |
Collapse
|
7
|
Shelton GD, Mickelson JR, Friedenberg SG, Cullen JN, Mehra JM, Guo LT, Minor KM. Multi-Allelic Mitochondrial DNA Deletions in an Adult Dog with Chronic Weakness, Exercise Intolerance and Lactic Acidemia. Animals (Basel) 2024; 14:1946. [PMID: 38998058 PMCID: PMC11240360 DOI: 10.3390/ani14131946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
(1) Background: An adult dog was presented to a board-certified veterinary neurologist for evaluation of chronic weakness, exercise intolerance and lactic acidemia. (2) Methods: A mitochondrial myopathy was diagnosed based on the histological and histochemical phenotype of numerous COX-negative muscle fibers. Whole-genome sequencing established the presence of multiple extended deletions in the mitochondrial DNA (mtDNA), with the highest prevalence between the 1-11 kb positions of the approximately 16 kb mitochondrial chromosome. Such findings are typically suggestive of an underlying nuclear genome variant affecting mitochondrial replication, repair, or metabolism. (3) Results: Numerous variants in the nuclear genome unique to the case were identified in the whole-genome sequence data, and one, the insertion of a DYNLT1 retrogene, whose parent gene is a regulator of the mitochondrial voltage-dependent anion channel (VDAC), was considered a plausible causal variant. (4) Conclusions: Here, we add mitochondrial deletion disorders to the spectrum of myopathies affecting adult dogs.
Collapse
Affiliation(s)
- G Diane Shelton
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92093-0709, USA
| | - James R Mickelson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Steven G Friedenberg
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Jonah N Cullen
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Jaya M Mehra
- VCA Animal Care Center of Sonoma County, Rohnert Park, CA 94928, USA
| | - Ling T Guo
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92093-0709, USA
| | - Katie M Minor
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
8
|
Murgiano L, Banjeree E, O'Connor C, Miyadera K, Werner P, Niggel JK, Aguirre GD, Casal ML. A naturally occurring canine model of syndromic congenital microphthalmia. G3 (BETHESDA, MD.) 2024; 14:jkae067. [PMID: 38682429 DOI: 10.1093/g3journal/jkae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/13/2024] [Indexed: 05/01/2024]
Abstract
In humans, the prevalence of congenital microphthalmia is estimated to be 0.2-3.0 for every 10,000 individuals, with nonocular involvement reported in ∼80% of cases. Inherited eye diseases have been widely and descriptively characterized in dogs, and canine models of ocular diseases have played an essential role in unraveling the pathophysiology and development of new therapies. A naturally occurring canine model of a syndromic disorder characterized by microphthalmia was discovered in the Portuguese water dog. As nonocular findings included tooth enamel malformations, stunted growth, anemia, and thrombocytopenia, we hence termed this disorder Canine Congenital Microphthalmos with Hematopoietic Defects. Genome-wide association study and homozygosity mapping detected a 2 Mb candidate region on canine chromosome 4. Whole-genome sequencing and mapping against the Canfam4 reference revealed a Short interspersed element insertion in exon 2 of the DNAJC1 gene (g.74,274,883ins[T70]TGCTGCTTGGATT). Subsequent real-time PCR-based mass genotyping of a larger Portuguese water dog population found that the homozygous mutant genotype was perfectly associated with the Canine Congenital Microphthalmos with Hematopoietic Defects phenotype. Biallelic variants in DNAJC21 are mostly found to be associated with bone marrow failure syndrome type 3, with a phenotype that has a certain degree of overlap with Fanconi anemia, dyskeratosis congenita, Shwachman-Diamond syndrome, Diamond-Blackfan anemia, and reports of individuals showing thrombocytopenia, microdontia, and microphthalmia. We, therefore, propose Canine Congenital Microphthalmos with Hematopoietic Defects as a naturally occurring model for DNAJC21-associated syndromes.
Collapse
Affiliation(s)
- Leonardo Murgiano
- Department of Clinical Sciences & Advanced Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Sylvia M. Van Sloun Laboratory for Canine Genomic Analysis, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Esha Banjeree
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cynthia O'Connor
- Section of Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- East Bridgewater Veterinary Hospitla, East Bridgewater, MA 02333, USA
| | - Keiko Miyadera
- Department of Clinical Sciences & Advanced Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Petra Werner
- Section of Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Genetic Diagnostic Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica K Niggel
- Department of Clinical Sciences & Advanced Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Sylvia M. Van Sloun Laboratory for Canine Genomic Analysis, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gustavo D Aguirre
- Department of Clinical Sciences & Advanced Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Sylvia M. Van Sloun Laboratory for Canine Genomic Analysis, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Margret L Casal
- Department of Clinical Sciences & Advanced Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Section of Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
Sweetalana, Mooney JA, Szpiech ZA. Genotypic and phenotypic consequences of domestication in dogs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592072. [PMID: 38746159 PMCID: PMC11092585 DOI: 10.1101/2024.05.01.592072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Runs of homozygosity (ROH) are genomic regions that arise when two copies of an identical ancestral haplotype are inherited from parents with a recent common ancestor. In this study, we performed a novel comprehensive analysis to infer genetic diversity among dogs and quantified the association between ROH and non-disease phenotypes. We found distinct patterns of genetic diversity across clades of breed dogs and elevated levels of long ROH, compared to non- domesticated dogs. These high levels of F ROH (inbreeding coefficient) are a consequence of recent inbreeding among domesticated dogs during breed establishment. We identified statistically significant associations between F ROH and height, weight, lifespan, muscled, white head, white chest, furnish, and length of fur. After correcting for population structure, we identified more than 45 genes across the three examined quantitative traits that exceeded the threshold for suggestive significance, indicating significant polygenic inheritance for the complex quantitative phenotypes in dogs.
Collapse
|
10
|
Freyer J, Labadie JD, Huff JT, Denyer M, Forman OP, Chodroff Foran R, Donner J. Association of FGF4L1 Retrogene Insertion with Prolapsed Gland of the Nictitans (Cherry Eye) in Dogs. Genes (Basel) 2024; 15:198. [PMID: 38397188 PMCID: PMC10887708 DOI: 10.3390/genes15020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Cherry eye is the common name for prolapse of the nictitans gland, a tear-producing gland situated under the third eyelid of dogs. Cherry eye is characterized by a red fleshy protuberance in the corner of the eye, resembling a cherry. This protrusion is a displacement of the normal gland of the third eyelid, thought to be caused by a defect in the connective tissue that secures the gland in place. Options for treatment may include anti-inflammatory medications in mild cases, but surgical replacement of the gland is usually indicated. Cherry eye is most often seen in dogs under the age of two years, with certain breeds having a higher incidence, suggesting a potential genetic association. Integration of panel genetic testing into routine clinical practice allows for the generation of large numbers of genotyped individuals paired with clinical records and enables the investigation of common disorders using a genome-wide association study (GWAS) approach at scale. In this investigation, several thousand cases and controls for cherry eye in both purebred dogs and mixed breeds are used for a large-scale GWAS, revealing a single peak of genome-wide significance on canine chromosome 18, directly at the location of the previously identified FGF4 insertion known to cause chondrodysplasia in several breeds.
Collapse
Affiliation(s)
- Jamie Freyer
- Wisdom Panel, Mars Petcare Science and Diagnostics, Portland, OR 97209, USA; (J.D.L.); (J.T.H.); (R.C.F.)
| | - Julia D. Labadie
- Wisdom Panel, Mars Petcare Science and Diagnostics, Portland, OR 97209, USA; (J.D.L.); (J.T.H.); (R.C.F.)
| | - Jason T. Huff
- Wisdom Panel, Mars Petcare Science and Diagnostics, Portland, OR 97209, USA; (J.D.L.); (J.T.H.); (R.C.F.)
| | - Michael Denyer
- Wisdom Panel, Mars Petcare Science and Diagnostics, Waltham on the Wolds, Leicestershire LE14 4RS, UK; (M.D.); (O.P.F.)
| | - Oliver P. Forman
- Wisdom Panel, Mars Petcare Science and Diagnostics, Waltham on the Wolds, Leicestershire LE14 4RS, UK; (M.D.); (O.P.F.)
| | - Rebecca Chodroff Foran
- Wisdom Panel, Mars Petcare Science and Diagnostics, Portland, OR 97209, USA; (J.D.L.); (J.T.H.); (R.C.F.)
| | - Jonas Donner
- Wisdom Panel, Mars Petcare Science and Diagnostics, 00581 Helsinki, Finland;
| |
Collapse
|
11
|
Thatcher H, Targett M, Alcoverro E, Stee K, Schofield I, Lowrie M, Gomes SA. Incidence and clinical characterisation of thoracolumbar intervertebral disc extrusions in Basset Hounds compared with Dachshunds. Vet Rec 2024; 194:e3212. [PMID: 37455254 DOI: 10.1002/vetr.3212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/19/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND The Basset Hound is the largest chondrodystrophic breed predisposed to thoracolumbar intervertebral disc extrusion (TL-IVDE). However, literature describing this particular breed in terms of incidence, signalment, anatomical location, clinical severity and short-term outcome of TL-IVDE is lacking. METHODS The medical histories of Dachshunds and Basset Hounds presenting to three neurology departments were retrospectively assessed. Information collected for each dog included signalment, whether it had received a diagnosis of TL-IVDE, duration of clinical signs, affected discs and anatomical region and neurological grading at presentation and discharge. RESULTS A total of 270 Dachshunds and 188 Basset Hounds were included for incidence analysis. Of these, 154 Dachshunds and 68 Basset Hounds with confirmed TL-IVDE were included for signalment, anatomical location, clinical severity and short-term outcome analysis. Statistical analysis indicated a significantly higher incidence of TL-IVDE in Dachshunds than in Basset Hounds (77.4% vs. 36.2%, p < 0.05). Basset Hounds presenting to a neurology department were older (median 87.5 months vs. 66.5 months), had a greater proportion of midlumbar IVDE (L2-L5) and were more frequently ambulatory at discharge than Dachshunds. Only one Basset Hound presented as paraplegic without nociception, compared with 16 Dachshunds (1.5% vs. 10.4%). LIMITATIONS The study had a retrospective design and included multicentric non-standardised cases. CONCLUSION TL-IVDE incidence was higher in Dachshunds than in Basset Hounds. Basset Hounds were older at presentation, frequently affected more caudally in the vertebral column and more frequently ambulatory at discharge than Dachshunds. The differences found in this study could aid in the development of preventive strategies.
Collapse
Affiliation(s)
| | - Mike Targett
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough, UK
| | | | - Kimberley Stee
- Department of Small Animal, Faculty of Veterinary Medicine, University of Ghent, Merelbeke, Belgium
| | | | - Mark Lowrie
- Dovecote Veterinary Hospital, Castle Donington, UK
| | | |
Collapse
|
12
|
Embersics C, Bannasch D, Batcher K, Boudreau EC, Church M, Miller A, Platt S, Koehler J, Olby N, Rossmeisl J, Rissi D, Grahn R, Donner J, Dickinson PJ. Association of the FGF4L2 retrogene with fibrocartilaginous embolic myelopathy in dogs. J Vet Intern Med 2024; 38:258-267. [PMID: 37916855 PMCID: PMC10800192 DOI: 10.1111/jvim.16925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Fibrocartilaginous embolic myelopathy (FCE) is a well-documented condition in dogs although rarely reported in chondrodystrophic breeds. Genetic associations have not been defined. OBJECTIVES Define the association of the chondrodystrophy-associated FGF4L2 retrogene with histopathologically confirmed cases of FCE. ANIMALS Ninety-eight dogs with a histopathologic diagnosis of FCE. METHODS Retrospective multicenter study. Dogs were genotyped for the FGF4L2 and FGF4L1 retrogenes using DNA extracted from formalin-fixed, paraffin-embedded tissue. Associations between breed, FCE and retrogene status were investigated with reference to a hospital population and known breed and general population allele frequencies. RESULTS FGF4L2 genotype was defined in 89 FCE cases. Fibrocartilaginous embolic myelopathy was present in 22 dogs from FGF4L2-segregating breeds with allele frequencies of ≥5%; however, all dogs were wild type. Two Labrador retrievers with FCE carried FGF4L2 alleles. Frequency of the FGF4L2 allele was significantly (P < .001) and negatively associated with FCE relative to predicted hospital-population dogs. FCE was overrepresented in Boxer, Great Dane, Yorkshire Terrier, Bernese Mountain Dog, Miniature Schnauzer, Rottweiler, and Shetland Sheepdog breeds. CONCLUSIONS AND CLINICAL IMPORTANCE Study data based on genotypically and histopathologically defined cases support the historical observation that FCE is uncommon in chondrodystrophic dog breeds. FGF4 plays an important role in angiogenesis and vascular integrity; anatomical studies comparing chondrodystrophic and non-chondrodystrophic dogs might provide insight into the pathogenesis of FCE.
Collapse
Affiliation(s)
- Colleen Embersics
- Veterinary Medical Teaching Hospital, UC Davis School of Veterinary MedicineUniversity of California, DavisDavisCaliforniaUSA
| | - Danika Bannasch
- Department of Population Health and ReproductionUniversity of California, DavisDavisCaliforniaUSA
| | - Kevin Batcher
- Department of Population Health and ReproductionUniversity of California, DavisDavisCaliforniaUSA
| | - Elizabeth C. Boudreau
- Department of Small Animal Clinical SciencesTexas A&M School of Veterinary Medicine & Biomedical SciencesCollege StationTexasUSA
| | - Molly Church
- Department of PathobiologyUniversity of Pennsylvania, School of Veterinary MedicinePhiladelphiaPennsylvaniaUSA
| | - Andrew Miller
- Department of Biomedical SciencesCornell University College of Veterinary MedicineIthicaNew YorkUSA
| | | | - Jey Koehler
- Department of PathobiologyAuburn University College of Veterinary MedicineAuburnAlabamaUSA
| | - Natasha Olby
- Department of Clinical SciencesNorth Carolina State University College of Veterinary MedicineRaleighNorth CarolinaUSA
| | - John Rossmeisl
- Department of Small Animal Clinical SciencesVirginia‐Maryland College of Veterinary MedicineBlacksburgVirginiaUSA
| | - Daniel Rissi
- Department of PathologyUniversity of Georgia College of Veterinary MedicineAthensGeorgiaUSA
| | - Robert Grahn
- Veterinary Genetics LaboratoryUniversity of California, DavisDavisCaliforniaUSA
| | - Jonas Donner
- Wisdom Panel Research Team, Wisdom PanelHelsinkiFinland
| | - Peter J. Dickinson
- Department of Surgical and Radiological SciencesUniversity of California, DavisDavisCaliforniaUSA
| |
Collapse
|
13
|
Reunanen VLJ, Jokinen TS, Hytönen MK, Junnila JJT, Lappalainen AK. Evaluation of intervertebral disc degeneration in young adult asymptomatic Dachshunds with magnetic resonance imaging and radiography. Acta Vet Scand 2023; 65:42. [PMID: 37752484 PMCID: PMC10523717 DOI: 10.1186/s13028-023-00702-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Dachshunds have a high prevalence of intervertebral disc disease (IVDD) to which they are predisposed due to early intervertebral disc (IVD) degeneration and calcification. Moreover, the recently found 12-FGF4 retrogene (RG) is associated with calcified discs visible on radiographs (CDVR) and IVDD. Earlier studies suggest that all IVDs of one-year-old Dachshunds show signs of degeneration. This prospective, analytical, blinded study aimed to investigate the extent and distribution of IVD degeneration in young adult (24-31 months) asymptomatic Dachshunds (n = 21) hypothesizing that not all IVDs of two-year-old Dachshunds are degenerated. Another aim was to explore the correlations between IVD degeneration evaluated with magnetic resonance imaging (MRI), the number of CDVR, and the dog's 12-FGF4RG status. The study protocol included grading the CDVR on spinal radiographs, grading the IVD degeneration on T2-weighted sagittal and transverse high-field MR images of all IVDs (n = 546), and 12-FGF4RG variant genotyping. RESULTS Of all IVDs evaluated, 2% (n = 11) were normal based on MRI grading. Despite the study population having moderately degenerated IVDs (median MRI grade 3), there was also variation in the degree of IVD degeneration between individuals and in the distribution of IVD degeneration between different vertebral regions. The number of CDVR correlated significantly with the magnitude of IVD degeneration based on MRI evaluation and with the 12-FGF4RG genotype. The odds for being 12-FGF4RG homozygous were higher for Dachshunds with CDVR. However, the 12-FGF4RG variant did not alone explain the phenotypic variation in IVD degeneration. CONCLUSIONS The number of CDVR is a valid indicator of overall IVD degeneration, as it correlates with MRI-based IVD grading. Also, as the extent and distribution of IVD degeneration varies between individual Dachshunds, selective breeding against IVDD using radiographic screening and 12-FGF4RG variant genotyping is possible.
Collapse
Affiliation(s)
| | - Tarja Susanna Jokinen
- Department of Equine and Small Animal Medicine, University of Helsinki, Helsinki, 00014, Finland
| | - Marjo Kristiina Hytönen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, 00014, Finland
- Folkhälsan Research Center, Helsinki, 00290, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, 00014, Finland
| | | | - Anu Katriina Lappalainen
- Department of Equine and Small Animal Medicine, University of Helsinki, Helsinki, 00014, Finland
| |
Collapse
|
14
|
Mercuri RLV, Conceição HB, Guardia GDA, Goldstein G, Vibranovski MD, Hinske LC, Galante PAF. Retro-miRs: novel and functional miRNAs originating from mRNA retrotransposition. Mob DNA 2023; 14:12. [PMID: 37684690 PMCID: PMC10486083 DOI: 10.1186/s13100-023-00301-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Reverse-transcribed gene copies (retrocopies) have emerged as major sources of evolutionary novelty. MicroRNAs (miRNAs) are small and highly conserved RNA molecules that serve as key post-transcriptional regulators of gene expression. The origin and subsequent evolution of miRNAs have been addressed but not fully elucidated. RESULTS In this study, we performed a comprehensive investigation of miRNA origination through retroduplicated mRNA sequences (retro-miRs). We identified 17 retro-miRs that emerged from the mRNA retrocopies. Four of these retro-miRs had de novo origins within retrocopied sequences, while 13 retro-miRNAs were located within exon regions and duplicated along with their host mRNAs. We found that retro-miRs were primate-specific, including five retro-miRs conserved among all primates and two human-specific retro-miRs. All retro-miRs were expressed, with predicted and experimentally validated target genes except miR-10527. Notably, the target genes of retro-miRs are involved in key biological processes such as metabolic processes, cell signaling, and regulation of neurotransmitters in the central nervous system. Additionally, we found that these retro-miRs play a potential oncogenic role in cancer by targeting key cancer genes and are overexpressed in several cancer types, including liver hepatocellular carcinoma and stomach adenocarcinoma. CONCLUSIONS Our findings demonstrated that mRNA retrotransposition is a key mechanism for the generation of novel miRNAs (retro-miRs) in primates. These retro-miRs are expressed, conserved, have target genes with important cellular functions, and play important roles in cancer.
Collapse
Affiliation(s)
- Rafael L V Mercuri
- Hospital Sirio-Libanes, São Paulo, 01308-060, Brazil
- Interunidades Em Bioinformática, Universidade de São Paulo, São Paulo, 05508-000, Brazil
| | - Helena B Conceição
- Hospital Sirio-Libanes, São Paulo, 01308-060, Brazil
- Interunidades Em Bioinformática, Universidade de São Paulo, São Paulo, 05508-000, Brazil
| | | | - Gabriel Goldstein
- Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, Brazil
| | - Maria D Vibranovski
- Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, Brazil
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, Tempe, AZ, USA
| | - Ludwig C Hinske
- Institute for Digital Medicine/Clinic of Anaesthesiology, University of Augsburg, Augsburg, Germany
| | | |
Collapse
|
15
|
Meadows JRS, Kidd JM, Wang GD, Parker HG, Schall PZ, Bianchi M, Christmas MJ, Bougiouri K, Buckley RM, Hitte C, Nguyen AK, Wang C, Jagannathan V, Niskanen JE, Frantz LAF, Arumilli M, Hundi S, Lindblad-Toh K, Ginja C, Agustina KK, André C, Boyko AR, Davis BW, Drögemüller M, Feng XY, Gkagkavouzis K, Iliopoulos G, Harris AC, Hytönen MK, Kalthoff DC, Liu YH, Lymberakis P, Poulakakis N, Pires AE, Racimo F, Ramos-Almodovar F, Savolainen P, Venetsani S, Tammen I, Triantafyllidis A, vonHoldt B, Wayne RK, Larson G, Nicholas FW, Lohi H, Leeb T, Zhang YP, Ostrander EA. Genome sequencing of 2000 canids by the Dog10K consortium advances the understanding of demography, genome function and architecture. Genome Biol 2023; 24:187. [PMID: 37582787 PMCID: PMC10426128 DOI: 10.1186/s13059-023-03023-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 07/25/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND The international Dog10K project aims to sequence and analyze several thousand canine genomes. Incorporating 20 × data from 1987 individuals, including 1611 dogs (321 breeds), 309 village dogs, 63 wolves, and four coyotes, we identify genomic variation across the canid family, setting the stage for detailed studies of domestication, behavior, morphology, disease susceptibility, and genome architecture and function. RESULTS We report the analysis of > 48 M single-nucleotide, indel, and structural variants spanning the autosomes, X chromosome, and mitochondria. We discover more than 75% of variation for 239 sampled breeds. Allele sharing analysis indicates that 94.9% of breeds form monophyletic clusters and 25 major clades. German Shepherd Dogs and related breeds show the highest allele sharing with independent breeds from multiple clades. On average, each breed dog differs from the UU_Cfam_GSD_1.0 reference at 26,960 deletions and 14,034 insertions greater than 50 bp, with wolves having 14% more variants. Discovered variants include retrogene insertions from 926 parent genes. To aid functional prioritization, single-nucleotide variants were annotated with SnpEff and Zoonomia phyloP constraint scores. Constrained positions were negatively correlated with allele frequency. Finally, the utility of the Dog10K data as an imputation reference panel is assessed, generating high-confidence calls across varied genotyping platform densities including for breeds not included in the Dog10K collection. CONCLUSIONS We have developed a dense dataset of 1987 sequenced canids that reveals patterns of allele sharing, identifies likely functional variants, informs breed structure, and enables accurate imputation. Dog10K data are publicly available.
Collapse
Affiliation(s)
- Jennifer R S Meadows
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75132, Uppsala, Sweden.
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48107, USA.
| | - Guo-Dong Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Heidi G Parker
- National Human Genome Research Institute, National Institutes of Health, 50 South Drive, Building 50 Room 5351, Bethesda, MD, 20892, USA
| | - Peter Z Schall
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48107, USA
| | - Matteo Bianchi
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75132, Uppsala, Sweden
| | - Matthew J Christmas
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75132, Uppsala, Sweden
| | - Katia Bougiouri
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark
| | - Reuben M Buckley
- National Human Genome Research Institute, National Institutes of Health, 50 South Drive, Building 50 Room 5351, Bethesda, MD, 20892, USA
| | - Christophe Hitte
- University of Rennes, CNRS, Institute Genetics and Development Rennes - UMR6290, 35000, Rennes, France
| | - Anthony K Nguyen
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48107, USA
| | - Chao Wang
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75132, Uppsala, Sweden
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Julia E Niskanen
- Department of Medical and Clinical Genetics, Department of Veterinary Biosciences, University of Helsinki and Folkhälsan Research Center, 02900, Helsinki, Finland
| | - Laurent A F Frantz
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E14NS, UK and Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, D-80539, Munich, Germany
| | - Meharji Arumilli
- Department of Medical and Clinical Genetics, Department of Veterinary Biosciences, University of Helsinki and Folkhälsan Research Center, 02900, Helsinki, Finland
| | - Sruthi Hundi
- Department of Medical and Clinical Genetics, Department of Veterinary Biosciences, University of Helsinki and Folkhälsan Research Center, 02900, Helsinki, Finland
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75132, Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Catarina Ginja
- BIOPOLIS-CIBIO-InBIO-Centro de Investigação Em Biodiversidade E Recursos Genéticos - ArchGen Group, Universidade Do Porto, 4485-661, Vairão, Portugal
| | | | - Catherine André
- University of Rennes, CNRS, Institute Genetics and Development Rennes - UMR6290, 35000, Rennes, France
| | - Adam R Boyko
- Department of Biomedical Sciences, Cornell University, 930 Campus Road, Ithaca, NY, 14853, USA
| | - Brian W Davis
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Michaela Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Xin-Yao Feng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Konstantinos Gkagkavouzis
- Department of Genetics, School of Biology, ), Aristotle University of Thessaloniki, Thessaloniki, Macedonia 54124, Greece and Genomics and Epigenomics Translational Research (GENeTres), Center for Interdisciplinary Research and Innovation (CIRI-AUTH, Balkan Center, Thessaloniki, Greece
| | - Giorgos Iliopoulos
- NGO "Callisto", Wildlife and Nature Conservation Society, 54621, Thessaloniki, Greece
| | - Alexander C Harris
- National Human Genome Research Institute, National Institutes of Health, 50 South Drive, Building 50 Room 5351, Bethesda, MD, 20892, USA
| | - Marjo K Hytönen
- Department of Medical and Clinical Genetics, Department of Veterinary Biosciences, University of Helsinki and Folkhälsan Research Center, 02900, Helsinki, Finland
| | - Daniela C Kalthoff
- NGO "Callisto", Wildlife and Nature Conservation Society, 54621, Thessaloniki, Greece
| | - Yan-Hu Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Petros Lymberakis
- Natural History Museum of Crete & Department of Biology, University of Crete, 71202, Irakleio, Greece
- Biology Department, School of Sciences and Engineering, University of Crete, Heraklion, Greece
- Palaeogenomics and Evolutionary Genetics Lab, Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology - Hellas (FORTH), Heraklion, Greece
| | - Nikolaos Poulakakis
- Natural History Museum of Crete & Department of Biology, University of Crete, 71202, Irakleio, Greece
- Biology Department, School of Sciences and Engineering, University of Crete, Heraklion, Greece
- Palaeogenomics and Evolutionary Genetics Lab, Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology - Hellas (FORTH), Heraklion, Greece
| | - Ana Elisabete Pires
- BIOPOLIS-CIBIO-InBIO-Centro de Investigação Em Biodiversidade E Recursos Genéticos - ArchGen Group, Universidade Do Porto, 4485-661, Vairão, Portugal
| | - Fernando Racimo
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark
| | | | - Peter Savolainen
- Department of Gene Technology, Science for Life Laboratory, KTH - Royal Institute of Technology, 17121, Solna, Sweden
| | - Semina Venetsani
- Department of Genetics, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Macedonia, Greece
| | - Imke Tammen
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, 2570, Australia
| | - Alexandros Triantafyllidis
- Department of Genetics, School of Biology, ), Aristotle University of Thessaloniki, Thessaloniki, Macedonia 54124, Greece and Genomics and Epigenomics Translational Research (GENeTres), Center for Interdisciplinary Research and Innovation (CIRI-AUTH, Balkan Center, Thessaloniki, Greece
| | - Bridgett vonHoldt
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Robert K Wayne
- Department of Ecology and Evolutionary Biology, Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095-7246, USA
| | - Greger Larson
- Palaeogenomics and Bio-Archaeology Research Network, School of Archaeology, University of Oxford, Oxford, OX1 3TG, UK
| | - Frank W Nicholas
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, 2570, Australia
| | - Hannes Lohi
- Department of Medical and Clinical Genetics, Department of Veterinary Biosciences, University of Helsinki and Folkhälsan Research Center, 02900, Helsinki, Finland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Elaine A Ostrander
- National Human Genome Research Institute, National Institutes of Health, 50 South Drive, Building 50 Room 5351, Bethesda, MD, 20892, USA.
| |
Collapse
|
16
|
Ma H, Wang M, Zhang YE, Tan S. The power of "controllers": Transposon-mediated duplicated genes evolve towards neofunctionalization. J Genet Genomics 2023; 50:462-472. [PMID: 37068629 DOI: 10.1016/j.jgg.2023.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/19/2023]
Abstract
Since the discovery of the first transposon by Dr. Barbara McClintock, the prevalence and diversity of transposable elements (TEs) have been gradually recognized. As fundamental genetic components, TEs drive organismal evolution not only by contributing functional sequences (e.g., regulatory elements or "controllers" as phrased by Dr. McClintock) but also by shuffling genomic sequences. In the latter respect, TE-mediated gene duplications have contributed to the origination of new genes and attracted extensive interest. In response to the development of this field, we herein attempt to provide an overview of TE-mediated duplication by focusing on common rules emerging across duplications generated by different TE types. Specifically, despite the huge divergence of transposition machinery across TEs, we identify three common features of various TE-mediated duplication mechanisms, including end bypass, template switching, and recurrent transposition. These three features lead to one common functional outcome, namely, TE-mediated duplicates tend to be subjected to exon shuffling and neofunctionalization. Therefore, the intrinsic properties of the mutational mechanism constrain the evolutionary trajectories of these duplicates. We finally discuss the future of this field including an in-depth characterization of both the duplication mechanisms and functions of TE-mediated duplicates.
Collapse
Affiliation(s)
- Huijing Ma
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mengxia Wang
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Chinese Institute for Brain Research, Beijing 102206, China.
| | - Shengjun Tan
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
17
|
Batcher K, Varney S, Raudsepp T, Jevit M, Dickinson P, Jagannathan V, Leeb T, Bannasch D. Ancient segmentally duplicated LCORL retrocopies in equids. PLoS One 2023; 18:e0286861. [PMID: 37289743 PMCID: PMC10249811 DOI: 10.1371/journal.pone.0286861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023] Open
Abstract
LINE-1 is an active transposable element encoding proteins capable of inserting host gene retrocopies, resulting in retro-copy number variants (retroCNVs) between individuals. Here, we performed retroCNV discovery using 86 equids and identified 437 retrocopy insertions. Only 5 retroCNVs were shared between horses and other equids, indicating that the majority of retroCNVs inserted after the species diverged. A large number (17-35 copies) of segmentally duplicated Ligand Dependent Nuclear Receptor Corepressor Like (LCORL) retrocopies were present in all equids but absent from other extant perissodactyls. The majority of LCORL transcripts in horses and donkeys originate from the retrocopies. The initial LCORL retrotransposition occurred 18 million years ago (17-19 95% CI), which is coincident with the increase in body size, reduction in digit number, and changes in dentition that characterized equid evolution. Evolutionary conservation of the LCORL retrocopy segmental amplification in the Equidae family, high expression levels and the ancient timeline for LCORL retrotransposition support a functional role for this structural variant.
Collapse
Affiliation(s)
- Kevin Batcher
- Department of Population Health and Reproduction, University of California Davis, Davis, CA, United States of America
| | - Scarlett Varney
- Department of Population Health and Reproduction, University of California Davis, Davis, CA, United States of America
| | - Terje Raudsepp
- Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Matthew Jevit
- Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Peter Dickinson
- Department of Surgical and Radiological Sciences, University of California Davis, Davis, CA, United States of America
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Danika Bannasch
- Department of Population Health and Reproduction, University of California Davis, Davis, CA, United States of America
| |
Collapse
|
18
|
Heinrich J, Berger C, Berger B, Hecht W, Phillips C, Parson W. The LASSIE MPS panel: Predicting externally visible traits in dogs for forensic purposes. Forensic Sci Int Genet 2023; 66:102893. [PMID: 37290253 DOI: 10.1016/j.fsigen.2023.102893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/28/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Predicting the outward appearance of dogs via their DNA, also known as Canine DNA Phenotyping, is a young, emerging field of research in forensic genetics. The few previous studies published in this respect were restricted to the consecutive analysis of single DNA markers, a process that is time- and sample-consuming and therefore not a viable option for limited forensic specimens. Here, we report on the development and evaluation of a Massively Parallel Sequencing (MPS) based molecular genetic assay, the LASSIE MPS Panel. This panel aims to predict externally visible as well as skeletal traits, which include coat color, coat pattern, coat structure, tail morphology, skull shape, ear shape, eye color and body size from DNA using 44 genetic markers in a single molecular genetic assay. A biostatistical naïve Bayes classification approach was applied to identify the most informative marker combinations for predicting phenotypes. Overall, the predictive performance was characterized by a very high classification success for some of the trait categories, and high to moderate success for others. The performance of the developed predictive framework was further evaluated using blind samples from three randomly selected dog individuals, whose appearance was well predicted.
Collapse
Affiliation(s)
- Josephin Heinrich
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Cordula Berger
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Burkhard Berger
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Werner Hecht
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Christopher Phillips
- Forensic Genetics Unit, Institute of Forensic Sciences, University of Santiago de Compostela, Spain
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria; Forensic Science Program, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
19
|
Palus V, Stehlik L, Necas A, Srnec R, Urbanova L, Lu D. Cervical intervertebral disc disease in 60 Yorkshire terriers. Front Vet Sci 2023; 10:1148802. [PMID: 37252381 PMCID: PMC10213352 DOI: 10.3389/fvets.2023.1148802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023] Open
Abstract
Intervertebral disc extrusion (IVDE) is a common neurological condition in many dog breeds. This study aimed to describe this condition in Yorkshire terriers (YT) and calculate the prevalence of this condition amongst the YTs with neurological diseases. This is a double-centre retrospective study which was conducted in two arms. The first part of the study, describing the clinical features and prognosis of cervical (C) IVDE in YTs, is based on data from 2005 to 2021. The second part of the study calculated the prevalence of C IVDE amongst the YTs with neurological diseases based on data from 2016 to 2021. A retrospective search through the medical records was conducted. YTs with C IVDE diagnosed with MRI and confirmed surgically were eligible for inclusion in this study. Sixty YTs were included in the first part of the study. There were 48 (80%) dogs with acute onset and 12 (20%) with chronic onset with acute deterioration. Ambulation was preserved in 31 (51.7%) dogs on admission, and the remaining 29 (48.3%) dogs were non-ambulatory. No significant association was found between ambulation on admission and recovery status (p = 0.547). Seventy-three intervertebral spaces were treated during the surgical intervention. Relapses were seen in seven (11.7%) dogs. Forty-nine (81.7%) dogs were ambulatory at discharge. A complete recovery was observed in 46 (76.7%) dogs; the remaining dogs (14, 23.3%) were classified as incomplete recovery. A significant difference was found in time to ambulation (p = 0.0238) and time to discharge (p = 0.0139) between the on-admission ambulatory and non-ambulatory dogs. Three hundred and eight YTs were diagnosed with neurological diseases between 2016 and 2021 in one referral centre. C IVDE was diagnosed in 31 (10.06%) dogs. This is the first study explicitly describing the C IVDE in YTs and establishing the prevalence of this condition amongst YTs with other neurological disorders.
Collapse
Affiliation(s)
- Viktor Palus
- Neurovet, Trencin, Slovakia
- Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czechia
| | | | - Alois Necas
- Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czechia
| | - Robert Srnec
- Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czechia
| | - Lucie Urbanova
- Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czechia
| | - Diane Lu
- CityU Veterinary Medical Centre, Kowloon, Hong Kong SAR, China
| |
Collapse
|
20
|
Makałowska I, Kubiak MR. Novel functions of a retroposed gene. Trends Genet 2023; 39:439-441. [PMID: 36997426 DOI: 10.1016/j.tig.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023]
Abstract
Retroposed protein-coding genes are commonly considered to be nonfunctional duplicates. However, they often gain transcriptional capability and have important roles. Amici et al. recently identified novel functions of a retroposed gene. HAPSTR2, a retrocopy of HAPSTR1, encodes a protein that stabilizes the HAPSTR1 protein and functionally buffers its loss.
Collapse
Affiliation(s)
- Izabela Makałowska
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| | - Magdalena Regina Kubiak
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| |
Collapse
|
21
|
Bianchi CA, Marcellin-Little DJ, Dickinson PJ, Garcia TC, Li CF, Batcher K, Bannasch DL. FGF4L2 retrogene copy number is associated with intervertebral disc calcification and vertebral geometry in Nova Scotia Duck Tolling Retrievers. Am J Vet Res 2023; 84:ajvr.22.09.0167. [PMID: 36662606 DOI: 10.2460/ajvr.22.09.0167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/23/2022] [Indexed: 01/21/2023]
Abstract
OBJECTIVES To evaluate the effects of the chondrodystrophy-associated FGF4L2 retrogene on intervertebral disc (IVD) calcification and vertebral geometry. ANIMALS 22 Nova Scotia Duck Tolling Retrievers (NSDTR) with no FGF4L2 retrogene (n = 7, wild-type dogs), 1 retrogene copy (8, heterozygous dogs), or 2 retrogene copies (7, homozygous dogs). PROCEDURES Computed tomography (CT) scans of the vertebral column were analyzed using computer-aided design (CAD) software. IVD calcification, vertebral column length, and vertebral geometry of the third cervical (C3), 13th thoracic (T13), and first lumbar (L1) vertebrae were compared. RESULTS IVD calcification was not found in wild-type dogs. IVD calcification was more frequent in homozygous dogs than heterozygous (P = .008) or wild-type dogs (P < .001) and in heterozygous dogs compared to wild-type dogs (P < .001). Four IVDs were subclinically herniated in 3 dogs (2 homozygous, 1 heterozygous). Calcified IVD had a greater volume and surface area in heterozygous dogs than homozygous dogs. C3 vertebral canal height-to-width ratio was greater in homozygous dogs than heterozygous dogs (P = .044) and wild-type dogs (P = .010). CLINICAL RELEVANCE IVD calcification and vertebral geometry can be analyzed using CAD software. The presence of 1 or 2 FGF4L2 copies in the absence of the FGF4L1 retrogene has an additive effect on the number of calcified IVD and a minor effect on vertebral geometry in NSDTR dogs. Data support the use of FGF4L2 phenotyping to reduce clinical disease in segregating breeds and to monitor the introduction of wild-type alleles into fixed breed populations.
Collapse
Affiliation(s)
- Catarina A Bianchi
- Veterinary Orthopedic Research Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA
| | - Denis J Marcellin-Little
- Veterinary Orthopedic Research Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA
| | - Peter J Dickinson
- Department of Veterinary Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA
| | - Tanya C Garcia
- Veterinary Orthopedic Research Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA
| | - Chai-Fei Li
- Department of Veterinary Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA
| | - Kevin Batcher
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA
| | - Danika L Bannasch
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA
| |
Collapse
|
22
|
Leeb T, Bannasch D, Schoenebeck JJ. Identification of Genetic Risk Factors for Monogenic and Complex Canine Diseases. Annu Rev Anim Biosci 2023; 11:183-205. [PMID: 36322969 DOI: 10.1146/annurev-animal-050622-055534] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Advances in DNA sequencing and other technologies have greatly facilitated the identification of genetic risk factors for inherited diseases in dogs. We review recent technological developments based on selected examples from canine disease genetics. The identification of disease-causing variants in dogs with monogenic diseases may become a widely employed diagnostic approach in clinical veterinary medicine in the not-too-distant future. Diseases with complex modes of inheritance continue to pose challenges to researchers but have also become much more tangible than in the past. In addition to strategies for identifying genetic risk factors, we provide some thoughts on the interpretation of sequence variants that are largely inspired by developments in human clinical genetics.
Collapse
Affiliation(s)
- Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland;
| | - Danika Bannasch
- Department of Population Health and Reproduction, University of California, Davis, California, USA;
| | - Jeffrey J Schoenebeck
- The Roslin Institute and Royal (Dick) School for Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom;
| |
Collapse
|
23
|
Donner J, Freyer J, Davison S, Anderson H, Blades M, Honkanen L, Inman L, Brookhart-Knox CA, Louviere A, Forman OP, Chodroff Foran R. Genetic prevalence and clinical relevance of canine Mendelian disease variants in over one million dogs. PLoS Genet 2023; 19:e1010651. [PMID: 36848397 PMCID: PMC9997962 DOI: 10.1371/journal.pgen.1010651] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 03/09/2023] [Accepted: 02/02/2023] [Indexed: 03/01/2023] Open
Abstract
Hundreds of genetic variants implicated in Mendelian disease have been characterized in dogs and commercial screening is being offered for most of them worldwide. There is typically limited information available regarding the broader population frequency of variants and uncertainty regarding their functional and clinical impact in ancestry backgrounds beyond the discovery breed. Genetic panel screening of disease-associated variants, commercially offered directly to the consumer or via a veterinary clinician, provides an opportunity to establish large-scale cohorts with phenotype data available to address open questions related to variant prevalence and relevance. We screened the largest canine cohort examined in a single study to date (1,054,293 representative dogs from our existing cohort of 3.5 million; a total of 811,628 mixed breed dogs and 242,665 purebreds from more than 150 countries) to examine the prevalence and distribution of a total of 250 genetic disease-associated variants in the general population. Electronic medical records from veterinary clinics were available for 43.5% of the genotyped dogs, enabling the clinical impact of variants to be investigated. We provide detailed frequencies for all tested variants across breeds and find that 57% of dogs carry at least one copy of a studied Mendelian disease-associated variant. Focusing on a subset of variants, we provide evidence of full penetrance for 10 variants, and plausible evidence for clinical significance of 22 variants, on diverse breed backgrounds. Specifically, we report that inherited hypocatalasia is a notable oral health condition, confirm that factor VII deficiency presents as subclinical bleeding propensity and verify two genetic causes of reduced leg length. We further assess genome-wide heterozygosity levels in over 100 breeds, and show that a reduction in genome-wide heterozygosity is associated with an increased Mendelian disease variant load. The accumulated knowledge represents a resource to guide discussions on genetic test relevance by breed.
Collapse
Affiliation(s)
- Jonas Donner
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Helsinki, Finland
| | - Jamie Freyer
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Stephen Davison
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Leicestershire, United Kingdom
| | - Heidi Anderson
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Helsinki, Finland
| | - Matthew Blades
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Leicestershire, United Kingdom
| | - Leena Honkanen
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Helsinki, Finland
| | - Laura Inman
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Casey A. Brookhart-Knox
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Annette Louviere
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Oliver P. Forman
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Leicestershire, United Kingdom
| | - Rebecca Chodroff Foran
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| |
Collapse
|
24
|
Paul ES, Packer RMA, McGreevy PD, Coombe E, Mendl E, Neville V. That brachycephalic look: Infant-like facial appearance in short-muzzled dog breeds. Anim Welf 2023; 32:e5. [PMID: 38487431 PMCID: PMC10936394 DOI: 10.1017/awf.2022.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 01/27/2023]
Abstract
Brachycephalic dog breeds are highly popular, yet their conformation-related disorders represent a major welfare concern. It has been suggested that the current popularity of such breeds can be explained by their cute, infant-like facial appearances. The concept of 'kindchenschema' refers to the observation that certain physical features of infant humans and other animals can automatically stimulate positive and nurturant feelings in adult observers. But the proposal that brachycephalic dogs possess heightened 'kindchenschema' facial features, even into adulthood, has never been formally investigated. Here, we hypothesised that relative muzzle shortening across a range of breeds would be associated with known 'kindchenschema' facial features, including a relatively larger forehead, larger eyes and smaller nose. Relative fronto-facial feature sizes in exemplar photographs of adult dogs from 42 popular breeds were measured and associated with existing data on the relative muzzle length and height-at-withers of the same breeds. Our results show that, in adulthood, shorter-muzzled breeds have relatively larger (taller) foreheads and relatively larger eyes (i.e. area of exposed eyeball relative to overall face area) than longer-muzzled breeds, and that this effect is independent of breed size. In sum, brachycephalic dog breeds do show exaggeration of some, but not all, known fronto-facial 'kindchenschema' features, and this may well contribute to their apparently cute appearance and to their current popularity as companion animals. We conclude that the challenge of addressing conformation-related disorders in companion dogs needs to take account of the cute, 'kindchenschema' looks that many owners are likely to be attracted to.
Collapse
Affiliation(s)
- Elizabeth S Paul
- Bristol Veterinary School, University of Bristol, Langford House, LangfordBS40 5DU, UK
| | - Rowena MA Packer
- Department of Clinical Sciences and Services, The Royal Veterinary College, Hatfield, HertsAL9 7TA, UK
| | - Paul D McGreevy
- School of Environmental and Rural Science, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW2351, Australia
| | - Emily Coombe
- Bristol Veterinary School, University of Bristol, Langford House, LangfordBS40 5DU, UK
- Positive Dog Training, Long Ashton, Bristol, UK
| | - Elsa Mendl
- Bristol Veterinary School, University of Bristol, Langford House, LangfordBS40 5DU, UK
| | - Vikki Neville
- Bristol Veterinary School, University of Bristol, Langford House, LangfordBS40 5DU, UK
| |
Collapse
|
25
|
Lappalainen AK, Pulkkinen HSM, Mölsä S, Junnila J, Hyytiäinen HK, Laitinen-Vapaavuori O. Breed-typical front limb angular deformity is associated with clinical findings in three chondrodysplastic dog breeds. Front Vet Sci 2023; 9:1099903. [PMID: 36733429 PMCID: PMC9887302 DOI: 10.3389/fvets.2022.1099903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
Angular front limb deformity (ALD) refers to an excessively curved limb conformation, which is seen in some chondrodysplastic dog breeds. Common characteristics of ALD include carpal valgus (VALG), front limb rotation (ROT), elbow incongruity, and lateral radial head subluxation. These may cause lameness and discomfort in affected dogs. The clinical impact and breed-specific characteristics of front limb conformation in chondrodysplastic breeds are unknown. This prospective and cross-sectional study aimed to investigate differences in front limb conformation between three chondrodysplastic breeds. We further evaluate whether front limb conformation is associated with clinical findings and limb function. We propose novel methods to classify findings in the interosseous space and to quantify lateral radial head subluxation. Data from a total of 224 front limbs from 112 dogs of three chondrodysplastic dog breeds (30 Standard Dachshunds, 29 Skye terriers, and 53 Glen of Imaal terriers) were included in the study. Front limb VALG and ROT were measured with a goniometer. From the radiographs, the elbow joint was graded for incongruity (INC), and the humeroradial angle (HRA) was measured to assess lateral radial subluxation. The association of front limb conformation with clinical signs and limb function was investigated using orthopedic examination, goniometric and kinetic measurements, and radiography. The breeds differed significantly in their front limb conformation. The Dachshund had the least ROT and the least radial head subluxation. The Skye terrier had the most VALG, the most radial head subluxation, and the largest prevalence of moderate and severe INC. The Glen of Imaal terrier had the most ROT. In addition, INC, ROT, VALG, and HRA were found to be independent of each other and were associated with several measurable clinical abnormalities and limb function such as pain, lameness, limited range of motion, and elbow joint osteoarthritis. This implies that VALG, ROT, and HRA could be used in addition to INC grading when choosing musculoskeletal characteristics of dogs suitable for breeding.
Collapse
Affiliation(s)
- Anu K. Lappalainen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland,*Correspondence: Anu K. Lappalainen ✉
| | - Hanna S. M. Pulkkinen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Sari Mölsä
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | | | - Heli K. Hyytiäinen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Outi Laitinen-Vapaavuori
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
26
|
Peschard AL, Freeman P, Genain MA. Follow-up MRI appearance of the surgical site in dogs treated for thoracolumbar intervertebral disc herniation and showing ongoing or recurrent neurological symptoms. Vet Radiol Ultrasound 2023; 64:95-104. [PMID: 35960135 PMCID: PMC10086782 DOI: 10.1111/vru.13143] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 01/25/2023] Open
Abstract
Reherniation and reoperation rates of 4.5%-36% are reported in canine patients treated for intervertebral disc herniation (IVDH). Decision-making for surgical reintervention can prove challenging, especially since common postoperative changes are poorly described on MRI. The purpose of this single-center, retrospective, descriptive study was to describe the MRI characteristics of the surgical site in dogs treated for thoracolumbar IVDH and presenting for ongoing or recurrent neurological signs. Twenty-one patients were included for a total of 42 MRI studies. Chondrodystrophic breeds, specifically Dachshunds, were overrepresented. Mean number of days between surgery and second MRI was 335 (range 2-1367). Metallic susceptibility artifacts were seen in seven of 21 cases (33%), but these were limited in extent, spanning on average 1.3 vertebral bodies. In 11 cases, spinal cord compression suspected to be clinically significant was found at the surgical site; the extradural compressive material consisted of intervertebral disc material only, or a combination of intervertebral disc material and hematoma or inflammatory changes in 10 cases, and a displaced articular process and fibrous tissue in one case. The latter is a newly described complication of mini-hemilaminectomies. Paravertebral soft tissue changes and vertebral new bone formation varied according to the postoperative stage at which the patients were imaged. The results of this study supported the use of MRI as a diagnostic modality for spinal imaging following IVDH surgery, and showed that the presence of extradural disc material at a spinal surgical site is common along with various vertebral and paravertebral changes.
Collapse
Affiliation(s)
- Anne-Lorraine Peschard
- Department of Veterinary Medicine, The Queen's Veterinary School Hospital (QVSH), Madingley Road, Cambridgeshire, CB3 0ES, UK
| | - Paul Freeman
- Department of Veterinary Medicine, The Queen's Veterinary School Hospital (QVSH), Madingley Road, Cambridgeshire, CB3 0ES, UK
| | - Marie-Aude Genain
- Department of Veterinary Medicine, The Queen's Veterinary School Hospital (QVSH), Madingley Road, Cambridgeshire, CB3 0ES, UK
| |
Collapse
|
27
|
Rose CS. The cellular basis of cartilage growth and shape change in larval and metamorphosing Xenopus frogs. PLoS One 2023; 18:e0277110. [PMID: 36634116 PMCID: PMC9836273 DOI: 10.1371/journal.pone.0277110] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 10/19/2022] [Indexed: 01/13/2023] Open
Abstract
As the first and sometimes only skeletal tissue to appear, cartilage plays a fundamental role in the development and evolution of vertebrate body shapes. This is especially true for amphibians whose largely cartilaginous feeding skeleton exhibits unparalleled ontogenetic and phylogenetic diversification as a consequence of metamorphosis. Fully understanding the evolutionary history, evolvability and regenerative potential of cartilage requires in-depth analysis of how chondrocytes drive growth and shape change. This study is a cell-level description of the larval growth and postembryonic shape change of major cartilages of the feeding skeleton of a metamorphosing amphibian. Histology and immunohistochemistry are used to describe and quantify patterns and trends in chondrocyte size, shape, division, death, and arrangement, and in percent matrix from hatchling to froglet for the lower jaw, hyoid and branchial arch cartilages of Xenopus laevis. The results are interpreted and integrated into programs of cell behaviors that account for the larval growth and histology, and metamorphic remodeling of each element. These programs provide a baseline for investigating hormone-mediated remodeling, cartilage regeneration, and intrinsic shape regulating mechanisms. These programs also contain four features not previously described in vertebrates: hypertrophied chondrocytes being rejuvenated by rapid cell cycling to a prechondrogenic size and shape; chondrocytes dividing and rearranging to reshape a cartilage; cartilage that lacks a perichondrium and grows at single-cell dimensions; and an adult cartilage forming de novo in the center of a resorbing larval one. Also, the unexpected superimposition of cell behaviors for shape change onto ones for larval growth and the unprecedented exploitation of very large and small cell sizes provide new directions for investigating the development and evolution of skeletal shape and metamorphic ontogenies.
Collapse
Affiliation(s)
- Christopher S. Rose
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
28
|
Sawamura M, Arai T, Kawasumi K. Effect of acupuncture on the energy metabolism of dogs with intervertebral disk disease and cervical disk herniation: A pilot study. Vet Res Commun 2022; 47:879-884. [DOI: 10.1007/s11259-022-10051-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
AbstractThirteen dogs with intervertebral disk disease (IVDD) and 3 dogs with cervical disk herniation (CVDH) were examined to determine the effects of acupuncture on energy metabolism. Acupuncture points GV14, GV20-1, BL18, BL23, BL26, GB30, and ST36 were selected for IVDD, while GV14, GV20-1, GB20, and BL23 were selected for CVDH. All dogs except no.13 did not receive medication during acupuncture treatment. Acupuncture effects were evaluated based on the IVDD/CVDH evaluation scales in Oji 2015 and Tanaka and Nakayama 2015. Blood samples were taken before and 30 min after acupuncture treatment. Pyruvate and lactate concentrations, lactate dehydrogenase (LDH) and malate dehydrogenase (MDH) activity, the MDH/LDH ratio (M/L ratio), and LDH isozyme electrophoretic patterns served as energy metabolism markers. In IVDD/CVDH dogs that showed improvements, plasma pyruvate concentrations significantly decreased, the M/L ratio increased, and the plasma LDH isozyme pattern changed from predominantly LDH5 to predominantly LDH1. These data suggest that local redox potential is improved and energy metabolism is increased in dogs with IVDD/CVDH after acupuncture treatment. Acupuncture treatments may activate the citric acid cycle and increase ATP production, followed by improvement of the disease. Future studies with a large sample size are needed to clarify this hypothesis.
Collapse
|
29
|
Ludwig-Peisker O, Ansel E, Schweizer D, Jagannathan V, Loechel R, Leeb T. PCYT1A Missense Variant in Vizslas with Disproportionate Dwarfism. Genes (Basel) 2022; 13:genes13122354. [PMID: 36553621 PMCID: PMC9777673 DOI: 10.3390/genes13122354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Disproportionate dwarfism phenotypes represent a heterogeneous subset of skeletal dysplasias and have been described in many species including humans and dogs. In this study, we investigated Vizsla dogs that were affected by disproportionate dwarfism that we propose to designate as skeletal dysplasia 3 (SD3). The most striking skeletal changes comprised a marked shortening and deformation of the humerus and femur. An extended pedigree with six affected dogs suggested autosomal recessive inheritance. Combined linkage and homozygosity mapping localized a potential genetic defect to a ~4 Mb interval on chromosome 33. We sequenced the genome of an affected dog, and comparison with 926 control genomes revealed a single, private protein-changing variant in the critical interval, PCYT1A:XM_038583131.1:c.673T>C, predicted to cause an exchange of a highly conserved amino acid, XP_038439059.1:p.(Y225H). We observed perfect co-segregation of the genotypes with the phenotype in the studied family. When genotyping additional Vizslas, we encountered a single dog with disproportionate dwarfism that did not carry the mutant PCYT1A allele, which we hypothesize was due to heterogeneity. In the remaining 130 dogs, we observed perfect genotype-phenotype association, and none of the unaffected dogs were homozygous for the mutant PCYT1A allele. PCYT1A loss-of-function variants cause spondylometaphyseal dysplasia with cone-rod dystrophy (SMD-CRD) in humans. The skeletal changes in Vizslas were comparable to human patients. So far, no ocular phenotype has been recognized in dwarf Vizslas. We propose the PCYT1A missense variant as a candidate causative variant for SD3. Our data facilitate genetic testing of Vizslas to prevent the unintentional breeding of further affected puppies.
Collapse
Affiliation(s)
- Odette Ludwig-Peisker
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Emily Ansel
- BluePearl Pet Hospital, Raleigh, NC 27616, USA
| | - Daniela Schweizer
- Division of Clinical Radiology, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | | | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
- Correspondence: ; Tel.: +41-31-684-23-26
| |
Collapse
|
30
|
Binversie EE, Momen M, Rosa GJM, Davis BW, Muir P. Across-breed genetic investigation of canine hip dysplasia, elbow dysplasia, and anterior cruciate ligament rupture using whole-genome sequencing. Front Genet 2022; 13:913354. [PMID: 36531249 PMCID: PMC9755188 DOI: 10.3389/fgene.2022.913354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
Here, we report the use of genome-wide association study (GWAS) for the analysis of canine whole-genome sequencing (WGS) repository data using breed phenotypes. Single-nucleotide polymorphisms (SNPs) were called from WGS data from 648 dogs that included 119 breeds from the Dog10K Genomes Project. Next, we assigned breed phenotypes for hip dysplasia (Orthopedic Foundation for Animals (OFA) HD, n = 230 dogs from 27 breeds; hospital HD, n = 279 dogs from 38 breeds), elbow dysplasia (ED, n = 230 dogs from 27 breeds), and anterior cruciate ligament rupture (ACL rupture, n = 279 dogs from 38 breeds), the three most important canine spontaneous complex orthopedic diseases. Substantial morbidity is common with these diseases. Previous within- and between-breed GWAS for HD, ED, and ACL rupture using array SNPs have identified disease-associated loci. Individual disease phenotypes are lacking in repository data. There is a critical knowledge gap regarding the optimal approach to undertake categorical GWAS without individual phenotypes. We considered four GWAS approaches: a classical linear mixed model, a haplotype-based model, a binary case-control model, and a weighted least squares model using SNP average allelic frequency. We found that categorical GWAS was able to validate HD candidate loci. Additionally, we discovered novel candidate loci and genes for all three diseases, including FBX025, IL1A, IL1B, COL27A1, SPRED2 (HD), UGDH, FAF1 (ED), TGIF2 (ED & ACL rupture), and IL22, IL26, CSMD1, LDHA, and TNS1 (ACL rupture). Therefore, categorical GWAS of ancestral dog populations may contribute to the understanding of any disease for which breed epidemiological risk data are available, including diseases for which GWAS has not been performed and candidate loci remain elusive.
Collapse
Affiliation(s)
- Emily E. Binversie
- Comparative Orthopaedic and Genetics Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Mehdi Momen
- Comparative Orthopaedic and Genetics Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Guilherme J. M. Rosa
- Department of Animal and Dairy Sciences, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Brian W. Davis
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Peter Muir
- Comparative Orthopaedic and Genetics Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States,*Correspondence: Peter Muir,
| |
Collapse
|
31
|
Wu Y, Sun A, Nie C, Gao ZX, Wan SM. Functional differentiation of bmp2a and bmp2b genes in zebrafish. Gene Expr Patterns 2022; 46:119288. [PMID: 36332886 DOI: 10.1016/j.gep.2022.119288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/25/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Bone morphogenetic protein 2 plays an important role in the regulation of osteoblast proliferation and differentiation. Phylogenetic analysis showed that the bmp2 ortholog evolved from the same ancestral gene family in vertebrates and was duplicated in teleost, which were named bmp2a and bmp2b. The results of whole-mount in situ hybridization showed that the expression locations of bmp2a and bmp2b in zebrafish were different in different periods (24 hpf, 48 hpf, 72 hpf), which revealed potential functional differentiation between bmp2a and bmp2b. Phenotypic analysis showed that bmp2a mutations caused partial rib and vertebral deformities in zebrafish, while bmp2b-/- embryos died massively after 12 hpf due to abnormal somite formation. We further explored the expression pattern changes of genes (bmp2a, bmp2b, smad1, fgf4, runx2b, alp) related to skeletal development at different developmental stages (20 dpf, 60 dpf, 90 dpf) in wild-type and bmp2a-/- zebrafish. The results showed that the expression of runx2b in bmp2a-/- was significantly downregulated at three stages and the expression of other genes were significantly downregulated at 90 dpf compared with wild-type zebrafish. The study revealed functional differentiation of bmp2a and bmp2b in zebrafish embryonic and skeletal development.
Collapse
Affiliation(s)
- Yaming Wu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Aili Sun
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunhong Nie
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ze-Xia Gao
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Shi-Ming Wan
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
32
|
Christopher S. Short term outcomes and complications of distal ulnar ostectomy in 23 juvenile dogs with carpal valgus secondary to discordant radial-ulnar physeal growth. Front Vet Sci 2022; 9:971527. [PMID: 36157189 PMCID: PMC9501678 DOI: 10.3389/fvets.2022.971527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Objective The goal of this study was to report short term clinical and radiographic outcomes after distal ulnar ostectomy in dogs with carpal valgus due to discordant radial-ulnar growth. Study design Retrospective case study. Sample group Client owned dogs under 1 year of age with carpal valgus and open distal radial physes pre-operatively. Methods Medical records from four veterinary referral centers were searched from January 1, 2015 to January 1, 2022 for juvenile dogs that had been treated with distal ulnar ostectomy for carpal valgus due to premature closure of the distal ulnar physis. Patients were excluded if they were skeletally mature at the time of ostectomy; medical records were incomplete; radial physis was closed at surgery; or definitive corrective osteotomy was performed. Radiographs were evaluated pre-operatively and for short term follow up at ~8 weeks. Complications and short term clinical outcomes were evaluated also. Results 31 limbs from 23 dogs were evaluated. Patients ranged from 4 to 10.8 months of age. All dogs presented for visible carpal valgus and varying degrees of thoracic limb lameness. Sixty-four percent of patients showed resolution of lameness while an additional 13% showed an improvement in clinical lameness without complete resolution. Complications were seen in 32% of patients with 70% percent of those being minor, bandage related complications. Radiographically, 38% of limbs showed bridging callus formation of the ostectomy at an average of 7.5 weeks post operatively and 75% percent of patients with elbow incongruity improved radiographically. There was no significant difference in radial joint angles pre-operatively and at the time of follow up. Conclusion Distal ulnar ostectomy ameliorates lameness in juvenile dogs with premature distal ulnar physeal closure and shows lack of progression of distal carpal valgus deformity, but does not improve joint angulation. Clinical significance Distal ulnar ostectomy is associated with mild bandage-related complications and halting of progressive limb deformity within the time frame evaluated, and should therefore be considered a treatment for premature closure of the distal ulnar physis. It does not lead to deformity correction at 8 weeks following surgery but is associated with improved elbow congruity.
Collapse
|
33
|
Batcher K, Varney S, Affolter VK, Friedenberg SG, Bannasch D. An SNN retrocopy insertion upstream of GPR22 is associated with dark red coat color in Poodles. G3 GENES|GENOMES|GENETICS 2022; 12:6680184. [PMID: 36047852 PMCID: PMC9635648 DOI: 10.1093/g3journal/jkac227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/27/2022] [Indexed: 11/21/2022]
Abstract
Pigment production and distribution is controlled through multiple genes, resulting in a wide range of coat color phenotypes in dogs. Dogs that produce only the pheomelanin pigment vary in intensity from white to deep red. The Poodle breed has a wide range of officially recognized coat colors, including the pheomelanin-based white, cream, apricot, and red coat colors, which are not fully explained by the previously identified genetic variants involved in pigment intensity. Here, a genome-wide association study for pheomelanin intensity was performed in Poodles which identified an association on canine chromosome 18. Whole-genome sequencing data revealed an SNN retrocopy insertion (SNNL1) in apricot and red Poodles within the associated region on chromosome 18. While equal numbers of melanocytes were observed in all Poodle skin hair bulbs, higher melanin content was observed in the darker Poodles. Several genes involved in melanogenesis were also identified as highly overexpressed in red Poodle skin. The most differentially expressed gene however was GPR22, which was highly expressed in red Poodle skin while unexpressed in white Poodle skin (log2 fold change in expression 6.1, P < 0.001). GPR22 is an orphan G-protein-coupled receptor normally expressed exclusively in the brain and heart. The SNNL1 retrocopy inserted 2.8 kb upstream of GPR22 and is likely disrupting regulation of the gene, resulting in atypical expression in the skin. Thus, we identify the SNNL1 insertion as a candidate variant for the CFA18 pheomelanin intensity locus in red Poodles.
Collapse
Affiliation(s)
- Kevin Batcher
- Department of Population Health and Reproduction, University of California , Davis, Davis, CA 95616, USA
| | - Scarlett Varney
- Department of Population Health and Reproduction, University of California , Davis, Davis, CA 95616, USA
| | - Verena K Affolter
- Department of Pathology, Microbiology, & Immunology, University of California, Davis , Davis, CA 95616, USA
| | - Steven G Friedenberg
- Department of Veterinary Clinical Sciences, University of Minnesota , St Paul, MN 55455, USA
| | - Danika Bannasch
- Department of Population Health and Reproduction, University of California , Davis, Davis, CA 95616, USA
| |
Collapse
|
34
|
Batcher K, Varney S, York D, Blacksmith M, Kidd JM, Rebhun R, Dickinson P, Bannasch D. Recent, full-length gene retrocopies are common in canids. Genome Res 2022; 32:1602-1611. [PMID: 35961775 PMCID: PMC9435743 DOI: 10.1101/gr.276828.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/19/2022] [Indexed: 02/03/2023]
Abstract
Gene retrocopies arise from the reverse transcription and insertion into the genome of processed mRNA transcripts. Although many retrocopies have acquired mutations that render them functionally inactive, most mammals retain active LINE-1 sequences capable of producing new retrocopies. New retrocopies, referred to as retro copy number variants (retroCNVs), may not be identified by standard variant calling techniques in high-throughput sequencing data. Although multiple functional FGF4 retroCNVs have been associated with skeletal dysplasias in dogs, the full landscape of canid retroCNVs has not been characterized. Here, retroCNV discovery was performed on a whole-genome sequencing data set of 293 canids from 76 breeds. We identified retroCNV parent genes via the presence of mRNA-specific 30-mers, and then identified retroCNV insertion sites through discordant read analysis. In total, we resolved insertion sites for 1911 retroCNVs from 1179 parent genes, 1236 of which appeared identical to their parent genes. Dogs had on average 54.1 total retroCNVs and 1.4 private retroCNVs. We found evidence of expression in testes for 12% (14/113) of the retroCNVs identified in six Golden Retrievers, including four chimeric transcripts, and 97 retroCNVs also had significantly elevated F ST across dog breeds, possibly indicating selection. We applied our approach to a subset of human genomes and detected an average of 4.2 retroCNVs per sample, highlighting a 13-fold relative increase of retroCNV frequency in dogs. Particularly in canids, retroCNVs are a largely unexplored source of genetic variation that can contribute to genome plasticity and that should be considered when investigating traits and diseases.
Collapse
Affiliation(s)
- Kevin Batcher
- Department of Population Health and Reproduction, University of California, Davis, Davis, California 95616, USA
| | - Scarlett Varney
- Department of Population Health and Reproduction, University of California, Davis, Davis, California 95616, USA
| | - Daniel York
- Department of Surgical and Radiological Sciences, University of California, Davis, Davis, California 95616, USA
| | - Matthew Blacksmith
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Robert Rebhun
- Department of Surgical and Radiological Sciences, University of California, Davis, Davis, California 95616, USA
| | - Peter Dickinson
- Department of Surgical and Radiological Sciences, University of California, Davis, Davis, California 95616, USA
| | - Danika Bannasch
- Department of Population Health and Reproduction, University of California, Davis, Davis, California 95616, USA
| |
Collapse
|
35
|
Andersson L, Purugganan M. Molecular genetic variation of animals and plants under domestication. Proc Natl Acad Sci U S A 2022; 119:e2122150119. [PMID: 35858409 PMCID: PMC9335317 DOI: 10.1073/pnas.2122150119] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Domesticated plants and animals played crucial roles as models for evolutionary change by means of natural selection and for establishing the rules of inheritance, originally proposed by Charles Darwin and Gregor Mendel, respectively. Here, we review progress that has been made during the last 35 y in unraveling the molecular genetic variation underlying the stunning phenotypic diversity in crops and domesticated animals that inspired Mendel and Darwin. We notice that numerous domestication genes, crucial for the domestication process, have been identified in plants, whereas animal domestication appears to have a polygenic background with no obvious "domestication genes" involved. Although model organisms, such as Drosophila and Arabidopsis, have replaced domesticated species as models for basic research, the latter are still outstanding models for evolutionary research because phenotypic change in these species represents an evolutionary process over thousands of years. A consequence of this is that some alleles contributing to phenotypic diversity have evolved by accumulating multiple changes in the same gene. The continued molecular characterization of crops and farm animals with ever sharper tools is essential for future food security.
Collapse
Affiliation(s)
- Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Michael Purugganan
- Center for Genomics and Systems Biology, New York University, New York, NY 10003
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, 129188, United Arab Emirates
| |
Collapse
|
36
|
Poli F, Calistri M, Meucci V, DI Gennaro G, Baroni M. Prevalence, clinical features, and outcome of intervertebral disc extrusion associated with extensive epidural hemorrhage in a population of French Bulldogs compared to Dachshunds. J Vet Med Sci 2022; 84:1307-1312. [PMID: 35896373 PMCID: PMC9523298 DOI: 10.1292/jvms.22-0210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Intervertebral disc extrusion associated with extensive epidural hemorrhage (DEEH) is a well-documented pathological condition in veterinary medicine. This retrospective study aimed to
evaluate the prevalence and clinical features of DEEH in a population of French Bulldogs affected by intervertebral disc extrusion (n=75), compare the findings with those from a group of
Dachshunds (n=98) and identify possible predictive factors of DEEH and outcomes in surgically treated patients. The study showed that the prevalence of DEEH observed in Dachshunds (11.2%
[95% confidence interval [CI]: 5.7–19.2%]) was significantly lower than that observed in French Bulldogs (41.3% [95% CI: 30.1–53.3%]). The multiple logistic regression model highlighted that
the patients presenting with an acute onset of clinical signs (>24 hr) (odds ratio [OR]: 13.08; 95% CI: 4.63–37.03, P=0.00), presence of clinical signs progression (OR:
5.04; P=0.01), and French Bulldogs (OR: 5.15; 95% CI: 1.71–15.54, P=0.00) were at increased risk of developing DEEH. Secondary analysis showed that patients
with DEEH were at an increased risk of being non-ambulatory at discharge (OR: 3.43; P=0.017). Overall, the surgically treated patients had favorable outcomes.
Collapse
Affiliation(s)
- Federica Poli
- Valdinievole Veterinary Clinic, Via Costantino Nigra
| | | | - Valentina Meucci
- Department of Veterinary Science, Section of Pharmacology and Toxicology, University of Pisa
| | | | | |
Collapse
|
37
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
38
|
Wong CJ, Whiddon JL, Langford AT, Belleville AE, Tapscott SJ. Canine DUXC: implications for DUX4 retrotransposition and preclinical models of FSHD. Hum Mol Genet 2022; 31:1694-1704. [PMID: 34888646 PMCID: PMC9122657 DOI: 10.1093/hmg/ddab352] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/24/2021] [Accepted: 12/03/2021] [Indexed: 11/15/2022] Open
Abstract
Mis-expression of DUX4 in skeletal muscle causes facioscapulohumeral muscular dystrophy (FSHD). Human DUX4 and mouse Dux are retrogenes derived from retrotransposition of the mRNA from the parental DUXC gene. Primates and rodents have lost the parental DUXC gene, and it is unknown whether DUXC had a similar role in driving an early pluripotent transcriptional program. Dogs and other Laurasiatherians have retained DUXC, providing an opportunity to determine the functional similarity to the retrotransposed DUX4 and Dux. Here, we identify the expression of two isoforms of DUXC mRNA in canine testis tissues: one encoding the canonical double homeodomain protein (DUXC), similar to DUX4/Dux, and a second that includes an in-frame alternative exon that disrupts the conserved amino acid sequence of the first homeodomain (DUXC-ALT). The expression of DUXC in canine cells induces a pluripotent program similar to DUX4 and Dux and induces the expression of a similar set of retrotransposons of the ERV/MaLR and LINE-1 families, as well as pericentromeric satellite repeats; whereas DUXC-ALT did not robustly activate gene expression in these assays. Important for preclinical models of FSHD, human DUX4 and canine DUXC show higher conservation of their homeodomains and corresponding binding motifs compared with the conservation between human DUX4 and mouse Dux, and human DUX4 activates a highly similar transcriptional program in canine cells. Together, these findings show that retrotransposition resulted in the loss of an alternatively spliced isoform and that DUXC containing mammals might be good candidates for certain preclinical models ofFSHD.
Collapse
Affiliation(s)
- Chao-Jen Wong
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jennifer L Whiddon
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Ashlee T Langford
- Comparative Medicine, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Andrea E Belleville
- Divisions of Public Health Sciences and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Stephen J Tapscott
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
39
|
Morrill K, Hekman J, Li X, McClure J, Logan B, Goodman L, Gao M, Dong Y, Alonso M, Carmichael E, Snyder-Mackler N, Alonso J, Noh HJ, Johnson J, Koltookian M, Lieu C, Megquier K, Swofford R, Turner-Maier J, White ME, Weng Z, Colubri A, Genereux DP, Lord KA, Karlsson EK. Ancestry-inclusive dog genomics challenges popular breed stereotypes. Science 2022; 376:eabk0639. [PMID: 35482869 DOI: 10.1126/science.abk0639] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Behavioral genetics in dogs has focused on modern breeds, which are isolated subgroups with distinctive physical and, purportedly, behavioral characteristics. We interrogated breed stereotypes by surveying owners of 18,385 purebred and mixed-breed dogs and genotyping 2155 dogs. Most behavioral traits are heritable [heritability (h2) > 25%], and admixture patterns in mixed-breed dogs reveal breed propensities. Breed explains just 9% of behavioral variation in individuals. Genome-wide association analyses identify 11 loci that are significantly associated with behavior, and characteristic breed behaviors exhibit genetic complexity. Behavioral loci are not unusually differentiated in breeds, but breed propensities align, albeit weakly, with ancestral function. We propose that behaviors perceived as characteristic of modern breeds derive from thousands of years of polygenic adaptation that predates breed formation, with modern breeds distinguished primarily by aesthetic traits.
Collapse
Affiliation(s)
- Kathleen Morrill
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jessica Hekman
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Xue Li
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jesse McClure
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Brittney Logan
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Linda Goodman
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Fauna Bio Inc., Emeryville, CA 94608, USA
| | - Mingshi Gao
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Yinan Dong
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Marjie Alonso
- The International Association of Animal Behavior Consultants, Cranberry Township, PA 16066, USA.,IAABC Foundation, Cranberry Township, PA 16066, USA
| | - Elena Carmichael
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Rice University, Houston, TX 77005, USA
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85251, USA.,School for Human Evolution and Social Change, Arizona State University, Tempe, AZ 85251, USA.,School of Life Sciences, Arizona State University, Tempe, AZ 85251, USA
| | - Jacob Alonso
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Hyun Ji Noh
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jeremy Johnson
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Charlie Lieu
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Darwin's Ark Foundation, Seattle, WA 98026, USA
| | - Kate Megquier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ross Swofford
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Michelle E White
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Zhiping Weng
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Andrés Colubri
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Kathryn A Lord
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Elinor K Karlsson
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Darwin's Ark Foundation, Seattle, WA 98026, USA.,Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| |
Collapse
|
40
|
Domazet-Lošo T. mRNA Vaccines: Why Is the Biology of Retroposition Ignored? Genes (Basel) 2022; 13:719. [PMID: 35627104 PMCID: PMC9141755 DOI: 10.3390/genes13050719] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 02/07/2023] Open
Abstract
The major advantage of mRNA vaccines over more conventional approaches is their potential for rapid development and large-scale deployment in pandemic situations. In the current COVID-19 crisis, two mRNA COVID-19 vaccines have been conditionally approved and broadly applied, while others are still in clinical trials. However, there is no previous experience with the use of mRNA vaccines on a large scale in the general population. This warrants a careful evaluation of mRNA vaccine safety properties by considering all available knowledge about mRNA molecular biology and evolution. Here, I discuss the pervasive claim that mRNA-based vaccines cannot alter genomes. Surprisingly, this notion is widely stated in the mRNA vaccine literature but never supported by referencing any primary scientific papers that would specifically address this question. This discrepancy becomes even more puzzling if one considers previous work on the molecular and evolutionary aspects of retroposition in murine and human populations that clearly documents the frequent integration of mRNA molecules into genomes, including clinical contexts. By performing basic comparisons, I show that the sequence features of mRNA vaccines meet all known requirements for retroposition using L1 elements-the most abundant autonomously active retrotransposons in the human genome. In fact, many factors associated with mRNA vaccines increase the possibility of their L1-mediated retroposition. I conclude that is unfounded to a priori assume that mRNA-based therapeutics do not impact genomes and that the route to genome integration of vaccine mRNAs via endogenous L1 retroelements is easily conceivable. This implies that we urgently need experimental studies that would rigorously test for the potential retroposition of vaccine mRNAs. At present, the insertional mutagenesis safety of mRNA-based vaccines should be considered unresolved.
Collapse
Affiliation(s)
- Tomislav Domazet-Lošo
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia;
- School of Medicine, Catholic University of Croatia, Ilica 242, HR-10000 Zagreb, Croatia
| |
Collapse
|
41
|
The Effects of FGF4 Retrogenes on Canine Morphology. Genes (Basel) 2022; 13:genes13020325. [PMID: 35205370 PMCID: PMC8872533 DOI: 10.3390/genes13020325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 12/24/2022] Open
Abstract
Two FGF4 retrogenes (FGF4L1 on chromosome 18 and FGF4L2 on chromosome 12) have been identified to cause dwarfism across many dog breeds. Some breeds are nearly homozygous for both retrogenes (e.g., Dachshunds) and others are homozygous for just one (e.g., Beagles and Scottish Terriers). Since most breeds do not segregate both of these retrogenes, it is challenging to evaluate their individual effects on long bone length and body size. We identified two dog breeds selected for hunting ability, the Alpine Dachsbracke and the Schweizer Niederlaufhund, that segregate both of these retrogenes. Using individual measurements of height at the shoulder, back length, head width, thorax depth and width, and thoracic limb measurements, we evaluated the combined effects of FGF4 retrogenes within these breeds. We applied multivariable linear regression analysis to determine the effects of retrogene copy numbers on the measurements. Copy numbers of both retrogenes had significant effects reducing height at the shoulders and antebrachial length, with FGF4L1 having a much greater effect than FGF4L2. FGF4L1 alone influenced the degree of carpal valgus and FGF4L2 alone increased head width. Neither retrogene had an effect on thorax width or depth. Selectively breeding dogs with FGF4L1 and without FGF4L2 would likely lead to a reduction in the FGF4L2-related risk of intervertebral disc herniation while maintaining the reduction in leg length resulting from FGF4L1.
Collapse
|
42
|
Saxena A, Sharma V, Muthuirulan P, Neufeld SJ, Tran MP, Gutierrez HL, Chen KD, Erberich JM, Birmingham A, Capellini TD, Cobb J, Hiller M, Cooper KL. Interspecies transcriptomics identify genes that underlie disproportionate foot growth in jerboas. Curr Biol 2022; 32:289-303.e6. [PMID: 34793695 PMCID: PMC8792248 DOI: 10.1016/j.cub.2021.10.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 07/16/2021] [Accepted: 10/28/2021] [Indexed: 01/26/2023]
Abstract
Despite the great diversity of vertebrate limb proportion and our deep understanding of the genetic mechanisms that drive skeletal elongation, little is known about how individual bones reach different lengths in any species. Here, we directly compare the transcriptomes of homologous growth cartilages of the mouse (Mus musculus) and bipedal jerboa (Jaculus jaculus), the latter of which has "mouse-like" arms but extremely long metatarsals of the feet. Intersecting gene-expression differences in metatarsals and forearms of the two species revealed that about 10% of orthologous genes are associated with the disproportionately rapid elongation of neonatal jerboa feet. These include genes and enriched pathways not previously associated with endochondral elongation as well as those that might diversify skeletal proportion in addition to their known requirements for bone growth throughout the skeleton. We also identified transcription regulators that might act as "nodes" for sweeping differences in genome expression between species. Among these, Shox2, which is necessary for proximal limb elongation, has gained expression in jerboa metatarsals where it has not been detected in other vertebrates. We show that Shox2 is sufficient to increase mouse distal limb length, and a nearby putative cis-regulatory region is preferentially accessible in jerboa metatarsals. In addition to mechanisms that might directly promote growth, we found evidence that jerboa foot elongation may occur in part by de-repressing latent growth potential. The genes and pathways that we identified here provide a framework to understand the modular genetic control of skeletal growth and the remarkable malleability of vertebrate limb proportion.
Collapse
Affiliation(s)
- Aditya Saxena
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Virag Sharma
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, Dresden 01307, Germany; Max Planck Institute for the Physics of Complex Systems, Nothnitzerstraße 38, Dresden 01187, Germany
| | - Pushpanathan Muthuirulan
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA 02138, USA
| | - Stanley J Neufeld
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Mai P Tran
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Haydee L Gutierrez
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Kevin D Chen
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Joel M Erberich
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Amanda Birmingham
- Center for Computational Biology and Bioinformatics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Terence D Capellini
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA 02138, USA
| | - John Cobb
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, Dresden 01307, Germany; Max Planck Institute for the Physics of Complex Systems, Nothnitzerstraße 38, Dresden 01187, Germany
| | - Kimberly L Cooper
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
43
|
Kwon M, Kwon D, Lee J, Lee K, Yoon H. Evaluation of the Radial Procurvatum Using the Center of Rotation of Angulation Methodology in Chondrodystrophic Dogs. Front Vet Sci 2022; 8:774993. [PMID: 35047584 PMCID: PMC8761723 DOI: 10.3389/fvets.2021.774993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/30/2021] [Indexed: 11/30/2022] Open
Abstract
The radial joint orientation angles were calculated using the center of rotation of angulation (CORA) methodology within the frontal and sagittal planes in chondrodystrophic dog breeds, including Welsh Corgi, Dachshund, Pekinese, Poodle, Beagle and Maltese, and it was compared whether there is a statistically significant difference between the breeds. Radial joint orientation angles were obtained in eighty-eight dogs, including 23 Welsh Corgis, 16 Dachshunds, 14 Pekinese, 13 Maltese, 12 Poodles and 10 Beagles. Using the CORA methodology, the cranial proximal radial angle (CrPRA) and caudal distal radial angle (CdDRA) in the sagittal plane and medial proximal radial angle (MPRA) and lateral distal radial angle (LDRA) in the frontal plane were measured for the six breeds studied. The mean values of joint angles for each breed were compared statistically were observed. The CrPRA, CdDRA, and LDRA mean values of Dachshund and Welsh Corgi breeds were significantly smaller than other breeds, and in MPRA, Pekingese showed significantly smaller values than other breeds. This study confirms that the mean values of radial joint orientation angles can be significantly different among chondrodystrophic breeds. To accurately evaluate the degree of angular deformity of the radius, it may be helpful to refer to the average value for each breed with chondrodystrophy.
Collapse
Affiliation(s)
- Minji Kwon
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Jeonbuk National University, Iksan-si, South Korea
| | - Danbee Kwon
- Bundang Leaders Animal Medical Center, Seongnam-si, South Korea
| | - Jonghyop Lee
- Nel Animal Medical Center, Anyang-si, South Korea
| | - Kichang Lee
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Jeonbuk National University, Iksan-si, South Korea
| | - Hakyoung Yoon
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Jeonbuk National University, Iksan-si, South Korea
| |
Collapse
|
44
|
Raymond PW, Velie BD, Wade CM. Forensic DNA phenotyping: Canis familiaris breed classification and skeletal phenotype prediction using functionally significant skeletal SNPs and indels. Anim Genet 2021; 53:247-263. [PMID: 34963196 DOI: 10.1111/age.13165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/30/2021] [Accepted: 12/12/2021] [Indexed: 11/29/2022]
Abstract
This review highlights a novel application of breed identification and prediction of skeletal traits in forensic investigations using canine DNA evidence. Currently, genotyping methods used for canine breed classification involve the application of highly polymorphic short tandem repeats in addition to larger commercially available SNP arrays. Both applications face technical challenges. An additional approach to breed identification could be through genotyping SNPs and indels that characterise the array of skeletal differences displayed across domestic dog populations. Research has shown that a small number of genetic variants of large effect drive differences in skeletal phenotypes among domestic dog breeds. This feature makes functionally significant canine skeletal variants a cost-effective target for forensic investigators to classify individuals according to their breed. Further analysis of these skeletal variants would enable the prediction of external appearance. To date, functionally significant genes with genetic variants associated with differences in size, bulk, skull shape, ear shape, limb length, digit type, and tail morphology have been uncovered. Recommendations of a cost-effective genotyping method that can be readily designed and applied by forensic investigators have been given. Further advances to improve the field of canine skeletal forensic DNA phenotyping include the refinement of phenotyping methods, further biological validation of the skeletal genetic variants and establishing a publicly available database for storage of allele frequencies of the skeletal genetic variants in the wider domestic dog population.
Collapse
Affiliation(s)
- Patrick W Raymond
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Brandon D Velie
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Claire M Wade
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| |
Collapse
|
45
|
The effect of inbreeding, body size and morphology on health in dog breeds. Canine Med Genet 2021; 8:12. [PMID: 34852838 PMCID: PMC8638537 DOI: 10.1186/s40575-021-00111-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/02/2021] [Indexed: 11/10/2022] Open
Abstract
Background Dog breeds are known for their distinctive body shape, size, coat color, head type and behaviors, features that are relatively similar across members of a breed. Unfortunately, dog breeds are also characterized by distinct predispositions to disease. We explored the relationships between inbreeding, morphology and health using genotype based inbreeding estimates, body weight and insurance data for morbidity. Results The average inbreeding based on genotype across 227 breeds was Fadj = 0.249 (95% CI 0.235–0.263). There were significant differences in morbidity between breeds with low and high inbreeding (H = 16.49, P = 0.0004). There was also a significant difference in morbidity between brachycephalic breeds and non-brachycephalic breeds (P = 0.0048) and between functionally distinct groups of breeds (H = 14.95 P < 0.0001). Morbidity was modeled using robust regression analysis and both body weight (P < 0.0001) and inbreeding (P = 0.013) were significant (r2 = 0.77). Smaller less inbred breeds were healthier than larger more inbred breeds. Conclusions In this study, body size and inbreeding along with deleterious morphologies contributed to increases in necessary health care in dogs. Supplementary Information The online version contains supplementary material available at 10.1186/s40575-021-00111-4.
Collapse
|
46
|
Insight into the Candidate Genes and Enriched Pathways Associated with Height, Length, Length to Height Ratio and Body-Weight of Korean Indigenous Breed, Jindo Dog Using Gene Set Enrichment-Based GWAS Analysis. Animals (Basel) 2021; 11:ani11113136. [PMID: 34827868 PMCID: PMC8614278 DOI: 10.3390/ani11113136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/21/2021] [Accepted: 10/28/2021] [Indexed: 12/14/2022] Open
Abstract
As a companion and hunting dog, height, length, length to height ratio (LHR) and body-weight are the vital economic traits for Jindo dog. Human selection and targeted breeding have produced an extraordinary diversity in these traits. Therefore, the identification of causative markers, genes and pathways that help us to understand the genetic basis of this variability is essential for their selection purposes. Here, we performed a genome-wide association study (GWAS) combined with enrichment analysis on 757 dogs using 118,879 SNPs. The genomic heritability (h2) was 0.33 for height and 0.28 for weight trait in Jindo. At p-value < 5 × 10-5, ten, six, thirteen and eleven SNPs on different chromosomes were significantly associated with height, length, LHR and body-weight traits, respectively. Based on our results, HHIP, LCORL and NCAPG for height, IGFI and FGFR3 for length, DLK1 and EFEMP1 for LHR and PTPN2, IGFI and RASAL2 for weight can be the potential candidate genes because of the significant SNPs located in their intronic or upstream regions. The gene-set enrichment analysis highlighted here nine and seven overlapping significant (p < 0.05) gene ontology (GO) terms and pathways among traits. Interestingly, the highlighted pathways were related to hormone synthesis, secretion and signalling were generally involved in the metabolism, growth and development process. Our data provide an insight into the significant genes and pathways if verified further, which will have a significant effect on the breeding of the Jindo dog's population.
Collapse
|
47
|
PRKG2 Splice Site Variant in Dogo Argentino Dogs with Disproportionate Dwarfism. Genes (Basel) 2021; 12:genes12101489. [PMID: 34680883 PMCID: PMC8535654 DOI: 10.3390/genes12101489] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/14/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
Dwarfism phenotypes occur in many species and may be caused by genetic or environmental factors. In this study, we investigated a family of nine Dogo Argentino dogs, in which two dogs were affected by disproportionate dwarfism. Radiographs of an affected dog revealed a decreased level of endochondral ossification in its growth plates, and a premature closure of the distal ulnar physes. The pedigree of the dogs presented evidence of monogenic autosomal recessive inheritance; combined linkage and homozygosity mapping assigned the most likely position of a potential genetic defect to 34 genome segments, totaling 125 Mb. The genome of an affected dog was sequenced and compared to 795 control genomes. The prioritization of private variants revealed a clear top candidate variant for the observed dwarfism. This variant, PRKG2:XM_022413533.1:c.1634+1G>T, affects the splice donor site and is therefore predicted to disrupt the function of the PKRG2 gene encoding protein, kinase cGMP-dependent type 2, a known regulator of chondrocyte differentiation. The genotypes of the PRKG2 variant were perfectly associated with the phenotype in the studied family of dogs. PRKG2 loss-of-function variants were previously reported to cause disproportionate dwarfism in humans, cattle, mice, and rats. Together with the comparative data from other species, our data strongly suggest PRKG2:c.1634+1G>T to be a candidate causative variant for the observed dwarfism phenotype in Dogo Argentino dogs.
Collapse
|
48
|
Geiger M, Schoenebeck JJ, Schneider RA, Schmidt MJ, Fischer MS, Sánchez-Villagra MR. Exceptional Changes in Skeletal Anatomy under Domestication: The Case of Brachycephaly. Integr Org Biol 2021; 3:obab023. [PMID: 34409262 PMCID: PMC8366567 DOI: 10.1093/iob/obab023] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/06/2021] [Accepted: 07/08/2021] [Indexed: 01/17/2023] Open
Abstract
"Brachycephaly" is generally considered a phenotype in which the facial part of the head is pronouncedly shortened. While brachycephaly is characteristic for some domestic varieties and breeds (e.g., Bulldog, Persian cat, Niata cattle, Anglo-Nubian goat, Middle White pig), this phenotype can also be considered pathological. Despite the superficially similar appearance of "brachycephaly" in such varieties and breeds, closer examination reveals that "brachycephaly" includes a variety of different cranial modifications with likely different genetic and developmental underpinnings and related with specific breed histories. We review the various definitions and characteristics associated with brachycephaly in different domesticated species. We discern different types of brachycephaly ("bulldog-type," "katantognathic," and "allometric" brachycephaly) and discuss morphological conditions related to brachycephaly, including diseases (e.g., brachycephalic airway obstructive syndrome). Further, we examine the complex underlying genetic and developmental processes and the culturally and developmentally related reasons why brachycephalic varieties may or may not be prevalent in certain domesticated species. Knowledge on patterns and mechanisms associated with brachycephaly is relevant for domestication research, veterinary and human medicine, as well as evolutionary biology, and highlights the profound influence of artificial selection by humans on animal morphology, evolution, and welfare.
Collapse
Affiliation(s)
- M Geiger
- Paleontological Institute and Museum, University of Zurich,
Karl-Schmid-Str. 4, 8006 Zurich, Switzerland
| | - J J Schoenebeck
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University
of Edinburgh, Easter Bush Campus, Midlothian EH25
9RG, UK
| | - R A Schneider
- Department of Orthopaedic Surgery, University of California at San
Francisco, 513 Parnassus Avenue, S-1164, San Francisco, CA
94143-0514, USA
| | - M J Schmidt
- Clinic for Small Animals—Neurosurgery, Neuroradiology and Clinical
Neurology, Justus Liebig University Giessen, Frankfurter Str.
114, 35392 Giessen, Germany
| | - M S Fischer
- Institute of Zoology and Evolutionary Research, Friedrich-Schiller
University Jena, Erbertstr. 1, 07743 Jena,
Germany
| | - M R Sánchez-Villagra
- Paleontological Institute and Museum, University of Zurich,
Karl-Schmid-Str. 4, 8006 Zurich, Switzerland
| |
Collapse
|
49
|
Abstract
Physeal injuries are common in the developing small animal and can result in growth disturbances of the forelimb. Resulting deformities can include limb shortening, joint incongruity, angulation, and alterations in joint loading with subsequent osteoarthritis, remodeling, and debilitation. Because of the unique paired bone configuration, the antebrachium is the main source for malalignment resulting from physeal disturbance in the forelimb. Successful correction of deformities requires in-depth understanding of normal physeal activity; careful consideration of patient signalment; and the ability to quantify the location, magnitude, and plane of the deformity or deformities.
Collapse
|
50
|
Tan S, Ma H, Wang J, Wang M, Wang M, Yin H, Zhang Y, Zhang X, Shen J, Wang D, Banes GL, Zhang Z, Wu J, Huang X, Chen H, Ge S, Chen CL, Zhang YE. DNA transposons mediate duplications via transposition-independent and -dependent mechanisms in metazoans. Nat Commun 2021; 12:4280. [PMID: 34257290 PMCID: PMC8277862 DOI: 10.1038/s41467-021-24585-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 06/23/2021] [Indexed: 01/06/2023] Open
Abstract
Despite long being considered as "junk", transposable elements (TEs) are now accepted as catalysts of evolution. One example is Mutator-like elements (MULEs, one type of terminal inverted repeat DNA TEs, or TIR TEs) capturing sequences as Pack-MULEs in plants. However, their origination mechanism remains perplexing, and whether TIR TEs mediate duplication in animals is almost unexplored. Here we identify 370 Pack-TIRs in 100 animal reference genomes and one Pack-TIR (Ssk-FB4) family in fly populations. We find that single-copy Pack-TIRs are mostly generated via transposition-independent gap filling, and multicopy Pack-TIRs are likely generated by transposition after replication fork switching. We show that a proportion of Pack-TIRs are transcribed and often form chimeras with hosts. We also find that Ssk-FB4s represent a young protein family, as supported by proteomics and signatures of positive selection. Thus, TIR TEs catalyze new gene structures and new genes in animals via both transposition-independent and -dependent mechanisms.
Collapse
Affiliation(s)
- Shengjun Tan
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Huijing Ma
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinbo Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Man Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Center for Cancer Bioinformatics, Peking University Cancer Hospital & Institute, Beijing, China
| | - Mengxia Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haodong Yin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yaqiong Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xinying Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jieyu Shen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Danyang Wang
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, and China National Center for Bioinformation, Chinese Academy of Sciences, Beijing, China
| | - Graham L Banes
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Zhihua Zhang
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, and China National Center for Bioinformation, Chinese Academy of Sciences, Beijing, China
| | - Jianmin Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Center for Cancer Bioinformatics, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xun Huang
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hua Chen
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, and China National Center for Bioinformation, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Siqin Ge
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chun-Long Chen
- Curie Institute, PSL Research University, CNRS UMR 3244, Paris, France.
- Sorbonne University, Paris, France.
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
- Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|