1
|
Atalay B, Dogan S, Gudu BO, Yilmaz E, Ayden A, Ozorhan U, Cicekdal MB, Yaltirik K, Ekici ID, Tuna BG. Neurodegeneration: Effects of calorie restriction on the brain sirtuin protein levels. Behav Brain Res 2025; 476:115258. [PMID: 39332639 DOI: 10.1016/j.bbr.2024.115258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND Calorie restriction (CR) is suggested to activate protective mechanisms in neurodegenerative diseases (NDDs). Despite existing literature highlighting the protective role of Sirtuin (SIRT) proteins against age-related neurodegeneration (ND), no study has explored the total levels of SIRT 1, 3, and 6 proteins simultaneously in brain homogenates by ELISA following intermittent calorie restriction. Applying CR protocols in mice to induce stress, we aimed to determine whether ND would be more pronounced with ad libitum (AL) or with CR. METHODS Mice were randomly assigned to ad libitum (AL), Chronic CR (CCR), or Intermittent CR (ICR) groups at 10 weeks of baseline age (BL). SIRT 1, 3, and 6 protein levels were measured in the homogenized whole-brain supernatants of 49/50 weeks old mice by the ELISA method. Neuronal morphology was evaluated by the cresyl violet on the hippocampus. Neurodegeneration (ND) was assessed by the fluoro-jade and ImageJ was used for quantifications. RESULTS In the ICR group, SIRT1 levels were elevated compared to both the AL and BL groups. Similarly, the CCR group exhibited higher SIRT1 values compared to the AL and BL groups. While SIRT3 levels were higher in both the ICR and CCR groups compared to the AL and BL groups, this disparity did not reach statistical significance. SIRT6 levels were also higher in the ICR group compared to both the BL and AL groups, with the CCR group showing higher values compared to the BL and AL groups as well. Image quantification demonstrated significant neurodegeneration in the AL group compared to the CCR and ICR group, with no observed alterations in nerve cell morphology and number. CONCLUSION This study revealed that the levels of SIRT 1, SIRT 3, and SIRT 6 in brain tissue were notably elevated, and there was less evidence of ND at the 50-week mark in groups undergoing continuous calorie restriction and intermittent calorie restriction compared to baseline and ad libitum groups. Our findings illustrate that CR promotes increased SIRT expression in the mouse brain, thereby potentially mitigating neurodegeneration.
Collapse
Affiliation(s)
- Basar Atalay
- University of Yeditepe, School of Medicine, Department of Neurosurgery, Istanbul, Turkiye; University of Miami Miller School of Medicine, Department of Neurology, Neurocriticalcare, Miami, USA; Jackson Memorial Hospital, Department of Neurology, Neurocritical Care, Miami, USA
| | - Soner Dogan
- Yeditepe University, School of Medicine, Department of Medical Biology, Istanbul, Turkiye
| | - Burhan Oral Gudu
- University of Yeditepe, School of Medicine, Department of Neurosurgery, Istanbul, Turkiye
| | - Elif Yilmaz
- Yeditepe University, School of Medicine, Department of Medical Biology, Istanbul, Turkiye
| | - Atakan Ayden
- Yeditepe University, School of Medicine, Department of Medical Biology, Istanbul, Turkiye
| | - Umit Ozorhan
- University of Lübeck, Institude of Experimental ans Clinical Pharmacology and Toxicology, Lübeck, Germany
| | - Munevver Burcu Cicekdal
- University of Ghent, Medical Biology, School of Medicine and Health Sciences, Ghent, Belgium
| | - Kaan Yaltirik
- University of Yeditepe, School of Medicine, Department of Neurosurgery, Istanbul, Turkiye
| | - Isin Dogan Ekici
- Yeditepe University, School of Medicine, Department of Pathology, Istanbul, Turkiye
| | - Bilge Guvenc Tuna
- Yeditepe University, School of Medicine, Department of Biophysics, Istanbul, Turkiye.
| |
Collapse
|
2
|
Quaytman JA, David NL, Venugopal S, Amorim T, Beatrice B, Toledo FGS, Miller RG, Steinhauser ML, Fazeli PK. Intermittent fasting for systemic triglyceride metabolic reprogramming (IFAST): Design and methods of a prospective, randomized, controlled trial. Contemp Clin Trials 2024; 146:107698. [PMID: 39299543 DOI: 10.1016/j.cct.2024.107698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/27/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Caloric restriction prolongs lifespan in model organisms and improves metrics of aging-related diseases in humans, but daily compliance is challenging. Intermittent fasting improves metrics of lipid and glucose metabolism in the setting of weight loss but whether these metrics are improved independent of weight loss is not known. METHODS We seek to address this gap with IFAST, a single-center, three-arm, prospective, randomized, controlled clinical trial. Eligible study participants are adults with no chronic medical conditions beyond prediabetes or overweight but who are at high risk for type 2 diabetes mellitus (T2D), defined as having a history of gestational diabetes or a first-degree relative with T2D. Participants will be randomized in a 1:2:2 schema to either a control group, a fasting group, or a fasting/weight maintenance group. The fasting groups will complete a 24-h fast one day per week for 12 weeks. The key mechanistic endpoint is change in triglyceride composition (defined by carbon content and degree of saturation) as measured by longitudinal metabolomics. The key safety endpoint is percent change from baseline in bone volume fraction (BV/TV; high-resolution peripheral quantitative CT) at the radius in the fasting group. Secondary endpoints include measures of insulin sensitivity (hyperinsulinemic-euglycemic clamp), clinical lipid profiling, systemic inflammation markers, hunger assessment, bone density, and bone microarchitecture with high-resolution peripheral quantitative CT. CONCLUSION IFAST will investigate intrinsic metabolic benefits of intermittent fasting beyond weight loss. TRIAL REGISTRATION ClinicalTrials.gov ID NCT05722873.
Collapse
Affiliation(s)
- Jacob A Quaytman
- Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Natalie L David
- Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Center for Human Integrative Physiology, Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Sharini Venugopal
- Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Tânia Amorim
- Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Center for Human Integrative Physiology, Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Britney Beatrice
- Department of Sports Medicine and Nutrition, University of Pittsburgh School of Health and Rehabilitation Sciences, Pittsburgh, PA 15260, USA
| | - Frederico G S Toledo
- Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Rachel G Miller
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Matthew L Steinhauser
- Center for Human Integrative Physiology, Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Division of Cardiovascular Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | - Pouneh K Fazeli
- Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Center for Human Integrative Physiology, Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Neuroendocrinology Unit, Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
3
|
McKimpson WM, Spiegel S, Mukhanova M, Kraakman M, Du W, Kitamoto T, Yu J, Deng Z, Pajvani U, Accili D. Calorie restriction activates a gastric Notch-FOXO1 pathway to expand ghrelin cells. J Cell Biol 2024; 223:e202305093. [PMID: 38958606 PMCID: PMC11222742 DOI: 10.1083/jcb.202305093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 05/02/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024] Open
Abstract
Calorie restriction increases lifespan. Among the tissue-specific protective effects of calorie restriction, the impact on the gastrointestinal tract remains unclear. We report increased numbers of chromogranin A-positive (+), including orexigenic ghrelin+ cells, in the stomach of calorie-restricted mice. This effect was accompanied by increased Notch target Hes1 and Notch ligand Jag1 and was reversed by blocking Notch with DAPT, a gamma-secretase inhibitor. Primary cultures and genetically modified reporter mice show that increased endocrine cell abundance is due to altered Lgr5+ stem and Neurog3+ endocrine progenitor cell proliferation. Different from the intestine, calorie restriction decreased gastric Lgr5+ stem cells, while increasing a FOXO1/Neurog3+ subpopulation of endocrine progenitors in a Notch-dependent manner. Further, activation of FOXO1 was sufficient to promote endocrine cell differentiation independent of Notch. The Notch inhibitor PF-03084014 or ghrelin receptor antagonist GHRP-6 reversed the phenotypic effects of calorie restriction in mice. Tirzepatide additionally expanded ghrelin+ cells in mice. In summary, calorie restriction promotes Notch-dependent, FOXO1-regulated gastric endocrine cell differentiation.
Collapse
Affiliation(s)
- Wendy M. McKimpson
- Department of Medicine, Division of Endocrinology, Columbia University, New York, NY, USA
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| | - Sophia Spiegel
- Department of Medicine, Division of Endocrinology, Columbia University, New York, NY, USA
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| | - Maria Mukhanova
- Department of Medicine, Division of Endocrinology, Columbia University, New York, NY, USA
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| | - Michael Kraakman
- Department of Medicine, Division of Endocrinology, Columbia University, New York, NY, USA
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| | - Wen Du
- Department of Medicine, Division of Endocrinology, Columbia University, New York, NY, USA
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| | - Takumi Kitamoto
- Department of Medicine, Division of Endocrinology, Columbia University, New York, NY, USA
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| | - Junjie Yu
- Department of Medicine, Division of Endocrinology, Columbia University, New York, NY, USA
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| | - Zhaobin Deng
- Department of Medicine, Division of Endocrinology, Columbia University, New York, NY, USA
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| | - Utpal Pajvani
- Department of Medicine, Division of Endocrinology, Columbia University, New York, NY, USA
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| | - Domenico Accili
- Department of Medicine, Division of Endocrinology, Columbia University, New York, NY, USA
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| |
Collapse
|
4
|
Shay JES, Yilmaz ÖH. Dietary and metabolic effects on intestinal stem cells in health and disease. Nat Rev Gastroenterol Hepatol 2024:10.1038/s41575-024-00980-7. [PMID: 39358589 DOI: 10.1038/s41575-024-00980-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 10/04/2024]
Abstract
Diet and nutritional metabolites exhibit wide-ranging effects on health and disease partly by altering tissue composition and function. With rapidly rising rates of obesity, there is particular interest in how obesogenic diets influence tissue homeostasis and risk of tumorigenesis; epidemiologically, these diets have a positive correlation with various cancers, including colorectal cancer. The gastrointestinal tract is a highly specialized, continuously renewing tissue with a fundamental role in nutrient uptake and is, in turn, influenced by diet composition and host metabolic state. Intestinal stem cells are found at the base of the intestinal crypt and can generate all mature lineages that comprise the intestinal epithelium and are uniquely influenced by host diet, metabolic by-products and energy dynamics. Similarly, tumour growth and metabolism can also be shaped by nutrient availability and host diet. In this Review, we discuss how different diets and metabolic changes influence intestinal stem cells in homeostatic and pathological conditions, as well as tumorigenesis. We also discuss how dietary changes and composition affect the intestinal epithelium and its surrounding microenvironment.
Collapse
Affiliation(s)
- Jessica E S Shay
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ömer H Yilmaz
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
| |
Collapse
|
5
|
Oudmaijer CAJ, Komninos DSJ, Hoeijmakers JHJ, IJzermans JNM, Vermeij WP. Clinical implications of nutritional interventions reducing calories, a systematic scoping review. Clin Nutr ESPEN 2024; 63:427-439. [PMID: 38986906 DOI: 10.1016/j.clnesp.2024.06.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND & AIMS Caloric restriction (CR) constitutes a dietary approach of (temporarily) reducing calorie intake thereby inducing resilience and resistance mechanisms and promoting health. While CR's feasibility and safety have been proven in human trials, its full benefits and translation to different study populations warrants further exploration. METHODS We here conducted a systematic scoping review adhering to Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. RESULTS Our search resulted in 3745 individual records, of which 40 were included. We showed that all studies consistently demonstrated the feasibility and safety of CR-like interventions. The specific effects of nutritional preconditioning vary, further underscoring the need for carefully crafted strategies, according to the intended effect, patient population, and logistical limitations. CONCLUSIONS CR-like interventions (long-term CR or short-term fasting) are feasible in a broad range of patient populations. Whether it has clinical benefit, f.i. reducing treatment-induced side effects and enhancing therapy efficacy, has to be investigated further.
Collapse
Affiliation(s)
- C A J Oudmaijer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands; Erasmus MC Transplant Institute, Division of Hepatobiliary and Transplantation Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands; Oncode Institute, Utrecht, The Netherlands.
| | - D S J Komninos
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands; Oncode Institute, Utrecht, The Netherlands.
| | - J H J Hoeijmakers
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands; Oncode Institute, Utrecht, The Netherlands; Erasmus MC Cancer Institute, Department of Molecular Genetics, Erasmus University Medical Center Rotterdam, The Netherlands; Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| | - J N M IJzermans
- Erasmus MC Transplant Institute, Division of Hepatobiliary and Transplantation Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - W P Vermeij
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands; Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
6
|
Suda M, Paul KH, Tripathi U, Minamino T, Tchkonia T, Kirkland JL. Targeting Cell Senescence and Senolytics: Novel Interventions for Age-Related Endocrine Dysfunction. Endocr Rev 2024; 45:655-675. [PMID: 38500373 PMCID: PMC11405506 DOI: 10.1210/endrev/bnae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/11/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
Multiple changes occur in hormonal regulation with aging and across various endocrine organs. These changes are associated with multiple age-related disorders and diseases. A better understanding of responsible underling biological mechanisms could help in the management of multiple endocrine disorders over and above hormone replacement therapy (HRT). Cellular senescence is involved in multiple biological aging processes and pathologies common in elderly individuals. Cellular senescence, which occurs in many older individuals but also across the lifespan in association with tissue damage, acute and chronic diseases, certain drugs, and genetic syndromes, may contribute to such endocrine disorders as osteoporosis, metabolic syndrome, and type 2 diabetes mellitus. Drugs that selectively induce senescent cell removal, "senolytics,", and drugs that attenuate the tissue-destructive secretory state of certain senescent cells, "senomorphics," appear to delay the onset of or alleviate multiple diseases, including but not limited to endocrine disorders such as diabetes, complications of obesity, age-related osteoporosis, and cancers as well as atherosclerosis, chronic kidney disease, neurodegenerative disorders, and many others. More than 30 clinical trials of senolytic and senomorphic agents have already been completed, are underway, or are planned for a variety of indications. Targeting senescent cells is a novel strategy that is distinct from conventional therapies such as HRT, and thus might address unmet medical needs and can potentially amplify effects of established endocrine drug regimens, perhaps allowing for dose decreases and reducing side effects.
Collapse
Affiliation(s)
- Masayoshi Suda
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Karl H Paul
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Pharmacology, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden
| | - Utkarsh Tripathi
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan
| | - Tamara Tchkonia
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - James L Kirkland
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
7
|
Ege T, Tao L, North BJ. The Role of Molecular and Cellular Aging Pathways on Age-Related Hearing Loss. Int J Mol Sci 2024; 25:9705. [PMID: 39273652 PMCID: PMC11396656 DOI: 10.3390/ijms25179705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Aging, a complex process marked by molecular and cellular changes, inevitably influences tissue and organ homeostasis and leads to an increased onset or progression of many chronic diseases and conditions, one of which is age-related hearing loss (ARHL). ARHL, known as presbycusis, is characterized by the gradual and irreversible decline in auditory sensitivity, accompanied by the loss of auditory sensory cells and neurons, and the decline in auditory processing abilities associated with aging. The extended human lifespan achieved by modern medicine simultaneously exposes a rising prevalence of age-related conditions, with ARHL being one of the most significant. While our understanding of the molecular basis for aging has increased over the past three decades, a further understanding of the interrelationship between the key pathways controlling the aging process and the development of ARHL is needed to identify novel targets for the treatment of AHRL. The dysregulation of molecular pathways (AMPK, mTOR, insulin/IGF-1, and sirtuins) and cellular pathways (senescence, autophagy, and oxidative stress) have been shown to contribute to ARHL. However, the mechanistic basis for these pathways in the initiation and progression of ARHL needs to be clarified. Therefore, understanding how longevity pathways are associated with ARHL will directly influence the development of therapeutic strategies to treat or prevent ARHL. This review explores our current understanding of the molecular and cellular mechanisms of aging and hearing loss and their potential to provide new approaches for early diagnosis, prevention, and treatment of ARHL.
Collapse
Affiliation(s)
- Tuba Ege
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Litao Tao
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Brian J North
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
8
|
Fontana A, Kyriazis M. How evolution makes us age: Introducing the evolvable soma theory of ageing. Biosystems 2024; 243:105271. [PMID: 39038529 DOI: 10.1016/j.biosystems.2024.105271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/17/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024]
Abstract
At any moment in time, evolution is faced with a formidable challenge: refining the already highly optimised design of biological species, a feat accomplished through all preceding generations. In such a scenario, the impact of random changes (the method employed by evolution) is much more likely to be harmful than advantageous, potentially lowering the reproductive fitness of the affected individuals. Our hypothesis is that ageing is, at least in part, caused by the cumulative effect of all the experiments carried out by evolution to improve a species' design. These experiments are almost always unsuccessful, as expected given their pseudorandom nature, cause harm to the body and ultimately lead to death. This hypothesis is consistent with the concept of "terminal addition", by which nature is biased towards adding innovations at the end of development. From the perspective of evolution as an optimisation algorithm, ageing is advantageous as it allows to test innovations during a phase when their impact on fitness is present but less pronounced. Our inference suggests that ageing has a key biological role, as it contributes to the system's evolvability by exerting a regularisation effect on the fitness landscape of evolution.
Collapse
|
9
|
Viña J, Borrás C. Unlocking the biochemical secrets of longevity: balancing healthspan and lifespan. FEBS Lett 2024; 598:2135-2144. [PMID: 38956807 DOI: 10.1002/1873-3468.14963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024]
Abstract
In an era of rising global life expectancies, research focuses on enhancing the quality of extended years. This review examines the link between mitochondrial function and aging, highlighting the importance of healthspan alongside lifespan. This involves significant human and economic challenges, with longer lifespans often accompanied by reduced well-being. Addressing mitochondrial decline, exploring targeted interventions, and understanding the complexities of research models are vital for advancing our knowledge in this field. Additionally, promoting physical exercise and adopting personalized supplementation strategies based on individual needs can contribute to healthy aging. The insights from this Perspective article offer a hopeful outlook for future advances in extending both lifespan and healthspan, aiming to improve the overall quality of life in aging populations.
Collapse
Affiliation(s)
- Jose Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), Institute of Health Research-INCLIVA, University of Valencia, Spain
| | - Consuelo Borrás
- Freshage Research Group, Department of Physiology, Faculty of Medicine, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), Institute of Health Research-INCLIVA, University of Valencia, Spain
| |
Collapse
|
10
|
Vitantonio AT, Dimovasili C, Mortazavi F, Vaughan KL, Mattison JA, Rosene DL. Long-term calorie restriction reduces oxidative DNA damage to oligodendroglia and promotes homeostatic microglia in the aging monkey brain. Neurobiol Aging 2024; 141:1-13. [PMID: 38788462 DOI: 10.1016/j.neurobiolaging.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024]
Abstract
Calorie restriction (CR) is a robust intervention that can slow biological aging and extend lifespan. In the brain, terminally differentiated neurons and glia accumulate oxidative damage with age, reducing their optimal function. We investigated if CR could reduce oxidative DNA damage to white matter oligodendrocytes and microglia. This study utilized post-mortem brain tissue from rhesus monkeys that died after decades on a 30 % reduced calorie diet. We found that CR subjects had significantly fewer cells with oxidative damage within the corpus callosum and the cingulum bundle. Oligodendrocytes specifically showed the greatest response to CR with a robust reduction in DNA damage. Additionally, we observed alterations in microglia morphology with CR subjects having a higher proportion of ramified, homeostatic microglia and fewer pro-inflammatory, hypertrophic microglia relative to controls. Furthermore, we determined that the observed attenuation in damaged DNA occurs primarily within mitochondria. Overall, these data suggest that long-term CR can reduce oxidative DNA damage and offer a neuroprotective effect in a cell-type-specific manner in the aging monkey brain.
Collapse
Affiliation(s)
- Ana T Vitantonio
- Boston University Chobanian and Avedisian School of Medicine, Department of Pharmacology, Physiology, and Biophysics, 700 Albany St., Room 308, Boston, MA 02118, USA; Boston University Chobanian and Avedisian School of Medicine, Department of Anatomy & Neurobiology, 72 East Concord St, Room L1004, Boston, MA 02118, USA.
| | - Christina Dimovasili
- Boston University Chobanian and Avedisian School of Medicine, Department of Anatomy & Neurobiology, 72 East Concord St, Room L1004, Boston, MA 02118, USA
| | - Farzad Mortazavi
- Boston University Chobanian and Avedisian School of Medicine, Department of Anatomy & Neurobiology, 72 East Concord St, Room L1004, Boston, MA 02118, USA
| | - Kelli L Vaughan
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - Julie A Mattison
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - Douglas L Rosene
- Boston University Chobanian and Avedisian School of Medicine, Department of Anatomy & Neurobiology, 72 East Concord St, Room L1004, Boston, MA 02118, USA; Boston University, Center for Systems Neuroscience, 610 Commonwealth Ave., 7th Floor, Boston, MA 02215, USA
| |
Collapse
|
11
|
Navakkode S, Kennedy BK. Neural ageing and synaptic plasticity: prioritizing brain health in healthy longevity. Front Aging Neurosci 2024; 16:1428244. [PMID: 39161341 PMCID: PMC11330810 DOI: 10.3389/fnagi.2024.1428244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024] Open
Abstract
Ageing is characterized by a gradual decline in the efficiency of physiological functions and increased vulnerability to diseases. Ageing affects the entire body, including physical, mental, and social well-being, but its impact on the brain and cognition can have a particularly significant effect on an individual's overall quality of life. Therefore, enhancing lifespan and physical health in longevity studies will be incomplete if cognitive ageing is over looked. Promoting successful cognitive ageing encompasses the objectives of mitigating cognitive decline, as well as simultaneously enhancing brain function and cognitive reserve. Studies in both humans and animal models indicate that cognitive decline related to normal ageing and age-associated brain disorders are more likely linked to changes in synaptic connections that form the basis of learning and memory. This activity-dependent synaptic plasticity reorganises the structure and function of neurons not only to adapt to new environments, but also to remain robust and stable over time. Therefore, understanding the neural mechanisms that are responsible for age-related cognitive decline becomes increasingly important. In this review, we explore the multifaceted aspects of healthy brain ageing with emphasis on synaptic plasticity, its adaptive mechanisms and the various factors affecting the decline in cognitive functions during ageing. We will also explore the dynamic brain and neuroplasticity, and the role of lifestyle in shaping neuronal plasticity.
Collapse
Affiliation(s)
- Sheeja Navakkode
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, Centre for Healthy Longevity, National University Health System, National University of Singapore, Singapore, Singapore
- Life Sciences Institute Neurobiology Programme, Centre for Life Sciences, National University of Singapore, Singapore, Singapore
| | - Brian K. Kennedy
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, Centre for Healthy Longevity, National University Health System, National University of Singapore, Singapore, Singapore
- Life Sciences Institute Neurobiology Programme, Centre for Life Sciences, National University of Singapore, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Departments of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Buck Institute for Research on Ageing, Novato, CA, United States
| |
Collapse
|
12
|
Pergande MR, Osterbauer KJ, Buck KM, Roberts DS, Wood NN, Balasubramanian P, Mann MW, Rossler KJ, Diffee GM, Colman RJ, Anderson RM, Ge Y. Mass Spectrometry-Based Multiomics Identifies Metabolic Signatures of Sarcopenia in Rhesus Monkey Skeletal Muscle. J Proteome Res 2024; 23:2845-2856. [PMID: 37991985 PMCID: PMC11109024 DOI: 10.1021/acs.jproteome.3c00474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Sarcopenia is a progressive disorder characterized by age-related loss of skeletal muscle mass and function. Although significant progress has been made over the years to identify the molecular determinants of sarcopenia, the precise mechanisms underlying the age-related loss of contractile function remains unclear. Advances in "omics" technologies, including mass spectrometry-based proteomic and metabolomic analyses, offer great opportunities to better understand sarcopenia. Herein, we performed mass spectrometry-based analyses of the vastus lateralis from young, middle-aged, and older rhesus monkeys to identify molecular signatures of sarcopenia. In our proteomic analysis, we identified proteins that change with age, including those involved in adenosine triphosphate and adenosine monophosphate metabolism as well as fatty acid beta oxidation. In our untargeted metabolomic analysis, we identified metabolites that changed with age largely related to energy metabolism including fatty acid beta oxidation. Pathway analysis of age-responsive proteins and metabolites revealed changes in muscle structure and contraction as well as lipid, carbohydrate, and purine metabolism. Together, this study discovers new metabolic signatures and offers new insights into the molecular mechanisms underlying sarcopenia for the evaluation and monitoring of a therapeutic treatment of sarcopenia.
Collapse
Affiliation(s)
- Melissa R. Pergande
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Katie J. Osterbauer
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kevin M. Buck
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David S. Roberts
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nina N. Wood
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Morgan W. Mann
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kalina J. Rossler
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Gary M. Diffee
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ricki J. Colman
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Rozalyn M. Anderson
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Ying Ge
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
13
|
Zocher S. Targeting neuronal epigenomes for brain rejuvenation. EMBO J 2024; 43:3312-3326. [PMID: 39009672 PMCID: PMC11329789 DOI: 10.1038/s44318-024-00148-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 07/17/2024] Open
Abstract
Aging is associated with a progressive decline of brain function, and the underlying causes and possible interventions to prevent this cognitive decline have been the focus of intense investigation. The maintenance of neuronal function over the lifespan requires proper epigenetic regulation, and accumulating evidence suggests that the deterioration of the neuronal epigenetic landscape contributes to brain dysfunction during aging. Epigenetic aging of neurons may, however, be malleable. Recent reports have shown age-related epigenetic changes in neurons to be reversible and targetable by rejuvenation strategies that can restore brain function during aging. This review discusses the current evidence that identifies neuronal epigenetic aging as a driver of cognitive decline and a promising target of brain rejuvenation strategies, and it highlights potential approaches for the specific manipulation of the aging neuronal epigenome to restore a youthful epigenetic state in the brain.
Collapse
Affiliation(s)
- Sara Zocher
- German Center for Neurodegenerative Diseases, Tatzberg 41, 01307, Dresden, Germany.
| |
Collapse
|
14
|
Tizazu AM. Fasting and calorie restriction modulate age-associated immunosenescence and inflammaging. Aging Med (Milton) 2024; 7:499-509. [PMID: 39234195 PMCID: PMC11369340 DOI: 10.1002/agm2.12342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024] Open
Abstract
Aging is a multifaceted process impacting cells, tissues, organs, and organ systems of the body. Like other systems, aging affects both the adaptive and the innate components of the immune system, a phenomenon known as immunosenescence. The deregulation of the immune system puts elderly individuals at higher risk of infection, lower response to vaccines, and increased incidence of cancer. In the Western world, overnutrition has increased the incidence of obesity (linked with chronic inflammation) which increases the risk of metabolic syndrome, cardiovascular disease, and cancer. Aging is also associated with inflammaging a sterile chronic inflammation that predisposes individuals to age-associated disease. Genetic manipulation of the nutrient-sensing pathway, fasting, and calorie restriction (CR) has been shown to increase the lifespan of model organisms. As well in humans, fasting and CR have also been shown to improve different health parameters. Yet the direct effect of fasting and CR on the aging immune system needs to be further explored. Identifying the effect of fasting and CR on the immune system and how it modulates different parameters of immunosenescence could be important in designing pharmacological or nutritional interventions that slow or revert immunosenescence and strengthen the immune system of elderly individuals. Furthermore, clinical intervention can also be planned, by incorporating fasting or CR with medication, chemotherapy, and vaccination regimes. This review discusses age-associated changes in the immune system and how these changes are modified by fasting and CR which add information on interventions that promote healthy aging and longevity in the growing aging population.
Collapse
Affiliation(s)
- Anteneh Mehari Tizazu
- Department of Microbiology, Immunology, and Parasitology, School of MedicineSt. Paul's Hospital Millennium Medical CollegeAddis AbabaEthiopia
| |
Collapse
|
15
|
Reddy BL, Reddy VS, Saier MH. Health Benefits of Intermittent Fasting. Microb Physiol 2024; 34:142-152. [PMID: 38955141 PMCID: PMC11262566 DOI: 10.1159/000540068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024]
Abstract
We propose that intermittent fasting (time-restricted eating), in agreement with the conclusions of other biologists, as revealed in recent publications, promotes the achievement of numerous health benefits including the extension of human and animal lifespans. Background: There is evidence, obtained both with animal model systems and with humans, that intermittent fasting has health benefits. These benefits include extended longevity, weight loss, and counteracting various disease conditions. Such procedures positively influence the benefits of human tissue-specific microbiomes and minimize the consequences of organellar apoptosis. Key Messages: In this review, we attempt to summarize the predominant evidence, published in the scientific literature, relevant to the conclusions that in general, and in many specific instances, intermittent fasting has long-term benefits to animals, including humans, with respect to overall and specific organismal health and longevity.
Collapse
Affiliation(s)
- B. Lakshmi Reddy
- Department of Molecular Biology, University of California at San Diego 9500 Gilman Dr. La Jolla, CA 92093-0116 USA
| | | | - Milton H. Saier
- Department of Molecular Biology, University of California at San Diego 9500 Gilman Dr. La Jolla, CA 92093-0116 USA
| |
Collapse
|
16
|
Yu Z, Zhou Y, Mao K, Pang B, Wang K, Jin T, Zheng H, Zhai H, Wang Y, Xu X, Liu H, Wang Y, Han JDJ. Thermal facial image analyses reveal quantitative hallmarks of aging and metabolic diseases. Cell Metab 2024; 36:1482-1493.e7. [PMID: 38959862 DOI: 10.1016/j.cmet.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/19/2024] [Accepted: 05/22/2024] [Indexed: 07/05/2024]
Abstract
Although human core body temperature is known to decrease with age, the age dependency of facial temperature and its potential to indicate aging rate or aging-related diseases remains uncertain. Here, we collected thermal facial images of 2,811 Han Chinese individuals 20-90 years old, developed the ThermoFace method to automatically process and analyze images, and then generated thermal age and disease prediction models. The ThermoFace deep learning model for thermal facial age has a mean absolute deviation of about 5 years in cross-validation and 5.18 years in an independent cohort. The difference between predicted and chronological age is highly associated with metabolic parameters, sleep time, and gene expression pathways like DNA repair, lipolysis, and ATPase in the blood transcriptome, and it is modifiable by exercise. Consistently, ThermoFace disease predictors forecast metabolic diseases like fatty liver with high accuracy (AUC > 0.80), with predicted disease probability correlated with metabolic parameters.
Collapse
Affiliation(s)
- Zhengqing Yu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China
| | - Yong Zhou
- Clinical Research Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kehang Mao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China
| | - Bo Pang
- Clinical Laboratory, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kai Wang
- International Center for Aging and Cancer (ICAC), Hainan Medical University, Haikou, China
| | - Tang Jin
- International Center for Aging and Cancer (ICAC), Hainan Medical University, Haikou, China
| | - Haonan Zheng
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China
| | - Haotian Zhai
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China
| | - Yiyang Wang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China
| | - Xiaohan Xu
- Department of Rheumatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongxiao Liu
- Department of Rheumatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Wang
- Kailuan Majiagou Hospital, Tangshan, Hebei Province, China
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China; International Center for Aging and Cancer (ICAC), Hainan Medical University, Haikou, China; Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, China.
| |
Collapse
|
17
|
Kidd RL, Agyemang-Prempeh A, Sanderson A, Stuart C, Mahajan S, Verschuur CA, Newman TA. Longitudinal urinary neopterin is associated with hearing threshold change over time in independent older adults. Sci Rep 2024; 14:13685. [PMID: 38871776 DOI: 10.1038/s41598-024-64648-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 06/11/2024] [Indexed: 06/15/2024] Open
Abstract
Low-grade chronic inflammation is associated with many age-related conditions. Non-invasive methods to monitor low-grade chronic inflammation may improve the management of older people at risk of poorer outcomes. This longitudinal cohort study has determined baseline inflammation using neopterin volatility in monthly urine samples of 45 independent older adults (aged 65-75 years). Measurement of neopterin, an inflammatory metabolite, enabled stratification of individuals into risk categories based on how often in a 12-month period their neopterin level was raised. Hearing was measured (pure-tone audiometry) at baseline, 1 year and 3 years of the study. Results show that those in the highest risk category (neopterin raised greater than 50% of the time) saw greater deterioration, particularly in high-frequency, hearing. A one-way Welch's ANOVA showed a significant difference between the risk categories for change in high-frequency hearing (W (3, 19.6) = 9.164, p = 0.0005). Despite the study size and duration individuals in the highest risk category were more than twice as likely to have an additional age-related morbidity than those in the lowest risk category. We conclude that volatility of neopterin in urine may enable stratification of those at greatest risk of progression of hearing loss.
Collapse
Affiliation(s)
- Rachel L Kidd
- CES, Medicine, B85, University of Southampton, Southampton, SO17 1BJ, UK
| | - Akosua Agyemang-Prempeh
- ISVR, USAIS, FEPs, B19, University of Southampton, Southampton, SO17 1BJ, UK
- ENT Unit, Komfo Anokye Teaching Hospital, PO Box 1934, Kumasi, Ghana
| | - Alan Sanderson
- ISVR, USAIS, FEPs, B19, University of Southampton, Southampton, SO17 1BJ, UK
| | - Charlotte Stuart
- CES, Medicine, B85, University of Southampton, Southampton, SO17 1BJ, UK
| | - Sumeet Mahajan
- Institute of Life Sciences, B85, University of Southampton Highfield, Southampton, SO17 1BJ, UK
| | - Carl A Verschuur
- ISVR, USAIS, FEPs, B19, University of Southampton, Southampton, SO17 1BJ, UK
| | - Tracey A Newman
- CES, Medicine, B85, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
18
|
Chmilar SL, Luzardo AC, Dutt P, Pawluk A, Thwaites VC, Laird RA. Caloric restriction extends lifespan in a clonal plant. Ecol Lett 2024; 27:e14444. [PMID: 38814322 DOI: 10.1111/ele.14444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/31/2024]
Abstract
When subjected to dietary caloric restriction (CR), individual animals often outlive well-fed conspecifics. Here, we address whether CR also extends lifespan in plants. Whereas caloric intake in animals comes from ingestion, in plants it derives from photosynthesis. Thus, factors that reduce photosynthesis, such as reduced light intensity, can induce CR. In two lab experiments investigating the aquatic macrophyte Lemna minor, we tracked hundreds of individuals longitudinally, with light intensity-and hence, CR-manipulated using neutral-density filters. In both experiments, CR dramatically increased lifespan through a process of temporal scaling. Moreover, the magnitude of lifespan extension accorded with the assumptions that (a) light intensity positively relates to photosynthesis following Michaelis-Menten kinetics, and (b) photosynthesis negatively relates to lifespan via a power law. Our results emphasize that CR-mediated lifespan extension applies to autotrophs as well as heterotrophs, and suggest that variation in light intensity has quantitatively predictable effects on plant aging trajectories.
Collapse
Affiliation(s)
- Suzanne L Chmilar
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Amanda C Luzardo
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Priyanka Dutt
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Abbe Pawluk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Victoria C Thwaites
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Robert A Laird
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
19
|
Nguyen NTA, Jiang Y, McQuade JL. Eating away cancer: the potential of diet and the microbiome for shaping immunotherapy outcome. Front Immunol 2024; 15:1409414. [PMID: 38873602 PMCID: PMC11169628 DOI: 10.3389/fimmu.2024.1409414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024] Open
Abstract
The gut microbiome (GMB) plays a substantial role in human health and disease. From affecting gut barrier integrity to promoting immune cell differentiation, the GMB is capable of shaping host immunity and thus oncogenesis and anti-cancer therapeutic response, particularly with immunotherapy. Dietary patterns and components are key determinants of GMB composition, supporting the investigation of the diet-microbiome-immunity axis as a potential avenue to enhance immunotherapy response in cancer patients. As such, this review will discuss the role of the GMB and diet on anti-cancer immunity. We demonstrate that diet affects anti-cancer immunity through both GMB-independent and GMB-mediated mechanisms, and that different diet patterns mold the GMB's functional and taxonomic composition in distinctive ways. Dietary modulation therefore shows promise as an intervention for improving cancer outcome; however, further and more extensive research in human cancer populations is needed.
Collapse
Affiliation(s)
| | | | - Jennifer L. McQuade
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
20
|
Chen M, Tan J, Jin Z, Jiang T, Wu J, Yu X. Research progress on Sirtuins (SIRTs) family modulators. Biomed Pharmacother 2024; 174:116481. [PMID: 38522239 DOI: 10.1016/j.biopha.2024.116481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024] Open
Abstract
Sirtuins (SIRTs) represent a class of nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylases that exert a crucial role in cellular signal transduction and various biological processes. The mammalian sirtuins family encompasses SIRT1 to SIRT7, exhibiting therapeutic potential in counteracting cellular aging, modulating metabolism, responding to oxidative stress, inhibiting tumors, and improving cellular microenvironment. These enzymes are intricately linked to the occurrence and treatment of diverse pathological conditions, including cancer, autoimmune diseases, and cardiovascular disorders. Given the significance of histone modification in gene expression and chromatin structure, maintaining the equilibrium of the sirtuins family is imperative for disease prevention and health restoration. Mounting evidence suggests that modulators of SIRTs play a crucial role in treating various diseases and maintaining physiological balance. This review delves into the molecular structure and regulatory functions of the sirtuins family, reviews the classification and historical evolution of SIRTs modulators, offers a systematic overview of existing SIRTs modulation strategies, and elucidates the regulatory mechanisms of SIRTs modulators (agonists and inhibitors) and their clinical applications. The article concludes by summarizing the challenges encountered in SIRTs modulator research and offering insights into future research directions.
Collapse
Affiliation(s)
- Mingkai Chen
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China; School of Medicine Jiangsu University, Zhenjiang, Jiangsu, China
| | - Junfei Tan
- School of Medicine Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zihan Jin
- Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou City, China
| | - Tingting Jiang
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Jiabiao Wu
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Xiaolong Yu
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China; The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China.
| |
Collapse
|
21
|
Missong H, Joshi R, Khullar N, Thareja S, Navik U, Bhatti GK, Bhatti JS. Nutrient-epigenome interactions: Implications for personalized nutrition against aging-associated diseases. J Nutr Biochem 2024; 127:109592. [PMID: 38325612 DOI: 10.1016/j.jnutbio.2024.109592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Aging is a multifaceted process involving genetic and environmental interactions often resulting in epigenetic changes, potentially leading to aging-related diseases. Various strategies, like dietary interventions and calorie restrictions, have been employed to modify these epigenetic landscapes. A burgeoning field of interest focuses on the role of microbiota in human health, emphasizing system biology and computational approaches. These methods help decipher the intricate interplay between diet and gut microbiota, facilitating the creation of personalized nutrition strategies. In this review, we analysed the mechanisms related to nutritional interventions while highlighting the influence of dietary strategies, like calorie restriction and intermittent fasting, on microbial composition and function. We explore how gut microbiota affects the efficacy of interventions using tools like multi-omics data integration, network analysis, and machine learning. These tools enable us to pinpoint critical regulatory elements and generate individualized models for dietary responses. Lastly, we emphasize the need for a deeper comprehension of nutrient-epigenome interactions and the potential of personalized nutrition informed by individual genetic and epigenetic profiles. As knowledge and technology advance, dietary epigenetics stands on the cusp of reshaping our strategy against aging and related diseases.
Collapse
Affiliation(s)
- Hemi Missong
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Riya Joshi
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Naina Khullar
- Department of Zoology, Mata Gujri College, Fatehgarh Sahib, Punjab, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, India
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
22
|
Stephens EB, Senadheera C, Roa-Diaz S, Peralta S, Alexander L, Silverman-Martin W, Yukawa M, Morris J, Johnson JB, Newman JC, Stubbs BJ. A randomized open-label, observational study of the novel ketone ester, bis octanoyl (R)-1,3-butanediol, and its acute effect on ß-hydroxybutyrate and glucose concentrations in healthy older adults. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.16.24305925. [PMID: 38699344 PMCID: PMC11065008 DOI: 10.1101/2024.04.16.24305925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Bis-octanoyl (R)-1,3-butanediol (BO-BD) is a novel ketone ester (KE) ingredient which increases blood beta-hydroxybutyrate (BHB) concentrations rapidly after ingestion. KE is hypothesized to have beneficial metabolic effects on health and performance, especially in older adults. Whilst many studies have investigated the ketogenic effect of KE in young adults, they have not been studied in an exclusively older adult population, for whom age-related differences in body composition and metabolism may alter the effects. This randomized, observational, open-label study in healthy older adults (n = 30, 50% male, age = 76.5 years, BMI = 25.2 kg/m2) aimed to elucidate acute tolerance, blood BHB and blood glucose concentrations for 4 hours following consumption of either 12.5 or 25 g of BO-BD formulated firstly as a ready-to-drink beverage (n = 30), then as a re-constituted powder (n = 21), taken with a standard meal. Both serving sizes and formulations of BO-BD were well tolerated, and increased blood BHB, inducing nutritional ketosis (≥ 0.5mM) that lasted until the end of the study. Ketosis was dose responsive; peak BHB concentration (Cmax) and incremental area under the curve (iAUC) were significantly greater with 25 g compared to 12.5 g of BO-BD in both formulations. There were no significant differences in Cmax or iAUC between formulations. Blood glucose increased in all conditions following the meal; there were no consistent significant differences in glucose response between conditions. These results demonstrate that both powder and beverage formulations of the novel KE, BO-BD, induce ketosis in healthy older adults, facilitating future research on functional effects of this ingredient in aging.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Michi Yukawa
- Veteran’s Affairs Medical Center, San Francisco, CA, USA
| | | | | | - John C. Newman
- Buck Institute for Research on Aging, Novato, CA, USA
- Division of Geriatrics, University of California, San Francisco, CA, USA
| | | |
Collapse
|
23
|
Brandhorst S, Longo VD. Exploring juventology: unlocking the secrets of youthspan and longevity programs. FRONTIERS IN AGING 2024; 5:1379289. [PMID: 38638872 PMCID: PMC11024265 DOI: 10.3389/fragi.2024.1379289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/20/2024] [Indexed: 04/20/2024]
Abstract
In recent decades, the study of biological aging has evolved from simplistic theories like the free radical theory to more complex and nuanced perspectives. In particular, the identification of evolutionary conserved genes and signaling pathways that can modulate both lifespan but also healthspan has resulted in the expanding understanding of the link between nutrients, signal transduction proteins, and aging along with substantial support for the existence of multiple "longevity programs," which are activated based on the availability of nutrients. Periodic fasting and other dietary restrictions can promote entry into a longevity program characterized by cellular protection and optimized function, and the activation of regenerative processes that lead to rejuvenation. This review discusses the idea of juventology, a novel field proposing the existence of longevity programs that can maintain organisms in a highly functional state for extended periods of time. Drawing upon research on Saccharomyces cerevisiae and other model organisms, the review explores the distinctiveness of juventology from traditional aging-centered views. The focus on the "age of youth" challenges conventional thinking and opens new avenues for understanding and extending the period of peak functionality in organisms. Thus, a "juventology"-based strategy can complement the traditional gerontology approach by focusing not on aging but on the longevity program affecting the life history period in which mortality is very low and organisms remain youthful, healthy, and fully functional.
Collapse
Affiliation(s)
- Sebastian Brandhorst
- Leonard Davis School of Gerontology, Longevity Institute, University of Southern California, Los Angeles, CA, United States
| | | |
Collapse
|
24
|
Phua QH, Ng SY, Soh BS. Mitochondria: A Potential Rejuvenation Tool against Aging. Aging Dis 2024; 15:503-516. [PMID: 37815912 PMCID: PMC10917551 DOI: 10.14336/ad.2023.0712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/12/2023] [Indexed: 10/12/2023] Open
Abstract
Aging is a complex physiological process encompassing both physical and cognitive decline over time. This intricate process is governed by a multitude of hallmarks and pathways, which collectively contribute to the emergence of numerous age-related diseases. In response to the remarkable increase in human life expectancy, there has been a substantial rise in research focusing on the development of anti-aging therapies and pharmacological interventions. Mitochondrial dysfunction, a critical factor in the aging process, significantly impacts overall cellular health. In this extensive review, we will explore the contemporary landscape of anti-aging strategies, placing particular emphasis on the promising potential of mitotherapy as a ground-breaking approach to counteract the aging process. Moreover, we will investigate the successful application of mitochondrial transplantation in both animal models and clinical trials, emphasizing its translational potential. Finally, we will discuss the inherent challenges and future possibilities of mitotherapy within the realm of aging research and intervention.
Collapse
Affiliation(s)
- Qian Hua Phua
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Proteos, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore.
| | - Shi Yan Ng
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Proteos, Singapore.
- National University of Singapore, Yong Loo Lin School of Medicine (Department of Physiology), Singapore.
- National Neuroscience Institute, Singapore.
| | - Boon-Seng Soh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Proteos, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore.
| |
Collapse
|
25
|
Le Couteur DG, Raubenheimer D, Solon-Biet S, de Cabo R, Simpson SJ. Does diet influence aging? Evidence from animal studies. J Intern Med 2024; 295:400-415. [PMID: 35701180 DOI: 10.1111/joim.13530] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nutrition profoundly influences the risk for many age-related diseases. Whether nutrition influences human aging biology directly is less clear. Studies in different animal species indicate that reducing food intake ("caloric restriction" [CR]) can increase lifespan and delay the onset of diseases and the biological hallmarks of aging. Obesity has been described as "accelerated aging" and therefore the lifespan and health benefits generated by CR in both aging and obesity may occur via similar mechanisms. Beyond calorie intake, studies based on nutritional geometry have shown that protein intake and the interaction between dietary protein and carbohydrates influence age-related health and lifespan. Studies where animals are calorically restricted by providing free access to diluted diets have had less impact on lifespan than those studies where animals are given a reduced aliquot of food each day and are fasting between meals. This has drawn attention to the role of fasting in health and aging, and exploration of the health effects of various fasting regimes. Although definitive human clinical trials of nutrition and aging would need to be unfeasibly long and unrealistically controlled, there is good evidence from animal experiments that some nutritional interventions based on CR, manipulating dietary macronutrients, and fasting can influence aging biology and lifespan.
Collapse
Affiliation(s)
- David G Le Couteur
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- ANZAC Research Institute, The Concord Hospital, Concord, Australia
| | - David Raubenheimer
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Samantha Solon-Biet
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Rafael de Cabo
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging (NIH), Baltimore, Maryland, USA
| | - Stephen J Simpson
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| |
Collapse
|
26
|
Shiu WC, Liu ZS, Chen BY, Ku YW, Chen PW. Evaluation of a Standard Dietary Regimen Combined with Heat-Inactivated Lactobacillus gasseri HM1, Lactoferrin-Producing HM1, and Their Sonication-Inactivated Variants in the Management of Metabolic Disorders in an Obesity Mouse Model. Foods 2024; 13:1079. [PMID: 38611383 PMCID: PMC11011380 DOI: 10.3390/foods13071079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
This study investigated the impact of incorporating various inactivated probiotic formulations, with or without recombinant lactoferrin (LF) expression, into a standard chow diet on metabolic-related disorders in obese mice. After inducing obesity through a 13-week high-fat diet followed by a standard chow diet, mice received daily oral administrations of different probiotics for 6 weeks using the oral gavage approach. These probiotic formulations consisted of a placebo (MRS), heat-inactivated Lactobacillus gasseri HM1 (HK-HM1), heat-killed LF-expression HM1 (HK-HM1/LF), sonication-killed HM1 (SK-HM1), and sonication-killed LF-expression HM1 (SK-HM1/LF). The study successfully induced obesity, resulting in worsened glucose tolerance and insulin sensitivity. Interestingly, the regular diet alone improved glucose tolerance, and the addition of inactivated probiotics further enhanced this effect, with SK-HM1/LF demonstrating the most noticeable improvement. However, while regular dietary intervention alone improved insulin sensitivity, probiotic supplementation did not provide additional benefits in this aspect. Inflammation in perirenal and epididymal fat tissues was partially alleviated by the regular diet and further improved by probiotics, particularly by SK-HM1, which showed the most significant reduction. Additionally, HK-HM1 and HK-HM1/LF supplements could contribute to the improvement of serum total triglycerides or total cholesterol, respectively. Overall, incorporating inactivated probiotics into a regular diet may enhance metabolic indices, and recombinant LF may offer potential benefits for improving glucose tolerance.
Collapse
Affiliation(s)
- Wei-Chen Shiu
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 402202, Taiwan; (W.-C.S.); (B.-Y.C.); (Y.-W.K.)
| | - Zhen-Shu Liu
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan;
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan
- Center for Sustainability and Energy Technologies, Chang Gung University, Taoyuan 33302, Taiwan
| | - Bo-Yuan Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 402202, Taiwan; (W.-C.S.); (B.-Y.C.); (Y.-W.K.)
| | - Yu-We Ku
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 402202, Taiwan; (W.-C.S.); (B.-Y.C.); (Y.-W.K.)
- Animal and Plant Disease Control Center Yilan County, Wujie Township, Yilan County 268015, Taiwan
| | - Po-Wen Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 402202, Taiwan; (W.-C.S.); (B.-Y.C.); (Y.-W.K.)
| |
Collapse
|
27
|
Kowald A, Palmer D, Secci R, Fuellen G. Healthy Aging in Times of Extreme Temperatures: Biomedical Approaches. Aging Dis 2024; 15:601-611. [PMID: 37450930 PMCID: PMC10917539 DOI: 10.14336/ad.2023.0619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Climate extremes and rising energy prices present interconnected global health risks. Technical solutions can be supplemented with biomedical approaches to promote healthy longevity in hot and cold conditions. In summer, reducing basal metabolic rate through mild caloric restriction or CR mimetics, such as resveratrol, can potentially be used to lower body temperature. In winter, activating brown adipose tissue (BAT) for non-shivering thermogenesis and improved metabolic health can help adaptation to colder environments. Catechins found in green tea and in other food could be alternatives to drugs for these purposes. This review examines and discusses the biomedical evidence supporting the use of CR mimetics and BAT activators for health benefits amid increasingly extreme temperatures.
Collapse
Affiliation(s)
- Axel Kowald
- Institut für Biostatistik und Informatik in Medizin und Alternsforschung, Universitätsmedizin Rostock, Germany.
| | - Daniel Palmer
- Institut für Biostatistik und Informatik in Medizin und Alternsforschung, Universitätsmedizin Rostock, Germany.
| | - Riccardo Secci
- Institut für Biostatistik und Informatik in Medizin und Alternsforschung, Universitätsmedizin Rostock, Germany.
| | - Georg Fuellen
- Institut für Biostatistik und Informatik in Medizin und Alternsforschung, Universitätsmedizin Rostock, Germany.
- Interdisziplinäre Fakultät, Department AGIS (Altern des Individuums und der Gesellschaft), Universität Rostock, Germany.
- School of Medicine, University College Dublin, Ireland.
| |
Collapse
|
28
|
Chen H, Sun L, Feng L, Han X, Zhang Y, Zhai W, Zhang Z, Mulholland M, Zhang W, Yin Y. Intermittent fasting promotes type 3 innate lymphoid cells secreting IL-22 contributing to the beigeing of white adipose tissue. eLife 2024; 12:RP91060. [PMID: 38536726 PMCID: PMC10972562 DOI: 10.7554/elife.91060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Mechanism underlying the metabolic benefit of intermittent fasting remains largely unknown. Here, we reported that intermittent fasting promoted interleukin-22 (IL-22) production by type 3 innate lymphoid cells (ILC3s) and subsequent beigeing of subcutaneous white adipose tissue. Adoptive transfer of intestinal ILC3s increased beigeing of white adipose tissue in diet-induced-obese mice. Exogenous IL-22 significantly increased the beigeing of subcutaneous white adipose tissue. Deficiency of IL-22 receptor (IL-22R) attenuated the beigeing induced by intermittent fasting. Single-cell sequencing of sorted intestinal immune cells revealed that intermittent fasting increased aryl hydrocarbon receptor signaling in ILC3s. Analysis of cell-cell ligand receptor interactions indicated that intermittent fasting may stimulate the interaction of ILC3s with dendritic cells and macrophages. These results establish the role of intestinal ILC3s in beigeing of white adipose tissue, suggesting that ILC3/IL-22/IL-22R axis contributes to the metabolic benefit of intermittent fasting.
Collapse
Affiliation(s)
- Hong Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Center for Reproductive Medicine, Third Hospital, Peking UniversityBeijingChina
- State Key Laboratory of Female Fertility Promote, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third HospitalBeijingChina
| | - Lijun Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Center for Reproductive Medicine, Third Hospital, Peking UniversityBeijingChina
| | - Lu Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Center for Reproductive Medicine, Third Hospital, Peking UniversityBeijingChina
| | - Xue Han
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Center for Reproductive Medicine, Third Hospital, Peking UniversityBeijingChina
| | - Yunhua Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Center for Reproductive Medicine, Third Hospital, Peking UniversityBeijingChina
| | - Wenbo Zhai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Center for Reproductive Medicine, Third Hospital, Peking UniversityBeijingChina
| | - Zehe Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Center for Reproductive Medicine, Third Hospital, Peking UniversityBeijingChina
| | - Michael Mulholland
- Department of Surgery, University of Michigan Medical CenterAnn ArborUnited States
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Center for Reproductive Medicine, Third Hospital, Peking UniversityBeijingChina
- Department of Surgery, University of Michigan Medical CenterAnn ArborUnited States
| | - Yue Yin
- Department of Pharmacology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking UniversityBeijingChina
| |
Collapse
|
29
|
Bartman S, Coppotelli G, Ross JM. Mitochondrial Dysfunction: A Key Player in Brain Aging and Diseases. Curr Issues Mol Biol 2024; 46:1987-2026. [PMID: 38534746 DOI: 10.3390/cimb46030130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
Mitochondria are thought to have become incorporated within the eukaryotic cell approximately 2 billion years ago and play a role in a variety of cellular processes, such as energy production, calcium buffering and homeostasis, steroid synthesis, cell growth, and apoptosis, as well as inflammation and ROS production. Considering that mitochondria are involved in a multitude of cellular processes, mitochondrial dysfunction has been shown to play a role within several age-related diseases, including cancers, diabetes (type 2), and neurodegenerative diseases, although the underlying mechanisms are not entirely understood. The significant increase in lifespan and increased incidence of age-related diseases over recent decades has confirmed the necessity to understand the mechanisms by which mitochondrial dysfunction impacts the process of aging and age-related diseases. In this review, we will offer a brief overview of mitochondria, along with structure and function of this important organelle. We will then discuss the cause and consequence of mitochondrial dysfunction in the aging process, with a particular focus on its role in inflammation, cognitive decline, and neurodegenerative diseases, such as Huntington's disease, Parkinson's disease, and Alzheimer's disease. We will offer insight into therapies and interventions currently used to preserve or restore mitochondrial functioning during aging and neurodegeneration.
Collapse
Affiliation(s)
- Sydney Bartman
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Giuseppe Coppotelli
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Jaime M Ross
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
30
|
Petr MA, Matiyevskaya F, Osborne B, Berglind M, Reves S, Zhang B, Ezra MB, Carmona-Marin LM, Syadzha MF, Mediavilla MC, Keijzers G, Bakula D, Mkrtchyan GV, Scheibye-Knudsen M. Pharmacological interventions in human aging. Ageing Res Rev 2024; 95:102213. [PMID: 38309591 DOI: 10.1016/j.arr.2024.102213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/15/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
Pharmacological interventions are emerging as potential avenues of alleviating age-related disease. However, the knowledge of ongoing clinical trials as they relate to aging and pharmacological interventions is dispersed across a variety of mediums. In this review we summarize 136 age-related clinical trials that have been completed or are ongoing. Furthermore, we establish a database that describe the trials (AgingDB, www.agingdb.com) keeping track of the previous and ongoing clinical trials, alongside their outcomes. The aim of this review and database is to give people the ability to easily query for their trial of interest and stay up to date on the latest results. In sum, herein we give an overview of the current pharmacological strategies that have been applied to target human aging.
Collapse
Affiliation(s)
- Michael Angelo Petr
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Frida Matiyevskaya
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Brenna Osborne
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Magnus Berglind
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Simon Reves
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Bin Zhang
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Michael Ben Ezra
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Lina Maria Carmona-Marin
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Muhammad Farraz Syadzha
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Marta Cortés Mediavilla
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Guido Keijzers
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Daniela Bakula
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Garik V Mkrtchyan
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Morten Scheibye-Knudsen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark.
| |
Collapse
|
31
|
Gauvin DV, McComb M, Farero R. A Commentary on Fasting of Nonclinical Research Animals. Int J Toxicol 2024; 43:196-208. [PMID: 38151260 DOI: 10.1177/10915818231218975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
This commentary discusses the implementation of fasting in nonclinical animal experimental subjects. The short-term removal of food from cages of experimental animals is in all respects innocuous. The term "stress" is ill-defined and the statutes and regulations governing animal research laboratories that exert their authority in the performance of their operations do so without substantive grounds to base compliance. The legislative and administrative history of the implementation of the Animal Welfare Act (AWA) has evolved into the development of laboratory management strategies that focus on the reduction of the biological cost of stress to the animals and the determination of when subclinical stress (eustress) becomes distress. Animal welfare is based on the tenet that in laboratories conducting animal research in compliance with Good Laboratory Practices (Title 21 USC, Chapter 13,§58), it is the study protocol and the study director that establish procedures and processes that are approved by each Institutional Animal Care and Use Committee to ensure the humane care and use of animals in research, teaching, and testing and to ensure compliance with guidelines and regulations. This approval process establishes the justification of eustress in the environment that do not rise to the threshold of distress under the AWA.
Collapse
Affiliation(s)
- David V Gauvin
- Department of Neurobehavioral Sciences, Charles River Laboratories - MWN, Mattawan, MI, USA
| | - Margaret McComb
- Department of Neurobehavioral Sciences, Charles River Laboratories - MWN, Mattawan, MI, USA
| | - Ryan Farero
- Department of Neurobehavioral Sciences, Charles River Laboratories - MWN, Mattawan, MI, USA
| |
Collapse
|
32
|
Menyhárt O, Győrffy B. Dietary approaches for exploiting metabolic vulnerabilities in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189062. [PMID: 38158024 DOI: 10.1016/j.bbcan.2023.189062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Renewed interest in tumor metabolism sparked an enthusiasm for dietary interventions to prevent and treat cancer. Changes in diet impact circulating nutrient levels in the plasma and the tumor microenvironment, and preclinical studies suggest that dietary approaches, including caloric and nutrient restrictions, can modulate tumor initiation, progression, and metastasis. Cancers are heterogeneous in their metabolic dependencies and preferred energy sources and can be addicted to glucose, fructose, amino acids, or lipids for survival and growth. This dependence is influenced by tumor type, anatomical location, tissue of origin, aberrant signaling, and the microenvironment. This review summarizes nutrient dependencies and the related signaling pathway activations that provide targets for nutritional interventions. We examine popular dietary approaches used as adjuvants to anticancer therapies, encompassing caloric restrictions, including time-restricted feeding, intermittent fasting, fasting-mimicking diets (FMDs), and nutrient restrictions, notably the ketogenic diet. Despite promising results, much of the knowledge on dietary restrictions comes from in vitro and animal studies, which may not accurately reflect real-life situations. Further research is needed to determine the optimal duration, timing, safety, and efficacy of dietary restrictions for different cancers and treatments. In addition, well-designed human trials are necessary to establish the link between specific metabolic vulnerabilities and targeted dietary interventions. However, low patient compliance in clinical trials remains a significant challenge.
Collapse
Affiliation(s)
- Otília Menyhárt
- Semmelweis University, Department of Bioinformatics, Tűzoltó u. 7-9, H-1094 Budapest, Hungary; Research Centre for Natural Sciences, Cancer Biomarker Research Group, Institute of Enzymology, Magyar tudósok krt. 2, H-1117 Budapest, Hungary; National Laboratory for Drug Research and Development, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Balázs Győrffy
- Semmelweis University, Department of Bioinformatics, Tűzoltó u. 7-9, H-1094 Budapest, Hungary; Research Centre for Natural Sciences, Cancer Biomarker Research Group, Institute of Enzymology, Magyar tudósok krt. 2, H-1117 Budapest, Hungary; National Laboratory for Drug Research and Development, Magyar tudósok krt. 2, H-1117 Budapest, Hungary.
| |
Collapse
|
33
|
Yanai H, Park B, Koh H, Jang HJ, Vaughan KL, Tanaka-Yano M, Aon M, Blanton M, Messaoudi I, Diaz-Ruiz A, Mattison JA, Beerman I. Short-term periodic restricted feeding elicits metabolome-microbiome signatures with sex dimorphic persistence in primate intervention. Nat Commun 2024; 15:1088. [PMID: 38316796 PMCID: PMC10844192 DOI: 10.1038/s41467-024-45359-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024] Open
Abstract
Dietary restriction has shown benefits in physiological, metabolic, and molecular signatures associated with aging but is a difficult lifestyle to maintain for most individuals. In mice, a less restrictive diet that allows for cyclical periods of reduced calories mitigates aging phenotypes, yet the effects of such an intervention in a genetically heterogenous, higher-order mammal has not been examined. Here, using middle-aged rhesus macaques matched for age and sex, we show that a regimen of 4 days of low-calorie intake followed by 10 days of ad libitum feeding (4:10 diet) performed in repeating cycles over 12 weeks led to significant loss of weight and fat percentage, despite the free access to food for most of the study duration. We show the 4-day restriction period is sufficient to drive alterations to the serum metabolome characterized by substantial differences in lipid classes. These phenotypes were paralleled by changes in the gut microbiome of restricted monkeys that highlight the involvement of a microbiome-metabolome axis. This regimen shows promising phenotypes, with some sex-dimorphic responses, including residual memory of the diet. As many calorie restriction interventions are difficult to sustain, we propose that this short-term diet may be easier to adhere to and have benefits directly relevant to human aging.
Collapse
Affiliation(s)
- Hagai Yanai
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Bongsoo Park
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Hyunwook Koh
- Department of Applied Mathematics & Statistics, The State University of New York, Korea (SUNY Korea), Incheon, South Korea
| | - Hyo Jung Jang
- Department of Applied Mathematics & Statistics, The State University of New York, Korea (SUNY Korea), Incheon, South Korea
| | - Kelli L Vaughan
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Mayuri Tanaka-Yano
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Miguel Aon
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Madison Blanton
- Department of Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Ilhem Messaoudi
- Department of Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Alberto Diaz-Ruiz
- Laboratory of Cellular and Molecular Gerontology, Precision Nutrition and Aging Program, Institute IMDEA Food (CEI UAM+CSIC), Madrid, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Madrid, Spain
| | - Julie A Mattison
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Isabel Beerman
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA.
| |
Collapse
|
34
|
Pfefferkorn RM, Mortzfeld BM, Fink C, von Frieling J, Bossen J, Esser D, Kaleta C, Rosenstiel P, Heine H, Roeder T. Recurrent Phases of Strict Protein Limitation Inhibit Tumor Growth and Restore Lifespan in A Drosophila Intestinal Cancer Model. Aging Dis 2024; 15:226-244. [PMID: 37962464 PMCID: PMC10796089 DOI: 10.14336/ad.2023.0517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/17/2023] [Indexed: 11/15/2023] Open
Abstract
Diets that restrict caloric or protein intake offer a variety of benefits, including decreasing the incidence of cancer. However, whether such diets pose a substantial therapeutic benefit as auxiliary cancer treatments remains unclear. We determined the effects of severe protein depletion on tumorigenesis in a Drosophila melanogaster intestinal tumor model, using a human RAF gain-of-function allele. Severe and continuous protein restriction significantly reduced tumor growth but resulted in premature death. Therefore, we developed a diet in which short periods of severe protein restriction alternated cyclically with periods of complete feeding. This nutritional regime reduced tumor mass, restored gut functionality, and rescued the lifespan of oncogene-expressing flies to the levels observed in healthy flies on a continuous, fully nutritious diet. Furthermore, this diet reduced the chemotherapy-induced stem cell activity associated with tumor recurrence. Transcriptome analysis revealed long-lasting changes in the expression of key genes involved in multiple major developmental signaling pathways. Overall, the data suggest that recurrent severe protein depletion effectively mimics the health benefits of continuous protein restriction, without undesired nutritional shortcomings. This provides seminal insights into the mechanisms of the memory effect required to maintain the positive effects of protein restriction throughout the phases of a full diet. Finally, the repetitive form of strict protein restriction is an ideal strategy for adjuvant cancer therapy that is useful in many tumor contexts.
Collapse
Affiliation(s)
- Roxana M. Pfefferkorn
- Department of Molecular Physiology, Zoological Institute, Kiel University, Kiel, Germany.
| | - Benedikt M. Mortzfeld
- Department of Cell and Developmental Biology, Zoological Institute, Kiel University, Kiel, Germany.
| | - Christine Fink
- Department of Molecular Physiology, Zoological Institute, Kiel University, Kiel, Germany.
| | - Jakob von Frieling
- Department of Molecular Physiology, Zoological Institute, Kiel University, Kiel, Germany.
| | - Judith Bossen
- Department of Molecular Physiology, Zoological Institute, Kiel University, Kiel, Germany.
| | - Daniela Esser
- Department of Neuroimmunology, Institute of Clinical Chemistry, University Medical Center Schleswig-Holstein, Kiel, Germany.
| | - Christoph Kaleta
- Department Medical Systems Biology, Institute for Experimental Medicine, Kiel University, Germany.
| | - Philip Rosenstiel
- Department Molecular Cell Biology, Institute for Clinical Molecular Biology, Kiel University, Germany.
| | - Holger Heine
- Division of Innate Immunity, Research Center Borstel - Leibniz Lung Center, Borstel, Germany.
| | - Thomas Roeder
- Department of Molecular Physiology, Zoological Institute, Kiel University, Kiel, Germany.
| |
Collapse
|
35
|
Mihanfar A, Akbarzadeh M, Ghazizadeh Darband S, Sadighparvar S, Majidinia M. SIRT1: a promising therapeutic target in type 2 diabetes mellitus. Arch Physiol Biochem 2024; 130:13-28. [PMID: 34379994 DOI: 10.1080/13813455.2021.1956976] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/13/2021] [Indexed: 01/07/2023]
Abstract
A significant increase in the worldwide incidence and prevalence of type 2 diabetic mellitus (T2DM) has elevated the need for studies on novel and effective therapeutic strategies. Sirtuin 1 (SIRT1) is an NAD + dependent protein deacetylase with a critical function in the regulation of glucose/lipid metabolism, insulin resistance, inflammation, oxidative stress, and mitochondrial function. SIRT1 is also involved in the regulation of insulin secretion from pancreatic β-cells and protecting these cells from inflammation and oxidative stress-mediated tissue damages. In this regard, major SIRT1 activators have been demonstrated to exert a beneficial impact in reversing T2DM-related complications including cardiomyopathy, nephropathy, retinopathy, and neuropathy, hence treating T2DM. Therefore, an accumulating number of recent studies have investigated the efficacy of targeting SIRT1 as a therapeutic strategy in T2DM. In this review we aimed to discuss the current understanding of the physiological and biological roles of SIRT1, then its implication in the pathogenesis of T2DM, and the therapeutic potential of SIRT1 in combating T2DM.
Collapse
Affiliation(s)
- Ainaz Mihanfar
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Akbarzadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Shirin Sadighparvar
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
36
|
Kishi S, Nagasu H, Kidokoro K, Kashihara N. Oxidative stress and the role of redox signalling in chronic kidney disease. Nat Rev Nephrol 2024; 20:101-119. [PMID: 37857763 DOI: 10.1038/s41581-023-00775-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/21/2023]
Abstract
Chronic kidney disease (CKD) is a major public health concern, underscoring a need to identify pathogenic mechanisms and potential therapeutic targets. Reactive oxygen species (ROS) are derivatives of oxygen molecules that are generated during aerobic metabolism and are involved in a variety of cellular functions that are governed by redox conditions. Low levels of ROS are required for diverse processes, including intracellular signal transduction, metabolism, immune and hypoxic responses, and transcriptional regulation. However, excess ROS can be pathological, and contribute to the development and progression of chronic diseases. Despite evidence linking elevated levels of ROS to CKD development and progression, the use of low-molecular-weight antioxidants to remove ROS has not been successful in preventing or slowing disease progression. More recent advances have enabled evaluation of the molecular interactions between specific ROS and their targets in redox signalling pathways. Such studies may pave the way for the development of sophisticated treatments that allow the selective control of specific ROS-mediated signalling pathways.
Collapse
Affiliation(s)
- Seiji Kishi
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Hajime Nagasu
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Kengo Kidokoro
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Naoki Kashihara
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan.
| |
Collapse
|
37
|
Gregor A, Panteva V, Bruckberger S, Auñon-Lopez A, Blahova S, Blahova V, Tevini J, Weber DD, Kofler B, Pignitter M, Duszka K. Energy and macronutrient restriction regulate bile acid homeostasis. J Nutr Biochem 2024; 124:109517. [PMID: 37925090 DOI: 10.1016/j.jnutbio.2023.109517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/20/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
As we reported previously, caloric restriction (CR) results in an increased concentration of bile acids (BA) in the intestinal mucosa. We now investigated the background of this phenotype, trying to identify nutrition-related factors modulating BA levels. Male mice were submitted to various types of restrictive diets and BA levels and expression of associated factors were measured. We found that BA concentration is increased in the liver of CR mice, which corresponds to reduced expression of the Shp gene and elevated mRNA levels of Cyp27a1, Bal, and Ntcp, as well as CYP7A1 protein and gene expression. Correlation between decreased concentration of BAs in the feces, increased BAs levels in plasma, and elevated gene expression of BAs transporters in the ileum mucosa suggests enhanced BA uptake in the intestine of CR mice. Corresponding to CR upregulation of liver and ileum mucosa, BA concentration was found in animals submitted to other types of prolonged energy-restricting dietary protocols, including intermittent fasting and fasting-mimicking diet. While over-night fasting had negligible impact on BAs levels. Manipulation of macronutrient levels partly affected BA balance. Low-carbohydrate and ketogenic diet increased BAs in the liver but not in the intestine. Carbohydrate restriction stimulates BA synthesis in the liver, but energy restriction is required for the increase in BA levels in the intestine and its uptake.
Collapse
Affiliation(s)
- András Gregor
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Valeriya Panteva
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Stefan Bruckberger
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Arturo Auñon-Lopez
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria; Vienna Doctoral School in Chemistry (DoSChem), Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Sara Blahova
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Viktoria Blahova
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Julia Tevini
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Daniela D Weber
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Marc Pignitter
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Kalina Duszka
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria.
| |
Collapse
|
38
|
Chen H, Sun L, Feng L, Han X, Zhang Y, Zhai W, Zhang Z, Mulholland M, Zhang W, Yin Y. Intermittent fasting promotes ILC3s secreting IL-22 contributing to the beigeing of white adipose tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.29.555436. [PMID: 37693430 PMCID: PMC10491154 DOI: 10.1101/2023.08.29.555436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Mechanism underlying the metabolic benefit of intermittent fasting remains largely unknown. Here, we reported that intermittent fasting promoted IL-22 production by ILC3s and subsequent beigeing of subcutaneous white adipose tissue. Adoptive transfer of intestinal ILC3s increased beigeing of white adipose tissue in diet-induced-obese mice. Exogenous IL-22 significantly increased the beigeing of subcutaneous white adipose tissue. Deficiency of IL-22 receptor attenuated the beigeing induced by intermittent fasting. Single-cell sequencing of sorted intestinal immune cells revealed that intermittent fasting increased aryl hydrocarbon receptor signaling in ILC3s. Analysis of cell‒cell ligand receptor interactions indicated that intermittent fasting may stimulate the interaction of ILC3s with dendritic cells (DCs) and macrophages. These results establish the role of intestinal ILC3s in beigeing of white adipose tissue, suggesting that ILC3/IL-22/IL-22R axis contributes to the metabolic benefit of intermittent fasting.
Collapse
|
39
|
Lim JS, Jeon EJ, Go HS, Kim HJ, Kim KY, Nguyen TQT, Lee DY, Kim KS, Pietrocola F, Hong SH, Lee SE, Kim KS, Park TS, Choi DH, Jeong YJ, Park JH, Kim HS, Min JJ, Kim YS, Park JT, Cho JH, Lee GW, Lee JH, Choy HE, Park SC, Lee CH, Rhee JH, Serrano M, Cho KA. Mucosal TLR5 activation controls healthspan and longevity. Nat Commun 2024; 15:46. [PMID: 38167804 PMCID: PMC10761998 DOI: 10.1038/s41467-023-44263-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Addressing age-related immunological defects through therapeutic interventions is essential for healthy aging, as the immune system plays a crucial role in controlling infections, malignancies, and in supporting tissue homeostasis and repair. In our study, we show that stimulating toll-like receptor 5 (TLR5) via mucosal delivery of a flagellin-containing fusion protein effectively extends the lifespan and enhances the healthspan of mice of both sexes. This enhancement in healthspan is evidenced by diminished hair loss and ocular lens opacity, increased bone mineral density, improved stem cell activity, delayed thymic involution, heightened cognitive capacity, and the prevention of pulmonary lung fibrosis. Additionally, this fusion protein boosts intestinal mucosal integrity by augmenting the surface expression of TLR5 in a certain subset of dendritic cells and increasing interleukin-22 (IL-22) secretion. In this work, we present observations that underscore the benefits of TLR5-dependent stimulation in the mucosal compartment, suggesting a viable strategy for enhancing longevity and healthspan.
Collapse
Affiliation(s)
- Jae Sung Lim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun-gun, Jeonnam-do, 58128, Republic of Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Eun Jae Jeon
- MediSpan, Inc, Bundang-gu, Gyeonggi-do, 13486, Republic of Korea
| | - Hye Sun Go
- MediSpan, Inc, Bundang-gu, Gyeonggi-do, 13486, Republic of Korea
| | - Hyung-Jin Kim
- MediSpan, Inc, Bundang-gu, Gyeonggi-do, 13486, Republic of Korea
| | - Kye Young Kim
- MediSpan, Inc, Bundang-gu, Gyeonggi-do, 13486, Republic of Korea
| | - Thi Quynh Trang Nguyen
- Department of Biochemistry, Chonnam National University Medical School, Hwasun-gun, Jeonnam-do, 58128, Republic of Korea
- Center for Creative Biomedical Scientists, Chonnam National University Medical School, Hwasun-gun, Jeonnam-do, 58128, Republic of Korea
| | - Da Young Lee
- Department of Biochemistry, Chonnam National University Medical School, Hwasun-gun, Jeonnam-do, 58128, Republic of Korea
- Center for Creative Biomedical Scientists, Chonnam National University Medical School, Hwasun-gun, Jeonnam-do, 58128, Republic of Korea
| | - Kyu Suk Kim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun-gun, Jeonnam-do, 58128, Republic of Korea
| | - Federico Pietrocola
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Seol Hee Hong
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Shee Eun Lee
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Tae-Shin Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Dong-Hee Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Yu-Jin Jeong
- Department of Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jong-Hwan Park
- Department of Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyeon Sik Kim
- Medical Photonic Research Center, Korea Photonics Technology Institute, Gwangju, 61007, Republic of Korea
| | - Jung-Joon Min
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun-gun, Jeonnam-do, 58128, Republic of Korea
| | - Yong Sook Kim
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju, 61469, Republic of Korea
| | - Joon Tae Park
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Jae-Ho Cho
- Combinatorial Tumor Immunotherapy Medical Research Center, Chonnam National University Medical School, Hwasun-gun, Jeonnam-do, 58128, Republic of Korea
| | - Gil-Woo Lee
- Combinatorial Tumor Immunotherapy Medical Research Center, Chonnam National University Medical School, Hwasun-gun, Jeonnam-do, 58128, Republic of Korea
| | - Ji Hyeon Lee
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Hyon E Choy
- Department of Microbiology, Chonnam National University Medical School, 264 Seoyang-ro, Hwasun-gun, Jeonnam-do, 58128, Republic of Korea
| | - Sang Chul Park
- Future Life and Society Research Center, Chonnam National University Medical School, Hwasun-gun, Jeonnam-do, 58128, Republic of Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
| | - Joon Haeng Rhee
- Center for Creative Biomedical Scientists, Chonnam National University Medical School, Hwasun-gun, Jeonnam-do, 58128, Republic of Korea.
- Combinatorial Tumor Immunotherapy Medical Research Center, Chonnam National University Medical School, Hwasun-gun, Jeonnam-do, 58128, Republic of Korea.
- Department of Microbiology, Chonnam National University Medical School, 264 Seoyang-ro, Hwasun-gun, Jeonnam-do, 58128, Republic of Korea.
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
- Altos Labs, Cambridge Institute of Science, Cambridge, UK.
| | - Kyung A Cho
- Department of Biochemistry, Chonnam National University Medical School, Hwasun-gun, Jeonnam-do, 58128, Republic of Korea.
- MediSpan, Inc, Bundang-gu, Gyeonggi-do, 13486, Republic of Korea.
- Center for Creative Biomedical Scientists, Chonnam National University Medical School, Hwasun-gun, Jeonnam-do, 58128, Republic of Korea.
- Future Life and Society Research Center, Chonnam National University Medical School, Hwasun-gun, Jeonnam-do, 58128, Republic of Korea.
| |
Collapse
|
40
|
Mishra A, Giuliani G, Longo VD. Nutrition and dietary restrictions in cancer prevention. Biochim Biophys Acta Rev Cancer 2024; 1879:189063. [PMID: 38147966 DOI: 10.1016/j.bbcan.2023.189063] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/15/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
The composition and pattern of dietary intake have emerged as key factors influencing aging, regeneration, and consequently, healthspan and lifespan. Cancer is one of the major diseases more tightly linked with aging, and age-related mortality. Although the role of nutrition in cancer incidence is generally well established, we are far from a consensus on how diet influences tumour development in different tissues. In this review, we will discuss how diet and dietary restrictions affect cancer risk and the molecular mechanisms potentially responsible for their effects. We will cover calorie restriction, intermittent fasting, prolonged fasting, fasting-mimicking diet, time-restricted eating, ketogenic diet, high protein diet, Mediterranean diet, and the vegan and vegetarian diets.
Collapse
Affiliation(s)
- Amrendra Mishra
- Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Giacomo Giuliani
- Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Valter D Longo
- Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; IFOM, FIRC Institute of Molecular Oncology, Via Adamello, 16, 20139 Milano, Italy.
| |
Collapse
|
41
|
Widjaja S, Antarianto RD, Hardiany NS. Effects of Dietary Restriction on PGC-1α Regulation in the Development of Age-associated Diseases. Curr Aging Sci 2024; 17:189-195. [PMID: 38616758 DOI: 10.2174/0118746098301226240402051508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/16/2024]
Abstract
Ageing is the most significant risk factor for a number of non-communicable diseases, manifesting as cognitive, metabolic, and cardiovascular diseases. Although multifactorial, mitochondrial dysfunction and oxidative stress have been proposed to be the driving forces of ageing. Peroxisome proliferator-activated receptor γ coactivator α (PGC-1α) is a transcriptional coactivator central to various metabolic functions, of which mitochondrial biogenesis is the most prominent function. Inducible by various stimuli, including nutrient limitations, PGC-1α is a molecule of interest in the maintenance of mitochondrial function and, therefore, the prevention of degenerative diseases. This review involves a literature search for articles retrieved from PubMed using PGC-1α, ageing, and dietary restriction as keywords. Dietary restriction has been shown to promote tissue-specific PGC-1α expression. Both dietary restriction and PGC-1α upregulation have been shown to prolong the lifespans of both lower and higher-level organisms; the incidence of non-communicable diseases also decreased in fasting mammals. In conclusion, dietary interventions may delay ageing by regulating healthy mitochondria in various organs, presenting the possibility of a new primary prevention for many age-related diseases.
Collapse
Affiliation(s)
- Shefilyn Widjaja
- Undergraduate Program in Medical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | | | - Novi Silvia Hardiany
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
42
|
Bartke A, Hascup E, Hascup K. Responses to Many Anti-Aging Interventions Are Sexually Dimorphic. World J Mens Health 2024; 42:29-38. [PMID: 37118966 PMCID: PMC10782120 DOI: 10.5534/wjmh.230015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 04/30/2023] Open
Abstract
There is increasing appreciation that sex differences are not limited to reproductive organs or traits related to reproduction and that sex is an important biological variable in most characteristics of a living organism. The biological process of aging and aging-related traits are no exception and exhibit numerous, often major, sex differences. This article explores one aspect of these differences, namely sex differences in the responses to anti-aging interventions. Aging can be slowed down and/or postponed by a variety of environmental ("lifestyle"), genetic or pharmacological interventions. Although many, particularly older studies utilized only one sex of experimental animals, there is considerable evidence that responses to these interventions can be very different in females and males. Calorie restriction (CR), that is reducing food intake without malnutrition can extend longevity in both sexes, but specific metabolic alterations and health benefits induced by CR are not the same in women and men. In laboratory mice, several of the genetic alterations that reduce insulin-like growth factor I (IGF-1) signaling extend longevity more effectively in females or in females only. Beneficial effects of rapamycin, an inhibitor of mTOR signaling, on mouse longevity are greater in females. In contrast, several anti-aging compounds, including a weak estrogen, 17 alpha estradiol, extend longevity of male, but not female, mice. Apparently, fundamental mechanisms of aging are not identical in females and males and it is essential to use both sexes in studies aimed at identifying novel anti-aging interventions. Recommendations for lifestyle modifications, drugs, and dietary supplements to maintain good health and functionality into advanced age and to live longer will likely need to be tailored to the sex of the user.
Collapse
Affiliation(s)
- Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA.
| | - Erin Hascup
- Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Department of Neurology, Neurosciences Institute, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Kevin Hascup
- Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Department of Neurology, Neurosciences Institute, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
43
|
Zhang X, Zhong Y, Liu L, Jia C, Cai H, Yang J, Wu B, Lv Z. Fasting regulates mitochondrial function through lncRNA PRKCQ-AS1-mediated IGF2BPs in papillary thyroid carcinoma. Cell Death Dis 2023; 14:827. [PMID: 38092752 PMCID: PMC10719255 DOI: 10.1038/s41419-023-06348-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 11/01/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023]
Abstract
Recurring evidence suggests that fasting has extensive antitumor effects in various cancers, including papillary thyroid carcinoma (PTC). However, the underlying mechanism of this relationship with PTC is unknown. In this study, we study the effect of fasting on glycolysis and mitochondrial function in PTC. We find that fasting impairs glycolysis and reduces mitochondrial dysfunction in vitro and in vivo and also fasting in vitro and fasting mimicking diets (FMD) in vivo significantly increase the expression of lncRNA-protein kinase C theta antisense RNA 1 (PRKCQ-AS1), during the inhibition of TPC cell glycolysis and mitochondrial function. Moreover, lncRNA PRKCQ-AS1 was significantly lower in PTC tissues and cells. In addition, PRKCQ-AS1 overexpression increased PTC cell glycolysis and mitochondrial function; PRKCQ-AS1 knockdown has the opposite effect. On further mechanistic analysis, we identified that PRKCQ-AS1 physically interacts with IGF2BPs and enhances protein arginine methyltransferases 7 (PRMT7) mRNA, which is the key player in regulating glycolysis and mitochondrial function in PTC. Hence, PRKCQ-AS1 inhibits tumor growth while regulating glycolysis and mitochondrial functions via IGF2BPs/PRMT7 signaling. These results indicate that lncRNA PRKCQ-AS1 is a key downstream target of fasting and is involved in PTC metabolic reprogramming. Further, the PRKCQ-AS1/IGF2BPs/PRMT7 axis is an ideal therapeutic target for PTC diagnosis and treatment.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai hospital Affiliated with Jinan University, Jinan University, 519000, Guangdong, China.
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, 200072, Shanghai, China.
| | - Yong Zhong
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, 200072, Shanghai, China
| | - Lin Liu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, 200072, Shanghai, China
| | - Chengyou Jia
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, 200072, Shanghai, China
| | - Haidong Cai
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, 200072, Shanghai, China
| | - Jianshe Yang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, 200072, Shanghai, China
| | - Bo Wu
- Center of Thyroid, Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233, Shanghai, China.
| | - Zhongwei Lv
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, 200072, Shanghai, China.
| |
Collapse
|
44
|
Qiu R, Qiu X, Su M, Sun M, Wang Y, Wu J, Wang H, Tang D, Tao S. Dietary Restriction Delays But Cannot Heal Irradiation-Induced Hair Graying by Preserving Hair Follicle Stem Cells in Quiescence. Rejuvenation Res 2023; 26:242-252. [PMID: 37933912 DOI: 10.1089/rej.2023.0037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
DNA damage represents one of the cell intrinsic causes of stem cell aging, which leads to differentiation-induced removal of damaged stem cells in skin and blood. Dietary restriction (DR) retards aging across various species, including several strains of laboratory mice. Whether, DR has the potential to ameliorate DNA damage-driven stem cell exhaustion remains incompletely understood. In this study, we show that DR strongly extends the time to hair graying in response to γ-irradiation (ionizing radiation [IR])-induced DNA damage of C57BL/6 J mice. The study shows that DR prolongs resting phase of hair follicles. DR-mediated prolongation of hair follicle stem cell (HFSC) quiescence blocks hair growth and prevents the depletion of HFSCs and ckit+ melanoblasts in response to IR. However, prolongation of HFSC quiescence also correlates with a suppression of DNA repair and cannot prevent melanoblast loss and hair graying in the long run, when hair cycling is reinitiated even after extended periods of time. Altogether, these results support a model indicating that nutrient deprivation can delay but not heal DNA damage-driven extinction of melanoblasts by stalling HFSCs in a prolonged state of quiescence coupled with inhibition of DNA repair. Disconnecting these two types of responses to DR could have the potential to delay stem cell aging.
Collapse
Affiliation(s)
- Rongrong Qiu
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang City, China
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang City, China
| | - Xingxing Qiu
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang City, China
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang City, China
| | - Mingyue Su
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang City, China
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang City, China
| | - Man Sun
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang City, China
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang City, China
| | - Yiting Wang
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang City, China
| | - Jianying Wu
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang City, China
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang City, China
| | - Hua Wang
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang City, China
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang City, China
| | - Duozhuang Tang
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang City, China
| | - Si Tao
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang City, China
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang City, China
| |
Collapse
|
45
|
Shimokawa I. Mechanisms underlying retardation of aging by dietary energy restriction. Pathol Int 2023; 73:579-592. [PMID: 37975408 DOI: 10.1111/pin.13387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023]
Abstract
Moderate restriction of dietary energy intake, referred to here as dietary restriction (DR), delays aging and extends lifespan in experimental animals compared with a diet of ad libitum feeding (AL) control animals. Basic knowledge of the mechanisms underlying the effects of DR could be applicable to extending the healthspan in humans. This review highlights the importance of forkhead box O (FoxO) transcription factors downstream of the growth hormone-insulin-like growth factor 1 signaling in the effects of DR. Our lifespan studies in mice with heterozygous Foxo1 or Foxo3 gene knockout indicated differential roles of FoxO1 and FoxO3 in the tumor-inhibiting and life-extending effects of DR. Subsequent studies suggested a critical role of FoxO3 in metabolic and mitochondrial bioenergetic adaptation to DR. Our studies also verified hypothalamic neuropeptide Y (Npy) as a vital neuropeptide showing pleiotropic and sexually dimorphic effects for extending the healthspan in the context of nutritional availability. Npy was necessary for DR to exert its effects in male and female mice; meanwhile, under AL conditions, the loss of Npy prevented obesity and insulin resistance only in female mice. Overnutrition disrupts FoxO- and Npy-associated metabolic and mitochondrial bioenergetic adaptive processes, causing the acceleration of aging and related diseases.
Collapse
Affiliation(s)
- Isao Shimokawa
- Department of Pathology I, Nagasaki University School of Medicine and Graduate School of Biomedical Sciences, Nagasaki, Japan
- SAGL, LLC, Fukuoka, Japan
| |
Collapse
|
46
|
Pandics T, Major D, Fazekas-Pongor V, Szarvas Z, Peterfi A, Mukli P, Gulej R, Ungvari A, Fekete M, Tompa A, Tarantini S, Yabluchanskiy A, Conley S, Csiszar A, Tabak AG, Benyo Z, Adany R, Ungvari Z. Exposome and unhealthy aging: environmental drivers from air pollution to occupational exposures. GeroScience 2023; 45:3381-3408. [PMID: 37688657 PMCID: PMC10643494 DOI: 10.1007/s11357-023-00913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/14/2023] [Indexed: 09/11/2023] Open
Abstract
The aging population worldwide is facing a significant increase in age-related non-communicable diseases, including cardiovascular and brain pathologies. This comprehensive review paper delves into the impact of the exposome, which encompasses the totality of environmental exposures, on unhealthy aging. It explores how environmental factors contribute to the acceleration of aging processes, increase biological age, and facilitate the development and progression of a wide range of age-associated diseases. The impact of environmental factors on cognitive health and the development of chronic age-related diseases affecting the cardiovascular system and central nervous system is discussed, with a specific focus on Alzheimer's disease, Parkinson's disease, stroke, small vessel disease, and vascular cognitive impairment (VCI). Aging is a major risk factor for these diseases. Their pathogenesis involves cellular and molecular mechanisms of aging such as increased oxidative stress, impaired mitochondrial function, DNA damage, and inflammation and is influenced by environmental factors. Environmental toxicants, including ambient particulate matter, pesticides, heavy metals, and organic solvents, have been identified as significant contributors to cardiovascular and brain aging disorders. These toxicants can inflict both macro- and microvascular damage and many of them can also cross the blood-brain barrier, inducing neurotoxic effects, neuroinflammation, and neuronal dysfunction. In conclusion, environmental factors play a critical role in modulating cardiovascular and brain aging. A deeper understanding of how environmental toxicants exacerbate aging processes and contribute to the pathogenesis of neurodegenerative diseases, VCI, and dementia is crucial for the development of preventive strategies and interventions to promote cardiovascular, cerebrovascular, and brain health. By mitigating exposure to harmful environmental factors and promoting healthy aging, we can strive to reduce the burden of age-related cardiovascular and brain pathologies in the aging population.
Collapse
Affiliation(s)
- Tamas Pandics
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Department of Public Health Laboratory, National Public Health Centre, Budapest, Hungary
- Department of Public Health Siences, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - David Major
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Vince Fazekas-Pongor
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zsofia Szarvas
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Peterfi
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Ungvari
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Monika Fekete
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Anna Tompa
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Shannon Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Adam G Tabak
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- UCL Brain Sciences, University College London, London, UK
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltan Benyo
- Department of Translational Medicine, Semmelweis University, Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University (ELKH-SE) Cerebrovascular and Neurocognitive Disorders Research Group, Budapest, H-1052, Hungary
| | - Roza Adany
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- ELKH-DE Public Health Research Group, Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary
- Epidemiology and Surveillance Centre, Semmelweis University, 1085, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
47
|
Fernandez ME, Martinez-Romero J, Aon MA, Bernier M, Price NL, de Cabo R. How is Big Data reshaping preclinical aging research? Lab Anim (NY) 2023; 52:289-314. [PMID: 38017182 DOI: 10.1038/s41684-023-01286-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/10/2023] [Indexed: 11/30/2023]
Abstract
The exponential scientific and technological progress during the past 30 years has favored the comprehensive characterization of aging processes with their multivariate nature, leading to the advent of Big Data in preclinical aging research. Spanning from molecular omics to organism-level deep phenotyping, Big Data demands large computational resources for storage and analysis, as well as new analytical tools and conceptual frameworks to gain novel insights leading to discovery. Systems biology has emerged as a paradigm that utilizes Big Data to gain insightful information enabling a better understanding of living organisms, visualized as multilayered networks of interacting molecules, cells, tissues and organs at different spatiotemporal scales. In this framework, where aging, health and disease represent emergent states from an evolving dynamic complex system, context given by, for example, strain, sex and feeding times, becomes paramount for defining the biological trajectory of an organism. Using bioinformatics and artificial intelligence, the systems biology approach is leading to remarkable advances in our understanding of the underlying mechanism of aging biology and assisting in creative experimental study designs in animal models. Future in-depth knowledge acquisition will depend on the ability to fully integrate information from different spatiotemporal scales in organisms, which will probably require the adoption of theories and methods from the field of complex systems. Here we review state-of-the-art approaches in preclinical research, with a focus on rodent models, that are leading to conceptual and/or technical advances in leveraging Big Data to understand basic aging biology and its full translational potential.
Collapse
Affiliation(s)
- Maria Emilia Fernandez
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Jorge Martinez-Romero
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Miguel A Aon
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Michel Bernier
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Nathan L Price
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Rafael de Cabo
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
48
|
Poser M, Sing KEA, Ebert T, Ziebolz D, Schmalz G. The rosetta stone of successful ageing: does oral health have a role? Biogerontology 2023; 24:867-888. [PMID: 37421489 PMCID: PMC10615965 DOI: 10.1007/s10522-023-10047-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/19/2023] [Indexed: 07/10/2023]
Abstract
Ageing is an inevitable aspect of life and thus successful ageing is an important focus of recent scientific efforts. The biological process of ageing is mediated through the interaction of genes with environmental factors, increasing the body's susceptibility to insults. Elucidating this process will increase our ability to prevent and treat age-related disease and consequently extend life expectancy. Notably, centenarians offer a unique perspective on the phenomenon of ageing. Current research highlights several age-associated alterations on the genetic, epigenetic and proteomic level. Consequently, nutrient sensing and mitochondrial function are altered, resulting in inflammation and exhaustion of regenerative ability.Oral health, an important contributor to overall health, remains underexplored in the context of extreme longevity. Good masticatory function ensures sufficient nutrient uptake, reducing morbidity and mortality in old age. The relationship between periodontal disease and systemic inflammatory pathologies is well established. Diabetes, rheumatoid arthritis and cardiovascular disease are among the most significant disease burdens influenced by inflammatory oral health conditions. Evidence suggests that the interaction is bi-directional, impacting progression, severity and mortality. Current models of ageing and longevity neglect an important factor in overall health and well-being, a gap that this review intends to illustrate and inspire avenues for future research.
Collapse
Affiliation(s)
- Maximilian Poser
- Department of Cariology, Endodontology and Periodontology, University Leipzig, Liebigstr. 12, 04103, Leipzig, Germany.
| | - Katie E A Sing
- Department of Medicine, Royal Devon and Exeter Hospital, University of Exeter Medical School, Exeter, EX2 5DW, UK
| | - Thomas Ebert
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig, Liebigstr. 20, 04103, Leipzig, Germany
| | - Dirk Ziebolz
- Department of Cariology, Endodontology and Periodontology, University Leipzig, Liebigstr. 12, 04103, Leipzig, Germany
| | - Gerhard Schmalz
- Department of Cariology, Endodontology and Periodontology, University Leipzig, Liebigstr. 12, 04103, Leipzig, Germany
| |
Collapse
|
49
|
Wang Z, Zou L, Zhang Y, Zhu M, Zhang S, Wu D, Lan J, Zang X, Wang Q, Zhang H, Wu Z, Zhu H, Chen D. ACS-20/FATP4 mediates the anti-ageing effect of dietary restriction in C. elegans. Nat Commun 2023; 14:7683. [PMID: 38001113 PMCID: PMC10673863 DOI: 10.1038/s41467-023-43613-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Dietary restriction is an effective anti-ageing intervention across species. However, the molecular mechanisms from the metabolic aspects of view are still underexplored. Here we show ACS-20 as a key mediator of dietary restriction on healthy ageing from a genetic screen of the C. elegans acyl-CoA synthetase family. ACS-20 functions in the epidermis during development to regulate dietary restriction-induced longevity. Functional transcriptomics studies reveal that elevated expression of PTR-8/Patched is responsible for the proteostasis and lifespan defects of acs-20. Furthermore, the conserved NHR-23 nuclear receptor serves as a transcriptional repressor of ptr-8 and a key regulator of dietary restriction-induced longevity. Mechanistically, a specific region in the ptr-8 promoter plays a key role in mediating the transcription regulation and lifespan extension under dietary restriction. Altogether, these findings identify a highly conserved lipid metabolism enzyme as a key mediator of dietary restriction-induced lifespan and healthspan extension and reveal the downstream transcriptional regulation mechanisms.
Collapse
Affiliation(s)
- Zi Wang
- Model Animal Research Center of Medical School, MOE Key Laboratory of Model Animals for Disease Study, Nanjing University, Nanjing, Jiangsu, 210061, China
| | - Lina Zou
- Model Animal Research Center of Medical School, MOE Key Laboratory of Model Animals for Disease Study, Nanjing University, Nanjing, Jiangsu, 210061, China
| | - Yiyan Zhang
- Model Animal Research Center of Medical School, MOE Key Laboratory of Model Animals for Disease Study, Nanjing University, Nanjing, Jiangsu, 210061, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, 314400, China
| | - Mengnan Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Shuxian Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Di Wu
- Institute of Drug Discovery and Development, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Jianfeng Lan
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, China
| | - Xiao Zang
- Model Animal Research Center of Medical School, MOE Key Laboratory of Model Animals for Disease Study, Nanjing University, Nanjing, Jiangsu, 210061, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, 314400, China
| | - Qi Wang
- Model Animal Research Center of Medical School, MOE Key Laboratory of Model Animals for Disease Study, Nanjing University, Nanjing, Jiangsu, 210061, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, 314400, China
| | - Hanxin Zhang
- Model Animal Research Center of Medical School, MOE Key Laboratory of Model Animals for Disease Study, Nanjing University, Nanjing, Jiangsu, 210061, China
| | - Zixing Wu
- Model Animal Research Center of Medical School, MOE Key Laboratory of Model Animals for Disease Study, Nanjing University, Nanjing, Jiangsu, 210061, China
| | - Huanhu Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Di Chen
- Model Animal Research Center of Medical School, MOE Key Laboratory of Model Animals for Disease Study, Nanjing University, Nanjing, Jiangsu, 210061, China.
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, 314400, China.
- Department of Colorectal Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
50
|
Johnstone JN, Mirth CK, Johnson TK, Schittenhelm RB, Piper MDW. GCN2 mediates access to stored amino acids for somatic maintenance during Drosophila ageing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.566972. [PMID: 38014136 PMCID: PMC10680771 DOI: 10.1101/2023.11.14.566972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Many mechanistic theories of ageing argue that a progressive failure of somatic maintenance, the use of energy and resources to prevent and repair damage to the cell, underpins ageing. To sustain somatic maintenance an organism must acquire dozens of essential nutrients from the diet, including essential amino acids (EAAs), which are physiologically limiting for many animals. In Drosophila , adulthood deprivation of each individual EAA yields vastly different lifespan trajectories, and adulthood deprivation of one EAA, phenylalanine (Phe), has no associated lifespan cost; this is despite each EAA being strictly required for growth and reproduction. Moreover, survival under any EAA deprivation depends entirely on the conserved AA sensor GCN2, a component of the integrated stress response (ISR), suggesting that a novel ISR-mediated mechanism sustains lifelong somatic maintenance during EAA deprivation. Here we investigated this mechanism, finding that flies chronically deprived of dietary Phe continue to incorporate Phe into new proteins, and that challenging flies to increase the somatic requirement for Phe shortens lifespan under Phe deprivation. Further, we show that autophagy is required for full lifespan under Phe deprivation, and that activation of the ISR can partially rescue the shortened lifespan of GCN2 -nulls under Phe deprivation. We therefore propose a mechanism by which GCN2, via the ISR, activates autophagy during EAA deprivation, breaking down a larvally-acquired store of EAAs to support somatic maintenance. These data refine our understanding of the strategies by which flies sustain lifelong somatic maintenance, which determines length of life in response to changes in the nutritional environment.
Collapse
|