1
|
Di Stefano J, Di Marco F, Cicalini I, FitzGerald U, Pieragostino D, Verhoye M, Ponsaerts P, Van Breedam E. Generation, interrogation, and future applications of microglia-containing brain organoids. Neural Regen Res 2025; 20:3448-3460. [PMID: 39665813 DOI: 10.4103/nrr.nrr-d-24-00921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/05/2024] [Indexed: 12/13/2024] Open
Abstract
Brain organoids encompass a large collection of in vitro stem cell-derived 3D culture systems that aim to recapitulate multiple aspects of in vivo brain development and function. First, this review provides a brief introduction to the current state-of-the-art for neuro-ectoderm brain organoid development, emphasizing their biggest advantages in comparison with classical two-dimensional cell cultures and animal models. However, despite their usefulness for developmental studies, a major limitation for most brain organoid models is the absence of contributing cell types from endodermal and mesodermal origin. As such, current research is highly investing towards the incorporation of a functional vasculature and the microglial immune component. In this review, we will specifically focus on the development of immune-competent brain organoids. By summarizing the different approaches applied to incorporate microglia, it is highlighted that immune-competent brain organoids are not only important for studying neuronal network formation, but also offer a clear future as a new tool to study inflammatory responses in vitro in 3D in a brain-like environment. Therefore, our main focus here is to provide a comprehensive overview of assays to measure microglial phenotype and function within brain organoids, with an outlook on how these findings could better understand neuronal network development or restoration, as well as the influence of physical stress on microglia-containing brain organoids. Finally, we would like to stress that even though the development of immune-competent brain organoids has largely evolved over the past decade, their full potential as a pre-clinical tool to study novel therapeutic approaches to halt or reduce inflammation-mediated neurodegeneration still needs to be explored and validated.
Collapse
Affiliation(s)
- Julia Di Stefano
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Wilrijk, Belgium
- Bio-Imaging Lab, University of Antwerp, Wilrijk, Belgium
| | - Federica Di Marco
- Center for Advanced Studies and Technology (CAST), G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Ilaria Cicalini
- Center for Advanced Studies and Technology (CAST), G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Una FitzGerald
- CÚRAM, Center for Research in Medical Devices, Biomedical Engineering, University of Galway, Ireland
- Galway Neuroscience Center, University of Galway, Ireland
| | - Damiana Pieragostino
- Center for Advanced Studies and Technology (CAST), G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Marleen Verhoye
- Bio-Imaging Lab, University of Antwerp, Wilrijk, Belgium
- μNEURO Research Center of Excellence, University of Antwerp, Wilrijk, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Wilrijk, Belgium
| | - Elise Van Breedam
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
2
|
Kureel SK, Maroto R, Davis K, Sheetz M. Cellular mechanical memory: a potential tool for mesenchymal stem cell-based therapy. Stem Cell Res Ther 2025; 16:159. [PMID: 40165288 DOI: 10.1186/s13287-025-04249-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/20/2025] [Indexed: 04/02/2025] Open
Abstract
Recent studies have shown that mechanical properties such as extracellular matrix stiffness, fluid flow, weight loading, compression, and stretching can affect cellular functions. Some examples of cell responses to mechanical properties could be the migration of cancer cells from rigid to soft surfaces or the differentiation of fibroblasts into myofibroblasts. Cellular responses to mechanical changes can modify the insertion of proteins in the extracellular matrix (ECM), causing an increase in tissue stiffness with functional consequences. In general, mechanical and physical factors can affect any kind of cell phenotype in culture conditions and in vivo tissues. Cells sense mechanical stimuli by applying force and restructuring their shape and functions in response to the resistance of the stimuli. Furthermore, mechanical triggers can develop a "memory" for altering cellular plasticity and adaptation. This phenomenon is called cellular mechanical memory (CMM), a singular feature of mesenchymal stem cells (MSCs). Controlled targeting of CMM may resolve the scarcity of viable cells needed for cell based therapy (CBT) and implement studies concerning cancer research, fibrosis, and senescence. This review focusses on cells from the mesodermal lineage, such as MSCs, fibroblasts and chondrocytes, and the role of CMM as a potential target for CBT.
Collapse
Affiliation(s)
- Sanjay Kumar Kureel
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| | - Rosario Maroto
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Kristen Davis
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Michael Sheetz
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| |
Collapse
|
3
|
Broer T, Tsintolas N, Hammond S, Helfer A, Lee J, Purkey K, DeLuca S, Khodabukus A, Bursac N. Human Myobundle Platform for Studying the Role of Notch Signaling in Satellite Cell Phenotype and Function. Adv Healthc Mater 2025:e2404695. [PMID: 40123310 DOI: 10.1002/adhm.202404695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/27/2025] [Indexed: 03/25/2025]
Abstract
Notch signaling plays a pivotal role in regulating satellite cell (SC) behavior during skeletal muscle development, homeostasis, and repair. While well-characterized in mouse models, the impact of Notch signaling in human muscle tissues remains largely underexplored. Here, a 3D tissue-engineered model of human skeletal muscle ("myobundles") is utilized as an in vitro platform for temporal control and studies of Notch singaling. Myofiber-specific overexpression of the Notch ligand, DLL1, early in myobundle differentiation increases the abundance of 3D SCs and shifts their phenotype to a more quiescent-like state, along with decreasing muscle mass and function. In contrast, myofiber-specific DLL1 overexpression after one week of myobundle differentiation does not affect 3D SC abundance or muscle function, but increases transcriptomic markers of SC quiescence, confirming the temporal dependence of SC activation and self-renewal on Notch signaling activity. Finally, for the first time these studies show that even after a transient, myofiber-specific upregulation of Notch signaling in myobundles, 3D SCs expanded from these tissues can re-form functional "secondary" myobundles containing an amplified SC pool. Future studies in the described human myobundle platform are expected to aid the development of novel Notch-targeted therapies for muscular dystrophies and aging.
Collapse
Affiliation(s)
- Torie Broer
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Nick Tsintolas
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Stewart Hammond
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Abbigail Helfer
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Joonbum Lee
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Karly Purkey
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Sophia DeLuca
- Department of Cell Biology, Duke University, Durham, NC, 27708, USA
| | - Alastair Khodabukus
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
4
|
Duong VT, Dang TT, Le VP, Le TH, Nguyen CT, Phan HL, Seo J, Lin CC, Back SH, Koo KI. Direct extrusion of multifascicle prevascularized human skeletal muscle for volumetric muscle loss surgery. Biomaterials 2025; 314:122840. [PMID: 39321685 DOI: 10.1016/j.biomaterials.2024.122840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
Skeletal muscle is composed of multiple fascicles, which are parallel bundles of muscle fibers surrounded by connective tissues that contain blood vessels and nerves. Here, we fabricated multifascicle human skeletal muscle scaffolds that mimic the natural structure of human skeletal muscle bundles using a seven-barrel nozzle. For the core material to form the fascicle structure, human skeletal myoblasts were encapsulated in Matrigel with calcium chloride. Meanwhile, the shell that plays a role as the connective tissue, human fibroblasts and human umbilical vein endothelial cells within a mixture of porcine muscle decellularized extracellular matrix and sodium alginate at a 95:5 ratio was used. We assessed four types of extruded scaffolds monolithic-monoculture (Mo-M), monolithic-coculture (Mo-C), multifascicle-monoculture (Mu-M), and multifascicle-coculture (Mu-C) to determine the structural effect of muscle mimicking scaffold. The Mu-C scaffold outperformed other scaffolds in cell proliferation, differentiation, vascularization, mechanical properties, and functionality. In an in vivo mouse model of volumetric muscle loss, the Mu-C scaffold effectively regenerated the tibialis anterior muscle defect, demonstrating its potential for volumetric muscle transplantation. Our nozzle will be further used to produce other volumetric functional tissues, such as tendons and peripheral nerves.
Collapse
Affiliation(s)
- Van Thuy Duong
- Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan, 44610, Republic of Korea; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Thao Thi Dang
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Republic of Korea; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Van Phu Le
- Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan, 44610, Republic of Korea.
| | - Thi Huong Le
- Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan, 44610, Republic of Korea.
| | - Chanh Trung Nguyen
- Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan, 44610, Republic of Korea.
| | - Huu Lam Phan
- Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan, 44610, Republic of Korea.
| | - Jongmo Seo
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea; Seoul National University Hospital Biomedical Research Institute, Seoul, 03080, Republic of Korea.
| | - Chien-Chi Lin
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Sung Hoon Back
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Republic of Korea; Basic-Clinical Convergence Research Institute, University of Ulsan, Ulsan, Republic of Korea.
| | - Kyo-In Koo
- Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan, 44610, Republic of Korea; Basic-Clinical Convergence Research Institute, University of Ulsan, Ulsan, Republic of Korea.
| |
Collapse
|
5
|
Tanneberger AE, Blomberg R, Bilousova G, Ryan AL, Magin CM. Engineered hydrogel biomaterials facilitate lung progenitor cell differentiation from induced pluripotent stem cells. Am J Physiol Lung Cell Mol Physiol 2025; 328:L379-L388. [PMID: 39884665 DOI: 10.1152/ajplung.00419.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/15/2025] [Accepted: 01/28/2025] [Indexed: 02/01/2025] Open
Abstract
Lung progenitor (LP) cells identified by the expression of transcription factor NK2 homeobox 1 (NKX2.1) are essential for the development of all lung epithelial cell types and hold tremendous potential for pulmonary research and translational regenerative medicine applications. Here, we present engineered hydrogels as a promising alternative to the naturally derived materials that are often used to differentiate human-induced pluripotent stem cells (iPSCs) into LP cells. Poly(ethylene glycol) norbornene (PEGNB) hydrogels with defined composition were used to systematically investigate the role of microenvironmental stiffness, cell origin, and splitting during the differentiation process. Results demonstrated that each factor impacted LP differentiation efficiency and that the soft hydrogels replicating healthy lung stiffness [elastic modulus (E) = 4.00 ± 0.25 kPa] produced the highest proportion of LP cells based on flow cytometric analysis results (54%) relative to the stiff hydrogels (48%) and Matrigel controls (32%) at the end of the nonsplit differentiation protocol. Collectively, these results showed that engineered hydrogels provide a well-defined microenvironment for iPSC-to-LP differentiation and perform as effectively as the current gold standard Matrigel-coated tissue culture plastic. Adopting engineered biomaterials in cell culture protocols may enable greater control over differentiation parameters and has the potential to enhance the clinical translation of iPSC-derived LP cells.NEW & NOTEWORTHY Standard iPSC differentiation protocols rely on Matrigel, a basement membrane extract from mouse sarcoma cells that is poorly defined and exhibits significant batch-to-batch variation. Due to these limitations, Matrigel-derived products have never been approved by the Food and Drug Administration. This study introduces a novel method for differentiating iPSCs into lung progenitor cells using well-defined hydrogel substrates. These biomaterials not only enhance differentiation efficiency but also streamline the regulatory pathway, facilitating their potential therapeutic application.
Collapse
Affiliation(s)
- Alicia E Tanneberger
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, United States
| | - Rachel Blomberg
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, United States
| | - Ganna Bilousova
- Department of Dermatology, Gates Institute, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Amy L Ryan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Chelsea M Magin
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
6
|
Piantino M, Muller Q, Nakadozono C, Yamada A, Matsusaki M. Towards more realistic cultivated meat by rethinking bioengineering approaches. Trends Biotechnol 2025; 43:364-382. [PMID: 39271415 DOI: 10.1016/j.tibtech.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024]
Abstract
Cultivated meat (CM) refers to edible lab-grown meat that incorporates cultivated animal cells. It has the potential to address some issues associated with real meat (RM) production, including the ethical and environmental impact of animal farming, and health concerns. Recently, various biomanufacturing methods have been developed to attempt to recreate realistic meat in the laboratory. We therefore overview recent achievements and challenges in the production of CM. We also discuss the issues that need to be addressed and suggest additional recommendations and potential criteria to help to bridge the gap between CM and RM from an engineering standpoint.
Collapse
Affiliation(s)
- Marie Piantino
- Consortium for Future Innovation by Cultured Meat, Osaka, Japan
| | - Quentin Muller
- Consortium for Future Innovation by Cultured Meat, Osaka, Japan
| | - Chika Nakadozono
- Consortium for Future Innovation by Cultured Meat, Osaka, Japan; Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan; Shimadzu Analytical Innovation Research Laboratories, Osaka University, Osaka, Japan; Shimadzu Corporation, Kyoto, Japan
| | - Asuka Yamada
- Consortium for Future Innovation by Cultured Meat, Osaka, Japan; Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan; Toppan Holdings Inc., Business Development Division, Technical Research Institute, Saitama, Japan
| | - Michiya Matsusaki
- Consortium for Future Innovation by Cultured Meat, Osaka, Japan; Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan.
| |
Collapse
|
7
|
Chung JD, Porrello ER, Lynch GS. Muscle regeneration and muscle stem cells in metabolic disease. Free Radic Biol Med 2025; 227:52-63. [PMID: 39581389 DOI: 10.1016/j.freeradbiomed.2024.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 11/05/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024]
Abstract
Skeletal muscle has a high regenerative capacity due to its resident adult muscle stem cells (MuSCs), which can repair damaged tissue by forming myofibres de novo. Stem cell dependent regeneration is critical for maintaining skeletal muscle health, and different conditions can draw heavily on MuSC support to preserve muscle function, including metabolic diseases such as diabetes. The global incidence and burden of diabetes is increasing, and skeletal muscle is critical for maintaining systemic metabolic homeostasis and improving outcomes for diabetic patients. Thus, poor muscle health in diabetes, termed diabetic myopathy, is an important complication that must be addressed. The health of MuSCs is also affected by diabetes, responsible for the poor muscle regenerative capacity and contributing to the functional decline in diabetic patients. Here, we review the impact of diabetes and metabolic disease on MuSCs and skeletal muscle, including potential mechanisms for impaired muscle regeneration and MuSC dysfunction, and how these deficits could be addressed.
Collapse
Affiliation(s)
- Jin D Chung
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, 3010, VIC, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, VIC, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, 3052, VIC, Australia
| | - Enzo R Porrello
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, 3010, VIC, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, VIC, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, 3052, VIC, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, 3010, VIC, Australia
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, 3010, VIC, Australia.
| |
Collapse
|
8
|
Wang K, Ning S, Zhang S, Jiang M, Huang Y, Pei H, Li M, Tan F. Extracellular matrix stiffness regulates colorectal cancer progression via HSF4. J Exp Clin Cancer Res 2025; 44:30. [PMID: 39881364 PMCID: PMC11780783 DOI: 10.1186/s13046-025-03297-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/21/2025] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) has high incidence and mortality rates, with severe prognoses during invasion and metastasis stages. Despite advancements in diagnostic and therapeutic technologies, the impact of the tumour microenvironment, particularly extracellular matrix (ECM) stiffness, on CRC progression and metastasis is not fully understood. METHODS This study included 107 CRC patients. Tumour stiffness was assessed using magnetic resonance elastography (MRE), and collagen ratio was analysed with Masson staining. CRC cell lines were cultured on matrices of varying stiffness, followed by transcriptome sequencing to identify stiffness-related genes. An HSF4 knockout CRC cell model was cultured in different ECM stiffness to evaluate the effects of HSF4 on cell proliferation, migration, and invasion in vitro and in vivo. RESULTS CRC tumour stiffness was significantly higher than normal tissue and positively correlated with collagen content and TNM staging. High-stiffness matrices significantly regulated cell functions and signalling pathways. High HSF4 (heat shock transcriptional factor 4) expression was strongly associated with tumour stiffness and poor prognosis. HSF4 expression increased with higher TNM stages, and its knockout significantly inhibited cell proliferation, migration, and invasion, especially on high-stiffness matrices. In vivo experiments confirmed that HSF4 promoted tumour growth and metastasis, independent of collagen protein increase. CONCLUSIONS This study reveals that tumour stiffness promotes the proliferation and metastasis of CRC by regulating EMT-related signalling pathways through HSF4. Tumour stiffness and HSF4 could be valuable targets for prognostic assessment and therapeutic intervention in CRC.
Collapse
Affiliation(s)
- Kangtao Wang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of General, Visceral & Transplant Surgery, Molecular OncoSurgery, Section Surgical Research, University of Heidelberg, Heidelberg, Baden-Württemberg, 69117, Germany
| | - Siyi Ning
- Clinical Laboratory, Changsha Stomatology Hospital, Changsha, Hunan, 410005, China
| | - Shuai Zhang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Mingming Jiang
- Department of Ultrasonography, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Yan Huang
- NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, 410008, China
- Hunan Provincial Key Laboratory of Neurorestoration, Changsha, Hunan, 410081, China
| | - Haiping Pei
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ming Li
- Department of Immunology, College of Basic Medical Sciences, Central South University, Changsha, Hunan, 410008, China.
| | - Fengbo Tan
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Central South University, Changsha, Hunan, 410008, China.
- The "Double-First Class" Application Characteristic Discipline of Hunan Province (Clinical Medicine), Changsha Medical University, Changsha, Hunan, 410219, China.
| |
Collapse
|
9
|
Narain R, Muncie-Vasic JM, Weaver VM. Forcing the code: tension modulates signaling to drive morphogenesis and malignancy. Genes Dev 2025; 39:163-181. [PMID: 39638568 PMCID: PMC11789492 DOI: 10.1101/gad.352110.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Development and disease are regulated by the interplay between genetics and the signaling pathways stimulated by morphogens, growth factors, and cytokines. Experimental data highlight the importance of mechanical force in regulating embryonic development, tissue morphogenesis, and malignancy. Force not only sculpts tissue movements to drive embryogenesis and morphogenesis but also modifies the context of biochemical signaling and gene expression to regulate cell and tissue fate. Not surprisingly, experiments have demonstrated that perturbations in cell tension drive malignancy and metastasis by altering biochemical signaling and gene expression through modifications in cytoskeletal tension, transmembrane receptor structure and function, and organelle phenotype that enhance cell growth and survival, alter metabolism, and foster cell migration and invasion. At the tissue level, tumor-associated forces disrupt cell-cell adhesions to perturb tissue organization, compromise vascular integrity to induce hypoxia, and interfere with antitumor immunity to foster metastasis and treatment resistance. Exciting new approaches now exist with which to clarify the relationship between mechanotransduction, biochemical signaling, and gene expression in development and disease. Indeed, gaining insight into these interactions is essential to unravel molecular mechanisms that regulate development and clarify the molecular basis of cancer.
Collapse
Affiliation(s)
- Radhika Narain
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, California 94143, USA
- Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, Berkeley, California 94720, USA
| | | | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, California 94143, USA;
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94143, USA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, California 94143
- UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
10
|
Yin K, Zhang C, Deng Z, Wei X, Xiang T, Yang C, Chen C, Chen Y, Luo F. FAPs orchestrate homeostasis of muscle physiology and pathophysiology. FASEB J 2024; 38:e70234. [PMID: 39676717 PMCID: PMC11647758 DOI: 10.1096/fj.202400381r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 10/26/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024]
Abstract
As a common clinical manifestation, muscle weakness is prevalent in people with mobility disorders. Further studies of muscle weakness have found that patients with muscle weakness present with persistent muscle inflammation, loss of muscle fibers, fat infiltration, and interstitial fibrosis. Therefore, we propose the concept of muscle microenvironment homeostasis, which explains the abnormal pathological changes in muscles through the imbalance of muscle microenvironment homeostasis. And we identified an interstitial progenitor cell FAP during the transition from normal muscle microenvironment homeostasis to muscle microenvironment imbalance caused by muscle damage diseases. As a kind of pluripotent stem cell, FAPs do not participate in myogenic differentiation, but can differentiate into fibroblasts, adipocytes, osteoblasts, and chondrocytes. As a kind of mesenchymal progenitor cell, it is involved in the generation of extracellular matrix, regulate muscle regeneration, and maintain neuromuscular junction. However, the muscle microenvironment is disrupted by the causative factors, and the abnormal activities of FAPs eventually contribute to the complex pathological changes in muscles. Targeting the mechanisms of these muscle pathological changes, we have identified appropriate signaling targets for FAPs to improve and even treat muscle damage diseases. In this review, we propose the construction of muscle microenvironmental homeostasis and find the key cells that cause pathological changes in muscle after homeostasis is broken. By studying the mechanism of abnormal differentiation and apoptosis of FAPs, we found a strategy to inhibit the abnormal pathological changes in muscle damage diseases and improve muscle regeneration.
Collapse
Affiliation(s)
- Kai Yin
- Department of OrthopedicsSouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingPeople's Republic of China
| | - Chengmin Zhang
- Department of OrthopedicsSouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingPeople's Republic of China
| | - Zihan Deng
- Department of OrthopedicsSouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingPeople's Republic of China
| | - Xiaoyu Wei
- Department of OrthopedicsSouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingPeople's Republic of China
| | - Tingwen Xiang
- Department of OrthopedicsSouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingPeople's Republic of China
| | - Chuan Yang
- Department of Biomedical Materials ScienceThird Military Medical University (Army Medical University)ChongqingPeople's Republic of China
| | - Can Chen
- Department for Combat Casualty Care TrainingTraining Base for Army Health Care, Army Medical University (Third Military Medical University)ChongqingPeople's Republic of China
| | - Yueqi Chen
- Department of OrthopedicsSouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingPeople's Republic of China
| | - Fei Luo
- Department of OrthopedicsSouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingPeople's Republic of China
| |
Collapse
|
11
|
Egorova VV, Lavrenteva MP, Makhaeva LN, Petrova EA, Ushakova AA, Bozhokin MS, Krivoshapkina EF. Fibrillar Hydrogel Inducing Cell Mechanotransduction for Tissue Engineering. Biomacromolecules 2024; 25:7674-7684. [PMID: 39526968 DOI: 10.1021/acs.biomac.4c00897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
One of the key strategies for tissue engineering is to design multifunctional bioinks that balance printability with cytocompatibility. Here, we describe fibrillar hydrogels produced by Schiff base formation between B-type gelatin and oxidized sodium alginate, followed by the incorporation of type I collagen, yielding a new gel (MyoColl). The resulting hydrogel exhibits a temperature- and mass-ratio-dependent sol-gel transition, showing variability of hydrogel properties depending on the component ratio. MyoColl composition provides a convenient platform for biofabrication in terms of shear thinning, yielding, Young's modulus, and shape accuracy. Metabolic activity tests and fluorescent microscopy of 2D hydrogel-based mouse C2C12 myoblast cell culture show significant cytocompatibility of the developed carriers. In addition, primary signs of cell mechanotransduction and myofilament formation of 3D printed MyoColl-based cell cultures were detected and described. Due to these promising results, the described hydrogel composition has shown itself as a convenient platform for muscle tissue engineering.
Collapse
Affiliation(s)
- Viktoriia V Egorova
- ChemBioCluster, ITMO University, Saint Petersburg 191002, Russian Federation
| | - Mariia P Lavrenteva
- ChemBioCluster, ITMO University, Saint Petersburg 191002, Russian Federation
| | - Liubov N Makhaeva
- St. Petersburg Governor's Physics and Mathematics Lyceum N 30, Saint Petersburg 199004, Russian Federation
| | - Ekaterina A Petrova
- Center for Chemical Engineering, ITMO University, Saint Petersburg 191002, Russian Federation
| | - Alina A Ushakova
- Center for Chemical Engineering, ITMO University, Saint Petersburg 191002, Russian Federation
| | - Mikhail S Bozhokin
- Russian Scientific Research Institute of Traumatology and Orthopedics Named After R.R. Vredena, Saint Petersburg 195427, Russian Federation
- Cytology Institute of Russian Academy of Sciences, Saint Petersburg 194064, Russian Federation
| | | |
Collapse
|
12
|
Yousefi F, Foster LA, Selim OA, Zhao C. Integrating Physical and Biochemical Cues for Muscle Engineering: Scaffolds and Graft Durability. Bioengineering (Basel) 2024; 11:1245. [PMID: 39768063 PMCID: PMC11673930 DOI: 10.3390/bioengineering11121245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Muscle stem cells (MuSCs) are essential for skeletal muscle regeneration, influenced by a complex interplay of mechanical, biochemical, and molecular cues. Properties of the extracellular matrix (ECM) such as stiffness and alignment guide stem cell fate through mechanosensitive pathways, where forces like shear stress translate into biochemical signals, affecting cell behavior. Aging introduces senescence which disrupts the MuSC niche, leading to reduced regenerative capacity via epigenetic alterations and metabolic shifts. Transplantation further challenges MuSC viability, often resulting in fibrosis driven by dysregulated fibro-adipogenic progenitors (FAPs). Addressing these issues, scaffold designs integrated with pharmacotherapy emulate ECM environments, providing cues that enhance graft functionality and endurance. These scaffolds facilitate the synergy between mechanotransduction and intracellular signaling, optimizing MuSC proliferation and differentiation. Innovations utilizing human pluripotent stem cell-derived myogenic progenitors and exosome-mediated delivery exploit bioactive properties for targeted repair. Additionally, 3D-printed and electrospun scaffolds with adjustable biomechanical traits tackle scalability in treating volumetric muscle loss. Advanced techniques like single-cell RNA sequencing and high-resolution imaging unravel muscle repair mechanisms, offering precise mapping of cellular interactions. Collectively, this interdisciplinary approach fortifies tissue graft durability and MuSC maintenance, propelling therapeutic strategies for muscle injuries and degenerative diseases.
Collapse
Affiliation(s)
- Farbod Yousefi
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (F.Y.); (L.A.F.); (O.A.S.)
| | - Lauren Ann Foster
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (F.Y.); (L.A.F.); (O.A.S.)
- Atlanta Veterans Affairs Medical Center, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Omar A. Selim
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (F.Y.); (L.A.F.); (O.A.S.)
| | - Chunfeng Zhao
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (F.Y.); (L.A.F.); (O.A.S.)
| |
Collapse
|
13
|
Bighi B, Ragazzini G, Gallerani A, Mescola A, Scagliarini C, Zannini C, Marcuzzi M, Olivi E, Cavallini C, Tassinari R, Bianchi M, Corsi L, Ventura C, Alessandrini A. Cell stretching devices integrated with live cell imaging: a powerful approach to study how cells react to mechanical cues. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2024; 7:012005. [PMID: 39655854 DOI: 10.1088/2516-1091/ad9699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024]
Abstract
Mechanical stimuli have multiple effects on cell behavior, affecting a number of cellular processes including orientation, proliferation or apoptosis, migration and invasion, the production of extracellular matrix proteins, the activation and translocation of transcription factors, the expression of different genes such as those involved in inflammation and the reprogramming of cell fate. The recent development of cell stretching devices has paved the way for the study of cell reactions to stretching stimuliin-vitro, reproducing physiological situations that are experienced by cells in many tissues and related to functions such as breathing, heart beating and digestion. In this work, we review the highly-relevant contributions cell stretching devices can provide in the field of mechanobiology. We then provide the details for the in-house construction and operation of these devices, starting from the systems that we already developed and tested. We also review some examples where cell stretchers can supply meaningful insights into mechanobiology topics and we introduce new results from our exploitation of these devices.
Collapse
Affiliation(s)
- Beatrice Bighi
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, via Campi 213/A, 41125 Modena, Italy
- CNR-Nanoscience Institute-S3, via Campi 213/A, 41125 Modena, Italy
| | | | - Alessia Gallerani
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, via Campi 213/A, 41125 Modena, Italy
| | - Andrea Mescola
- CNR-Nanoscience Institute-S3, via Campi 213/A, 41125 Modena, Italy
| | - Chiara Scagliarini
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, via Campi 213/A, 41125 Modena, Italy
| | - Chiara Zannini
- Eldor Lab, via di Corticella 183, 40128 Bologna, Italy
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (I.N.B.B.), via di Corticella 183, 40128 Bologna, Italy
| | - Martina Marcuzzi
- Department of Medical and Surgical Sciences, University of Bologna, via G. Massarenti 9, Bologna 40138, Italy
| | - Elena Olivi
- Eldor Lab, via di Corticella 183, 40128 Bologna, Italy
| | - Claudia Cavallini
- Eldor Lab, via di Corticella 183, 40128 Bologna, Italy
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (I.N.B.B.), via di Corticella 183, 40128 Bologna, Italy
| | | | - Michele Bianchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Lorenzo Corsi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Carlo Ventura
- Eldor Lab, via di Corticella 183, 40128 Bologna, Italy
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (I.N.B.B.), via di Corticella 183, 40128 Bologna, Italy
| | - Andrea Alessandrini
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, via Campi 213/A, 41125 Modena, Italy
- CNR-Nanoscience Institute-S3, via Campi 213/A, 41125 Modena, Italy
| |
Collapse
|
14
|
Grima-Terrén M, Campanario S, Ramírez-Pardo I, Cisneros A, Hong X, Perdiguero E, Serrano AL, Isern J, Muñoz-Cánoves P. Muscle aging and sarcopenia: The pathology, etiology, and most promising therapeutic targets. Mol Aspects Med 2024; 100:101319. [PMID: 39312874 DOI: 10.1016/j.mam.2024.101319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
Sarcopenia is a progressive muscle wasting disorder that severely impacts the quality of life of elderly individuals. Although the natural aging process primarily causes sarcopenia, it can develop in response to other conditions. Because muscle function is influenced by numerous changes that occur with age, the etiology of sarcopenia remains unclear. However, recent characterizations of the aging muscle transcriptional landscape, signaling pathway disruptions, fiber and extracellular matrix compositions, systemic metabolomic and inflammatory responses, mitochondrial function, and neurological inputs offer insights and hope for future treatments. This review will discuss age-related changes in healthy muscle and our current understanding of how this can deteriorate into sarcopenia. As our elderly population continues to grow, we must understand sarcopenia and find treatments that allow individuals to maintain independence and dignity throughout an extended lifespan.
Collapse
Affiliation(s)
- Mercedes Grima-Terrén
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Silvia Campanario
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Ignacio Ramírez-Pardo
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Andrés Cisneros
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Xiaotong Hong
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA
| | | | - Antonio L Serrano
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA
| | - Joan Isern
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA
| | - Pura Muñoz-Cánoves
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain.
| |
Collapse
|
15
|
Yang YJ, Yeo D, Shin SJ, Lee JH, Lee JH. Influence of Soft and Stiff Matrices on Cytotoxicity in Gingival Fibroblasts: Implications for Soft Tissue Biocompatibility. Cells 2024; 13:1932. [PMID: 39682682 DOI: 10.3390/cells13231932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/08/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
The biocompatibility of dental materials is critical for ensuring safety in clinical applications. However, standard in vitro cytotoxicity assays often rely on stiff tissue culture plastic (TCP), which does not accurately replicate the biomechanical properties of soft oral tissues. In this study, we compared human gingival fibroblasts (HGFs) cultured on soft, gel-based substrates mimicking gingival tissue stiffness (0.2 kPa) with those cultured on conventional TCP (3 GPa) to assess the influence of substrate stiffness on the cytotoxicity of methyl methacrylate (MMA), as well as other cytotoxic agents, including DMSO and H2O2. The results demonstrated that cells cultured on softer substrates exhibited enhanced resistance to cytotoxic stress, with increased viability and decreased apoptosis and DNA damage following exposure to MMA, DMSO, and H2O2. Notably, HGFs on soft substrates showed significantly greater resilience to MMA-induced cytotoxicity compared to those cultured on TCP. These findings emphasize the critical role of substrate stiffness in modulating cellular responses to toxic agents and highlight the necessity of using physiologically relevant models for cytotoxicity testing of dental materials. This study provides valuable insights for improving biocompatibility assessment protocols in clinical settings.
Collapse
Affiliation(s)
- Ye-Jin Yang
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
| | - Donghyeon Yeo
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
| | - Seong-Jin Shin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
| | - Jun Hee Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
| |
Collapse
|
16
|
Chen X, Sun T, Shimoda S, Wang H, Huang Q, Fukuda T, Shi Q. A Micromanipulation-Actuated Large-Scale Screening to Identify Optimized Microphysiological Model Parameters in Skeletal Muscle Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403622. [PMID: 39264263 PMCID: PMC11600204 DOI: 10.1002/advs.202403622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/09/2024] [Indexed: 09/13/2024]
Abstract
Hydrogel-based 3D cell cultures are extensively utilized to create biomimetic cellular microstructures. However, there is still lack of effective method for both evaluation of the complex interaction of cells with hydrogel and the functionality of the resulting micro-structures. This limitation impedes the further application of these microstructures as microphysiological models (microPMs) for the screening of potential culture condition combinations to enhance the skeletal muscle regeneration. This paper introduces a two-probe micromanipulation method for the large-scale assessment of viscoelasticity and contractile force (CF) of skeletal muscle microPMs, which are produced in high-throughput via microfluidic spinning and 96-well culture. The collected data demonstrate that viscoelasticity parameters (E* and tanδ) and CF both measured in a solution environment are indicative of the formation of cellular structures without hydrogel residue and the subsequent generation of myotubes, respectively. This study have developed screening criterias that integrate E*, tanδ, and CF to examine the effects of multifactorial interactions on muscle fiber repair under hypoxic conditions and within bioprinted bipennate muscle structures. This approach has improved the quality of hypoxic threshold evaluation and aligned cell growth in 3D. The proposed method is useful in exploring the role of different factors in muscle tissue regeneration with limited resources.
Collapse
Affiliation(s)
- Xie Chen
- Intelligent Robotics InstituteSchool of Mechatronical EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
| | - Tao Sun
- Intelligent Robotics InstituteSchool of Mechatronical EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
| | - Shingo Shimoda
- Graduate School of MedicineNagoya UniversityNagoya466‐8550Japan
| | - Huaping Wang
- Intelligent Robotics InstituteSchool of Mechatronical EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
| | - Qiang Huang
- Intelligent Robotics InstituteSchool of Mechatronical EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
| | - Toshio Fukuda
- Institute of Innovation for Future SocietyNagoya UniversityNagoya466‐8550Japan
| | - Qing Shi
- Intelligent Robotics InstituteSchool of Mechatronical EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
| |
Collapse
|
17
|
Carton F, Rizzi M, Canciani E, Sieve G, Di Francesco D, Casarella S, Di Nunno L, Boccafoschi F. Use of Hydrogels in Regenerative Medicine: Focus on Mechanical Properties. Int J Mol Sci 2024; 25:11426. [PMID: 39518979 PMCID: PMC11545898 DOI: 10.3390/ijms252111426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Bioengineered materials represent an innovative option to support the regenerative processes of damaged tissues, with the final objective of creating a functional environment closely mimicking the native tissue. Among the different available biomaterials, hydrogels represent the solution of choice for tissue regeneration, thanks to the easy synthesis process and the highly tunable physical and mechanical properties. Moreover, hydrogels are biocompatible and biodegradable, able to integrate in biological environments and to support cellular interactions in order to restore damaged tissues' functionality. This review offers an overview of the current knowledge concerning hydrogel synthesis and characterization and of the recent achievements in their experimental use in supporting skin, bone, cartilage, and muscle regeneration. The currently available in vitro and in vivo results are of great interest, highlighting the need for carefully designed and controlled preclinical studies and clinical trials to support the transition of these innovative biomaterials from the bench to the bedside.
Collapse
Affiliation(s)
- Flavia Carton
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy (E.C.); (S.C.)
| | - Manuela Rizzi
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy (E.C.); (S.C.)
| | - Elena Canciani
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy (E.C.); (S.C.)
| | - Gianluca Sieve
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy (E.C.); (S.C.)
| | - Dalila Di Francesco
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy (E.C.); (S.C.)
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Min-Met-Materials Engineering, University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Simona Casarella
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy (E.C.); (S.C.)
| | - Luca Di Nunno
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy (E.C.); (S.C.)
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Min-Met-Materials Engineering, University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Francesca Boccafoschi
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy (E.C.); (S.C.)
| |
Collapse
|
18
|
Zhang P, Zhao X, Zhang S, Li G, Midgley AC, Fang Y, Zhao M, Nishinari K, Yao X. The important role of cellular mechanical microenvironment in engineering structured cultivated meat: Recent advances. Curr Res Food Sci 2024; 9:100865. [PMID: 39416367 PMCID: PMC11481608 DOI: 10.1016/j.crfs.2024.100865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Cultivated meat (CM) provides a potential solution to meet the rising demand for eco-friendly meat supply systems. Recent efforts focus on producing CM that replicates the architecture and textural toughness of natural skeletal muscle. Significance of the regulated role of cellular microenvironment in myogenesis has been reinforced by the substantial influence of mechanical cues in mediating the muscle tissue organization. However, the formation of structured CM has not been adequately described in context of the mechanical microenvironment. In this review, we provide an updated understanding of the myogenesis process within mechanically dynamic three-dimensional microenvironments, discuss the effects of environmental mechanical factors on muscle tissue regeneration and how cell mechanics respond to the mechanical condition, and further highlight the role of mechanical cues as important references in constructing a sustainable Hydrocolloids-based biomaterials for CM engineering. These findings help to overcome current limitations in improving the textural properties of CM.
Collapse
Affiliation(s)
- Pan Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Xu Zhao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Shiling Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Adam C. Midgley
- Key Laboratory of Bioactive Materials (MoE), College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yapeng Fang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Katsuyoshi Nishinari
- Glyn O. Phillips Hydrocolloid Research Centre, School of Bioengineering and Food Science, Hubei University of Technology, Wuhan, China
| | - Xiaolin Yao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| |
Collapse
|
19
|
Price FD, Matyas MN, Gehrke AR, Chen W, Wolin EA, Holton KM, Gibbs RM, Lee A, Singu PS, Sakakeeny JS, Poteracki JM, Goune K, Pfeiffer IT, Boswell SA, Sorger PK, Srivastava M, Pfaff KL, Gussoni E, Buchanan SM, Rubin LL. Organoid culture promotes dedifferentiation of mouse myoblasts into stem cells capable of complete muscle regeneration. Nat Biotechnol 2024:10.1038/s41587-024-02344-7. [PMID: 39261590 DOI: 10.1038/s41587-024-02344-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/27/2024] [Indexed: 09/13/2024]
Abstract
Experimental cell therapies for skeletal muscle conditions have shown little success, primarily because they use committed myogenic progenitors rather than true muscle stem cells, known as satellite cells. Here we present a method to generate in vitro-derived satellite cells (idSCs) from skeletal muscle tissue. When transplanted in small numbers into mouse muscle, mouse idSCs fuse into myofibers, repopulate the satellite cell niche, self-renew, support multiple rounds of muscle regeneration and improve force production on par with freshly isolated satellite cells in damaged skeletal muscle. We compared the epigenomic and transcriptional signatures between idSCs, myoblasts and satellite cells and used these signatures to identify core signaling pathways and genes that confer idSC functionality. Finally, from human muscle biopsies, we successfully generated satellite cell-like cells in vitro. After further development, idSCs may provide a scalable source of cells for the treatment of genetic muscle disorders, trauma-induced muscle damage and age-related muscle weakness.
Collapse
Affiliation(s)
- Feodor D Price
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Systems Biology and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA.
| | - Mark N Matyas
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Andrew R Gehrke
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - William Chen
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Erica A Wolin
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Kristina M Holton
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rebecca M Gibbs
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Alice Lee
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Pooja S Singu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Jeffrey S Sakakeeny
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - James M Poteracki
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Kelsey Goune
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Isabella T Pfeiffer
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Sarah A Boswell
- Department of Systems Biology and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Peter K Sorger
- Department of Systems Biology and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Mansi Srivastava
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Kathleen Lindahl Pfaff
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Emanuela Gussoni
- Division of Genetics and Genomics and the Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Sean M Buchanan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Lee L Rubin
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
20
|
Poss KD, Tanaka EM. Hallmarks of regeneration. Cell Stem Cell 2024; 31:1244-1261. [PMID: 39163854 PMCID: PMC11410156 DOI: 10.1016/j.stem.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/12/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024]
Abstract
Regeneration is a heroic biological process that restores tissue architecture and function in the face of day-to-day cell loss or the aftershock of injury. Capacities and mechanisms for regeneration can vary widely among species, organs, and injury contexts. Here, we describe "hallmarks" of regeneration found in diverse settings of the animal kingdom, including activation of a cell source, initiation of regenerative programs in the source, interplay with supporting cell types, and control of tissue size and function. We discuss these hallmarks with an eye toward major challenges and applications of regenerative biology.
Collapse
Affiliation(s)
- Kenneth D Poss
- Duke Regeneration Center and Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Elly M Tanaka
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria.
| |
Collapse
|
21
|
Madl CM, Wang YX, Holbrook CA, Su S, Shi X, Byfield FJ, Wicki G, Flaig IA, Blau HM. Hydrogel biomaterials that stiffen and soften on demand reveal that skeletal muscle stem cells harbor a mechanical memory. Proc Natl Acad Sci U S A 2024; 121:e2406787121. [PMID: 39163337 PMCID: PMC11363279 DOI: 10.1073/pnas.2406787121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/21/2024] [Indexed: 08/22/2024] Open
Abstract
Muscle stem cells (MuSCs) are specialized cells that reside in adult skeletal muscle poised to repair muscle tissue. The ability of MuSCs to regenerate damaged tissues declines markedly with aging and in diseases such as Duchenne muscular dystrophy, but the underlying causes of MuSC dysfunction remain poorly understood. Both aging and disease result in dramatic increases in the stiffness of the muscle tissue microenvironment from fibrosis. MuSCs are known to lose their regenerative potential if cultured on stiff plastic substrates. We sought to determine whether MuSCs harbor a memory of their past microenvironment and if it can be overcome. We tested MuSCs in situ using dynamic hydrogel biomaterials that soften or stiffen on demand in response to light and found that freshly isolated MuSCs develop a persistent memory of substrate stiffness characterized by loss of proliferative progenitors within the first three days of culture on stiff substrates. MuSCs cultured on soft hydrogels had altered cytoskeletal organization and activity of Rho and Rac guanosine triphosphate hydrolase (GTPase) and Yes-associated protein mechanotransduction pathways compared to those on stiff hydrogels. Pharmacologic inhibition identified RhoA activation as responsible for the mechanical memory phenotype, and single-cell RNA sequencing revealed a molecular signature of the mechanical memory. These studies highlight that microenvironmental stiffness regulates MuSC fate and leads to MuSC dysfunction that is not readily reversed by changing stiffness. Our results suggest that stiffness can be circumvented by targeting downstream signaling pathways to overcome stem cell dysfunction in aged and disease states with aberrant fibrotic tissue mechanics.
Collapse
Affiliation(s)
- Christopher M. Madl
- Department of Microbiology and Immunology, Baxter Laboratory for Stem Cell Biology, Stanford University, Stanford, CA94305
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA19104
| | - Yu Xin Wang
- Department of Microbiology and Immunology, Baxter Laboratory for Stem Cell Biology, Stanford University, Stanford, CA94305
| | - Colin A. Holbrook
- Department of Microbiology and Immunology, Baxter Laboratory for Stem Cell Biology, Stanford University, Stanford, CA94305
| | - Shiqi Su
- Department of Microbiology and Immunology, Baxter Laboratory for Stem Cell Biology, Stanford University, Stanford, CA94305
| | - Xuechen Shi
- Department of Physiology, Perelman School of Medicine and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA19104
| | - Fitzroy J. Byfield
- Department of Physiology, Perelman School of Medicine and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA19104
| | - Gwendoline Wicki
- Department of Microbiology and Immunology, Baxter Laboratory for Stem Cell Biology, Stanford University, Stanford, CA94305
- Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, LausanneCH-1015, Switzerland
| | - Iris A. Flaig
- Department of Microbiology and Immunology, Baxter Laboratory for Stem Cell Biology, Stanford University, Stanford, CA94305
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Federale de Lausanne, LausanneCH-1015, Switzerland
| | - Helen M. Blau
- Department of Microbiology and Immunology, Baxter Laboratory for Stem Cell Biology, Stanford University, Stanford, CA94305
| |
Collapse
|
22
|
Müller WEG, Neufurth M, Wang S, Schröder HC, Wang X. Polyphosphate Nanoparticles: Balancing Energy Requirements in Tissue Regeneration Processes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309528. [PMID: 38470207 DOI: 10.1002/smll.202309528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/29/2024] [Indexed: 03/13/2024]
Abstract
Nanoparticles of a particular, evolutionarily old inorganic polymer found across the biological kingdoms have attracted increasing interest in recent years not only because of their crucial role in metabolism but also their potential medical applicability: it is inorganic polyphosphate (polyP). This ubiquitous linear polymer is composed of 10-1000 phosphate residues linked by high-energy anhydride bonds. PolyP causes induction of gene activity, provides phosphate for bone mineralization, and serves as an energy supplier through enzymatic cleavage of its acid anhydride bonds and subsequent ATP formation. The biomedical breakthrough of polyP came with the development of a successful fabrication process, in depot form, as Ca- or Mg-polyP nanoparticles, or as the directly effective polymer, as soluble Na-polyP, for regenerative repair and healing processes, especially in tissue areas with insufficient blood supply. Physiologically, the platelets are the main vehicles for polyP nanoparticles in the circulating blood. To be biomedically active, these particles undergo coacervation. This review provides an overview of the properties of polyP and polyP nanoparticles for applications in the regeneration and repair of bone, cartilage, and skin. In addition to studies on animal models, the first successful proof-of-concept studies on humans for the healing of chronic wounds are outlined.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128, Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128, Mainz, Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128, Mainz, Germany
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128, Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128, Mainz, Germany
| |
Collapse
|
23
|
Zhao H, Xiong T, Chu Y, Hao W, Zhao T, Sun X, Zhuang Y, Chen B, Zhao Y, Wang J, Chen Y, Dai J. Biomimetic Dual-Network Collagen Fibers with Porous and Mechanical Cues Reconstruct Neural Stem Cell Niche via AKT/YAP Mechanotransduction after Spinal Cord Injury. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311456. [PMID: 38497893 DOI: 10.1002/smll.202311456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/21/2024] [Indexed: 03/19/2024]
Abstract
Tissue engineering scaffolds can mediate the maneuverability of neural stem cell (NSC) niche to influence NSC behavior, such as cell self-renewal, proliferation, and differentiation direction, showing the promising application in spinal cord injury (SCI) repair. Here, dual-network porous collagen fibers (PCFS) are developed as neurogenesis scaffolds by employing biomimetic plasma ammonia oxidase catalysis and conventional amidation cross-linking. Following optimizing the mechanical parameters of PCFS, the well-matched Young's modulus and physiological dynamic adaptability of PCFS (4.0 wt%) have been identified as a neurogenetic exciter after SCI. Remarkably, porous topographies and curving wall-like protrusions are generated on the surface of PCFS by simple and non-toxic CO2 bubble-water replacement. As expected, PCFS with porous and matched mechanical properties can considerably activate the cadherin receptor of NSCs and induce a series of serine-threonine kinase/yes-associated protein mechanotransduction signal pathways, encouraging cellular orientation, neuron differentiation, and adhesion. In SCI rats, implanted PCFS with matched mechanical properties further integrated into the injured spinal cords, inhibited the inflammatory progression and decreased glial and fibrous scar formation. Wall-like protrusions of PCFS drive multiple neuron subtypes formation and even functional neural circuits, suggesting a viable therapeutic strategy for nerve regeneration and functional recovery after SCI.
Collapse
Affiliation(s)
- Haitao Zhao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, China
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
| | - Tiandi Xiong
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Yun Chu
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Wangping Hao
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
| | - Tongtong Zhao
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Xinyue Sun
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Yan Zhuang
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Bing Chen
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology Chinese Academy of Sciences, Beijing, 100101, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology Chinese Academy of Sciences, Beijing, 100101, China
| | - Jun Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, China
| | - Yanyan Chen
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Jianwu Dai
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
24
|
Peng Y, Du J, Li R, Günther S, Wettschureck N, Offermanns S, Wang Y, Schneider A, Braun T. RhoA-mediated G 12-G 13 signaling maintains muscle stem cell quiescence and prevents stem cell loss. Cell Discov 2024; 10:76. [PMID: 39009565 PMCID: PMC11251043 DOI: 10.1038/s41421-024-00696-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/27/2024] [Indexed: 07/17/2024] Open
Abstract
Multiple processes control quiescence of muscle stem cells (MuSCs), which is instrumental to guarantee long-term replenishment of the stem cell pool. Here, we describe that the G-proteins G12-G13 integrate signals from different G-protein-coupled receptors (GPCRs) to control MuSC quiescence via activation of RhoA. Comprehensive screening of GPCR ligands identified two MuSC-niche-derived factors, endothelin-3 (ET-3) and neurotensin (NT), which activate G12-G13 signaling in MuSCs. Stimulation with ET-3 or NT prevented MuSC activation, whereas pharmacological inhibition of ET-3 or NT attenuated MuSC quiescence. Inactivation of Gna12-Gna13 or Rhoa but not of Gnaq-Gna11 completely abrogated MuSC quiescence, which depleted the MuSC pool and was associated with accelerated sarcopenia during aging. Expression of constitutively active RhoA prevented exit from quiescence in Gna12-Gna13 mutant MuSCs, inhibiting cell cycle entry and differentiation via Rock and formins without affecting Rac1-dependent MuSC projections, a hallmark of quiescent MuSCs. The study uncovers a critical role of G12-G13 and RhoA signaling for active regulation of MuSC quiescence.
Collapse
Affiliation(s)
- Yundong Peng
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
| | - Jingjing Du
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rui Li
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Günther
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Nina Wettschureck
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Member of the German Center for Cardiovascular Research (DZHK), member of the German Center for Lung Research (DZL), Berlin, Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Member of the German Center for Cardiovascular Research (DZHK), member of the German Center for Lung Research (DZL), Berlin, Germany
| | - Yan Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Andre Schneider
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- Member of the German Center for Cardiovascular Research (DZHK), member of the German Center for Lung Research (DZL), Berlin, Germany.
| |
Collapse
|
25
|
Major GS, Doan VK, Longoni A, Bilek MMM, Wise SG, Rnjak-Kovacina J, Yeo GC, Lim KS. Mapping the microcarrier design pathway to modernise clinical mesenchymal stromal cell expansion. Trends Biotechnol 2024; 42:859-876. [PMID: 38320911 DOI: 10.1016/j.tibtech.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 02/08/2024]
Abstract
Microcarrier expansion systems show exciting potential to revolutionise mesenchymal stromal cell (MSC)-based clinical therapies by providing an opportunity for economical large-scale expansion of donor- and patient-derived cells. The poor reproducibility and efficiency of cell expansion on commercial polystyrene microcarriers have driven the development of novel microcarriers with tuneable physical, mechanical, and cell-instructive properties. These new microcarriers show innovation toward improving cell expansion outcomes, although their limited biological characterisation and compatibility with dynamic culture systems suggest the need to realign the microcarrier design pathway. Clear headway has been made toward developing infrastructure necessary for scaling up these technologies; however, key challenges remain in characterising the wholistic effects of microcarrier properties on the biological fate and function of expanded MSCs.
Collapse
Affiliation(s)
- Gretel S Major
- School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Vinh K Doan
- School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Alessia Longoni
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marcela M M Bilek
- School of Biomedical Engineering, University of Sydney, Sydney, Australia; School of Physics, University of Sydney, Sydney, Australia; Charles Perkins Centre, University of Sydney, Sydney, Australia; Sydney Nano Institute, University of Sydney, Sydney, Australia
| | - Steven G Wise
- School of Medical Sciences, University of Sydney, Sydney, Australia; Charles Perkins Centre, University of Sydney, Sydney, Australia
| | - Jelena Rnjak-Kovacina
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia; Tyree Institute of Health Engineering, University of New South Wales, Sydney, Australia
| | - Giselle C Yeo
- Charles Perkins Centre, University of Sydney, Sydney, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney, Australia.
| | - Khoon S Lim
- School of Medical Sciences, University of Sydney, Sydney, Australia; Charles Perkins Centre, University of Sydney, Sydney, Australia; Sydney Nano Institute, University of Sydney, Sydney, Australia.
| |
Collapse
|
26
|
Opara A, Canning P, Alwan A, Opara EC. Challenges and Perspectives for Future Considerations in the Bioengineering of a Bioartificial Pancreas. Ann Biomed Eng 2024; 52:1795-1803. [PMID: 36913086 DOI: 10.1007/s10439-023-03180-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/25/2023] [Indexed: 03/14/2023]
Abstract
There is an unrelenting interest in the development of a reliable bioartificial pancreas construct since the first description of this technology of encapsulated islets by Lim and Sun in 1980 because it promised to be a curative treatment for Type 1 Diabetes Mellitus (T1DM). Despite the promise of the concept of encapsulated islets, there are still some challenges that impede the full realization of the clinical potential of the technology. In this review, we will first present the justification for continued research and development of this technology. Next, we will review key barriers that impede progress in this field and discuss strategies that can be used to design a reliable construct capable of effective long-term performance after transplantation in diabetic patients. Finally, we will share our perspectives on areas of additional work for future research and development of the technology.
Collapse
Affiliation(s)
- Amoge Opara
- Diabetes Section, Biologics Delivery Technologies, Reno, NV, 89502, USA
| | - Priyadarshini Canning
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Abdelrahman Alwan
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Emmanuel C Opara
- Diabetes Section, Biologics Delivery Technologies, Reno, NV, 89502, USA.
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences (SBES), Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
27
|
Gulati N, Davoudi S, Xu B, Rjaibi ST, Jacques E, Pham J, Fard A, McGuigan AP, Gilbert PM. Mini-MEndR: a miniaturized 96-well predictive assay to evaluate muscle stem cell-mediated repair. BMC METHODS 2024; 1:5. [PMID: 38872952 PMCID: PMC11173370 DOI: 10.1186/s44330-024-00005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
Background Functional evaluation of molecules that are predicted to promote stem cell mediated endogenous repair often requires in vivo transplant studies that are low throughput and hinder the rate of discovery. To offer greater throughput for functional validation studies, we miniaturized, simplified and expanded the functionality of a previously developed muscle endogenous repair (MEndR) in vitro assay that was shown to capture significant events of in vivo muscle endogenous repair. Methods The mini-MEndR assay consists of miniaturized cellulose scaffolds designed to fit in 96-well plates, the pores of which are infiltrated with human myoblasts encapsulated in a fibrin-based hydrogel to form engineered skeletal muscle tissues. Pre-adsorbing thrombin to the cellulose scaffolds facilitates in situ tissue polymerization, a critical modification that enables new users to rapidly acquire assay expertise. Following the generation of the 3D myotube template, muscle stem cells (MuSCs), enriched from digested mouse skeletal muscle tissue using an improved magnetic-activated cell sorting protocol, are engrafted within the engineered template. Murine MuSCs are fluorescently labeled, enabling co-evaluation of human and mouse Pax7+ cell responses to drug treatments. A regenerative milieu is introduced by injuring the muscle tissue with a myotoxin to initiate endogenous repair "in a dish". Phenotypic data is collected at endpoints with a high-content imaging system and is analyzed using ImageJ-based image analysis pipelines. Results The miniaturized format and modified manufacturing protocol cuts reagent costs in half and hands-on seeding time ~ threefold, while the image analysis pipelines save 40 h of labour. By evaluating multiple commercially available human primary myoblast lines in 2D and 3D culture, we establish quality assurance metrics for cell line selection that standardizes myotube template quality. In vivo outcomes (enhanced muscle production and Pax7+ cell expansion) to a known modulator of MuSC mediated repair (p38/β MAPK inhibition) are recapitulated in the miniaturized culture assay, but only in the presence of stem cells and the regenerative milieu. Discussion The miniaturized predictive assay offers a simple, scaled platform to co-investigate human and mouse skeletal muscle endogenous repair molecular modulators, and thus is a promising strategy to accelerate the muscle endogenous repair discovery pipeline. Supplementary Information The online version contains supplementary material available at 10.1186/s44330-024-00005-4.
Collapse
Affiliation(s)
- Nitya Gulati
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S3E4 Canada
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1 Canada
| | - Sadegh Davoudi
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1 Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9 Canada
| | - Bin Xu
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1 Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9 Canada
| | - Saifedine T. Rjaibi
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S3E4 Canada
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1 Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9 Canada
| | - Erik Jacques
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1 Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9 Canada
| | - Justin Pham
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S3E4 Canada
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1 Canada
| | - Amir Fard
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S3E4 Canada
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1 Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9 Canada
| | - Alison P. McGuigan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S3E4 Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9 Canada
| | - Penney M. Gilbert
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1 Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9 Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S3G5 Canada
| |
Collapse
|
28
|
Langston PK, Mathis D. Immunological regulation of skeletal muscle adaptation to exercise. Cell Metab 2024; 36:1175-1183. [PMID: 38670108 DOI: 10.1016/j.cmet.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
Exercise has long been acknowledged for its powerful disease-preventing, health-promoting effects. However, the cellular and molecular mechanisms responsible for the beneficial effects of exercise are not fully understood. Inflammation is a component of the stress response to exercise. Recent work has revealed that such inflammation is not merely a symptom of exertion; rather, it is a key regulator of exercise adaptations, particularly in skeletal muscle. The purpose of this piece is to provide a conceptual framework that we hope will integrate exercise immunology with exercise physiology, muscle biology, and cellular immunology. We start with an overview of early studies in the field of exercise immunology, followed by an exploration of the importance of stromal cells and immunocytes in the maintenance of muscle homeostasis based on studies of experimental muscle injury. Subsequently, we discuss recent advances in our understanding of the functions and physiological relevance of the immune system in exercised muscle. Finally, we highlight a potential immunological basis for the benefits of exercise in musculoskeletal diseases and aging.
Collapse
Affiliation(s)
- P Kent Langston
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
29
|
Wang X, Wang M, Xu Y, Yin J, Hu J. A 3D-printable gelatin/alginate/ε-poly-l-lysine hydrogel scaffold to enable porcine muscle stem cells expansion and differentiation for cultured meat development. Int J Biol Macromol 2024; 271:131980. [PMID: 38821790 DOI: 10.1016/j.ijbiomac.2024.131980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 06/02/2024]
Abstract
The mass proliferation of seed cells and imitation of meat structures remain challenging for cell-cultured meat production. With excellent biocompatibility, high water content and porosity, hydrogels are frequently-studied materials for anchorage-dependent cell scaffolds in biotechnology applications. Herein, a scaffold based on gelatin/alginate/ε-Poly-l-lysine (GAL) hydrogel is developed for skeletal muscle cells, which has a great prospect in cell-cultured meat production. In this work, the hydrogel GAL-4:1, composed of gelatin (5 %, w/v), alginate (5 %, w/v) and ε-Poly-l-lysine (molar ratio vs. alginate: 4:1) is selected as cell scaffold based on Young's modulus of 11.29 ± 1.94 kPa, satisfactory shear-thinning property and suitable porous organized structure. The commercially available C2C12 mouse skeletal myoblasts and porcine muscle stem cells (PMuSCs), are cultured in the 3D-printed scaffold. The cells show strong ability of attachment, proliferation and differentiation after induction, showing high biocompatibility. Furthermore, the cellular bioprinting is performed with GAL-4:1 hydrogel and freshly extracted PMuSCs. The extracted PMuSCs exhibit high viability and display early myogenesis (desmin) on the 3D scaffold, suggesting the great potential of GAL hydrogel as 3D cellular constructs scaffolds. Overall, we develop a novel GAL hydrogel as a 3D-printed bioactive platform for cultured meat research.
Collapse
Affiliation(s)
- Xiang Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Meiling Wang
- Wuxi School of Medicine, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, PR China
| | - Yiqiang Xu
- Wuxi School of Medicine, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, PR China
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China.
| | - Jing Hu
- Wuxi School of Medicine, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, PR China.
| |
Collapse
|
30
|
Luo Y, Gao Y. Potential Role of Hydrogels in Stem Cell Culture and Hepatocyte Differentiation. NANO BIOMEDICINE AND ENGINEERING 2024; 16:188-202. [DOI: 10.26599/nbe.2024.9290055] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
|
31
|
Duran P, Yang BA, Plaster E, Eiken M, Loebel C, Aguilar CA. Tracking of Nascent Matrix Deposition during Muscle Stem Cell Activation across Lifespan Using Engineered Hydrogels. Adv Biol (Weinh) 2024; 8:e2400091. [PMID: 38616175 DOI: 10.1002/adbi.202400091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/22/2024] [Indexed: 04/16/2024]
Abstract
Adult stem cells occupy a niche that contributes to their function, but how stem cells rebuild their microenvironment after injury remains an open-ended question. Herein, biomaterial-based systems and metabolic labeling are utilized to evaluate how skeletal muscle stem cells deposit extracellular matrix. Muscle stem cells and committed myoblasts are observed to generate less nascent matrix than muscle resident fibro-adipogenic progenitors. When cultured on substrates that matched the stiffness of physiological uninjured and injured muscles, muscle stem cells increased nascent matrix deposition with activation kinetics. Reducing the ability to deposit nascent matrix by an inhibitor of vesicle trafficking (Exo-1) attenuated muscle stem cell function and mimicked impairments observed from muscle stem cells isolated from old muscles. Old muscle stem cells are observed to deposit less nascent matrix than young muscle stem cells, which is rescued with therapeutic supplementation of insulin-like growth factors. These results highlight the role of nascent matrix production with muscle stem cell activation.
Collapse
Affiliation(s)
- Pamela Duran
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Benjamin A Yang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Eleanor Plaster
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Madeline Eiken
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Claudia Loebel
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Materials Science & Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Carlos A Aguilar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
32
|
Kawecki NS, Chen KK, Smith CS, Xie Q, Cohen JM, Rowat AC. Scalable Processes for Culturing Meat Using Edible Scaffolds. Annu Rev Food Sci Technol 2024; 15:241-264. [PMID: 38211941 DOI: 10.1146/annurev-food-072023-034451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
There is increasing consumer demand for alternative animal protein products that are delicious and sustainably produced to address concerns about the impacts of mass-produced meat on human and planetary health. Cultured meat has the potential to provide a source of nutritious dietary protein that both is palatable and has reduced environmental impact. However, strategies to support the production of cultured meats at the scale required for food consumption will be critical. In this review, we discuss the current challenges and opportunities of using edible scaffolds for scaling up the production of cultured meat. We provide an overview of different types of edible scaffolds, scaffold fabrication techniques, and common scaffold materials. Finally, we highlight potential advantages of using edible scaffolds to advance cultured meat production by accelerating cell growth and differentiation, providing structure to build complex 3D tissues, and enhancing the nutritional and sensory properties of cultured meat.
Collapse
Affiliation(s)
- N Stephanie Kawecki
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA;
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Kathleen K Chen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA;
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, USA
| | - Corinne S Smith
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA;
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Qingwen Xie
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA;
| | - Julian M Cohen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA;
| | - Amy C Rowat
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA;
- Broad Stem Cell Center, University of California, Los Angeles, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
33
|
Mukhopadhyay U, Mandal T, Chakraborty M, Sinha B. The Plasma Membrane and Mechanoregulation in Cells. ACS OMEGA 2024; 9:21780-21797. [PMID: 38799362 PMCID: PMC11112598 DOI: 10.1021/acsomega.4c01962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Cells inhabit a mechanical microenvironment that they continuously sense and adapt to. The plasma membrane (PM), serving as the boundary of the cell, plays a pivotal role in this process of adaptation. In this Review, we begin by examining well-studied processes where mechanoregulation proves significant. Specifically, we highlight examples from the immune system and stem cells, besides discussing processes involving fibroblasts and other cell types. Subsequently, we discuss the common molecular players that facilitate the sensing of the mechanical signal and transform it into a chemical response covering integrins YAP/TAZ and Piezo. We then review how this understanding of molecular elements is leveraged in drug discovery and tissue engineering alongside a discussion of the methodologies used to measure mechanical properties. Focusing on the processes of endocytosis, we discuss how cells may respond to altered membrane mechanics using endo- and exocytosis. Through the process of depleting/adding the membrane area, these could also impact membrane mechanics. We compare pathways from studies illustrating the involvement of endocytosis in mechanoregulation, including clathrin-mediated endocytosis (CME) and the CLIC/GEEC (CG) pathway as central examples. Lastly, we review studies on cell-cell fusion during myogenesis, the mechanical integrity of muscle fibers, and the reported and anticipated roles of various molecular players and processes like endocytosis, thereby emphasizing the significance of mechanoregulation at the PM.
Collapse
Affiliation(s)
- Upasana Mukhopadhyay
- Department of Biological
Sciences, Indian Institute of Science Education
and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Tithi Mandal
- Department of Biological
Sciences, Indian Institute of Science Education
and Research Kolkata, Mohanpur, West Bengal 741246, India
| | | | - Bidisha Sinha
- Department of Biological
Sciences, Indian Institute of Science Education
and Research Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
34
|
Li W, Guo J, Hobson EC, Xue X, Li Q, Fu J, Deng CX, Guo Z. Metabolic-Glycoengineering-Enabled Molecularly Specific Acoustic Tweezing Cytometry for Targeted Mechanical Stimulation of Cell Surface Sialoglycans. Angew Chem Int Ed Engl 2024; 63:e202401921. [PMID: 38498603 PMCID: PMC11073901 DOI: 10.1002/anie.202401921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
In this study, we developed a novel type of dibenzocyclooctyne (DBCO)-functionalized microbubbles (MBs) and validated their attachment to azide-labelled sialoglycans on human pluripotent stem cells (hPSCs) generated by metabolic glycoengineering (MGE). This enabled the application of mechanical forces to sialoglycans on hPSCs through molecularly specific acoustic tweezing cytometry (mATC), that is, displacing sialoglycan-anchored MBs using ultrasound (US). It was shown that subjected to the acoustic radiation forces of US pulses, sialoglycan-anchored MBs exhibited significantly larger displacements and faster, more complete recovery after each pulse than integrin-anchored MBs, indicating that sialoglycans are more stretchable and elastic than integrins on hPSCs in response to mechanical force. Furthermore, stimulating sialoglycans on hPSCs using mATC reduced stage-specific embryonic antigen-3 (SSEA-3) and GD3 expression but not OCT4 and SOX2 nuclear localization. Conversely, stimulating integrins decreased OCT4 nuclear localization but not SSEA-3 and GD3 expression, suggesting that mechanically stimulating sialoglycans and integrins initiated distinctive mechanoresponses during the early stages of hPSC differentiation. Taken together, these results demonstrated that MGE-enabled mATC uncovered not only different mechanical properties of sialoglycans on hPSCs and integrins but also their different mechanoregulatory impacts on hPSC differentiation, validating MGE-based mATC as a new, powerful tool for investigating the roles of glycans and other cell surface biomolecules in mechanotransduction.
Collapse
Affiliation(s)
- Weiping Li
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jiatong Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Eric C. Hobson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xufeng Xue
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Qingjiang Li
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
- Department of Chemistry, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Jianping Fu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Cheri X. Deng
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
35
|
Li L, Griebel ME, Uroz M, Bubli SY, Gagnon KA, Trappmann B, Baker BM, Eyckmans J, Chen CS. A Protein-Adsorbent Hydrogel with Tunable Stiffness for Tissue Culture Demonstrates Matrix-Dependent Stiffness Responses. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2309567. [PMID: 38693998 PMCID: PMC11060701 DOI: 10.1002/adfm.202309567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Indexed: 05/03/2024]
Abstract
Although tissue culture plastic has been widely employed for cell culture, the rigidity of plastic is not physiologic. Softer hydrogels used to culture cells have not been widely adopted in part because coupling chemistries are required to covalently capture extracellular matrix (ECM) proteins and support cell adhesion. To create an in vitro system with tunable stiffnesses that readily adsorbs ECM proteins for cell culture, we present a novel hydrophobic hydrogel system via chemically converting hydroxyl residues on the dextran backbone to methacrylate groups, thereby transforming non-protein adhesive, hydrophilic dextran to highly protein adsorbent substrates. Increasing methacrylate functionality increases the hydrophobicity in the resulting hydrogels and enhances ECM protein adsorption without additional chemical reactions. These hydrophobic hydrogels permit facile and tunable modulation of substrate stiffness independent of hydrophobicity or ECM coatings. Using this approach, we show that substrate stiffness and ECM adsorption work together to affect cell morphology and proliferation, but the strengths of these effects vary in different cell types. Furthermore, we reveal that stiffness mediated differentiation of dermal fibroblasts into myofibroblasts is modulated by the substrate ECM. Our material system demonstrates remarkable simplicity and flexibility to tune ECM coatings and substrate stiffness and study their effects on cell function.
Collapse
Affiliation(s)
- Linqing Li
- Department of Biomedical Engineering, Biological Design Center, Boston University, Boston, MA, 02215, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, 02115, United States
- Department of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, New Hampshire, 03824, United States
| | - Megan E Griebel
- Department of Biomedical Engineering, Biological Design Center, Boston University, Boston, MA, 02215, United States
| | - Marina Uroz
- Department of Biomedical Engineering, Biological Design Center, Boston University, Boston, MA, 02215, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, 02115, United States
| | - Saniya Yesmin Bubli
- Department of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, New Hampshire, 03824, United States
| | - Keith A Gagnon
- Department of Biomedical Engineering, Biological Design Center, Boston University, Boston, MA, 02215, United States
| | - Britta Trappmann
- Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, Münster, 48149 Germany
| | - Brendon M Baker
- Engineered Microenvironments and Mechanobiology Lab, Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109 United States
| | - Jeroen Eyckmans
- Department of Biomedical Engineering, Biological Design Center, Boston University, Boston, MA, 02215, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, 02115, United States
| | - Christopher S Chen
- Department of Biomedical Engineering, Biological Design Center, Boston University, Boston, MA, 02215, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, 02115, United States
| |
Collapse
|
36
|
Zhou WH, Qiao LR, Xie SJ, Chang Z, Yin X, Xu GK. Mechanical guidance to self-organization and pattern formation of stem cells. SOFT MATTER 2024; 20:3448-3457. [PMID: 38567443 DOI: 10.1039/d4sm00172a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The self-organization of stem cells (SCs) constitutes the fundamental basis of the development of biological organs and structures. SC-driven patterns are essential for tissue engineering, yet unguided SCs tend to form chaotic patterns, impeding progress in biomedical engineering. Here, we show that simple geometric constraints can be used as an effective mechanical modulation approach that promotes the development of controlled self-organization and pattern formation of SCs. Using the applied SC guidance with geometric constraints, we experimentally uncover a remarkable deviation in cell aggregate orientation from a random direction to a specific orientation. Subsequently, we propose a dynamic mechanical framework, including cells, the extracellular matrix (ECM), and the culture environment, to characterize the specific orientation deflection of guided cell aggregates relative to initial geometric constraints, which agrees well with experimental observation. Based on this framework, we further devise various theoretical strategies to realize complex biological patterns, such as radial and concentric structures. Our study highlights the key role of mechanical factors and geometric constraints in governing SCs' self-organization. These findings yield critical insights into the regulation of SC-driven pattern formation and hold great promise for advancements in tissue engineering and bioactive material design for regenerative application.
Collapse
Affiliation(s)
- Wei-Hua Zhou
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Lin-Ru Qiao
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - She-Juan Xie
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Zhuo Chang
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Xu Yin
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Guang-Kui Xu
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
37
|
Huniadi M, Nosálová N, Almášiová V, Horňáková Ľ, Valenčáková A, Hudáková N, Cizkova D. Three-Dimensional Cultivation a Valuable Tool for Modelling Canine Mammary Gland Tumour Behaviour In Vitro. Cells 2024; 13:695. [PMID: 38667310 PMCID: PMC11049302 DOI: 10.3390/cells13080695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Cell cultivation has been one of the most popular methods in research for decades. Currently, scientists routinely use two-dimensional (2D) and three-dimensional (3D) cell cultures of commercially available cell lines and primary cultures to study cellular behaviour, responses to stimuli, and interactions with their environment in a controlled laboratory setting. In recent years, 3D cultivation has gained more attention in modern biomedical research, mainly due to its numerous advantages compared to 2D cultures. One of the main goals where 3D culture models are used is the investigation of tumour diseases, in both animals and humans. The ability to simulate the tumour microenvironment and design 3D masses allows us to monitor all the processes that take place in tumour tissue created not only from cell lines but directly from the patient's tumour cells. One of the tumour types for which 3D culture methods are often used in research is the canine mammary gland tumour (CMT). The clinically similar profile of the CMT and breast tumours in humans makes the CMT a suitable model for studying the issue not only in animals but also in women.
Collapse
Affiliation(s)
- Mykhailo Huniadi
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia; (M.H.); (N.N.); (Ľ.H.); (A.V.); (N.H.)
| | - Natália Nosálová
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia; (M.H.); (N.N.); (Ľ.H.); (A.V.); (N.H.)
| | - Viera Almášiová
- Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia;
| | - Ľubica Horňáková
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia; (M.H.); (N.N.); (Ľ.H.); (A.V.); (N.H.)
| | - Alexandra Valenčáková
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia; (M.H.); (N.N.); (Ľ.H.); (A.V.); (N.H.)
| | - Nikola Hudáková
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia; (M.H.); (N.N.); (Ľ.H.); (A.V.); (N.H.)
| | - Dasa Cizkova
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia; (M.H.); (N.N.); (Ľ.H.); (A.V.); (N.H.)
| |
Collapse
|
38
|
Zhang D, Wu W, Zhang W, Feng Q, Zhang Q, Liang H. Nuclear deformation and cell division of single cell on elongated micropatterned substrates fabricated by DMD lithography. Biofabrication 2024; 16:035001. [PMID: 38471164 DOI: 10.1088/1758-5090/ad3319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
Cells sense mechanical signals from the surrounding environment and transmit them to the nucleus through mechanotransduction to regulate cellular behavior. Microcontact printing, which utilizes elastomer stamps, is an effective method for simulating the cellular microenvironment and manipulating cell morphology. However, the conventional fabrication process of silicon masters and elastomer stamps requires complex procedures and specialized equipment, which restricts the widespread application of micropatterning in cell biology and hinders the investigation of the role of cell geometry in regulating cell behavior. In this study, we present an innovative method for convenient resin stamp microfabrication based on digital micromirror device planar lithography. Using this method, we generated a series of patterns ranging from millimeter to micrometer scales and validated their effectiveness in controlling adhesion at both collective and individual cell levels. Additionally, we investigated mechanotransduction and cell behavior on elongated micropatterned substrates. We then examined the effects of cell elongation on cytoskeleton organization, nuclear deformation, focal adhesion formation, traction force generation, nuclear mechanics, and the growth of HeLa cells. Our findings reveal a positive correlation between cell length and mechanotransduction. Interestingly, HeLa cells with moderate length exhibit the highest cell division and proliferation rates. These results highlight the regulatory role of cell elongation in mechanotransduction and its significant impact on cancer cell growth. Furthermore, our methodology for controlling cell adhesion holds the potential for addressing fundamental questions in both cell biology and biomedical engineering.
Collapse
Affiliation(s)
- Duo Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230000, People's Republic of China
| | - Wenjie Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230000, People's Republic of China
| | - Wanying Zhang
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230000, People's Republic of China
| | - Qiyu Feng
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230000, People's Republic of China
| | - Qingchuan Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230000, People's Republic of China
| | - Haiyi Liang
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230000, People's Republic of China
- School of Civil Engineering, Anhui Jianzhu University, Hefei, Anhui 230601, People's Republic of China
- IAT-Chungu Joint Laboratory for Additive Manufacturing, Anhui Chungu 3D Printing Institute of Intelligent Equipment and Industrial Technology, Wuhu, Anhui 241000, People's Republic of China
| |
Collapse
|
39
|
Fard D, Barbiera A, Dobrowolny G, Tamagnone L, Scicchitano BM. Semaphorins: Missing Signals in Age-dependent Alteration of Neuromuscular Junctions and Skeletal Muscle Regeneration. Aging Dis 2024; 15:517-534. [PMID: 37728580 PMCID: PMC10917540 DOI: 10.14336/ad.2023.0801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/01/2023] [Indexed: 09/21/2023] Open
Abstract
Skeletal muscle is characterized by a remarkable capacity to rearrange after physiological changes and efficiently regenerate. However, during aging, extensive injury, or pathological conditions, the complete regenerative program is severely affected, with a progressive loss of muscle mass and function, a condition known as sarcopenia. The compromised tissue repair program is attributable to the gradual depletion of stem cells and to altered regulatory signals. Defective muscle regeneration can severely affect re-innervation by motor axons, and neuromuscular junctions (NMJs) development, ultimately leading to skeletal muscle atrophy. Defects in NMJ formation and maintenance occur physiologically during aging and are responsible for the pathogenesis of several neuromuscular disorders. However, it is still largely unknown how neuromuscular connections are restored on regenerating fibers. It has been suggested that attractive and repelling signals used for axon guidance could be implicated in this process; in particular, guidance molecules called semaphorins play a key role. Semaphorins are a wide family of extracellular regulatory signals with a multifaceted role in cell-cell communication. Originally discovered as axon guidance factors, they have been implicated in cancer progression, embryonal organogenesis, skeletal muscle innervation, and other physiological and developmental functions in different tissues. In particular, in skeletal muscle, specific semaphorin molecules are involved in the restoration and remodeling of the nerve-muscle connections, thus emphasizing their plausible role to ensure the success of muscle regeneration. This review article aims to discuss the impact of aging on skeletal muscle regeneration and NMJs remodeling and will highlight the most recent insights about the role of semaphorins in this context.
Collapse
Affiliation(s)
- Damon Fard
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica,Università Cattolica del Sacro Cuore, 00168 Roma, Italy.
| | - Alessandra Barbiera
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica,Università Cattolica del Sacro Cuore, 00168 Roma, Italy.
| | - Gabriella Dobrowolny
- DAHFMO-Unità di Istologia ed Embriologia Medica, Sapienza Università di Roma, 00161 Roma, Italy.
| | - Luca Tamagnone
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica,Università Cattolica del Sacro Cuore, 00168 Roma, Italy.
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy.
| | - Bianca Maria Scicchitano
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica,Università Cattolica del Sacro Cuore, 00168 Roma, Italy.
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy.
| |
Collapse
|
40
|
Wolfram L, Gimpel C, Schwämmle M, Clark SJ, Böhringer D, Schlunck G. The impact of substrate stiffness on morphological, transcriptional and functional aspects in RPE. Sci Rep 2024; 14:7488. [PMID: 38553490 PMCID: PMC11344127 DOI: 10.1038/s41598-024-56661-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 03/08/2024] [Indexed: 04/02/2024] Open
Abstract
Alterations in the structure and composition of Bruch's membrane (BrM) and loss of retinal pigment epithelial (RPE) cells are associated with various ocular diseases, notably age-related macular degeneration (AMD) as well as several inherited retinal diseases (IRDs). We explored the influence of stiffness as a major BrM characteristic on the RPE transcriptome and morphology. ARPE-19 cells were plated on soft ( E = 30 kPa ) or stiff ( E = 80 kPa ) polyacrylamide gels (PA gels) or standard tissue culture plastic (TCP). Next-generation sequencing (NGS) data on differentially expressed small RNAs (sRNAs) and messenger RNAs (mRNAs) were validated by qPCR, immunofluorescence or western blotting. The microRNA (miRNA) fraction of sRNAs grew with substrate stiffness and distinct miRNAs such as miR-204 or miR-222 were differentially expressed. mRNA targets of differentially expressed miRNAs were stably expressed, suggesting a homeostatic effect of miRNAs. mRNA transcription patterns were substrate stiffness-dependent, including components of Wnt/beta-catenin signaling, Microphthalmia-Associated Transcription Factor (MITF) and Dicer. These findings highlight the relevance of mechanical properties of the extracellular matrix (ECM) in cell culture experiments, especially those focusing on ECM-related diseases, such as AMD.
Collapse
Affiliation(s)
- Lasse Wolfram
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Department for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls University of Tübingen, Tübingen, Germany.
- Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, Tübingen, Germany.
| | - Clara Gimpel
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Neurology, Schlosspark-Klinik Charlottenburg, Berlin, Germany
| | - Melanie Schwämmle
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Simon J Clark
- Department for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls University of Tübingen, Tübingen, Germany
- Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, Tübingen, Germany
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Daniel Böhringer
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Günther Schlunck
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
41
|
Shah D, Dave B, Chorawala MR, Prajapati BG, Singh S, M. Elossaily G, Ansari MN, Ali N. An Insight on Microfluidic Organ-on-a-Chip Models for PM 2.5-Induced Pulmonary Complications. ACS OMEGA 2024; 9:13534-13555. [PMID: 38559954 PMCID: PMC10976395 DOI: 10.1021/acsomega.3c10271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
Pulmonary diseases like asthma, chronic obstructive pulmonary disorder, lung fibrosis, and lung cancer pose a significant burden to global human health. Many of these complications arise as a result of exposure to particulate matter (PM), which has been examined in several preclinical and clinical trials for its effect on several respiratory diseases. Particulate matter of size less than 2.5 μm (PM2.5) has been known to inflict unforeseen repercussions, although data from epidemiological studies to back this are pending. Conventionally utilized two-dimensional (2D) cell culture and preclinical animal models have provided insufficient benefits in emulating the in vivo physiological and pathological pulmonary conditions. Three-dimensional (3D) structural models, including organ-on-a-chip models, have experienced a developmental upsurge in recent times. Lung-on-a-chip models have the potential to simulate the specific features of the lungs. With the advancement of technology, an emerging and advanced technique termed microfluidic organ-on-a-chip has been developed with the aim of identifying the complexity of the respiratory cellular microenvironment of the body. In the present Review, the role of lung-on-a-chip modeling in reproducing pulmonary complications has been explored, with a specific emphasis on PM2.5-induced pulmonary complications.
Collapse
Affiliation(s)
- Disha Shah
- Department
of Pharmacology and Pharmacy Practice, L.
M. College of Pharmacy Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Bhavarth Dave
- Department
of Pharmacology and Pharmacy Practice, L.
M. College of Pharmacy Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Mehul R. Chorawala
- Department
of Pharmacology and Pharmacy Practice, L.
M. College of Pharmacy Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Bhupendra G. Prajapati
- Department
of Pharmaceutics and Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education and Research,
Ganpat University, Mehsana, Gujarat 384012, India
| | - Sudarshan Singh
- Office
of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Gehan M. Elossaily
- Department
of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Mohd Nazam Ansari
- Department
of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Nemat Ali
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
42
|
Liu R, Ma R, Yan X. Balanced activation of Nrf-2/ARE mediates the protective effect of sulforaphane on keratoconus in the cell mechanical microenvironment. Sci Rep 2024; 14:6937. [PMID: 38521828 PMCID: PMC10960822 DOI: 10.1038/s41598-024-57596-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024] Open
Abstract
Keratoconus (KC) is a progressive degenerative disease that usually occurs bilaterally and is characterized by corneal thinning and apical protrusion of the cornea. Oxidative stress is an indicator of the accumulation of reactive oxygen species (ROS), and KC keratocytes exhibit increased ROS production compared with that of normal keratocytes. Therefore, oxidative stress in KC keratocytes may play a major role in the development and progression of KC. Here, we investigated the protective effect of sulforaphane (SF) antioxidants using a hydrogel-simulated model of the cell mechanical microenvironment of KC. The stiffness of the KC matrix microenvironment in vitro was 16.70 kPa and the stiffness of the normal matrix microenvironment was 34.88 kPa. Human keratocytes (HKs) were cultured for 24 h before observation or drug treatment with H2O2 in the presence or absence of SF. The levels of oxidative stress, nuclear factor E2-related factor 2 (Nrf-2) and antioxidant response element (ARE) were detected. The high-stress state of HKs in the mechanical microenvironment of KC cells compensates for the activation of the Nrf-2/ARE signaling pathway. H2O2 leads to increased oxidative stress and decreased levels of antioxidant proteins in KC. In summary, SF can reduce endogenous and exogenous oxidative stress and increase the antioxidant capacity of cells.
Collapse
Affiliation(s)
- Ruixing Liu
- Department of Ophthalmology, Peking University First Hospital, Beijing, 100034, People's Republic of China
- People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou, 450003, People's Republic of China
| | - Ruojun Ma
- People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou, 450003, People's Republic of China
| | - Xiaoming Yan
- Department of Ophthalmology, Peking University First Hospital, Beijing, 100034, People's Republic of China.
| |
Collapse
|
43
|
Yin Y, He GJ, Hu S, Tse EHY, Cheung TH. Muscle stem cell niche dynamics during muscle homeostasis and regeneration. Curr Top Dev Biol 2024; 158:151-177. [PMID: 38670704 DOI: 10.1016/bs.ctdb.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
The process of skeletal muscle regeneration involves a coordinated interplay of specific cellular and molecular interactions within the injury site. This review provides an overview of the cellular and molecular components in regenerating skeletal muscle, focusing on how these cells or molecules in the niche regulate muscle stem cell functions. Dysfunctions of muscle stem cell-to-niche cell communications during aging and disease will also be discussed. A better understanding of how niche cells coordinate with muscle stem cells for muscle repair will greatly aid the development of therapeutic strategies for treating muscle-related disorders.
Collapse
Affiliation(s)
- Yishu Yin
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, P.R. China
| | - Gary J He
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, P.R. China
| | - Shenyuan Hu
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, P.R. China
| | - Erin H Y Tse
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, P.R. China; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, P.R. China
| | - Tom H Cheung
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, P.R. China; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, P.R. China; Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen, P.R. China.
| |
Collapse
|
44
|
Nguyen J, Wang L, Lei W, Hu Y, Gulati N, Chavez-Madero C, Ahn H, Ginsberg HJ, Krawetz R, Brandt M, Betz T, Gilbert PM. Culture substrate stiffness impacts human myoblast contractility-dependent proliferation and nuclear envelope wrinkling. J Cell Sci 2024; 137:jcs261666. [PMID: 38345101 PMCID: PMC11033523 DOI: 10.1242/jcs.261666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/04/2024] [Indexed: 03/28/2024] Open
Abstract
Understanding how biophysical and biochemical microenvironmental cues together influence the regenerative activities of muscle stem cells and their progeny is crucial in strategizing remedies for pathological dysregulation of these cues in aging and disease. In this study, we investigated the cell-level influences of extracellular matrix (ECM) ligands and culture substrate stiffness on primary human myoblast contractility and proliferation within 16 h of plating and found that tethered fibronectin led to stronger stiffness-dependent responses compared to laminin and collagen. A proteome-wide analysis further uncovered cell metabolism, cytoskeletal and nuclear component regulation distinctions between cells cultured on soft and stiff substrates. Interestingly, we found that softer substrates increased the incidence of myoblasts with a wrinkled nucleus, and that the extent of wrinkling could predict Ki67 (also known as MKI67) expression. Nuclear wrinkling and Ki67 expression could be controlled by pharmacological manipulation of cellular contractility, offering a potential cellular mechanism. These results provide new insights into the regulation of human myoblast stiffness-dependent contractility response by ECM ligands and highlight a link between myoblast contractility and proliferation.
Collapse
Affiliation(s)
- Jo Nguyen
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3E2, Canada
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Lu Wang
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Wen Lei
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Yechen Hu
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Nitya Gulati
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3E2, Canada
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Carolina Chavez-Madero
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3E2, Canada
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Henry Ahn
- Department of Surgery, University of Toronto, Toronto, ON, M5G 2C4, Canada
- Li Ka Shing Knowledge Institute, Saint Michael's Hospital, Toronto, ON, M5B 1W8, Canada
| | - Howard J. Ginsberg
- Department of Surgery, University of Toronto, Toronto, ON, M5G 2C4, Canada
- Li Ka Shing Knowledge Institute, Saint Michael's Hospital, Toronto, ON, M5B 1W8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Roman Krawetz
- McCaig Institute, University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Matthias Brandt
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University Münster, 48149 Münster, Germany
| | - Timo Betz
- Third Institute of Physics – Biophysics, Georg August University Göttingen, 37077 Göttingen, Germany
| | - Penney M. Gilbert
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3E2, Canada
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| |
Collapse
|
45
|
Helzer D, Kannan P, Reynolds JC, Gibbs DE, Crosbie RH. Role of microenvironment on muscle stem cell function in health, adaptation, and disease. Curr Top Dev Biol 2024; 158:179-201. [PMID: 38670705 DOI: 10.1016/bs.ctdb.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
The role of the cellular microenvironment has recently gained attention in the context of muscle health, adaption, and disease. Emerging evidence supports major roles for the extracellular matrix (ECM) in regeneration and the dynamic regulation of the satellite cell niche. Satellite cells normally reside in a quiescent state in healthy muscle, but upon muscle injury, they activate, proliferate, and fuse to the damaged fibers to restore muscle function and architecture. This chapter reviews the composition and mechanical properties of skeletal muscle ECM and the role of these factors in contributing to the satellite cell niche that impact muscle regeneration. In addition, the chapter details the effects of satellite cell-matrix interactions and provides evidence that there is bidirectional regulation affecting both the cellular and extracellular microenvironment within skeletal muscle. Lastly, emerging methods to investigate satellite cell-matrix interactions will be presented.
Collapse
Affiliation(s)
- Daniel Helzer
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Pranav Kannan
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Joseph C Reynolds
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Devin E Gibbs
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Rachelle H Crosbie
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, United States; Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.
| |
Collapse
|
46
|
Nguyen J, Gilbert PM. Decoding the forces that shape muscle stem cell function. Curr Top Dev Biol 2024; 158:279-306. [PMID: 38670710 DOI: 10.1016/bs.ctdb.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Skeletal muscle is a force-producing organ composed of muscle tissues, connective tissues, blood vessels, and nerves, all working in synergy to enable movement and provide support to the body. While robust biomechanical descriptions of skeletal muscle force production at the body or tissue level exist, little is known about force application on microstructures within the muscles, such as cells. Among various cell types, skeletal muscle stem cells reside in the muscle tissue environment and play a crucial role in driving the self-repair process when muscle damage occurs. Early evidence indicates that the fate and function of skeletal muscle stem cells are controlled by both biophysical and biochemical factors in their microenvironments, but much remains to accomplish in quantitatively describing the biophysical muscle stem cell microenvironment. This book chapter aims to review current knowledge on the influence of biophysical stresses and landscape properties on muscle stem cells in heath, aging, and diseases.
Collapse
Affiliation(s)
- Jo Nguyen
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Penney M Gilbert
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Donnelly Centre, University of Toronto, Toronto, ON, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
47
|
Shi N, Wang J, Tang S, Zhang H, Wei Z, Li A, Ma Y, Xu F. Matrix Nonlinear Viscoelasticity Regulates Skeletal Myogenesis through MRTF Nuclear Localization and Nuclear Mechanotransduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305218. [PMID: 37847903 DOI: 10.1002/smll.202305218] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/30/2023] [Indexed: 10/19/2023]
Abstract
Mechanically sensitive tissues (e.g., skeletal muscles) greatly need mechanical stimuli during the development and maturation. The extracellular matrix (ECM) mediates these signals through nonlinear viscoelasticity of collagen networks that are predominant components of the ECM. However, the interactions between cells and ECM form a feedback loop, and it has not yet been possible to determine the degree to which, if any, of the features of matrix nonlinear viscoelasticity affect skeletal muscle development and regeneration. In this study, a nonlinear viscoelastic feature (i.e., strain-enhanced stress relaxation (SESR)) in normal skeletal muscles is observed, which however is almost absent in diseased muscles from Duchenne muscular dystrophy mice. It is recapitulated such SESR feature in vitro and separated the effects of mechanical strain and ECM viscoelasticity on myoblast response by developing a collagen-based hydrogel platform. Both strain and stress relaxation induce myogenic differentiation and myotube formation by C2C12 myoblasts, and myogenesis is more promoted by applying SESR. This promotion can be explained by the effects of SESR on actin polymerization-mediated myocardin related transcription factor (MRTF) nuclear localization and nuclear mechanotransduction. This study represents the first attempt to investigate the SESR phenomenon in skeletal muscles and reveal underlying mechanobiology, which will provide new opportunities for the tissue injury treatments.
Collapse
Affiliation(s)
- Nianyuan Shi
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jing Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Shaoxin Tang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hui Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Yufei Ma
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
48
|
Cheng X, Xu B, Lei B, Wang S. Opposite Mechanical Preference of Bone/Nerve Regeneration in 3D-Printed Bioelastomeric Scaffolds/Conduits Consistently Correlated with YAP-Mediated Stem Cell Osteo/Neuro-Genesis. Adv Healthc Mater 2024; 13:e2301158. [PMID: 38211963 DOI: 10.1002/adhm.202301158] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 12/31/2023] [Indexed: 01/13/2024]
Abstract
To systematically unveil how substrate stiffness, a critical factor in directing cell fate through mechanotransduction, correlates with tissue regeneration, novel biodegradable and photo-curable poly(trimethylene carbonate) fumarates (PTMCFs) for fabricating elastomeric 2D substrates and 3D bone scaffolds/nerve conduits, are presented. These substrates and structures with adjustable stiffness serve as a unique platform to evaluate how this mechanical cue affects the fate of human umbilical cord mesenchymal stem cells (hMSCs) and hard/soft tissue regeneration in rat femur bone defect and sciatic nerve transection models; whilst, decoupling from topographical and chemical cues. In addition to a positive relationship between substrate stiffness (tensile modulus: 90-990 kPa) and hMSC adhesion, spreading, and proliferation mediated through Yes-associated protein (YAP), opposite mechanical preference is revealed in the osteogenesis and neurogenesis of hMSCs as they are significantly enhanced on the stiff and compliant substrates, respectively. In vivo tissue regeneration demonstrates the same trend: bone regeneration prefers the stiffer scaffolds; while, nerve regeneration prefers the more compliant conduits. Whole-transcriptome analysis further shows that upregulation of Rho GTPase activity and the downstream genes in the compliant group promote nerve repair, providing critical insight into the design strategies of biomaterials for stem cell regulation and hard/soft tissue regeneration through mechanotransduction.
Collapse
Affiliation(s)
- Xiaopeng Cheng
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Bowen Xu
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Bingxi Lei
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510006, China
| | - Shanfeng Wang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
49
|
Guilhot C, Catenacci M, Lofaro S, Rudnicki MA. The satellite cell in skeletal muscle: A story of heterogeneity. Curr Top Dev Biol 2024; 158:15-51. [PMID: 38670703 DOI: 10.1016/bs.ctdb.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Skeletal muscle is a highly represented tissue in mammals and is composed of fibers that are extremely adaptable and capable of regeneration. This characteristic of muscle fibers is made possible by a cell type called satellite cells. Adjacent to the fibers, satellite cells are found in a quiescent state and located between the muscle fibers membrane and the basal lamina. These cells are required for the growth and regeneration of skeletal muscle through myogenesis. This process is known to be tightly sequenced from the activation to the differentiation/fusion of myofibers. However, for the past fifteen years, researchers have been interested in examining satellite cell heterogeneity and have identified different subpopulations displaying distinct characteristics based on localization, quiescence state, stemness capacity, cell-cycle progression or gene expression. A small subset of satellite cells appears to represent multipotent long-term self-renewing muscle stem cells (MuSC). All these distinctions led us to the hypothesis that the characteristics of myogenesis might not be linear and therefore may be more permissive based on the evidence that satellite cells are a heterogeneous population. In this review, we discuss the different subpopulations that exist within the satellite cell pool to highlight the heterogeneity and to gain further understanding of the myogenesis progress. Finally, we discuss the long term self-renewing MuSC subpopulation that is capable of dividing asymmetrically and discuss the molecular mechanisms regulating MuSC polarization during health and disease.
Collapse
Affiliation(s)
- Corentin Guilhot
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Marie Catenacci
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Stephanie Lofaro
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Michael A Rudnicki
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
50
|
Xie N, Robinson K, Sundquist T, Chan SSK. In vivo PSC differentiation as a platform to identify factors for improving the engraftability of cultured muscle stem cells. Front Cell Dev Biol 2024; 12:1362671. [PMID: 38425500 PMCID: PMC10902072 DOI: 10.3389/fcell.2024.1362671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Producing an adequate number of muscle stem cells (MuSCs) with robust regenerative potential is essential for the successful cell therapy of muscle-wasting disorders. We have recently developed a method to produce skeletal myogenic cells with exceptional engraftability and expandability through an in vivo pluripotent stem cell (PSC) differentiation approach. We have subsequently mapped engraftment and gene expression and found that leukemia inhibitory factor receptor (Lifr) expression is positively correlated with engraftability. We therefore investigated the effect of LIF, the endogenous ligand of LIFR, on cultured MuSCs and examined their engraftment potential. We found that LIF-treated MuSCs exhibited elevated expression of PAX7, formed larger colonies from single cells, and favored the retention of PAX7+ "reserve cells" upon myogenic differentiation. This suggested that LIF promoted the maintenance of cultured MuSCs at a stem cell stage. Moreover, LIF enhanced the engraftment capability of MuSCs that had been expanded in vitro for 12 days by 5-fold and increased the number of MuSCs that repopulated the stem cell pool post-transplantation. These results thereby demonstrated the effectiveness of our in vivo PSC differentiation platform to identify positive regulators of the engraftability of cultured MuSCs.
Collapse
Affiliation(s)
- Ning Xie
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Kathryn Robinson
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Timothy Sundquist
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Sunny S. K. Chan
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
- Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|