1
|
Chung HH, Chen TH, Wang PF, Tsuda Y, Teng HJ, Chen SL. Molecular Identification of Species Belonging to Culex vishnui Subgroup (Diptera: Culicidae), Vectors of Japanese Encephalitis Virus, in Taiwan. Am J Trop Med Hyg 2024; 111:988-999. [PMID: 39255804 PMCID: PMC11542521 DOI: 10.4269/ajtmh.23-0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/01/2024] [Indexed: 09/12/2024] Open
Abstract
Classification of mosquitoes with overlapping features remains problematic when using traditional morphological identification alone. In this study, we used molecular methods to elucidate the taxonomic status of Culex tritaeniorhynchus, Culex annulus, and Culex pseudovishnui species as vectors of the Japanese encephalitis virus belonging to the Culex vishnui subgroup and gene flow among them. In this study, 76, 59, and 3 samples of Cx. annulus, Cx. tritaeniorhynchus, and Cx. pseudovishnui, respectively, were collected around Taiwan. Phylogenetic analysis and genetic divergence were based on genomic sequence variations in ribosomal DNA and the internal transcribed spacer (rDNA) and cytochrome c oxidase subunit I (COI). Our results revealed that Cx. annulus and Cx. vishnui are genetically similar and share a gene pool among the species from Taiwan and other Asian countries. However, two hidden taxa of Cx. tritaeniorhynchus, which clustered together according to the rDNA sequences, were discovered based on the COI sequences. In addition, Cx. pseudovishnui has different gene pools from those of the strains from other countries, implying that the population from Taiwan is probably either a unique strain or a sibling species. This study provides molecular information on the taxonomic status of the species in the Cx. vishnui subgroup in Taiwan and gene flow between these species, providing valuable information for vector control operations and the delineation of the evolutionary process.
Collapse
Affiliation(s)
- Han-Hsuan Chung
- Center for Diagnostic and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Tien-Huang Chen
- Center for Diagnostic and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Pei-Feng Wang
- Center for Diagnostic and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Yoshio Tsuda
- Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hwa-Jen Teng
- Center for Diagnostic and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Shiu-Ling Chen
- Center for Diagnostic and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| |
Collapse
|
2
|
Sharakhov IV, Sharakhova MV. Chromosomal inversions and their impact on insect evolution. CURRENT OPINION IN INSECT SCIENCE 2024; 66:101280. [PMID: 39374869 DOI: 10.1016/j.cois.2024.101280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/20/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
Insects can adapt quickly and effectively to rapid environmental change and maintain long-term adaptations, but the genetic mechanisms underlying this response are not fully understood. In this review, we summarize studies on the potential impact of chromosomal inversion polymorphisms on insect evolution at different spatial and temporal scales, ranging from long-term evolutionary stability to rapid emergence in response to emerging biotic and abiotic factors. The study of inversions has recently been advanced by comparative, population, and 3D genomics methods. The impact of inversions on insect genome evolution can be profound, including increased gene order rearrangements on sex chromosomes, accumulation of transposable elements, and facilitation of genome divergence. Understanding these processes provides critical insights into the evolutionary mechanisms shaping insect diversity.
Collapse
Affiliation(s)
- Igor V Sharakhov
- Department of Entomology and Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; The Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; The Center for Mathematics of Biosystems, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; Department of Genetics and Cell Biology, Tomsk State University, Tomsk 634050, Russia.
| | - Maria V Sharakhova
- Department of Entomology and Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; The Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; Laboratory of Cell Differentiation Mechanisms, Institute of Cytology and Genetics, Novosibirsk 630090, Russia
| |
Collapse
|
3
|
Rhodes VL, Waterhouse RM, Michel K. The Molecular Toll Pathway Repertoire in Anopheline Mosquitoes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612760. [PMID: 39345384 PMCID: PMC11429875 DOI: 10.1101/2024.09.12.612760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Innate immunity in mosquitoes has received much attention due to its potential impact on vector competence for vector-borne disease pathogens, including malaria parasites. The nuclear factor (NF)-κB-dependent Toll pathway is a major regulator of innate immunity in insects. In mosquitoes, this pathway controls transcription of the majority of the known canonical humoral immune effectors, mediates anti-bacterial, anti-fungal and anti-viral immune responses, and contributes to malaria parasite killing. However, besides initial gene annotation of putative Toll pathway members and genetic analysis of the contribution of few key components to immunity, the molecular make-up and function of the Toll pathway in mosquitoes is largely unexplored. To facilitate functional analyses of the Toll pathway in mosquitoes, we report here manually annotated and refined gene models of Toll-like receptors and all putative components of the intracellular signal transduction cascade across 19 anopheline genomes, and in two culicine genomes. In addition, based on phylogenetic analyses, we identified differing levels of evolutionary constraint across the intracellular Toll pathway members, and identified a recent radiation of TOLL1/5 within the An. gambiae complex. Together, this study provides insight into the evolution of TLRs and the putative members of the intracellular signal transduction cascade within the genus Anopheles.
Collapse
Affiliation(s)
- Victoria L. Rhodes
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
- Biology Department, Missouri Southern University, Joplin, MO 64801, USA
| | | | - Kristin Michel
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
4
|
Mead EB, Lee M, Trammell CE, Goodman AG. Drosophila melanogaster Limostatin and Its Human Ortholog Promote West Nile Virus Infection. INSECTS 2024; 15:446. [PMID: 38921161 PMCID: PMC11203814 DOI: 10.3390/insects15060446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024]
Abstract
The arbovirus West Nile virus (WNV) is a danger to global health. Spread primarily by mosquitoes, WNV causes about 2000 cases per year in the United States. The natural mosquito immune response controls viral replication so that the host survives but can still transmit the virus. Using the genetically malleable Drosophila melanogaster model, we previously dissected innate immune pathways used to control WNV infection. Specifically, we showed that insulin/IGF-1 signaling (IIS) activates a JAK/STAT-mediated immune response that reduces WNV. However, how factors that regulate IIS in insects control infection has not been identified. D. melanogaster Limostatin (Lst) encodes a peptide hormone that suppresses insulin secretion. Its mammalian ortholog, Neuromedin U (NMU), is a peptide that regulates the production and secretion of insulin from pancreatic beta cells. In this study, we used D. melanogaster and human cell culture models to investigate the roles of these insulin regulators in immune signaling. We found that D. melanogaster Lst mutants, which have elevated insulin-like peptide expression, are less susceptible to WNV infection. Increased levels of insulin-like peptides in these flies result in upregulated JAK/STAT activity, leading to protection from infection. Treatment of human cells with the insulin regulator NMU results in increased WNV replication. Further investigation of methods to target Lst in mosquitoes or NMU in mammals can improve vector control methods and may lead to improved therapeutics for human and animal infection.
Collapse
Affiliation(s)
- Ezra B. Mead
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Miyoung Lee
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Chasity E. Trammell
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Alan G. Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
- Paul G. Allen School of Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
5
|
Li XY, Si FL, Zhang XX, Zhang YJ, Chen B. Characteristics of Trypsin genes and their roles in insecticide resistance based on omics and functional analyses in the malaria vector Anopheles sinensis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105883. [PMID: 38685249 DOI: 10.1016/j.pestbp.2024.105883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 05/02/2024]
Abstract
Trypsin is one of the most diverse and widely studied protease hydrolases. However, the diversity and characteristics of the Trypsin superfamily of genes have not been well understood, and their role in insecticide resistance is yet to be investigated. In this study, a total of 342 Trypsin genes were identified and classified into seven families based on homology, characteristic domains and phylogenetics in Anopheles sinensis, and the LY-Domain and CLECT-Domain families are specific to the species. Four Trypsin genes, (Astry2b, Astry43a, Astry90, Astry113c) were identified to be associated with pyrethroid resistance based on transcriptome analyses of three field resistant populations and qRT-PCR validation, and the knock-down of these genes significantly decrease the pyrethroid resistance of Anopheles sinensis based on RNAi. The activity of Astry43a can be reduced by five selected insecticides (indoxacarb, DDT, temephos, imidacloprid and deltamethrin); and however, the Astry43a could not directly metabolize these five insecticides, like the trypsin NYD-Tr did in earlier reports. This study provides the overall information frame of Trypsin genes, and proposes the role of Trypsin genes to insecticide resistance. Further researches are necessary to investigate the metabolism function of these trypsins to insecticides.
Collapse
Affiliation(s)
- Xiang-Ying Li
- Chongqing Key Laboratory of Vector Control and Utilization, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing 401331, China
| | - Feng-Ling Si
- Chongqing Key Laboratory of Vector Control and Utilization, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing 401331, China
| | - Xiao-Xiao Zhang
- Chongqing Key Laboratory of Vector Control and Utilization, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing 401331, China
| | - Yu-Juan Zhang
- Chongqing Key Laboratory of Vector Control and Utilization, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing 401331, China
| | - Bin Chen
- Chongqing Key Laboratory of Vector Control and Utilization, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
6
|
Ratcliffe NA, Mello CB, Castro HC, Dyson P, Figueiredo M. Immune Reactions of Vector Insects to Parasites and Pathogens. Microorganisms 2024; 12:568. [PMID: 38543619 PMCID: PMC10974449 DOI: 10.3390/microorganisms12030568] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 11/12/2024] Open
Abstract
This overview initially describes insect immune reactions and then brings together present knowledge of the interactions of vector insects with their invading parasites and pathogens. It is a way of introducing this Special Issue with subsequent papers presenting the latest details of these interactions in each particular group of vectors. Hopefully, this paper will fill a void in the literature since brief descriptions of vector immunity have now been brought together in one publication and could form a starting point for those interested and new to this important area. Descriptions are given on the immune reactions of mosquitoes, blackflies, sandflies, tsetse flies, lice, fleas and triatomine bugs. Cellular and humoral defences are described separately but emphasis is made on the co-operation of these processes in the completed immune response. The paper also emphasises the need for great care in extracting haemocytes for subsequent study as appreciation of their fragile nature is often overlooked with the non-sterile media, smearing techniques and excessive centrifugation sometimes used. The potential vital role of eicosanoids in the instigation of many of the immune reactions described is also discussed. Finally, the priming of the immune system, mainly in mosquitoes, is considered and one possible mechanism is presented.
Collapse
Affiliation(s)
- Norman Arthur Ratcliffe
- Department of Biosciences, Swansea University, Singleton Park, Swansea SA28PP, UK
- Biology Institute, Universidade Federal Fluminense, Niterói 24210-130, RJ, Brazil; (C.B.M.); (H.C.C.)
| | - Cicero Brasileiro Mello
- Biology Institute, Universidade Federal Fluminense, Niterói 24210-130, RJ, Brazil; (C.B.M.); (H.C.C.)
| | - Helena Carla Castro
- Biology Institute, Universidade Federal Fluminense, Niterói 24210-130, RJ, Brazil; (C.B.M.); (H.C.C.)
| | - Paul Dyson
- Institute of Life Science, Medical School, Swansea University, Singleton Park, Swansea SA28PP, UK; (P.D.); (M.F.)
| | - Marcela Figueiredo
- Institute of Life Science, Medical School, Swansea University, Singleton Park, Swansea SA28PP, UK; (P.D.); (M.F.)
| |
Collapse
|
7
|
Sukmak R, Suttinun C, Kovitvadhi U, Kovitvadhi A, Vongsangnak W. Uncovering nutrients and energy related gene functions of black soldier fly Hermetia illucens strain KUP. Gene 2024; 896:148045. [PMID: 38042219 DOI: 10.1016/j.gene.2023.148045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/18/2023] [Accepted: 11/28/2023] [Indexed: 12/04/2023]
Abstract
The black soldier fly (Hermetia illucens) has emerged as a significant insect species in the decomposition of organic waste for sustainable agricultural practices. Due to its remarkable characteristics and performance, H. illucens is increasingly utilised for insect farming, particularly for industrial-scale rearing throughout the world. In this study, we employed whole-genome sequencing to annotate the gene and protein functions of H. illucens and to explore the functional genomics related to nutrients and energy. As a result, a genome size of H. illucens strain KUP 1.68 Gb with a GC content of 42.13 % was achieved. Of the 14,036 coding sequences, we determined the function of 12,046 protein-coding genes. Based on metabolic functional assignment, we classified 4,218 protein-coding genes; the main category was metabolism (32.86 %). Comparative genomic analysis across the other H. illucens strain and insect species revealed that the major metabolic gene functions and pathways related to nutrient and energy sources of H. illucens KUP are involved in key amino acid metabolism (e.g., cysteine and methionine) as well as fatty acid biosynthesis and glycerolipid metabolism. These findings underscore the metabolic capability and versatility of H. illucens, which is regarded as a potential source of proteins and lipids. Our study contributes to the knowledge regarding the feed utilisation of H. illucens and offers insights into transforming waste into valuable products. H. illucens has the potential to create globally sustainable nutrients and environmentally friendly solutions, aligning with the goal of responsible resource utilisation.
Collapse
Affiliation(s)
- Rachrapee Sukmak
- Graduate Student in Animal Health and Biomedical Science Program, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Chanaporn Suttinun
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Uthaiwan Kovitvadhi
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Attawit Kovitvadhi
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand.
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand; Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok, Thailand.
| |
Collapse
|
8
|
Yin C, Morita T, Parrish JZ. A cell atlas of the larval Aedes aegypti ventral nerve cord. Neural Dev 2024; 19:2. [PMID: 38297398 PMCID: PMC10829479 DOI: 10.1186/s13064-023-00178-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/28/2023] [Indexed: 02/02/2024] Open
Abstract
Mosquito-borne diseases account for nearly 1 million human deaths annually, yet we have a limited understanding of developmental events that influence host-seeking behavior and pathogen transmission in mosquitoes. Mosquito-borne pathogens are transmitted during blood meals, hence adult mosquito behavior and physiology have been intensely studied. However, events during larval development shape adult traits, larvae respond to many of the same sensory cues as adults, and larvae are susceptible to infection by many of the same disease-causing agents as adults. Hence, a better understanding of larval physiology will directly inform our understanding of physiological processes in adults. Here, we use single cell RNA sequencing (scRNA-seq) to provide a comprehensive view of cellular composition in the Aedes aegypti larval ventral nerve cord (VNC), a central hub of sensory inputs and motor outputs which additionally controls multiple aspects of larval physiology. We identify more than 35 VNC cell types defined in part by neurotransmitter and neuropeptide expression. We also explore diversity among monoaminergic and peptidergic neurons that likely control key elements of larval physiology and developmental timing, and identify neuroblasts and immature neurons, providing a view of neuronal differentiation in the VNC. Finally, we find that larval cell composition, number, and position are preserved in the adult abdominal VNC, suggesting studies of larval VNC form and function will likely directly inform our understanding adult mosquito physiology. Altogether, these studies provide a framework for targeted analysis of VNC development and neuronal function in Aedes aegypti larvae.
Collapse
Affiliation(s)
- Chang Yin
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
- Division of Education, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA
| | - Takeshi Morita
- Division of Education, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY, 10065, USA
- Howard Hughes Medical Institute, New York, NY, 10065, USA
| | - Jay Z Parrish
- Department of Biology, University of Washington, Seattle, WA, 98195, USA.
- Division of Education, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA.
| |
Collapse
|
9
|
Ryazansky SS, Chen C, Potters M, Naumenko AN, Lukyanchikova V, Masri RA, Brusentsov II, Karagodin DA, Yurchenko AA, Dos Anjos VL, Haba Y, Rose NH, Hoffman J, Guo R, Menna T, Kelley M, Ferrill E, Schultz KE, Qi Y, Sharma A, Deschamps S, Llaca V, Mao C, Murphy TD, Baricheva EM, Emrich S, Fritz ML, Benoit JB, Sharakhov IV, McBride CS, Tu Z, Sharakhova MV. The chromosome-scale genome assembly for the West Nile vector Culex quinquefasciatus uncovers patterns of genome evolution in mosquitoes. BMC Biol 2024; 22:16. [PMID: 38273363 PMCID: PMC10809549 DOI: 10.1186/s12915-024-01825-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Understanding genome organization and evolution is important for species involved in transmission of human diseases, such as mosquitoes. Anophelinae and Culicinae subfamilies of mosquitoes show striking differences in genome sizes, sex chromosome arrangements, behavior, and ability to transmit pathogens. However, the genomic basis of these differences is not fully understood. METHODS In this study, we used a combination of advanced genome technologies such as Oxford Nanopore Technology sequencing, Hi-C scaffolding, Bionano, and cytogenetic mapping to develop an improved chromosome-scale genome assembly for the West Nile vector Culex quinquefasciatus. RESULTS We then used this assembly to annotate odorant receptors, odorant binding proteins, and transposable elements. A genomic region containing male-specific sequences on chromosome 1 and a polymorphic inversion on chromosome 3 were identified in the Cx. quinquefasciatus genome. In addition, the genome of Cx. quinquefasciatus was compared with the genomes of other mosquitoes such as malaria vectors An. coluzzi and An. albimanus, and the vector of arboviruses Ae. aegypti. Our work confirms significant expansion of the two chemosensory gene families in Cx. quinquefasciatus, as well as a significant increase and relocation of the transposable elements in both Cx. quinquefasciatus and Ae. aegypti relative to the Anophelines. Phylogenetic analysis clarifies the divergence time between the mosquito species. Our study provides new insights into chromosomal evolution in mosquitoes and finds that the X chromosome of Anophelinae and the sex-determining chromosome 1 of Culicinae have a significantly higher rate of evolution than autosomes. CONCLUSION The improved Cx. quinquefasciatus genome assembly uncovered new details of mosquito genome evolution and has the potential to speed up the development of novel vector control strategies.
Collapse
Affiliation(s)
- Sergei S Ryazansky
- Department of Entomology, Virginia Polytechnic and State University, Blacksburg, VA, USA
- Department of Molecular Genetics of Cell, NRC "Kurchatov Institute", Moscow, Russia
| | - Chujia Chen
- Genetics, Bioinformatics, Computational Biology Program, Virginia Polytechnic and State University, Blacksburg, VA, USA
| | - Mark Potters
- Department of Biochemistry, Virginia Polytechnic and State University, Blacksburg, USA
| | - Anastasia N Naumenko
- Department of Entomology, Virginia Polytechnic and State University, Blacksburg, VA, USA
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - Varvara Lukyanchikova
- Department of Entomology, Virginia Polytechnic and State University, Blacksburg, VA, USA
- Group of Genomic Mechanisms of Development, Institute of Cytology and Genetics, Novosibirsk, Russia
- Laboratory of Structural and Functional Genomics, Novosibirsk State University, Novosibirsk, Russia
| | - Reem A Masri
- Department of Entomology, Virginia Polytechnic and State University, Blacksburg, VA, USA
| | - Ilya I Brusentsov
- Department of Entomology, Virginia Polytechnic and State University, Blacksburg, VA, USA
- Laboratory of Cell Differentiation Mechanisms, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Dmitriy A Karagodin
- Laboratory of Cell Differentiation Mechanisms, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Andrey A Yurchenko
- Department of Entomology, Virginia Polytechnic and State University, Blacksburg, VA, USA
| | - Vitor L Dos Anjos
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Yuki Haba
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Noah H Rose
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Jinna Hoffman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Rong Guo
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - Theresa Menna
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - Melissa Kelley
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Emily Ferrill
- County of San Diego Vector Control Program, San Diego, CA, USA
| | - Karen E Schultz
- Mosquito and Vector Management District of Santa Barbara County, Santa Barbara, CA, USA
| | - Yumin Qi
- Department of Biochemistry, Virginia Polytechnic and State University, Blacksburg, USA
| | - Atashi Sharma
- Department of Biochemistry, Virginia Polytechnic and State University, Blacksburg, USA
| | | | | | - Chunhong Mao
- Biocomplexity Institute & Initiative University of Virginia, Charlottesville, VA, USA
| | - Terence D Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Elina M Baricheva
- Laboratory of Cell Differentiation Mechanisms, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Scott Emrich
- Department of Electrical Engineering & Computer Science, the University of Tennessee, Knoxville, TN, USA
| | - Megan L Fritz
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Igor V Sharakhov
- Department of Entomology, Virginia Polytechnic and State University, Blacksburg, VA, USA
- Fralin Life Sciences Institute, Virginia Polytechnic and State University, Blacksburg, VA, USA
- Department of Genetics and Cell Biology, Tomsk State University, Tomsk, Russia
| | - Carolyn S McBride
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Zhijian Tu
- Genetics, Bioinformatics, Computational Biology Program, Virginia Polytechnic and State University, Blacksburg, VA, USA
- Department of Biochemistry, Virginia Polytechnic and State University, Blacksburg, USA
- Fralin Life Sciences Institute, Virginia Polytechnic and State University, Blacksburg, VA, USA
| | - Maria V Sharakhova
- Department of Entomology, Virginia Polytechnic and State University, Blacksburg, VA, USA.
- Laboratory of Cell Differentiation Mechanisms, Institute of Cytology and Genetics, Novosibirsk, Russia.
- Fralin Life Sciences Institute, Virginia Polytechnic and State University, Blacksburg, VA, USA.
| |
Collapse
|
10
|
Brait N, Hackl T, Morel C, Exbrayat A, Gutierrez S, Lequime S. A tale of caution: How endogenous viral elements affect virus discovery in transcriptomic data. Virus Evol 2023; 10:vead088. [PMID: 38516656 PMCID: PMC10956553 DOI: 10.1093/ve/vead088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/24/2023] [Accepted: 12/22/2023] [Indexed: 03/23/2024] Open
Abstract
Large-scale metagenomic and -transcriptomic studies have revolutionized our understanding of viral diversity and abundance. In contrast, endogenous viral elements (EVEs), remnants of viral sequences integrated into host genomes, have received limited attention in the context of virus discovery, especially in RNA-Seq data. EVEs resemble their original viruses, a challenge that makes distinguishing between active infections and integrated remnants difficult, affecting virus classification and biases downstream analyses. Here, we systematically assess the effects of EVEs on a prototypical virus discovery pipeline, evaluate their impact on data integrity and classification accuracy, and provide some recommendations for better practices. We examined EVEs and exogenous viral sequences linked to Orthomyxoviridae, a diverse family of negative-sense segmented RNA viruses, in 13 genomic and 538 transcriptomic datasets of Culicinae mosquitoes. Our analysis revealed a substantial number of viral sequences in transcriptomic datasets. However, a significant portion appeared not to be exogenous viruses but transcripts derived from EVEs. Distinguishing between transcribed EVEs and exogenous virus sequences was especially difficult in samples with low viral abundance. For example, three transcribed EVEs showed full-length segments, devoid of frameshift and nonsense mutations, exhibiting sufficient mean read depths that qualify them as exogenous virus hits. Mapping reads on a host genome containing EVEs before assembly somewhat alleviated the EVE burden, but it led to a drastic reduction of viral hits and reduced quality of assemblies, especially in regions of the viral genome relatively similar to EVEs. Our study highlights that our knowledge of the genetic diversity of viruses can be altered by the underestimated presence of EVEs in transcriptomic datasets, leading to false positives and altered or missing sequence information. Thus, recognizing and addressing the influence of EVEs in virus discovery pipelines will be key in enhancing our ability to capture the full spectrum of viral diversity.
Collapse
Affiliation(s)
- Nadja Brait
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747 AG, The Netherlands
| | | | - Côme Morel
- ASTRE research unit, Cirad, INRAe, Université de Montpellier, Montpellier 34398, France
| | - Antoni Exbrayat
- ASTRE research unit, Cirad, INRAe, Université de Montpellier, Montpellier 34398, France
| | - Serafin Gutierrez
- ASTRE research unit, Cirad, INRAe, Université de Montpellier, Montpellier 34398, France
| | - Sebastian Lequime
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747 AG, The Netherlands
| |
Collapse
|
11
|
Pai HH, Chang CY, Lin KC, Hsu EL. Rapid insecticide resistance bioassays for three major urban insects in Taiwan. Parasit Vectors 2023; 16:447. [PMID: 38042818 PMCID: PMC10693703 DOI: 10.1186/s13071-023-06055-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/13/2023] [Indexed: 12/04/2023] Open
Abstract
BACKGROUND Taiwan's warm and humid climate and dense population provide a suitable environment for the breeding of pests. The three major urban insects in Taiwan are house flies, cockroaches, and mosquitoes. In cases where a disease outbreak or high pest density necessitates chemical control, selecting the most effective insecticide is crucial. The resistance of pests to the selected environmental insecticide must be rapidly assessed to achieve effective chemical control and reduce environmental pollution. METHODS In this study, we evaluated the resistance of various pests, namely, house flies (Musca domestica L.), cockroaches (Blattella germanica L. and Periplaneta americana), and mosquitoes (Aedes aegypti and Ae. albopictus) against 10 commonly used insecticides. Rapid insecticide resistance bioassays were performed using discriminating doses or concentrations of the active ingredients of insecticides. RESULTS Five field strains of M. domestica (L.) are resistant to all 10 commonly used insecticides and exhibit cross- and multiple resistance to four types of pyrethroids and three types of organophosphates, propoxur, fipronil, and imidacloprid. None of the five field strains of P. americana are resistant to any of the tested insecticides, and only one strain of B. germanica (L.) is resistant to permethrin. One strain of Ae. albopictus is resistant to pirimiphos-methyl, whereas five strains of Ae. aegypti exhibit multiple resistance to pyrethroids, organophosphates, and other insecticides. CONCLUSIONS In the event of a disease outbreak or high pest density, rapid insecticide resistance bioassays may be performed using discriminating doses or concentrations to achieve precise and effective chemical control, reduce environmental pollution, and increase control efficacy.
Collapse
Affiliation(s)
- Hsiu-Hua Pai
- Department of Kinesiology, Health, and Leisure Studies, National University of Kaohsiung, Kaohsiung, Taiwan (ROC).
| | - Chun-Yung Chang
- Department of Kinesiology, Health, and Leisure Studies, National University of Kaohsiung, Kaohsiung, Taiwan (ROC)
| | - Kai-Chen Lin
- Department of Kinesiology, Health, and Leisure Studies, National University of Kaohsiung, Kaohsiung, Taiwan (ROC)
| | - Err-Lieh Hsu
- Department of Entomology, National Taiwan University, Taipei, Taiwan (ROC)
| |
Collapse
|
12
|
Ramkumar G, Muthusamy R, Narayanan M, Shivakumar MS, Kweka EJ. Overexpression of cytochrome P450 and esterase genes involved in permethrin resistance in larvae and adults of Culex quinquefasciatus. Parasitol Res 2023; 122:3205-3212. [PMID: 37874391 DOI: 10.1007/s00436-023-08010-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 10/11/2023] [Indexed: 10/25/2023]
Abstract
Mosquitoes are important vectors of several arthropod-borne diseases, which remain a priority for epidemiological research. Mosquito vector control strategies have traditionally relied on chemical insecticides such as synthetic pyrethroids. However, the indiscriminate use of pesticides has resulted in the development of resistance in many mosquito species. In insects, resistance evolves primarily through the overexpression of one or more gene products from the cytochrome P450, carboxylesterase, and glutathione superfamilies. The current study examined the expression of cytochrome P450 CYP6M2, CYP6AA7, CYP6Z2, CYP9J34, α-Esterase, Esterase B1, and neuroactin genes in larvae and adults of a permethrin-resistant (PerRes) and susceptible (Sus) Culex quinquefasciatus strains. The results showed that the CYP6AA7 gene was overexpressed (10-fold) in larvae and adults with PerRes (p < 0.01) followed by CYPJ34 (9.0-fold) and CYP6Z2 (5.0-fold) compared to the Sus, whereas fewer changes in CYP6M gene expression were observed in PerRes adults (p < 0.05), and no expression was found in larvae. The esterase gene was overexpressed in PerRes larvae (9.0-fold) followed by adults (2.5-fold) compared to the susceptible strain. Based on data, the present study suggests that cytochrome P450, CYP6AA7, CYP6Z2, CYP9J34, α-Esterase, Esterase B1, and neuroactin genes were involved in permethrin resistance in larval and adult Cx. quinquefasciatus.
Collapse
Affiliation(s)
- Govindaraju Ramkumar
- Department of Entomology, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, GA, 30223, USA
- Molecular Entomology Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - Ranganathan Muthusamy
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational and Research Institution, Hosur, 635130, Tamil Nadu, India.
| | - Mathiyazhagan Narayanan
- Division of Research and Innovation, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, 602105, Tamil Nadu, India
| | | | - Eliningaya J Kweka
- Department of Medical Parasitology and Entomology, School of Medicine, Catholic University of Health and Allied Sciences, P.O. Box 1464, Mwanza, Tanzania
- Research Department, Tropical Pesticides Research Institute, P.O. Box 3024, Arusha, Tanzania
- Tanzania Plant Health and Pesticides Authority, P.O. Box 3024, Arusha, Tanzania
| |
Collapse
|
13
|
Hernandez-Caballero I, Hellgren O, Garcia-Longoria Batanete L. Genomic advances in the study of the mosquito vector during avian malaria infection. Parasitology 2023; 150:1330-1339. [PMID: 37614176 PMCID: PMC10941221 DOI: 10.1017/s0031182023000756] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023]
Abstract
Invertebrate host–parasite associations are one of the keystones in order to understand vector-borne diseases. The study of these specific interactions provides information not only about how the vector is affected by the parasite at the gene-expression level, but might also reveal mosquito strategies for blocking the transmission of the parasites. A very well-known vector for human malaria is Anopheles gambiae. This mosquito species has been the main focus for genomics studies determining essential key genes and pathways over the course of a malaria infection. However, to-date there is an important knowledge gap concerning other non-mammophilic mosquito species, for example some species from the Culex genera which may transmit avian malaria but also zoonotic pathogens such as West Nile virus. From an evolutionary perspective, these 2 mosquito genera diverged 170 million years ago, hence allowing studies in both species determining evolutionary conserved genes essential during malaria infections, which in turn might help to find key genes for blocking malaria cycle inside the mosquito. Here, we extensively review the current knowledge on key genes and pathways expressed in Anopheles over the course of malaria infections and highlight the importance of conducting genomic investigations for detecting pathways in Culex mosquitoes linked to infection of avian malaria. By pooling this information, we underline the need to increase genomic studies in mosquito–parasite associations, such as the one in Culex–Plasmodium, that can provide a better understanding of the infection dynamics in wildlife and reduce the negative impact on ecosystems.
Collapse
Affiliation(s)
- Irene Hernandez-Caballero
- Department of Anatomy, Cellular Biology and Zoology, University of Extremadura, E-06071 Badajoz, Spain
| | - Olof Hellgren
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Sölvegatan 37, SE-22362, Sweden
| | | |
Collapse
|
14
|
Harvey-Samuel T, Feng X, Okamoto EM, Purusothaman DK, Leftwich PT, Alphey L, Gantz VM. CRISPR-based gene drives generate super-Mendelian inheritance in the disease vector Culex quinquefasciatus. Nat Commun 2023; 14:7561. [PMID: 37985762 PMCID: PMC10662442 DOI: 10.1038/s41467-023-41834-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/21/2023] [Indexed: 11/22/2023] Open
Abstract
Culex mosquitoes pose a significant public health threat as vectors for a variety of diseases including West Nile virus and lymphatic filariasis, and transmit pathogens threatening livestock, companion animals, and endangered birds. Rampant insecticide resistance makes controlling these mosquitoes challenging and necessitates the development of new control strategies. Gene drive technologies have made significant progress in other mosquito species, although similar advances have been lagging in Culex. Here we test a CRISPR-based homing gene drive for Culex quinquefasciatus, and show that the inheritance of two split-gene-drive transgenes, targeting different loci, are biased in the presence of a Cas9-expressing transgene although with modest efficiencies. Our findings extend the list of disease vectors where engineered homing gene drives have been demonstrated to include Culex alongside Anopheles and Aedes, and pave the way for future development of these technologies to control Culex mosquitoes.
Collapse
Affiliation(s)
- Tim Harvey-Samuel
- Arthropod Genetics Group, The Pirbright Institute, Woking, GU24 0NF, UK
| | - Xuechun Feng
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA.
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Guangdong, 518106, Shenzhen, China.
| | - Emily M Okamoto
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Deepak-Kumar Purusothaman
- Arthropod Genetics Group, The Pirbright Institute, Woking, GU24 0NF, UK
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Philip T Leftwich
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Luke Alphey
- Arthropod Genetics Group, The Pirbright Institute, Woking, GU24 0NF, UK.
- Biology Department, University of York, York, YO10 5DD, UK.
| | - Valentino M Gantz
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
15
|
Paris V, Hardy C, Hoffmann AA, Ross PA. How often are male mosquitoes attracted to humans? ROYAL SOCIETY OPEN SCIENCE 2023; 10:230921. [PMID: 37885984 PMCID: PMC10598425 DOI: 10.1098/rsos.230921] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
Many mosquito species live close to humans where females feed on human blood. While male mosquitoes do not feed on blood, it has long been recognized that males of some species can be attracted to human hosts. To investigate the frequency of male mosquito attraction to humans, we conducted a literature review and human-baited field trials, as well as laboratory experiments involving males and females of three common Aedes species. Our literature review indicated that male attraction to humans is limited to a small number of species, including Ae. aegypti and Ae. albopictus. In our human-baited field collections, only 4 out of 13 species captured included males. In laboratory experiments, we found that male Ae. notoscriptus and Ae. vigilax showed no attraction to humans, while male Ae. aegypti exhibited persistent attraction for up to 30 min. Both male and female Ae. aegypti displayed similar preferences for different human subjects, suggesting that male Ae. aegypti respond to similar cues as females. Additionally, we found that mosquito repellents applied to human skin effectively repelled male mosquitoes. These findings shed light on mosquito behaviour and have implications for mosquito control programmes, particularly those involving the release or monitoring of the male mosquito population.
Collapse
Affiliation(s)
- Véronique Paris
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christopher Hardy
- CSIRO Environment, Canberra, Australian Capital Territory 2601, Australia
| | - Ary A. Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark
| | - Perran A. Ross
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark
| |
Collapse
|
16
|
Bibi M, Hussain A, Ali F, Ali A, Said F, Tariq K, Yun BW. In Silico Characterisation of the Aedes aegypti Gustatory Receptors. Int J Mol Sci 2023; 24:12263. [PMID: 37569638 PMCID: PMC10419030 DOI: 10.3390/ijms241512263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Aedes aegypti, also known as the dengue mosquito or the yellow fewer mosquito, is the vector of dengue, chikungunya, Zika, Mayaro and yellow fever viruses. The A. aegypti genome contains an array of gustatory receptor (GR) proteins that are related to the recognition of taste. In this study, we performed in silico molecular characterization of all 72 A. aegypti GRs reported in the latest version of A. aegypti genome AaegL5. Phylogenetic analysis classified the receptors into three major clads. Multiple GRs were found to encode multiple transcripts. Physicochemical attributes such as the aliphatic index, hydropathicity index and isoelectric point indicated that A. aegypti gustatory receptors are highly stable and are tailored to perform under a variety of cellular environments. Analysis for subcellular localization indicated that all the GRs are located either in the extracellular matrix or the plasma membrane. Results also indicated that the GRs are distributed mainly on chromosomes 2 and 3, which house 22 and 49 GRs, respectively, whereas chromosome 1 houses only one GR. NCBI-CDD analysis showed the presence of a highly conserved 7tm_7 chemosensory receptor protein superfamily that includes gustatory and odorant receptors from insect species Anopheles gambiae and Drosophila melanogaster. Further, three significantly enriched ungapped motifs in the protein sequence of all 72 A. aegypti gustatory receptors were found. High-quality 3D models for the tertiary structures were predicted with significantly higher confidence, along with ligand-binding residues. Prediction of S-nitrosylation sites indicated the presence of target cysteines in all the GRs with close proximity to the ligand-bindings sites within the 3D structure of the receptors. In addition, two highly conserved motifs inside the GR proteins were discovered that house a tyrosine (Y) and a cysteine (C) residue which may serve as targets for NO-mediated tyrosine nitration and S-nitrosylation, respectively. This study will help devise strategies for functional genomic studies of these important receptor molecules in A. aegypti and other mosquito species through in vitro and in vivo studies.
Collapse
Affiliation(s)
- Maria Bibi
- Department of Entomology, Abdul Wali Khan University Mardan, Mardan 23200, Khyber Pakhtunkhwa, Pakistan
| | - Adil Hussain
- Department of Entomology, Abdul Wali Khan University Mardan, Mardan 23200, Khyber Pakhtunkhwa, Pakistan
| | - Farman Ali
- Department of Entomology, Abdul Wali Khan University Mardan, Mardan 23200, Khyber Pakhtunkhwa, Pakistan
| | - Asad Ali
- Department of Entomology, Abdul Wali Khan University Mardan, Mardan 23200, Khyber Pakhtunkhwa, Pakistan
| | - Fazal Said
- Department of Entomology, Abdul Wali Khan University Mardan, Mardan 23200, Khyber Pakhtunkhwa, Pakistan
| | - Kaleem Tariq
- Department of Entomology, Abdul Wali Khan University Mardan, Mardan 23200, Khyber Pakhtunkhwa, Pakistan
| | - Byung-Wook Yun
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
17
|
Corpuz RL, Bellinger MR, Veillet A, Magnacca KN, Price DK. The Transmission Patterns of the Endosymbiont Wolbachia within the Hawaiian Drosophilidae Adaptive Radiation. Genes (Basel) 2023; 14:1545. [PMID: 37628597 PMCID: PMC10454618 DOI: 10.3390/genes14081545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 08/27/2023] Open
Abstract
The evolution of endosymbionts and their hosts can lead to highly dynamic interactions with varying fitness effects for both the endosymbiont and host species. Wolbachia, a ubiquitous endosymbiont of arthropods and nematodes, can have both beneficial and detrimental effects on host fitness. We documented the occurrence and patterns of transmission of Wolbachia within the Hawaiian Drosophilidae and examined the potential contributions of Wolbachia to the rapid diversification of their hosts. Screens for Wolbachia infections across a minimum of 140 species of Hawaiian Drosophila and Scaptomyza revealed species-level infections of 20.0%, and across all 399 samples, a general infection rate of 10.3%. Among the 44 Wolbachia strains we identified using a modified Wolbachia multi-locus strain typing scheme, 30 (68.18%) belonged to supergroup B, five (11.36%) belonged to supergroup A, and nine (20.45%) had alleles with conflicting supergroup assignments. Co-phylogenetic reconciliation analysis indicated that Wolbachia strain diversity within their endemic Hawaiian Drosophilidae hosts can be explained by vertical (e.g., co-speciation) and horizontal (e.g., host switch) modes of transmission. Results from stochastic character trait mapping suggest that horizontal transmission is associated with the preferred oviposition substrate of the host, but not the host's plant family or island of occurrence. For Hawaiian Drosophilid species of conservation concern, with 13 species listed as endangered and 1 listed as threatened, knowledge of Wolbachia strain types, infection status, and potential for superinfection could assist with conservation breeding programs designed to bolster population sizes, especially when wild populations are supplemented with laboratory-reared, translocated individuals. Future research aimed at improving the understanding of the mechanisms of Wolbachia transmission in nature, their impact on the host, and their role in host species formation may shed light on the influence of Wolbachia as an evolutionary driver, especially in Hawaiian ecosystems.
Collapse
Affiliation(s)
- Renée L. Corpuz
- Department of Biology, Tropical Conservation Biology and Environmental Science, University of Hawaii at Hilo, 200 West Kāwili Street, Hilo, HI 96720, USA (D.K.P.)
| | - M. Renee Bellinger
- Department of Biology, Tropical Conservation Biology and Environmental Science, University of Hawaii at Hilo, 200 West Kāwili Street, Hilo, HI 96720, USA (D.K.P.)
- U.S. Geological Survey, Pacific Island Ecosystems Research Center, P.O. Box 44, Hawaii National Park, HI 96718, USA
| | - Anne Veillet
- Department of Biology, Tropical Conservation Biology and Environmental Science, University of Hawaii at Hilo, 200 West Kāwili Street, Hilo, HI 96720, USA (D.K.P.)
| | - Karl N. Magnacca
- Department of Land and Natural Resources, Division of Forestry & Wildlife, Native Ecosystem Protection and Management, Hawaii Invertebrate Program, 1151 Punchbowl Street Rm. 325, Honolulu, HI 96813, USA;
| | - Donald K. Price
- Department of Biology, Tropical Conservation Biology and Environmental Science, University of Hawaii at Hilo, 200 West Kāwili Street, Hilo, HI 96720, USA (D.K.P.)
- School of Life Sciences, University of Nevada, Las Vegas, NV 89557, USA
| |
Collapse
|
18
|
Yuan X, Li H, Guo X, Jiang H, Zhang Q, Zhang L, Wang G, Li W, Zhao M. Functional roles of two novel P450 genes in the adaptability of Conogethes punctiferalis to three commonly used pesticides. Front Physiol 2023; 14:1186804. [PMID: 37457033 PMCID: PMC10338330 DOI: 10.3389/fphys.2023.1186804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction: Insect cytochrome P450 (CYP450) genes play important roles in the detoxification and metabolism of xenobiotics, such as plant allelochemicals, mycotoxins and pesticides. The polyphagous Conogethes punctiferalis is a serious economic pest of fruit trees and agricultural crops, and it shows high adaptability to different living environments. Methods: The two novel P450 genes CYP6CV1 and CYP6AB51 were identified and characterized. Quantitative real-time PCR (qRT-PCR) technology was used to study the expression patterns of the two target genes in different larval developmental stages and tissues of C. punctiferalis. Furthermore, RNA interference (RNAi) technology was used to study the potential functions of the two P450 genes by treating RNAi-silenced larvae with three commonly used pesticides. Results: The CYP6CV1 and CYP6AB51 genes were expressed throughout various C. punctiferalis larval stages and in different tissues. Their expression levels increased along with larval development, and expression levels of the two target genes in the midgut were significantly higher than in other tissues. The toxicity bioassay results showed that the LC50 values of chlorantraniliprole, emamectin benzoate and lambda-cyhalothrin on C. punctiferalis larvae were 0.2028 μg/g, 0.0683 μg/g and 0.6110 mg/L, respectively. After treating with different concentrations of chlorantraniliprole, emamectin benzoate and lambda-cyhalothrin (LC10, LC30, LC50), independently, the relative expressions of the two genes CYP6CV1 and CYP6AB51 were significantly induced. After the dsRNA injection, the expression profiles of the two CYP genes were reduced 72.91% and 70.94%, respectively, and the mortality rates of the larvae significantly increased when treated with the three insecticides independently at LC10 values. Discussion: In the summary, after interfering with the CYP6CV1 and CYP6AB51 in C. punctiferalis, respectively, the sensitivity of C. punctiferalis to chlorantraniliprole, emamectin benzoate and lambda-cyhalothrin was significantly increased, indicating that the two CYP6 genes were responsible for the adaptability of C. punctiferalis to the three chemical insecticides in C. punctiferalis. The results from this study demonstrated that CYP6CV1 and CYP6AB51 in C. punctiferalis play crucial roles in the detoxification of chlorantraniliprole, emamectin benzoate and lambda-cyhalothrin.
Collapse
Affiliation(s)
- Xingxing Yuan
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Han Li
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xianru Guo
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - He Jiang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qi Zhang
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Lijuan Zhang
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Gaoping Wang
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Weizheng Li
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Man Zhao
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
19
|
Harvey-Samuel T, Feng X, Okamoto EM, Purusothaman DK, Leftwich PT, Alphey L, Gantz VM. CRISPR-based gene drives generate super-Mendelian inheritance in the disease vector Culex quinquefasciatus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544656. [PMID: 37398284 PMCID: PMC10312623 DOI: 10.1101/2023.06.12.544656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Culex mosquitoes pose a significant public health threat as vectors for a variety of diseases including West Nile virus and lymphatic filariasis, and transmit pathogens threatening livestock, companion animals, and endangered birds. Rampant insecticide resistance makes controlling these mosquitoes challenging and necessitates the development of new control strategies. Gene drive technologies have made significant progress in other mosquito species, although similar advances have been lagging in Culex. Here we test the first CRISPR-based homing gene drive for Culex quinquefasciatus, demonstrating the possibility of using this technology to control Culex mosquitoes. Our results show that the inheritance of two split-gene-drive transgenes, targeting different loci, are biased in the presence of a Cas9-expressing transgene although with modest efficiencies. Our findings extend the list of disease vectors where engineered homing gene drives have been demonstrated to include Culex alongside Anopheles and Aedes, and pave the way for future development of these technologies to control Culex mosquitoes.
Collapse
Affiliation(s)
- Tim Harvey-Samuel
- Arthropod Genetics Group, The Pirbright Institute, Woking, UK, GU24 0NF
| | - Xuechun Feng
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA 92093
| | - Emily M Okamoto
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA 92093
| | - Deepak-Kumar Purusothaman
- Arthropod Genetics Group, The Pirbright Institute, Woking, UK, GU24 0NF
- Present address: MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK G12 8QQ
| | - Philip T Leftwich
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK, NR4 7TJ
| | - Luke Alphey
- Present address: Biology Department, University of York, York, UK, YO10 5DD
| | - Valentino M Gantz
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA 92093
| |
Collapse
|
20
|
De Novo Assembly and Characterization of the Transcriptome of an Omnivorous Camel Cricket ( Tachycines meditationis). Int J Mol Sci 2023; 24:ijms24044005. [PMID: 36835417 PMCID: PMC9966759 DOI: 10.3390/ijms24044005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 02/18/2023] Open
Abstract
Tachycines meditationis (Orthoptera: Rhaphidophoridae: Tachycines) is a widely distributed insect in eastern Asia. This species is common in urban environments, and its unique omnivorous diet may contribute to its success in various habitats. However, molecular studies on the species are scarce. Here, we obtained the first transcriptome sequence of T. meditationis and performed preliminary analyses to test whether the evolution of coding sequences fits the expectations based on the species' ecology. We retrieved 476,495 effective transcripts and annotated 46,593 coding sequences (CDS). We analysed the codon usage and found that directional mutation pressure was the leading cause of codon usage bias in this species. This genome-wide relaxed codon usage pattern in T. meditationis is surprising, given the potentially large population size of this species. Moreover, despite the omnivorous diet, the chemosensory genes of this species do not exhibit codon usage deviating significantly from the genome-level pattern. They also do not seem to experience more gene family expansion than other cave cricket species do. A thorough search for rapidly evolved genes using the dN/dS value showed that genes associated with substance synthesis and metabolic pathways, such as retinol metabolism, aminoacyl-tRNA biosynthesis, and fatty acid metabolism, underwent species-specific positive selection. While some results seem to contradict the species ecology, our transcriptome assembly provides a valuable molecular resource for future studies on camel cricket evolution and molecular genetics for feeding ecology in insects, in general.
Collapse
|
21
|
García-Longoria L, Ahrén D, Berthomieu A, Kalbskopf V, Rivero A, Hellgren O. Immune gene expression in the mosquito vector Culex quinquefasciatus during an avian malaria infection. Mol Ecol 2023; 32:904-919. [PMID: 36448733 PMCID: PMC10108303 DOI: 10.1111/mec.16799] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022]
Abstract
Plasmodium relictum is the most widespread avian malaria parasite in the world. It is listed as one of the 100 most dangerous invasive species, having been responsible for the extinction of several endemic bird species, and the near-demise of several others. Here we present the first transcriptomic study focused on the effect of P. relictum on the immune system of its vector (the mosquito Culex quinquefasciatus) at different times post-infection. We show that over 50% of immune genes identified as being part of the Toll pathway and 30%-40% of the immune genes identified within the Imd pathway are overexpressed during the critical period spanning the parasite's oocyst and sporozoite formation (8-12 days), revealing the crucial role played by both these pathways in this natural mosquito-Plasmodium combination. Comparison of infected mosquitoes with their uninfected counterparts also revealed some unexpected immune RNA expression patterns earlier and later in the infection: significant differences in expression of several immune effectors were observed as early as 30 min after ingestion of the infected blood meal. In addition, in the later stages of the infection (towards the end of the mosquito lifespan), we observed an unexpected increase in immune investment in uninfected, but not in infected, mosquitoes. In conclusion, our work extends the comparative transcriptomic analyses of malaria-infected mosquitoes beyond human and rodent parasites and provides insights into the degree of conservation of immune pathways and into the selective pressures exerted by Plasmodium parasites on their vectors.
Collapse
Affiliation(s)
- Luz García-Longoria
- Department of Anatomy, Cellular Biology and Zoology, University of Extremadura, Badajoz, Spain
| | - Dag Ahrén
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Lund, Sweden
| | | | - Victor Kalbskopf
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Lund, Sweden
| | - Ana Rivero
- MIVEGEC (CNRS, Université de Montpellier, IRD), Montpellier, France
| | - Olof Hellgren
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
22
|
Liu W, Cheng P, An S, Zhang K, Gong M, Zhang Z, Zhang R. Chromosome-level assembly of Culex pipiens molestus and improved reference genome of Culex pipiens pallens (Culicidae, Diptera). Mol Ecol Resour 2023; 23:486-498. [PMID: 36075571 DOI: 10.1111/1755-0998.13712] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/06/2022] [Accepted: 09/05/2022] [Indexed: 01/04/2023]
Abstract
Culex pipiens molestus and Culex pipiens pallens are two distinct bioforms in the Culex pipiens complex that are important vectors of several pathogens and are widely distributed around the world. In the current study, we present a high-quality chromosome-level genome of Cx. pipiens f. molestus and describe the genetic characteristics of this genome. The assembly genome was 559.749 Mb with contig and scaffold N50 values of 200.952 Mb and 0.370 Mb, and more than 94.78% of the assembled bases were located on 3 chromosomes. A total of 19,399 protein-coding genes were predicted. Many gene families were expanded in the genome of Cx. pipiens f. molestus, particularly those of the chemosensory protein (CSP) and gustatory receptor (GR) gene families. In addition, utilizing Hi-C data, we improved the previously assembled draft genome of Cx. pipiens f. pallens, with scaffold N50 of 186.195 Mb and contig N50 of 0.749 Mb, and more than 97.02% of the assembled bases were located on three chromosomes. This reference genome provides a foundation for genome-based investigations of the unique ecological and evolutionary characteristics of Cx. pipiens f. molestus, and the findings in this study will help to elucidate the mechanisms involved in species divergence in the Culex pipiens complex.
Collapse
Affiliation(s)
- Wenjuan Liu
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China.,School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China
| | - Peng Cheng
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China.,Shandong Institute of Parasitic Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Jining, China
| | - Sha An
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China.,School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China
| | - Kexin Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China.,School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China
| | - Maoqing Gong
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China.,Shandong Institute of Parasitic Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Jining, China
| | - Zhong Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China.,School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China
| | - Ruiling Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China.,School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China
| |
Collapse
|
23
|
Franco FP, Xu P, Harris BJ, Yarov-Yarovoy V, Leal WS. Single amino acid residue mediates reciprocal specificity in two mosquito odorant receptors. eLife 2022; 11:e82922. [PMID: 36511779 PMCID: PMC9799979 DOI: 10.7554/elife.82922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
The southern house mosquito, Culex quinquefasciatus, utilizes two odorant receptors, CquiOR10 and CquiOR2, narrowly tuned to oviposition attractants and well conserved among mosquito species. They detect skatole and indole, respectively, with reciprocal specificity. We swapped the transmembrane (TM) domains of CquiOR10 and CquiOR2 and identified TM2 as a specificity determinant. With additional mutations, we showed that CquiOR10A73L behaved like CquiOR2. Conversely, CquiOR2L74A recapitulated CquiOR10 specificity. Next, we generated structural models of CquiOR10 and CquiOR10A73L using RoseTTAFold and AlphaFold and docked skatole and indole using RosettaLigand. These modeling studies suggested space-filling constraints around A73. Consistent with this hypothesis, CquiOR10 mutants with a bulkier residue (Ile, Val) were insensitive to skatole and indole, whereas CquiOR10A73G retained the specificity to skatole and showed a more robust response than the wildtype receptor CquiOR10. On the other hand, Leu to Gly mutation of the indole receptor CquiOR2 reverted the specificity to skatole. Lastly, CquiOR10A73L, CquiOR2, and CquiOR2L74I were insensitive to 3-ethylindole, whereas CquiOR2L74A and CquiOR2L74G gained activity. Additionally, CquiOR10A73G gave more robust responses to 3-ethylindole than CquiOR10. Thus, we suggest the specificity of these receptors is mediated by a single amino acid substitution, leading to finely tuned volumetric space to accommodate specific oviposition attractants.
Collapse
Affiliation(s)
- Flavia P Franco
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Pingxi Xu
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Brandon J Harris
- Department of Physiology and Membrane Biology, University of California, DavisDavisUnited States
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California, DavisDavisUnited States
- Department of Anesthesiology and Pain Medicine, University of California, DavisDavisUnited States
| | - Walter S Leal
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| |
Collapse
|
24
|
Friedman-Klabanoff DJ, Birkhold M, Short MT, Wilson TR, Meneses CR, Lacsina JR, Oliveira F, Kamhawi S, Valenzuela JG, Hunsberger S, Mateja A, Stoloff G, Pleguezuelos O, Memoli MJ, Laurens MB. Safety and immunogenicity of AGS-v PLUS, a mosquito saliva peptide vaccine against arboviral diseases: A randomized, double-blind, placebo-controlled Phase 1 trial. EBioMedicine 2022; 86:104375. [PMID: 36436281 PMCID: PMC9700263 DOI: 10.1016/j.ebiom.2022.104375] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Immunity to mosquito salivary proteins could provide protection against multiple mosquito-borne diseases and significantly impact public health. We evaluated the safety and immunogenicity of AGS-v PLUS, a mosquito salivary peptide vaccine, in healthy adults 18-50 years old. METHODS We conducted a randomized, double-blind, placebo-controlled Phase 1 study of AGS-v PLUS administered subcutaneously on Days 1 and 22 at the Center for Vaccine Development and Global Health, Baltimore, MD, USA. Participants were block randomized 1:1:1:1:1 to two doses saline placebo, two doses AGS-v PLUS, AGS-v PLUS/ISA-51 and saline placebo, two doses AGS-v PLUS/ISA-51, or two doses AGS-v PLUS/Alhydrogel. Primary endpoints were safety (all participants receiving ≥1 injection) and antibody and cytokine responses (all participants with day 43 samples), analysed by intention to treat. FINDINGS Between 26 August 2019 and 25 February 2020, 51 participants were enrolled and randomized, 11 into the single dose AGS-v PLUS/ISA-51 group and ten in other groups. Due to COVID-19, 15 participants did not return for day 43 samplings. Participants experienced no treatment-emergent or serious adverse events. All solicited symptoms in 2/10 placebo recipients and 22/41 AGS-v PLUS recipients after dose one and 1/10 placebo recipients and 22/41 AGS-v PLUS recipients after dose two were mild/moderate except for one severe fever the day after vaccination (placebo group). Only injection site pain was more common in vaccine groups (15/51 after dose 1 and 11/51 after dose 2) versus placebo. Compared to placebo, all vaccine groups had significantly greater fold change in anti-AGS-v PLUS IgG and IFN-ɣ from baseline. INTERPRETATION AGS-v PLUS had favourable safety profile and induced robust immune responses. Next steps will determine if findings translate into clinical efficacy against mosquito-borne diseases. FUNDING UK Department of Health and Social Care.
Collapse
Affiliation(s)
- DeAnna J Friedman-Klabanoff
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Megan Birkhold
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mara T Short
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Timothy R Wilson
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Claudio R Meneses
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Joshua R Lacsina
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Fabiano Oliveira
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Shaden Kamhawi
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Jesus G Valenzuela
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Sally Hunsberger
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Allyson Mateja
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | | | - Matthew J Memoli
- Clinical Studies Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Matthew B Laurens
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
25
|
Zhang C, Guo X, Li T, Cheng P, Gong M. New insights into cypermethrin insecticide resistance mechanisms of Culex pipiens pallens by proteome analysis. PEST MANAGEMENT SCIENCE 2022; 78:4579-4588. [PMID: 35837767 DOI: 10.1002/ps.7077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/24/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Due to the development of insecticide resistance in mosquitoes, with worldwide mosquito-borne diseases resurgence in recent years, recent advances in proteome technology have facilitated a proteome-wide analysis of insecticide resistance-associated proteins in mosquitoes. Understanding the complexity of the molecular basis of insecticide resistance mechanisms employed by mosquitoes will help in designing the most effective and sustainable mosquito control methods. RESULTS After 30 generations, insecticide-selected strains showed elevated resistance levels to the cypermethrin used for selection. Proteome data allowed the detection of 2892 proteins, of which 2885 differentially expressed proteins (DEPs) achieved quantitative significances in four stages (egg, larvae, pupae, adult) of Culex pipiens pallens cypermethrin-resistant strain as compared to the susceptible strain. Among them, a significant enrichment of proteins, including cuticular proteins, enzymes involved in the detoxification (cytochrome P450, glutathione S-transferases, esterase, ATP-binding cassette) and some biological pathways (oxidative phosphorylation, hippo signalling) that are potentially involved in cypermethrin resistance, was observed. Thirty-one representative DEPs (cytochrome P450, glutathione S-transferase, cuticle protein) during Cx. pipiens pallens developmental stages were confirmed by a parallel reaction monitoring strategy. CONCLUSIONS The present study confirmed the power of isobaric tags for relative and absolute quantification for identifying concomitantly quantitative proteome changes associated with cypermethrin in Cx. pipiens pallens. Proteome analysis suggests that proteome modifications can be selected rapidly by cypermethrin, and multiple resistance mechanisms operate simultaneously in cypermethrin-resistance of Cx. pipiens pallens, Our results interpret that an up-regulated expression of proteins and enzymes like cytochrome P450, glutathione S-transferases, esterase etc. has an impact in insecticide resistance. Previously neglected penetration resistance (cuticular proteins) may play an important role in the adaptive response of Cx. pipiens pallens to insecticides. This information may serve as a basis for future work concerning the possible role of these proteins in cypermethrin resistance in mosquito Cx. pipiens pallens. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chongxing Zhang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, P.R. China
| | - Xiuxia Guo
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, P.R. China
| | - Tao Li
- Nanning MHelix ProTech Co., Ltd, Nanning Hi-tech Zone Bioengineering Center, Nanning, P. R. China
| | - Peng Cheng
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, P.R. China
| | - Maoqing Gong
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, P.R. China
| |
Collapse
|
26
|
Soares IMN, Polonio JC, Zequi JAC, Golias HC. Molecular techniques for the taxonomy of Aedes Meigen, 1818 (Culicidae: Aedini): A review of studies from 2010 to 2021. Acta Trop 2022; 236:106694. [PMID: 36122762 DOI: 10.1016/j.actatropica.2022.106694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/23/2022] [Accepted: 09/15/2022] [Indexed: 11/19/2022]
Abstract
The original description of Aedes Meigen in 1818, written in Latin, was very brief and included a single species, Aedes cinereus. In the last two decades the genus Aedes (Meigen, 1818) has undergone several revisions and reclassifications, with the current proposal being described by Wilkerson in 2015. However, the available keys for morphological identification are still not sufficient to differentiate cryptic species, damaged species, or those with confusing taxonomy. The current study aims to identify and describe the main taxonomic proposals and molecular methodologies available for the identification of the genus Aedes published between the years 2010 and 2021. The main molecular techniques used to identify the genus in the last 10 years, are: Multiplex PCR, DNA barcoding, nuclear and mitochondrial markers, environmental DNA, and bacterial microbiome analysis. This review highlights that there are catalogued data for only a few species of the genus Aedes, being restricted to medically important taxa such as Aedes albopictus and Aedes aegypti. The integrative taxonomy approach is a possibility to reconcile morphological and molecular data to improve species delimitation, contributing to future revisions of the genus.
Collapse
Affiliation(s)
| | - Julio Cesar Polonio
- Department of Cell Biology, Genetics and Biotechnology, State University of Maringá (UEM), Brazil
| | | | - Halison Correia Golias
- Department of Cell Biology, Genetics and Biotechnology, State University of Maringá (UEM), Brazil; Department of Humanities, Microbiology Laboratory, Federal Technological University of Paraná (UTFPR), Marcilio Dias Street, 635, Apucarana, Paraná, Brazil.
| |
Collapse
|
27
|
Wang J, Fan P, Wei Y, Wang J, Zou W, Zhou G, Zhong D, Zheng X. Isobaric tags for relative and absolute quantification-based proteomic analysis of host-pathogen protein interactions in the midgut of Aedes albopictus during dengue virus infection. Front Microbiol 2022; 13:990978. [PMID: 36187964 PMCID: PMC9515977 DOI: 10.3389/fmicb.2022.990978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Aedes albopictus (Ae. albopictus), an important vector of dengue virus (DENV), is distributed worldwide. Identifying host proteins involved in flavivirus replication in Ae. albopictus and determining their natural antiviral mechanisms are critical to control virus transmission. Revealing the key proteins related to virus replication and exploring the host-pathogen interaction are of great significance in finding new pathways of the natural immune response in Ae. albopictus. Isobaric tags for relative and absolute quantification (iTRAQ) was used to perform a comparative proteomic analysis between the midgut of Ae. albopictus infected with DENV and the control. 3,419 proteins were detected, of which 162 were ≥ 1.2-fold differentially upregulated or ≤ 0.8-fold differentially downregulated (p < 0.05) during DENV infections. Differentially expressed proteins (DEPs) were mainly enriched in ubiquitin ligase complex, structural constituent of cuticle, carbohydrate metabolism, and lipid metabolism pathways. We found that one of the DEPs, a putative pupal cuticle (PC) protein could inhibit the replication of DENV and interact with the DENV-E protein. In addition, the result of immunofluorescence (IF) test showed that there was co-localization between ubiquitin carboxyl-terminal hydrolase (UCH) protein and the DENV-E protein, and virus infection reduced the level of this protein. iTRAQ-based proteomic analysis of the Ae. albopictus midgut identified dengue infection-induced upregulated and downregulated proteins. The interaction between the PC and UCH proteins in the midgut of Ae. albopictus might exert a natural antiviral mechanism in mosquito.
Collapse
Affiliation(s)
- Jiatian Wang
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Peiyang Fan
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yong Wei
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jiaqi Wang
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Weihao Zou
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Guofa Zhou
- Program in Public Health, College of Health Sciences, University of California, Irvine, Irvine, CA, United States
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California, Irvine, Irvine, CA, United States
| | - Xueli Zheng
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
- *Correspondence: Xueli Zheng,
| |
Collapse
|
28
|
Kojin BB, Compton A, Adelman ZN, Tu Z. Selective targeting of biting females to control mosquito-borne infectious diseases. Trends Parasitol 2022; 38:791-804. [PMID: 35952630 PMCID: PMC9372635 DOI: 10.1016/j.pt.2022.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
Abstract
Mosquitoes are vectors for a number of infectious diseases. Only females feed on blood to provision for their embryos and, in doing so, transmit pathogens to the associated vertebrate hosts. Therefore, sex is an important phenotype in the context of genetic control programs, both for sex separation in the rearing facilities to avoid releasing biting females and for ways to distort the sex ratio towards nonbiting males. We review recent progress in the fundamental knowledge of sex determination and sex chromosomes in mosquitoes and discuss new methods to achieve sex separation and sex ratio distortion to help control mosquito-borne infectious diseases. We conclude by suggesting a few critical areas for future research.
Collapse
Affiliation(s)
- Bianca B Kojin
- Department of Entomology and Agrilife Research, Texas A&M University, College Station, TX, USA
| | - Austin Compton
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA; Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA
| | - Zach N Adelman
- Department of Entomology and Agrilife Research, Texas A&M University, College Station, TX, USA.
| | - Zhijian Tu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA; Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
29
|
Aardema ML, Campana MG, Wagner NE, Ferreira FC, Fonseca DM. A gene-based capture assay for surveying patterns of genetic diversity and insecticide resistance in a worldwide group of invasive mosquitoes. PLoS Negl Trop Dis 2022; 16:e0010689. [PMID: 35939523 PMCID: PMC9387926 DOI: 10.1371/journal.pntd.0010689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 08/18/2022] [Accepted: 07/20/2022] [Indexed: 12/30/2022] Open
Abstract
Understanding patterns of diversification, genetic exchange, and pesticide resistance in arthropod disease vectors is necessary for effective population management. With the availability of next-generation sequencing technologies, one of the best approaches for surveying such patterns involves the simultaneous genotyping of many samples for a large number of genetic markers. To this end, the targeting of gene sequences of known function can be a cost-effective strategy. One insect group of substantial health concern are the mosquito taxa that make up the Culex pipiens complex. Members of this complex transmit damaging arboviruses and filariae worms to humans, as well as other pathogens such as avian malaria parasites that are detrimental to birds. Here we describe the development of a targeted, gene-based assay for surveying genetic diversity and population structure in this mosquito complex. To test the utility of this assay, we sequenced samples from several members of the complex, as well as from distinct populations of the relatively under-studied Culex quinquefasciatus. The data generated was then used to examine taxonomic divergence and population clustering between and within these mosquitoes. We also used this data to investigate genetic variants present in our samples that had previously been shown to correlate with insecticide-resistance. Broadly, our gene capture approach successfully enriched the genomic regions of interest, and proved effective for facilitating examinations of taxonomic divergence and geographic clustering within the Cx. pipiens complex. It also allowed us to successfully survey genetic variation associated with insecticide resistance in Culex mosquitoes. This enrichment protocol will be useful for future studies that aim to understand the genetic mechanisms underlying the evolution of these ubiquitous and increasingly damaging disease vectors. The mosquito taxa that make up the Culex pipiens complex are important vectors of the agents of several human diseases such as West Nile and St. Louis encephalitides, and lymphatic filariasis. They are also important vectors of avian malaria, which impacts livestock and wildlife. The development of effective strategies for the control of these mosquitoes requires knowledge of their origins, distribution, dispersal patterns, and the extent to which discreet taxonomic entities within the complex interbreed. To achieve these objectives, it is necessary to compare patterns of genetic diversity across many mosquito samples, which can be cost-prohibitive. To address this limitation, we developed a targeted, gene-based assay that allowed us to cost-effectively genotype a large number of genetic variants from a representative global sampling of individual Cx. pipiens complex mosquitoes. We show that this assay is a powerful tool for examining genetic structure and hybridization among populations. We also explore its utility for surveying alleles previously shown to be associated with insecticide resistance. Future use of this enrichment assay and the bioinformatics methods described here will allow researchers to study evolutionary patterns across the Cx. pipiens complex as well as monitor the presence of genetic variation that could affect control efforts.
Collapse
Affiliation(s)
- Matthew L. Aardema
- Department of Biology, Montclair State University, Montclair, New Jersey, United States of America
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York, United States of America
- * E-mail: (MLA); (DMF)
| | - Michael G. Campana
- Center for Conservation Genomics, Smithsonian’s National Zoo and Conservation Biology Institute, Washington, DC, United States of America
| | - Nicole E. Wagner
- Center for Vector Biology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Francisco C. Ferreira
- Center for Conservation Genomics, Smithsonian’s National Zoo and Conservation Biology Institute, Washington, DC, United States of America
- Center for Vector Biology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Dina M. Fonseca
- Center for Vector Biology, Rutgers University, New Brunswick, New Jersey, United States of America
- * E-mail: (MLA); (DMF)
| |
Collapse
|
30
|
Chamnanya S, Yanola J, Nachaiwieng W, Lumjuan N, Walton C, Somboon P. Novel real-time PCR assay detects widespread distribution of knock down resistance (kdr) mutations associated with pyrethroid resistance in the mosquito, Culex quinquefasciatus, in Thailand. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 186:105172. [PMID: 35973764 DOI: 10.1016/j.pestbp.2022.105172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Susceptibility to pyrethroids in the mosquito Culex quinquefasciatus, the major vector of lymphatic filariasis, is being seriously threatened worldwide. Knockdown resistance (kdr), caused by mutations in the voltage gated sodium channel (VGSC) gene, particularly the L1014F mutation, is an important resistance mechanism. Our aim was to develop a real-time PCR with melt curve analysis to evaluate the distribution of the L1014F mutation in Cx. quinquefasciatus throughout Thailand and to determine the polymorphism pattern of a VGSC gene fragment spanning the L1014F mutation. A total of 3760 females from 18 localities across five regions of Thailand were bio-assayed by exposure to 0.05% deltamethrin WHO papers, showing mortality rates ranging from 2.4% to 83.0%. Genotyping of 753 dead and surviving mosquitoes using our novel real-time PCR assay with melt curve analysis and tetra-primer allele-specific PCR revealed the mutant F1014 allele is closely associated with the deltamethrin resistance phenotype. The L1014F mutation was found at high frequency throughout Thailand, particularly in the North. However, some survivors were homozygous for wild type L1014 allele, which were further sequenced for the IIP-IIS6 region of VGSC gene. The haplotype network of phenotypically characterized individuals indicated the presence of other possible kdr alleles/resistance mechanisms at play including two novel mutations, V978E and D992E. The finding of new putative kdr alleles and widespread distribution of the F1014 allele emphasizes the significant role of kdr mutations in pyrethroid resistance in Thai Cx. quinquefasciatus populations. Monitoring kdr variations and phenotypic resistance is critical for managing resistance in Cx. quinquefasciatus.
Collapse
Affiliation(s)
- Saowanee Chamnanya
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jintana Yanola
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.
| | | | - Nongkran Lumjuan
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Catherine Walton
- Department of Earth and Environmental Sciences, School of Natural Sciences, Faculty of Science and Engineering, University of Manchester, Manchester M13 9PT, United Kingdom.
| | - Pradya Somboon
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
31
|
Finney M, Romanowski J, Adelman ZN. Strategies to improve homology-based repair outcomes following CRISPR-based gene editing in mosquitoes: lessons in how to keep any repair disruptions local. Virol J 2022; 19:128. [PMID: 35908059 PMCID: PMC9338592 DOI: 10.1186/s12985-022-01859-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/18/2022] [Indexed: 11/10/2022] Open
Abstract
Programmable gene editing systems such as CRISPR-Cas have made mosquito genome engineering more practical and accessible, catalyzing the development of cutting-edge genetic methods of disease vector control. This progress, however, has been limited by the low efficiency of homology-directed repair (HDR)-based sequence integration at DNA double-strand breaks (DSBs) and a lack of understanding about DSB repair in mosquitoes. Innovative efforts to optimize HDR sequence integration by inhibiting non-homologous end joining or promoting HDR have been performed in mammalian systems, however many of these approaches have not been applied to mosquitoes. Here, we review some of the most relevant steps of DNA DSB repair choice and highlight promising approaches that influence this choice to enhance HDR in the context of mosquito gene editing.
Collapse
Affiliation(s)
- Micaela Finney
- Department of Entomology, Texas A&M University, 329A Minnie Belle Heep Center, 370 Olsen Blvd, College Station, TX, 77843, USA
| | - Joseph Romanowski
- Department of Entomology, Texas A&M University, 329A Minnie Belle Heep Center, 370 Olsen Blvd, College Station, TX, 77843, USA
| | - Zach N Adelman
- Department of Entomology, Texas A&M University, 329A Minnie Belle Heep Center, 370 Olsen Blvd, College Station, TX, 77843, USA.
| |
Collapse
|
32
|
Essential functions of mosquito ecdysone importers in development and reproduction. Proc Natl Acad Sci U S A 2022; 119:e2202932119. [PMID: 35696563 PMCID: PMC9231622 DOI: 10.1073/pnas.2202932119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Steroid hormones control sexual maturation and reproduction in insects and humans alike. The insect steroid hormone ecdysone uses a membrane transporter named Ecdysone Importer (EcI) to enter cells and promote these physiological processes, but EcI is unexpectedly missing in mosquito genomes. Using the yellow fever mosquito Aedes aegypti, here we show that mosquitoes use alternative ecdysone importers to facilitate ecdysone-dependent development and reproduction. These transporters are also present in other insects, including fruit flies, but they are dispensable for fly development and reproduction likely due to their limited expression patterns. Our results thus indicate that differential expression of steroid hormone importers enables tissue- and stage-specific hormone responses, and some importers can obtain critical physiological functions only in certain species. The primary insect steroid hormone ecdysone requires a membrane transporter to enter its target cells. Although an organic anion-transporting polypeptide (OATP) named Ecdysone Importer (EcI) serves this role in the fruit fly Drosophila melanogaster and most likely in other arthropod species, this highly conserved transporter is apparently missing in mosquitoes. Here we report three additional OATPs that facilitate cellular incorporation of ecdysone in Drosophila and the yellow fever mosquito Aedes aegypti. These additional ecdysone importers (EcI-2, -3, and -4) are dispensable for development and reproduction in Drosophila, consistent with the predominant role of EcI. In contrast, in Aedes, EcI-2 is indispensable for ecdysone-mediated development, whereas EcI-4 is critical for vitellogenesis induced by ecdysone in adult females. Altogether, our results indicate unique and essential functions of these additional ecdysone importers in mosquito development and reproduction, making them attractive molecular targets for species- and stage-specific control of ecdysone signaling in mosquitoes.
Collapse
|
33
|
Sanei-Dehkordi A, Moemenbellah-Fard MD, Saffari M, Zarenezhad E, Osanloo M. Nanoliposomes containing limonene and limonene-rich essential oils as novel larvicides against malaria and filariasis mosquito vectors. BMC Complement Med Ther 2022; 22:140. [PMID: 35590314 PMCID: PMC9118734 DOI: 10.1186/s12906-022-03624-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 04/08/2022] [Indexed: 12/22/2022] Open
Abstract
Background Mosquito-borne diseases such as malaria and encephalitis are still the cause of several hundred thousand deaths annually. The excessive use of chemical insecticides for transmission control has led to environmental pollution and widespread resistance in mosquitoes. Botanical insecticides' efficacies improvement has thus received considerable attention recently. Methods The larvicidal effects of three essential oils from the Citrus family and limonene (their major ingredient) were first investigated against malaria and filariasis mosquito vectors. An attempt was then made to improve their efficacies by preparing nanoliposomes containing each of them. Results The larvicidal effect of nanoformulated forms was more effective than non-formulated states. Nanoliposomes containing Citrus aurantium essential oil with a particle size of 52 ± 4 nm showed the best larvicidal activity (LC50 and LC90 values) against Anopheles stephensi (6.63 and 12.29 µg/mL) and Culex quinquefasciatus (4.9 and 16.4 µg/mL). Conclusion Due to the green constituents and high efficacy of nanoliposomes containing C. aurantium essential oil, it could be considered for further investigation against other mosquitoes’ populations and field trials.
Collapse
Affiliation(s)
- Alireza Sanei-Dehkordi
- Department of Medical Entomology and Vector Control, School of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.,Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mohammad Djaefar Moemenbellah-Fard
- Research Center for Health Sciences, Department of Biology and Control of Disease Vectors, School of Health, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mostafa Saffari
- Department of Pharmaceutics, Scholl of Pharmacy, Islamic Azad University, Tehran, Iran
| | - Elham Zarenezhad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahmoud Osanloo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
34
|
He Z, Yu Z, He X, Hao Y, Qiao L, Luo S, Zhang J, Chen B. Genome-wide identification and expression profiling of odorant receptor genes in the malaria vector Anopheles sinensis. Parasit Vectors 2022; 15:143. [PMID: 35461301 PMCID: PMC9034491 DOI: 10.1186/s13071-022-05259-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
Background The olfactory system plays a crucial role in regulating insect behaviors. The detection of odorants is mainly mediated by various odorant receptors (ORs) that are expressed in the dendrites of olfactory neurons of chemosensilla. Anophelessinensis is a major malaria vector in Eastern Asia and its genome has recently been successfully sequenced and annotated. In this study, we present genome-wide identification and expression profiling of OR genes in different chemosensory tissues of An.sinensis. Methods The OR genes were identified using the available genome sequences of An.sinensis. A series of bioinformatics analyses were conducted to investigate the structure, genome distribution, selective pressure and phylogenetic relationships of OR genes, the conserved domains and specific functional sites in the OR amino acid sequences. The expression levels of OR genes were analyzed from transcriptomic data from An.sinensis antennae, proboscis and maxillary palps of both sexes. Results A total of 59 putative OR genes have been identified and characterized in An.sinensis. This number is significantly less than that in An.gambiae. Whether this difference is caused by the contraction or expansion of OR genes after divergence of the two species remains unknown. The RNA-seq analysis showed that AsORs have obvious tissue- and sex-specific expression patterns. Most AsORs are highly expressed in the antennae and the expression pattern and number of AsORs expressed in antennae are similar in males and females. However, the relative levels of AsOR transcripts are much higher in female antennae than in male antennae, which indicates that the odor sensitivity is likely to be increased in female mosquitoes. Based on the expression patterns and previous studies, we have speculated on the functions of some OR genes but this needs to be validated by further behavioral, molecular and electrophysiological studies. Further studies are necessary to compare the olfactory-driven behaviors and identify receptors that respond strongly to components of human odors that may act in the process of human recognition. Conclusions This is the first genome-wide analysis of the entire repertoire of OR genes in An.sinensis. Characterized features and profiled expression patterns of ORs suggest their involvement in the odorous reception of this species. Our findings provide a basis for further research on the functions of OR genes and additional genetic and behavioral targets for more sustainable management of An.sinensis in the future. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05259-x.
Collapse
Affiliation(s)
- Zhengbo He
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China.
| | - Zhengrong Yu
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Xingfei He
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Youjin Hao
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Liang Qiao
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Shihui Luo
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Jingjing Zhang
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Bin Chen
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China.
| |
Collapse
|
35
|
Nanoliposomes Containing Carvacrol and Carvacrol-Rich Essential Oils as Effective Mosquitoes Larvicides. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-00971-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
36
|
Ni M, Zhao T, Lv HX, Li MJ, Xing D, Zhao TY, Li CX. Screening for odorant receptor genes expressed in Aedes aegypti involved in host-seeking, blood-feeding and oviposition behaviors. Parasit Vectors 2022; 15:71. [PMID: 35246203 PMCID: PMC8895831 DOI: 10.1186/s13071-022-05196-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/12/2022] [Indexed: 11/23/2022] Open
Abstract
Background Aedes aegypti is one of the most important vectors of zoonotic diseases worldwide, and its survival and reproductive processes depend heavily on its olfactory system. In this study, the expression levels of all odorant receptor (OR) genes of Ae. aegypti were explored during different physiological periods to identify olfactory genes that may be associated with mosquito blood-feeding and the search for oviposition sites. Methods Four experimental groups, consisting of Ae. aegypti males, pre-blood-feeding females, post-blood-feeding females and post-oviposition females, were established. A total of 114 pairs of primers targeting all messenger RNA encoded by OR genes were designed based on the whole genome of Ae. aegypti. The expression of OR genes was evaluated by real-time fluorescence quantitative PCR for relative quantification and the comparison of differences between groups. Results A total of 53 differentially expressed OR genes were identified between males and females in Ae. aegypti antennae. Also, eight, eight and 13 differentially expressed OR genes were identified in pre- versus post-blood-feeding females, in pre- versus post-oviposition females and in post-blood-feeding versus post-oviposition females, respectively. In addition, 16 OR genes were significantly differentially expressed in multiple physiological periods of the mosquitoes. Conclusions A large number of ORs with significant intergroup differences and high expression levels were screened in this study. Some of these genes are reported for the first time, providing possible targets for the development of mosquito control pathways based on the olfactory system. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05196-9.
Collapse
Affiliation(s)
- Meng Ni
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230000, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Disease, Beijing, 100071, China
| | - Teng Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Disease, Beijing, 100071, China
| | - Hui-Xin Lv
- State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Disease, Beijing, 100071, China
| | - Man-Jin Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Disease, Beijing, 100071, China
| | - Dan Xing
- State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Disease, Beijing, 100071, China
| | - Tong-Yan Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Disease, Beijing, 100071, China
| | - Chun-Xiao Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230000, China. .,State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Disease, Beijing, 100071, China.
| |
Collapse
|
37
|
Coutinho-Abreu IV, Riffell JA, Akbari OS. Human attractive cues and mosquito host-seeking behavior. Trends Parasitol 2022; 38:246-264. [PMID: 34674963 PMCID: PMC10789295 DOI: 10.1016/j.pt.2021.09.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/29/2022]
Abstract
Female mosquitoes use chemical and physical cues, including vision, smell, heat, and humidity, to orient toward hosts. Body odors are produced by skin resident bacteria that convert metabolites secreted in sweat into odorants that confer the characteristic body scent. Mosquitoes detect these compounds using olfactory receptors in their antennal olfactory receptor neurons. Such information is further integrated with the senses of temperature and humidity, as well as vision, processed in the brain into a behavioral output, leading to host finding. Knowledge of human scent components unveils a variety of odorants that are attractive to mosquitoes, but also odor-triggering repellency. Finding ways to divert human-seeking behavior by female mosquitoes using odorants can possibly mitigate mosquito-borne pathogen transmission.
Collapse
Affiliation(s)
- Iliano V Coutinho-Abreu
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jeffrey A Riffell
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Omar S Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
38
|
Screening of olfactory genes related to blood-feeding behaviors in Culex pipiens quinquefasciatus and Culex pipiens molestus by transcriptome analysis. PLoS Negl Trop Dis 2022; 16:e0010204. [PMID: 35130307 PMCID: PMC8853563 DOI: 10.1371/journal.pntd.0010204] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/17/2022] [Accepted: 01/26/2022] [Indexed: 11/30/2022] Open
Abstract
Background Culex pipiens quinquefasciatus Say (Cx. quinquefasciatus) and Culex pipiens form molestus Forskal (Cx. molestus) in the Culex pipiens complex group show considerable differences in host seeking, blood feeding, mating behavior and in vector competence. Blood-feeding mosquito behaviors are closely related to their olfactory gene expression and olfactory gene repertoire composition. Comparing olfactory genes between these two subspecies with significantly different blood-feeding behaviors can support further research on the molecular mechanism of the Culex pipiens complex olfactory sensory system, providing a new approach for determining candidate attractant or repellent compounds. Methods Non-blood-feeding (NBF) and post-blood-feeding (PBF) olfactory system transcriptomes of the two subspecies were sequenced, and the biological functions of their differentially expressed genes were described by bioinformatics analysis. A quantitative polymerase chain reaction (qPCR) was applied to validate the RNA-seq data. The roles of particular olfactory receptors in Cx. quinquefasciatus blood-feeding behaviors were evaluated by RNAi. Results Five, 7, 24, and 3 Cx. quinquefasciatus-specific OBPs, Cx. molestus-specific OBPs, Cx. quinquefasciatus-specific ORs and Cx. molestus-specific ORs were identified, respectively. The majority of selected ORs were consistent with the predicted transcriptome sequencing results after qRT-PCR validation. OR5 was expressed only in Cx. quinquefasciatus, and OR65 was the only gene upregulated after blood feeding in Cx. molestus. The blood-feeding rates of the OR5 and OR78 dsRNA groups were significantly lower (4.3%±3.1% and 13.3%±11.5%) than those of the enhanced green fluorescence protein (EGFP) group (64.5%±8.7%). Conclusion Most OBPs and ORs were expressed in both subspecies but showed divergence in expression level. OR5 and OR65 might be species-specific expressed genes that regulate the olfactory behaviors of Cx. quinquefasciatus and Cx. molestus, respectively. The RNA interference of OR5 and OR78 could inhibit the blood-feeding behavior of Cx. quinquefasciatus, providing new targets for screening effective repellent compounds to control mosquito-borne diseases effectively and efficiently. The transcriptomic gene expression of the olfactory tissues of Cx. quinquefasciatusthe and Cx. molestus differ significantly. The majority of ORs and OBPs are expressed in both subspecies but are clearly differentiated in expression level. OR5 and OR65 may be species-specific olfactory genes expressed in Cx. quinquefasciatus and Cx. molestus, respectively. After the microinjection of OR5-dsRNA and OR78-dsRNA into female Cx. quinquefasciatus adults, the blood-feeding rate was significantly lower than that of the control group, suggesting that OR5 and OR78 are associated with the blood-feeding behavior of Cx. quinquefasciatus.
Collapse
|
39
|
Palatini U, Contreras CA, Gasmi L, Bonizzoni M. Endogenous viral elements in mosquito genomes: current knowledge and outstanding questions. CURRENT OPINION IN INSECT SCIENCE 2022; 49:22-30. [PMID: 34740858 DOI: 10.1016/j.cois.2021.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/26/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
Integrations from non-retroviral RNA viruses (nrEVEs) have been identified across several taxa, including mosquitoes. Amongst all Culicinae species, the viral vectors Aedes aegypti and Aedes albopictus stand out for their high number of nrEVEs. In addition, Aedes nrEVEs are enriched in piRNA clusters and generate piRNAs that can silence incoming viral genomes. As such, nrEVEs represent a new form of inherited antiviral immunity. To propel this discovery into novel transmission-blocking vector control strategies, a deeper understanding of nrEVE biology and evolution is essential because differences in the landscape of nrEVEs have been identified in wild-caught mosquitoes, the piRNA profile of nrEVEs is not homogeneous and nrEVEs outside piRNA clusters exist and are expressed at the mRNA level. Here we summarise current knowledge on nrEVEs in mosquitoes and we point out the many unanswered questions and potentials of these genomic elements.
Collapse
Affiliation(s)
- Umberto Palatini
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Claudia A Contreras
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Laila Gasmi
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Mariangela Bonizzoni
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy..
| |
Collapse
|
40
|
Yan R, Xu Z, Qian J, Zhou Q, Wu H, Liu Y, Guo Y, Zhu G, Chen M. Molecular and functional characterization of a conserved odorant receptor from Aedes albopictus. Parasit Vectors 2022; 15:43. [PMID: 35101118 PMCID: PMC8805257 DOI: 10.1186/s13071-022-05158-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/08/2022] [Indexed: 11/21/2022] Open
Abstract
Background The Asian tiger mosquito Aedes albopictus is a competent vector of several viral arboviruses including yellow fever, dengue fever, and chikungunya. Several vital mosquito behaviors (e.g., feeding, host-seeking, mating, and oviposition) are primarily dependent on the olfactory system for semiochemicals detection and discrimination. However, the limited number of studies hampers our understanding of the relationships between the Ae. albopictus olfactory system and the complex chemical world. Methods We performed RT-qPCR assay on antennae of Ae. albopictus mosquitoes of different sexes, ages and physiological states, and found odorant receptor 11 (AalbOr11) enriched in non-blood-fed female mosquitoes. Then, we examined the odorant preference with a panel of physiologically and behaviorally relevant odorants in Xenopus oocytes. Results The results indicated that AalbOr11 could be activated by ten aromatics, seven terpenes, six heterocyclics, and three alcohols. Furthermore, using post-RNA interference (RNAi) hand-in-cage assay, we found that reducing the transcript level of AalbOr11 affected the repellency activity mediated by (+)-fenchone at a lower concentration (0.01% v/v). Conclusions Using in vitro functional characterization, we found that AalbOr11 was a broadly tuned receptor. Moreover, we found that AalbOr11 shared a conserved odorant reception profile with homologous Anopheles gambiae Or11. In addition, RNAi and bioassay suggested that AablOr11 might be one of the receptors mediating (+)-fenchone repellency activity. Our study attempted to link odor-induced behaviors to odorant reception and may lay the foundation for identifying active semiochemicals for monitoring or controlling mosquito populations. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05158-1.
Collapse
|
41
|
Arora AK, Sim C, Severson DW, Kang DS. Random Forest Analysis of Impact of Abiotic Factors on Culex pipiens and Culex quinquefasciatus Occurrence. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.773360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Culex pipiens complex of mosquitoes are significant vectors of several pathogens resulting in infectious human diseases in North America, including but not limited to West Nile encephalitis, Rift Valley Fever, and Lymphatic filariasis. Among this complex are C. pipiens form pipiens and Culex quinquefasciatus. While morphologically similar, the mosquitoes exhibit unique life histories that suit them uniquely to divergent niches, wherein C. pipiens can thrive despite the cold winters of the northern United States and C. quinquefasciatus is able to survive periods of drought typical in the southern states. Here, Random Forests machine-learning algorithms were employed to model and explore which environmental parameters best explain mosquito occurrence in historical trapping data across the continental United States of America, and test correlation with abundance data. The models explained between 71 and 97% of the presence or absence of the two mosquitoes based on historical climatic data. The results of this study will improve vector management programs by explaining which environmental variables will provide the most accurate predictions of mosquito presence at a given site.
Collapse
|
42
|
Viglietta M, Bellone R, Blisnick AA, Failloux AB. Vector Specificity of Arbovirus Transmission. Front Microbiol 2021; 12:773211. [PMID: 34956136 PMCID: PMC8696169 DOI: 10.3389/fmicb.2021.773211] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022] Open
Abstract
More than 25% of human infectious diseases are vector-borne diseases (VBDs). These diseases, caused by pathogens shared between animals and humans, are a growing threat to global health with more than 2.5 million annual deaths. Mosquitoes and ticks are the main vectors of arboviruses including flaviviruses, which greatly affect humans. However, all tick or mosquito species are not able to transmit all viruses, suggesting important molecular mechanisms regulating viral infection, dissemination, and transmission by vectors. Despite the large distribution of arthropods (mosquitoes and ticks) and arboviruses, only a few pairings of arthropods (family, genus, and population) and viruses (family, genus, and genotype) successfully transmit. Here, we review the factors that might limit pathogen transmission: internal (vector genetics, immune responses, microbiome including insect-specific viruses, and coinfections) and external, either biotic (adult and larvae nutrition) or abiotic (temperature, chemicals, and altitude). This review will demonstrate the dynamic nature and complexity of virus–vector interactions to help in designing appropriate practices in surveillance and prevention to reduce VBD threats.
Collapse
Affiliation(s)
- Marine Viglietta
- Unit of Arboviruses and Insect Vectors, Institut Pasteur, Sorbonne Université, Paris, France
| | - Rachel Bellone
- Unit of Arboviruses and Insect Vectors, Institut Pasteur, Sorbonne Université, Paris, France
| | - Adrien Albert Blisnick
- Unit of Arboviruses and Insect Vectors, Institut Pasteur, Sorbonne Université, Paris, France
| | - Anna-Bella Failloux
- Unit of Arboviruses and Insect Vectors, Institut Pasteur, Sorbonne Université, Paris, France
| |
Collapse
|
43
|
Zamble BZH, Yao SS, Adja AM, Bakli M, Zoh DD, Mathieu-Daudé F, Assi SB, Remoue F, Almeras L, Poinsignon A. First evaluation of antibody responses to Culex quinquefasciatus salivary antigens as a serological biomarker of human exposure to Culex bites: A pilot study in Côte d'Ivoire. PLoS Negl Trop Dis 2021; 15:e0010004. [PMID: 34898609 PMCID: PMC8699949 DOI: 10.1371/journal.pntd.0010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/23/2021] [Accepted: 11/17/2021] [Indexed: 12/03/2022] Open
Abstract
Background Culex mosquitoes are vectors for a variety of pathogens of public health concern. New indicators of exposure to Culex bites are needed to evaluate the risk of transmission of associated pathogens and to assess the efficacy of vector control strategies. An alternative to entomological indices is the serological measure of antibodies specific to mosquito salivary antigens. This study investigated whether the human IgG response to both the salivary gland extract and the 30 kDa salivary protein of Culex quinquefasciatus may represent a proxy of human exposure to Culex bites. Methodology/Principal findings A multidisciplinary survey was conducted with children aged 1 to 14 years living in neighborhoods with varying exposure to Culex quinquefasciatus in the city of Bouaké, Côte d’Ivoire. Children living in sites with high exposure to Cx quinquefasciatus had a significantly higher IgG response to both salivary antigens compared with children living in the control site where only very few Culex were recorded. Moreover, children from any Culex-high exposed sites had significantly higher IgG responses only to the salivary gland extract compared with children from the control village, whereas no difference was noted in the anti-30 kDa IgG response. No significant differences were noted in the specific IgG responses between age and gender. Sites and the use of a bed net were associated with the level of IgG response to the salivary gland extract and to the 30 kDa antigen, respectively. Conclusions/Significance These findings suggest that the IgG response to Culex salivary gland extracts is suitable as proxy of exposure; however, the specificity to the Culex genus needs further investigation. The lower antigenicity of the 30 kDa recombinant protein represents a limitation to its use. The high specificity of this protein to the Culex genus makes it an attractive candidate and other specific antibody responses might be more relevant as a biomarker of exposure. These epidemiological observations may form a starting point for additional work on developing serological biomarkers of Culex exposure. The evaluation of exposure to mosquitoes is a key parameter in assessing the risk of transmission of associated pathogens, including zoonoses. Entomological methods represent the gold standard but have several limitations, and efforts are being made to develop new indicators to accurately assess human–Culex contact. This study showed the IgG response to Culex quinquefasciatus salivary gland extract is suitable proxy of exposure to Culex bites. The lower antigenicity of the 30 kDa recombinant protein represents a limitation to its use. The high specificity of this protein to the Culex genus makes it an attractive candidate and other isotypic antibody responses specific to this salivary antigen might be more relevant as a biomarker of exposure.
Collapse
Affiliation(s)
- Bi Zamble H. Zamble
- Institut Pierre Richet / Institut National de Santé Publique, Bouaké, Côte d’Ivoire
- MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France
- * E-mail:
| | - Serge S. Yao
- Institut Pasteur de Côte d’Ivoire, Abidjan, Côte d’Ivoire
| | - Akré M. Adja
- Institut Pierre Richet / Institut National de Santé Publique, Bouaké, Côte d’Ivoire
- UFR Biosciences, University Felix Houphouët Boigny, Abidjan, Côte d’Ivoire
| | | | - Dounin D. Zoh
- Institut Pierre Richet / Institut National de Santé Publique, Bouaké, Côte d’Ivoire
- UFR Biosciences, University Felix Houphouët Boigny, Abidjan, Côte d’Ivoire
| | | | - Serge B. Assi
- Institut Pierre Richet / Institut National de Santé Publique, Bouaké, Côte d’Ivoire
- Programme National de Lutte contre le Paludisme, Abidjan, Côte d’Ivoire
| | - Franck Remoue
- MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Lionel Almeras
- IHU Méditerranée Infection, Marseille, France
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France
| | - Anne Poinsignon
- Institut Pierre Richet / Institut National de Santé Publique, Bouaké, Côte d’Ivoire
- MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France
| |
Collapse
|
44
|
Ruzzante L, Feron R, Reijnders MJMF, Thiébaut A, Waterhouse RM. Functional constraints on insect immune system components govern their evolutionary trajectories. Mol Biol Evol 2021; 39:6459179. [PMID: 34893861 PMCID: PMC8788225 DOI: 10.1093/molbev/msab352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Roles of constraints in shaping evolutionary outcomes are often considered in the contexts of developmental biology and population genetics, in terms of capacities to generate new variants and how selection limits or promotes consequent phenotypic changes. Comparative genomics also recognizes the role of constraints, in terms of shaping evolution of gene and genome architectures, sequence evolutionary rates, and gene gains or losses, as well as on molecular phenotypes. Characterizing patterns of genomic change where putative functions and interactions of system components are relatively well described offers opportunities to explore whether genes with similar roles exhibit similar evolutionary trajectories. Using insect immunity as our test case system, we hypothesize that characterizing gene evolutionary histories can define distinct dynamics associated with different functional roles. We develop metrics that quantify gene evolutionary histories, employ these to characterize evolutionary features of immune gene repertoires, and explore relationships between gene family evolutionary profiles and their roles in immunity to understand how different constraints may relate to distinct dynamics. We identified three main axes of evolutionary trajectories characterized by gene duplication and synteny, maintenance/stability and sequence conservation, and loss and sequence divergence, highlighting similar and contrasting patterns across these axes amongst subsets of immune genes. Our results suggest that where and how genes participate in immune responses limit the range of possible evolutionary scenarios they exhibit. The test case study system of insect immunity highlights the potential of applying comparative genomics approaches to characterize how functional constraints on different components of biological systems govern their evolutionary trajectories.
Collapse
Affiliation(s)
- Livio Ruzzante
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Romain Feron
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Maarten J M F Reijnders
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Antonin Thiébaut
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| |
Collapse
|
45
|
Inductions of a CYP6 cluster conferring deltamethrin resistance in colonized and field-collected Culex pipiens pallens. Parasitol Res 2021; 121:75-85. [PMID: 34782935 DOI: 10.1007/s00436-021-07351-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/13/2021] [Indexed: 10/19/2022]
Abstract
Mosquitoes transmit many damaging vector-borne diseases. Unfortunately, the rise of insecticide resistance has become a major obstacle to mosquito control. A preliminary study showed that a CYP6 cluster is significant for deltamethrin resistance in colonized Culex pipiens pallens. Here, several field strains were collected to explore the association of the cluster in deltamethrin tolerance. We examined the effect of deltamethrin treatment on the cluster expression at a deltamethrin concentration of LC50 in these strains using five time points. As a result, both P450 induction and constitutive overexpression were associated with deltamethrin resistance. Deltamethrin could stimulate different expression sets in the P450 cluster in different strains, predominately correlated with the resistance level of the strain. Our results will offer more insight into working with the characterization of P450s related to insecticide resistance.
Collapse
|
46
|
Khalil SMS, Munawar K, Alahmed AM, Mohammed AMA. RNAi-Mediated Screening of Selected Target Genes Against Culex quinquefasciatus (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:2177-2185. [PMID: 34197598 DOI: 10.1093/jme/tjab114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Indexed: 06/13/2023]
Abstract
Culex quinquefasciatus, a member of the Culex pipiens complex, is widespread in Saudi Arabia and other parts of the world. It is a vector for lymphatic filariasis, Rift Valley fever, and West Nile virus. Studies have shown the deleterious effect of RNA interference (RNAi)-mediated knockdown of various lethal genes in model and agricultural pest insects. RNAi was proposed as a tool for mosquito control with a focus on Aedes aegypti and Anopheles gambiae. In this study, we examined the effect of RNAi of selected target genes on both larval mortality and adult emergence of Cx. quinquefasciatus through two delivery methods: soaking and nanoparticles. Ten candidate genes were selected for RNAi based on their known lethal effect in other insects. Disruption of three genes, chitin synthase-1, inhibitor of apoptosis 1, and vacuolar adenosine triphosphatase, resulted in the highest mortality among the selected genes using the two treatment methods. Silencing the other seven genes resulted in a medium to low mortality in both assays. These three genes are also active against a wide range of insects and could be used for RNAi-based mosquito control in the future.
Collapse
Affiliation(s)
- Sayed M S Khalil
- Plant Protection Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
- Agricultural Genetic Engineering Research Institute, Agricultural Research Center, 9 Gamaa Street, Giza, Egypt
| | - Kashif Munawar
- Plant Protection Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Azzam M Alahmed
- Plant Protection Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed M A Mohammed
- Agricultural Genetic Engineering Research Institute, Agricultural Research Center, 9 Gamaa Street, Giza, Egypt
| |
Collapse
|
47
|
Feng X, Kambic L, Nishimoto JH, Reed FA, Denton JA, Sutton JT, Gantz VM. Evaluation of Gene Knockouts by CRISPR as Potential Targets for the Genetic Engineering of the Mosquito Culex quinquefasciatus. CRISPR J 2021; 4:595-608. [PMID: 34280034 PMCID: PMC8392076 DOI: 10.1089/crispr.2021.0028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Culex quinquefasciatus mosquitoes are a globally widespread vector of several human and animal pathogens. Their biology and behavior allow them to thrive in proximity to urban areas, rendering them a constant public health threat. Their mixed bird/mammal feeding behavior further offers a vehicle for zoonotic pathogens transmission to people and, separately, poses a threat to the conservation of insular birds. The advent of CRISPR has led to the development of novel technologies for the genetic engineering of wild mosquito populations. Yet, research into Cx. quinquefasciatus has been lagging compared to other disease vectors. Here, we use this tool to disrupt a set of five pigmentation genes in Cx. quinquefasciatus that, when altered, lead to visible, homozygous-viable phenotypes. We further validate this approach in separate laboratories and in two distinct strains of Cx. quinquefasciatus that are relevant to potential future public health and bird conservation applications. We generate a double-mutant line, demonstrating the possibility of sequentially combining multiple such mutations in a single individual. Lastly, we target two loci, doublesex in the sex-determination pathway and proboscipedia, a hox gene, demonstrating the flexibility of these methods applied to novel targets. Our work provides a platform of seven validated loci that could be used for targeted mutagenesis in Cx. quinquefasciatus and the future development of genetic suppression strategies for this species. Furthermore, the mutant lines generated here could have widespread utility to the research community using this model organism, as they could be used as targets for transgene delivery, where a copy of the disrupted gene could be included as an easily scored transgenesis marker.
Collapse
Affiliation(s)
- Xuechun Feng
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, USA
| | - Lukas Kambic
- Department of Biology, University of Hawaiʻi at Hilo, Hilo, Hawaiʻi, USA
| | | | - Floyd A. Reed
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, Hawai‘i, USA
| | - Jai A. Denton
- Institute of Vector-borne Disease, University of Monash, Clayton, Australia
| | - Jolene T. Sutton
- Department of Biology, University of Hawaiʻi at Hilo, Hilo, Hawaiʻi, USA
| | - Valentino M. Gantz
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
48
|
Van Dam MH, Cabras AA, Henderson JB, Rominger AJ, Pérez Estrada C, Omer AD, Dudchenko O, Lieberman Aiden E, Lam AW. The Easter Egg Weevil (Pachyrhynchus) genome reveals syntenic patterns in Coleoptera across 200 million years of evolution. PLoS Genet 2021; 17:e1009745. [PMID: 34460814 PMCID: PMC8432895 DOI: 10.1371/journal.pgen.1009745] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 09/10/2021] [Accepted: 07/27/2021] [Indexed: 01/01/2023] Open
Abstract
Patterns of genomic architecture across insects remain largely undocumented or decoupled from a broader phylogenetic context. For instance, it is unknown whether translocation rates differ between insect orders. We address broad scale patterns of genome architecture across Insecta by examining synteny in a phylogenetic framework from open-source insect genomes. To accomplish this, we add a chromosome level genome to a crucial lineage, Coleoptera. Our assembly of the Pachyrhynchus sulphureomaculatus genome is the first chromosome scale genome for the hyperdiverse Phytophaga lineage and currently the largest insect genome assembled to this scale. The genome is significantly larger than those of other weevils, and this increase in size is caused by repetitive elements. Our results also indicate that, among beetles, there are instances of long-lasting (>200 Ma) localization of genes to a particular chromosome with few translocation events. While some chromosomes have a paucity of translocations, intra-chromosomal synteny was almost absent, with gene order thoroughly shuffled along a chromosome. This large amount of reshuffling within chromosomes with few inter-chromosomal events contrasts with patterns seen in mammals in which the chromosomes tend to exchange larger blocks of material more readily. To place our findings in an evolutionary context, we compared syntenic patterns across Insecta in a phylogenetic framework. For the first time, we find that synteny decays at an exponential rate relative to phylogenetic distance. Additionally, there are significant differences in decay rates between insect orders, this pattern was not driven by Lepidoptera alone which has a substantially different rate.
Collapse
Affiliation(s)
- Matthew H. Van Dam
- Entomology Department, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, San Francisco, California, United States of America
- Center for Comparative Genomics, Institute for Biodiversity Science and Sustainability, California Academy of Science, San Francisco, California, United States of America
| | - Analyn Anzano Cabras
- Coleoptera Research Center, Institute for Biodiversity and Environment, University of Mindanao, Matina, Davao City, Philippines
| | - James B. Henderson
- Center for Comparative Genomics, Institute for Biodiversity Science and Sustainability, California Academy of Science, San Francisco, California, United States of America
| | - Andrew J. Rominger
- School of Biology and Ecology, University of Maine, Orono, Maine, United States of America
| | - Cynthia Pérez Estrada
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Arina D. Omer
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Olga Dudchenko
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Athena W. Lam
- Center for Comparative Genomics, Institute for Biodiversity Science and Sustainability, California Academy of Science, San Francisco, California, United States of America
| |
Collapse
|
49
|
Azlan A, Halim MA, Mohamad F, Azzam G. Identification and characterization of long noncoding RNAs and their association with acquisition of blood meal in Culex quinquefasciatus. INSECT SCIENCE 2021; 28:917-928. [PMID: 32621332 DOI: 10.1111/1744-7917.12847] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
The Southern house mosquito, Culex quinquefasciatus (Cx. quinquefasciatus) is an important vector that transmit multiple diseases including West Nile encephalitis, Japanese encephalitis, St. Louis encephalitis and lymphatic filariasis. Long noncoding RNAs (lncRNAs) involve in many biological processes such as development, infection, and virus-host interaction. However, there is no systematic identification and characterization of lncRNAs in Cx. quinquefasciatus. Here, we report the first lncRNA identification in Cx. quinquefasciatus. By using 31 public RNA-seq datasets, a total of 4763 novel lncRNA transcripts were identified, of which 3591, 569, and 603 were intergenic, intronic, and antisense respectively. Examination of genomic features revealed that Cx. quinquefasciatus shared similar characteristics with other species such as short in length, low GC content, low sequence conservation, and low coding potential. Furthermore, compared to protein-coding genes, Cx. quinquefasciatus lncRNAs had lower expression values, and tended to be expressed in temporally specific fashion. In addition, weighted correlation network and functional annotation analyses showed that lncRNAs may have roles in blood meal acquisition of adult female Cx. quinquefasciatus mosquitoes. This study presents the first systematic identification and analysis of Cx. quinquefasciatus lncRNAs and their association with blood feeding. Results generated from this study will facilitate future investigation on the function of Cx. quinquefasciatus lncRNAs.
Collapse
Affiliation(s)
- Azali Azlan
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | | | - Faisal Mohamad
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Ghows Azzam
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
50
|
Alternatives to Improve Mosquito Eradication Behavior: A Systematic Review. JOURNAL OF RESEARCH DEVELOPMENT IN NURSING AND MIDWIFERY 2021. [DOI: 10.52547/jgbfnm.18.2.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023] Open
|