1
|
Nguyen VA, Wu Y, Ha Do TT, Dieu Nguyen LT, Sergeev AA, Zhu D, Valuckas V, Pham D, Son Bui HX, Hoang DM, Tung BS, Khuyen BX, Nguyen TB, Nguyen HS, Lam VD, Rogach AL, Ha ST, Le-Van Q. Micrometer-Resolution Fluorescence and Lifetime Mappings of CsPbBr 3 Nanocrystal Films Coupled with a TiO 2 Grating. J Phys Chem Lett 2024:11291-11299. [PMID: 39495752 DOI: 10.1021/acs.jpclett.4c02546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Enhancing light emission from perovskite nanocrystal (NC) films is essential in light-emitting devices, as their conventional stacks often restrict the escape of emitted light. This work addresses this challenge by employing a TiO2 grating to enhance light extraction and shape the emission of CsPbBr3 nanocrystal films. Angle-resolved photoluminescence (PL) demonstrated a 10-fold increase in emission intensity by coupling the Bloch resonances of the grating with the spontaneous emission of the perovskite NCs. Fluorescence lifetime imaging microscopy (FLIM) provided micrometer-resolution mapping of both PL intensity and lifetime across a large area, revealing a decrease in PL lifetime from 8.2 ns for NC films on glass to 6.1 ns on the TiO2 grating. Back focal plane (BFP) spectroscopy confirmed how the Bloch resonances transformed the unpolarized, spatially incoherent emission of NCs into polarized and directed light. These findings provide further insights into the interactions between dielectric nanostructures and perovskite NC films, offering possible pathways for designing better performing perovskite optoelectronic devices.
Collapse
Affiliation(s)
- Viet Anh Nguyen
- Center of Environmental Intelligence, College of Engineering and Computer Science, VinUniversity, Gia Lam district, Hanoi 14000, Vietnam
| | - Ye Wu
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, P. R. China
| | - Thi Thu Ha Do
- Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore
| | - Linh Thi Dieu Nguyen
- Center of Environmental Intelligence, College of Engineering and Computer Science, VinUniversity, Gia Lam district, Hanoi 14000, Vietnam
| | - Aleksandr A Sergeev
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong P. R. China
| | - Ding Zhu
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, P. R. China
| | - Vytautas Valuckas
- Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore
| | - Duong Pham
- Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan Street, Hanoi 11106, Vietnam
| | - Hai Xuan Son Bui
- Center of Environmental Intelligence, College of Engineering and Computer Science, VinUniversity, Gia Lam district, Hanoi 14000, Vietnam
- Graduate University of Science and Technology, 18 Hoang Quoc Viet Street, Hanoi 100000, Vietnam
| | - Duy Mai Hoang
- College of Health Science, VinUniversity, Gia Lam district, Hanoi 14000, Vietnam
| | - Bui Son Tung
- Graduate University of Science and Technology, 18 Hoang Quoc Viet Street, Hanoi 100000, Vietnam
| | - Bui Xuan Khuyen
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Hanoi 100000, Vietnam
| | - Thanh Binh Nguyen
- Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan Street, Hanoi 11106, Vietnam
| | - Hai Son Nguyen
- Univ Lyon, Ecole Centrale de Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, INL, UMR5270, Ecully 69130, France
- Institut Universitaire de France (IUF), 75231 Paris, France
| | - Vu Dinh Lam
- Graduate University of Science and Technology, 18 Hoang Quoc Viet Street, Hanoi 100000, Vietnam
| | - Andrey L Rogach
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, P. R. China
| | - Son Tung Ha
- Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore
| | - Quynh Le-Van
- Center of Environmental Intelligence, College of Engineering and Computer Science, VinUniversity, Gia Lam district, Hanoi 14000, Vietnam
| |
Collapse
|
2
|
Liu X, Kan Y, Kumar S, Kulikova LF, Davydov V, Agafonov V, Ding F, Bozhevolnyi SI. Off-Normal Polarized Single-Photon Emission with Anisotropic Holography Metasurfaces. NANO LETTERS 2024; 24:13867-13873. [PMID: 39297742 DOI: 10.1021/acs.nanolett.4c03258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Solid-state quantum emitters (QEs) with arbitrary direction emission and well-defined polarization are critical for scalable single-photon sources and quantum information processing. However, the design strategy for on-chip generation of off-normal photon emission with high-purity polarization characteristics has so far remained elusive. Here, we introduce the anisotropic holography metasurfaces for efficiently manipulating the emission direction and polarization of QE. The proposed method offers a flexible way to realize phase matching in surface plasmon scattering with spatially varying filling factors and provides an efficient route for designing advanced QE-coupled metasurfaces. By nonradiatively coupling nanodiamonds with metasurfaces, we experimentally demonstrate on-chip generation of well-collimated single-photon emission propagating along off-normal directions (i.e., 20° and 30°) featuring a divergence angle lower than 2.5°. The experimental average degree of linear polarization attains up to >0.98, thereby revealing markedly high polarization purity. This study facilitates applications of QEs in the deployment of integrated quantum networks.
Collapse
Affiliation(s)
- Xujing Liu
- Center for Nano Optics, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Yinhui Kan
- Center for Nano Optics, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Shailesh Kumar
- Center for Nano Optics, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Liudmila F Kulikova
- L. F. Vereshchagin Institute for High Pressure Physics, Russian Academy of Sciences, Moscow 108840, Russia
| | - Valeriy Davydov
- L. F. Vereshchagin Institute for High Pressure Physics, Russian Academy of Sciences, Moscow 108840, Russia
| | | | - Fei Ding
- Center for Nano Optics, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Sergey I Bozhevolnyi
- Center for Nano Optics, University of Southern Denmark, DK-5230 Odense M, Denmark
| |
Collapse
|
3
|
Chen M, Marguet S, Issa A, Jradi S, Couteau C, Fiorini-Debuisschert C, Douillard L, Soppera O, Ge D, Plain J, Zhou X, Dang C, Béal J, Kostcheev S, Déturche R, Xu T, Wei B, Bachelot R. Approaches for Positioning the Active Medium in Hybrid Nanoplasmonics. Focus on Plasmon-Assisted Photopolymerization. ACS PHOTONICS 2024; 11:3933-3953. [PMID: 39429857 PMCID: PMC11488146 DOI: 10.1021/acsphotonics.4c00868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 10/22/2024]
Abstract
Over the past 20 years, hybrid plasmonics for nanoemitters of light or for nanoabsorbers, based on weak or strong coupling between metallic nanocavities and active media (emissive or absorbing entities), have given rise to important research efforts. One of the main current challenges is the control of the nanoscale spatial distribution and associated symmetry of the active medium in the vicinity of the metallic nanoparticles. In this review, we first recall the main principles of weak and strong coupling by stressing the importance of controlling the spatial distribution of the active medium and present the main approaches developed for achieving this control. Nine different approaches are identified. We then focus our attention on one of them based on plasmonic photopolymerization and discuss the flexibility of this approach in terms of control of the spatial symmetry of the hybrid nanosystem metal-polymer nanoemitters and the resulting polarization dependence of the light emission. The different approaches are analyzed and compared with each other, and some future perspectives and challenges are finally discussed.
Collapse
Affiliation(s)
- Minyu Chen
- School
of Mechatronic Engineering and Automation, Key Lab of Advanced Display
and System Application, Ministry of Education, Shanghai University, Shanghai 2000072, PR China
- Light,
Nanomaterials & Nanotechnologies (L2n) Laboratory, CNRS UMR 7076. University of Technology of Troyes-UTT, 12 rue Marie Curie, Troyes Cedex F-10004, France
| | - Sylvie Marguet
- Université
Paris Saclay, CEA, CNRS, NIMBE, Gif sur Yvette F-91191, France
| | - Ali Issa
- Light,
Nanomaterials & Nanotechnologies (L2n) Laboratory, CNRS UMR 7076. University of Technology of Troyes-UTT, 12 rue Marie Curie, Troyes Cedex F-10004, France
| | - Safi Jradi
- Light,
Nanomaterials & Nanotechnologies (L2n) Laboratory, CNRS UMR 7076. University of Technology of Troyes-UTT, 12 rue Marie Curie, Troyes Cedex F-10004, France
| | - Christophe Couteau
- Light,
Nanomaterials & Nanotechnologies (L2n) Laboratory, CNRS UMR 7076. University of Technology of Troyes-UTT, 12 rue Marie Curie, Troyes Cedex F-10004, France
| | | | - Ludovic Douillard
- Université
Paris Saclay, CEA, CNRS, SPEC, Gif sur Yvette F-91191, France
| | - Olivier Soppera
- Université
de Haute Alsace, CNRS, IS2M UMR 7361, Mulhouse F-68100, France
- Université
de Strasbourg, Strasbourg cedex F-67081, France
| | - Dandan Ge
- Light,
Nanomaterials & Nanotechnologies (L2n) Laboratory, CNRS UMR 7076. University of Technology of Troyes-UTT, 12 rue Marie Curie, Troyes Cedex F-10004, France
| | - Jérôme Plain
- Light,
Nanomaterials & Nanotechnologies (L2n) Laboratory, CNRS UMR 7076. University of Technology of Troyes-UTT, 12 rue Marie Curie, Troyes Cedex F-10004, France
| | - Xuan Zhou
- Light,
Nanomaterials & Nanotechnologies (L2n) Laboratory, CNRS UMR 7076. University of Technology of Troyes-UTT, 12 rue Marie Curie, Troyes Cedex F-10004, France
| | - Cuong Dang
- CNRS-International-NTU-Thales
Research Alliance (CINTRA), IRL 3288, 50 Nanyang Drive, Singapore 637553, Singapore
- School
of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore
| | - Jérémie Béal
- Light,
Nanomaterials & Nanotechnologies (L2n) Laboratory, CNRS UMR 7076. University of Technology of Troyes-UTT, 12 rue Marie Curie, Troyes Cedex F-10004, France
| | - Sergei Kostcheev
- Light,
Nanomaterials & Nanotechnologies (L2n) Laboratory, CNRS UMR 7076. University of Technology of Troyes-UTT, 12 rue Marie Curie, Troyes Cedex F-10004, France
| | - Régis Déturche
- Light,
Nanomaterials & Nanotechnologies (L2n) Laboratory, CNRS UMR 7076. University of Technology of Troyes-UTT, 12 rue Marie Curie, Troyes Cedex F-10004, France
| | - Tao Xu
- School
of Mechatronic Engineering and Automation, Key Lab of Advanced Display
and System Application, Ministry of Education, Shanghai University, Shanghai 2000072, PR China
- Sino-European
School of Technology, Shanghai University, Shanghai 200444, PR China
| | - Bin Wei
- School
of Mechatronic Engineering and Automation, Key Lab of Advanced Display
and System Application, Ministry of Education, Shanghai University, Shanghai 2000072, PR China
| | - Renaud Bachelot
- Light,
Nanomaterials & Nanotechnologies (L2n) Laboratory, CNRS UMR 7076. University of Technology of Troyes-UTT, 12 rue Marie Curie, Troyes Cedex F-10004, France
- CNRS-International-NTU-Thales
Research Alliance (CINTRA), IRL 3288, 50 Nanyang Drive, Singapore 637553, Singapore
- School
of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore
- Sino-European
School of Technology, Shanghai University, Shanghai 200444, PR China
| |
Collapse
|
4
|
Ma J, Zhang H, Lou Y, Min Q, Wu D, Wang Y, Pang Y. Deterministic Assembly of Single-Emitter Plasmonic Antenna for Ultrahigh Photoluminescence Enhancement. NANO LETTERS 2024; 24:12605-12611. [PMID: 39347809 DOI: 10.1021/acs.nanolett.4c03677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Single-emitter nanoantennas play a crucial role in the fabrication of nanosensors and integrated sources. Since the coupling of single emitter to nanoantennas is largely based on stochastic methods, low qualified rate still hinders a massive deployment. Here, we proposed a deterministic, optical-force-driven method to achieve gap-plasmonic photoluminescence enhancement. Two deterministic steps are carried out in sequence: a composite nanoemitter is first synthesized by linking quantum dots to a silica-rapped gold nanoparticle, followed by an optical delivery of the nanoparticle into a nanoaperture in a gold film. We reason that the nanoparticle-in-nanoaperture (NPiNA) structure efficiently couples out-of-plane excitation light into a gap-plasmon via a transverse electromagnetic mode (TEM)-like transmission mode. An in situ photoluminescence measurement demonstrates a 3× brightness as compared to the nanoparticle-on-mirror (NPoM). This approach paves the way toward deterministic positioning of individual nanoparticles for a wide range of applications on nanophotonics structures on-a-chip.
Collapse
Affiliation(s)
- Jian Ma
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hongyuan Zhang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuanhao Lou
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qiuhong Min
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dan Wu
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yirui Wang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuanjie Pang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
5
|
Mateos D, Jover O, Varea M, Lauwaet K, Granados D, Miranda R, Fernandez-Dominguez AI, Martin-Jimenez A, Otero R. Directional picoantenna behavior of tunnel junctions formed by an atomic-scale surface defect. SCIENCE ADVANCES 2024; 10:eadn2295. [PMID: 39321296 PMCID: PMC11423879 DOI: 10.1126/sciadv.adn2295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/21/2024] [Indexed: 09/27/2024]
Abstract
Plasmonic nanoantennas have attracted much attention lately, among other reasons because of the directionality of light emitted by fluorophores coupled to their localized surface plasmon resonances. Plasmonic picocavities, i.e., cavities with mode volumes below 1 nm3, could act as enhanced antennas due to their extreme field confinement, but the directionality on their emission is difficult to control. In this work, we show that the plasmonic picocavity formed between the tip of a scanning tunneling microscope and a metal surface with a monoatomic step shows directional emission profiles and, thus, can be considered as a realization of a picoantenna. Electromagnetic calculations demonstrate that the observed directionality arises from the reshaping and tilting of the surface charges induced at the scanning tip due to the atomic step. Our results pave the way to exploiting picoantennas as an efficient way for the far-field probing and control of light-matter interactions below the nanoscale.
Collapse
Affiliation(s)
- David Mateos
- IMDEA Nanociencia, Madrid, Spain
- Departamento de Física de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Oscar Jover
- IMDEA Nanociencia, Madrid, Spain
- Departamento de Física de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel Varea
- IMDEA Nanociencia, Madrid, Spain
- Departamento de Física de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | - Rodolfo Miranda
- IMDEA Nanociencia, Madrid, Spain
- Departamento de Física de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio I Fernandez-Dominguez
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Roberto Otero
- IMDEA Nanociencia, Madrid, Spain
- Departamento de Física de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
6
|
Zurak L, Wolff C, Meier J, Kullock R, Mortensen NA, Hecht B, Feichtner T. Modulation of surface response in a single plasmonic nanoresonator. SCIENCE ADVANCES 2024; 10:eadn5227. [PMID: 39241079 PMCID: PMC11378946 DOI: 10.1126/sciadv.adn5227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/31/2024] [Indexed: 09/08/2024]
Abstract
Scattering of light by plasmonic nanoparticles is classically described using bulk material properties with infinitesimally thin boundaries. However, because of the quantum nature of electrons, real interfaces have finite thickness, leading to nonclassical surface effects that influence light scattering in small particles. Electrical gating offers a promising route to control and study these effects, as static screening charges reside at the boundary. We investigate the modulation of the surface response upon direct electrical charging of single plasmonic nanoresonators. By analyzing measured changes in light scattering within the framework of surface response functions, we find the resonance shift well accounted for by modulation of the classical in-plane surface current. Unexpectedly, we also observed a change in the resonance width, indicating reduced losses for negatively charged resonators. This effect is attributed to a nonclassical out-of-plane surface response, extending beyond pure spill-out effects. Our experiments pave the way for electrically driven plasmonic modulators and metasurfaces, leveraging control over nonclassical surface effects.
Collapse
Affiliation(s)
- Luka Zurak
- Nano-Optics and Biophotonics Group, Experimental Physics 5, Institute of Physics, University of Würzburg, Germany
| | - Christian Wolff
- POLIMA–Center for Polariton-driven Light-Matter Interactions, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Jessica Meier
- Nano-Optics and Biophotonics Group, Experimental Physics 5, Institute of Physics, University of Würzburg, Germany
| | - René Kullock
- Nano-Optics and Biophotonics Group, Experimental Physics 5, Institute of Physics, University of Würzburg, Germany
| | - N. Asger Mortensen
- POLIMA–Center for Polariton-driven Light-Matter Interactions, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
- Danish Institute for Advanced Study, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Bert Hecht
- Nano-Optics and Biophotonics Group, Experimental Physics 5, Institute of Physics, University of Würzburg, Germany
| | - Thorsten Feichtner
- Nano-Optics and Biophotonics Group, Experimental Physics 5, Institute of Physics, University of Würzburg, Germany
| |
Collapse
|
7
|
Roa S, Kaihara T, Pedano ML, Parsamyan H, Vavassori P. Laser polarization as a critical factor in the SERS-based molecular sensing performance of nano-gapped Au nanowires. NANOSCALE 2024; 16:15280-15297. [PMID: 39078267 DOI: 10.1039/d4nr00817k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Nowadays, Au dimer-based nanostructures are exhaustively studied due to their outstanding potential as plasmonic nanoantennas for future applications in high-sensitivity molecular sensing by Surface-Enhanced Raman Spectroscopy (SERS). In this work, we analyze nano-gapped Au nanowires (NWs) or Au-NW dimers for designing efficient nanoantennas, reporting an exhaustive study about dimer length and laser polarization orientation effects on their SERS-based molecular sensing performance. Arrays of nanoantennas with gaps of about 22 ± 4 nm, nominal square cross-sections of 60 nm × 60 nm, and different segment lengths from 300 nm up to 1200 nm were fabricated by Au evaporation and subsequent e-beam lithography. The SERS performance was studied by confocal Raman microscopy using a linearly-polarized 633 nm laser. A critical impact of the polarization alignment on the spectral resolution of the studied Raman marker imprint was observed. The results show that the Raman signal is maximized by aligning the polarization orientation with the nanowire long axis, it is reduced by increasing the relative angle, and it is abruptly minimized when both are perpendicular. These observations were consistent with numerical simulations carried out by the FDTD method, which predicts a similar dependence between the orientation of linearly-polarized light and electric-near field amplification in the nano-gap zone. Our results provide an interesting paradigm and relevant insights in determining the role of laser polarization in the Raman signal enhancement in nano-gapped Au nanowires, showing the key role of this measurement condition on the SERS-based molecular sensing efficiency of this kind of nanostructure.
Collapse
Affiliation(s)
- Simón Roa
- Instituto de Nanociencia y Nanotecnología (CNEA - CONICET), Nodo Bariloche, Av. Bustillo 9500, C.P. 8400, S.C. de Bariloche, Río Negro, Argentina.
- Laboratorio de Fotónica y Optoelectrónica, Centro Atómico Bariloche, Av. Bustillo 9500, 8400 S. C. de Bariloche, Río Negro, Argentina
| | - Terunori Kaihara
- CIC nanoGUNE BRTA, Tolosa Hiribidea, 76, 20018 Donostia-San Sebastián, Spain
| | - María Laura Pedano
- Instituto de Nanociencia y Nanotecnología (CNEA - CONICET), Nodo Bariloche, Av. Bustillo 9500, C.P. 8400, S.C. de Bariloche, Río Negro, Argentina.
- Laboratorio de Fotónica y Optoelectrónica, Centro Atómico Bariloche, Av. Bustillo 9500, 8400 S. C. de Bariloche, Río Negro, Argentina
- Instituto Balseiro, CNEA-Universidad Nacional de Cuyo (UNCUYO), Av. E. Bustillo 9500, C.P. 8400, S. C. de Bariloche, Río Negro, Argentina
| | - Henrik Parsamyan
- Institute of Physics, Yerevan State University, 1 Alex Manoogian, Yerevan 0025, Armenia
| | - Paolo Vavassori
- CIC nanoGUNE BRTA, Tolosa Hiribidea, 76, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| |
Collapse
|
8
|
Kioumourtzoglou S, Hof S, Kalk C, Toth V, Görlin M, Nováková J, Sá J. Nanomaterials as a Service (NaaS) concept: on-demand protocols for volume synthesis of nanomaterials. NANOSCALE HORIZONS 2024; 9:1364-1371. [PMID: 38887909 DOI: 10.1039/d4nh00174e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Establishing scalable nanomaterials synthesis protocols remains a bottleneck towards their commercialisation and, thus, a topic of intense research and development. Herein, we present an automated machine-learning microfluidic platform capable of synthesising optically active nanomaterials from target spectra originating from prior experience, theorised or published. Implementing unsupervised Bayesian optimisation with Gaussian processes reduces the optimisation time and the need for prior knowledge to initiate the process. Using PTFE tubing and connectors enables facile change in reactor design. Ultimately, the platform substitutes the labour-intensive trial-and-error synthesis and provides a pathway to standardisation and volume synthesis, slowing down the translation and commercialisation of high-quality nanomaterials. As a proof-of-concept, Ag nanoplates and Prussian-blue nanoparticle protocols were optimised and validated for volume production.
Collapse
Affiliation(s)
- Stylianos Kioumourtzoglou
- Department of Chemistry-Ånsgtröm, Physical-Chemistry Division, Uppsala University, Lägerhyddsvägen 1, Uppsala 751 20, Sweden.
| | - Sebastian Hof
- Department of Chemistry-Ånsgtröm, Physical-Chemistry Division, Uppsala University, Lägerhyddsvägen 1, Uppsala 751 20, Sweden.
| | - Cécile Kalk
- Department of Chemistry-Ånsgtröm, Physical-Chemistry Division, Uppsala University, Lägerhyddsvägen 1, Uppsala 751 20, Sweden.
| | - Viktor Toth
- Toptal, LLC, 2810 N. Church St #36879, Wilmington, DE 19802-4447, USA
| | - Mikaela Görlin
- Department of Chemistry-Ånsgtröm, Structural Chemistry Division, Uppsala University, Lägerhyddsvägen 1, Uppsala 751 20, Sweden
| | - Jaroslava Nováková
- Department of Surface and Plasma Science, Charles University, V holesovickach 2, Prague 8, 18000, Czech Republic
| | - Jacinto Sá
- Department of Chemistry-Ånsgtröm, Physical-Chemistry Division, Uppsala University, Lägerhyddsvägen 1, Uppsala 751 20, Sweden.
- Institute of Physical Chemistry, Polish Academy of Sciences, Marcina Kasprzaka 44/52, Warsaw 01-224, Poland
| |
Collapse
|
9
|
Xu K, Liu JC, Wang WW, Zhou LL, Ma C, Guan X, Wang FR, Li J, Jia CJ, Yan CH. Catalytic properties of trivalent rare-earth oxides with intrinsic surface oxygen vacancy. Nat Commun 2024; 15:5751. [PMID: 38982071 PMCID: PMC11233603 DOI: 10.1038/s41467-024-49981-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024] Open
Abstract
Oxygen vacancy (Ov) is an anionic defect widely existed in metal oxide lattice, as exemplified by CeO2, TiO2, and ZnO. As Ov can modify the band structure of solid, it improves the physicochemical properties such as the semiconducting performance and catalytic behaviours. We report here a new type of Ov as an intrinsic part of a perfect crystalline surface. Such non-defect Ov stems from the irregular hexagonal sawtooth-shaped structure in the (111) plane of trivalent rare earth oxides (RE2O3). The materials with such intrinsic Ov structure exhibit excellent performance in ammonia decomposition reaction with surface Ru active sites. Extremely high H2 formation rate has been achieved at ~1 wt% of Ru loading over Sm2O3, Y2O3 and Gd2O3 surface, which is 1.5-20 times higher than reported values in the literature. The discovery of intrinsic Ov suggests great potentials of applying RE oxides in heterogeneous catalysis and surface chemistry.
Collapse
Affiliation(s)
- Kai Xu
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Jin-Cheng Liu
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing, 100084, China
- Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Wei-Wei Wang
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Lu-Lu Zhou
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Chao Ma
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Xuze Guan
- Department of Chemical Engineering, University College London, Roberts Building, Torrington Place, London, WC1E 7JE, UK
| | - Feng Ryan Wang
- Department of Chemical Engineering, University College London, Roberts Building, Torrington Place, London, WC1E 7JE, UK.
| | - Jun Li
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing, 100084, China.
- Fundamental Science Center of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, China.
| | - Chun-Jiang Jia
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
| | - Chun-Hua Yan
- Beijing National Laboratory for Molecular Sciences, State Key Lab of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Lab in Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing, 100871, China
| |
Collapse
|
10
|
Yao K, Fang J, Jiang T, Briggs AF, Skipper AM, Kim Y, Belkin MA, Korgel BA, Bank SR, Zheng Y. Tuning Multipolar Mie Scattering of Particles on a Dielectric-Covered Mirror. ACS NANO 2024; 18:16545-16555. [PMID: 38874350 DOI: 10.1021/acsnano.3c12893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Optically resonant particles are key building blocks of many nanophotonic devices such as optical antennas and metasurfaces. Because the functionalities of such devices are largely determined by the optical properties of individual resonators, extending the attainable responses from a given particle is highly desirable. Practically, this is usually achieved by introducing an asymmetric dielectric environment. However, commonly used simple substrates have limited influences on the optical properties of the particles atop. Here, we show that the multipolar scattering of silicon microspheres can be effectively modified by placing the particles on a dielectric-covered mirror, which tunes the coupling between the Mie resonances of microspheres and the standing waves and waveguide modes in the dielectric spacer. This tunability allows selective excitation, enhancement, suppression, and even elimination of the multipolar resonances and enables scattering at extended wavelengths, providing transformative opportunities in controlling light-matter interactions for various applications. We further demonstrate with experiments the detection of molecular fingerprints by single-particle mid-infrared spectroscopy and with simulations strong optical repulsive forces that could elevate the particles from a substrate.
Collapse
Affiliation(s)
- Kan Yao
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jie Fang
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Taizhi Jiang
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Andrew F Briggs
- Microelectronics Research Center and Department of Electrical and Computer Engineering, The University of Texas at Austin, 10100 Burnet Rd. Bldg. 160, Austin, Texas 78758, United States
| | - Alec M Skipper
- Microelectronics Research Center and Department of Electrical and Computer Engineering, The University of Texas at Austin, 10100 Burnet Rd. Bldg. 160, Austin, Texas 78758, United States
| | - Youngsun Kim
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Mikhail A Belkin
- Walter Schottky Institute, Technical University of Munich, Garching 85748, Germany
| | - Brian A Korgel
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Seth R Bank
- Microelectronics Research Center and Department of Electrical and Computer Engineering, The University of Texas at Austin, 10100 Burnet Rd. Bldg. 160, Austin, Texas 78758, United States
| | - Yuebing Zheng
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
11
|
Cecconello A, Cencini A, Rilievo G, Tonolo F, Litti L, Vianello F, Willner I, Magro M. Chiroplasmonic DNA Scaffolded "Fusilli" Structures. NANO LETTERS 2024; 24:5944-5951. [PMID: 38588536 DOI: 10.1021/acs.nanolett.3c04943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
DNA is an ideal template for the design of nanoarchitectures with molecular-like features. Here, we present an optimized assembly strategy for the concatenation of DNA quasi-rings into long scaffolds. Ionic strength, which played a major role during self-assembly, produced the expected high quality only at 15 mM MgCl2. Atomic force microscopy (AFM) characterization showed several micrometer long tubular structures that were used as templates for the positioning of plasmonic nanoparticles (NPs) along a three-dimensional helical path using DNA tethers. As imaged by high-resolution scanning transmission electron microscopy (HR-STEM) and modeled by theoretical calculations, the NPs distributed into a "fusilli" fashion (i.e., a helical pasta shape), displaying chiroptical activity as revealed by a bisignated CD absorption, centered at the plasmon resonance wavelength. The present structures contribute to enrich the ever-developing arena of chiroplasmonic DNA-based nanomaterials and demonstrate that large assemblies are attainable for their future application to develop metamaterials.
Collapse
Affiliation(s)
- Alessandro Cecconello
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy
| | - Aura Cencini
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy
| | - Graziano Rilievo
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy
| | - Federica Tonolo
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy
| | - Lucio Litti
- Department of Chemical Sciences, University of Padova, via marzolo 1, 35131 Padova, Italy
| | - Fabio Vianello
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy
| | - Itamar Willner
- Institute of Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Massimiliano Magro
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy
| |
Collapse
|
12
|
Zhang Z, Xu J, Liu K, Zhu Z. Magnetic transverse unidirectional scattering and longitudinal displacement sensing in silicon nanodimer. OPTICS EXPRESS 2024; 32:19279-19293. [PMID: 38859066 DOI: 10.1364/oe.521725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/23/2024] [Indexed: 06/12/2024]
Abstract
Unidirectional scattering, crucial for manipulating light at the nanoscale, has wide-ranging applications from optical manipulation to sensing. While traditionally achieved through interactions between electric multipoles or between electric and magnetic multipoles, reports on unidirectional scattering driven purely by magnetic multipoles are limited. In this study, we undertake a theoretical exploration of transverse unidirectional scattering induced by magnetic multipoles, employing tightly focused azimuthally polarized beams (APBs) in interaction with a silicon nanodimer comprising two non-concentric nanorings. Through numerical simulations and theoretical analysis, we validate the transverse unidirectional scattering, predominantly governed by magnetic dipolar and quadrupolar resonances. Moreover, the directionality of this unidirectional scattering shows a strong correlation with the longitudinal displacement of the nanodimer within a specific range, showcasing its potential for longitudinal displacement sensing. Our study advances optical scattering control in nanostructures and guides the design of on-chip longitudinal displacement sensors.
Collapse
|
13
|
Jeong M, Ko B, Jung C, Kim J, Jang J, Mun J, Lee J, Yun S, Kim S, Rho J. Printable Light-Emitting Metasurfaces with Enhanced Directional Photoluminescence. NANO LETTERS 2024; 24:5783-5790. [PMID: 38695397 DOI: 10.1021/acs.nanolett.4c00871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Nanoimprint lithography is gaining popularity as a cost-efficient way to reproduce nanostructures in large quantities. Recent advances in nanoimprinting lithography using high-index nanoparticles have demonstrated replication of photonic devices, but it is difficult to confer special properties on nanostructures beyond general metasurfaces. Here, we introduce a novel method for fabricating light-emitting metasurfaces using nanoimprinting lithography. By utilizing quantum dots embedded in resin, we successfully imprint dielectric metasurfaces that function simultaneously as both emitters and resonators. This approach to incorporating quantum dots into metasurfaces demonstrates an improvement in photoluminescence characteristics compared to the situation where quantum dots and metasurfaces are independently incorporated. Design of the metasurface is specifically tailored to support photonic modes within the emission band of quantum dots with a large enhancement of photoluminescence. This study indicates that nanoimprinting lithography has the capability to construct nanostructures using functionalized nanoparticles and could be used in various fields of nanophotonic applications.
Collapse
Affiliation(s)
- Minsu Jeong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Byoungsu Ko
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Chunghwan Jung
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jaekyung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jaehyuck Jang
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Centre for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
| | - Jungho Mun
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Centre for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
| | - Jihae Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Suhyeon Yun
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Sejeong Kim
- Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Centre for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
- National Institute of Nanomaterials Technology (NINT), Pohang 37673, Republic of Korea
| |
Collapse
|
14
|
Kan Y, Liu X, Kumar S, Bozhevolnyi SI. Tempering Multichannel Photon Emission from Emitter-Coupled Holographic Metasurfaces. ACS PHOTONICS 2024; 11:1584-1591. [PMID: 38645997 PMCID: PMC11027142 DOI: 10.1021/acsphotonics.3c01745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 04/23/2024]
Abstract
On-chip manipulation of photon emission from quantum emitters (QEs) is crucial for quantum nanophotonics and advanced optical applications. At the same time, the general design strategy is still elusive, especially for fully exploring the degrees of freedom of multiple channels. Here, the vectorial scattering holography (VSH) approach developed recently for flexibly designing QE-coupled metasurfaces is extended to tempering the strength of QE emission into a particular channel. The VSH power is demonstrated by designing, fabricating, and optically characterizing on-chip QE sources emitted into six differently oriented propagation channels, each representing the entangled state of orthogonal circular polarizations with different topological charges and characterized with a specific relative strength. We postulate that the demonstration of tempered multichannel photon emission from QE-coupled metasurfaces significantly broadens the possibilities provided by the holographic metasurface platform, especially those relevant for high-dimensional quantum information processing.
Collapse
Affiliation(s)
- Yinhui Kan
- Center for Nano Optics, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Xujing Liu
- Center for Nano Optics, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Shailesh Kumar
- Center for Nano Optics, University of Southern Denmark, Odense M DK-5230, Denmark
| | | |
Collapse
|
15
|
Yu X, Weeber JC, Markey L, Arocas J, Bouhelier A, Leray A, Colas des Francs G. Nano antenna-assisted quantum dots emission into high-index planar waveguide. NANOTECHNOLOGY 2024; 35:265201. [PMID: 38522099 DOI: 10.1088/1361-6528/ad3742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/24/2024] [Indexed: 03/26/2024]
Abstract
Integrated quantum photonic circuits require the efficient coupling of photon sources to photonic waveguides. Hybrid plasmonic/photonic platforms are a promising approach, taking advantage of both plasmon modal confinement for efficient coupling to a nearby emitter and photonic circuitry for optical data transfer and processing. In this work, we established directional quantum dot (QD) emission coupling to a planar TiO2waveguide assisted by a Yagi-Uda antenna. Antenna on waveguide is first designed by scaling radio frequency dimensions to nano-optics, taking into account the hybrid plasmonic/photonic platform. Design is then optimized by full numerical simulations. We fabricate the antenna on a TiO2planar waveguide and deposit a few QDs close to the Yagi-Uda antenna. The optical characterization shows clear directional coupling originating from antenna effect. We estimate the coupling efficiency and directivity of the light emitted into the waveguide.
Collapse
Affiliation(s)
- X Yu
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), CNRS UMR 6303, Université de Bourgogne, BP 47870, F-21078 Dijon, France
| | - J-C Weeber
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), CNRS UMR 6303, Université de Bourgogne, BP 47870, F-21078 Dijon, France
| | - L Markey
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), CNRS UMR 6303, Université de Bourgogne, BP 47870, F-21078 Dijon, France
| | - J Arocas
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), CNRS UMR 6303, Université de Bourgogne, BP 47870, F-21078 Dijon, France
| | - A Bouhelier
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), CNRS UMR 6303, Université de Bourgogne, BP 47870, F-21078 Dijon, France
| | - A Leray
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), CNRS UMR 6303, Université de Bourgogne, BP 47870, F-21078 Dijon, France
| | - G Colas des Francs
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), CNRS UMR 6303, Université de Bourgogne, BP 47870, F-21078 Dijon, France
| |
Collapse
|
16
|
Peng W, Zhou JW, Li ML, Sun L, Zhang YJ, Li JF. Construction of nanoparticle-on-mirror nanocavities and their applications in plasmon-enhanced spectroscopy. Chem Sci 2024; 15:2697-2711. [PMID: 38404398 PMCID: PMC10882497 DOI: 10.1039/d3sc05722d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/11/2024] [Indexed: 02/27/2024] Open
Abstract
Plasmonic nanocavities exhibit exceptional capabilities in visualizing the internal structure of a single molecule at sub-nanometer resolution. Among these, an easily manufacturable nanoparticle-on-mirror (NPoM) nanocavity is a successful and powerful platform for demonstrating various optical phenomena. Exciting advances in surface-enhanced spectroscopy using NPoM nanocavities have been developed and explored, including enhanced Raman, fluorescence, phosphorescence, upconversion, etc. This perspective emphasizes the construction of NPoM nanocavities and their applications in achieving higher enhancement capabilities or spatial resolution in dark-field scattering spectroscopy and plasmon-enhanced spectroscopy. We describe a systematic framework that elucidates how to meet the requirements for studying light-matter interactions through the creation of well-designed NPoM nanocavities. Additionally, it provides an outlook on the challenges, future development directions, and practical applications in the field of plasmon-enhanced spectroscopy.
Collapse
Affiliation(s)
- Wei Peng
- College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Jing-Wen Zhou
- College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Mu-Lin Li
- College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Lan Sun
- College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Yue-Jiao Zhang
- College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Jian-Feng Li
- College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University Zhangzhou 363000 China
| |
Collapse
|
17
|
Wang Z, Tang J, Han J, Xia J, Ma T, Chen XW. Bright Nonblinking Photoluminescence with Blinking Lifetime from a Nanocavity-Coupled Quantum Dot. NANO LETTERS 2024; 24:1761-1768. [PMID: 38261791 DOI: 10.1021/acs.nanolett.3c04661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Colloidal quantum dots (QDs) are excellent luminescent nanomaterials for many optoelectronic applications. However, photoluminescence blinking has limited their practical use. Coupling QDs to plasmonic nanostructures shows potential in suppressing blinking. However, the underlying mechanism remains unclear and debated, hampering the development of bright nonblinking dots. Here, by deterministically coupling a QD to a plasmonic nanocavity, we clarify the mechanism and demonstrate unprecedented single-QD brightness. In particular, we report for the first time that a blinking QD could obtain nonblinking photoluminescence with a blinking lifetime through coupling to the nanocavity. We show that the plasmon-enhanced radiative decay outcompetes the nonradiative Auger process, enabling similar quantum yields for charged and neutral excitons in the same dot. Meanwhile, we demonstrate a record photon detection rate of 17 MHz from a colloidal QD, indicating an experimental photon generation rate of more than 500 MHz. These findings pave the way for ultrabright nonblinking QDs, benefiting diverse QD-based applications.
Collapse
Affiliation(s)
- Zhiyuan Wang
- School of Physics, Wuhan National Laboratory for Optoelectronics, Institute for Quantum Science and Engineering and Hubei Key Laboratory of Gravitation and Quantum Physics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Jianwei Tang
- School of Physics, Wuhan National Laboratory for Optoelectronics, Institute for Quantum Science and Engineering and Hubei Key Laboratory of Gravitation and Quantum Physics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Wuhan Institute of Quantum Technology, Wuhan 430206, P. R. China
| | - Jiahao Han
- School of Physics, Wuhan National Laboratory for Optoelectronics, Institute for Quantum Science and Engineering and Hubei Key Laboratory of Gravitation and Quantum Physics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Juan Xia
- School of Physics, Wuhan National Laboratory for Optoelectronics, Institute for Quantum Science and Engineering and Hubei Key Laboratory of Gravitation and Quantum Physics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Tianzi Ma
- School of Physics, Wuhan National Laboratory for Optoelectronics, Institute for Quantum Science and Engineering and Hubei Key Laboratory of Gravitation and Quantum Physics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xue-Wen Chen
- School of Physics, Wuhan National Laboratory for Optoelectronics, Institute for Quantum Science and Engineering and Hubei Key Laboratory of Gravitation and Quantum Physics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Wuhan Institute of Quantum Technology, Wuhan 430206, P. R. China
| |
Collapse
|
18
|
Dai C, Wan S, Li Z, Shi Y, Zhang S, Li Z. Switchable unidirectional emissions from hydrogel gratings with integrated carbon quantum dots. Nat Commun 2024; 15:845. [PMID: 38287059 PMCID: PMC10825124 DOI: 10.1038/s41467-024-45284-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/19/2024] [Indexed: 01/31/2024] Open
Abstract
Directional emission of photoluminescence despite its incoherence is an attractive technique for light-emitting fields and nanophotonics. Optical metasurfaces provide a promising route for wavefront engineering at the subwavelength scale, enabling the feasibility of unidirectional emission. However, current directional emission strategies are mostly based on static metasurfaces, and it remains a challenge to achieve unidirectional emissions tuning with high performance. Here, we demonstrate quantum dots-hydrogel integrated gratings for actively switchable unidirectional emission with simultaneously a narrow divergence angle less than 1.5° and a large diffraction angle greater than 45°. We further demonstrate that the grating efficiency alteration leads to a more than 7-fold tuning of emission intensity at diffraction order due to the variation of hydrogel morphology subject to change in ambient humidity. Our proposed switchable emission strategy can promote technologies of active light-emitting devices for radiation control and optical imaging.
Collapse
Affiliation(s)
- Chenjie Dai
- Electronic Information School, Wuhan University, Wuhan, 430072, China
| | - Shuai Wan
- Electronic Information School, Wuhan University, Wuhan, 430072, China
| | - Zhe Li
- Electronic Information School, Wuhan University, Wuhan, 430072, China
| | - Yangyang Shi
- Electronic Information School, Wuhan University, Wuhan, 430072, China
| | - Shuang Zhang
- Department of Physics, The University of Hong Kong, Hong Kong, 999077, China.
| | - Zhongyang Li
- Electronic Information School, Wuhan University, Wuhan, 430072, China.
- Wuhan Institute of Quantum Technology, Wuhan, 430206, China.
- School of Microelectronics, Wuhan University, Wuhan, 430072, China.
- Suzhou Institute of Wuhan University, Suzhou, 215123, China.
| |
Collapse
|
19
|
Liu X, Kan Y, Kumar S, Kulikova LF, Davydov VA, Agafonov VN, Zhao C, Bozhevolnyi SI. Ultracompact Single-Photon Sources of Linearly Polarized Vortex Beams. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304495. [PMID: 37543837 DOI: 10.1002/adma.202304495] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/25/2023] [Indexed: 08/07/2023]
Abstract
Ultracompact chip-integrated single-photon sources of collimated beams with polarization-encoded states are crucial for integrated quantum technologies. However, most of currently available single-photon sources rely on external bulky optical components to shape the polarization and phase front of emitted photon beams. Efficient integration of quantum emitters with beam shaping and polarization encoding functionalities remains so far elusive. Here, ultracompact single-photon sources of linearly polarized vortex beams based on chip-integrated quantum emitter-coupled metasurfaces are presented, which are meticulously designed by fully exploiting the potential of nanobrick-arrayed metasurfaces. The authors first demonstrate on-chip single-photon generation of high-purity linearly polarized vortex beams with prescribed topological charges of 0, - 1, and +1. The multiplexing of single-photon emission channels with orthogonal linear polarizations carrying different topological charges are further realized and their entanglement is demonstarated. The work illustrates the potential and feasibility of ultracompact quantum emitter-coupled metasurfaces as a new quantum optics platform for realizing chip-integrated high-dimensional single-photon sources.
Collapse
Affiliation(s)
- Xujing Liu
- Institute of Engineering Thermophysics, Shanghai Jiao Tong University, Shanghai, 200240, China
- Center for Nano Optics, University of Southern Denmark, Odense M, DK-5230, Denmark
| | - Yinhui Kan
- Center for Nano Optics, University of Southern Denmark, Odense M, DK-5230, Denmark
| | - Shailesh Kumar
- Center for Nano Optics, University of Southern Denmark, Odense M, DK-5230, Denmark
| | - Liudmilla F Kulikova
- L.F. Vereshchagin Institute for High Pressure Physics, Russian Academy of Sciences, Moscow, 142190, Russia
| | - Valery A Davydov
- L.F. Vereshchagin Institute for High Pressure Physics, Russian Academy of Sciences, Moscow, 142190, Russia
| | | | - Changying Zhao
- Institute of Engineering Thermophysics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sergey I Bozhevolnyi
- Center for Nano Optics, University of Southern Denmark, Odense M, DK-5230, Denmark
| |
Collapse
|
20
|
Farrow T, Dhawan AR, Marshall AR, Ghorbal A, Son W, Snaith HJ, Smith JM, Taylor RA. Ultranarrow Line Width Room-Temperature Single-Photon Source from Perovskite Quantum Dot Embedded in Optical Microcavity. NANO LETTERS 2023; 23:10667-10673. [PMID: 38016047 PMCID: PMC10722583 DOI: 10.1021/acs.nanolett.3c02058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023]
Abstract
Ultranarrow bandwidth single-photon sources operating at room-temperature are of vital importance for viable optical quantum technologies at scale, including quantum key distribution, cloud-based quantum information processing networks, and quantum metrology. Here we show a room-temperature ultranarrow bandwidth single-photon source generating single-mode photons at a rate of 5 MHz based on an inorganic CsPbI3 perovskite quantum dot embedded in a tunable open-access optical microcavity. When coupled to an optical cavity mode, the quantum dot room-temperature emission becomes single-mode, and the spectrum narrows down to just ∼1 nm. The low numerical aperture of the optical cavities enables efficient collection of high-purity single-mode single-photon emission at room-temperature, offering promising performance for photonic and quantum technology applications. We measure 94% pure single-photon emission in a single-mode under pulsed and continuous-wave (CW) excitation.
Collapse
Affiliation(s)
- Tristan Farrow
- Department
of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Amit R. Dhawan
- Department
of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom
| | - Ashley R. Marshall
- Department
of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Alexander Ghorbal
- Department
of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Wonmin Son
- Sogang
University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, South
Korea
| | - Henry J. Snaith
- Department
of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Jason M. Smith
- Department
of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom
| | - Robert A. Taylor
- Department
of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
21
|
Roy P, Zhu S, Claude JB, Liu J, Wenger J. Ultraviolet Resonant Nanogap Antennas with Rhodium Nanocube Dimers for Enhancing Protein Intrinsic Autofluorescence. ACS NANO 2023; 17:22418-22429. [PMID: 37931219 PMCID: PMC10690780 DOI: 10.1021/acsnano.3c05008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/07/2023] [Indexed: 11/08/2023]
Abstract
Plasmonic optical nanoantennas offer compelling solutions for enhancing light-matter interactions at the nanoscale. However, until now, their focus has been mainly limited to the visible and near-infrared regions, overlooking the immense potential of the ultraviolet (UV) range, where molecules exhibit their strongest absorption. Here, we present the realization of UV resonant nanogap antennas constructed from paired rhodium nanocubes. Rhodium emerges as a robust alternative to aluminum, offering enhanced stability in wet environments and ensuring reliable performance in the UV range. Our results showcase the nanoantenna's ability to enhance the UV autofluorescence of label-free streptavidin and hemoglobin proteins. We achieve significant enhancements of the autofluorescence brightness per protein by up to 120-fold and reach zeptoliter detection volumes, enabling UV autofluorescence correlation spectroscopy (UV-FCS) at high concentrations of several tens of micromolar. We investigate the modulation of fluorescence photokinetic rates and report excellent agreement between the experimental results and numerical simulations. This work expands the applicability of plasmonic nanoantennas to the deep UV range, unlocking the investigation of label-free proteins at physiological concentrations.
Collapse
Affiliation(s)
- Prithu Roy
- Aix
Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, AMUTech, 13013 Marseille, France
| | - Siyuan Zhu
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jean-Benoît Claude
- Aix
Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, AMUTech, 13013 Marseille, France
| | - Jie Liu
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jérôme Wenger
- Aix
Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, AMUTech, 13013 Marseille, France
| |
Collapse
|
22
|
Mohtashami Y, Heki LK, Wong MS, Smith JM, Ewing JJ, Mitchell WJ, Nakamura S, DenBaars SP, Schuller JA. Metasurface Light-Emitting Diodes with Directional and Focused Emission. NANO LETTERS 2023; 23:10505-10511. [PMID: 37955625 DOI: 10.1021/acs.nanolett.3c03272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Phased-array metasurfaces enable the imprinting of complex beam structures onto coherent incident light. Recent demonstrations of photoluminescent phased-array metasurfaces highlight possibilities for achieving similar control in electroluminescent light-emitting diodes (LEDs). However, phased-array metasurface LEDs have not yet been demonstrated owing to the complexities of integrating device stacks and electrodes within nanopatterned metasurfaces. Here, we demonstrate metasurface LEDs that emit directional or focused light. We first design nanoribbon elements that achieve the requisite phase control within typical LED device constraints. Subsequently, we demonstrate unidirectional emission that can be engineered at will via phased-array concepts. This control is further exhibited in metasurface LEDs that directly emit focused beams. Finally, we show that these metasurface LEDs exhibit external quantum efficiencies (EQEs) superior to those of unpatterned LEDs. These results demonstrate metasurface designs that are compatible with high-EQE metal-free LED devices and portend opportunities for new classes of metasurface LEDs that directly produce complex beam structures.
Collapse
Affiliation(s)
- Yahya Mohtashami
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106, United States
| | - Larry K Heki
- Materials Department, University of California, Santa Barbara, California 93106, United States
| | - Matthew S Wong
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Solid State Lighting and Energy Electronics Center, University of California, Santa Barbara, California 93106, United States
| | - Jordan M Smith
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Solid State Lighting and Energy Electronics Center, University of California, Santa Barbara, California 93106, United States
| | - Jacob J Ewing
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Solid State Lighting and Energy Electronics Center, University of California, Santa Barbara, California 93106, United States
| | - William J Mitchell
- Nanofabrication Facility, University of California, Santa Barbara, California 93106, United States
| | - Shuji Nakamura
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106, United States
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Solid State Lighting and Energy Electronics Center, University of California, Santa Barbara, California 93106, United States
| | - Steven P DenBaars
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106, United States
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Solid State Lighting and Energy Electronics Center, University of California, Santa Barbara, California 93106, United States
| | - Jon A Schuller
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
23
|
Lv J, Ren Y, Wang D, Xu X, Liu W, Wang J, Liu C, Chu PK. Multi-wavelength unidirectional forward scattering properties of the arrow-shaped gallium phosphide nanoantenna. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2023; 40:2034-2044. [PMID: 38038069 DOI: 10.1364/josaa.496501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/30/2023] [Indexed: 12/02/2023]
Abstract
An arrow-shaped gallium phosphide nanoantenna exhibits both near-field electric field enhancement and far-field unidirectional scattering, and the interference conditions involve electric and magnetic quadrupoles as well as toroidal dipoles. By using long-wavelength approximation and exact multipole decomposition, the interference conditions required for far-field unidirectional transverse light scattering and backward near-zero scattering at multiple wavelengths are determined. The near-field properties are excellent, as exemplified by large Purcell factors of 4.5×109 for electric dipole source excitation, 464.68 for magnetic dipole source excitation, and 700 V/m for the field enhancement factor. The degree of enhancement of unidirectional scattering is affected by structural parameters such as the angle and thickness of the nanoantenna. The arrow-shaped nanoantenna is an efficient platform to enhance the electric field and achieve high directionality of light scattering. Moreover, the nanostructure enables flexible manipulation of light waves and materials, giving rise to superior near-field and far-field performances, which are of great importance pertaining to the practicability and application potential of optical antennas in applications such as spectroscopy, sensing, displays, and optoelectronic devices.
Collapse
|
24
|
Kan Y, Liu X, Kumar S, Bozhevolnyi SI. Multichannel Quantum Emission with On-Chip Emitter-Coupled Holographic Metasurfaces. ACS NANO 2023; 17:20308-20314. [PMID: 37791727 DOI: 10.1021/acsnano.3c06309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Multichannel quantum emission is in high demand for advanced quantum photonic applications such as quantum communications, quantum computing, and quantum cryptography. However, to date, the most common way for shaping photon emission from quantum emitters (QEs) is to utilize free-standing (external) bulky optical components. Here, we develop the multichannel holography approach for flexibly designing on-chip QE-coupled metasurfaces that make use of nonradiatively QE-excited surface plasmon polaritons for generating far-field quantum emission, which propagates in designed directions carrying specific spin and orbital angular momenta (SAM and OAM, respectively). We further design, fabricate, and characterize on-chip quantum light sources of multichannel quantum emission encoded with different SAMs and OAMs. The holography-based inverse design approach developed and demonstrated on-chip quantum light sources with multiple degrees of freedoms, thereby enabling a powerful platform for quantum nanophotonics, especially relevant for advanced quantum photonic applications, e.g., high-dimensional quantum information processing.
Collapse
Affiliation(s)
- Yinhui Kan
- Center for Nano Optics, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Xujing Liu
- Center for Nano Optics, University of Southern Denmark, DK-5230 Odense M, Denmark
- Institute of Engineering Thermophysics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shailesh Kumar
- Center for Nano Optics, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Sergey I Bozhevolnyi
- Center for Nano Optics, University of Southern Denmark, DK-5230 Odense M, Denmark
| |
Collapse
|
25
|
Yeşilyurt ATM, Sanz-Paz M, Zhu F, Wu X, Sunil KS, Acuna GP, Huang JS. Unidirectional Meta-Emitters Based on the Kerker Condition Assembled by DNA Origami. ACS NANO 2023; 17:19189-19196. [PMID: 37721852 DOI: 10.1021/acsnano.3c05649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Optical quantum emitters near nanostructures have access to additional relaxation channels and thus exhibit structure-dependent emission properties, including quantum yield and emission directionality. A well-engineered quantum emitter-plasmonic nanostructure hybrid can be considered as an optical meta-emitter consisting of a transmitting nanoantenna driven by an optical-frequency generator. In this work, the DNA origami fabrication method is used to construct ultracompact unidirectional meta-emitters composed of a plasmonic trimer nanoantenna driven by a single dye molecule. The origami is designed to bring the dye to the gap to simultaneously excite the electric and magnetic dipole modes of the trimer nanoantenna. The interference of these modes fulfills the Kerker condition at the fluorophore's emission band, enabling unidirectional emission. We report unidirectional emission from a single molecule with a front-to-back ratio of up to 10.7 dB accompanied by a maximum emission enhancement of 23-fold.
Collapse
Affiliation(s)
| | - Maria Sanz-Paz
- Department of Physics, University of Fribourg, Chemin du Musée 3, Fribourg CH 1700, Switzerland
| | - Fangjia Zhu
- Department of Physics, University of Fribourg, Chemin du Musée 3, Fribourg CH 1700, Switzerland
| | - Xiaofei Wu
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, Jena 07745, Germany
| | - Karthika Suma Sunil
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, Jena 07745, Germany
| | - Guillermo P Acuna
- Department of Physics, University of Fribourg, Chemin du Musée 3, Fribourg CH 1700, Switzerland
- National Center of Competence in Research Bio-Inspired Materials, University of Fribourg, Chemin des Verdiers 4, Fribourg CH-1700, Switzerland
| | - Jer-Shing Huang
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, Jena 07745, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Jena 07743, Germany
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
26
|
Peng W, Wang YH, He J, Yang JL, Wang J, Radjenovic PM, Lin JS, Yang Z, Li MD, Zhang FL, Zhang YJ, Yi J, Li JF. Tailoring Fluorescence-Phosphorescence Emission with a Single Nanocavity. J Am Chem Soc 2023; 145:20381-20388. [PMID: 37668654 DOI: 10.1021/jacs.3c05496] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Realizing the dual emission of fluorescence-phosphorescence in a single system is an extremely important topic in the fields of biological imaging, sensing, and information encryption. However, the phosphorescence process is usually in an inherently "dark state" at room temperature due to the involvement of spin-forbidden transition and the rapid non-radiative decay rate of the triplet state. In this work, we achieved luminescent harvesting of the dark phosphorescence processes by coupling singlet-triplet molecular emitters with a rationally designed plasmonic cavity. The achieved Purcell enhancement effect of over 1000-fold allows for overcoming the triplet forbidden transitions, enabling radiation enhancement with selectable emission wavelengths. Spectral results and theoretical simulations indicate that the fluorescence-phosphorescence peak position can be intelligently tailored in a broad range of wavelengths, from visible to near-infrared. Our study sheds new light on plasmonic tailoring of molecular emission behavior, which is crucial for advancing research on plasmon-tailored fluorescence-phosphorescence spectroscopy in optoelectronics and biomedicine.
Collapse
Affiliation(s)
- Wei Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Materials, College of Electronic Science and Engineering, College of Energy, College of Physical Science and Technology, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen 361005, China
| | - Yao-Hui Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Materials, College of Electronic Science and Engineering, College of Energy, College of Physical Science and Technology, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen 361005, China
| | - Jiaxing He
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Jing-Liang Yang
- College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang 550025, China
| | - Jingyu Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Materials, College of Electronic Science and Engineering, College of Energy, College of Physical Science and Technology, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen 361005, China
| | - Petar M Radjenovic
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Materials, College of Electronic Science and Engineering, College of Energy, College of Physical Science and Technology, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen 361005, China
| | - Jia-Sheng Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Materials, College of Electronic Science and Engineering, College of Energy, College of Physical Science and Technology, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen 361005, China
| | - Zhilin Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Materials, College of Electronic Science and Engineering, College of Energy, College of Physical Science and Technology, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen 361005, China
| | - Ming-De Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Fan-Li Zhang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Yue-Jiao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Materials, College of Electronic Science and Engineering, College of Energy, College of Physical Science and Technology, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen 361005, China
| | - Jun Yi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Materials, College of Electronic Science and Engineering, College of Energy, College of Physical Science and Technology, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen 361005, China
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Materials, College of Electronic Science and Engineering, College of Energy, College of Physical Science and Technology, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen 361005, China
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
27
|
Montagnac M, Brûlé Y, Cuche A, Poumirol JM, Weber SJ, Müller J, Larrieu G, Larrey V, Fournel F, Boisron O, Masenelli B, Colas des Francs G, Agez G, Paillard V. Control of light emission of quantum emitters coupled to silicon nanoantenna using cylindrical vector beams. LIGHT, SCIENCE & APPLICATIONS 2023; 12:239. [PMID: 37726280 PMCID: PMC10509260 DOI: 10.1038/s41377-023-01229-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/22/2023] [Accepted: 07/13/2023] [Indexed: 09/21/2023]
Abstract
Light emission of europium (Eu3+) ions placed in the vicinity of optically resonant nanoantennas is usually controlled by tailoring the local density of photon states (LDOS). We show that the polarization and shape of the excitation beam can also be used to manipulate light emission, as azimuthally or radially polarized cylindrical vector beam offers to spatially shape the electric and magnetic fields, in addition to the effect of silicon nanorings (Si-NRs) used as nanoantennas. The photoluminescence (PL) mappings of the Eu3+ transitions and the Si phonon mappings are strongly dependent of both the excitation beam and the Si-NR dimensions. The experimental results of Raman scattering and photoluminescence are confirmed by numerical simulations of the near-field intensity in the Si nanoantenna and in the Eu3+-doped film, respectively. The branching ratios obtained from the experimental PL maps also reveal a redistribution of the electric and magnetic emission channels. Our results show that it could be possible to spatially control both electric and magnetic dipolar emission of Eu3+ ions by switching the laser beam polarization, hence the near field at the excitation wavelength, and the electric and magnetic LDOS at the emission wavelength. This paves the way for optimized geometries taking advantage of both excitation and emission processes.
Collapse
Affiliation(s)
| | - Yoann Brûlé
- ICB, Université de Bourgogne, CNRS, Dijon, France
| | | | | | | | - Jonas Müller
- LAAS-CNRS, Université de Toulouse, Toulouse, France
| | | | | | | | - Olivier Boisron
- Université de Lyon, Université Lyon 1, CNRS UMR 5510, ILM, Villeurbanne, France
| | - Bruno Masenelli
- Université de Lyon, INSA Lyon, CNRS, Ecole Centrale de Lyon, Université Lyon 1, CPE, UMR 5270, INL, Villeurbanne, France
| | | | - Gonzague Agez
- CEMES-CNRS, Université de Toulouse, Toulouse, France
| | | |
Collapse
|
28
|
Hati S, Yang X, Gupta P, Muhoberac BB, Pu J, Zhang J, Sardar R. Hybrid Metal-Ligand Interfacial Dipole Engineering of Functional Plasmonic Nanostructures for Extraordinary Responses of Optoelectronic Properties. ACS NANO 2023; 17:17499-17515. [PMID: 37579222 DOI: 10.1021/acsnano.3c06047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Programmable manipulation of inorganic-organic interfacial electronic properties of ligand-functionalized plasmonic nanoparticles (NPs) is the key parameter dictating their applications such as catalysis, photovoltaics, and biosensing. Here we report the localized surface plasmon resonance (LSPR) properties of gold triangular nanoprisms (Au TNPs) in solid state that are functionalized with dipolar, conjugated ligands. A library of thiocinnamate ligands with varying surface dipole moments were used to functionalize TNPs, which results in ∼150 nm reversible tunability of LSPR peak wavelength with significant peak broadening (∼230 meV). The highly adjustable chemical system of thiocinnamate ligands is capable of shifting the Au work function down to 2.4 eV versus vacuum, i.e., ∼2.9 eV lower than a clean Au (111) surface, and this work function can be modulated up to 3.3 eV, the largest value reported to date through the formation of organothiolate SAMs on Au. Interestingly, the magnitude of plasmonic responses and work function modulation is NP shape dependent. By combining first-principles calculations and experiments, we have established the mechanism of direct wave function delocalization of electrons residing near the Fermi level into hybrid electronic states that are mostly dictated by the inorganic-organic interfacial dipole moments. We determine that both interfacial dipole and hybrid electronic states, and vinyl conjugation together are the key to achieving such extraordinary changes in the optoelectronic properties of ligand-functionalized, plasmonic NPs. The present study provides a quantitative relationship describing how specifically constructed organic ligands can be used to control the interfacial properties of NPs and thus the plasmonic and electronic responses of these functional plasmonics for a wide range of plasmon-driven applications.
Collapse
Affiliation(s)
- Sumon Hati
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Xuehui Yang
- Department of Mechanical and Energy engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Prashant Gupta
- Department of Mechanical Engineering, Washington University, St. Louis, Missouri 63130, United States
| | - Barry B Muhoberac
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Jingzhi Pu
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Jing Zhang
- Department of Mechanical and Energy engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Rajesh Sardar
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| |
Collapse
|
29
|
Rodriguez A, Priya P, Cardozo de Oliveira ER, Harouri A, Sagnes I, Pastier F, Le Gratiet L, Morassi M, Lemaître A, Lanco L, Esmann M, Lanzillotti-Kimura ND. Brillouin Scattering Selection Rules in Polarization-Sensitive Photonic Resonators. ACS PHOTONICS 2023; 10:1687-1693. [PMID: 37363633 PMCID: PMC10289090 DOI: 10.1021/acsphotonics.3c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Indexed: 06/28/2023]
Abstract
Spontaneous Brillouin scattering in bulk crystalline solids is governed by the intrinsic selection rules locking the relative polarization of the excitation laser and the Brillouin signal. In this work, we independently manipulate the polarization of the two by employing polarization-sensitive optical resonances in elliptical micropillars to induce a wavelength-dependent rotation of the polarization states. Consequently, a polarization-based filtering technique allows us to measure acoustic phonons with frequencies difficult to access with standard Brillouin and Raman spectroscopies. This technique can be extended to other polarization-sensitive optical systems, such as plasmonic, photonic, or birefringent nanostructures, and finds applications in optomechanical, optoelectronic, and quantum optics devices.
Collapse
Affiliation(s)
- Anne Rodriguez
- Université
Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 10 Boulevard Thomas Gobert, 91120 Palaiseau, France
| | - Priya Priya
- Université
Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 10 Boulevard Thomas Gobert, 91120 Palaiseau, France
| | - Edson R. Cardozo de Oliveira
- Université
Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 10 Boulevard Thomas Gobert, 91120 Palaiseau, France
| | - Abdelmounaim Harouri
- Université
Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 10 Boulevard Thomas Gobert, 91120 Palaiseau, France
| | - Isabelle Sagnes
- Université
Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 10 Boulevard Thomas Gobert, 91120 Palaiseau, France
| | - Florian Pastier
- Quandela
SAS, 10 Boulevard Thomas
Gobert, 91120 Palaiseau, France
| | - Luc Le Gratiet
- Université
Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 10 Boulevard Thomas Gobert, 91120 Palaiseau, France
| | - Martina Morassi
- Université
Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 10 Boulevard Thomas Gobert, 91120 Palaiseau, France
| | - Aristide Lemaître
- Université
Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 10 Boulevard Thomas Gobert, 91120 Palaiseau, France
| | - Loïc Lanco
- Université
Paris-Cité, CNRS, Centre de Nanosciences et de Nanotechnologies, 10 Boulevard Thomas Gobert, 91120 Palaiseau, France
| | - Martin Esmann
- Université
Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 10 Boulevard Thomas Gobert, 91120 Palaiseau, France
| | | |
Collapse
|
30
|
Lan X, Shi X, Zhang L, Guo Q, Zou Z, Zhu G, Li X, Du W, Wang T. Highly polarized light emission from hybrid of quantum dots and plasmons in the intermediate coupling regime. OPTICS LETTERS 2023; 48:3095-3098. [PMID: 37262289 DOI: 10.1364/ol.489777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023]
Abstract
Colloidal semiconductor quantum dots (QDs), with a size tunable bandgap and remarkably high quantum efficiency, have been recognized as ideal light sources in quantum information and light emitting devices. For light sources, besides the emission intensity and spectral profile, the degree of polarization (DoP) is an essential parameter. Here, by embedding a monolayer of QDs inside the nanogap between a bottom Au mirror and a top Ag nanowire, we have demonstrated highly polarized light emission from the QDs with an average DoP of 0.89. In addition to the anisotropic photoluminescence (PL) intensity, the PL spectra are distinct at different polarizations, with an asymmetric spectral shape or even two-peak features. Such an anisotropic emission behavior arises from the coupling between the QDs and the largely confined and polarization-dependent gap-plasmons in the Au/QD/Ag nanocavities in the intermediate coupling regime. Our results demonstrate the possibility of achieving highly polarized light sources by coupling spherical QDs to single anisotropic plasmonic nanocavities, to provide new opportunities in the future design of polarized QD-based display devices.
Collapse
|
31
|
Yu YJ, Kuai Y, Fan YT, Zhu LF, Kong FF, Tian XJ, Jing SH, Zhang L, Zhang DG, Zhang Y, Zhang Y, Dong ZC. Back focal plane imaging for light emission from a tunneling junction in a low-temperature ultrahigh-vacuum scanning tunneling microscope. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:063703. [PMID: 37862523 DOI: 10.1063/5.0147401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/04/2023] [Indexed: 10/22/2023]
Abstract
We report the design and realization of the back focal plane (BFP) imaging for the light emission from a tunnel junction in a low-temperature ultrahigh-vacuum (UHV) scanning tunneling microscope (STM). To achieve the BFP imaging in a UHV environment, a compact "all-in-one" sample holder is designed and fabricated, which allows us to integrate the sample substrate with the photon collection units that include a hemisphere solid immersion lens and an aspherical collecting lens. Such a specially designed holder enables the characterization of light emission both within and beyond the critical angle and also facilitates the optical alignment inside a UHV chamber. To test the performance of the BFP imaging system, we first measure the photoluminescence from dye-doped polystyrene beads on a thin Ag film. A double-ring pattern is observed in the BFP image, arising from two kinds of emission channels: strong surface plasmon coupled emissions around the surface plasmon resonance angle and weak transmitted fluorescence maximized at the critical angle, respectively. Such an observation also helps to determine the emission angle for each image pixel in the BFP image and, more importantly, proves the feasibility of our BFP imaging system. Furthermore, as a proof-of-principle experiment, electrically driven plasmon emissions are used to demonstrate the capability of the constructed BFP imaging system for STM induced electroluminescence measurements. A single-ring pattern is obtained in the BFP image, which reveals the generation and detection of the leakage radiation from the surface plasmon propagating on the Ag surface. Further analyses of the BFP image provide valuable information on the emission angle of the leakage radiation, the orientation of the radiating dipole, and the plasmon wavevector. The UHV-BFP imaging technique demonstrated here opens new routes for future studies on the angular distributed emission and dipole orientation of individual quantum emitters in UHV.
Collapse
Affiliation(s)
- Yun-Jie Yu
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Yan Kuai
- Advanced Laser Technology Laboratory of Anhui Province, Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yong-Tao Fan
- Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Liang-Fu Zhu
- Advanced Laser Technology Laboratory of Anhui Province, Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Fan-Fang Kong
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiao-Jun Tian
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shi-Hao Jing
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Li Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Dou-Guo Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
- Advanced Laser Technology Laboratory of Anhui Province, Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yao Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
- School of Physics and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
- School of Physics and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhen-Chao Dong
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
- School of Physics and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
32
|
Li S, Ai R, Chui KK, Fang Y, Lai Y, Zhuo X, Shao L, Wang J, Lin HQ. Routing the Exciton Emissions of WS 2 Monolayer with the High-Order Plasmon Modes of Ag Nanorods. NANO LETTERS 2023; 23:4183-4190. [PMID: 37158482 PMCID: PMC10214448 DOI: 10.1021/acs.nanolett.3c00054] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/02/2023] [Indexed: 05/10/2023]
Abstract
Locally routing the exciton emissions in two-dimensional (2D) transition-metal dichalcogenides along different directions at the nanophotonic interface is of great interest in exploiting the promising 2D excitonic systems for functional nano-optical components. However, such control has remained elusive. Herein we report on a facile plasmonic approach for electrically controlled spatial modulation of the exciton emissions in a WS2 monolayer. The emission routing is enabled by the resonance coupling between the WS2 excitons and the multipole plasmon modes in individual silver nanorods placed on a WS2 monolayer. Different from prior demonstrations, the routing effect can be modulated by the doping level of the WS2 monolayer, enabling electrical control. Our work takes advantage of the high-quality plasmon modes supported by simple rod-shaped metal nanocrystals for the angularly resolved manipulation of 2D exciton emissions. Active control is achieved, which offers great opportunities for the development of nanoscale light sources and nanophotonic devices.
Collapse
Affiliation(s)
- Shasha Li
- Beijing
Computational Science Research Center, Beijing 100193, People’s Republic of China
- Department
of Physics, The Chinese University of Hong
Kong, Shatin, Hong Kong SAR 999077, People’s Republic of China
| | - Ruoqi Ai
- Department
of Physics, The Chinese University of Hong
Kong, Shatin, Hong Kong SAR 999077, People’s Republic of China
| | - Ka Kit Chui
- Department
of Physics, The Chinese University of Hong
Kong, Shatin, Hong Kong SAR 999077, People’s Republic of China
| | - Yini Fang
- Department
of Physics, The Chinese University of Hong
Kong, Shatin, Hong Kong SAR 999077, People’s Republic of China
| | - Yunhe Lai
- Department
of Physics, The Chinese University of Hong
Kong, Shatin, Hong Kong SAR 999077, People’s Republic of China
| | - Xiaolu Zhuo
- School
of Science and Engineering, The Chinese
University of Hong Kong (Shenzhen), Shenzhen 518172, People’s Republic of China
| | - Lei Shao
- State
Key Laboratory of Optoelectronic Materials and Technologies, Guangdong
Province Key Laboratory of Display Material and Technology, School
of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, People’s
Republic of China
| | - Jianfang Wang
- Department
of Physics, The Chinese University of Hong
Kong, Shatin, Hong Kong SAR 999077, People’s Republic of China
| | - Hai-Qing Lin
- Beijing
Computational Science Research Center, Beijing 100193, People’s Republic of China
| |
Collapse
|
33
|
Zhang Z, Xiang Y, Xu W, Guo C, Liu K, Zhu Z. Broadband transverse unidirectional scattering and large range nanoscale displacement measuring based on the interaction between a tightly focused azimuthally polarized beam and a silicon hollow nanostructure. OPTICS EXPRESS 2023; 31:15372-15383. [PMID: 37157640 DOI: 10.1364/oe.486386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We theoretically propose a broadband transverse unidirectional scattering scheme based on the interaction between a tightly focused azimuthally polarized beam (APB) and a silicon hollow nanostructure. When the nanostructure is located at a specific position in the focal plane of the APB, the transverse scattering fields can be decomposed into contributions from transverse components of the electric dipoles, longitudinal components of magnetic dipoles and magnetic quadrupole components. In order to satisfy the transverse Kerker conditions for these multipoles within a wide infrared spectrum, we design a novel nanostructure with hollow parallelepiped shape. Through numerical simulations and theoretical calculations, this scheme exhibits efficient transverse unidirectional scattering effects in the wavelength range of 1440 nm to 1820 nm (380 nm). In addition, by adjusting the position of the nanostructure on the x-axis, efficient nanoscale displacement sensing with large measuring ranges can be achieved. After analyses, the results prove that our research may have potential applications in the field of high-precision on-chip displacement sensors.
Collapse
|
34
|
Wang L, Man Z, Liu Y, Yu Y, Dong C, Bian J, Lu YQ, Lu Z, Zhang W. Smart Magnetic Optical Antenna for Automatic Nanoalignment and Photon Beaming from Prepatterned Single Quantum Dot Nanospot. NANO LETTERS 2023; 23:1539-1545. [PMID: 36749037 DOI: 10.1021/acs.nanolett.2c04981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We present a unidirectional dielectric optical antenna, which can be chemically synthesized and controlled by magnetic fields. By applying magnetic fields, we successfully aligned an optical antenna on a prepatterned quantum dot nanospot with accuracy better than 40 nm. It confined the fluorescence emission into a 16-degree wide beam and enhanced the signal by 11.8 times. Moreover, the position of the antenna, and consequently the beam direction, can be controlled by simply adjusting the direction of the magnetic fields. Theoretical analyses show that this magnetic alignment technique is stable and accurate, providing a new strategy for building high-performance tunable nanophotonic devices.
Collapse
Affiliation(s)
- Luping Wang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, MOE Key laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing 210023, PR China
| | - Zaiqin Man
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, MOE Key laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing 210023, PR China
| | - Yang Liu
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, MOE Key laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing 210023, PR China
| | - Ying Yu
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, MOE Key laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing 210023, PR China
| | - Chenyu Dong
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, MOE Key laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing 210023, PR China
| | - Jie Bian
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, MOE Key laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing 210023, PR China
| | - Yan-Qing Lu
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, MOE Key laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing 210023, PR China
| | - Zhenda Lu
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, MOE Key laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing 210023, PR China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing 210023, PR China
| | - Weihua Zhang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, MOE Key laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing 210023, PR China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing 210023, PR China
| |
Collapse
|
35
|
Damasceno GHB, Carvalho WOF, Cerqueira Sodré A, Oliveira ON, Mejía-Salazar JR. Magnetoplasmonic Nanoantennas for On-Chip Reconfigurable Optical Wireless Communications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8617-8623. [PMID: 36689678 DOI: 10.1021/acsami.2c19376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
On-chip wireless communications require optical nanoantennas with dynamically tunable radiation patterns, which may allow for higher integration with multiple nanoantennas instead of two fixed nanoantennas in existing approaches. In this paper, we introduce a concept to enable active manipulation of radiated beam steering using applied magnetic fields. The proposed system consists of a highly directive Yagi-Uda-like arrangement of magnetoplasmonic nanoribs made of Co6Ag94 and immersed in SiO2. Numerical demonstration of the tilting of the radiated beam from the nanoantenna on its plane is provided with full-wave electromagnetic simulations using the finite element method. The tilt direction of the radiated beam can be changed by reversing the magnetization direction, while the conventional plasmonic nanoantenna pattern is recovered by demagnetizing the system. The geometry of the nanoantenna can be tailored to work at optical or infrared wavelengths, but a proof of concept for λ = 700 nm is conducted for taking advantage of the high magneto-optical activity of Co6Ag94. The design was based on experimental data for materials that can be fabricated via nanolithography, thus permitting magnetically on-chip reconfigurable optical wireless communications.
Collapse
Affiliation(s)
- Gabriel H B Damasceno
- National Institute of Telecommunications (Inatel), Santa Rita do Sapucaí37540-000, MG, Brazil
| | - William O F Carvalho
- National Institute of Telecommunications (Inatel), Santa Rita do Sapucaí37540-000, MG, Brazil
| | - Arismar Cerqueira Sodré
- National Institute of Telecommunications (Inatel), Santa Rita do Sapucaí37540-000, MG, Brazil
| | - Osvaldo N Oliveira
- Sao Carlos Institute of Physics, University of Sao Paulo, CP 369, Sao Carlos13560-970, SP, Brazil
| | | |
Collapse
|
36
|
Monin H, Loirette-Pelous A, De Leo E, Rossinelli AA, Prins F, Norris DJ, Bailly E, Hugonin JP, Vest B, Greffet JJ. Controlling light emission by a thermalized ensemble of colloidal quantum dots with a metasurface. OPTICS EXPRESS 2023; 31:4851-4861. [PMID: 36785442 DOI: 10.1364/oe.471744] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/09/2022] [Indexed: 06/18/2023]
Abstract
We report an experimental and theoretical study of light emission by a patterned ensemble of colloidal quantum dots (cQDs). This system modifies drastically the emission spectrum and polarization as compared to a planar layer of cQDs. It exhibits bright, directional and polarized emission including a degree of circular polarization in some directions. We introduce a model of light emission based on a local Kirchhoff law which reproduces accurately all the features of the experiment. The model provides a figure of merit to assess quantitatively the emitted power. This work paves the way to the systematic design of efficient ultrathin light emitting metasurfaces with controlled polarization, spectrum and directivity.
Collapse
|
37
|
Jang J, Jeong M, Lee J, Kim S, Yun H, Rho J. Planar Optical Cavities Hybridized with Low-Dimensional Light-Emitting Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203889. [PMID: 35861661 DOI: 10.1002/adma.202203889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Low-dimensional light-emitting materials have been actively investigated due to their unprecedented optical and optoelectronic properties that are not observed in their bulk forms. However, the emission from low-dimensional light-emitting materials is generally weak and difficult to use in nanophotonic devices without being amplified and engineered by optical cavities. Along with studies on various planar optical cavities over the last decade, the physics of cavity-emitter interactions as well as various integration methods are investigated deeply. These integrations not only enhance the light-matter interaction of the emitters, but also provide opportunities for realizing nanophotonic devices based on the new physics allowed by low-dimensional emitters. In this review, the fundamentals, strengths and weaknesses of various planar optical resonators are first provided. Then, commonly used low-dimensional light-emitting materials such as 0D emitters (quantum dots and upconversion nanoparticles) and 2D emitters (transition-metal dichalcogenide and hexagonal boron nitride) are discussed. The integration of these emitters and cavities and the expect interplay between them are explained in the following chapters. Finally, a comprehensive discussion and outlook of nanoscale cavity-emitter integrated systems is provided.
Collapse
Affiliation(s)
- Jaehyuck Jang
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Minsu Jeong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jihae Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Seokwoo Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Huichang Yun
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Junsuk Rho
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, 37673, Republic of Korea
| |
Collapse
|
38
|
Hentschel M, Koshelev K, Sterl F, Both S, Karst J, Shamsafar L, Weiss T, Kivshar Y, Giessen H. Dielectric Mie voids: confining light in air. LIGHT, SCIENCE & APPLICATIONS 2023; 12:3. [PMID: 36587036 PMCID: PMC9805462 DOI: 10.1038/s41377-022-01015-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 09/27/2022] [Accepted: 10/11/2022] [Indexed: 06/14/2023]
Abstract
Manipulating light on the nanoscale has become a central challenge in metadevices, resonant surfaces, nanoscale optical sensors, and many more, and it is largely based on resonant light confinement in dispersive and lossy metals and dielectrics. Here, we experimentally implement a novel strategy for dielectric nanophotonics: Resonant subwavelength localized confinement of light in air. We demonstrate that voids created in high-index dielectric host materials support localized resonant modes with exceptional optical properties. Due to the confinement in air, the modes do not suffer from the loss and dispersion of the dielectric host medium. We experimentally realize these resonant Mie voids by focused ion beam milling into bulk silicon wafers and experimentally demonstrate resonant light confinement down to the UV spectral range at 265 nm (4.68 eV). Furthermore, we utilize the bright, intense, and naturalistic colours for nanoscale colour printing. Mie voids will thus push the operation of functional high-index metasurfaces into the blue and UV spectral range. The combination of resonant dielectric Mie voids with dielectric nanoparticles will more than double the parameter space for the future design of metasurfaces and other micro- and nanoscale optical elements. In particular, this extension will enable novel antenna and structure designs which benefit from the full access to the modal field inside the void as well as the nearly free choice of the high-index material for novel sensing and active manipulation strategies.
Collapse
Affiliation(s)
- Mario Hentschel
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany.
| | - Kirill Koshelev
- Nonlinear Physics Centre, Research School of Physics, Australian National University, Canberra, ACT, 2601, Australia
| | - Florian Sterl
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany
| | - Steffen Both
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany
| | - Julian Karst
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany
| | - Lida Shamsafar
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany
| | - Thomas Weiss
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany
- Institute of Physics, University of Graz, and NAWI Graz, Universitätsplatz 5, 8010, Graz, Austria
| | - Yuri Kivshar
- Nonlinear Physics Centre, Research School of Physics, Australian National University, Canberra, ACT, 2601, Australia.
| | - Harald Giessen
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany.
| |
Collapse
|
39
|
Li X, Xue Z, Chen X, Qiao X, Mo G, Bu W, Guan B, Wang T. Printable assemblies of perovskite nanocubes on meter-scale panel. SCIENCE ADVANCES 2022; 8:eadd1559. [PMID: 36367933 PMCID: PMC9651854 DOI: 10.1126/sciadv.add1559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Hierarchical assemblies of functional nanoparticles can have applications exceeding those of individual constituents. Arranging components in a certain order, even at the atomic scale, can result in emergent effects. We demonstrate that printed atomic ordering is achieved in multiscale hierarchical structures, including nanoparticles, superlattices, and macroarrays. The CsPbBr3 perovskite nanocubes self-assemble into superlattices in ordered arrays controlled across 10 scales. These structures behave as single nanoparticles, with diffraction patterns similar to those of single crystals. The assemblies repeat as two-dimensional planar unit cells, forming crystalline superlattice arrays. The fluorescence intensity of these arrays is 5.2 times higher than those of random aggregate arrays. The multiscale coherent states can be printed on a meter-scale panel as a micropixel light-producing layer of primary-color photon emitters. These hierarchical assemblies can boost the performance of optoelectronic devices and enable the development of high-efficiency, directional quantum light sources.
Collapse
Affiliation(s)
- Xiao Li
- Life and Health Intelligent Research Institute, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Zhenjie Xue
- Life and Health Intelligent Research Institute, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Xiangyu Chen
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xuezhi Qiao
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Guang Mo
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wensheng Bu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Bo Guan
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Tie Wang
- Life and Health Intelligent Research Institute, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| |
Collapse
|
40
|
Wang P, Krasavin AV, Liu L, Jiang Y, Li Z, Guo X, Tong L, Zayats AV. Molecular Plasmonics with Metamaterials. Chem Rev 2022; 122:15031-15081. [PMID: 36194441 PMCID: PMC9562285 DOI: 10.1021/acs.chemrev.2c00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 11/30/2022]
Abstract
Molecular plasmonics, the area which deals with the interactions between surface plasmons and molecules, has received enormous interest in fundamental research and found numerous technological applications. Plasmonic metamaterials, which offer rich opportunities to control the light intensity, field polarization, and local density of electromagnetic states on subwavelength scales, provide a versatile platform to enhance and tune light-molecule interactions. A variety of applications, including spontaneous emission enhancement, optical modulation, optical sensing, and photoactuated nanochemistry, have been reported by exploiting molecular interactions with plasmonic metamaterials. In this paper, we provide a comprehensive overview of the developments of molecular plasmonics with metamaterials. After a brief introduction to the optical properties of plasmonic metamaterials and relevant fabrication approaches, we discuss light-molecule interactions in plasmonic metamaterials in both weak and strong coupling regimes. We then highlight the exploitation of molecules in metamaterials for applications ranging from emission control and optical modulation to optical sensing. The role of hot carriers generated in metamaterials for nanochemistry is also discussed. Perspectives on the future development of molecular plasmonics with metamaterials conclude the review. The use of molecules in combination with designer metamaterials provides a rich playground both to actively control metamaterials using molecular interactions and, in turn, to use metamaterials to control molecular processes.
Collapse
Affiliation(s)
- Pan Wang
- State Key
Laboratory of Modern Optical Instrumentation, College of Optical Science
and Engineering, Zhejiang University, Hangzhou310027, China
- Department
of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, U.K.
- Jiaxing
Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing314000, China
- Intelligent
Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing314000, China
| | - Alexey V. Krasavin
- Department
of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, U.K.
| | - Lufang Liu
- State Key
Laboratory of Modern Optical Instrumentation, College of Optical Science
and Engineering, Zhejiang University, Hangzhou310027, China
| | - Yunlu Jiang
- Department
of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, U.K.
| | - Zhiyong Li
- Jiaxing
Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing314000, China
- Intelligent
Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing314000, China
| | - Xin Guo
- State Key
Laboratory of Modern Optical Instrumentation, College of Optical Science
and Engineering, Zhejiang University, Hangzhou310027, China
- Jiaxing
Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing314000, China
- Intelligent
Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing314000, China
| | - Limin Tong
- State Key
Laboratory of Modern Optical Instrumentation, College of Optical Science
and Engineering, Zhejiang University, Hangzhou310027, China
| | - Anatoly V. Zayats
- Department
of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, U.K.
| |
Collapse
|
41
|
Liu W, Wang X, Zeng M. A nested U-shaped network for accurately predicting directional scattering of all-dielectric nanostructures. OPTICS LETTERS 2022; 47:5112-5115. [PMID: 36181199 DOI: 10.1364/ol.472133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Forward prediction of directional scattering from all-dielectric nanostructures by a two-level nested U-shaped convolutional neural network (U2-Net) is investigated. Compared with the traditional U-Net method, the U2-Net model with lower model height outperforms for the case of a smaller image size. For the input image size of 40 × 40, the prediction performance of the U2-Net model with the height of three is enhanced by almost an order of magnitude, which can be attributed to the more excellent capacity in extracting richer multi-scale features. Since it is the common problem in nanophotonics that the model height is limited by the smaller image size, our findings can promote the nested U-shaped network as a powerful tool applied to various tasks concerning nanostructures.
Collapse
|
42
|
Damasceno GHB, Carvalho WOF, Mejía-Salazar JR. Design of Plasmonic Yagi-Uda Nanoantennas for Chip-Scale Optical Wireless Communications. SENSORS (BASEL, SWITZERLAND) 2022; 22:7336. [PMID: 36236435 PMCID: PMC9570515 DOI: 10.3390/s22197336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Optical wireless transmission has recently become a major cutting-edge alternative for on-chip/inter-chip communications with higher transmission speeds and improved power efficiency. Plasmonic nanoantennas, the building blocks of this new nanoscale communication paradigm, require precise design to have directional radiation and improved communication ranges. Particular interest has been paid to plasmonic Yagi-Uda, i.e., the optical analog of the conventional Radio Frequency (RF) Yagi-Uda design, which may allow directional radiation of plasmonic fields. However, in contrast to the RF model, an overall design strategy for the directional and optimized front-to-back ratio of the radiated far-field patterns is lacking. In this work, a guide for the optimized design of Yagi-Uda plasmonic nanoantennas is shown. In particular, five different design conditions are used to study the effects of sizes and spacing between the constituent parts (made of Au). Importantly, it is numerically demonstrated (using the scattered fields) that closely spaced nanoantenna elements are not appropriated for directional light-to-plasmon conversion/radiation. In contrast, if the elements of the nanoantenna are widely spaced, the structure behaves like a one-dimensional array of nanodipoles, producing a funnel-like radiation pattern (not suitable for on-chip wireless optical transmission). Therefore, based on the results here, it can be concluded that the constituent metallic rib lengths must be optimized to exhibit the resonance at the working wavelength, whilst their separations should follow the relation λeff/π, where λeff indicates the effective wavelength scaling for plasmonic nanostructures.
Collapse
Affiliation(s)
- Gabriel H B Damasceno
- National Institute of Telecommunications (Inatel), Santa Rita do Sapucaí 37540-000, MG, Brazil
| | - William O F Carvalho
- National Institute of Telecommunications (Inatel), Santa Rita do Sapucaí 37540-000, MG, Brazil
| | | |
Collapse
|
43
|
Zhu F, Sanz-Paz M, Fernández-Domínguez AI, Pilo-Pais M, Acuna GP. Optical Ultracompact Directional Antennas Based on a Dimer Nanorod Structure. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2841. [PMID: 36014705 PMCID: PMC9416387 DOI: 10.3390/nano12162841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Controlling directionality of optical emitters is of utmost importance for their application in communication and biosensing devices. Metallic nanoantennas have been proven to affect both excitation and emission properties of nearby emitters, including the directionality of their emission. In this regard, optical directional nanoantennas based on a Yagi-Uda design have been demonstrated in the visible range. Despite this impressive proof of concept, their overall size (~λ2/4) and considerable number of elements represent obstacles for the exploitation of these antennas in nanophotonic applications and for their incorporation onto photonic chips. In order to address these challenges, we investigate an alternative design. In particular, we numerically study the performance of a recently demonstrated "ultracompact" optical antenna based on two parallel gold nanorods arranged as a side-to-side dimer. Our results confirm that the excitation of the antiphase mode of the antenna by a nanoemitter placed in its near-field can lead to directional emission. Furthermore, in order to verify the feasibility of this design and maximize the functionality, we study the effect on the directionality of several parameters, such as the shape of the nanorods, possible defects in the dimer assembly, and different positions and orientations of the nanoemitter. We conclude that this design is robust to structural variations, making it suitable for experimental upscaling.
Collapse
Affiliation(s)
- Fangjia Zhu
- Department of Physics, University of Fribourg, Chemin du Musée 3, CH-1700 Fribourg, Switzerland
| | - María Sanz-Paz
- Department of Physics, University of Fribourg, Chemin du Musée 3, CH-1700 Fribourg, Switzerland
| | - Antonio I. Fernández-Domínguez
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Mauricio Pilo-Pais
- Department of Physics, University of Fribourg, Chemin du Musée 3, CH-1700 Fribourg, Switzerland
| | - Guillermo P. Acuna
- Department of Physics, University of Fribourg, Chemin du Musée 3, CH-1700 Fribourg, Switzerland
| |
Collapse
|
44
|
Zhu F, Sanz-Paz M, Fernández-Domínguez AI, Zhuo X, Liz-Marzán LM, Stefani FD, Pilo-Pais M, Acuna GP. DNA-Templated Ultracompact Optical Antennas for Unidirectional Single-Molecule Emission. NANO LETTERS 2022; 22:6402-6408. [PMID: 35875900 DOI: 10.1021/acs.nanolett.2c02424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Optical antennas are nanostructures designed to manipulate light-matter interactions by interfacing propagating light with localized optical fields. In recent years, numerous devices have been realized to efficiently tailor the absorption and/or emission rates of fluorophores. By contrast, modifying the spatial characteristics of their radiation fields remains challenging. Successful phased array nanoantenna designs have required the organization of several elements over a footprint comparable to the operating wavelength. Here, we report unidirectional emission of a single fluorophore using an ultracompact optical antenna. The design consists of two side-by-side gold nanorods self-assembled via DNA origami, which also controls the positioning of the single-fluorophore. Our results show that when a single fluorescent molecule is positioned at the tip of one nanorod and emits at a frequency capable of driving the antenna in the antiphase mode, unidirectional emission with a forward to backward ratio of up to 9.9 dB can be achieved.
Collapse
Affiliation(s)
- Fangjia Zhu
- Department of Physics, University of Fribourg, Fribourg CH-1700, Switzerland
| | - María Sanz-Paz
- Department of Physics, University of Fribourg, Fribourg CH-1700, Switzerland
| | - Antonio I Fernández-Domínguez
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Xiaolu Zhuo
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastian 20014, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastian 20014, Spain
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastian 20014, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastian 20014, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Fernando D Stefani
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1425FQD Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA Ciudad Autónoma de Buenos Aires, Argentina
| | - Mauricio Pilo-Pais
- Department of Physics, University of Fribourg, Fribourg CH-1700, Switzerland
| | - Guillermo P Acuna
- Department of Physics, University of Fribourg, Fribourg CH-1700, Switzerland
| |
Collapse
|
45
|
Heki L, Mohtashami Y, DeCrescent RA, Alhassan A, Nakamura S, DenBaars SP, Schuller JA. Designing Highly Directional Luminescent Phased-Array Metasurfaces with Reciprocity-Based Simulations. ACS OMEGA 2022; 7:22477-22483. [PMID: 35811896 PMCID: PMC9260934 DOI: 10.1021/acsomega.2c01654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Phased-array metasurfaces grant the ability to arbitrarily shape the wavefront of light. As such, they have been used as various optical elements including waveplates, lenses, and beam deflectors. Luminescent metasurfaces, on the other hand, have largely comprised uniform arrays and are therefore unable to provide the same control over the wavefront of emitted light. Recently, phased-array control of the wavefront of spontaneous emission has been experimentally demonstrated in luminescent phased-array metalenses and beam deflectors. However, current luminescent metasurface beam deflectors exhibit unidirectional emission for only p-polarized light. In this paper, we use a reciprocal simulation strategy to explain the polarization disparity and improve the directionality of incoherent emission from current quantum-well emitting phased-array metasurfaces. We also design complementary metasurfaces to direct emission from systems where emission originates from alternate quantum mechanical processes.
Collapse
Affiliation(s)
- Larry Heki
- Materials
Department, University of California, Santa Barbara, California 93106, United States
| | - Yahya Mohtashami
- Department
of Electrical and Computer Engineering, University of California, Santa
Barbara, California 93106, United States
| | - Ryan A. DeCrescent
- Department
of Physics, University of California, Santa Barbara, California 93106, United States
| | - Abdullah Alhassan
- Materials
Department, University of California, Santa Barbara, California 93106, United States
- Solid
State Lighting and Energy Electronics Center, University of California, Santa
Barbara, California 93106, United States
| | - Shuji Nakamura
- Department
of Electrical and Computer Engineering, University of California, Santa
Barbara, California 93106, United States
- Department
of Physics, University of California, Santa Barbara, California 93106, United States
- Solid
State Lighting and Energy Electronics Center, University of California, Santa
Barbara, California 93106, United States
| | - Steven P. DenBaars
- Department
of Electrical and Computer Engineering, University of California, Santa
Barbara, California 93106, United States
- Department
of Physics, University of California, Santa Barbara, California 93106, United States
- Solid
State Lighting and Energy Electronics Center, University of California, Santa
Barbara, California 93106, United States
| | - Jon A. Schuller
- Department
of Electrical and Computer Engineering, University of California, Santa
Barbara, California 93106, United States
| |
Collapse
|
46
|
Kim WG, Lee JM, Yang Y, Kim H, Devaraj V, Kim M, Jeong H, Choi EJ, Yang J, Jang Y, Badloe T, Lee D, Rho J, Kim JT, Oh JW. Three-Dimensional Plasmonic Nanocluster-Driven Light-Matter Interaction for Photoluminescence Enhancement and Picomolar-Level Biosensing. NANO LETTERS 2022; 22:4702-4711. [PMID: 35622690 DOI: 10.1021/acs.nanolett.2c00790] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Plasmonic nanoparticle clusters promise to support unique engineered electromagnetic responses at optical frequencies, realizing a new concept of devices for nanophotonic applications. However, the technological challenges associated with the fabrication of three-dimensional nanoparticle clusters with programmed compositions remain unresolved. Here, we present a novel strategy for realizing heterogeneous structures that enable efficient near-field coupling between the plasmonic modes of gold nanoparticles and various other nanomaterials via a simple three-dimensional coassembly process. Quantum dots embedded in the plasmonic structures display ∼56 meV of a blue shift in the emission spectrum. The decay enhancement factor increases as the total contribution of radiative and nonradiative plasmonic modes increases. Furthermore, we demonstrate an ultracompact diagnostic platform to detect M13 viruses and their mutations from femtoliter volume, sub-100 pM analytes. This platform could pave the way toward an effective diagnosis of diverse pathogens, which is in high demand for handling pandemic situations.
Collapse
Affiliation(s)
- Won-Geun Kim
- BIT Fusion Technology Center, Pusan National University, Busan 46241, Republic of Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jong-Min Lee
- BIT Fusion Technology Center, Pusan National University, Busan 46241, Republic of Korea
- Center of Nano Convergence Technology and School of Nanoconvergence Technology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Younghwan Yang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hongyoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Vasanthan Devaraj
- BIT Fusion Technology Center, Pusan National University, Busan 46241, Republic of Korea
| | - Minjun Kim
- Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyuk Jeong
- BIT Fusion Technology Center, Pusan National University, Busan 46241, Republic of Korea
| | - Eun-Jung Choi
- BIT Fusion Technology Center, Pusan National University, Busan 46241, Republic of Korea
| | - Jihyuk Yang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yudong Jang
- Institute of Quantum Systems (IQS), Chungnam National University, Daejeon 34134, Republic of Korea
| | - Trevon Badloe
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Donghan Lee
- Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
| | - Ji Tae Kim
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jin-Woo Oh
- BIT Fusion Technology Center, Pusan National University, Busan 46241, Republic of Korea
- Department of Nanoenergy Engineering, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
47
|
Huang D, Liu S, Li W, Yang K, Peng T. Strong Field Enhancement and Unidirectional Scattering Based on Asymmetric Nanoantenna. NANOMATERIALS 2022; 12:nano12122084. [PMID: 35745422 PMCID: PMC9227070 DOI: 10.3390/nano12122084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/02/2022] [Accepted: 06/13/2022] [Indexed: 02/04/2023]
Abstract
Dielectric-metal nanostructures have lately emerged as one of the most promising approaches to modulating light at the optical frequency. Their remarkable electric and magnetic resonances give them a one-of-a-kind ability to augment local field enhancements with negligible absorption losses. Here, we propose a hybrid metal-dielectric-metal (MDM) nanoantenna that contains a dimer of three-layers of shell nanoparticles. In addition, we only theoretically and numerically show the optical properties of the hybrid dimer nanoantenna. We found that the nanoantenna sustained unidirectional forward scattering with narrow beamwidth (30.9 deg) and strong scattering intensity (up to 5 times larger than the single MDM particle). Furthermore, when the hybrid asymmetric dimer was excited by the plane wave with different electric polarization directions, our findings revealed that the hybrid nanoantenna boosted the gap’s electric near-field while also supporting unidirectional forward scattering. Finally, we analyzed the hybrid dimer with substrates of different materials. It supported strong electric high-order moments along the z-axis and x-axis in gaps between MDM nanoparticles and between MDM nanoparticles and the Ge substrate, owing to the intense displacement currents inside of the dielectric layer. We found that the local electric field of this MDM hybrid dimer nanoantenna with Ge substrate was well improved and attained 3325 v/m.
Collapse
Affiliation(s)
- Dengchao Huang
- Key Ministry of Education Laboratory of Advanced Perception and Intelligent Control of High-End Equipment, College of Electrical Engineering, Anhui Polytechnic University, Wuhu 241000, China; (D.H.); (S.L.); (W.L.)
| | - Shilin Liu
- Key Ministry of Education Laboratory of Advanced Perception and Intelligent Control of High-End Equipment, College of Electrical Engineering, Anhui Polytechnic University, Wuhu 241000, China; (D.H.); (S.L.); (W.L.)
| | - Wei Li
- Key Ministry of Education Laboratory of Advanced Perception and Intelligent Control of High-End Equipment, College of Electrical Engineering, Anhui Polytechnic University, Wuhu 241000, China; (D.H.); (S.L.); (W.L.)
| | - Kang Yang
- Key Ministry of Education Laboratory of Advanced Perception and Intelligent Control of High-End Equipment, College of Electrical Engineering, Anhui Polytechnic University, Wuhu 241000, China; (D.H.); (S.L.); (W.L.)
- Correspondence:
| | - Ting Peng
- School of Electronic Information Engineering, China West Normal University, Nanchong 637001, China;
| |
Collapse
|
48
|
High-Q collective Mie resonances in monocrystalline silicon nanoantenna arrays for the visible light. FUNDAMENTAL RESEARCH 2022. [DOI: 10.1016/j.fmre.2022.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
49
|
Miao Y, Boutelle RC, Blake A, Chandrasekaran V, Sheehan CJ, Hollingsworth J, Neuhauser D, Weiss S. Super-resolution Imaging of Plasmonic Near-Fields: Overcoming Emitter Mislocalizations. J Phys Chem Lett 2022; 13:4520-4529. [PMID: 35576273 PMCID: PMC9150090 DOI: 10.1021/acs.jpclett.1c04123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Plasmonic nano-objects have shown great potential in enhancing applications like biological/chemical sensing, light harvesting and energy transfer, and optical/quantum computing. Therefore, an extensive effort has been vested in optimizing plasmonic systems and exploiting their field enhancement properties. Super-resolution imaging with quantum dots (QDs) is a promising method to probe plasmonic near-fields but is hindered by the distortion of the QD radiation pattern. Here, we investigate the interaction between QDs and "L-shaped" gold nanoantennas and demonstrate both theoretically and experimentally that this strong interaction can induce polarization-dependent modifications to the apparent QD emission intensity, polarization, and localization. Based on FDTD simulations and polarization-modulated single-molecule microscopy, we show that the displacement of the emitter's localization is due to the position-dependent interference between the emitter and the induced dipole, and can be up to 100 nm. Our results help pave a pathway for higher precision plasmonic near-field mapping and its underlying applications.
Collapse
Affiliation(s)
- Yuting Miao
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095, United States
| | - Robert C. Boutelle
- National
Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Anastasia Blake
- Los
Alamos National Laboratory, Casa Grande Drive, Los Alamos, New Mexico 87544, United States
| | | | - Chris J. Sheehan
- Los
Alamos National Laboratory, Casa Grande Drive, Los Alamos, New Mexico 87544, United States
| | - Jennifer Hollingsworth
- Los
Alamos National Laboratory, Casa Grande Drive, Los Alamos, New Mexico 87544, United States
| | - Daniel Neuhauser
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095, United States
| | - Shimon Weiss
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095, United States
- Department
of Physiology, University of California, Los Angeles, California 90095, United States
- California
NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Department
of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
50
|
Farheen H, Yan LY, Quiring V, Eigner C, Zentgraf T, Linden S, Förstner J, Myroshnychenko V. Broadband optical Ta 2O 5 antennas for directional emission of light. OPTICS EXPRESS 2022; 30:19288-19299. [PMID: 36221710 DOI: 10.1364/oe.455815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/09/2022] [Indexed: 06/16/2023]
Abstract
Highly directive antennas with the ability of shaping radiation patterns in desired directions are essential for efficient on-chip optical communication with reduced cross talk. In this paper, we design and optimize three distinct broadband traveling-wave tantalum pentoxide antennas exhibiting highly directional characteristics. Our antennas contain a director and reflector deposited on a glass substrate, which are excited by a dipole emitter placed in the feed gap between the two elements. Full-wave simulations in conjunction with global optimization provide structures with an enhanced linear directivity as high as 119 radiating in the substrate. The high directivity is a result of the interplay between two dominant TE modes and the leaky modes present in the antenna director. Furthermore, these low-loss dielectric antennas exhibit a near-unity radiation efficiency at the operational wavelength of 780 nm and maintain a broad bandwidth. Our numerical results are in good agreement with experimental measurements from the optimized antennas fabricated using a two-step electron-beam lithography, revealing the highly directive nature of our structures. We envision that our antenna designs can be conveniently adapted to other dielectric materials and prove instrumental for inter-chip optical communications and other on-chip applications.
Collapse
|