1
|
Dutra BAL, Martinez VV, Santhiago MR, Wilson SE. Topical Losartan Dosage Response and Corneal Toxicity at Higher Concentrations. Cornea 2024:00003226-990000000-00716. [PMID: 39441953 DOI: 10.1097/ico.0000000000003725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Indexed: 10/25/2024]
Abstract
PURPOSE The purpose of this study was to evaluate the efficacy and safety of higher dosages of topical losartan in an alkali-burn fibrosis model in rabbits. METHODS In total, 18 rabbits had standardized alkali burns that trigger stromal fibrosis. Six eyes per group were treated with topical losartan (0.8 mg/mL, 8 mg/mL, or 40 mg/mL) 6 times per day. Slit-lamp photographs were obtained, and multiplex immunohistochemistry was performed for myofibroblast marker alpha-smooth muscle actin (α-SMA), mesenchymal cell marker vimentin, and basement membrane marker laminin alpha-5. RESULTS Topical losartan at 40 mg/mL 6 times per day produced severe discomfort and ocular surface toxicity in all rabbits, and treatment was discontinued at nine days in this group. Topical losartan at 8 mg/mL 6 times per day caused less rabbit discomfort on application, but there were persistent epithelial defects and marked stromal opacity in 5 of 6 eyes after 1 month of treatment. Topical losartan 0.8 mg/mL was well tolerated by rabbits, and corneal opacity was markedly reduced at 1 month in 5 of 6 corneas compared with corneas in the 8 mg/mL and 40 mg/mL losartan groups. A persistent epithelial defect with opacity was noted in 1 cornea in the 0.8 mg/mL losartan group. Both total SMA-positive stromal cells per section (14.5 ± 2.8 vs. 3.5 ± 0.7, P = 0.04) and total stromal vimentin intensity units (310 ± 64 vs. 132 ± 35, P = 0.02) were significantly greater after 1 month of treatment in corneas treated with 8 mg/mL than corneas treated with 0.8 mg/mL of topical losartan. CONCLUSIONS Topical losartan dosages over 0.8 mg/mL should be used cautiously in patient eyes. In eyes with a current epithelial defect, it is recommended that 0.2 mg/mL losartan 6 times per day be used until the epithelium closes.
Collapse
Affiliation(s)
- Barbara Araujo Lima Dutra
- The Cole Eye Institute, The Cleveland Clinic, Cleveland, Ohio; and
- Department of Ophthalmology at University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Steven E Wilson
- The Cole Eye Institute, The Cleveland Clinic, Cleveland, Ohio; and
| |
Collapse
|
2
|
Rodgers EG, Al-Mohtaseb Z, Chen AJ. Topical Losartan for Treating Corneal Haze After Ultraviolet-A/Riboflavin Collagen Cross-Linking. Cornea 2024; 43:1165-1170. [PMID: 38573840 DOI: 10.1097/ico.0000000000003527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/01/2024] [Indexed: 04/06/2024]
Abstract
PURPOSE The purpose of this study was to report our first clinical experience using topical losartan for the treatment of severe corneal haze after epithelium-off corneal cross-linking (CXL). METHODS A 20-year-old man presented with clinically significant corneal haze in the right eye 1 month following Ultraviolet-A/Riboflavin Epithelium-off Collagen CXL. Haze progressed to a deep stromal scar, and vision was 20/150 with no improvement on refraction, 60 days after CXL. After unsuccessful treatment with topical corticosteroids, the patient elected to start off-label treatment with topical losartan 0.8 mg/mL, administered 6 times per day. RESULTS After 3 months of initiating topical losartan, the right eye vision improved to preoperative vision of 20/40-1. Corneal haze was significantly reduced as observed on slitlamp examination and on Scheimpflug corneal tomography (Pentacam; OCULUS, Inc. Arlington, WA). CONCLUSIONS Topical losartan, a transforming growth factor-β inhibitor, is a potential treatment in clinically significant corneal haze following epithelium-off corneal CXL. This clinical experience highlights the potential efficacy of topical losartan as a novel therapeutic option in such cases, but further clinical studies are needed.
Collapse
Affiliation(s)
| | | | - Allison J Chen
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
3
|
Abonia JP, Rudman Spergel AK, Hirano I, Shoda T, Zhang X, Martin LJ, Mukkada VA, Putnam PE, Blacklidge M, Neilson D, Collins MH, Yang GY, Capocelli KE, Foote H, Eby M, Dong S, Aceves SS, Rothenberg ME. Losartan Treatment Reduces Esophageal Eosinophilic Inflammation in a Subset of Eosinophilic Esophagitis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:2427-2438.e3. [PMID: 39059581 DOI: 10.1016/j.jaip.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Eosinophilic esophagitis (EoE) is a chronic, food antigen-driven esophageal disorder. Connective tissue disorders (CTDs) and esophageal connective tissue alterations are associated with EoE. Therefore, angiotensin II type 1 receptor blockade with losartan, an accepted CTD treatment, is a potential EoE treatment. OBJECTIVE We evaluated losartan's effects on esophageal pathology, symptoms, and safety in patients with EoE with and without a CTD in an open-label, non-placebo controlled multisite study. METHODS Fifteen participants with EoE, aged 5 to 23 years, underwent treatment with per-protocol titrated doses of losartan in an open-label, 16-week pilot trial. Losartan was added to standard of care therapy and 14 patients completed the study. Eosinophil counts served as the primary end point, whereas we also assessed the EoE Histology Scoring System, Endoscopic Reference Scores, EoE Diagnostic Panel, and patient-reported outcomes. RESULTS Esophageal eosinophilia was not reduced after losartan. The peak eosinophil count was not reduced for the proximal (median [interquartile range]: -3 [-22 to 3]; P = .49) and distal esophagus (median [interquartile range]: -18 [-39 to -1]; P = .23). There were no differences in losartan response in EoE with or without CTD (n = 7 and 8, respectively). Regardless, in a small subset of four participants esophageal eosinophilia was resolved with a concomitant reduction in EoE Histology Scoring System score and Endoscopic Reference Score. Across all subjects, the Pediatric EoE Symptom Score, Pediatric Quality of Life Inventory EoE Module, and EoE Diagnostic Panel improved after losartan (P < .05). CONCLUSIONS Losartan treatment was associated with improved patient-reported outcome scores and EoE Diagnostic Panel biomarkers although without a reduction in esophageal eosinophilia overall. A subset of patients demonstrated improved histopathologic and endoscopic features that could not be tied to a specific feature predicting response to treatment.
Collapse
Affiliation(s)
- J Pablo Abonia
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Amanda K Rudman Spergel
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, Md
| | - Ikuo Hirano
- Division of Gastroenterology and Hepatology, Northwestern University, Feinberg School of Medicine, Chicago, Ill
| | - Tetsuo Shoda
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Xue Zhang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Lisa J Martin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Vincent A Mukkada
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Philip E Putnam
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Melodie Blacklidge
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Derek Neilson
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Margaret H Collins
- Division of Pathology and Laboratory Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Guang-Yu Yang
- Division of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, Ill
| | | | - Heather Foote
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Mike Eby
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Stephanie Dong
- Division of Allergy Immunology, Rady Children's Hospital, University of California, San Diego, San Diego, Calif
| | - Seema S Aceves
- Division of Allergy Immunology, Rady Children's Hospital, University of California, San Diego, San Diego, Calif.
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
4
|
Cavinato C, Spronck B, Caulk AW, Murtada SI, Humphrey JD. AT1b receptors contribute to regional disparities in angiotensin II mediated aortic remodelling in mice. J R Soc Interface 2024; 21:20240110. [PMID: 39192727 PMCID: PMC11350382 DOI: 10.1098/rsif.2024.0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/21/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
The renin-angiotensin system plays a key role in regulating blood pressure, which has motivated many investigations of associated mouse models of hypertensive arterial remodelling. Such studies typically focus on histological and cell biological changes, not wall mechanics. This study explores tissue-level ramifications of chronic angiotensin II infusion in wild-type (WT) and type 1b angiotensin II (AngII) receptor null (Agtr1b -/-) mice. Biaxial biomechanical and immunohistological changes were quantified and compared in the thoracic and abdominal aorta in these mice following 14 and 28 days of angiotensin II infusion. Preliminary results showed that changes were largely independent of sex. Associated thickening and stiffening of the aortic wall in male mice differed significantly between thoracic and abdominal regions and between genotypes. Notwithstanding multiple biomechanical changes in both WT and Agtr1b -/- mice, AngII infusion caused distinctive wall thickening and inflammation in the descending thoracic aorta of WT, but not Agtr1b -/-, mice. Our study underscores the importance of exploring differential roles of receptor-dependent angiotensin II signalling along the aorta and its influence on distinct cell types involved in regional histomechanical remodelling. Disrupting the AT1b receptor primarily affected inflammatory cell responses and smooth muscle contractility, suggesting potential therapeutic targets.
Collapse
Affiliation(s)
- Cristina Cavinato
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- LMGC, Univ. Montpellier, CNRS, Montpellier, France
| | - Bart Spronck
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Alexander W. Caulk
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Sae-Il Murtada
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
5
|
Udugampolage NS, Frolova S, Taurino J, Pini A, Martelli F, Voellenkle C. Coding and Non-Coding Transcriptomic Landscape of Aortic Complications in Marfan Syndrome. Int J Mol Sci 2024; 25:7367. [PMID: 39000474 PMCID: PMC11242319 DOI: 10.3390/ijms25137367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Marfan syndrome (MFS) is a rare congenital disorder of the connective tissue, leading to thoracic aortic aneurysms (TAA) and dissection, among other complications. Currently, the most efficient strategy to prevent life-threatening dissection is preventive surgery. Periodic imaging applying complex techniques is required to monitor TAA progression and to guide the timing of surgical intervention. Thus, there is an acute demand for non-invasive biomarkers for diagnosis and prognosis, as well as for innovative therapeutic targets of MFS. Unraveling the intricate pathomolecular mechanisms underlying the syndrome is vital to address these needs. High-throughput platforms are particularly well-suited for this purpose, as they enable the integration of different datasets, such as transcriptomic and epigenetic profiles. In this narrative review, we summarize relevant studies investigating changes in both the coding and non-coding transcriptome and epigenome in MFS-induced TAA. The collective findings highlight the implicated pathways, such as TGF-β signaling, extracellular matrix structure, inflammation, and mitochondrial dysfunction. Potential candidates as biomarkers, such as miR-200c, as well as therapeutic targets emerged, like Tfam, associated with mitochondrial respiration, or miR-632, stimulating endothelial-to-mesenchymal transition. While these discoveries are promising, rigorous and extensive validation in large patient cohorts is indispensable to confirm their clinical relevance and therapeutic potential.
Collapse
Affiliation(s)
| | - Svetlana Frolova
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, 20097 Milan, Italy; (S.F.); (C.V.)
- Department of Biosciences, University of Milan, 20122 Milan, Italy
| | - Jacopo Taurino
- Cardiovascular-Genetic Center, IRCCS Policlinico San Donato, 20097 Milan, Italy; (N.S.U.); (J.T.); (A.P.)
| | - Alessandro Pini
- Cardiovascular-Genetic Center, IRCCS Policlinico San Donato, 20097 Milan, Italy; (N.S.U.); (J.T.); (A.P.)
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, 20097 Milan, Italy; (S.F.); (C.V.)
| | - Christine Voellenkle
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, 20097 Milan, Italy; (S.F.); (C.V.)
| |
Collapse
|
6
|
Dubacher N, Sugiyama K, Smith JD, Nussbaumer V, Csonka M, Ferenczi S, Kovács KJ, Caspar SM, Lamberti L, Meienberg J, Yanagisawa H, Sheppard MB, Matyas G. Novel Insights into the Aortic Mechanical Properties of Mice Modeling Hereditary Aortic Diseases. Thromb Haemost 2024. [PMID: 38950604 DOI: 10.1055/s-0044-1787957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
OBJECTIVE Hereditary aortic diseases (hADs) increase the risk of aortic dissections and ruptures. Recently, we have established an objective approach to measure the rupture force of the murine aorta, thereby explaining the outcomes of clinical studies and assessing the added value of approved drugs in vascular Ehlers-Danlos syndrome (vEDS). Here, we applied our approach to six additional mouse hAD models. MATERIAL AND METHODS We used two mouse models (Fbn1C1041G and Fbn1mgR ) of Marfan syndrome (MFS) as well as one smooth-muscle-cell-specific knockout (SMKO) of Efemp2 and three CRISPR/Cas9-engineered knock-in models (Ltbp1, Mfap4, and Timp1). One of the two MFS models was subjected to 4-week-long losartan treatment. Per mouse, three rings of the thoracic aorta were prepared, mounted on a tissue puller, and uniaxially stretched until rupture. RESULTS The aortic rupture force of the SMKO and both MFS models was significantly lower compared with wild-type mice but in both MFS models higher than in mice modeling vEDS. In contrast, the Ltbp1, Mfap4, and Timp1 knock-in models presented no impaired aortic integrity. As expected, losartan treatment reduced aneurysm formation but surprisingly had no impact on the aortic rupture force of our MFS mice. CONCLUSION Our read-out system can characterize the aortic biomechanical integrity of mice modeling not only vEDS but also related hADs, allowing the aortic-rupture-force-focused comparison of mouse models. Furthermore, aneurysm progression alone may not be a sufficient read-out for aortic rupture, as antihypertensive drugs reducing aortic dilatation might not strengthen the weakened aortic wall. Our results may enable identification of improved medical therapies of hADs.
Collapse
Affiliation(s)
- Nicolo Dubacher
- Center for Cardiovascular Genetics and Gene Diagnostics, Swiss Foundation for People with Rare Diseases, Schlieren-Zurich, Switzerland
- Translational Cardiovascular Technologies, Department of Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Kaori Sugiyama
- Institute for Advanced Research of Biosystem Dynamics, Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
| | - Jeffrey D Smith
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky, United States
| | - Vanessa Nussbaumer
- Center for Cardiovascular Genetics and Gene Diagnostics, Swiss Foundation for People with Rare Diseases, Schlieren-Zurich, Switzerland
| | - Máté Csonka
- Center for Cardiovascular Genetics and Gene Diagnostics, Swiss Foundation for People with Rare Diseases, Schlieren-Zurich, Switzerland
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Szilamér Ferenczi
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary
| | - Krisztina J Kovács
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary
| | - Sylvan M Caspar
- Center for Cardiovascular Genetics and Gene Diagnostics, Swiss Foundation for People with Rare Diseases, Schlieren-Zurich, Switzerland
| | - Lisa Lamberti
- Center for Cardiovascular Genetics and Gene Diagnostics, Swiss Foundation for People with Rare Diseases, Schlieren-Zurich, Switzerland
| | - Janine Meienberg
- Center for Cardiovascular Genetics and Gene Diagnostics, Swiss Foundation for People with Rare Diseases, Schlieren-Zurich, Switzerland
| | - Hiromi Yanagisawa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
| | - Mary B Sheppard
- Department of Family and Community Medicine, University of Kentucky, Lexington, Kentucky, United States
- Saha Aortic Center, University of Kentucky, Lexington, Kentucky, United States
| | - Gabor Matyas
- Center for Cardiovascular Genetics and Gene Diagnostics, Swiss Foundation for People with Rare Diseases, Schlieren-Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Mozzer A, Pitha I. Cyclic strain alters the transcriptional and migratory response of scleral fibroblasts to TGFβ. Exp Eye Res 2024; 244:109917. [PMID: 38697276 DOI: 10.1016/j.exer.2024.109917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/04/2024]
Abstract
In glaucoma, scleral fibroblasts are exposed to IOP-associated mechanical strain and elevated TGFβ levels. These stimuli, in turn, lead to scleral remodeling. Here, we examine the scleral fibroblast migratory and transcriptional response to these stimuli to better understand mechanisms of glaucomatous scleral remodeling. Human peripapillary scleral (PPS) fibroblasts were cultured on parallel grooves, treated with TGFβ (2 ng/ml) in the presence of vehicle or TGFβ signaling inhibitors, and exposed to uniaxial strain (1 Hz, 5%, 12-24 h). Axis of cellular orientation was determined at baseline, immediately following strain, and 24 h after strain cessation with 0° being completely aligned with grooves and 90° being perpendicular. Fibroblasts migration in-line and across grooves was assessed using a scratch assay. Transcriptional profiling of TGFβ-treated fibroblasts with or without strain was performed by RT-qPCR and pERK, pSMAD2, and pSMAD3 levels were measured by immunoblot. Pre-strain alignment of TGFβ-treated cells with grooves (6.2 ± 1.5°) was reduced after strain (21.7 ± 5.3°, p < 0.0001) and restored 24 h after strain cessation (9.5 ± 2.6°). ERK, FAK, and ALK5 inhibition prevented this reduction; however, ROCK, YAP, or SMAD3 inhibition did not. TGFβ-induced myofibroblast markers were reduced by strain (αSMA, POSTN, ASPN, MLCK1). While TGFβ-induced phosphorylation of ERK and SMAD2 was unaffected by cyclic strain, SMAD3 phosphorylation was reduced (p = 0.0004). Wound healing across grooves was enhanced by ROCK and SMAD3 inhibition but not ERK or ALK5 inhibition. These results provide insight into the mechanisms by which mechanical strain alters the cellular response to TGFβ and the potential signaling pathways that underlie scleral remodeling.
Collapse
Affiliation(s)
- Ann Mozzer
- Department of Ophthalmology, USA; Center for Nanomedicine, USA
| | - Ian Pitha
- Department of Ophthalmology, USA; Glaucoma Center of Excellence, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
8
|
Mohammed KAK, Madeddu P, Avolio E. MEK inhibitors: a promising targeted therapy for cardiovascular disease. Front Cardiovasc Med 2024; 11:1404253. [PMID: 39011492 PMCID: PMC11247000 DOI: 10.3389/fcvm.2024.1404253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/13/2024] [Indexed: 07/17/2024] Open
Abstract
Cardiovascular disease (CVD) represents the leading cause of mortality and disability all over the world. Identifying new targeted therapeutic approaches has become a priority of biomedical research to improve patient outcomes and quality of life. The RAS-RAF-MEK (mitogen-activated protein kinase kinase)-ERK (extracellular signal-regulated kinase) pathway is gaining growing interest as a potential signaling cascade implicated in the pathogenesis of CVD. This pathway is pivotal in regulating cellular processes like proliferation, growth, migration, differentiation, and survival, which are vital in maintaining cardiovascular homeostasis. In addition, ERK signaling is involved in controlling angiogenesis, vascular tone, myocardial contractility, and oxidative stress. Dysregulation of this signaling cascade has been linked to cell dysfunction and vascular and cardiac pathological remodeling, which contribute to the onset and progression of CVD. Recent and ongoing research has provided insights into potential therapeutic interventions targeting the RAS-RAF-MEK-ERK pathway to improve cardiovascular pathologies. Preclinical studies have demonstrated the efficacy of targeted therapy with MEK inhibitors (MEKI) in attenuating ERK activation and mitigating CVD progression in animal models. In this article, we first describe how ERK signaling contributes to preserving cardiovascular health. We then summarize current knowledge of the roles played by ERK in the development and progression of cardiac and vascular disorders, including atherosclerosis, myocardial infarction, cardiac hypertrophy, heart failure, and aortic aneurysm. We finally report novel therapeutic strategies for these CVDs encompassing MEKI and discuss advantages, challenges, and future developments for MEKI therapeutics.
Collapse
Affiliation(s)
- Khaled A K Mohammed
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Department of Cardiothoracic Surgery, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Paolo Madeddu
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Elisa Avolio
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
9
|
Martinez VV, Dutra BAL, Sampaio LP, Shiju TM, Santhiago MR, Wilson SE. Topical Losartan Inhibition of Myofibroblast Generation in Rabbit Corneas With Acute Incisions. Cornea 2024; 43:883-889. [PMID: 38277165 PMCID: PMC11272906 DOI: 10.1097/ico.0000000000003476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024]
Abstract
PURPOSE The purpose of this study was to study whether deep central corneal incisions close during topical losartan treatment and the effect of topical losartan on myofibroblast generation after incisions in rabbit corneas. METHODS Rabbits (12) had a 0.35-mm deep radial incision from the center of the cornea into the limbus in 1 eye that was approximated with a single 10-0 nylon suture 1 mm inside the limbus. The incision was treated with 50 μL of topical 0.8 mg/mL losartan or 50 μL of balanced salt solution vehicle 6 times per day for 1 month. Standardized slitlamp photographs of the central incisions were analyzed for opacity with ImageJ before euthanasia. Triplex IHC was performed on cryofixed corneas for myofibroblast marker alpha-smooth muscle actin, mesenchymal cell marker vimentin, and basement membrane marker laminin alpha-5. Stromal α-SMA-positive myofibroblasts surrounding the incisions were quantitated with ImageJ. RESULTS Topical losartan compared with vehicle did not affect closure of the radial incisions or the opacity that developed surrounding the incisions at 1 month after injury. Topical losartan compared with vehicle did significantly decrease the average density of stromal myofibroblasts surrounding the incisions. CONCLUSIONS Topical losartan, a known inhibitor of transforming growth factor beta signaling, did not affect closure of deep corneal incisions. Losartan decreased myofibroblast generation surrounding nearly full-thickness radial corneal incisions compared with vehicle. The opacity at the incisions was not significantly affected by losartan-likely because corneal fibroblasts that develop in the stroma adjacent to the incisions were not changed by the losartan compared with the vehicle.
Collapse
Affiliation(s)
| | - Barbara Araujo Lima Dutra
- The Cole Eye Institute, The Cleveland Clinic, Cleveland,
Ohio
- Department of Ophthalmology at University of Sao Paulo, Sao
Paulo, Brazil
| | - Lycia Pedral Sampaio
- The Cole Eye Institute, The Cleveland Clinic, Cleveland,
Ohio
- Department of Ophthalmology at University of Sao Paulo, Sao
Paulo, Brazil
| | | | | | | |
Collapse
|
10
|
Jiang D, Zheng S, Xu X, Yue H, Liang W, Wu Z. Uncovering Druggable Targets in Aortic Dissection: An Association Study Integrating Mendelian Randomization, pQTL, and Protein-Protein Interaction Network. Biomedicines 2024; 12:1204. [PMID: 38927411 PMCID: PMC11200553 DOI: 10.3390/biomedicines12061204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Aortic dissection (AD) is a life-threatening acute aortic syndrome. There are limitations and challenges in the discovery and application of biomarkers and drug targets for AD. Mendelian randomization (MR) analysis is a reliable analytical method to identify effective therapeutic targets. We aimed to identify novel therapeutic targets for AD and investigate their potential side-effects based on MR analysis. Data from protein quantitative trait loci (pQTLs) were used for MR analyses to identify potential therapeutic targets. We probed druggable proteins involved in the pathogenesis of aortic dissection from deCODE. In this study, a two-sample MR analysis was conducted, with druggable proteins as the exposure factor and data on genome-wide association studies (GWAS) of AD as the outcome. After conducting a two-sample MR, summary data-based Mendelian randomization (SMR) analysis and colocalization analysis were performed. A protein-protein interaction (PPI) network was also constructed to delve into the interactions between identified proteins. After MR analysis and the Steiger test, we identified five proteins as potential therapeutic targets for AD. SMR analysis and colocalization analysis also confirmed our findings. Finally, we identified ASPN (OR = 1.36, 95% CI: 1.20, 1.54, p = 4.22 × 10-5) and SPOCK2 (OR = 0.57, 95% CI: 0.41, 0.78, p = 4.52 × 10-4) as the core therapeutic targets. Through PPI network analysis, we identified six druggable targets, enabling the subsequent identification of six promising drugs from DrugBank for treating AD. This discovery of specific proteins as novel therapeutic targets represents a significant advancement in AD treatment. These findings provide more effective treatment options for AD.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhong Wu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Road, Wuhou District, Chengdu 610041, China; (D.J.)
| |
Collapse
|
11
|
Valdivia Callejon I, Buccioli L, Bastianen J, Schippers J, Verstraeten A, Luyckx I, Peeters S, Danser AHJ, Van Kimmenade RRJ, Meester J, Loeys B. Investigation of Strategies to Block Downstream Effectors of AT1R-Mediated Signalling to Prevent Aneurysm Formation in Marfan Syndrome. Int J Mol Sci 2024; 25:5025. [PMID: 38732244 PMCID: PMC11084825 DOI: 10.3390/ijms25095025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Cardiovascular outcome in Marfan syndrome (MFS) patients most prominently depends on aortic aneurysm progression with subsequent aortic dissection. Angiotensin II receptor blockers (ARBs) prevent aneurysm formation in MFS mouse models. In patients, ARBs only slow down aortic dilation. Downstream signalling from the angiotensin II type 1 receptor (AT1R) is mediated by G proteins and β-arrestin recruitment. AT1R also interacts with the monocyte chemoattractant protein-1 (MCP-1) receptor, resulting in inflammation. In this study, we explore the targeting of β-arrestin signalling in MFS mice by administering TRV027. Furthermore, because high doses of the ARB losartan, which has been proven beneficial in MFS, cannot be achieved in humans, we investigate a potential additive effect by combining lower concentrations of losartan (25 mg/kg/day and 5 mg/kg/day) with barbadin, a β-arrestin blocker, and DMX20, a C-C chemokine receptor type 2 (CCR2) blocker. A high dose of losartan (50 mg/kg/day) slowed down aneurysm progression compared to untreated MFS mice (1.73 ± 0.12 vs. 1.96 ± 0.08 mm, p = 0.0033). TRV027, the combination of barbadin with losartan (25 mg/kg/day), and DMX-200 (90 mg/kg/day) with a low dose of losartan (5 mg/kg/day) did not show a significant beneficial effect. Our results confirm that while losartan effectively halts aneurysm formation in Fbn1C1041G/+ MFS mice, neither TRV027 alone nor any of the other compounds combined with lower doses of losartan demonstrate a notable impact on aneurysm advancement. It appears that complete blockade of AT1R function, achieved by administrating a high dosage of losartan, may be necessary for inhibiting aneurysm progression in MFS.
Collapse
Affiliation(s)
- Irene Valdivia Callejon
- Centre of Medical Genetics, Antwerp University Hospital, University of Antwerp, 2650 Antwerp, Belgium; (I.V.C.); (L.B.); (J.B.); (J.S.); (A.V.); (I.L.); (S.P.)
| | - Lucia Buccioli
- Centre of Medical Genetics, Antwerp University Hospital, University of Antwerp, 2650 Antwerp, Belgium; (I.V.C.); (L.B.); (J.B.); (J.S.); (A.V.); (I.L.); (S.P.)
| | - Jarl Bastianen
- Centre of Medical Genetics, Antwerp University Hospital, University of Antwerp, 2650 Antwerp, Belgium; (I.V.C.); (L.B.); (J.B.); (J.S.); (A.V.); (I.L.); (S.P.)
| | - Jolien Schippers
- Centre of Medical Genetics, Antwerp University Hospital, University of Antwerp, 2650 Antwerp, Belgium; (I.V.C.); (L.B.); (J.B.); (J.S.); (A.V.); (I.L.); (S.P.)
| | - Aline Verstraeten
- Centre of Medical Genetics, Antwerp University Hospital, University of Antwerp, 2650 Antwerp, Belgium; (I.V.C.); (L.B.); (J.B.); (J.S.); (A.V.); (I.L.); (S.P.)
| | - Ilse Luyckx
- Centre of Medical Genetics, Antwerp University Hospital, University of Antwerp, 2650 Antwerp, Belgium; (I.V.C.); (L.B.); (J.B.); (J.S.); (A.V.); (I.L.); (S.P.)
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Silke Peeters
- Centre of Medical Genetics, Antwerp University Hospital, University of Antwerp, 2650 Antwerp, Belgium; (I.V.C.); (L.B.); (J.B.); (J.S.); (A.V.); (I.L.); (S.P.)
| | - A. H. Jan Danser
- Department of Internal Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands;
| | | | - Josephina Meester
- Centre of Medical Genetics, Antwerp University Hospital, University of Antwerp, 2650 Antwerp, Belgium; (I.V.C.); (L.B.); (J.B.); (J.S.); (A.V.); (I.L.); (S.P.)
| | - Bart Loeys
- Centre of Medical Genetics, Antwerp University Hospital, University of Antwerp, 2650 Antwerp, Belgium; (I.V.C.); (L.B.); (J.B.); (J.S.); (A.V.); (I.L.); (S.P.)
- Department of Internal Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands;
| |
Collapse
|
12
|
Wilson SE. Two-phase mechanism in the treatment of corneal stromal fibrosis with topical losartan. Exp Eye Res 2024; 242:109884. [PMID: 38570181 DOI: 10.1016/j.exer.2024.109884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/12/2024] [Accepted: 03/31/2024] [Indexed: 04/05/2024]
Abstract
Recent studies in rabbits and case reports in humans have demonstrated the efficacy of topical losartan in the treatment of corneal scarring fibrosis after a wide range of injuries, including chemical burns, infections, surgical complications, and some diseases. It is hypothesized that the effect of losartan on the fibrotic corneal stroma occurs through a two-phase process in which losartan first triggers the elimination of myofibroblasts by directing their apoptosis via inhibition of extracellular signal-regulated kinase (ERK)-mediated signal transduction, and possibly through signaling effects on the viability and development of corneal fibroblast and fibrocyte myofibroblast precursor cells. This first step likely occurs within a week or two in most corneas with fibrosis treated with topical losartan, but the medication must be continued for much longer until the epithelial basement membrane (EBM) is fully regenerated or new myofibroblasts will develop from precursor cells. Once the myofibroblasts are eliminated from the fibrotic stroma, corneal fibroblasts can migrate into the fibrotic tissue and reabsorb/reorganize the disordered extracellular matrix (ECM) previously produced by the myofibroblasts. This second stage is longer and more variable in different eyes of rabbits and humans, and accounts for most of the variability in the time it takes for the stromal opacity to be markedly reduced by topical losartan treatment. Eventually, keratocytes reemerge in the previously fibrotic stromal tissue to fine-tune the collagens and other ECM components and maintain the normal structure of the corneal stroma. The efficacy of losartan in the prevention and treatment of corneal fibrosis suggests that it acts as a surrogate for the EBM, by suppressing TGF beta-directed scarring of the wounded corneal stroma, until control over TGF beta action is re-established by a healed EBM, while also supporting regeneration of the EBM by allowing corneal fibroblasts to occupy the subepithelial stroma in the place of myofibroblasts.
Collapse
Affiliation(s)
- Steven E Wilson
- Cole Eye Institute, The Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, USA.
| |
Collapse
|
13
|
Kaschina E, Lauer D, Lange C, Unger T. Angiotensin AT 2 receptors reduce inflammation and fibrosis in cardiovascular remodeling. Biochem Pharmacol 2024; 222:116062. [PMID: 38369211 DOI: 10.1016/j.bcp.2024.116062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/04/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
The angiotensin AT2 receptor (AT2R), an important member of the "protective arm" of the renin-angiotensin system (RAS), has been recently defined as a therapeutic target in different pathological conditions. The AT2R activates complex signalling pathways linked to cellular proliferation, differentiation, anti-inflammation, antifibrosis, and induction or inhibition of apoptosis. The anti-inflammatory effect of AT2R activation is commonly associated with reduced fibrosis in different models. Current discoveries demonstrated a direct impact of AT2Rs on the regulation of cytokines, transforming growth factor beta1 (TGF-beta1), matrix metalloproteases (MMPs), and synthesis of the extracellular matrix components. This review article summarizes current knowledge on the AT2R in regard to immunity, inflammation and fibrosis in the heart and blood vessels. In particular, the differential influence of the AT2R on cardiovascular remodeling in preclinical models of myocardial infarction, heart failure and aneurysm formation are discussed. Overall, these studies demonstrate that AT2R stimulation represents a promising therapeutic approach to counteract myocardial and aortic damage in cardiovascular diseases.
Collapse
Affiliation(s)
- Elena Kaschina
- Charité - Universitätsmedizin Berlin, Institute of Pharmacology, Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Berlin, Germany.
| | - Dilyara Lauer
- Charité - Universitätsmedizin Berlin, Institute of Pharmacology, Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Berlin, Germany
| | - Christoph Lange
- Charité - Universitätsmedizin Berlin, Institute of Pharmacology, Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Berlin, Germany
| | - Thomas Unger
- CARIM - School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
14
|
Han Q, Qiao L, Yin L, Sui X, Shao W, Wang Q. The effect of exercise training intervention for patients with abdominal aortic aneurysm on cardiovascular and cardiorespiratory variables: an updated meta-analysis of randomized controlled trials. BMC Cardiovasc Disord 2024; 24:80. [PMID: 38291355 PMCID: PMC10829311 DOI: 10.1186/s12872-024-03745-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/22/2024] [Indexed: 02/01/2024] Open
Abstract
OBJECTIVE The purpose of this meta-analysis was to evaluate the effect of exercise training intervention in patients with abdominal aortic aneurysm (AAA). METHODS Eight randomized controlled trials (RCTs) that recruited 588 AAA patients were extracted using 4 databases (PubMed, Embase, Wanfang Data, and Cochrane Library). Physiological and biochemistry parameters that included in this study are high-sensitivity C-reactive protein (hs-CRP), respiratory peak oxygen uptake rate (VO2peak), triglyceride (TG), total cholesterol (TC), anaerobic threshold (AT), the diameter of AAA, high density lipoprotein cholesterol (HDL), low density lipoprotein cholesterol (LDL), and matrix metalloproteinase-9 (MMP-9). Standard mean difference (SMD) was used to assess the between group effect. RESULTS This meta-analysis was synthesized with findings from RCTs and found that hs-CRP (SMD, - 0.56 mg/dL; 95% CI: - 0.90 to 0.22; P = 0.001), VO2peak (SMD, 0.4 mL/kg/min; 95% CI, 0.21 to 0.60; P < 0.001), TG (SMD, - 0.39 mg/dL; 95% CI: - 0.02 to 0.77; P = 0.04), and AT (SMD, 0.75 mL/kg/min; 95% CI, 0.54 to 0.96; P < 0.001) were significantly improved in the exercise groups, while the size of AAA (SMD, - 0.15; 95% CI: - 0.36 to 0.06; P = 0.15), TC (SMD, 0.16 mg/dL; 95% CI: - 0.10 to 0.42; P = 0.23), HDL/LDL ratio (SMD, - 0.06; 95% CI: - 0.32 to 0.20; P = 0.64), HDL (SMD, - 0.09; 95% CI: - 0.39 to 0.20; P = 0.54), LDL (SMD, 0.08; 95% CI: - 0.21 to 0.38; P = 0.59), and MMP-9 (SMD, - 0.23 mg/dL; 95% CI: - 0.53 to 0.06; P = 0.12) did not differ in the exercise groups compared with the controls. CONCLUSION Exercise intervention improved some of the CVD risk factors but not all, hs-CRP, VO2peak and AT were significantly improved after exercise intervention, while, changes of MMP-9, the size of AAA, and the overall lipids profile were not. Exercise intervention provides an additional solution for improving cardiorespiratory capacity and health status among AAA patients, and might lead to a delay of AAA progression.
Collapse
Affiliation(s)
- Qi Han
- Sports Nutrition Center, National Institute of Sports Medicine, Beijing, 100029, China
- Beijing Sport University, Beijing, 100084, China
| | - Li Qiao
- Beijing Competitor Sports Nutrition Research Institute, Beijing, 100029, China
| | - Li Yin
- Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, 310020, China
- Department of Surgery, Northwestern University, Chicago, IL, 60611, USA
| | - Xuemei Sui
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - Wenjuan Shao
- Beijing Sport University, Beijing, 100084, China
- Minzu University of China, Beijing, 100081, China
| | - Qirong Wang
- Sports Nutrition Center, National Institute of Sports Medicine, Beijing, 100029, China.
| |
Collapse
|
15
|
Li L, Huang J, Liu Y. The extracellular matrix glycoprotein fibrillin-1 in health and disease. Front Cell Dev Biol 2024; 11:1302285. [PMID: 38269088 PMCID: PMC10806136 DOI: 10.3389/fcell.2023.1302285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024] Open
Abstract
Fibrillin-1 (FBN1) is a large, cysteine-rich, calcium binding extracellular matrix glycoprotein encoded by FBN1 gene. It serves as a structural component of microfibrils and provides force-bearing mechanical support in elastic and nonelastic connective tissue. As such, mutations in the FBN1 gene can cause a wide variety of genetic diseases such as Marfan syndrome, an autosomal dominant disorder characterized by ocular, skeletal and cardiovascular abnormalities. FBN1 also interacts with numerous microfibril-associated proteins, growth factors and cell membrane receptors, thereby mediating a wide range of biological processes such as cell survival, proliferation, migration and differentiation. Dysregulation of FBN1 is involved in the pathogenesis of many human diseases, such as cancers, cardiovascular disorders and kidney diseases. Paradoxically, both depletion and overexpression of FBN1 upregulate the bioavailability and signal transduction of TGF-β via distinct mechanisms in different settings. In this review, we summarize the structure and expression of FBN1 and present our current understanding of the functional role of FBN1 in various human diseases. This knowledge will allow to develop better strategies for therapeutic intervention of FBN1 related diseases.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| | - Junxin Huang
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| |
Collapse
|
16
|
Kalyanaraman H, Casteel DE, Cabriales JA, Tat J, Zhuang S, Chan A, Dretchen KL, Boss GR, Pilz RB. The Antioxidant/Nitric Oxide-Quenching Agent Cobinamide Prevents Aortic Disease in a Mouse Model of Marfan Syndrome. JACC Basic Transl Sci 2024; 9:46-62. [PMID: 38362350 PMCID: PMC10864892 DOI: 10.1016/j.jacbts.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 02/17/2024]
Abstract
Major pathologic changes in the proximal aorta underlie the life-threatening aortic aneurysms and dissections in Marfan Syndrome; current treatments delay aneurysm development without addressing the primary pathology. Because excess oxidative stress and nitric oxide/protein kinase G signaling likely contribute to the aortopathy, we hypothesized that cobinamide, a strong antioxidant that can attenuate nitric oxide signaling, could be uniquely suited to prevent aortic disease. In a well-characterized mouse model of Marfan Syndrome, cobinamide dramatically reduced elastin breaks, prevented excess collagen deposition and smooth muscle cell apoptosis, and blocked DNA, lipid, and protein oxidation and excess nitric oxide/protein kinase G signaling in the ascending aorta. Consistent with preventing pathologic changes, cobinamide diminished aortic root dilation without affecting blood pressure. Cobinamide exhibited excellent safety and pharmacokinetic profiles indicating it could be a practical treatment. We conclude that cobinamide deserves further study as a disease-modifying treatment of Marfan Syndrome.
Collapse
Affiliation(s)
- Hema Kalyanaraman
- Department of Medicine, University of California-San Diego, La Jolla, California, USA
| | - Darren E. Casteel
- Department of Medicine, University of California-San Diego, La Jolla, California, USA
| | - Justin A. Cabriales
- Department of Medicine, University of California-San Diego, La Jolla, California, USA
| | - John Tat
- Department of Medicine, University of California-San Diego, La Jolla, California, USA
| | - Shunhui Zhuang
- Department of Medicine, University of California-San Diego, La Jolla, California, USA
| | - Adriano Chan
- Department of Medicine, University of California-San Diego, La Jolla, California, USA
| | | | - Gerry R. Boss
- Department of Medicine, University of California-San Diego, La Jolla, California, USA
| | - Renate B. Pilz
- Department of Medicine, University of California-San Diego, La Jolla, California, USA
| |
Collapse
|
17
|
Watanabe K, Fujii H, Okamoto K, Kono K, Goto S, Nishi S. Exploring the implications of blocking renin-angiotensin-aldosterone system and fibroblast growth factor 23 in early left ventricular hypertrophy without chronic kidney disease. Front Endocrinol (Lausanne) 2023; 14:1276664. [PMID: 38174329 PMCID: PMC10762797 DOI: 10.3389/fendo.2023.1276664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Background Whether fibroblast growth factor 23 (FGF23) directly induces left ventricular hypertrophy (LVH) remains controversial. Recent studies showed an association between FGF23 and the renin-angiotensin-aldosterone system (RAAS). The aim of this study was to investigate changes in FGF23 levels and RAAS parameters and their influences on LVH. Methods In the first experiment, male C57BL/6J mice were divided into sham and transverse aortic constriction (TAC) groups. The TAC group underwent TAC at 8 weeks of age. At 1, 2, 3, and 4 weeks after TAC, the mice were sacrificed, and blood and urine samples were obtained. Cardiac expressions of FGF23 and RAAS-related factors were evaluated, and cardiac histological analyses were performed. In the second experiment, the sham and TAC groups were treated with vehicle, angiotensin-converting enzyme (ACE) inhibitor, or FGF receptor 4 (FGFR4) inhibitor and then evaluated in the same way as in the first experiment. Results In the early stage of LVH without chronic kidney disease, serum FGF23 levels did not change but cardiac FGF23 expression significantly increased along with LVH progression. Moreover, serum aldosterone and cardiac ACE levels were significantly elevated, and cardiac ACE2 levels were significantly decreased. ACE inhibitor did not change serum FGF23 levels but significantly decreased cardiac FGF23 levels with improvements in LVH and RAAS-related factors, while FGFR4 inhibitor did not change the values. Conclusions Not serum FGF23 but cardiac FGF23 levels and RAAS parameters significantly changed in the early stage of LVH without chronic kidney disease. RAAS blockade might be more crucial than FGF23 blockade for preventing LVH progression in this condition.
Collapse
Affiliation(s)
| | - Hideki Fujii
- Division of Nephrology and Kidney Center, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | |
Collapse
|
18
|
Wagenaar GTM, Moll GN. Evolving views on the first two ligands of the angiotensin II type 2 receptor. From putative antagonists to potential agonists? Eur J Pharmacol 2023; 961:176189. [PMID: 37951489 DOI: 10.1016/j.ejphar.2023.176189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/29/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
The renin-angiotensin system is one of the most complex regulatory systems that controls multiple organ functions. One of its key components, angiotensin II (Ang II), stimulates two G-protein coupled class A receptors: the Ang II type 1 (AT1) receptor and the Ang II type 2 (AT2) receptor. While stimulation of the AT1 receptor causes G-protein-dependent signaling and arrestin recruitment, the AT2 receptor seems to have a constitutively active-like conformation and appears to act via G-protein-dependent and -independent pathways. Overstimulation of the AT1 receptor may lead to unwanted effects like inflammation and fibrosis. In contrast, stimulation of the AT2 receptor leads to opposite effects thus restoring the balance. However, the role of the AT2 receptor has become controversial due to beneficial effects of putative AT2 receptor antagonists. The two first synthetic AT2 receptor-selective ligands, peptide CGP42112 and small molecule PD123319, were initially both considered antagonists. CGP42112 was subsequently considered a partial agonist and it was recently demonstrated to be a full agonist. Based on the search-term PD123319 in Pubmed, 1652 studies have investigated putative AT2 receptor antagonist PD123319. Here, we put forward literature that shows beneficial effects of PD123319 alone, even at doses too low for antagonist efficacy. These beneficial effects appear compatible with agonist-like activity via the AT2 receptor. Taken together, a more consistent image of a therapeutic role of stimulated AT2 receptor emerges which may clarify current controversies.
Collapse
Affiliation(s)
| | - Gert N Moll
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG, Groningen, the Netherlands.
| |
Collapse
|
19
|
Eguchi S, Sparks MA, Sawada H, Lu HS, Daugherty A, Zhuo JL. Recent Advances in Understanding the Molecular Pathophysiology of Angiotensin II Receptors: Lessons From Cell-Selective Receptor Deletion in Mice. Can J Cardiol 2023; 39:1795-1807. [PMID: 37394059 DOI: 10.1016/j.cjca.2023.06.421] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/08/2023] [Accepted: 06/20/2023] [Indexed: 07/04/2023] Open
Abstract
The renin-angiotensin system (RAS) is an essential hormonal system involved in water and sodium reabsorption, renal blood flow regulation, and arterial constriction. Systemic stimulation of the RAS with infusion of the main peptide angiotensin II (Ang II) in animals as well as pathological elevation of renin (ie, renovascular hypertension) to increase circulatory Ang II in humans ultimately lead to hypertension and end organ damage. In addition to hypertension, accumulating evidence supports that the Ang II type 1 receptor exerts a critical role in cardiovascular and kidney diseases independent of blood pressure elevation. In the past 2 decades, the identification of an increased number of peptides and receptors has facilitated the concept that the RAS has detrimental and beneficial effects on the cardiovascular system depending on which RAS components are activated. For example, angiotensin 1-7 and Ang II type 2 receptors act as a counter-regulatory system against the classical RAS by mediating vasodilation. Although the RAS as an endocrine system for regulation of blood pressure is well established, there remain many unanswered questions and controversial findings regarding blood pressure regulation and pathophysiological regulation of cardiovascular diseases at the tissue level. This review article includes the latest knowledge gleaned from cell type-selective gene deleted mice regarding cell type-specific roles of Ang II receptors and their significance in health and diseases are discussed. In particular, we focus on the roles of these receptors expressed in vascular, cardiac, and kidney epithelial cells.
Collapse
Affiliation(s)
- Satoru Eguchi
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA.
| | - Matthew A Sparks
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA; Renal Section, Durham VA Medical Center, Durham, North Carolina, USA
| | - Hisashi Sawada
- Department of Physiology, Saha Cardiovascular Center, and Saha Aortic Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Hong S Lu
- Department of Physiology, Saha Cardiovascular Center, and Saha Aortic Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Alan Daugherty
- Department of Physiology, Saha Cardiovascular Center, and Saha Aortic Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Jia L Zhuo
- Tulane Hypertension and Renal Center of Excellence and Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
20
|
Ito S, Amioka N, Franklin MK, Wang P, Liang CL, Katsumata Y, Cai L, Temel RE, Daugherty A, Lu HS, Sawada H. Association of NOTCH3 With Elastic Fiber Dispersion in the Infrarenal Abdominal Aorta of Cynomolgus Monkeys. Arterioscler Thromb Vasc Biol 2023; 43:2301-2311. [PMID: 37855127 PMCID: PMC10843096 DOI: 10.1161/atvbaha.123.319244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND The regional heterogeneity of vascular components and transcriptomes is an important determinant of aortic biology. This notion has been explored in multiple mouse studies. In the present study, we examined the regional heterogeneity of aortas in nonhuman primates. METHODS Aortic samples were harvested from the ascending, descending thoracic, suprarenal, and infrarenal regions of young control monkeys and adult monkeys with high fructose consumption for 3 years. The regional heterogeneity of aortic structure and transcriptomes was examined by histological and bulk RNA sequencing analyses, respectively. RESULTS Immunostaining of CD31 and αSMA (alpha-smooth muscle actin) revealed that endothelial and smooth muscle cells were distributed homogeneously across the aortic regions. In contrast, elastic fibers were less abundant and dispersed in the infrarenal aorta compared with other regions and associated with collagen deposition. Bulk RNA sequencing identified a distinct transcriptome related to the Notch signaling pathway in the infrarenal aorta with significantly increased NOTCH3 mRNA compared with other regions. Immunostaining revealed that NOTCH3 protein was increased in the media of the infrarenal aorta. The abundance of medial NOTCH3 was positively correlated with the dispersion of elastic fibers. Adult cynomolgus monkeys with high fructose consumption displayed vascular wall remodeling, such as smooth muscle cell loss and elastic fiber disruption, predominantly in the infrarenal region. The correlation between NOTCH3 and elastic fiber dispersion was enhanced in these monkeys. CONCLUSIONS Aortas of young cynomolgus monkeys display regional heterogeneity of their transcriptome and the structure of elastin and collagens. Elastic fibers in the infrarenal aorta are dispersed along with upregulation of medial NOTCH3.
Collapse
Affiliation(s)
- Sohei Ito
- Saha Cardiovascular Research Center, College of Medicine
| | - Naofumi Amioka
- Saha Cardiovascular Research Center, College of Medicine
| | | | - Pengjun Wang
- Saha Cardiovascular Research Center, College of Medicine
| | | | - Yuriko Katsumata
- Department of Biostatistics, College of Public Health, University of Kentucky, KY
- Sanders-Brown Center on Aging, University of Kentucky, KY
| | - Lei Cai
- Saha Cardiovascular Research Center, College of Medicine
| | - Ryan E. Temel
- Saha Cardiovascular Research Center, College of Medicine
- Saha Aortic Center, College of Medicine, University of Kentucky, KY
- Department of Physiology, College of Medicine, University of Kentucky, KY
| | - Alan Daugherty
- Saha Cardiovascular Research Center, College of Medicine
- Saha Aortic Center, College of Medicine, University of Kentucky, KY
- Department of Physiology, College of Medicine, University of Kentucky, KY
| | - Hong S. Lu
- Saha Cardiovascular Research Center, College of Medicine
- Saha Aortic Center, College of Medicine, University of Kentucky, KY
- Department of Physiology, College of Medicine, University of Kentucky, KY
| | - Hisashi Sawada
- Saha Cardiovascular Research Center, College of Medicine
- Saha Aortic Center, College of Medicine, University of Kentucky, KY
- Department of Physiology, College of Medicine, University of Kentucky, KY
| |
Collapse
|
21
|
Jadli A, Gomes K, Ballasy N, Wijesuriya T, Belke D, Fedak P, Patel V. Inhibition of smooth muscle cell death by Angiotensin 1-7 protects against abdominal aortic aneurysm. Biosci Rep 2023; 43:BSR20230718. [PMID: 37947205 PMCID: PMC10695742 DOI: 10.1042/bsr20230718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) represents a debilitating vascular disease characterized by aortic dilatation and wall rupture if it remains untreated. We aimed to determine the effects of Ang 1-7 in a murine model of AAA and to investigate the molecular mechanisms involved. Eight- to 10-week-old apolipoprotein E-deficient mice (ApoEKO) were infused with Ang II (1.44 mg/kg/day, s.c.) and treated with Ang 1-7 (0.576 mg/kg/day, i.p.). Echocardiographic and histological analyses showed abdominal aortic dilatation and extracellular matrix remodeling in Ang II-infused mice. Treatment with Ang 1-7 led to suppression of Ang II-induced aortic dilatation in the abdominal aorta. The immunofluorescence imaging exhibited reduced smooth muscle cell (SMC) density in the abdominal aorta. The abdominal aortic SMCs from ApoEKO mice exhibited markedly increased apoptosis in response to Ang II. Ang 1-7 attenuated cell death, as evident by increased SMC density in the aorta and reduced annexin V/propidium iodide-positive cells in flow cytometric analysis. Gene expression analysis for contractile and synthetic phenotypes of abdominal SMCs showed preservation of contractile phenotype by Ang 1-7 treatment. Molecular analyses identified increased mitochondrial fission, elevated cellular and mitochondrial reactive oxygen species (ROS) levels, and apoptosis-associated proteins, including cytochrome c, in Ang II-treated aortic SMCs. Ang 1-7 mitigated Ang II-induced mitochondrial fission, ROS generation, and levels of pro-apoptotic proteins, resulting in decreased cell death of aortic SMCs. These results highlight a critical vasculo-protective role of Ang 1-7 in a degenerative aortic disease; increased Ang 1-7 activity may provide a promising therapeutic strategy against the progression of AAA.
Collapse
Affiliation(s)
- Anshul S. Jadli
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Karina P. Gomes
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Noura N. Ballasy
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Tishani Methsala Wijesuriya
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Darrell Belke
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Paul W.M. Fedak
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Vaibhav B. Patel
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
22
|
Ogino H, Iida O, Akutsu K, Chiba Y, Hayashi H, Ishibashi-Ueda H, Kaji S, Kato M, Komori K, Matsuda H, Minatoya K, Morisaki H, Ohki T, Saiki Y, Shigematsu K, Shiiya N, Shimizu H, Azuma N, Higami H, Ichihashi S, Iwahashi T, Kamiya K, Katsumata T, Kawaharada N, Kinoshita Y, Matsumoto T, Miyamoto S, Morisaki T, Morota T, Nanto K, Nishibe T, Okada K, Orihashi K, Tazaki J, Toma M, Tsukube T, Uchida K, Ueda T, Usui A, Yamanaka K, Yamauchi H, Yoshioka K, Kimura T, Miyata T, Okita Y, Ono M, Ueda Y. JCS/JSCVS/JATS/JSVS 2020 Guideline on Diagnosis and Treatment of Aortic Aneurysm and Aortic Dissection. Circ J 2023; 87:1410-1621. [PMID: 37661428 DOI: 10.1253/circj.cj-22-0794] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Affiliation(s)
- Hitoshi Ogino
- Department of Cardiovascular Surgery, Tokyo Medical University
| | - Osamu Iida
- Cardiovascular Center, Kansai Rosai Hospital
| | - Koichi Akutsu
- Cardiovascular Medicine, Nippon Medical School Hospital
| | - Yoshiro Chiba
- Department of Cardiology, Mito Saiseikai General Hospital
| | | | | | - Shuichiro Kaji
- Department of Cardiovascular Medicine, Kansai Electric Power Hospital
| | - Masaaki Kato
- Department of Cardiovascular Surgery, Morinomiya Hospital
| | - Kimihiro Komori
- Division of Vascular and Endovascular Surgery, Department of Surgery, Nagoya University Graduate School of Medicine
| | - Hitoshi Matsuda
- Department of Cardiovascular Surgery, National Cerebral and Cardiovascular Center
| | - Kenji Minatoya
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University
| | | | - Takao Ohki
- Division of Vascular Surgery, Department of Surgery, The Jikei University School of Medicine
| | - Yoshikatsu Saiki
- Division of Cardiovascular Surgery, Graduate School of Medicine, Tohoku University
| | - Kunihiro Shigematsu
- Department of Vascular Surgery, International University of Health and Welfare Mita Hospital
| | - Norihiko Shiiya
- First Department of Surgery, Hamamatsu University School of Medicine
| | | | - Nobuyoshi Azuma
- Department of Vascular Surgery, Asahikawa Medical University
| | - Hirooki Higami
- Department of Cardiology, Japanese Red Cross Otsu Hospital
| | | | - Toru Iwahashi
- Department of Cardiovascular Surgery, Tokyo Medical University
| | - Kentaro Kamiya
- Department of Cardiovascular Surgery, Tokyo Medical University
| | - Takahiro Katsumata
- Department of Thoracic and Cardiovascular Surgery, Osaka Medical College
| | - Nobuyoshi Kawaharada
- Department of Cardiovascular Surgery, Sapporo Medical University School of Medicine
| | | | - Takuya Matsumoto
- Department of Vascular Surgery, International University of Health and Welfare
| | | | - Takayuki Morisaki
- Department of General Medicine, IMSUT Hospital, the Institute of Medical Science, the University of Tokyo
| | - Tetsuro Morota
- Department of Cardiovascular Surgery, Nippon Medical School Hospital
| | | | - Toshiya Nishibe
- Department of Cardiovascular Surgery, Tokyo Medical University
| | - Kenji Okada
- Department of Surgery, Division of Cardiovascular Surgery, Kobe University Graduate School of Medicine
| | | | - Junichi Tazaki
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University
| | - Masanao Toma
- Department of Cardiology, Hyogo Prefectural Amagasaki General Medical Center
| | - Takuro Tsukube
- Department of Cardiovascular Surgery, Japanese Red Cross Kobe Hospital
| | - Keiji Uchida
- Cardiovascular Center, Yokohama City University Medical Center
| | - Tatsuo Ueda
- Department of Radiology, Nippon Medical School
| | - Akihiko Usui
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine
| | - Kazuo Yamanaka
- Cardiovascular Center, Nara Prefecture General Medical Center
| | - Haruo Yamauchi
- Department of Cardiac Surgery, The University of Tokyo Hospital
| | | | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University
| | | | - Yutaka Okita
- Department of Surgery, Division of Cardiovascular Surgery, Kobe University Graduate School of Medicine
| | - Minoru Ono
- Department of Cardiac Surgery, Graduate School of Medicine, The University of Tokyo
| | | |
Collapse
|
23
|
Sampaio LP, Villabona-Martinez V, Shiju TM, Santhiago MR, Wilson SE. Topical Losartan Decreases Myofibroblast Generation But Not Corneal Opacity After Surface Blast-Simulating Irregular PTK in Rabbits. Transl Vis Sci Technol 2023; 12:20. [PMID: 37750746 PMCID: PMC10541722 DOI: 10.1167/tvst.12.9.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/04/2023] [Indexed: 09/27/2023] Open
Abstract
Purpose To evaluate the efficacy of topical losartan after blast injury-simulating irregular phototherapeutic keratectomy (PTK) in rabbits. Methods Twelve NZW rabbits underwent 100 pulse 6.5 mm diameter PTK over a metal screen to generate severe surface irregularity and inhibit epithelial basement membrane regeneration. Corneas were treated with 0.8 mg/mL losartan in balanced salt solution (BSS) or BSS 50 µL six times per day for six weeks after PTK. All corneas had slit lamp photography, with and without 1% fluorescein at two, four, and six weeks after PTK, and were analyzed using immunohistochemistry for the myofibroblast marker α-smooth muscle actin (α-SMA), keratocyte marker keratocan, mesenchymal cell marker vimentin, transforming growth factor (TGF)-β1, and collagen type IV. Results Topical 0.8 mg/mL losartan six times a day significantly decreased anterior stromal α-SMA intensity units compared to BSS at six weeks after anterior stromal irregularity-inducing screened PTK (P = 0.009). Central corneal opacity, however, was not significantly different between the two groups. Keratocan, vimentin, TGF-β1, or collagen type IV levels in the anterior stroma were not significantly different between the two groups. Conclusions Topical losartan effectively decreased myofibroblast generation after surface blast simulation irregular PTK. However, these results suggest initial masking-smoothing PTK, along with adjuvant topical losartan therapy, may be needed to decrease corneal stromal opacity after traumatic injuries that produce severe surface irregularity. Translational Relevance Topical losartan decreased scar-producing stromal myofibroblasts after irregular PTK over a metal screen but early smoothing of irregularity would also likely be needed to significantly decrease corneal opacity.
Collapse
Affiliation(s)
- Lycia Pedral Sampaio
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Ophthalmology at University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | |
Collapse
|
24
|
Ito S, Amioka N, Franklin MK, Wang P, Liang CL, Katsumata Y, Cai L, Temel RE, Daugherty A, Lu HS, Sawada H. Association of NOTCH3 with Elastic Fiber Dispersion in the Infrarenal Abdominal Aorta of Cynomolgus Monkeys. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.04.530901. [PMID: 37767086 PMCID: PMC10522327 DOI: 10.1101/2023.03.04.530901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Background The regional heterogeneity of vascular components and transcriptomes is an important determinant of aortic biology. This notion has been explored in multiple mouse studies. In the present study, we examined the regional heterogeneity of aortas in non-human primates. Methods Aortic samples were harvested from the ascending, descending, suprarenal, and infrarenal regions of young control monkeys and adult monkeys provided with high fructose for 3 years. The regional heterogeneity of aortic structure and transcriptomes was examined by histological and bulk RNA sequencing analyses. Results Immunostaining of CD31 and αSMA revealed that endothelial and smooth muscle cells were distributed homogeneously across the aortic regions. In contrast, elastic fibers were less abundant and dispersed in the infrarenal aorta compared to other regions and associated with collagen deposition. Bulk RNA sequencing identified a distinct transcriptome related to the Notch signaling pathway in the infrarenal aorta with significantly increased NOTCH3 mRNA compared to other regions. Immunostaining revealed that NOTCH3 protein was increased in the media of the infrarenal aorta. The abundance of medial NOTCH3 was positively correlated with the dispersion of elastic fibers. Adult cynomolgus monkeys provided with high fructose displayed vascular wall remodeling, such as smooth muscle cell loss and elastic fiber disruption, predominantly in the infrarenal region. The correlation between NOTCH3 and elastic fiber dispersion was enhanced in these monkeys. Conclusions Aortas of young cynomolgus monkeys display regional heterogeneity of their transcriptome and the structure of elastin and collagens. Elastic fibers in the infrarenal aorta are dispersed along with upregulation of medial NOTCH3. HIGHLIGHTS - The present study determined the regional heterogeneity of aortas from cynomolgus monkeys.- Aortas of young cynomolgus monkeys displayed region-specific aortic structure and transcriptomes.- Elastic fibers were dispersed in the infrarenal aorta along with increased NOTCH3 abundance in the media. GRAPHIC ABSTRACT
Collapse
|
25
|
Rega S, Farina F, Bouhuis S, de Donato S, Chiesa M, Poggio P, Cavallotti L, Bonalumi G, Giambuzzi I, Pompilio G, Perrucci GL. Multi-omics in thoracic aortic aneurysm: the complex road to the simplification. Cell Biosci 2023; 13:131. [PMID: 37475058 DOI: 10.1186/s13578-023-01080-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 07/05/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Thoracic aortic aneurysm (TAA) is a serious condition that affects the aorta, characterized by the dilation of its first segment. The causes of TAA (e.g., age, hypertension, genetic syndromes) are heterogeneous and contribute to the weakening of the aortic wall. This complexity makes treating this life-threatening aortopathy challenging, as there are currently no etiological therapy available, and pharmacological strategies, aimed at avoiding surgical aortic replacement, are merely palliative. Recent studies on novel therapies for TAA have focused on identifying biological targets and etiological mechanisms of the disease by using advanced -omics techniques, including epigenomics, transcriptomics, proteomics, and metabolomics approaches. METHODS This review presents the latest findings from -omics approaches and underscores the importance of integrating multi-omics data to gain more comprehensive understanding of TAA. RESULTS Literature suggests that the alterations in TAA mediators frequently involve members of pro-fibrotic process (i.e., TGF-β signaling pathways) or proteins associated with cell/extracellular structures (e.g., aggrecans). Further analyses often reported the importance in TAA of processes as inflammation (PCR, CD3, leukotriene compounds), oxidative stress (chromatin OXPHOS, fatty acids), mitochondrial respiration and glycolysis/gluconeogenesis (e.g., PPARs and HIF1a). Of note, more recent metabolomics studies added novel molecular markers to the list of TAA-specific detrimental mediators (proteoglycans). CONCLUSION It is increasingly clear that integrating data from different -omics branches, along with clinical data, is essential as well as complicated both to reveal hidden relevant information and to address complex diseases such as TAA. Importantly, recent progresses in metabolomics highlighted novel potential and unprecedented marks in TAA diagnosis and therapy.
Collapse
Affiliation(s)
- Sara Rega
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Unit for the Study of Aortic, Valvular and Coronary Pathologies, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Floriana Farina
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU) München, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Silvia Bouhuis
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Silvia de Donato
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Mattia Chiesa
- Bioinformatics and Artificial Intelligence Facility, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Electronics, Information and Biomedical Engineering, Politecnico Di Milano, Milan, Italy
| | - Paolo Poggio
- Unit for the Study of Aortic, Valvular and Coronary Pathologies, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Laura Cavallotti
- Department of Cardiovascular Surgery, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Giorgia Bonalumi
- Department of Cardiovascular Surgery, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Ilaria Giambuzzi
- Department of Cardiovascular Surgery, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Clinical Sciences and Community Health, Università Degli Studi Di Milano, Milan, Italy
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Cardiovascular Surgery, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, Università Degli Studi Di Milano, Milan, Italy
| | - Gianluca L Perrucci
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy.
| |
Collapse
|
26
|
Wilson SE. The corneal fibroblast: The Dr. Jekyll underappreciated overseer of the responses to stromal injury. Ocul Surf 2023; 29:53-62. [PMID: 37080483 DOI: 10.1016/j.jtos.2023.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/22/2023]
Abstract
PURPOSE To review the functions of corneal fibroblasts in wound healing. METHODS Literature review. RESULTS Corneal fibroblasts arise in the corneal stroma after anterior, posterior or limbal injuries and are derived from keratocytes. Transforming growth factor (TGF) β1 and TGFβ2, along with platelet-derived growth factor (PDGF), are the major modulators of the keratocyte to corneal fibroblast transition, while fibroblast growth factor (FGF)-2, TGFβ3, and retinoic acid are thought to regulate the transition of corneal fibroblasts back to keratocytes. Adequate and sustained levels of TGFβ1 and/or TGFβ2, primarily from epithelium, tears, aqueous humor, and corneal endothelium, drive the development of corneal fibroblasts into myofibroblasts. Myofibroblasts have been shown in vitro to transition back to corneal fibroblasts, although apoptosis of myofibroblasts has been documented as a major contributor to the resolution of fibrosis in several in situ corneal injury models. Corneal fibroblasts, aside from their role as a major progenitor to myofibroblasts, also perform many critical functions in the injured cornea, including the production of critical basement membrane (BM) components during regeneration of the epithelial BM and Descemet's membrane, production of non-basement membrane-associated stromal collagen type IV to control and downregulate TGFβ effects on stromal cells, release of chemotactic chemokines that attract bone marrow-derived cells to the injured stroma, production of growth factors that modulate regeneration and maturation of the overlying epithelium, and production of collagens and other ECM components that contribute to stromal integrity after injury. CONCLUSIONS Corneal fibroblasts are major contributors to and overseers of the corneal response to injuries.
Collapse
Affiliation(s)
- Steven E Wilson
- The Cole Eye Institute, The Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
27
|
Alonso F, Dong Y, Li L, Jahjah T, Dupuy JW, Fremaux I, Reinhardt DP, Génot E. Fibrillin-1 regulates endothelial sprouting during angiogenesis. Proc Natl Acad Sci U S A 2023; 120:e2221742120. [PMID: 37252964 PMCID: PMC10265973 DOI: 10.1073/pnas.2221742120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/20/2023] [Indexed: 06/01/2023] Open
Abstract
Fibrillin-1 is an extracellular matrix protein that assembles into microfibrils which provide critical functions in large blood vessels and other tissues. Mutations in the fibrillin-1 gene are associated with cardiovascular, ocular, and skeletal abnormalities in Marfan syndrome. Here, we reveal that fibrillin-1 is critical for angiogenesis which is compromised by a typical Marfan mutation. In the mouse retina vascularization model, fibrillin-1 is present in the extracellular matrix at the angiogenic front where it colocalizes with microfibril-associated glycoprotein-1, MAGP1. In Fbn1C1041G/+ mice, a model of Marfan syndrome, MAGP1 deposition is reduced, endothelial sprouting is decreased, and tip cell identity is impaired. Cell culture experiments confirmed that fibrillin-1 deficiency alters vascular endothelial growth factor-A/Notch and Smad signaling which regulate the acquisition of endothelial tip cell/stalk cell phenotypes, and we showed that modulation of MAGP1 expression impacts these pathways. Supplying the growing vasculature of Fbn1C1041G/+ mice with a recombinant C-terminal fragment of fibrillin-1 corrects all defects. Mass spectrometry analyses showed that the fibrillin-1 fragment alters the expression of various proteins including ADAMTS1, a tip cell metalloprotease and matrix-modifying enzyme. Our data establish that fibrillin-1 is a dynamic signaling platform in the regulation of cell specification and matrix remodeling at the angiogenic front and that mutant fibrillin-1-induced defects can be rescued pharmacologically using a C-terminal fragment of the protein. These findings, identify fibrillin-1, MAGP1, and ADAMTS1 in the regulation of endothelial sprouting, and contribute to our understanding of how angiogenesis is regulated. This knowledge may have critical implications for people with Marfan syndrome.
Collapse
Affiliation(s)
- Florian Alonso
- Université de BordeauxF-33000Bordeaux, France
- INSERM U1026, BioTisF-33000Bordeaux, France
| | - Yuechao Dong
- Université de BordeauxF-33000Bordeaux, France
- INSERM U1026, BioTisF-33000Bordeaux, France
| | - Ling Li
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QCH3A 0C7, Canada
| | - Tiya Jahjah
- Université de BordeauxF-33000Bordeaux, France
- INSERM U1026, BioTisF-33000Bordeaux, France
| | | | - Isabelle Fremaux
- Université de BordeauxF-33000Bordeaux, France
- INSERM U1026, BioTisF-33000Bordeaux, France
| | - Dieter P. Reinhardt
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QCH3A 0C7, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QCH3A 0C7, Canada
| | - Elisabeth Génot
- Université de BordeauxF-33000Bordeaux, France
- INSERM U1026, BioTisF-33000Bordeaux, France
| |
Collapse
|
28
|
Ng B, Xie C, Su L, Kuthubudeen FF, Kwek XY, Yeong D, Pua CJ, Cook SA, Lim WW. IL11 (Interleukin-11) Causes Emphysematous Lung Disease in a Mouse Model of Marfan Syndrome. Arterioscler Thromb Vasc Biol 2023; 43:739-754. [PMID: 36924234 PMCID: PMC10125130 DOI: 10.1161/atvbaha.122.318802] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Marfan Syndrome (MFS) is an inherited connective tissue disorder caused by mutations in the FBN1 (fibrillin-1) gene. Lung abnormalities are common in MFS, but their pathogenesis is poorly understood. IL11 (interleukin-11) causes aortic disease in a mouse model of MFS and was studied here in the lung. METHODS We examined histological and molecular phenotypes in the lungs of Fbn1C1041G/+ mice (mouse model of Marfan Syndrome [mMFS]), an established mouse model of MFS. To identify IL11-expressing cells, we used immunohistochemistry on lungs of 4- and 16-week-old Fbn1C1041G/+:Il11EGFP/+ reporter mice. We studied the effects of IL11 inhibition by RT-qPCR, immunoblots and histopathology in lungs from genetic or pharmacologic models: (1) 16-week-old IL11 receptor (IL11RA) knockout mMFS mice (Fbn1C1041G/+:Il11ra1-/- mice) and (2) in mMFS mice administered IgG control or interleukin-11 receptor antibodies twice weekly from 4 to 24 weeks of age. RESULTS mMFS lungs showed progressive loss and enlargement of distal airspaces associated with increased proinflammatory and profibrotic gene expression as well as matrix metalloproteinases 2, 9, and 12. IL11 was increased in mMFS lungs and localized to smooth muscle and endothelial cells in young mMFS mice in the Fbn1C1041G/+:Il11EGFP/+ reporter strain and in fibroblasts, in older mice. In mMFS mice, genetic (Fbn1C1041G/+:Il11ra1-/-) or pharmacologic (anti-interleukin-11 receptor) inhibition of IL11 signaling reduced lung emphysema, fibrosis, and inflammation. This protective effect was associated with reduced pathogenic ERK1/2 signaling and lower metalloproteinase 2, 9, and 12 expression. CONCLUSIONS IL11 causes lung disease in mMFS. This reveals a shared IL11-driven disease mechanism in lung and aorta in MFS and suggests inhibition of IL11 signaling as a holistic approach for treating multiorgan morbidity in MFS.
Collapse
Affiliation(s)
- Benjamin Ng
- National Heart Research Institute Singapore, National Heart Centre Singapore (B.N., C.X., L.S., X.-Y.K., D.Y., C.J.P., S.A.C., W.-W.L.)
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School (B.N., F.F.K., S.A.C., W.-W.L.)
| | - Chen Xie
- National Heart Research Institute Singapore, National Heart Centre Singapore (B.N., C.X., L.S., X.-Y.K., D.Y., C.J.P., S.A.C., W.-W.L.)
| | - Liping Su
- National Heart Research Institute Singapore, National Heart Centre Singapore (B.N., C.X., L.S., X.-Y.K., D.Y., C.J.P., S.A.C., W.-W.L.)
| | - Fathima F. Kuthubudeen
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School (B.N., F.F.K., S.A.C., W.-W.L.)
| | - Xiu-Yi Kwek
- National Heart Research Institute Singapore, National Heart Centre Singapore (B.N., C.X., L.S., X.-Y.K., D.Y., C.J.P., S.A.C., W.-W.L.)
| | - Daryl Yeong
- National Heart Research Institute Singapore, National Heart Centre Singapore (B.N., C.X., L.S., X.-Y.K., D.Y., C.J.P., S.A.C., W.-W.L.)
| | - Chee Jian Pua
- National Heart Research Institute Singapore, National Heart Centre Singapore (B.N., C.X., L.S., X.-Y.K., D.Y., C.J.P., S.A.C., W.-W.L.)
| | - Stuart A. Cook
- National Heart Research Institute Singapore, National Heart Centre Singapore (B.N., C.X., L.S., X.-Y.K., D.Y., C.J.P., S.A.C., W.-W.L.)
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School (B.N., F.F.K., S.A.C., W.-W.L.)
- MRC-London Institute of Medical Sciences, United Kingdom (S.A.C.)
| | - Wei-Wen Lim
- National Heart Research Institute Singapore, National Heart Centre Singapore (B.N., C.X., L.S., X.-Y.K., D.Y., C.J.P., S.A.C., W.-W.L.)
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School (B.N., F.F.K., S.A.C., W.-W.L.)
| |
Collapse
|
29
|
Da X, Li Z, Huang X, He Z, Yu Y, Tian T, Xu C, Yao Y, Wang QK. AGGF1 therapy inhibits thoracic aortic aneurysms by enhancing integrin α7-mediated inhibition of TGF-β1 maturation and ERK1/2 signaling. Nat Commun 2023; 14:2265. [PMID: 37081014 PMCID: PMC10119315 DOI: 10.1038/s41467-023-37809-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 03/30/2023] [Indexed: 04/22/2023] Open
Abstract
Thoracic aortic aneurysm (TAA) is a localized or diffuse dilatation of the thoracic aortas, and causes many sudden deaths each year worldwide. However, there is no effective pharmacologic therapy. Here, we show that AGGF1 effectively blocks TAA-associated arterial inflammation and remodeling in three different mouse models (mice with transverse aortic constriction, Fbn1C1041G/+ mice, and β-aminopropionitrile-treated mice). AGGF1 expression is reduced in the ascending aortas from the three models and human TAA patients. Aggf1+/- mice and vascular smooth muscle cell (VSMC)-specific Aggf1smcKO knockout mice show aggravated TAA phenotypes. Mechanistically, AGGF1 enhances the interaction between its receptor integrin α7 and latency-associated peptide (LAP)-TGF-β1, blocks the cleavage of LAP-TGF-β1 to form mature TGF-β1, and inhibits Smad2/3 and ERK1/2 phosphorylation in VSMCs. Pirfenidone, a treatment agent for idiopathic pulmonary fibrosis, inhibits TAA-associated vascular inflammation and remodeling in wild type mice, but not in Aggf1+/- mice. In conclusion, we identify an innovative AGGF1 protein therapeutic strategy to block TAA-associated vascular inflammation and remodeling, and show that efficacy of TGF-β inhibition therapies require AGGF1.
Collapse
Affiliation(s)
- Xingwen Da
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Ziyan Li
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Xiaofan Huang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Zuhan He
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Yubing Yu
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Tongtong Tian
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Chengqi Xu
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P. R. China.
- Institute of Medical Genomics and School of Biomedical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, P. R. China.
| | - Yufeng Yao
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P. R. China.
| | - Qing K Wang
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P. R. China.
- Institute of Medical Genomics and School of Biomedical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, P. R. China.
| |
Collapse
|
30
|
Wilson SE. Topical Losartan: Practical Guidance for Clinical Trials in the Prevention and Treatment of Corneal Scarring Fibrosis and Other Eye Diseases and Disorders. J Ocul Pharmacol Ther 2023; 39:191-206. [PMID: 36877777 PMCID: PMC10079252 DOI: 10.1089/jop.2022.0174] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/06/2023] [Indexed: 03/08/2023] Open
Abstract
Losartan is an angiotensin II receptor blocker (ARB) that impedes transforming growth factor (TGF) beta signaling by inhibiting activation of signal transduction molecule extracellular signal-regulated kinase (ERK). Studies supported the efficacy of topical losartan in decreasing scarring fibrosis after rabbit Descemetorhexis, alkali burn, and photorefractive keratectomy injuries, and in case reports of humans with scarring fibrosis after surgical complications. Clinical studies are needed to explore the efficacy and safety of topical losartan in the prevention and treatment of corneal scarring fibrosis, and other eye diseases and disorders where TGF beta has a role in pathophysiology. These include scarring fibrosis associated with corneal trauma, chemical burns, infections, surgical complications, and persistent epithelial defects, as well as conjunctival fibrotic diseases, such as ocular cicatricial pemphigoid and Stevens-Johnson syndrome. Research is also needed to explore the efficacy and safety of topical losartan for hypothesized treatment of transforming growth factor beta-induced (TGFBI)-related corneal dystrophies (Reis-Bu¨cklers corneal dystrophy, lattice corneal dystrophy type 1, and granular corneal dystrophies type 1 and type 2) where deposited mutant protein expression is modulated by TGF beta. Investigations could also explore the efficacy and safety of topical losartan treatments to reduce conjunctival bleb scarring and shunt encapsulation following glaucoma surgical procedures. Losartan and sustained release drug delivery devices could be efficacious in treating intraocular fibrotic diseases. Dosing suggestions and precautions that should be considered in trials of losartan are detailed. Losartan, as an adjuvant to current treatments, has the potential to augment pharmacological therapeutics for many ocular diseases and disorders where TGF beta plays a central role in pathophysiology.
Collapse
Affiliation(s)
- Steven E. Wilson
- The Cole Eye Institute, The Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
31
|
Evaluating Prescription Pattern and Effectiveness of Antihypertensive Drugs in Non-Operated Aortic Dissection Patients. J Clin Med 2023; 12:jcm12051962. [PMID: 36902749 PMCID: PMC10004205 DOI: 10.3390/jcm12051962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
INTRODUCTION Aortic dissection (AD) is a life-threatening disease. However, the effectiveness of different strategies of antihypertensive therapies in non-operated AD patients is still unclear. MATERIALS AND METHODS Patients were classified into five groups (groups 0-4) based on the number of classes of antihypertensive drugs, including β-blockers, renin-angiotensin system (RAS) agents (angiotensin-converting enzyme inhibitors (ACEIs), angiotensin II receptor blockers (ARBs), and the renin-inhibitors), calcium channel blockers (CCBs), and other antihypertensive drugs, were prescribed within 90 days after discharge. The primary endpoint was a composite outcome of re-hospitalization associated with AD, referral for aortic surgery, and all-cause death. RESULTS A total of 3932 non-operated AD patients were included in our study. The most prescribed antihypertensive drugs were CCBs, followed by β-blockers and ARBs. Within group 1, compared to other antihypertensive drugs, patients using RAS agents (aHR, 0.58; p = 0.005) had a significantly lower risk of occurrence of the outcome. Within group 2, the risk of composite outcomes was lower in patients using β-blockers + CCBs (aHR, 0.60; p = 0.004) or CCBs + RAS agents (aHR, 0.60; p = 0.006) than in those using RAS agents + others. CONCLUSION For non-operated AD patients, RAS agents, β-blockers, or CCBs should be given in a different strategy of combinations to reduce the hazard of AD-related complications compared to other agents.
Collapse
|
32
|
Tehrani AY, Zhao R, Donen G, Bernatchez P. Heterogenous improvements in endothelial function by sub-blood pressure lowering doses of ARBs result in major anti-aortic root remodeling effects. Nitric Oxide 2023; 131:18-25. [PMID: 36565741 DOI: 10.1016/j.niox.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 11/30/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Low basal nitric oxide (NO) production is associated with a dysfunctional endothelium and vascular diseases. We have shown that some angiotensin II (AngII) receptor type 1 (AT1R) blockers (ARBs), a group of clinic-approved blood pressure (BP)-lowering medications, are also capable of activating endothelial function acutely and chronically, both ex vivo and in vivo, in pleiotropic, AngII-independent fashions, which suggested that endothelial function enhancement with ARBs may be independent of their well-documented BP lowering properties. Herein, we attempt to identify the most potent ARB at activating endothelial function when administered at sub-BP-lowering doses and determine its anti-aortic root remodeling properties in a model of Marfan syndrome (MFS). Amongst the 8 clinically available ARBs tested, only telmisartan and azilsartan induced significant (70% and 49%, respectively) NO-dependent inhibition of aortic contractility when administered for 4 weeks at sub-BP lowering, EC5 doses. Low-dose telmisartan (0.47 mg/kg) attenuated MFS-associated aortic root widening, medial thickening, and elastic fiber fragmentation to the same degree as high-dose telmisartan (10 mg/kg) despite wide differences in BP lowering between the two doses. Our study suggests that telmisartan is the most potent ARB at promoting increased endothelial function at low sub-BP doses and that it retained major aortic root widening inhibition activities. ARBs may enhance endothelial function independently from BP-lowering pathways, which could lead to new therapeutic approaches.
Collapse
Affiliation(s)
- Arash Y Tehrani
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada; Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Roy Zhao
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada; Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Graham Donen
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada; Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Pascal Bernatchez
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada; Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
33
|
Jara ZP, Harford T, Singh KD, Desnoyer R, Kumar A, Srinivasan D, Karnik SS. Distinct Mechanisms of β-Arrestin-Biased Agonist and Blocker of AT1R in Preventing Aortic Aneurysm and Associated Mortality. Hypertension 2023; 80:385-402. [PMID: 36440576 PMCID: PMC9852074 DOI: 10.1161/hypertensionaha.122.19232] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 11/04/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Aortic aneurysm (AA) is a "silent killer" human disease with no effective treatment. Although the therapeutic potential of various pharmacological agents have been evaluated, there are no reports of β-arrestin-biased AT1R (angiotensin-II type-1 receptor) agonist (TRV027) used to prevent the progression of AA. METHODS We tested the hypothesis that TRV027 infusion in AngII (angiotensin II)-induced mouse model of AA prevents AA. High-fat-diet-fed ApoE (apolipoprotein E gene)-null mice were infused with AngII to induce AA and co-infused with TRV027 and a clinically used AT1R blocker Olmesartan to prevent AA. Aortas explanted from different ligand infusion groups were compared with assess different grades of AA or lack of AA. RESULTS AngII produced AA in ≈67% male mice with significant mortality associated with AA rupture. We observed ≈13% mortality due to aortic arch dissection without aneurysm in male mice. AngII-induced AA and mortality was prevented by co-infusion of TRV027 or Olmesartan, but through different mechanisms. In TRV027 co-infused mice aortic wall thickness, elastin content, new DNA, and protein synthesis were higher than untreated and Olmesartan co-infused mice. Co-infusion with both TRV027 and Olmesartan prevented endoplasmic reticulum stress, fibrosis, and vasomotor hyper responsiveness. CONCLUSIONS TRV027-engaged AT1R prevented AA and associated mortality by distinct molecular mechanisms compared with the AT1R blocker, Olmesartan. Developing novel β-arrestin-biased AT1R ligands may yield promising drugs to combat AA.
Collapse
Affiliation(s)
- Zaira Palomino Jara
- Cardiovascular and Metabolic Sciences Department, Lerner Research Institute, Cleveland Clinic
| | - Terri Harford
- Cardiovascular and Metabolic Sciences Department, Lerner Research Institute, Cleveland Clinic
| | | | - Russell Desnoyer
- Cardiovascular and Metabolic Sciences Department, Lerner Research Institute, Cleveland Clinic
| | - Avinash Kumar
- Pathobiology Department, Lerner Research Institute, Cleveland Clinic
| | | | - Sadashiva S. Karnik
- Cardiovascular and Metabolic Sciences Department, Lerner Research Institute, Cleveland Clinic
| |
Collapse
|
34
|
Sayah DN, Lesk MR. Ocular Rigidity and Current Therapy. Curr Eye Res 2023; 48:105-113. [PMID: 35763027 DOI: 10.1080/02713683.2022.2093380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Purpose: Ocular rigidity (OR) is an important biomechanical parameter of the eye accounting for the material and geometrical properties of the corneoscleral shell.Methods: This study used a literature search to review the role of ocular rigidity and the application of potential therapies targeting this parameter in glaucoma and myopia.Conclusion: Biomechanical modeling and improved understanding of the biochemistry, and molecular arrangement of sclera and its constituents have yielded important insights. Recent developments, including that of a non-invasive and direct OR measurement method and improved ocular imaging techniques are helping to elucidate the role of OR in healthy and diseased eyes by facilitating large scale and longitudinal clinical studies. Improved understanding of OR at the initial stages of disease processes and its alterations with disease progression will undoubtedly propel research in the field. Furthermore, a better understanding of the determinants of OR is helping to refine novel therapeutic approaches which target and alter the biomechanical properties of the sclera in sight-threatening conditions such as glaucoma and myopia.
Collapse
Affiliation(s)
- Diane N Sayah
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Canada.,School of Optometry, Université de Montréal, Montreal, Canada
| | - Mark R Lesk
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Canada.,Department of Ophthalmology, Faculty of Medicine, Université de Montréal, Montreal, Canada.,Centre Universitaire d'ophtalmologie de l'Université de Montréal de l'Hôpital Maisonneuve-Rosemont, CIUSSS-E, Montreal, Canada
| |
Collapse
|
35
|
Karasaki K, Kokubo H, Bumdelger B, Kaji N, Sakai C, Ishida M, Yoshizumi M. Angiotensin II Type 1 Receptor Blocker Prevents Abdominal Aortic Aneurysm Progression in Osteoprotegerin-Deficient Mice via Upregulation of Angiotensin (1-7). J Am Heart Assoc 2023; 12:e027589. [PMID: 36718875 PMCID: PMC9973615 DOI: 10.1161/jaha.122.027589] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Background Angiotensin II type 1 receptor blockers (ARBs) have been shown to limit the growth of abdominal aortic aneurysm (AAA), but their efficacy is controversial. This study aimed to investigate the molecular mechanism underlying the protective effect of ARBs against AAA progression. Methods and Results Olmesartan, an ARB, was administered to wild-type and osteoprotegerin-knockout (Opg-KO) mice starting 2 weeks before direct application of CaCl2 to aortas to induce AAA. The protective effect of olmesartan against AAA in wild-type and Opg-KO mice was compared at 6 weeks after AAA induction. Olmesartan prevented AAA progression in Opg-KO mice, including excessive aortic dilatation and collapse of tunica media, but not in wild-type mice. Deficiency of the Opg gene is known to cause excessive activation of the tumor necrosis factor-related apoptosis-inducing ligand-induced c-Jun N-terminal kinase/matrix metalloproteinase 9 pathway, resulting in prolonged AAA progression. Olmesartan attenuated the upregulation of phosphorylated c-Jun N-terminal kinase and matrix metalloproteinase 9 expression in the aortic wall of Opg-KO mice. In cultured vascular smooth muscle cells, tumor necrosis factor-related apoptosis-inducing ligand-induced c-Jun N-terminal kinase phosphorylation and matrix metalloproteinase 9 expression were inhibited by angiotensin (1-7), the circulating levels of which are increased by ARBs. Furthermore, administering an angiotensin (1-7) antagonist to Opg-KO mice diminished the protective effect of olmesartan against AAA progression. Conclusions Olmesartan prevented AAA progression in Opg-KO mice by upregulating angiotensin (1-7), suggesting that angiotensin (1-7) may be a key factor that mediates the protective effect of ARBs.
Collapse
Affiliation(s)
- Kohei Karasaki
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Hiroki Kokubo
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Batmunkh Bumdelger
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Nobuchika Kaji
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Chiemi Sakai
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Mari Ishida
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Masao Yoshizumi
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| |
Collapse
|
36
|
Dong CX, Malecki C, Robertson E, Hambly B, Jeremy R. Molecular Mechanisms in Genetic Aortopathy-Signaling Pathways and Potential Interventions. Int J Mol Sci 2023; 24:ijms24021795. [PMID: 36675309 PMCID: PMC9865322 DOI: 10.3390/ijms24021795] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Thoracic aortic disease affects people of all ages and the majority of those aged <60 years have an underlying genetic cause. There is presently no effective medical therapy for thoracic aneurysm and surgery remains the principal intervention. Unlike abdominal aortic aneurysm, for which the inflammatory/atherosclerotic pathogenesis is well established, the mechanism of thoracic aneurysm is less understood. This paper examines the key cell signaling systems responsible for the growth and development of the aorta, homeostasis of endothelial and vascular smooth muscle cells and interactions between pathways. The evidence supporting a role for individual signaling pathways in pathogenesis of thoracic aortic aneurysm is examined and potential novel therapeutic approaches are reviewed. Several key signaling pathways, notably TGF-β, WNT, NOTCH, PI3K/AKT and ANGII contribute to growth, proliferation, cell phenotype and survival for both vascular smooth muscle and endothelial cells. There is crosstalk between pathways, and between vascular smooth muscle and endothelial cells, with both synergistic and antagonistic interactions. A common feature of the activation of each is response to injury or abnormal cell stress. Considerable experimental evidence supports a contribution of each of these pathways to aneurysm formation. Although human information is less, there is sufficient data to implicate each pathway in the pathogenesis of human thoracic aneurysm. As some pathways i.e., WNT and NOTCH, play key roles in tissue growth and organogenesis in early life, it is possible that dysregulation of these pathways results in an abnormal aortic architecture even in infancy, thereby setting the stage for aneurysm development in later life. Given the fine tuning of these signaling systems, functional polymorphisms in key signaling elements may set up a future risk of thoracic aneurysm. Multiple novel therapeutic agents have been developed, targeting cell signaling pathways, predominantly in cancer medicine. Future investigations addressing cell specific targeting, reduced toxicity and also less intense treatment effects may hold promise for effective new medical treatments of thoracic aortic aneurysm.
Collapse
Affiliation(s)
- Charlotte Xue Dong
- Faculty of Health and Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Cassandra Malecki
- Faculty of Health and Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
- The Baird Institute, Camperdown, NSW 2042, Australia
| | - Elizabeth Robertson
- Faculty of Health and Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Brett Hambly
- Faculty of Health and Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Richmond Jeremy
- Faculty of Health and Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
- The Baird Institute, Camperdown, NSW 2042, Australia
- Correspondence:
| |
Collapse
|
37
|
Chen ZX, Jia WN, Jiang YX. Genotype-phenotype correlations of marfan syndrome and related fibrillinopathies: Phenomenon and molecular relevance. Front Genet 2022; 13:943083. [PMID: 36176293 PMCID: PMC9514320 DOI: 10.3389/fgene.2022.943083] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Marfan syndrome (MFS, OMIM: 154700) is a heritable multisystemic disease characterized by a wide range of clinical manifestations. The underlying molecular defect is caused by variants in the FBN1. Meanwhile, FBN1 variants are also detected in a spectrum of connective tissue disorders collectively termed as ‘type I fibrillinopathies’. A multitude of FBN1 variants is reported and most of them are unique in each pedigree. Although MFS is being considered a monogenic disorder, it is speculated that the allelic heterogeneity of FBN1 variants contributes to various manifestations, distinct prognoses, and differential responses to the therapies in affected patients. Significant progress in the genotype–phenotype correlations of MFS have emerged in the last 20 years, though, some of the associations were still in debate. This review aims to update the recent advances in the genotype-phenotype correlations of MFS and related fibrillinopathies. The molecular bases and pathological mechanisms are summarized for better support of the observed correlations. Other factors contributing to the phenotype heterogeneity and future research directions were also discussed. Dissecting the genotype-phenotype correlation of FBN1 variants and related disorders will provide valuable information in risk stratification, prognosis, and choice of therapy.
Collapse
Affiliation(s)
- Ze-Xu Chen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Wan-Nan Jia
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yong-Xiang Jiang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| |
Collapse
|
38
|
Steckelings UM, Widdop RE, Sturrock ED, Lubbe L, Hussain T, Kaschina E, Unger T, Hallberg A, Carey RM, Sumners C. The Angiotensin AT 2 Receptor: From a Binding Site to a Novel Therapeutic Target. Pharmacol Rev 2022; 74:1051-1135. [PMID: 36180112 PMCID: PMC9553111 DOI: 10.1124/pharmrev.120.000281] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/19/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022] Open
Abstract
Discovered more than 30 years ago, the angiotensin AT2 receptor (AT2R) has evolved from a binding site with unknown function to a firmly established major effector within the protective arm of the renin-angiotensin system (RAS) and a target for new drugs in development. The AT2R represents an endogenous protective mechanism that can be manipulated in the majority of preclinical models to alleviate lung, renal, cardiovascular, metabolic, cutaneous, and neural diseases as well as cancer. This article is a comprehensive review summarizing our current knowledge of the AT2R, from its discovery to its position within the RAS and its overall functions. This is followed by an in-depth look at the characteristics of the AT2R, including its structure, intracellular signaling, homo- and heterodimerization, and expression. AT2R-selective ligands, from endogenous peptides to synthetic peptides and nonpeptide molecules that are used as research tools, are discussed. Finally, we summarize the known physiological roles of the AT2R and its abundant protective effects in multiple experimental disease models and expound on AT2R ligands that are undergoing development for clinical use. The present review highlights the controversial aspects and gaps in our knowledge of this receptor and illuminates future perspectives for AT2R research. SIGNIFICANCE STATEMENT: The angiotensin AT2 receptor (AT2R) is now regarded as a fully functional and important component of the renin-angiotensin system, with the potential of exerting protective actions in a variety of diseases. This review provides an in-depth view of the AT2R, which has progressed from being an enigma to becoming a therapeutic target.
Collapse
Affiliation(s)
- U Muscha Steckelings
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Robert E Widdop
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Edward D Sturrock
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Lizelle Lubbe
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Tahir Hussain
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Elena Kaschina
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Thomas Unger
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Anders Hallberg
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Robert M Carey
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Colin Sumners
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| |
Collapse
|
39
|
Fibrillin-1 Regulates Arteriole Integrity in the Retina. Biomolecules 2022; 12:biom12101330. [PMID: 36291539 PMCID: PMC9599515 DOI: 10.3390/biom12101330] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/26/2022] Open
Abstract
Fibrillin-1 is an extracellular matrix protein that assembles into microfibrils that provide critical functions in large blood vessels and other tissues. Mutations in the fibrillin-1 gene are associated with cardiovascular, ocular, and skeletal abnormalities in Marfan syndrome. Fibrillin-1 is a component of the wall of large arteries but has been poorly described in other vessels. We examined the microvasculature in the retina using wild type mice and two models of Marfan syndrome, Fbn1C1041G/+ and Fbn1mgR/mgR. In the mouse retina, fibrillin-1 was detected around arterioles, in close contact with the basement membrane, where it colocalized with MAGP1. Both a mutation in fibrillin-1 or fibrillin-1 underexpression characteristically altered the microvasculature. In Fbn1C1041G/+ and Fbn1mgR/mgR mice, arterioles were enlarged with reduced MAGP1 deposition and focal loss of smooth muscle cell coverage. Losartan, which prevents aortic enlargement in Fbn1C1041G/+ mice, prevented smooth muscle cell loss and vessel leakiness when administrated in a preventive mode. Moreover, losartan also partially rescued the defects in a curative mode. Thus, fibrillin-1/MAGP1 performs essential functions in arteriolar integrity and mutant fibrillin-1-induced defects can be prevented or partially rescued pharmacologically. These new findings could have implications for people with Marfan syndrome.
Collapse
|
40
|
Rodrigues Bento J, Meester J, Luyckx I, Peeters S, Verstraeten A, Loeys B. The Genetics and Typical Traits of Thoracic Aortic Aneurysm and Dissection. Annu Rev Genomics Hum Genet 2022; 23:223-253. [PMID: 36044906 DOI: 10.1146/annurev-genom-111521-104455] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genetic predisposition and risk factors such as hypertension and smoking can instigate the development of thoracic aortic aneurysm (TAA), which can lead to highly lethal aortic wall dissection and/or rupture. Monogenic defects in multiple genes involved in the elastin-contractile unit and the TGFβ signaling pathway have been associated with TAA in recent years, along with several genetic modifiers and risk-conferring polymorphisms. Advances in omics technology have also provided significant insights into the processes behind aortic wall degeneration: inflammation, epigenetics, vascular smooth muscle phenotype change and depletion, reactive oxygen species generation, mitochondrial dysfunction, and angiotensin signaling dysregulation. These recent advances and findings might pave the way for a therapy that is capable of stopping and perhaps even reversing aneurysm progression.
Collapse
Affiliation(s)
- Jotte Rodrigues Bento
- Centre of Medical Genetics, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium;
| | - Josephina Meester
- Centre of Medical Genetics, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium;
| | - Ilse Luyckx
- Centre of Medical Genetics, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium; .,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Silke Peeters
- Centre of Medical Genetics, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium;
| | - Aline Verstraeten
- Centre of Medical Genetics, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium;
| | - Bart Loeys
- Centre of Medical Genetics, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium; .,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
41
|
Tehrani AY, White Z, Tung LW, Zhao RRY, Milad N, Seidman MA, Sauge E, Theret M, Rossi FMV, Esfandiarei M, van Breemen C, Bernatchez P. Pleiotropic activation of endothelial function by angiotensin II receptor blockers is crucial to their protective anti-vascular remodeling effects. Sci Rep 2022; 12:9771. [PMID: 35697767 PMCID: PMC9192586 DOI: 10.1038/s41598-022-13772-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/27/2022] [Indexed: 11/21/2022] Open
Abstract
There are no therapeutics that directly enhance chronic endothelial nitric oxide (NO) release, which is typically associated with vascular homeostasis. In contrast, angiotensin II (AngII) receptor type 1 (AT1R) blockers (ARBs) can attenuate AngII-mediated oxidative stress, which often leads to increased endothelial NO bioavailability. Herein, we investigate the potential presence of direct, AngII/AT1R-independent ARB class effects on endothelial NO release and how this may result in enhanced aortic wall homeostasis and endothelial NO-specific transcriptome changes. Treatment of mice with four different ARBs induced sustained, long-term inhibition of vascular contractility by up to 82% at 16 weeks and 63% at 2 weeks, an effect reversed by L-NAME and absent in endothelial NO synthase (eNOS) KO mice or angiotensin converting enzyme inhibitor captopril-treated animals. In absence of AngII or in tissues with blunted AT1R expression or incubated with an AT2R blocker, telmisartan reduced vascular tone, supporting AngII/AT1R-independent pleiotropism. Finally, telmisartan was able to inhibit aging- and Marfan syndrome (MFS)-associated aortic root widening in NO-sensitive, BP-independent fashions, and correct aberrant TGF-β signaling. RNAseq analyses of aortic tissues identified early eNOS-specific transcriptome reprogramming of the aortic wall in response to telmisartan. This study suggests that ARBs are capable of major class effects on vasodilatory NO release in fashions that may not involve blockade of the AngII/AT1R pathway. Broader prophylactic use of ARBs along with identification of non-AngII/AT1R pathways activated by telmisartan should be investigated.
Collapse
Affiliation(s)
- Arash Y Tehrani
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada.,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, 2176 Health Sciences Mall, Room 217, Vancouver, BC, V6T 1Z3, Canada
| | - Zoe White
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada.,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, 2176 Health Sciences Mall, Room 217, Vancouver, BC, V6T 1Z3, Canada
| | - Lin Wei Tung
- School of Biomedical Engineering and Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Roy Ru Yi Zhao
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada.,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, 2176 Health Sciences Mall, Room 217, Vancouver, BC, V6T 1Z3, Canada
| | - Nadia Milad
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada.,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, 2176 Health Sciences Mall, Room 217, Vancouver, BC, V6T 1Z3, Canada
| | - Michael A Seidman
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada.,Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| | - Elodie Sauge
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada.,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, 2176 Health Sciences Mall, Room 217, Vancouver, BC, V6T 1Z3, Canada
| | - Marine Theret
- School of Biomedical Engineering and Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Fabio M V Rossi
- School of Biomedical Engineering and Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Mitra Esfandiarei
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, 2176 Health Sciences Mall, Room 217, Vancouver, BC, V6T 1Z3, Canada.,Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Glendale, AZ, USA
| | - Casey van Breemen
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, 2176 Health Sciences Mall, Room 217, Vancouver, BC, V6T 1Z3, Canada
| | - Pascal Bernatchez
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada. .,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, 2176 Health Sciences Mall, Room 217, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
42
|
Mao M, Labelle-Dumais C, Tufa SF, Keene DR, Gould DB. Elevated TGFβ signaling contributes to ocular anterior segment dysgenesis in Col4a1 mutant mice. Matrix Biol 2022; 110:151-173. [PMID: 35525525 PMCID: PMC10410753 DOI: 10.1016/j.matbio.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/08/2022] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
Abstract
Ocular anterior segment dysgenesis (ASD) refers to a collection of developmental disorders affecting the anterior structures of the eye. Although a number of genes have been implicated in the etiology of ASD, the underlying pathogenetic mechanisms remain unclear. Mutations in genes encoding collagen type IV alpha 1 (COL4A1) and alpha 2 (COL4A2) cause Gould syndrome, a multi-system disorder that often includes ocular manifestations such as ASD and glaucoma. COL4A1 and COL4A2 are abundant basement membrane proteins that provide structural support to tissues and modulate signaling through interactions with other extracellular matrix proteins, growth factors, and cell surface receptors. In this study, we used a combination of histological, molecular, genetic and pharmacological approaches to demonstrate that altered TGFβ signaling contributes to ASD in mouse models of Gould syndrome. We show that TGFβ signaling was elevated in anterior segments from Col4a1 mutant mice and that genetically reducing TGFβ signaling partially prevented ASD. Notably, we identified distinct roles for TGFβ1 and TGFβ2 in ocular defects observed in Col4a1 mutant mice. Importantly, we show that pharmacologically promoting type IV collagen secretion or reducing TGFβ signaling ameliorated ocular pathology in Col4a1 mutant mice. Overall, our findings demonstrate that altered TGFβ signaling contributes to COL4A1-related ocular dysgenesis and implicate this pathway as a potential therapeutic target for the treatment of Gould syndrome.
Collapse
Affiliation(s)
- Mao Mao
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143, United States
| | - Cassandre Labelle-Dumais
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143, United States
| | - Sara F Tufa
- Shriners Children's, Micro-Imaging Center, Portland, Oregon 97239, United States
| | - Douglas R Keene
- Shriners Children's, Micro-Imaging Center, Portland, Oregon 97239, United States
| | - Douglas B Gould
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143, United States; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, United States; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, United States; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, United States; Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA 94143, United States.
| |
Collapse
|
43
|
Deng Z, Gao X, Utsunomiya H, Arner JW, Ruzbarsky JJ, Huard M, Ravuri S, Philippon MJ, Huard J. Effects of oral losartan administration on homeostasis of articular cartilage and bone in a rabbit model. Bone Rep 2022; 16:101526. [PMID: 35372645 PMCID: PMC8971351 DOI: 10.1016/j.bonr.2022.101526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 11/26/2022] Open
Abstract
Background and aims Previous work has shown that oral losartan can enhance microfracture-mediated cartilage repair in a rabbit osteochondral defect injury model. In this study, we aimed to determine whether oral losartan would have a detrimental effect on articular cartilage and bone homeostasis in the uninjured sides. Methods New Zealand rabbits were divided into 4 groups including normal uninjured (Normal), contralateral uninjured side of osteochondral defect (Defect), osteochondral defect plus microfracture (Microfracture) and osteochondral defect plus microfracture and losartan oral administration (10 mg/kg/day) (Losartan). Rabbits underwent different surgeries and treatment and were sacrificed at 12 weeks. Both side of the normal group and uninjured side of treatment groups tibias were harvested for Micro-CT and histological analysis for cartilage and bone including H&E staining, Herovici's staining (bone and cartilage) Alcian blue and Safranin O staining (cartilage) as well as immunohistochemistry of losartan related signaling pathways molecules for both cartilage and bone. Results Our results showed losartan oral treatment at 10 mg/kg/day slightly increase Alcian blue positive matrix as well as decrease collagen type 3 in articular cartilage while having no significant effect on articular cartilage structure, cellularity, and other matrix. Losartan treatment also did not affect angiotensin receptor type 1 (AGTR1), angiotensin receptor type 2 (AGTR2) and phosphorylated transforming factor β1 activated kinase 1 (pTAK1) expression level and pattern in the articular cartilage. Furthermore, losartan treatment did not affect microarchitecture of normal cancellous bone and cortical bone of tibias compared to normal and other groups. Losartan treatment slightly increased osteocalcin positive osteoblasts on the surface of cancellous bone and did not affect bone matrix collagen type 1 content and did not change AGTR1, AGTR2 and pTAK1 signal molecule expression. Conclusion Oral losartan used as a microfracture augmentation therapeutic does not have significant effect on uninjured articular cartilage and bone based on our preclinical rabbit model. These results provided further evidence that the current regimen of using losartan as a microfracture augmentation therapeutic is safe with respect to bone and cartilage homeostasis and support clinical trials for its application in human cartilage repair.
Collapse
|
44
|
Lee CY, Angelov SN, Zhu J, Bi L, Sanford N, Alp Yildirim I, Dichek DA. Blockade of TGF-β (Transforming Growth Factor Beta) Signaling by Deletion of Tgfbr2 in Smooth Muscle Cells of 11-Month-Old Mice Alters Aortic Structure and Causes Vasomotor Dysfunction-Brief Report. Arterioscler Thromb Vasc Biol 2022; 42:764-771. [PMID: 35443795 DOI: 10.1161/atvbaha.122.317603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND To test the hypothesis that smooth muscle cell (SMC) TGF-β (transforming growth factor beta) signaling contributes to maintenance of aortic structure and function beyond the early postnatal period. METHODS We deleted the TBR2 (type 2 TGF-β receptor) in SMC of 11-month-old mice (genotype Acta2-CreERT2+/0 Tgfbr2f/f, termed TBR2SMΔ) and compared their ascending aorta structure and vasomotor function to controls (Acta2-CreERT20/0 Tgfbr2f/f, termed TBR2f/f). RESULTS We confirmed loss of aortic SMC TBR2 by immunoblotting. Four weeks after SMC TBR2 loss, TBR2SMΔ mice did not have aortic rupture, ulceration, dissection, dilation, or evidence of medial hemorrhage. However, aortic medial area of TBR2SMΔ mice was increased by 27% (0.14±0.01 versus 0.11±0.01 mm2; P=0.01) and medial thickness was increased by 23% (40±1.9 versus 33±1.3 μm; P=0.004) compared with littermate controls. Wire myography performed on ascending aortic rings showed hypercontractility of TBR2SMΔ aortas to phenylephrine (Emax, 15.9±1.2 versus 10.8±0.7 mN; P=0.0003) and reduced relaxation and sensitivity to acetylcholine (Emax, 64±14% versus 96±2%; P=0.001; -logEC50, 6.9±0.1 versus 7.7±0.1; P=0.0001). Neither maximal relaxation nor sensitivity to sodium nitroprusside differed (Emax, 102±0.3% versus 101±0.3%; -logEC50, 8.0±0.04 versus 7.9±0.08; P>0.4 for both). CONCLUSIONS Loss of TGF-β signaling in aortic SMC of 1-year-old mice does not cause early severe aortopathy or death; however, it causes mild structural and substantial physiological abnormalities. SMC TGF-β signaling plays an important role in maintaining aortic homeostasis in older mice. This role should be considered in the design of clinical studies that aim to prevent aortopathy by blocking SMC TGF-β signaling.
Collapse
Affiliation(s)
- Chloe Y Lee
- Department of Medicine (C.Y.L., S.N.A., L.B., N.S., I.A.Y., D.A.D.), University of Washington School of Medicine, Seattle
| | - Stoyan N Angelov
- Department of Medicine (C.Y.L., S.N.A., L.B., N.S., I.A.Y., D.A.D.), University of Washington School of Medicine, Seattle
| | - Jay Zhu
- Department of Surgery (J.Z.), University of Washington School of Medicine, Seattle
| | - Lianxiang Bi
- Department of Medicine (C.Y.L., S.N.A., L.B., N.S., I.A.Y., D.A.D.), University of Washington School of Medicine, Seattle
| | - Nicole Sanford
- Department of Medicine (C.Y.L., S.N.A., L.B., N.S., I.A.Y., D.A.D.), University of Washington School of Medicine, Seattle
| | - Ilkay Alp Yildirim
- Department of Medicine (C.Y.L., S.N.A., L.B., N.S., I.A.Y., D.A.D.), University of Washington School of Medicine, Seattle
| | - David A Dichek
- Department of Medicine (C.Y.L., S.N.A., L.B., N.S., I.A.Y., D.A.D.), University of Washington School of Medicine, Seattle.,Institute for Stem Cell and Regenerative Medicine' Department of Laboratory Medicine and Pathology (D.A.D.), University of Washington School of Medicine, Seattle
| |
Collapse
|
45
|
Tang Q, McNair AJ, Phadwal K, Macrae VE, Corcoran BM. The Role of Transforming Growth Factor-β Signaling in Myxomatous Mitral Valve Degeneration. Front Cardiovasc Med 2022; 9:872288. [PMID: 35656405 PMCID: PMC9152029 DOI: 10.3389/fcvm.2022.872288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/12/2022] [Indexed: 02/03/2023] Open
Abstract
Mitral valve prolapse (MVP) due to myxomatous degeneration is one of the most important chronic degenerative cardiovascular diseases in people and dogs. It is a common cause of heart failure leading to significant morbidity and mortality in both species. Human MVP is usually classified into primary or non-syndromic, including Barlow’s Disease (BD), fibro-elastic deficiency (FED) and Filamin-A mutation, and secondary or syndromic forms (typically familial), such as Marfan syndrome (MFS), Ehlers-Danlos syndrome, and Loeys–Dietz syndrome. Despite different etiologies the diseased valves share pathological features consistent with myxomatous degeneration. To reflect this common pathology the condition is often called myxomatous mitral valve degeneration (disease) (MMVD) and this term is universally used to describe the analogous condition in the dog. MMVD in both species is characterized by leaflet thickening and deformity, disorganized extracellular matrix, increased transformation of the quiescent valve interstitial cell (qVICs) to an activated state (aVICs), also known as activated myofibroblasts. Significant alterations in these cellular activities contribute to the initiation and progression of MMVD due to the increased expression of transforming growth factor-β (TGF-β) superfamily cytokines and the dysregulation of the TGF-β signaling pathways. Further understanding the molecular mechanisms of MMVD is needed to identify pharmacological manipulation strategies of the signaling pathway that might regulate VIC differentiation and so control the disease onset and development. This review briefly summarizes current understanding of the histopathology, cellular activities, molecular mechanisms and pathogenesis of MMVD in dogs and humans, and in more detail reviews the evidence for the role of TGF-β.
Collapse
Affiliation(s)
- Qiyu Tang
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew J. McNair
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Kanchan Phadwal
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Vicky E. Macrae
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Brendan M. Corcoran
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Brendan M. Corcoran,
| |
Collapse
|
46
|
Chen J, Chang R. Association of TGF-β Canonical Signaling-Related Core Genes With Aortic Aneurysms and Aortic Dissections. Front Pharmacol 2022; 13:888563. [PMID: 35517795 PMCID: PMC9065418 DOI: 10.3389/fphar.2022.888563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/04/2022] [Indexed: 01/17/2023] Open
Abstract
Transforming growth factor-beta (TGF-β) signaling is essential for the maintenance of the normal structure and function of the aorta. It includes SMAD-dependent canonical pathways and noncanonical signaling pathways. Accumulated genetic evidence has shown that TGF-β canonical signaling-related genes have key roles in aortic aneurysms (AAs) and aortic dissections and many gene mutations have been identified in patients, such as those for transforming growth factor-beta receptor one TGFBR1, TGFBR2, SMAD2, SMAD3, SMAD4, and SMAD6. Aortic specimens from patients with these mutations often show paradoxically enhanced TGF-β signaling. Some hypotheses have been proposed and new AA models in mice have been constructed to reveal new mechanisms, but the role of TGF-β signaling in AAs is controversial. In this review, we focus mainly on the role of canonical signaling-related core genes in diseases of the aorta, as well as recent advances in gene-mutation detection, animal models, and in vitro studies.
Collapse
Affiliation(s)
- Jicheng Chen
- Department of Vasculocardiology, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, China
| | - Rong Chang
- Department of Vasculocardiology, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, China
| |
Collapse
|
47
|
Jia Y, Zhang L, Liu Z, Mao C, Ma Z, Li W, Yu F, Wang Y, Huang Y, Zhang W, Zheng J, Wang X, Xu Q, Zhang J, Feng W, Yun C, Liu C, Sun J, Fu Y, Cui Q, Kong W. Targeting macrophage TFEB-14-3-3 epsilon Interface by naringenin inhibits abdominal aortic aneurysm. Cell Discov 2022; 8:21. [PMID: 35228523 PMCID: PMC8885854 DOI: 10.1038/s41421-021-00363-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a lethal cardiovascular disease, and there is no proven drug treatment for this condition. In this study, by using the Connectivity Map (CMap) approach, we explored naringenin, a naturally occurring citrus flavonoid, as a putative agent for inhibiting AAA. We then validated the prediction with two independent mouse models of AAA, calcium phosphate (CaPO4)-induced C57BL/6J mice and angiotensin II-infused ApoE−/− mice. Naringenin effectively blocked the formation of AAAs and the progression of established AAAs. Transcription factor EB (TFEB) is the master regulator of lysosome biogenesis. Intriguingly, the protective role of naringenin on AAA was abolished by macrophage-specific TFEB depletion in mice. Unbiased interactomics, combined with isothermal titration calorimetry (ITC) and cellular thermal shift assays (CETSAs), further revealed that naringenin is directly bound to 14-3-3 epsilon blocked the TFEB-14-3-3 epsilon interaction, and therefore promoted TFEB nuclear translocation and activation. On one hand, naringenin activated lysosome-dependent inhibition of the NLRP3 inflammasome and repressed aneurysmal inflammation. On the other hand, naringenin induced TFEB-dependent transcriptional activation of GATA3, IRF4, and STAT6 and therefore promoted reparative M2 macrophage polarization. In summary, naturally derived naringenin or macrophage TFEB activation shows promising efficacy for the treatment of AAA.
Collapse
Affiliation(s)
- Yiting Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Lu Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.,The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ziyi Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Chenfeng Mao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Zihan Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Wenqiang Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Fang Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Yingbao Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Yaqian Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Jingang Zheng
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Xian Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Qingbo Xu
- Cardiovascular Division, Kings College London BHF Centre, London, SE5 9NU, UK
| | - Jian Zhang
- State Key Laboratory of Oncogenes and Related Genes, Medicinal Chemistry & Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Feng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Caihong Yun
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Chuanju Liu
- Department of Orthopedic Surgery, New York University Medical Center, New York, NY, USA.,Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Jinpeng Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Qinghua Cui
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, China.
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.
| |
Collapse
|
48
|
Lim WW, Dong J, Ng B, Widjaja AA, Xie C, Su L, Kwek XY, Tee NGZ, Jian Pua C, Schafer S, Viswanathan S, Cook SA. Inhibition of IL11 Signaling Reduces Aortic Pathology in Murine Marfan Syndrome. Circ Res 2022; 130:728-740. [PMID: 35135328 DOI: 10.1161/circresaha.121.320381] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Marfan syndrome (MFS) is associated with TGF (transforming growth factor) β-stimulated ERK (extracellular signal-regulated kinase) activity in vascular smooth muscle cells (VSMCs), which adopt a mixed synthetic/contractile phenotype. In VSMCs, TGFβ induces IL (interleukin) 11) that stimulates ERK-dependent secretion of collagens and MMPs (matrix metalloproteinases). Here, we examined the role of IL11 in the MFS aorta. METHODS We used echocardiography, histology, immunostaining, and biochemical methods to study aortic anatomy, physiology, and molecular endophenotypes in Fbn1C1041G/+ mice, an established murine model of MFS (mMFS). mMFS mice were crossed to an IL11-tagged EGFP (enhanced green fluorescent protein; Il11EGFP/+) reporter strain or to a strain deleted for the IL11 receptor (Il11ra1-/-). In therapeutic studies, mMFS were administered an X209 (neutralizing antibody against IL11RA [IL11 receptor subunit alpha]) or IgG for 20 weeks and imaged longitudinally. RESULTS IL11 mRNA and protein were elevated in the aortas of mMFS mice, as compared to controls. mMFS mice crossed to Il11EGFP/+ mice had increased IL11 expression in VSMCs, notably in the aortic root and ascending aorta. As compared to the mMFS parental strain, double mutant mMFS:Il11ra1-/- mice had reduced aortic dilatation and exhibited lesser fibrosis, inflammation, elastin breaks, and VSMC loss, which was associated with reduced aortic COL1A1 (collagen type I alpha 1 chain), IL11, MMP2/9, and phospho-ERK expression. To explore therapeutic targeting of IL11 signaling in MFS, we administered either a neutralizing antibody against IL11RA (X209) or an IgG control. After 20 weeks of antibody administration, as compared to IgG, mMFS mice receiving X209 had reduced thoracic and abdominal aortic dilation as well as lesser fibrosis, inflammation, elastin breaks, and VSMC loss. By immunoblotting, X209 was shown to reduce aortic COL1A1, IL11, MMP2/9, and phospho-ERK expression. CONCLUSIONS In MFS, IL11 is upregulated in aortic VSMCs to cause ERK-related thoracic aortic dilatation, inflammation, and fibrosis. Therapeutic inhibition of IL11, imminent in clinical trials, might be considered as a new approach in MFS.
Collapse
Affiliation(s)
- Wei-Wen Lim
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore (W.-W.L., B.N., C.X., L.S., X.-Y.K., N.G.Z.T., C.J.P., S.S., S.A.C.).,Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School (W.-W.L., J.D., B.N., A.A.W., S.S., S.V., S.A.C.)
| | - Jinrui Dong
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School (W.-W.L., J.D., B.N., A.A.W., S.S., S.V., S.A.C.)
| | - Benjamin Ng
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore (W.-W.L., B.N., C.X., L.S., X.-Y.K., N.G.Z.T., C.J.P., S.S., S.A.C.).,Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School (W.-W.L., J.D., B.N., A.A.W., S.S., S.V., S.A.C.)
| | - Anissa A Widjaja
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School (W.-W.L., J.D., B.N., A.A.W., S.S., S.V., S.A.C.)
| | - Chen Xie
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore (W.-W.L., B.N., C.X., L.S., X.-Y.K., N.G.Z.T., C.J.P., S.S., S.A.C.)
| | - Liping Su
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore (W.-W.L., B.N., C.X., L.S., X.-Y.K., N.G.Z.T., C.J.P., S.S., S.A.C.)
| | - Xiu-Yi Kwek
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore (W.-W.L., B.N., C.X., L.S., X.-Y.K., N.G.Z.T., C.J.P., S.S., S.A.C.)
| | - Nicole G Z Tee
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore (W.-W.L., B.N., C.X., L.S., X.-Y.K., N.G.Z.T., C.J.P., S.S., S.A.C.)
| | - Chee Jian Pua
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore (W.-W.L., B.N., C.X., L.S., X.-Y.K., N.G.Z.T., C.J.P., S.S., S.A.C.)
| | - Sebastian Schafer
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore (W.-W.L., B.N., C.X., L.S., X.-Y.K., N.G.Z.T., C.J.P., S.S., S.A.C.).,Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School (W.-W.L., J.D., B.N., A.A.W., S.S., S.V., S.A.C.)
| | - Sivakumar Viswanathan
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School (W.-W.L., J.D., B.N., A.A.W., S.S., S.V., S.A.C.)
| | - Stuart A Cook
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore (W.-W.L., B.N., C.X., L.S., X.-Y.K., N.G.Z.T., C.J.P., S.S., S.A.C.).,Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School (W.-W.L., J.D., B.N., A.A.W., S.S., S.V., S.A.C.).,MRC-London Institute of Medical Sciences, Hammersmith Hospital Campus, United Kingdom (S.A.C.)
| |
Collapse
|
49
|
Skotsimara G, Antonopoulos A, Oikonomou E, Papastamos C, Siasos G, Tousoulis D. Aortic Wall Inflammation in the Pathogenesis, Diagnosis and Treatment of Aortic Aneurysms. Inflammation 2022; 45:965-976. [DOI: 10.1007/s10753-022-01626-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/08/2022] [Accepted: 01/12/2022] [Indexed: 12/18/2022]
|
50
|
Pathophysiology and Therapeutics of Thoracic Aortic Aneurysm in Marfan Syndrome. Biomolecules 2022; 12:biom12010128. [PMID: 35053276 PMCID: PMC8773516 DOI: 10.3390/biom12010128] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 12/16/2022] Open
Abstract
About 20% of individuals afflicted with thoracic aortic disease have single-gene mutations that predispose the vessel to aneurysm formation and/or acute aortic dissection often without associated syndromic features. One widely studied exception is Marfan syndrome (MFS) in which mutations in the extracellular protein fibrillin-1 cause additional abnormalities in the heart, eyes, and skeleton. Mouse models of MFS have been instrumental in delineating major cellular and molecular determinants of thoracic aortic disease. In spite of research efforts, translating experimental findings from MFS mice into effective drug therapies for MFS patients remains an unfulfilled promise. Here, we describe a series of studies that have implicated endothelial dysfunction and improper angiotensin II and TGFβ signaling in driving thoracic aortic disease in MFS mice. We also discuss how these investigations have influenced the way we conceptualized possible new therapies to slow down or even halt aneurysm progression in this relatively common connective tissue disorder.
Collapse
|