1
|
Shi Y, Landfester K, Morris SM. Fine-Tuning the Microstructure and Photophysical Characteristics of Fluorescent Conjugated Copolymers Using Photoalignment and Liquid-Crystal Ordering. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407117. [PMID: 39206683 PMCID: PMC11538637 DOI: 10.1002/advs.202407117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Replicating the microstructural basis and the near 100% excitation energy transfer efficiency in naturally occurring light-harvesting complexes (LHCs) remains challenging in synthetic energy-harvesting devices. Biological photosynthesis regulates active ensembles of light-absorbing and funneling chlorophylls in proteins in response to fluctuating sunlight. Here, use of long-range liquid crystal (LC) ordering to tailor chain orientation and packing structure in liquid crystalline conjugated polymer (LCCP) layers for bio-mimicry of certain structural basis and light-harvesting properties of LHCs is reported. It is found that long-range orientational ordering in an LC phase of poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) copolymer stabilizes a small fraction of randomly-oriented F8BT nanocrystals dispersed in an amorphous matrix of F8BT chains, resembling a self-doped host-guest system whereby excitation energy funneling and photoluminescence quantum efficiencies are enhanced significantly by triggering 3D donor-to-acceptor Förster resonance energy transfer (FRET) and dominant intrachain emission in the nano-crystal acceptor. Further, photoalignment of nematic F8BT layers is combined with LC orientational ordering to fabricate large-area-extended monodomains exhibiting >60% crystallinity and ≈20 nm-long interchain packing order. Remarkably, these monodomains demonstrate strong linearly polarized emission, whilst also promoting a new band-edge absorption species and an extra emissive interchain excited state as compared to the non-aligned films.
Collapse
Affiliation(s)
- Yuping Shi
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Department of Engineering ScienceUniversity of OxfordParks RoadOxfordOX1 3PJUK
| | | | - Stephen M. Morris
- Department of Engineering ScienceUniversity of OxfordParks RoadOxfordOX1 3PJUK
| |
Collapse
|
2
|
Adejumobi OP, Mantsevich VN, Palyulin VV. Diffusion of fast and slow excitons with an exchange in quasi-two-dimensional systems. Phys Rev E 2024; 110:054139. [PMID: 39690650 DOI: 10.1103/physreve.110.054139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/24/2024] [Indexed: 12/19/2024]
Abstract
By means of analytical calculations and numerical simulations, we study the diffusion properties in quasi-two-dimensional structures with two exciton subsystems with an exchange between them. The experimental realization is possible in systems where fast and slow exciton subsystems appear. For substantially different diffusion coefficients of the species, the negative diffusion can be observed if one measures the transport properties of only a single subsystem, just as was obtained in experimental studies for quasi-two-dimensional semiconductor systems. The initial transition from a fast subsystem to a slow one results in a delayed release of fast excitons in the area close to the original excitation spot. Hence, the signal from the fast excitons alone includes the delayed replenishment from the transition of slow quasiparticles. This is seen as the narrowing of the exciton density profile or decrease of mean-squared displacement which is then interpreted as a negative diffusion. We show that the analytical theory matches the available experimental data for negative diffusion quite well. The average diffusion coefficients for the combined population are analytically expressed through the diffusion coefficients of fast and slow excitons. Simple analytical expressions for effective diffusion coefficients obtained in limiting cases are of interest both for theoretical and experimental analysis of not only the exciton transport, but also for a variety of systems, where fast and slow moving subsystems are present.
Collapse
|
3
|
O'Connor MM, Aubry TJ, Reid OG, Rumbles G. Charge Concentration Limits the Hydrogen Evolution Rate in Organic Nanoparticle Photocatalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210481. [PMID: 36972554 DOI: 10.1002/adma.202210481] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Time-resolved microwave conductivity is used to compare aqueous-soluble organic nanoparticle photocatalysts and bulk thin films composed of the same mixture of semiconducting polymer and non-fullerene acceptor molecule and the relationship between composition, interfacial surface area, charge-carrier dynamics, and photocatalytic activity is examined. The rate of hydrogen evolution reaction by nanoparticles composed of various donor:acceptor blend ratio compositions is quantitatively measured, and it is found that the most active blend ratio displays a hydrogen quantum yield of 0.83% per photon. Moreover, it is found that nanoparticle photocatalytic activity corresponds directly to charge generation, and that nanoparticles have 3× more long-lived accumulated charges relative to bulk samples of the same material composition. These results suggest that, under the current reaction conditions, with ≈3× solar flux, catalytic activity by the nanoparticles is limited by the concentration of electrons and holes in operando and not a finite number of active surface sites or the catalytic rate at the interface. This provides a clear design goal for the next generation of efficient photocatalytic nanoparticles.
Collapse
Affiliation(s)
- Max M O'Connor
- Materials, Chemical, and Computational Science Directorate, National Renewable Energy Laboratory, Golden, CO, 80401, USA
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Taylor J Aubry
- Materials, Chemical, and Computational Science Directorate, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Obadiah G Reid
- Materials, Chemical, and Computational Science Directorate, National Renewable Energy Laboratory, Golden, CO, 80401, USA
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Garry Rumbles
- Materials, Chemical, and Computational Science Directorate, National Renewable Energy Laboratory, Golden, CO, 80401, USA
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, 80309, USA
| |
Collapse
|
4
|
Kurilovich AA, Mantsevich VN, Chechkin AV, Palyulin VV. Negative diffusion of excitons in quasi-two-dimensional systems. Phys Chem Chem Phys 2024; 26:922-935. [PMID: 38088027 DOI: 10.1039/d3cp03521b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
We show how two different mobile-immobile type models explain the observation of negative diffusion of excitons reported in experimental studies in quasi-two-dimensional semiconductor systems. The main reason for the effect is the initial trapping and a delayed release of free excitons in the area close to the original excitation spot. The density of trapped excitons is not registered experimentally. Hence, the signal from the free excitons alone includes the delayed release of not diffusing trapped particles. This is seen as the narrowing of the exciton density profile or decrease of mean-squared displacement which is then interpreted as a negative diffusion. The effect is enhanced with the increase of recombination intensity as well as the rate of the exciton-exciton binary interactions.
Collapse
Affiliation(s)
- Aleksandr A Kurilovich
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, 121205, Moscow, Russia
| | - Vladimir N Mantsevich
- Chair of Semiconductors and Cryoelectronics, Physics department, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Aleksei V Chechkin
- Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wroclaw University of Science and Technology, Wyspianskiego 27, 50-370 Wroclaw, Poland
- Institute for Physics & Astronomy, University of Potsdam, D-14476 Potsdam-Golm, Germany
- Akhiezer Institute for Theoretical Physics National Science Center "Kharkov Institute of Physics and Technology", 61108, Kharkov, Ukraine
| | - Vladimir V Palyulin
- Applied AI centre, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Moscow, 121205, Russia.
| |
Collapse
|
5
|
Kurilovich AA, Mantsevich VN, Mardoukhi Y, Stevenson KJ, Chechkin AV, Palyulin VV. Non-Markovian diffusion of excitons in layered perovskites and transition metal dichalcogenides. Phys Chem Chem Phys 2022; 24:13941-13950. [PMID: 35621272 DOI: 10.1039/d2cp00557c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The diffusion of excitons in perovskites and transition metal dichalcogenides shows clear anomalous, subdiffusive behaviour in experiments. In this paper we develop a non-Markovian mobile-immobile model which provides an explanation of this behaviour through paired theoretical and simulation approaches. The simulation model is based on a random walk on a 2D lattice with randomly distributed deep traps such that the trapping time distribution involves slowly decaying power-law asymptotics. The theoretical model uses coupled diffusion and rate equations for free and trapped excitons, respectively, with an integral term responsible for trapping. The model provides a good fitting of the experimental data, thus, showing a way for quantifying the exciton diffusion dynamics.
Collapse
Affiliation(s)
- Aleksandr A Kurilovich
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, 121205, Moscow, Russia
| | - Vladimir N Mantsevich
- Chair of Semiconductors and Cryoelectronics & Quantum Technology Center, Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Yousof Mardoukhi
- Institute for Physics & Astronomy, University of Potsdam, D-14476 Potsdam-Golm, Germany
| | - Keith J Stevenson
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, 121205, Moscow, Russia
| | - Aleksei V Chechkin
- Institute for Physics & Astronomy, University of Potsdam, D-14476 Potsdam-Golm, Germany.,Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wroclaw University of Science and Technology, Wyspianskiego 27, 50-370 Wroclaw, Poland.,Akhiezer Institute for Theoretical Physics National Science Center "Kharkov Institute of Physics and Technology", 61108, Kharkov, Ukraine
| | - Vladimir V Palyulin
- RAIC Center, Skolkovo Institute of Science and Technology, 121205, Moscow, Russia.
| |
Collapse
|
6
|
Wang Z, Chen X, Yu L, Guo S, Hu Y, Huang Y, Wang S, Qi J, Han C, Ma X, Zhang X, Dong H, Chen W, Li L, Hu W. Polymer Electrolyte Dielectrics Enable Efficient Exciton-Polaron Quenching in Organic Semiconductors for Photostable Organic Transistors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13584-13592. [PMID: 35286804 DOI: 10.1021/acsami.1c23994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The photoelectric response of organic field-effect transistors (OFETs) will cause severe photoelectric interference, which hinders the applications of OFETs in the light environment. It is highly challenging to relieve this problem because of the high photosensitivity of most organic semiconductors. Here, we propose an efficient "exciton-polaron quenching" strategy to suppress the photoelectric response and thus construct highly photostable OFETs by utilizing a polymer electrolyte dielectric─poly(acrylic acid) (PAA). This dielectric produces high-density polarons in organic semiconductors under a gate electric field that quench the photogenerated excitons with high efficiency (∼70%). As a result, the OFETs with PAA dielectric exhibit unprecedented photostability against strong light irradiation up to 214 mW/cm2, which far surpasses the reported values and solar irradiance value (∼138 mW/cm2). The strategy shows high universality in OFETs with different OSCs and electrolytes. As a demonstration, the photostable OFET can stably drive an organic light-emitting diode (OLED) under light irradiation. This work presents an efficient exciton modulation strategy in OSC and proves a high potential in practical applications.
Collapse
Affiliation(s)
- Zhongwu Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Xiaosong Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Li Yu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Shujing Guo
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Yongxu Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Yinan Huang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Shuguang Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Jiannan Qi
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Cheng Han
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Xiaonan Ma
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
| | - Xiaotao Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wei Chen
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Liqiang Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
| |
Collapse
|
7
|
Wu R, Matta M, Paulsen BD, Rivnay J. Operando Characterization of Organic Mixed Ionic/Electronic Conducting Materials. Chem Rev 2022; 122:4493-4551. [PMID: 35026108 DOI: 10.1021/acs.chemrev.1c00597] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Operando characterization plays an important role in revealing the structure-property relationships of organic mixed ionic/electronic conductors (OMIECs), enabling the direct observation of dynamic changes during device operation and thus guiding the development of new materials. This review focuses on the application of different operando characterization techniques in the study of OMIECs, highlighting the time-dependent and bias-dependent structure, composition, and morphology information extracted from these techniques. We first illustrate the needs, requirements, and challenges of operando characterization then provide an overview of relevant experimental techniques, including spectroscopy, scattering, microbalance, microprobe, and electron microscopy. We also compare different in silico methods and discuss the interplay of these computational methods with experimental techniques. Finally, we provide an outlook on the future development of operando for OMIEC-based devices and look toward multimodal operando techniques for more comprehensive and accurate description of OMIECs.
Collapse
Affiliation(s)
- Ruiheng Wu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Micaela Matta
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Bryan D Paulsen
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
8
|
Madsen M, Bakke MR, Gudnason DA, Sandahl AF, Hansen RA, Knudsen JB, Kodal ALB, Birkedal V, Gothelf KV. A Single Molecule Polyphenylene-Vinylene Photonic Wire. ACS NANO 2021; 15:9404-9411. [PMID: 33938214 DOI: 10.1021/acsnano.0c10922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanoscale transport of light through single molecule systems is of fundamental importance for light harvesting, nanophotonic circuits, and for understanding photosynthesis. Studies on organization of molecular entities for directional transfer of excitation energy have focused on energy transfer cascades via multiple small molecule dyes. Here, we investigate a single molecule conjugated polymer as a photonic wire. The phenylene-vinylene-based polymer is functionalized with multiple DNA strands and immobilized on DNA origami by hybridization to a track of single-stranded staples extending from the origami structure. Donor and acceptor fluorophores are placed at specific positions along the polymer which enables energy transfer from donor to polymer, through the polymer, and from polymer to acceptor. The structure is characterized by atomic force microscopy, and the energy transfer is studied by ensemble fluorescence spectroscopy and single molecule TIRF microscopy. It is found that the polymer photonic wire is capable of transferring light over distances of 24 nm. This demonstrates the potential residing in the use of conjugated polymers for nanophotonics.
Collapse
Affiliation(s)
- Mikael Madsen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Mette R Bakke
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Daniel A Gudnason
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Alexander F Sandahl
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Rikke A Hansen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Jakob B Knudsen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Anne Louise B Kodal
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Victoria Birkedal
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Kurt V Gothelf
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
9
|
Jiang Y, Chen H, Men X, Sun Z, Yuan Z, Zhang X, Chiu DT, Wu C, McNeill J. Multimode Time-Resolved Superresolution Microscopy Revealing Chain Packing and Anisotropic Single Carrier Transport in Conjugated Polymer Nanowires. NANO LETTERS 2021; 21:4255-4261. [PMID: 33733782 PMCID: PMC10279485 DOI: 10.1021/acs.nanolett.1c00405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Here, we developed a novel, multimode superresolution method to perform full-scale structural mapping and measure the energy landscape for single carrier transport along conjugated polymer nanowires. Through quenching of the local emission, the motion of a single photogenerated hole was tracked using blinking-assisted localization microscopy. Then, utilizing binding and unbinding dynamics of quenchers onto the nanowires, local emission spectra were collected sequentially and assembled to create a superresolution map of emission sites throughout the structure. The hole polaron trajectories were overlaid with the superresolution maps to correlate structures with charge transport properties. Using this method, we compared the efficiency of inter- and intrachain hole transport inside the nanowires and for the first time directly measured the depth of carrier traps originated from torsional disorder and chemical defects.
Collapse
Affiliation(s)
- Yifei Jiang
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Haobin Chen
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xiaoju Men
- Faculty of Health Science, University of Macau, Taipa 999078, Macau
| | - Zezhou Sun
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhen Yuan
- Faculty of Health Science, University of Macau, Taipa 999078, Macau
| | - Xuanjun Zhang
- Faculty of Health Science, University of Macau, Taipa 999078, Macau
| | - Daniel T. Chiu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Changfeng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jason McNeill
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
10
|
Demchenko AP. Photobleaching of organic fluorophores: quantitative characterization, mechanisms, protection. Methods Appl Fluoresc 2020; 8:022001. [PMID: 32028269 DOI: 10.1088/2050-6120/ab7365] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Photochemical stability is one of the most important parameters that determine the usefulness of organic dyes in different applications. This Review addresses key factors that determine the dye photostability. It is shown that photodegradation can follow different oxygen-dependent and oxygen-independent mechanisms and may involve both 1S1-3T1 and higher-energy 1Sn-3Tn excited states. Their involvement and contribution depends on dye structure, medium conditions, irradiation power. Fluorescein, rhodamine, BODIPY and cyanine dyes, as well as conjugated polymers are discussed as selected examples illustrating photobleaching mechanisms. The strategies for modulating and improving the photostability are overviewed. They include the improvement of fluorophore design, particularly by attaching protective and anti-fading groups, creating proper medium conditions in liquid, solid and nanoscale environments. The special conditions for biological labeling, sensing and imaging are outlined.
Collapse
Affiliation(s)
- Alexander P Demchenko
- Palladin Institute of Biochemistry, Leontovicha st. 9, Kyiv 01030, Ukraine. Yuriy Fedkovych National University, Chernivtsi, 58012, Ukraine
| |
Collapse
|
11
|
Todor-Boer O, Petrovai I, Tarcan R, Vulpoi A, David L, Astilean S, Botiz I. Enhancing Photoluminescence Quenching in Donor-Acceptor PCE11:PPCBMB Films through the Optimization of Film Microstructure. NANOMATERIALS 2019; 9:nano9121757. [PMID: 31835595 PMCID: PMC6956202 DOI: 10.3390/nano9121757] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/16/2022]
Abstract
We show that a precise control of deposition speed during the fabrication of polyfullerenes and donor polymer films by convective self-assembly leads to an optimized film microstructure comprised of interconnected crystalline polymer domains comparable to molecular dimensions intercalated with similar polyfullerene domains. Moreover, in blended films, we have found a correlation between deposition speed, the resulting microstructure, and photoluminescence quenching. The latter appeared more intense for lower deposition speeds due to a more favorable structuring at the nanoscale of the two donor and acceptor systems in the resulting blend films.
Collapse
Affiliation(s)
- Otto Todor-Boer
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurian 42, 400271 Cluj-Napoca, Romania; (O.T.-B.); (I.P.); (R.T.); (A.V.); (S.A.)
- Faculty of Physics, Babes-Bolyai University, M. Kogalniceanu Str. 1, 400084 Cluj-Napoca, Romania;
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, Donath Street 67, 400293 Cluj-Napoca, Romania
| | - Ioan Petrovai
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurian 42, 400271 Cluj-Napoca, Romania; (O.T.-B.); (I.P.); (R.T.); (A.V.); (S.A.)
- Faculty of Physics, Babes-Bolyai University, M. Kogalniceanu Str. 1, 400084 Cluj-Napoca, Romania;
| | - Raluca Tarcan
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurian 42, 400271 Cluj-Napoca, Romania; (O.T.-B.); (I.P.); (R.T.); (A.V.); (S.A.)
- Faculty of Physics, Babes-Bolyai University, M. Kogalniceanu Str. 1, 400084 Cluj-Napoca, Romania;
| | - Adriana Vulpoi
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurian 42, 400271 Cluj-Napoca, Romania; (O.T.-B.); (I.P.); (R.T.); (A.V.); (S.A.)
| | - Leontin David
- Faculty of Physics, Babes-Bolyai University, M. Kogalniceanu Str. 1, 400084 Cluj-Napoca, Romania;
| | - Simion Astilean
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurian 42, 400271 Cluj-Napoca, Romania; (O.T.-B.); (I.P.); (R.T.); (A.V.); (S.A.)
- Faculty of Physics, Babes-Bolyai University, M. Kogalniceanu Str. 1, 400084 Cluj-Napoca, Romania;
| | - Ioan Botiz
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurian 42, 400271 Cluj-Napoca, Romania; (O.T.-B.); (I.P.); (R.T.); (A.V.); (S.A.)
- Correspondence:
| |
Collapse
|
12
|
Pujals S, Feiner-Gracia N, Delcanale P, Voets I, Albertazzi L. Super-resolution microscopy as a powerful tool to study complex synthetic materials. Nat Rev Chem 2019. [DOI: 10.1038/s41570-018-0070-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Coceancigh H, Higgins DA, Ito T. Optical Microscopic Techniques for Synthetic Polymer Characterization. Anal Chem 2018; 91:405-424. [PMID: 30350610 DOI: 10.1021/acs.analchem.8b04694] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Herman Coceancigh
- Department of Chemistry , Kansas State University , 213 CBC Building , Manhattan , Kansas 66506-0401 , United States
| | - Daniel A Higgins
- Department of Chemistry , Kansas State University , 213 CBC Building , Manhattan , Kansas 66506-0401 , United States
| | - Takashi Ito
- Department of Chemistry , Kansas State University , 213 CBC Building , Manhattan , Kansas 66506-0401 , United States
| |
Collapse
|
14
|
Jiang Y, McNeill J. Superresolution mapping of energy landscape for single charge carriers in plastic semiconductors. Nat Commun 2018; 9:4314. [PMID: 30333490 PMCID: PMC6193038 DOI: 10.1038/s41467-018-06846-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/19/2018] [Indexed: 12/03/2022] Open
Abstract
The performance of conjugated polymer devices is largely dictated by charge transport processes. However, it is difficult to obtain a clear relationship between conjugated polymer structures and charge transport properties, due to the complexity of the structure and the dispersive nature of charge transport in conjugated polymers. Here, we develop a method to map the energy landscape for charge transport in conjugated polymers based on simultaneous, correlated charge carrier tracking and single-particle fluorescence spectroscopy. In nanoparticles of the conjugated polymer poly[9,9-dioctylfluorenyl-2,7-diyl)-co-1,4-benzo-{2,1′-3}-thiadiazole)], two dominant chain conformations were observed, a blue-emitting phase (λmax = 550 nm) and a red-emitting phase (λmax = 595 nm). Hole polarons were trapped within the red phase, only occasionally escaping into the blue phase. Polaron hopping between the red-emitting traps was observed, with transition time ranging from tens of milliseconds to several seconds. These results provide unprecedented nanoscale detail about charge transport at the single carrier level. To understand the complex nanoscale structure-property relationships in conjugated polymers for device applications, new methods for tracking charge transport are required. Here, the authors employ superresolution mapping to study the charge carrier dynamics in conjugated polymer nanoparticles.
Collapse
Affiliation(s)
- Yifei Jiang
- Department of Chemistry, Clemson University, Clemson, SC, 29634, USA
| | - Jason McNeill
- Department of Chemistry, Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
|
15
|
Wang Z, Zhou Y, Miyadera T, Chikamatsu M, Yoshida Y. Constructing Nanostructured Donor/Acceptor Bulk Heterojunctions via Interfacial Templates for Efficient Organic Photovoltaics. ACS APPLIED MATERIALS & INTERFACES 2017; 9:43893-43901. [PMID: 29172420 DOI: 10.1021/acsami.7b13989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We demonstrate that a poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)/diindenoperylene (PEDOT:PSS/DIP) interfacial bilayer could serve as a structural template to enable the morphological control of bulk heterojunctions (BHJs) by co-evaporation of tetraphenyldibenzoperiflanthene:fullerene (DBP:C60), which greatly improves the device performances. Especially, we show that isolated crystalline domains of C60 can be well-controlled at the nanoscale during the co-evaporation. Photoluminescence spectra indicate the realization of DIP/DBP cascade energy architecture, which significantly facilitates both the energy transfer and photocurrent generation. In addition, with bias-dependent external quantum efficiency analysis, we reveal that such a cascade energy device architecture greatly suppresses the energy recombination in both carrier and exciton transfer, resulting in a high open-circuit voltage and a high fill factor. By carefully optimizing the interfacial and BHJ layers, we achieved a high-performance organic photovoltaic cell with a power conversion efficiency of 5.0 ± 0.3%.
Collapse
Affiliation(s)
- Zhiping Wang
- Research Center for Photovoltaic Technologies and ‡Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) , AIST Tsukuba Central 5, 1-1-1 Higashi, 305-8565 Tsukuba, Japan
| | - Ying Zhou
- Research Center for Photovoltaic Technologies and ‡Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) , AIST Tsukuba Central 5, 1-1-1 Higashi, 305-8565 Tsukuba, Japan
| | - Tetsuhiko Miyadera
- Research Center for Photovoltaic Technologies and ‡Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) , AIST Tsukuba Central 5, 1-1-1 Higashi, 305-8565 Tsukuba, Japan
| | - Masayuki Chikamatsu
- Research Center for Photovoltaic Technologies and ‡Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) , AIST Tsukuba Central 5, 1-1-1 Higashi, 305-8565 Tsukuba, Japan
| | - Yuji Yoshida
- Research Center for Photovoltaic Technologies and ‡Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) , AIST Tsukuba Central 5, 1-1-1 Higashi, 305-8565 Tsukuba, Japan
| |
Collapse
|
16
|
Controlling photophysical properties of ultrasmall conjugated polymer nanoparticles through polymer chain packing. Nat Commun 2017; 8:15256. [PMID: 28508857 PMCID: PMC5440812 DOI: 10.1038/ncomms15256] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 03/10/2017] [Indexed: 12/16/2022] Open
Abstract
Applications of conjugated polymer nanoparticles (Pdots) for imaging and sensing depend on their size, fluorescence brightness and intraparticle energy transfer. The molecular design of conjugated polymers (CPs) has been the main focus of the development of Pdots. Here we demonstrate that proper control of the physical interactions between the chains is as critical as the molecular design. The unique design of twisted CPs and fine-tuning of the reprecipitation conditions allow us to fabricate ultrasmall (3.0–4.5 nm) Pdots with excellent photostability. Extensive photophysical and structural characterization reveals the essential role played by the packing of the polymer chains in the particles in the intraparticle spatial alignment of the emitting sites, which regulate the fluorescence brightness and the intraparticle energy migration efficiency. Our findings enhance understanding of the relationship between chain interactions and the photophysical properties of CP nanomaterials, providing a framework for designing and fabricating functional Pdots for imaging applications. Synthesis of small conjugated polymer nanoparticles (Pdots) with bright and stable fluorescence is an active challenge. Here, the authors introduce a strategy to fabricate ultrasmall Pdots with high fluorescence intensity by using twisted, rather than planar, conjugated polymers, lending new insight into the molecular design of Pdots.
Collapse
|
17
|
Ponzio RA, Marcato YL, Gómez ML, Waiman CV, Chesta CA, Palacios RE. Crosslinked polymer nanoparticles containing single conjugated polymer chains. Methods Appl Fluoresc 2017; 5:024001. [DOI: 10.1088/2050-6120/aa6405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
18
|
Peteanu LA, Chowdhury S, Wildeman J, Sfeir MY. Exciton–Exciton Annihilation as a Probe of Interchain Interactions in PPV–Oligomer Aggregates. J Phys Chem B 2017; 121:1707-1714. [DOI: 10.1021/acs.jpcb.6b11250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Linda A. Peteanu
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Sanchari Chowdhury
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Jurjen Wildeman
- Zernike Institute of Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Matthew Y. Sfeir
- Center
for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
19
|
Abstract
This review describes the growing partnership between super-resolution imaging and plasmonics, by describing the various ways in which the two topics mutually benefit one another to enhance our understanding of the nanoscale world. First, localization-based super-resolution imaging strategies, where molecules are modulated between emissive and nonemissive states and their emission localized, are applied to plasmonic nanoparticle substrates, revealing the hidden shape of the nanoparticles while also mapping local electromagnetic field enhancements and reactivity patterns on their surface. However, these results must be interpreted carefully due to localization errors induced by the interaction between metallic substrates and single fluorophores. Second, plasmonic nanoparticles are explored as image contrast agents for both superlocalization and super-resolution imaging, offering benefits such as high photostability, large signal-to-noise, and distance-dependent spectral features but presenting challenges for localizing individual nanoparticles within a diffraction-limited spot. Finally, the use of plasmon-tailored excitation fields to achieve subdiffraction-limited spatial resolution is discussed, using localized surface plasmons and surface plasmon polaritons to create confined excitation volumes or image magnification to enhance spatial resolution.
Collapse
Affiliation(s)
- Katherine A Willets
- Department of Chemistry, Temple University , Philadelphia, Pennsylvania 19122, United States
| | - Andrew J Wilson
- Department of Chemistry, Temple University , Philadelphia, Pennsylvania 19122, United States
| | - Vignesh Sundaresan
- Department of Chemistry, Temple University , Philadelphia, Pennsylvania 19122, United States
| | - Padmanabh B Joshi
- Department of Chemistry, Temple University , Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
20
|
Wilhelm P, Vogelsang J, Poluektov G, Schönfelder N, Keller TJ, Jester S, Höger S, Lupton JM. Molecular Polygons Probe the Role of Intramolecular Strain in the Photophysics of π‐Conjugated Chromophores. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201610723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Philipp Wilhelm
- Institut für Angewandte und Experimentelle Physik Universität Regensburg Universitätsstrasse 31 93053 Regensburg Germany
| | - Jan Vogelsang
- Institut für Angewandte und Experimentelle Physik Universität Regensburg Universitätsstrasse 31 93053 Regensburg Germany
| | - Georgiy Poluektov
- Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn Gerhard-Domagk-Strasse 1 53121 Bonn Germany
| | - Nina Schönfelder
- Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn Gerhard-Domagk-Strasse 1 53121 Bonn Germany
| | - Tristan J. Keller
- Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn Gerhard-Domagk-Strasse 1 53121 Bonn Germany
| | - Stefan‐Sven Jester
- Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn Gerhard-Domagk-Strasse 1 53121 Bonn Germany
| | - Sigurd Höger
- Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn Gerhard-Domagk-Strasse 1 53121 Bonn Germany
| | - John M. Lupton
- Institut für Angewandte und Experimentelle Physik Universität Regensburg Universitätsstrasse 31 93053 Regensburg Germany
| |
Collapse
|
21
|
Wilhelm P, Vogelsang J, Poluektov G, Schönfelder N, Keller TJ, Jester S, Höger S, Lupton JM. Molecular Polygons Probe the Role of Intramolecular Strain in the Photophysics of π‐Conjugated Chromophores. Angew Chem Int Ed Engl 2017; 56:1234-1238. [DOI: 10.1002/anie.201610723] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Philipp Wilhelm
- Institut für Angewandte und Experimentelle Physik Universität Regensburg Universitätsstrasse 31 93053 Regensburg Germany
| | - Jan Vogelsang
- Institut für Angewandte und Experimentelle Physik Universität Regensburg Universitätsstrasse 31 93053 Regensburg Germany
| | - Georgiy Poluektov
- Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn Gerhard-Domagk-Strasse 1 53121 Bonn Germany
| | - Nina Schönfelder
- Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn Gerhard-Domagk-Strasse 1 53121 Bonn Germany
| | - Tristan J. Keller
- Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn Gerhard-Domagk-Strasse 1 53121 Bonn Germany
| | - Stefan‐Sven Jester
- Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn Gerhard-Domagk-Strasse 1 53121 Bonn Germany
| | - Sigurd Höger
- Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn Gerhard-Domagk-Strasse 1 53121 Bonn Germany
| | - John M. Lupton
- Institut für Angewandte und Experimentelle Physik Universität Regensburg Universitätsstrasse 31 93053 Regensburg Germany
| |
Collapse
|
22
|
Calver CF, Lago BA, Schanze KS, Cosa G. Enhancing the photostability of poly(phenylene ethynylene) for single particle studies. Photochem Photobiol Sci 2017; 16:1821-1831. [DOI: 10.1039/c7pp00276a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Enhanced photostability of conjugated polyelectrolytes achieved by using anti-fading agents opens the way for advanced single molecule fluorescence imaging studies.
Collapse
Affiliation(s)
- C. F. Calver
- Department of Chemistry and Centre for Self-Assembled Chemical Structures (CSACS/CRMAA)
- McGill University
- Montreal
- Canada
| | - B. A. Lago
- Department of Chemistry and Centre for Self-Assembled Chemical Structures (CSACS/CRMAA)
- McGill University
- Montreal
- Canada
| | - K. S. Schanze
- Department of Chemistry
- University of Texas at San Antonio
- San Antonio
- USA
| | - G. Cosa
- Department of Chemistry and Centre for Self-Assembled Chemical Structures (CSACS/CRMAA)
- McGill University
- Montreal
- Canada
| |
Collapse
|
23
|
Kennes K, Dedecker P, Hutchison JA, Fron E, Uji-i H, Hofkens J, Van der Auweraer M. Field-Controlled Charge Separation in a Conductive Matrix at the Single-Molecule Level: Toward Controlling Single-Molecule Fluorescence Intermittency. ACS OMEGA 2016; 1:1383-1392. [PMID: 30023508 PMCID: PMC6044678 DOI: 10.1021/acsomega.6b00207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/09/2016] [Indexed: 06/07/2023]
Abstract
The fluorescence intermittency or "blinking" of single molecules of ATTO647N (ATTO) in the conductive matrix polyvinylcarbazole (PVK) is described in the presence of an external applied electric field. It is shown that due to the energy distribution of the highest occupied molecular orbital (HOMO) level of PVK, which is energetically close to the HOMO of ATTO, sporadic electron transfer occurs. As a result, the on/off dynamics of blinking can be influenced by the electric field. This field will, depending on the respective position and orientation of the dye/polymer system with respect to those of the electrodes, either enhance or suppress electron transfer from PVK to ATTO as well as the back electron transfer from reduced ATTO to PVK. After the charge-transfer step, the applied field will pull the hole in PVK away from the dye, increasing the overall time the dye resides in a dark state.
Collapse
Affiliation(s)
- Koen Kennes
- Molecular
Imaging and Photonics, Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Peter Dedecker
- Molecular
Imaging and Photonics, Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - James A. Hutchison
- ISIS
& icFRC, University of Strasbourg and
CNRS UMR 7006, 8 allée
Gaspard Monge, Strasbourg 67000, France
- School
of Chemistry and Bio21 Institute, University
of Melbourne, Melbourne, Victoria 3010, Australia
| | - Eduard Fron
- Molecular
Imaging and Photonics, Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Hiroshi Uji-i
- Molecular
Imaging and Photonics, Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
- RIES, Hokkaido
University, N20W10, Kita-Ward, Sapporo 001-0020, Japan
| | - Johan Hofkens
- Molecular
Imaging and Photonics, Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
- RIES, Hokkaido
University, N20W10, Kita-Ward, Sapporo 001-0020, Japan
| | - Mark Van der Auweraer
- Molecular
Imaging and Photonics, Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| |
Collapse
|
24
|
Jiang Y, McNeill J. Light-Harvesting and Amplified Energy Transfer in Conjugated Polymer Nanoparticles. Chem Rev 2016; 117:838-859. [DOI: 10.1021/acs.chemrev.6b00419] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Yifei Jiang
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Jason McNeill
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
25
|
Camposeo A, Pensack RD, Moffa M, Fasano V, Altamura D, Giannini C, Pisignano D, Scholes GD. Anisotropic Conjugated Polymer Chain Conformation Tailors the Energy Migration in Nanofibers. J Am Chem Soc 2016; 138:15497-15505. [PMID: 27933935 PMCID: PMC5133673 DOI: 10.1021/jacs.6b10761] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Indexed: 01/22/2023]
Abstract
Conjugated polymers are complex multichromophore systems, with emission properties strongly dependent on the electronic energy transfer through active subunits. Although the packing of the conjugated chains in the solid state is known to be a key factor to tailor the electronic energy transfer and the resulting optical properties, most of the current solution-based processing methods do not allow for effectively controlling the molecular order, thus making the full unveiling of energy transfer mechanisms very complex. Here we report on conjugated polymer fibers with tailored internal molecular order, leading to a significant enhancement of the emission quantum yield. Steady state and femtosecond time-resolved polarized spectroscopies evidence that excitation is directed toward those chromophores oriented along the fiber axis, on a typical time scale of picoseconds. These aligned and more extended chromophores, resulting from the high stretching rate and electric field applied during the fiber spinning process, lead to improved emission properties. Conjugated polymer fibers are relevant to develop optoelectronic plastic devices with enhanced and anisotropic properties.
Collapse
Affiliation(s)
- Andrea Camposeo
- Istituto
Nanoscienze-CNR, Euromediterranean Center
for Nanomaterial Modelling and Technology (ECMT), via Arnesano, I-73100 Lecce, Italy
| | - Ryan D. Pensack
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Maria Moffa
- Istituto
Nanoscienze-CNR, Euromediterranean Center
for Nanomaterial Modelling and Technology (ECMT), via Arnesano, I-73100 Lecce, Italy
| | - Vito Fasano
- Dipartimento
di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, via Arnesano, I-73100 Lecce, Italy
| | - Davide Altamura
- Istituto
di Cristallografia (IC-CNR), via Amendola 122/O, I-70126 Bari, Italy
| | - Cinzia Giannini
- Istituto
di Cristallografia (IC-CNR), via Amendola 122/O, I-70126 Bari, Italy
| | - Dario Pisignano
- Istituto
Nanoscienze-CNR, Euromediterranean Center
for Nanomaterial Modelling and Technology (ECMT), via Arnesano, I-73100 Lecce, Italy
- Dipartimento
di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, via Arnesano, I-73100 Lecce, Italy
| | - Gregory D. Scholes
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
26
|
Würsch D, Hofmann FJ, Eder T, Aggarwal AV, Idelson A, Höger S, Lupton JM, Vogelsang J. Molecular Water Lilies: Orienting Single Molecules in a Polymer Film by Solvent Vapor Annealing. J Phys Chem Lett 2016; 7:4451-4457. [PMID: 27786495 DOI: 10.1021/acs.jpclett.6b02119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The microscopic orientation and position of photoactive molecules is crucial to the operation of optoelectronic devices such as OLEDs and solar cells. Here, we introduce a shape-persistent macrocyclic molecule as an excellent fluorescent probe to simply measure (i) its orientation by rotating the excitation polarization and recording the strength of modulation in photoluminescence (PL) and (ii) its position in a film by analyzing the overall PL brightness at the molecular level. The unique shape, the absorption and the fluorescence properties of this probe yield information on molecular orientation and position. We control orientation and positioning of the probe in a polymer film by solvent vapor annealing (SVA). During the SVA process the molecules accumulate at the polymer/air interface, where they adopt a flat orientation, much like water lilies on the surface of a pond. The results are potentially significant for OLED fabrication and single-molecule spectroscopy (SMS) in general.
Collapse
Affiliation(s)
- Dominik Würsch
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg , 93053 Regensburg, Germany
| | - Felix J Hofmann
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg , 93053 Regensburg, Germany
| | - Theresa Eder
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg , 93053 Regensburg, Germany
| | - A Vikas Aggarwal
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn , 53121 Bonn, Germany
| | - Alissa Idelson
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn , 53121 Bonn, Germany
| | - Sigurd Höger
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn , 53121 Bonn, Germany
| | - John M Lupton
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg , 93053 Regensburg, Germany
| | - Jan Vogelsang
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg , 93053 Regensburg, Germany
| |
Collapse
|
27
|
Sun Z, Liu S, Liu Z, Qin W, Chen D, Xu G, Wu C. FRET acceptor suppressed single-particle photobleaching in semiconductor polymer dots. OPTICS LETTERS 2016; 41:2370-3. [PMID: 27177005 DOI: 10.1364/ol.41.002370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Brightness and photostability are key parameters for fluorescent probes in optical imaging. This Letter describes Förster resonance energy transfer (FRET) as a useful strategy to enhance the photostability of fluorescent nanoparticles. Small molecules as FRET acceptors were doped into semiconductor polymer dots (Pdots), yielding apparent suppression of their rapid photobleaching in single-particle imaging. For 20 nm-diameter particles, the photobleaching percentage decreased from 71.8% to 47.2% after dye doping, while the single-particle brightness remained unchanged. The photostability of large Pdots was also enhanced by FRET at the expense of a moderate decrease in per-particle brightness as compared to the pure Pdots. This study indicates that FRET is a facile, yet effective, approach to mediate the brightness and photostability of fluorescent nanoparticles. Considering the combined factors of brightness and photostability, the dye-doped Pdots of ∼20 nm diameter are the most suitable for long-term imaging and tracking applications.
Collapse
|
28
|
Zhu X, Shao B, Vanden Bout DA, Plunkett KN. Directing the Conformation of Oligo(phenylenevinylene) Polychromophores with Rigid, Nonconjugatable Morphons. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Xinju Zhu
- Department
of Chemistry and Biochemistry and the Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Beiyue Shao
- Center
for Nano- and Molecular Science and Technology, Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - David A. Vanden Bout
- Center
for Nano- and Molecular Science and Technology, Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kyle N. Plunkett
- Department
of Chemistry and Biochemistry and the Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901, United States
| |
Collapse
|
29
|
Zhang X, Jie J, Deng W, Shang Q, Wang J, Wang H, Chen X, Zhang X. Alignment and Patterning of Ordered Small-Molecule Organic Semiconductor Micro-/Nanocrystals for Device Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:2475-503. [PMID: 26813697 DOI: 10.1002/adma.201504206] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/20/2015] [Indexed: 05/28/2023]
Abstract
Large-area alignment and patterning of small-molecule organic semiconductor micro-/nanocrystals (SMOSNs) at desired locations is a prerequisite for their practical device applications. Recent strategies for alignment and patterning of ordered SMOSNs and their corresponding device applications are highlighted.
Collapse
Affiliation(s)
- Xiujuan Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou Jiangsu, 215123, P. R. China
| | - Jiansheng Jie
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou Jiangsu, 215123, P. R. China
| | - Wei Deng
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou Jiangsu, 215123, P. R. China
| | - Qixun Shang
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou Jiangsu, 215123, P. R. China
| | - Jincheng Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou Jiangsu, 215123, P. R. China
| | - Hui Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou Jiangsu, 215123, P. R. China
| | - Xianfeng Chen
- School of Chemistry and Forensic Sciences, Faculty of Life Sciences, University of Bradford, United Kingdom, BD7 1DP
| | - Xiaohong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou Jiangsu, 215123, P. R. China
| |
Collapse
|
30
|
Effect of Modified SiO2 on Spectral Characteristics of Nanocomposite Films Based on Conjugated Copolymer Superyellow. THEOR EXP CHEM+ 2016. [DOI: 10.1007/s11237-016-9445-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Han TH, Kim YH, Kim MH, Song W, Lee TW. Synergetic Influences of Mixed-Host Emitting Layer Structures and Hole Injection Layers on Efficiency and Lifetime of Simplified Phosphorescent Organic Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2016; 8:6152-63. [PMID: 26882315 DOI: 10.1021/acsami.5b11791] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
UNLABELLED We used various nondestructive analyses to investigate various host material systems in the emitting layer (EML) of simple-structured, green phosphorescent organic light-emitting diodes (OLEDs) to clarify how the host systems affect its luminous efficiency (LE) and operational stability. An OLED that has a unipolar single-host EML with conventional poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PEDOT PSS) showed high operating voltage, low LE (∼26.6 cd/A, 13.7 lm/W), and short lifetime (∼4.4 h @ 1000 cd/m(2)). However, the combined use of a gradient mixed-host EML and a molecularly controlled HIL that has increased surface work function (WF) remarkably decreased operating voltage and improved LE (∼68.7 cd/A, 77.0 lm/W) and lifetime (∼70.7 h @ 1000 cd/m(2)). Accumulated charges at the injecting interfaces and formation of a narrow recombination zone close to the interfaces are the major factors that accelerate degradation of charge injection/transport and electroluminescent properties of OLEDs, so achievement of simple-structured OLEDs with high efficiency and long lifetime requires facilitating charge injection and balanced transport into the EML and distributing charge carriers and excitons in EML.
Collapse
Affiliation(s)
- Tae-Hee Han
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Nam-gu, Pohang, Gyungbuk 790-784, Republic of Korea
| | - Young-Hoon Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Nam-gu, Pohang, Gyungbuk 790-784, Republic of Korea
| | - Myung Hwan Kim
- Samsung Display Co., Ltd. , 95 Samsung 2-ro, Giheung-gu, Yongin-city, Gyeonggi-Do 446-711, Republic of Korea
| | - Wonjun Song
- Samsung Display Co., Ltd. , 95 Samsung 2-ro, Giheung-gu, Yongin-city, Gyeonggi-Do 446-711, Republic of Korea
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Nam-gu, Pohang, Gyungbuk 790-784, Republic of Korea
| |
Collapse
|
32
|
Baderschneider S, Scherf U, Köhler J, Hildner R. Influence of the Conjugation Length on the Optical Spectra of Single Ladder-Type (p-Phenylene) Dimers and Polymers. J Phys Chem A 2016; 120:233-40. [PMID: 26696134 DOI: 10.1021/acs.jpca.5b10879] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We employ low-temperature single-molecule photoluminescence spectroscopy on a π-conjugated ladder-type (p-phenylene) dimer and the corresponding polymer methyl-substituted ladder-type poly(p-phenylene), MeLPPP, to study the impact of the conjugation length (π-electron delocalization) on their optical properties on a molecular scale. Our data show that the linear electron-phonon coupling to intramolecular vibrational modes is very sensitive to the conjugation length, a well-known behavior of organic (macro-) molecules. In particular, the photoluminescence spectra of single dimers feature a rather strong low-energy (150 cm(-1)) skeletal mode of the backbone, which does not appear in the spectra of individual chromophores on single MeLPPP chains. We attribute this finding to a strongly reduced electron-phonon coupling strength and/or vibrational energy of this mode for MeLPPP with its more delocalized π-electron system as compared to the dimer. In contrast, the line widths of the purely electronic zero-phonon lines (ZPL) in single-molecule spectra do not show differences between the dimer and MeLPPP; for both systems the ZPLs are apparently broadened by fast unresolved spectral diffusion. Finally, we demonstrate that the low-temperature ensemble photoluminescence spectrum of the dimer cannot be reproduced by the distribution of spectral positions of the ZPLs. The dimer's bulk spectrum is rather apparently broadened by electron-phonon coupling to the low-energy skeletal mode, whereas for MeLPPP the inhomogeneous bulk line shape resembles the distribution of spectral positions of the ZPLs of single chromophores.
Collapse
Affiliation(s)
- Sebastian Baderschneider
- Experimentalphysik IV and Bayreuth Institute for Macromolecular Research (BIMF), Universität Bayreuth , 95440 Bayreuth, Germany
| | - Uli Scherf
- Fachbereich C - Mathematik und Naturwissenschaften and Institut für Polymertechnologie, Universität Wuppertal , Gauss-Strasse 20, 42097 Wuppertal, Germany
| | - Jürgen Köhler
- Experimentalphysik IV and Bayreuth Institute for Macromolecular Research (BIMF), Universität Bayreuth , 95440 Bayreuth, Germany
| | - Richard Hildner
- Experimentalphysik IV and Bayreuth Institute for Macromolecular Research (BIMF), Universität Bayreuth , 95440 Bayreuth, Germany
| |
Collapse
|
33
|
Grußmayer KS, Steiner F, Lupton JM, Herten DP, Vogelsang J. Differentiation between Shallow and Deep Charge Trap States on Single Poly(3-hexylthiophene) Chains through Fluorescence Photon Statistics. Chemphyschem 2015; 16:3578-83. [DOI: 10.1002/cphc.201500719] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Indexed: 01/19/2023]
Affiliation(s)
- Kristin S. Grußmayer
- CellNetworks Cluster und Physikalisch-Chemisches Institut; Universität Heidelberg; Im Neuenheimer Feld 267 69210 Heidelberg Germany
| | - Florian Steiner
- Institut für Experimentelle und Angewandte Physik; Universität Regensburg; Universitätsstrasse 31 93053 Regensburg Germany
| | - John M. Lupton
- Institut für Experimentelle und Angewandte Physik; Universität Regensburg; Universitätsstrasse 31 93053 Regensburg Germany
| | - Dirk-Peter Herten
- CellNetworks Cluster und Physikalisch-Chemisches Institut; Universität Heidelberg; Im Neuenheimer Feld 267 69210 Heidelberg Germany
| | - Jan Vogelsang
- Institut für Experimentelle und Angewandte Physik; Universität Regensburg; Universitätsstrasse 31 93053 Regensburg Germany
| |
Collapse
|
34
|
Mesoscopic quantum emitters from deterministic aggregates of conjugated polymers. Proc Natl Acad Sci U S A 2015; 112:E5560-6. [PMID: 26417079 DOI: 10.1073/pnas.1512582112] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An appealing definition of the term "molecule" arises from consideration of the nature of fluorescence, with discrete molecular entities emitting a stream of single photons. We address the question of how large a molecular object may become by growing deterministic aggregates from single conjugated polymer chains. Even particles containing dozens of individual chains still behave as single quantum emitters due to efficient excitation energy transfer, whereas the brightness is raised due to the increased absorption cross-section of the suprastructure. Excitation energy can delocalize between individual polymer chromophores in these aggregates by both coherent and incoherent coupling, which are differentiated by their distinct spectroscopic fingerprints. Coherent coupling is identified by a 10-fold increase in excited-state lifetime and a corresponding spectral red shift. Exciton quenching due to incoherent FRET becomes more significant as aggregate size increases, resulting in single-aggregate emission characterized by strong blinking. This mesoscale approach allows us to identify intermolecular interactions which do not exist in isolated chains and are inaccessible in bulk films where they are present but masked by disorder.
Collapse
|
35
|
Long-range energy transport in single supramolecular nanofibres at room temperature. Nature 2015; 523:196-9. [PMID: 26156373 DOI: 10.1038/nature14570] [Citation(s) in RCA: 210] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 05/11/2015] [Indexed: 12/24/2022]
Abstract
Efficient transport of excitation energy over long distances is a key process in light-harvesting systems, as well as in molecular electronics. However, in synthetic disordered organic materials, the exciton diffusion length is typically only around 10 nanometres (refs 4, 5), or about 50 nanometres in exceptional cases, a distance that is largely determined by the probability laws of incoherent exciton hopping. Only for highly ordered organic systems has the transport of excitation energy over macroscopic distances been reported--for example, for triplet excitons in anthracene single crystals at room temperature, as well as along single polydiacetylene chains embedded in their monomer crystalline matrix at cryogenic temperatures (at 10 kelvin, or -263 degrees Celsius). For supramolecular nanostructures, uniaxial long-range transport has not been demonstrated at room temperature. Here we show that individual self-assembled nanofibres with molecular-scale diameter efficiently transport singlet excitons at ambient conditions over more than four micrometres, a distance that is limited only by the fibre length. Our data suggest that this remarkable long-range transport is predominantly coherent. Such coherent long-range transport is achieved by one-dimensional self-assembly of supramolecular building blocks, based on carbonyl-bridged triarylamines, into well defined H-type aggregates (in which individual monomers are aligned cofacially) with substantial electronic interactions. These findings may facilitate the development of organic nanophotonic devices and quantum information technology.
Collapse
|
36
|
Kilina S, Kilin D, Tretiak S. Light-Driven and Phonon-Assisted Dynamics in Organic and Semiconductor Nanostructures. Chem Rev 2015; 115:5929-78. [DOI: 10.1021/acs.chemrev.5b00012] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Svetlana Kilina
- Chemistry
and Biochemistry Department, North Dakota State University, Fargo, North Dakota 5810, United States
| | - Dmitri Kilin
- Department
of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, United States
| | - Sergei Tretiak
- Theoretical
Division, Center for Nonlinear Studies (CNLS) and Center for Integrated
Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
37
|
Akbulut H, Endo T, Yamada S, Yagci Y. Synthesis and characterization of polyphenylenes with polypeptide and poly(ethylene glycol) side chains. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/pola.27621] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Huseyin Akbulut
- Department of Chemistry; Istanbul Technical University; Istanbul 34469 Turkey
| | - Takeshi Endo
- Molecular Engineering Institute; Kinki University; 11-6 Kayanomori Iizuka Fukuoka 820-8555 Japan
| | - Shuhei Yamada
- Molecular Engineering Institute; Kinki University; 11-6 Kayanomori Iizuka Fukuoka 820-8555 Japan
| | - Yusuf Yagci
- Department of Chemistry; Istanbul Technical University; Istanbul 34469 Turkey
- Center of Excellence for Advanced Materials Research (CEAMR) and Chemistry Department; Faculty of Science; King Abdulaziz University; P.O. Box 80203 Jeddah 21589 Saudi Arabia
| |
Collapse
|
38
|
Tian Y, Merdasa A, Peter M, Abdellah M, Zheng K, Ponseca CS, Pullerits T, Yartsev A, Sundström V, Scheblykin IG. Giant photoluminescence blinking of perovskite nanocrystals reveals single-trap control of luminescence. NANO LETTERS 2015; 15:1603-8. [PMID: 25706329 DOI: 10.1021/nl5041397] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Fluorescence super-resolution microscopy showed correlated fluctuations of photoluminescence intensity and spatial localization of individual perovskite (CH3NH3PbI3) nanocrystals of size ∼200 × 30 × 30 nm(3). The photoluminescence blinking amplitude caused by a single quencher was a hundred thousand times larger than that of a typical dye molecule at the same excitation power density. The quencher is proposed to be a chemical or structural defect that traps free charges leading to nonradiative recombination. These trapping sites can be activated and deactivated by light.
Collapse
Affiliation(s)
- Yuxi Tian
- Chemical Physics, Lund University , Box 124, SE-22100, Lund, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Posudievsky OY, Papakin MS, Boiko OP, Koshechko VG, Pokhodenko VD. Enhanced and tunable photoluminescence of polyphenylenevinylenes confined in nanocomposite films. NANOSCALE RESEARCH LETTERS 2015; 10:118. [PMID: 25852412 PMCID: PMC4385242 DOI: 10.1186/s11671-015-0818-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/13/2015] [Indexed: 06/04/2023]
Abstract
Conformation of macromolecules and interchain interactions determine spectral properties of conjugated polymers (CP). An achievement of spatial confinement of isolated chains is one of the routes to use this feature of CP for their purposeful usage. In the present work, CP/O300 nanocomposites based on CP - poly(p-phenylenevinylene) and poly(2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene) - and silica nanoparticles (O300) are prepared. In comparison with many previously known hybrid nanomaterials synthesized with the similar purpose, CP/O300 nanocomposites are characterized by the essentially enhanced and tunable photoluminescence. The greatest change of color coordinates is observed for poly(p-phenylenevinylene)-based nanocomposites due to specific preparation method and interaction with the inorganic component. The main emission from CP in the CP/O300 nanocomposites is owing to 0-0 transitions, while 0-1 transitions, associated with aggregate states of the CP chains, are suppressed.
Collapse
Affiliation(s)
- Oleg Yu Posudievsky
- />L.V. Pisarzhevsky Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, prospekt Nauki 31, 03028 Kyiv, Ukraine
| | - Mykhailo S Papakin
- />L.V. Pisarzhevsky Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, prospekt Nauki 31, 03028 Kyiv, Ukraine
| | - Oleksandr P Boiko
- />Center for Physical Sciences and Technology, Savanoriu 231, LT-02300 Vilnius, Lithuania
| | - Vyachesalv G Koshechko
- />L.V. Pisarzhevsky Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, prospekt Nauki 31, 03028 Kyiv, Ukraine
| | - Vitaly D Pokhodenko
- />L.V. Pisarzhevsky Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, prospekt Nauki 31, 03028 Kyiv, Ukraine
| |
Collapse
|
40
|
Bjorgaard JA, Köse ME. Simulations of singlet exciton diffusion in organic semiconductors: a review. RSC Adv 2015. [DOI: 10.1039/c4ra12409j] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent advances in exciton diffusion simulations in conjugated materials are presented in this review.
Collapse
Affiliation(s)
- Josiah A. Bjorgaard
- Center for Nonlinear Studies
- Theoretical Division
- Los Alamos National Laboratory
- Los Alamos
- USA
| | | |
Collapse
|
41
|
Merdasa A, Jiménez ÁJ, Camacho R, Meyer M, Würthner F, Scheblykin IG. Single Lévy states-disorder induced energy funnels in molecular aggregates. NANO LETTERS 2014; 14:6774-6781. [PMID: 25349900 DOI: 10.1021/nl5021188] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Using fluorescence super-resolution microscopy we studied simultaneous spectral, spatial localization, and blinking behavior of individual 1D J-aggregates. Excitons migrating 100 nm are funneled to a trap appearing as an additional red-shifted blinking fluorescence band. We propose that the trap is a Frenkel exciton state formed much below the main exciton band edge due to an environmentally induced heavy-tailed Lévy disorder. This points to disorder engineering as a new avenue in controlling light-harvesting in molecular ensembles.
Collapse
Affiliation(s)
- Aboma Merdasa
- Chemical Physics, Lund University , P.O. Box 124, 22100 Lund, Sweden
| | | | | | | | | | | |
Collapse
|
42
|
Thomas AK, Garcia JA, Ulibarri-Sanchez J, Gao J, Grey JK. High intrachain order promotes triplet formation from recombination of long-lived polarons in poly(3-hexylthiophene) J-aggregate nanofibers. ACS NANO 2014; 8:10559-68. [PMID: 25285851 DOI: 10.1021/nn5040026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Photoluminescence (PL) of single poly(3-hexylthiophene) (P3HT) J-aggregate nanofibers (NFs) exhibits strong quenching under intensity-modulated pulsed excitation. Initial PL intensities (I(0)) decay to steady-state levels (ISS) typically within ∼ 1-10 μs, and large quenching depths (I(0)/I(SS) >2) are observed for ∼ 70% of these NFs. Similar studies of polymorphic, H-aggregate type P3HT NFs show much smaller PL quenching depths (I(0)/I(SS) ≤ 1.2). P3HT chains in J-type NF π-stacks possess high intrachain order, which has been shown previously to promote the formation of long-lived, delocalized polarons. We propose that these species recombine nongeminately to triplets on time scales of >1 ns. The identity of triplets as the dominant PL quenchers was confirmed by subjecting NFs to oxygen, resulting in an instantaneous loss of triplet PL quenching (I(0)/I(SS) ∼ 1). The lower intrachain order in H-type NFs, similar to P3HT thin-film aggregates, localizes excitons and polarons, leading to efficient geminate recombination that suppresses triplet formation at longer time scales. Our results demonstrate the promise of self-assembly strategies to control intrachain ordering within multichromophoric polymeric aggregate assemblies to tune exciton coupling and interconversion processes between different spin states.
Collapse
Affiliation(s)
- Alan K Thomas
- Department of Chemistry and Chemical Biology, University of New Mexico , MSC03 2060, Albuquerque, New Mexico 87131, United States
| | | | | | | | | |
Collapse
|
43
|
Kee TW. Femtosecond Pump-Push-Probe and Pump-Dump-Probe Spectroscopy of Conjugated Polymers: New Insight and Opportunities. J Phys Chem Lett 2014; 5:3231-40. [PMID: 26276338 DOI: 10.1021/jz501549h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Conjugated polymers are an important class of soft materials that exhibit a wide range of applications. The excited states of conjugated polymers, often referred to as excitons, can either deactivate to yield the ground state or dissociate in the presence of an electron acceptor to form charge carriers. These interesting properties give rise to their luminescence and the photovoltaic effect. Femtosecond spectroscopy is a crucial tool for studying conjugated polymers. Recently, more elaborate experimental configurations utilizing three optical pulses, namely, pump-push-probe and pump-dump-probe, have been employed to investigate the properties of excitons and charge-transfer states of conjugated polymers. These studies have revealed new insight into femtosecond torsional relaxation and detrapping of bound charge pairs of conjugated polymers. This Perspective highlights (1) the recent achievements by several research groups in using pump-push-probe and pump-dump-probe spectroscopy to study conjugated polymers and (2) future opportunities and potential challenges of these techniques.
Collapse
Affiliation(s)
- Tak W Kee
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
44
|
Habuchi S. Super-resolution molecular and functional imaging of nanoscale architectures in life and materials science. Front Bioeng Biotechnol 2014; 2:20. [PMID: 25152893 PMCID: PMC4126472 DOI: 10.3389/fbioe.2014.00020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 05/30/2014] [Indexed: 11/13/2022] Open
Abstract
Super-resolution (SR) fluorescence microscopy has been revolutionizing the way in which we investigate the structures, dynamics, and functions of a wide range of nanoscale systems. In this review, I describe the current state of various SR fluorescence microscopy techniques along with the latest developments of fluorophores and labeling for the SR microscopy. I discuss the applications of SR microscopy in the fields of life science and materials science with a special emphasis on quantitative molecular imaging and nanoscale functional imaging. These studies open new opportunities for unraveling the physical, chemical, and optical properties of a wide range of nanoscale architectures together with their nanostructures and will enable the development of new (bio-)nanotechnology.
Collapse
Affiliation(s)
- Satoshi Habuchi
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology , Jeddah , Saudi Arabia
| |
Collapse
|
45
|
Botiz I, Freyberg P, Leordean C, Gabudean AM, Astilean S, Yang ACM, Stingelin N. Enhancing the photoluminescence emission of conjugated MEH-PPV by light processing. ACS APPLIED MATERIALS & INTERFACES 2014; 6:4974-4979. [PMID: 24611888 DOI: 10.1021/am4060244] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We show here that treatment of thin films of conjugated polymers by illumination with light leads to an increase of the intensity of their photoluminescence by up to 42%. The corresponding enhancement of absorbance was much less pronounced. We explain this significant enhancement of photoluminescence by a planarization of the conjugated polymer chains induced by photoexcitations even below the glass transition temperature, possibly due to an increased conjugation length. Interestingly, the photoluminescence remains at the enhanced level for more than 71 h after treatment of the films by illumination with light, likely due to the fact that below the glass transition temperature no restoring force could return the conjugated chains into their initial conformational state.
Collapse
Affiliation(s)
- Ioan Botiz
- Freiburg Institute for Advanced Studies , Albertstraße 19, Freiburg 79104, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Steiner F, Vogelsang J, Lupton JM. Singlet-triplet annihilation limits exciton yield in poly(3-hexylthiophene). PHYSICAL REVIEW LETTERS 2014; 112:137402. [PMID: 24745453 DOI: 10.1103/physrevlett.112.137402] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Indexed: 06/03/2023]
Abstract
Control of chain length and morphology in combination with single-molecule spectroscopy techniques provides a comprehensive photophysical picture of excited-state losses in the prototypical conjugated polymer poly(3-hexylthiophene) (P3HT). Our examination reveals a universal self-quenching mechanism, based on singlet-triplet exciton annihilation, which accounts for the dramatic loss in fluorescence quantum yield of a single P3HT chain between its solution (unfolded) and bulklike (folded) state. Triplet excitons fundamentally limit the fluorescence of organic photovoltaic materials, which impacts the conversion of singlet excitons to separated charge carriers, decreasing the efficiency of energy harvested at high excitation densities. Interexcitonic interactions are so effective that a single P3HT chain of order 100 kDa weight behaves like a 2-level system, exhibiting perfect photon antibunching.
Collapse
Affiliation(s)
- Florian Steiner
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Jan Vogelsang
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - John M Lupton
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
47
|
Jackson NE, Heitzer HM, Savoie BM, Reuter MG, Marks TJ, Ratner MA. Emergent Properties in Locally Ordered Molecular Materials. Isr J Chem 2014. [DOI: 10.1002/ijch.201400021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
48
|
Genway S, Lesanovsky I, Garrahan JP. Localization in space and time in disordered-lattice open quantum dynamics. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:042129. [PMID: 24827214 DOI: 10.1103/physreve.89.042129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Indexed: 06/03/2023]
Abstract
We study a two-dimensional tight-binding lattice for excitons with on-site disorder, coupled to a thermal environment at infinite temperature. The disorder acts to localize an exciton spatially, while the environment generates dynamics which enable exploration of the lattice. Although the steady state of the system is trivially uniform, we observe a rich dynamics and uncover a dynamical phase transition in the space of temporal trajectories. This transition is identified as a localization in the dynamics generated by the bath. We explore spatial features in the dynamics and employ a generalization of the inverse participation ratio to deduce an ergodic timescale for the lattice.
Collapse
Affiliation(s)
- Sam Genway
- School of Physics and Astronomy, The University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Igor Lesanovsky
- School of Physics and Astronomy, The University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Juan P Garrahan
- School of Physics and Astronomy, The University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
49
|
Influence of Molecular Conformations and Microstructure on the Optoelectronic Properties of Conjugated Polymers. MATERIALS 2014; 7:2273-2300. [PMID: 28788568 PMCID: PMC5453253 DOI: 10.3390/ma7032273] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/03/2014] [Accepted: 03/07/2014] [Indexed: 12/23/2022]
Abstract
It is increasingly obvious that the molecular conformations and the long-range arrangement that conjugated polymers can adopt under various experimental conditions in bulk, solutions or thin films, significantly impact their resulting optoelectronic properties. As a consequence, the functionalities and efficiencies of resulting organic devices, such as field-effect transistors, light-emitting diodes, or photovoltaic cells, also dramatically change due to the close structure/property relationship. A range of structure/optoelectronic properties relationships have been investigated over the last few years using various experimental and theoretical methods, and, further, interesting correlations are continuously revealed by the scientific community. In this review, we discuss the latest findings related to the structure/optoelectronic properties interrelationships that exist in organic devices fabricated with conjugated polymers in terms of charge mobility, absorption, photoluminescence, as well as photovoltaic properties.
Collapse
|
50
|
Adachi T, Vogelsang J, Lupton JM. Unraveling the Electronic Heterogeneity of Charge Traps in Conjugated Polymers by Single-Molecule Spectroscopy. J Phys Chem Lett 2014; 5:573-577. [PMID: 26276611 DOI: 10.1021/jz402621y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Charge trapping is taken for granted in modeling the characteristics of organic semiconductor devices, but very few techniques actually exist to spectroscopically pinpoint trap states. For example, trap levels are often assumed to be discrete in energy. Using the well-known keto defect in polyfluorene as a model, we demonstrate how single-molecule spectroscopy can directly track the formation of charge and exciton traps in conjugated polymers in real time, providing crucial information on the energetic distribution of trap sites relative to the polymer optical gap. Charge traps with universal spectral fingerprints scatter by almost 1 eV in depth, implying that substantial heterogeneity must be taken into account when modeling devices.
Collapse
Affiliation(s)
- Takuji Adachi
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Jan Vogelsang
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - John M Lupton
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|