1
|
Zhang S, Feng X, Li CH, Zheng YM, Wang MY, Li JJ, Dai YP, Jing N, Zhou JW, Wang G. Mediator MED23 controls oligodendrogenesis and myelination by modulating Sp1/P300-directed gene programs. Cell Discov 2024; 10:102. [PMID: 39402028 PMCID: PMC11473658 DOI: 10.1038/s41421-024-00730-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/26/2024] [Indexed: 10/17/2024] Open
Abstract
Gaining the molecular understanding for myelination development and regeneration has been a long-standing goal in neurological research. Mutations in the transcription cofactor Mediator Med23 subunit are often associated with intellectual disability and white matter defects, although the precise functions and mechanisms of Mediator in myelination remain unclear. In this study, we generated a mouse model carrying an Med23Q649R mutation that has been identified in a patient with hypomyelination features. The MED23Q649R mouse model develops white matter thinning and cognitive decline, mimicking common clinical phenotypes. Further, oligodendrocyte-lineage specific Med23 knockout mice verified the important function of MED23 in regulating central nervous system myelination and postinjury remyelination. Utilizing the in vitro cellular differentiation assay, we found that the oligodendrocyte progenitor cells, either carrying the Q649R mutation or lacking Med23, exhibit significant deficits in their capacity to differentiate into mature oligodendrocytes. Gene profiling combined with reporter assays demonstrated that Mediator Med23 controls Sp1-directed gene programs related to oligodendrocyte differentiation and cholesterol metabolism. Integrative analysis demonstrated that Med23 modulates the P300 binding to Sp1-targeted genes, thus orchestrating the H3K27 acetylation and enhancer activation for the oligodendrocyte lineage progression. Collectively, our findings identified the critical role for the Mediator Med23 in oligodendrocyte fate determination and provide mechanistic insights into the myelination pathogenesis associated with MED23 mutations.
Collapse
Affiliation(s)
- Shuai Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xue Feng
- Laboratory Animal Resource Center, Fudan University, Shanghai, China
| | - Chong-Hui Li
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Yuan-Ming Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Meng-Ya Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jun-Jie Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun-Peng Dai
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Naihe Jing
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Jia-Wei Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Gang Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Bamaga A, Muthaffar O, Alyazidi A, Bahowarth S, Shawli M, Alotibi F, Alsehemi M, Almohammal M, Alawwadh A, Alghamdi N. MED23 pathogenic variant: genomic-phenotypic analysis. J Med Life 2024; 17:500-507. [PMID: 39144687 PMCID: PMC11320618 DOI: 10.25122/jml-2024-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/02/2024] [Indexed: 08/16/2024] Open
Abstract
The mediator complex subunit 23 (MED23) gene encodes a protein that acts as a tail module mediator complex, a multi-subunit co-activator involved in several cellular activities. MED23 has been shown to have substantial roles in myogenesis and other molecular mechanisms. The functions of MED23 in the neurological system remain unclear and the clinical phenotype is not thoroughly described. Whole exome sequencing was used to identify a novel mutation in the MED23 gene. DNA capture probes using next-generation sequencing-based copy number variation analysis with Illumina array were performed. The clinical, demographic, neuroimaging, and electrophysiological data of the patients were collected, and similarly, the data of all reported cases in the literature were extracted to compare findings. Screening a total of 9,662 articles, we identified 22 main regulatory processes for the MED23 gene, including suppressive activity for carcinogenic processes. MED23 is also involved in the brain's neurogenesis and functions. The identified cases mainly presented with intellectual disability (87.5%) and developmental delay (50%). Seizures were present in only 18.75% of the patients. Slow backgrounds and spike and sharp-wave complexes were reported on the electroencephalogram (EEG) of a few patients and delayed myelination, thin corpus callosum, and pontine hypoplasia on magnetic resonance imaging (MRI). The MED23 gene regulates several processes in which its understanding promotes considerable therapeutic potential for patients. It is crucial to consider genetic and laboratory testing, particularly when encountering potential carriers. Intellectual disability and developmental delay are the most notable clinical signs with heterogeneous features on EEG and MRI.
Collapse
Affiliation(s)
- Ahmed Bamaga
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Neuromuscular Medicine Unit, Department of Pediatrics, Faculty of Medicine, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Osama Muthaffar
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anas Alyazidi
- Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sarah Bahowarth
- Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Shawli
- Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad Alotibi
- Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Matar Alsehemi
- Pediatric Neurology Unit, Department of Pediatrics, King Fahad Hospital, Albaha, Saudi Arabia
| | | | - Adel Alawwadh
- Department of Pediatrics, Khamis Mushait Maternity and Children Hospital, Abha, Saudi Arabia
| | - Njood Alghamdi
- Faculty of Medicine, Albaha University, Albaha, Saudi Arabia
| |
Collapse
|
3
|
Liu X, Chen M, Qu X, Liu W, Dou Y, Liu Q, Shi D, Jiang M, Li H. Cis-Regulatory Elements in Mammals. Int J Mol Sci 2023; 25:343. [PMID: 38203513 PMCID: PMC10779164 DOI: 10.3390/ijms25010343] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
In cis-regulatory elements, enhancers and promoters with complex molecular interactions are used to coordinate gene transcription through physical proximity and chemical modifications. These processes subsequently influence the phenotypic characteristics of an organism. An in-depth exploration of enhancers and promoters can substantially enhance our understanding of gene regulatory networks, shedding new light on mammalian development, evolution and disease pathways. In this review, we provide a comprehensive overview of the intrinsic structural attributes, detection methodologies as well as the operational mechanisms of enhancers and promoters, coupled with the relevant novel and innovative investigative techniques used to explore their actions. We further elucidated the state-of-the-art research on the roles of enhancers and promoters in the realms of mammalian development, evolution and disease, and we conclude with forward-looking insights into prospective research avenues.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mingsheng Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| |
Collapse
|
4
|
Schiano C, Luongo L, Maione S, Napoli C. Mediator complex in neurological disease. Life Sci 2023; 329:121986. [PMID: 37516429 DOI: 10.1016/j.lfs.2023.121986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/18/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Neurological diseases, including traumatic brain injuries, stroke (haemorrhagic and ischemic), and inherent neurodegenerative diseases cause acquired disability in humans, representing a leading cause of death worldwide. The Mediator complex (MED) is a large, evolutionarily conserved multiprotein that facilities the interaction between transcription factors and RNA Polymerase II in eukaryotes. Some MED subunits have been found altered in the brain, although their specific functions in neurodegenerative diseases are not fully understood. Mutations in MED subunits were associated with a wide range of genetic diseases for MED12, MED13, MED13L, MED20, MED23, MED25, and CDK8 genes. In addition, MED12 and MED23 were deregulated in the Alzheimer's Disease. Interestingly, most of the genomic mutations have been found in the subunits of the kinase module. To date, there is only one evidence on MED1 involvement in post-stroke cognitive deficits. Although the underlying neurodegenerative disorders may be different, we are confident that the signal cascades of the biological-cognitive mechanisms of brain adaptation, which begin after brain deterioration, may also differ. Here, we analysed relevant studies in English published up to June 2023. They were identified through a search of electronic databases including PubMed, Medline, EMBASE and Scopus, including search terms such as "Mediator complex", "neurological disease", "brains". Thematic content analysis was conducted to collect and summarize all studies demonstrating MED alteration to understand the role of this central transcriptional regulatory complex in the brain. Improved and deeper knowledge of the regulatory mechanisms in neurological diseases can increase the ability of physicians to predict onset and progression, thereby improving diagnostic care and providing appropriate treatment decisions.
Collapse
Affiliation(s)
- Concetta Schiano
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Italy.
| | - Livio Luongo
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Italy; IRCSS, Neuromed, Pozzilli, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Italy; IRCSS, Neuromed, Pozzilli, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Italy; Clinical Department of Internal Medicine and Specialistic Units, Division of Clinical Immunology and Immunohematology, Transfusion Medicine, and Transplant Immunology (SIMT), Regional Reference Laboratory of Transplant Immunology (LIT), Azienda Universitaria Policlinico (AOU), Italy
| |
Collapse
|
5
|
Rengachari S, Schilbach S, Cramer P. Mediator structure and function in transcription initiation. Biol Chem 2023; 404:829-837. [PMID: 37078249 DOI: 10.1515/hsz-2023-0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/06/2023] [Indexed: 04/21/2023]
Abstract
Recent advances in cryo-electron microscopy have led to multiple structures of Mediator in complex with the RNA polymerase II (Pol II) transcription initiation machinery. As a result we now hold in hands near-complete structures of both yeast and human Mediator complexes and have a better understanding of their interactions with the Pol II pre-initiation complex (PIC). Herein, we provide a summary of recent achievements and discuss their implications for future studies of Mediator and its role in gene regulation.
Collapse
Affiliation(s)
- Srinivasan Rengachari
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Sandra Schilbach
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany
| |
Collapse
|
6
|
Jury J, Nizon M, Cogné B, Isidor B. Response to a letter to the editor. Neurogenetics 2023; 24:219. [PMID: 37261638 DOI: 10.1007/s10048-023-00721-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/02/2023]
Affiliation(s)
- Jeanne Jury
- Service de Génétique Médicale, CHU Nantes, 44093, Nantes, France.
| | - Mathilde Nizon
- Service de Génétique Médicale, CHU Nantes, 44093, Nantes, France
- Université de Nantes, CNRS, INSERM, l'Institut du Thorax, CHU Nantes, 44007, Nantes, France
| | - Benjamin Cogné
- Service de Génétique Médicale, CHU Nantes, 44093, Nantes, France
- Université de Nantes, CNRS, INSERM, l'Institut du Thorax, CHU Nantes, 44007, Nantes, France
| | - Bertrand Isidor
- Service de Génétique Médicale, CHU Nantes, 44093, Nantes, France
- Université de Nantes, CNRS, INSERM, l'Institut du Thorax, CHU Nantes, 44007, Nantes, France
| |
Collapse
|
7
|
Wang X, Liu D, Luo J, Kong D, Zhang Y. Exploring the Role of Enhancer-Mediated Transcriptional Regulation in Precision Biology. Int J Mol Sci 2023; 24:10843. [PMID: 37446021 PMCID: PMC10342031 DOI: 10.3390/ijms241310843] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/18/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
The emergence of precision biology has been driven by the development of advanced technologies and techniques in high-resolution biological research systems. Enhancer-mediated transcriptional regulation, a complex network of gene expression and regulation in eukaryotes, has attracted significant attention as a promising avenue for investigating the underlying mechanisms of biological processes and diseases. To address biological problems with precision, large amounts of data, functional information, and research on the mechanisms of action of biological molecules is required to address biological problems with precision. Enhancers, including typical enhancers and super enhancers, play a crucial role in gene expression and regulation within this network. The identification and targeting of disease-associated enhancers hold the potential to advance precision medicine. In this review, we present the concepts, progress, importance, and challenges in precision biology, transcription regulation, and enhancers. Furthermore, we propose a model of transcriptional regulation for multi-enhancers and provide examples of their mechanisms in mammalian cells, thereby enhancing our understanding of how enhancers achieve precise regulation of gene expression in life processes. Precision biology holds promise in providing new tools and platforms for discovering insights into gene expression and disease occurrence, ultimately benefiting individuals and society as a whole.
Collapse
Affiliation(s)
- Xueyan Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (D.L.); (J.L.); (D.K.)
| | - Danli Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (D.L.); (J.L.); (D.K.)
| | - Jing Luo
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (D.L.); (J.L.); (D.K.)
| | - Dashuai Kong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (D.L.); (J.L.); (D.K.)
| | - Yubo Zhang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (D.L.); (J.L.); (D.K.)
| |
Collapse
|
8
|
Ilchuk LA, Kubekina MV, Okulova YD, Silaeva YY, Tatarskiy VV, Filatov MA, Bruter AV. Genetically Engineered Mice Unveil In Vivo Roles of the Mediator Complex. Int J Mol Sci 2023; 24:ijms24119330. [PMID: 37298278 DOI: 10.3390/ijms24119330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/16/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
The Mediator complex is a multi-subunit protein complex which plays a significant role in the regulation of eukaryotic gene transcription. It provides a platform for the interaction of transcriptional factors and RNA polymerase II, thus coupling external and internal stimuli with transcriptional programs. Molecular mechanisms underlying Mediator functioning are intensively studied, although most often using simple models such as tumor cell lines and yeast. Transgenic mouse models are required to study the role of Mediator components in physiological processes, disease, and development. As constitutive knockouts of most of the Mediator protein coding genes are embryonically lethal, conditional knockouts and corresponding activator strains are needed for these studies. Recently, they have become more easily available with the development of modern genetic engineering techniques. Here, we review existing mouse models for studying the Mediator, and data obtained in corresponding experiments.
Collapse
Affiliation(s)
- Leonid A Ilchuk
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Marina V Kubekina
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Yulia D Okulova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Yulia Yu Silaeva
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia
| | - Victor V Tatarskiy
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia
| | - Maxim A Filatov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Alexandra V Bruter
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology", Ministry of Health of the Russian Federation, Kashirskoe Sh. 24, 115478 Moscow, Russia
| |
Collapse
|
9
|
Hamada N, Iwamoto I, Nagata KI. MED13L and its disease-associated variants influence the dendritic development of cerebral cortical neurons in the mammalian brain. J Neurochem 2023; 165:334-347. [PMID: 36798993 DOI: 10.1111/jnc.15783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/04/2022] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
The mediator complex comprises multiple subcellular subunits that collectively function as a molecular interface between RNA polymerase II and gene-specific transcription factors. Recently, genetic variants to one subunit of the complex, known as MED13L (mediator complex subunit 13 like), have been implicated in syndromic intellectual disability and distinct facial features, frequently accompanied by congenital heart defects. We investigated the impact of five disease-associated MED13L variants on the subcellular localization and biochemical stability of MED13L protein in vitro and in vivo. In overexpression assays using cortical neurons from embryonic mouse cerebral cortices transduced by in utero electroporation-mediated gene transfer, we found that mouse orthologues of human MED13L-p.P866L and -p.T2162M missense variants accumulated in the nucleus, while the p.S2163L and p.S2177Y variants were diffusely distributed in the cytoplasm. In contrast, we found that the p.Q1922* truncation variant was barely detectable in transduced cells, a phenotype reminiscent of this variant that results in MED13L haploinsufficiency in humans. Next, we analyzed these variants for their effects on neuronal migration, dendritic growth, spine morphology, and axon elongation of cortical neurons in vivo. There, we found that overexpression of the p.P866L variant resulted in reduced number and length of dendrites of cortical layer II/III pyramidal neurons. Furthermore, we show that mMED13L-knockdown abrogated dendritic growth in vivo, and this effect was significantly rescued by co-electroporation of an RNAi-resistant mMED13L, but weakly by the p.T2162M variant, and not at all by the p.S2163L variant. However, overexpression of the p.S2163L variant inhibited mature dendritic spine formation in vivo. Expression of each of the 5 variants did not affect neuronal cell migration and callosal axon elongation in vivo. Taken together, our results demonstrate that MED13L expression is relevant to corticogenesis and influences the dendritic branching characteristics of cortical excitatory neurons. Our study also suggests that disease-associated MED13L variants may directly cause morphological and functional defects in cortical neurons in different ways.
Collapse
Affiliation(s)
- Nanako Hamada
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
| | - Ikuko Iwamoto
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
| | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan.,Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
10
|
Salzano E, Niceta M, Pizzi S, Radio FC, Busè M, Mercadante F, Barresi S, Ferrara A, Mancini C, Tartaglia M, Piccione M. Case report: Novel compound heterozygosity for pathogenic variants in MED23 in a syndromic patient with postnatal microcephaly. Front Neurol 2023; 14:1090082. [PMID: 36824420 PMCID: PMC9941528 DOI: 10.3389/fneur.2023.1090082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/11/2023] [Indexed: 02/10/2023] Open
Abstract
Biallelic loss-of-function variants in MED23 cause a recessive syndromic intellectual disability condition with or without epilepsy (MRT18). Due to the small number of reported individuals, the clinical phenotype of the disorder has not been fully delineated yet, and the spectrum and frequency of neurologic features have not been fully characterized. Here, we report a 5-year-old girl with compound heterozygous for two additional MED23 variants. Besides global developmental delay, axial hypotonia and peripheral increased muscular tone, absent speech, and generalized tonic seizures, which fit well MRT18, the occurrence of postnatal progressive microcephaly has been here documented. A retrospective assessment of the previously reported clinical data for these subjects confirms the occurrence of postnatal progressive microcephaly as a previously unappreciated feature of the phenotype of MED23-related disorder.
Collapse
Affiliation(s)
- Emanuela Salzano
- Medical Genetics Unit, AOOR Villa Sofia-Cervello Hospitals, Palermo, Italy,*Correspondence: Emanuela Salzano ✉
| | - Marcello Niceta
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Simone Pizzi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | | | - Martina Busè
- Medical Genetics Unit, AOOR Villa Sofia-Cervello Hospitals, Palermo, Italy
| | | | - Sabina Barresi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Arturo Ferrara
- Medical Genetics Unit, AOOR Villa Sofia-Cervello Hospitals, Palermo, Italy
| | - Cecilia Mancini
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Maria Piccione
- Medical Genetics Unit, AOOR Villa Sofia-Cervello Hospitals, Palermo, Italy,Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| |
Collapse
|
11
|
Meziane H, Birling MC, Wendling O, Leblanc S, Dubos A, Selloum M, Pavlovic G, Sorg T, Kalscheuer VM, Billuart P, Laumonnier F, Chelly J, van Bokhoven H, Herault Y. Large-Scale Functional Assessment of Genes Involved in Rare Diseases with Intellectual Disabilities Unravels Unique Developmental and Behaviour Profiles in Mouse Models. Biomedicines 2022; 10:biomedicines10123148. [PMID: 36551904 PMCID: PMC9775489 DOI: 10.3390/biomedicines10123148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Major progress has been made over the last decade in identifying novel genes involved in neurodevelopmental disorders, although the task of elucidating their corresponding molecular and pathophysiological mechanisms, which are an essential prerequisite for developing therapies, has fallen far behind. We selected 45 genes for intellectual disabilities to generate and characterize mouse models. Thirty-nine of them were based on the frequency of pathogenic variants in patients and literature reports, with several corresponding to de novo variants, and six other candidate genes. We used an extensive screen covering the development and adult stages, focusing specifically on behaviour and cognition to assess a wide range of functions and their pathologies, ranging from basic neurological reflexes to cognitive abilities. A heatmap of behaviour phenotypes was established, together with the results of selected mutants. Overall, three main classes of mutant lines were identified based on activity phenotypes, with which other motor or cognitive deficits were associated. These data showed the heterogeneity of phenotypes between mutation types, recapitulating several human features, and emphasizing the importance of such systematic approaches for both deciphering genetic etiological causes of ID and autism spectrum disorders, and for building appropriate therapeutic strategies.
Collapse
Affiliation(s)
- Hamid Meziane
- Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris (ICS), PHENOMIN, CELPHEDIA, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Marie-Christine Birling
- Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris (ICS), PHENOMIN, CELPHEDIA, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Olivia Wendling
- Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris (ICS), PHENOMIN, CELPHEDIA, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Sophie Leblanc
- Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris (ICS), PHENOMIN, CELPHEDIA, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Aline Dubos
- Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris (ICS), PHENOMIN, CELPHEDIA, 1 rue Laurent Fries, 67404 Illkirch, France
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Mohammed Selloum
- Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris (ICS), PHENOMIN, CELPHEDIA, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Guillaume Pavlovic
- Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris (ICS), PHENOMIN, CELPHEDIA, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Tania Sorg
- Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris (ICS), PHENOMIN, CELPHEDIA, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Vera M. Kalscheuer
- Max Planck Institute for Molecular Genetics, Research Group Development and Disease, Ihnestr. 63-73, 14195 Berlin, Germany
| | - Pierre Billuart
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université de Paris, INSERM U1266, “Genetic and Development of Cerebral Cortex”, 75014 Paris, France
- GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, 75014 Paris, France
| | - Frédéric Laumonnier
- UMR1253, iBrain, University of Tours, Inserm, 37032 Tours, France
- Service de Génétique, Centre Hospitalier Régional Universitaire, 37044 Tours, France
| | - Jamel Chelly
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Hans van Bokhoven
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, The Netherlands
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, The Netherlands
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris (ICS), PHENOMIN, CELPHEDIA, 1 rue Laurent Fries, 67404 Illkirch, France
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, 67404 Illkirch, France
- Correspondence: ; Tel.: +33-388-65-5715
| |
Collapse
|
12
|
Rafiullah R, Albalawi AM, Alaradi SR, Alluqmani M, Mushtaq M, Wali A, Basit S. An expansion of phenotype: novel homozygous variant in the MED17 identified in patients with progressive microcephaly and global developmental delay. J Neurogenet 2022; 36:108-114. [PMID: 36508181 DOI: 10.1080/01677063.2022.2149748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Global developmental delay (GDD) is a lifelong disability that affects 1-3% of the population around the globe. It is phenotypically variable and highly heterogeneous in terms of the underlying genetics. Patients with GDD are intellectually disabled (ID) manifesting cognitive impairment and deficient adaptive behavior. Here, we investigated a two-looped consanguineous family segregating severe ID, seizure, and progressive microcephaly. Magnetic resonance imaging (MRI) of the brain showed mild brain atrophy and myelination defect. Whole exome sequencing (WES) was performed on the DNA samples of two patients and a novel homozygous missense variant (Chr11:g0.93528085; NM_004268.5_c.871T > C; p. Trp291Gly) was identified in the MED17 gene. Sanger sequencing revealed that the identified variant is heterozygous in both parents and healthy siblings. This variant is conserved among different species, causes a non-conserved amino acid change, and is predicted deleterious by various in silico tools. The variant is not reported in population variant databases. MED17 (OMIM: 613668) encodes for the mediator of RNA polymerase II transcription complex subunit 17. Structure modeling of MED17 protein revealed that Trp291 is involved in different inter-helical interactions, providing structural stability. Replacement of Trp291Gly, a less hydrophobic amino acid loses the inter-helical interaction leading to a perturb variant of MED17 protein.
Collapse
Affiliation(s)
- Rafiullah Rafiullah
- Department of Biotechnology, Faculty of Life Sciences & Informatics, BUITEMS, Quetta, Pakistan
| | - Alia M Albalawi
- Center for Genetics and Inherited Diseases, Taibah University, Madinah, Saudi Arabia
| | - Sultan R Alaradi
- Department of Laboratory and Blood Bank, Alwajh General Hospital, Ministry of Health, Alwajh, Saudi Arabia
| | - Majed Alluqmani
- College of Medicine, Taibah University, Madinah, Saudi Arabia
| | - Muhammad Mushtaq
- Department of Biotechnology, Faculty of Life Sciences & Informatics, BUITEMS, Quetta, Pakistan
| | - Abdul Wali
- Department of Biotechnology, Faculty of Life Sciences & Informatics, BUITEMS, Quetta, Pakistan
| | - Sulman Basit
- Center for Genetics and Inherited Diseases, Taibah University, Madinah, Saudi Arabia.,Department of Biochemistry and Molecular Medicine, College of Medicine, Taibah University, Madinah, Saudi Arabia
| |
Collapse
|
13
|
Hernandez I, Hayward JJ, Brockman JA, White ME, Mouttham L, Wilcox EA, Garrison S, Castelhano MG, Loftus JP, Gomes FE, Balkman C, Brooks MB, Fiani N, Forman M, Kern T, Kornreich B, Ledbetter EC, Peralta S, Struble AM, Caligiuri L, Corey E, Lin L, Jordan J, Sack D, Boyko AR, Lyons LA, Todhunter RJ. Complex Feline Disease Mapping Using a Dense Genotyping Array. Front Vet Sci 2022; 9:862414. [PMID: 35782544 PMCID: PMC9244801 DOI: 10.3389/fvets.2022.862414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
The current feline genotyping array of 63 k single nucleotide polymorphisms has proven its utility for mapping within breeds, and its use has led to the identification of variants associated with Mendelian traits in purebred cats. However, compared to single gene disorders, association studies of complex diseases, especially with the inclusion of random bred cats with relatively low linkage disequilibrium, require a denser genotyping array and an increased sample size to provide statistically significant associations. Here, we undertook a multi-breed study of 1,122 cats, most of which were admitted and phenotyped for nine common complex feline diseases at the Cornell University Hospital for Animals. Using a proprietary 340 k single nucleotide polymorphism mapping array, we identified significant genome-wide associations with hyperthyroidism, diabetes mellitus, and eosinophilic keratoconjunctivitis. These results provide genomic locations for variant discovery and candidate gene screening for these important complex feline diseases, which are relevant not only to feline health, but also to the development of disease models for comparative studies.
Collapse
Affiliation(s)
- Isabel Hernandez
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Jessica J. Hayward
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
- *Correspondence: Jessica J. Hayward
| | - Jeff A. Brockman
- Pet Nutrition Center, Hill's Pet Nutrition, Topeka, KS, United States
| | - Michelle E. White
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, United States
- Vertebrate Genomics Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Lara Mouttham
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Elizabeth A. Wilcox
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Susan Garrison
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Marta G. Castelhano
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - John P. Loftus
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Filipe Espinheira Gomes
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Cheryl Balkman
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Marjory B. Brooks
- Department of Population Medicine and Diagnostic Services, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Nadine Fiani
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Marnin Forman
- Cornell University Veterinary Specialists, Stamford, CT, United States
| | - Tom Kern
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Bruce Kornreich
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Eric C. Ledbetter
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Santiago Peralta
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Angela M. Struble
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Lisa Caligiuri
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Elizabeth Corey
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Lin Lin
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Julie Jordan
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Danny Sack
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Adam R. Boyko
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Leslie A. Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Rory J. Todhunter
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| |
Collapse
|
14
|
Tabuchi A, Ihara D. SRF in Neurochemistry: Overview of Recent Advances in Research on the Nervous System. Neurochem Res 2022; 47:2545-2557. [PMID: 35668335 DOI: 10.1007/s11064-022-03632-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/20/2022] [Accepted: 05/07/2022] [Indexed: 10/18/2022]
Abstract
Serum response factor (SRF) is a representative transcription factor that plays crucial roles in various biological phenomena by regulating immediate early genes (IEGs) and genes related to cell morphology and motility, among others. Over the years, the signal transduction pathways activating SRF have been clarified and SRF-target genes have been identified. In this overview, we initially briefly summarize the basic biology of SRF and its cofactors, ternary complex factor (TCF) and megakaryoblastic leukemia (MKL)/myocardin-related transcription factor (MRTF). Progress in the generation of nervous system-specific knockout (KO) or genetically modified mice as well as genetic analyses over the last few decades has not only identified novel SRF-target genes but also highlighted the neurochemical importance of SRF and its cofactors. Therefore, here we next present the phenotypes of mice with nervous system-specific KO of SRF or its cofactors by depicting recent findings associated with brain development, plasticity, epilepsy, stress response, and drug addiction, all of which result from function or dysfunction of the SRF axis. Last, we develop a hypothesis regarding the possible involvement of SRF and its cofactors in human neurological disorders including neurodegenerative, psychiatric, and neurodevelopmental diseases. This overview should deepen our understanding, highlight promising future directions for developing novel therapeutic strategies, and lead to illumination of the mechanisms underlying higher brain functions based on neuronal structure and function.
Collapse
Affiliation(s)
- Akiko Tabuchi
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - Daisuke Ihara
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| |
Collapse
|
15
|
Eigenhuis KN, Somsen HB, van den Berg DLC. Transcription Pause and Escape in Neurodevelopmental Disorders. Front Neurosci 2022; 16:846272. [PMID: 35615272 PMCID: PMC9125161 DOI: 10.3389/fnins.2022.846272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Transcription pause-release is an important, highly regulated step in the control of gene expression. Modulated by various factors, it enables signal integration and fine-tuning of transcriptional responses. Mutations in regulators of pause-release have been identified in a range of neurodevelopmental disorders that have several common features affecting multiple organ systems. This review summarizes current knowledge on this novel subclass of disorders, including an overview of clinical features, mechanistic details, and insight into the relevant neurodevelopmental processes.
Collapse
|
16
|
Yang Y, Xiao Q, Yin J, Li C, Yu D, He Y, Yang Z, Wang G. Med23 supports angiogenesis and maintains vascular integrity through negative regulation of angiopoietin2 expression. Commun Biol 2022; 5:374. [PMID: 35440711 PMCID: PMC9019027 DOI: 10.1038/s42003-022-03332-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/30/2022] [Indexed: 01/17/2023] Open
Abstract
The mammalian Mediator complex consists of over 30 subunits and functions as a transcriptional hub integrating signaling for tissue-specific gene expression. Although the role of the Mediator complex in transcription has been extensively investigated, the functions of distinct Mediator subunits in development are not well understood. Here, we dissected the role of the Mediator subunit Med23 in mouse cardiovascular development. Endothelial-specific Med23 deletion caused embryonic lethality before embryonic day 13.5 (E13.5). The mutant embryos exhibited intracranial hemorrhage and diminished angiogenesis with dilated blood vessels in the head region, where the expression of Med23 was abundant at E10.5. Med23 deficiency impaired vasculogenesis in the head region and impeded retinal angiogenesis. Knocking down Med23 in human umbilical vein endothelial cells (HUVECs) resulted in angiogenic defects, recapitulating the vascular defects in Med23-mutant mice in a cell-autonomous manner. RNA sequencing in HUVECs indicated that Med23 deficiency resulted in the interruption of angiogenesis and the upregulation of angiopoietin2 (Ang2), an inducing factor for vascular network instability. Inhibition of Ang2 partially rescued angiogenic sprouting and lumen dilation defects in tube formation assays. Collectively, our findings demonstrate that Med23 promotes angiogenesis and maintains vascular integrity, in part by suppressing Ang2 signaling.
Collapse
Affiliation(s)
- Yenan Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Qi Xiao
- The Ministry of Education Key Laboratory of Model Animal for Disease Study, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, 210061, China
| | - Jingwen Yin
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Chonghui Li
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Decai Yu
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Yulong He
- Laboratory of Vascular and Cancer Biology, Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Zhongzhou Yang
- Department of Cardiology, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School of Nanjing University, Nanjing, 210093, China.
| | - Gang Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
17
|
Wang S, Bryan C, Xie J, Zhao H, Lin L, Tai JAC, Horzmann KA, Sanchez O, Zhang M, Freeman JL, Yuan C. Atrazine exposure in zebrafish induces aberrant genome-wide methylation. Neurotoxicol Teratol 2022; 92:107091. [DOI: 10.1016/j.ntt.2022.107091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/30/2022] [Accepted: 04/18/2022] [Indexed: 01/19/2023]
|
18
|
Carvalho LML, da Costa SS, Campagnari F, Kaufman A, Bertola DR, da Silva IT, Krepischi ACV, Koiffmann CP, Rosenberg C. Two novel pathogenic variants in MED13L: one familial and one isolated case. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2021; 65:1049-1057. [PMID: 34713510 DOI: 10.1111/jir.12891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 08/12/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Genetic variants involving the MED13L gene can lead to an autosomal dominant syndrome characterised by intellectual disability/developmental delay and facial dysmorphism. METHODS We investigated two cases (one familial and one isolated) of intellectual disability with speech delay and dysmorphic facial features by whole-exome sequencing analyses. Further, we performed a literature review about clinical and molecular aspects of MED13L gene and syndrome. RESULTS Two MED13L variants have been identified [MED13L(NM_015335.5):c.4417C>T and MED13L(NM_015335.5):c.2318delC] and were classified as pathogenic according to the ACMG (American College of Medical Genetics and Genomics) guidelines. One of the variants was present in sibs. CONCLUSIONS The two pathogenic variants identified have not been previously reported. Importantly, this is the first report of a familial case of MED13L nonsense mutation. Although the parents of the affected children were no longer available for analysis, their apparently normal phenotypes were surmised from familial verbal descriptions corresponding to normal mental behaviour and phenotype. In this situation, the familial component of mutation transmission might be caused by gonadal mosaicism of a MED13L mutation in a gonad from either the father or the mother. The case reports and the literature review presented in this manuscript can be useful for genetic counselling.
Collapse
Affiliation(s)
- L M L Carvalho
- Human Genome and Stem Cell Research Centre, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - S S da Costa
- Human Genome and Stem Cell Research Centre, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | | | - A Kaufman
- Department of Psychiatry, Faculty of Medicine, University of São Paulo (USP), São Paulo, SP, Brazil
| | - D R Bertola
- Human Genome and Stem Cell Research Centre, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - I T da Silva
- International Centre for Research, A. C. Camargo Cancer Centre, São Paulo, SP, Brazil
| | - A C V Krepischi
- Human Genome and Stem Cell Research Centre, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - C P Koiffmann
- Human Genome and Stem Cell Research Centre, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - C Rosenberg
- Human Genome and Stem Cell Research Centre, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo (USP), São Paulo, SP, Brazil
| |
Collapse
|
19
|
Terabayashi T, Hashimoto S. Increased unfolded protein responses caused by MED17 mutations. Neurogenetics 2021; 22:353-357. [PMID: 34392449 DOI: 10.1007/s10048-021-00661-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/20/2021] [Indexed: 11/26/2022]
Abstract
Mediator (MED) is a key regulator of protein-coding gene expression, and mutations in MED subunits are associated with a broad spectrum of diseases. Because mutations in MED17 result in autosomal recessive disorders, including microcephaly, intellectual disability, epilepsy, and ataxia, which are barely reported, with only three case reports to date, genotype-phenotype association should be elucidated. Here, we investigated the impact of MED17 mutations on cellular responses and found increased unfolded protein responses (UPRs) in fibroblasts derived from Japanese patients with MED17 mutations. The expression of the UPR genes CHOP and ATF4 was upregulated, and the phosphorylation of eIF2a was basally increased in patients' cells. Based on our findings, we propose that increased UPRs caused by MED17 mutations might contribute to the clinical phenotype.
Collapse
Affiliation(s)
- Takeshi Terabayashi
- Department of Pharmacology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama, Yufu, Oita, 879-5593, Japan
| | - Satoru Hashimoto
- Faculty of Science and Technology, Oita University, 700 Dannoharu, Oita, 870-1192, Japan.
- Clinical Research Center for Diabetes, Tokushima University Hospital, Tokushima, 770-8503, Japan.
| |
Collapse
|
20
|
Tang M, Pei G, Su D, Wang C, Feng X, Srivastava M, Chen Z, Zhao Z, Chen J. Genome-wide CRISPR screens reveal cyclin C as synthetic survival target of BRCA2. Nucleic Acids Res 2021; 49:7476-7491. [PMID: 34197614 PMCID: PMC8287926 DOI: 10.1093/nar/gkab540] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/04/2021] [Accepted: 06/23/2021] [Indexed: 01/15/2023] Open
Abstract
Poly (ADP-ribose) polymerase inhibitor (PARPi)-based therapies initially reduce tumor burden but eventually lead to acquired resistance in cancer patients with BRCA1 or BRCA2 mutation. To understand the potential PARPi resistance mechanisms, we performed whole-genome CRISPR screens to discover genetic alterations that change the gene essentiality in cells with inducible depletion of BRCA2. We identified that several RNA Polymerase II transcription Mediator complex components, especially Cyclin C (CCNC) as synthetic survival targets upon BRCA2 loss. Total mRNA sequencing demonstrated that loss of CCNC could activate the transforming growth factor (TGF)-beta signaling pathway and extracellular matrix (ECM)-receptor interaction pathway, however the inhibition of these pathways could not reverse cell survival in BRCA2 depleted CCNC-knockout cells, indicating that the activation of these pathways is not required for the resistance. Moreover, we showed that the improved survival is not due to restoration of homologous recombination repair although decreased DNA damage signaling was observed. Interestingly, loss of CCNC could restore replication fork stability in BRCA2 deficient cells, which may contribute to PARPi resistance. Taken together, our data reveal CCNC as a critical genetic determinant upon BRCA2 loss of function, which may help the development of novel therapeutic strategies that overcome PARPi resistance.
Collapse
Affiliation(s)
- Mengfan Tang
- Department of Experimental Radiation Oncology, Unit 1052, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guangsheng Pei
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Dan Su
- Department of Experimental Radiation Oncology, Unit 1052, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chao Wang
- Department of Experimental Radiation Oncology, Unit 1052, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xu Feng
- Department of Experimental Radiation Oncology, Unit 1052, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mrinal Srivastava
- Department of Experimental Radiation Oncology, Unit 1052, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhen Chen
- Department of Experimental Radiation Oncology, Unit 1052, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, Unit 1052, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
21
|
Compe E, Egly JM. The Long Road to Understanding RNAPII Transcription Initiation and Related Syndromes. Annu Rev Biochem 2021; 90:193-219. [PMID: 34153211 DOI: 10.1146/annurev-biochem-090220-112253] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In eukaryotes, transcription of protein-coding genes requires the assembly at core promoters of a large preinitiation machinery containing RNA polymerase II (RNAPII) and general transcription factors (GTFs). Transcription is potentiated by regulatory elements called enhancers, which are recognized by specific DNA-binding transcription factors that recruit cofactors and convey, following chromatin remodeling, the activating cues to the preinitiation complex. This review summarizes nearly five decades of work on transcription initiation by describing the sequential recruitment of diverse molecular players including the GTFs, the Mediator complex, and DNA repair factors that support RNAPII to enable RNA synthesis. The elucidation of the transcription initiation mechanism has greatly benefited from the study of altered transcription components associated with human diseases that could be considered transcription syndromes.
Collapse
Affiliation(s)
- Emmanuel Compe
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, 67404 Illkirch CEDEX, Commune Urbaine de Strasbourg, France; ,
| | - Jean-Marc Egly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, 67404 Illkirch CEDEX, Commune Urbaine de Strasbourg, France; , .,College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| |
Collapse
|
22
|
André KM, Sipos EH, Soutourina J. Mediator Roles Going Beyond Transcription. Trends Genet 2020; 37:224-234. [PMID: 32921511 DOI: 10.1016/j.tig.2020.08.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/25/2022]
Abstract
Dysfunctions of nuclear processes including transcription and DNA repair lead to severe human diseases. Gaining an understanding of how these processes operate in the crowded context of chromatin can be particularly challenging. Mediator is a large multiprotein complex conserved in eukaryotes with a key coactivator role in the regulation of RNA polymerase (Pol) II transcription. Despite intensive studies, the molecular mechanisms underlying Mediator function remain to be fully understood. Novel findings have provided insights into the relationship between Mediator and chromatin architecture, revealed its role in connecting transcription with DNA repair and proposed an emerging mechanism of phase separation involving Mediator condensates. Recent developments in the field suggest multiple functions of Mediator going beyond transcriptional processes per se that would explain its involvement in various human pathologies.
Collapse
Affiliation(s)
- Kévin M André
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Eliet H Sipos
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Julie Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| |
Collapse
|
23
|
Chen GY, Zhang S, Li CH, Qi CC, Wang YZ, Chen JY, Wang G, Ding YQ, Su CJ. Mediator Med23 Regulates Adult Hippocampal Neurogenesis. Front Cell Dev Biol 2020; 8:699. [PMID: 32850819 PMCID: PMC7403405 DOI: 10.3389/fcell.2020.00699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/09/2020] [Indexed: 11/13/2022] Open
Abstract
Mammalian Mediator (Med) is a key regulator of gene expression by linking transcription factors to RNA polymerase II (Pol II) transcription machineries. The Mediator subunit 23 (Med23) is a member of the conserved Med protein complex and plays essential roles in diverse biological processes including adipogenesis, carcinogenesis, osteoblast differentiation, and T-cell activation. However, its potential functions in the nervous system remain unknown. We report here that Med23 is required for adult hippocampal neurogenesis in mouse. Deletion of Med23 in adult hippocampal neural stem cells (NSCs) was achieved in Nestin-CreER:Med23flox/flox mice by oral administration of tamoxifen. We found an increased number of proliferating NSCs shown by pulse BrdU-labeling and immunostaining of MCM2 and Ki67, which is possibly due to a reduction in cell cycle length, with unchanged GFAP+/Sox2+ NSCs and Tbr2+ progenitors. On the other hand, neuroblasts and immature neurons indicated by NeuroD and DCX were decreased in number in the dentate gyrus (DG) of Med23-deficient mice. In addition, these mice also displayed defective dendritic morphogenesis, as well as a deficiency in spatial and contextual fear memory. Gene ontology (GO) analysis of hippocampal NSCs revealed an enrichment in genes involved in cell proliferation, Pol II-associated transcription, Notch signaling pathway and apoptosis. These results demonstrate that Med23 plays roles in regulating adult brain neurogenesis and functions.
Collapse
Affiliation(s)
- Guo-Yan Chen
- Department of Neurology, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, China.,Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Shuai Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
| | - Chong-Hui Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Cong-Cong Qi
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science, and Department of Laboratory Animal Science, Fudan University, Shanghai, China
| | - Ya-Zhou Wang
- Department of Neurobiology, Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Jia-Yin Chen
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Gang Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Sciences, Fudan University, Shanghai, China
| | - Yu-Qiang Ding
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science, and Department of Laboratory Animal Science, Fudan University, Shanghai, China
| | - Chang-Jun Su
- Department of Neurology, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, China
| |
Collapse
|
24
|
Ignatius E, Isohanni P, Pohjanpelto M, Lahermo P, Ojanen S, Brilhante V, Palin E, Suomalainen A, Lönnqvist T, Carroll CJ. Genetic background of ataxia in children younger than 5 years in Finland. NEUROLOGY-GENETICS 2020; 6:e444. [PMID: 32637629 PMCID: PMC7323479 DOI: 10.1212/nxg.0000000000000444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/27/2020] [Indexed: 11/15/2022]
Abstract
Objective To characterize the genetic background of molecularly undefined childhood-onset ataxias in Finland. Methods This study examined a cohort of patients from 50 families with onset of an ataxia syndrome before the age of 5 years collected from a single tertiary center, drawing on the advantages offered by next generation sequencing. A genome-wide genotyping array (Illumina Infinium Global Screening Array MD-24 v.2.0) was used to search for copy number variation undetectable by exome sequencing. Results Exome sequencing led to a molecular diagnosis for 20 probands (40%). In the 23 patients examined with a genome-wide genotyping array, 2 additional diagnoses were made. A considerable proportion of probands with a molecular diagnosis had de novo pathogenic variants (45%). In addition, the study identified a de novo variant in a gene not previously linked to ataxia: MED23. Patients in the cohort had medically actionable findings. Conclusions There is a high heterogeneity of causative mutations in this cohort despite the defined age at onset, phenotypical overlap between patients, the founder effect, and genetic isolation in the Finnish population. The findings reflect the heterogeneous genetic background of ataxia seen worldwide and the substantial contribution of de novo variants underlying childhood ataxia.
Collapse
Affiliation(s)
- Erika Ignatius
- Department of Child Neurology (E.I., P.I., T.L.), Children's Hospital, University of Helsinki and Helsinki University Hospital; Research Programs Unit, Stem Cells and Metabolism, Faculty of Medicine (E.I., P.I., M.P., S.O., V.B., E.P., A.S.), Institute for Molecular Medicine Finland (FIMM) (P.L.), Neuroscience Center (A.S.), HiLife, University of Helsinki, Finland; and Genetics Research Centre (C.J.C.), Molecular and Clinical Sciences Research Institute, St. George's, University of London, United Kingdom
| | - Pirjo Isohanni
- Department of Child Neurology (E.I., P.I., T.L.), Children's Hospital, University of Helsinki and Helsinki University Hospital; Research Programs Unit, Stem Cells and Metabolism, Faculty of Medicine (E.I., P.I., M.P., S.O., V.B., E.P., A.S.), Institute for Molecular Medicine Finland (FIMM) (P.L.), Neuroscience Center (A.S.), HiLife, University of Helsinki, Finland; and Genetics Research Centre (C.J.C.), Molecular and Clinical Sciences Research Institute, St. George's, University of London, United Kingdom
| | - Max Pohjanpelto
- Department of Child Neurology (E.I., P.I., T.L.), Children's Hospital, University of Helsinki and Helsinki University Hospital; Research Programs Unit, Stem Cells and Metabolism, Faculty of Medicine (E.I., P.I., M.P., S.O., V.B., E.P., A.S.), Institute for Molecular Medicine Finland (FIMM) (P.L.), Neuroscience Center (A.S.), HiLife, University of Helsinki, Finland; and Genetics Research Centre (C.J.C.), Molecular and Clinical Sciences Research Institute, St. George's, University of London, United Kingdom
| | - Päivi Lahermo
- Department of Child Neurology (E.I., P.I., T.L.), Children's Hospital, University of Helsinki and Helsinki University Hospital; Research Programs Unit, Stem Cells and Metabolism, Faculty of Medicine (E.I., P.I., M.P., S.O., V.B., E.P., A.S.), Institute for Molecular Medicine Finland (FIMM) (P.L.), Neuroscience Center (A.S.), HiLife, University of Helsinki, Finland; and Genetics Research Centre (C.J.C.), Molecular and Clinical Sciences Research Institute, St. George's, University of London, United Kingdom
| | - Simo Ojanen
- Department of Child Neurology (E.I., P.I., T.L.), Children's Hospital, University of Helsinki and Helsinki University Hospital; Research Programs Unit, Stem Cells and Metabolism, Faculty of Medicine (E.I., P.I., M.P., S.O., V.B., E.P., A.S.), Institute for Molecular Medicine Finland (FIMM) (P.L.), Neuroscience Center (A.S.), HiLife, University of Helsinki, Finland; and Genetics Research Centre (C.J.C.), Molecular and Clinical Sciences Research Institute, St. George's, University of London, United Kingdom
| | - Virginia Brilhante
- Department of Child Neurology (E.I., P.I., T.L.), Children's Hospital, University of Helsinki and Helsinki University Hospital; Research Programs Unit, Stem Cells and Metabolism, Faculty of Medicine (E.I., P.I., M.P., S.O., V.B., E.P., A.S.), Institute for Molecular Medicine Finland (FIMM) (P.L.), Neuroscience Center (A.S.), HiLife, University of Helsinki, Finland; and Genetics Research Centre (C.J.C.), Molecular and Clinical Sciences Research Institute, St. George's, University of London, United Kingdom
| | - Eino Palin
- Department of Child Neurology (E.I., P.I., T.L.), Children's Hospital, University of Helsinki and Helsinki University Hospital; Research Programs Unit, Stem Cells and Metabolism, Faculty of Medicine (E.I., P.I., M.P., S.O., V.B., E.P., A.S.), Institute for Molecular Medicine Finland (FIMM) (P.L.), Neuroscience Center (A.S.), HiLife, University of Helsinki, Finland; and Genetics Research Centre (C.J.C.), Molecular and Clinical Sciences Research Institute, St. George's, University of London, United Kingdom
| | - Anu Suomalainen
- Department of Child Neurology (E.I., P.I., T.L.), Children's Hospital, University of Helsinki and Helsinki University Hospital; Research Programs Unit, Stem Cells and Metabolism, Faculty of Medicine (E.I., P.I., M.P., S.O., V.B., E.P., A.S.), Institute for Molecular Medicine Finland (FIMM) (P.L.), Neuroscience Center (A.S.), HiLife, University of Helsinki, Finland; and Genetics Research Centre (C.J.C.), Molecular and Clinical Sciences Research Institute, St. George's, University of London, United Kingdom
| | - Tuula Lönnqvist
- Department of Child Neurology (E.I., P.I., T.L.), Children's Hospital, University of Helsinki and Helsinki University Hospital; Research Programs Unit, Stem Cells and Metabolism, Faculty of Medicine (E.I., P.I., M.P., S.O., V.B., E.P., A.S.), Institute for Molecular Medicine Finland (FIMM) (P.L.), Neuroscience Center (A.S.), HiLife, University of Helsinki, Finland; and Genetics Research Centre (C.J.C.), Molecular and Clinical Sciences Research Institute, St. George's, University of London, United Kingdom
| | - Christopher J Carroll
- Department of Child Neurology (E.I., P.I., T.L.), Children's Hospital, University of Helsinki and Helsinki University Hospital; Research Programs Unit, Stem Cells and Metabolism, Faculty of Medicine (E.I., P.I., M.P., S.O., V.B., E.P., A.S.), Institute for Molecular Medicine Finland (FIMM) (P.L.), Neuroscience Center (A.S.), HiLife, University of Helsinki, Finland; and Genetics Research Centre (C.J.C.), Molecular and Clinical Sciences Research Institute, St. George's, University of London, United Kingdom
| |
Collapse
|
25
|
ERK signalling: a master regulator of cell behaviour, life and fate. Nat Rev Mol Cell Biol 2020; 21:607-632. [PMID: 32576977 DOI: 10.1038/s41580-020-0255-7] [Citation(s) in RCA: 532] [Impact Index Per Article: 133.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2020] [Indexed: 12/13/2022]
Abstract
The proteins extracellular signal-regulated kinase 1 (ERK1) and ERK2 are the downstream components of a phosphorelay pathway that conveys growth and mitogenic signals largely channelled by the small RAS GTPases. By phosphorylating widely diverse substrates, ERK proteins govern a variety of evolutionarily conserved cellular processes in metazoans, the dysregulation of which contributes to the cause of distinct human diseases. The mechanisms underlying the regulation of ERK1 and ERK2, their mode of action and their impact on the development and homeostasis of various organisms have been the focus of much attention for nearly three decades. In this Review, we discuss the current understanding of this important class of kinases. We begin with a brief overview of the structure, regulation, substrate recognition and subcellular localization of ERK1 and ERK2. We then systematically discuss how ERK signalling regulates six fundamental cellular processes in response to extracellular cues. These processes are cell proliferation, cell survival, cell growth, cell metabolism, cell migration and cell differentiation.
Collapse
|
26
|
Hashimoto S, Takanari H, Compe E, Egly JM. Dysregulation of LXR responsive genes contribute to ichthyosis in trichothiodystrophy. J Dermatol Sci 2020; 97:201-207. [PMID: 32037099 DOI: 10.1016/j.jdermsci.2020.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/29/2019] [Accepted: 01/21/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND Trichothiodystrophy (TTD) is a rare autosomal recessive disorder characterised by brittle hairs and various systemic symptoms, including photosensitivity and ichthyosis. While photosensitivity could result from DNA repair defects, other TTD clinical features might be due to deficiencies in certain molecular processes. OBJECTIVES The aim of this study was to understand the pathophysiological mechanism of ichthyosis in TTD, focused on the transcriptional dysregulation. METHODS TTD mouse skin tissue and keratinocytes were pathologically and physiologically examined to identify the alteration of lipid homeostasis in TTD with ichtyosis. Gene expression of certain lipid transporter was assessed in fibroblasts derived from TTD patients and TTD mouse keratinocytes. RESULTS Histopathology and electron microscopy revealed abnormal lipid composition in TTD mice skin. In addition to abnormal cholesterol dynamics, TTD mouse keratinocytes exhibit impaired expression of Liver X receptor (LXR) responsive genes, including Abca12, a key regulator of Harlequin ichthyosis, and Abcg1 that is involved in the cholesterol transport process in the epidermis. Strikingly, dysregulation of LXR responsive genes has been only observed in cells isolated from TTD patients who developed ichthyosis. CONCLUSIONS Our results suggest that the altered expression of the LXR-responsive genes contribute to the pathophysiology of ichthyosis in TTD. These findings provide a new drug discovery target for TTD.
Collapse
Affiliation(s)
- Satoru Hashimoto
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, Strasbourg, France; Clinical Research Center for Diabetes, Tokushima University Hospital, Tokushima, Japan; Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.
| | - Hiroki Takanari
- Clinical Research Center for Diabetes, Tokushima University Hospital, Tokushima, Japan; Department of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics, Tokushima, Japan
| | - Emmanuel Compe
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, Strasbourg, France
| | - Jean-Marc Egly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
27
|
Bomkamp C, Tripathy SJ, Bengtsson Gonzales C, Hjerling-Leffler J, Craig AM, Pavlidis P. Transcriptomic correlates of electrophysiological and morphological diversity within and across excitatory and inhibitory neuron classes. PLoS Comput Biol 2019; 15:e1007113. [PMID: 31211786 PMCID: PMC6599125 DOI: 10.1371/journal.pcbi.1007113] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/28/2019] [Accepted: 05/18/2019] [Indexed: 12/31/2022] Open
Abstract
In order to further our understanding of how gene expression contributes to key functional properties of neurons, we combined publicly accessible gene expression, electrophysiology, and morphology measurements to identify cross-cell type correlations between these data modalities. Building on our previous work using a similar approach, we distinguished between correlations which were "class-driven," meaning those that could be explained by differences between excitatory and inhibitory cell classes, and those that reflected graded phenotypic differences within classes. Taking cell class identity into account increased the degree to which our results replicated in an independent dataset as well as their correspondence with known modes of ion channel function based on the literature. We also found a smaller set of genes whose relationships to electrophysiological or morphological properties appear to be specific to either excitatory or inhibitory cell types. Next, using data from PatchSeq experiments, allowing simultaneous single-cell characterization of gene expression and electrophysiology, we found that some of the gene-property correlations observed across cell types were further predictive of within-cell type heterogeneity. In summary, we have identified a number of relationships between gene expression, electrophysiology, and morphology that provide testable hypotheses for future studies.
Collapse
Affiliation(s)
- Claire Bomkamp
- Department of Psychiatry, University of British Columbia, Vancouver BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver BC, Canada
| | - Shreejoy J. Tripathy
- Department of Psychiatry, University of British Columbia, Vancouver BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver BC, Canada
| | - Carolina Bengtsson Gonzales
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jens Hjerling-Leffler
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ann Marie Craig
- Department of Psychiatry, University of British Columbia, Vancouver BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver BC, Canada
| | - Paul Pavlidis
- Department of Psychiatry, University of British Columbia, Vancouver BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver BC, Canada
| |
Collapse
|
28
|
MED28 Over-Expression Shortens the Cell Cycle and Induces Genomic Instability. Int J Mol Sci 2019; 20:ijms20071746. [PMID: 30970566 PMCID: PMC6479353 DOI: 10.3390/ijms20071746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/06/2019] [Accepted: 04/08/2019] [Indexed: 01/01/2023] Open
Abstract
The mammalian mediator complex subunit 28 (MED28) is overexpressed in a variety of cancers and it regulates cell migration/invasion and epithelial-mesenchymal transition. However, transcription factors that increase MED28 expression have not yet been identified. In this study, we performed a luciferase reporter assay to identify and characterize the prospective transcription factors, namely E2F transcription factor 1, nuclear respiratory factor 1, E-26 transforming sequence 1, and CCAAT/enhancer-binding protein β, which increased MED28 expression. In addition, the release from the arrest at the G1−S or G2−M phase transition after cell cycle synchronization using thymidine or nocodazole, respectively, showed enhanced MED28 expression at the G1−S transition and mitosis. Furthermore, the overexpression of MED28 significantly decreased the duration of interphase and mitosis. Conversely, a knockdown of MED28 using si-RNA increased the duration of interphase and mitosis. Of note, the overexpression of MED28 significantly increased micronucleus and nuclear budding in HeLa cells. In addition, flow cytometry and fluorescence microscopy analyses showed that the overexpression of MED28 significantly increased aneuploid cells. Taken together, these results suggest that MED28 expression is increased by oncogenic transcription factors and its overexpression disturbs the cell cycle, which results in genomic instability and aneuploidy.
Collapse
|
29
|
Hashemi‐Gorji F, Fardaei M, Tabei SMB, Miryounesi M. Novel mutation in the MED23 gene for intellectual disability: A case report and literature review. Clin Case Rep 2019; 7:331-335. [PMID: 30847200 PMCID: PMC6389469 DOI: 10.1002/ccr3.1942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 01/19/2023] Open
Abstract
MED23 deficiency causes the autosomal recessive Intellectual Disability (ID). Here we report an Iranian case with nonsyndromic ID presenting with developmental delay, microcephaly, hypotonia, severe ID, speech delay, and spasticity, who was homozygous for the novel MED23 c.670C>G variant. These results expand the clinical and mutation spectrum of MED23 deficiency.
Collapse
Affiliation(s)
| | - Majid Fardaei
- Department of Medical Genetics, School of MedicineShiraz University of Medical SciencesShirazIran
| | | | - Mohammad Miryounesi
- Genomic Research CenterShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
30
|
Carullo NVN, Day JJ. Genomic Enhancers in Brain Health and Disease. Genes (Basel) 2019; 10:E43. [PMID: 30646598 PMCID: PMC6357130 DOI: 10.3390/genes10010043] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 01/18/2023] Open
Abstract
Enhancers are non-coding DNA elements that function in cis to regulate transcription from nearby genes. Through direct interactions with gene promoters, enhancers give rise to spatially and temporally precise gene expression profiles in distinct cell or tissue types. In the brain, the accurate regulation of these intricate expression programs across different neuronal classes gives rise to an incredible cellular and functional diversity. Newly developed technologies have recently allowed more accurate enhancer mapping and more sophisticated enhancer manipulation, producing rapid progress in our understanding of enhancer biology. Furthermore, identification of disease-linked genetic variation in enhancer regions has highlighted the potential influence of enhancers in brain health and disease. This review outlines the key role of enhancers as transcriptional regulators, reviews the current understanding of enhancer regulation in neuronal development, function and dysfunction and provides our thoughts on how enhancers can be targeted for technological and therapeutic goals.
Collapse
Affiliation(s)
- Nancy V N Carullo
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Jeremy J Day
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
31
|
Regulation of the terminal maturation of iNKT cells by mediator complex subunit 23. Nat Commun 2018; 9:3875. [PMID: 30250136 PMCID: PMC6155209 DOI: 10.1038/s41467-018-06372-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 08/31/2018] [Indexed: 11/21/2022] Open
Abstract
Invariant natural killer T cells (iNKT cells) are a specific subset of T cells that recognize glycolipid antigens and upon activation rapidly exert effector functions. This unique function is established during iNKT cell development; the detailed mechanisms of this process, however, remain to be elucidated. Here the authors show that deletion of the mediator subunit Med23 in CD4+CD8+ double positive (DP) thymocytes completely blocks iNKT cell development at stage 2. This dysregulation is accompanied by a bias in the expression of genes related to the regulation of transcription and metabolism, and functional impairment of the cells including the loss of NK cell characteristics, reduced ability to secrete cytokines and attenuated recruitment capacity upon activation. Moreover, Med23-deficient iNKT cells exhibit impaired anti-tumor activity. Our study identifies Med23 as an essential transcriptional regulator that controls iNKT cell differentiation and terminal maturation. Invariant Natural Killer T cells (iNKT) rapidly exert effector functions upon activation, but the mechanisms of their functional maturation remain to be determined. Here, Xu and colleagues show that the mediator subunit Med23 is a transcriptional regulator controlling iNKT cell terminal maturation.
Collapse
|
32
|
Med23 serves as a gatekeeper of the myeloid potential of hematopoietic stem cells. Nat Commun 2018; 9:3746. [PMID: 30218073 PMCID: PMC6138688 DOI: 10.1038/s41467-018-06282-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/22/2018] [Indexed: 12/19/2022] Open
Abstract
In response to myeloablative stresses, HSCs are rapidly activated to replenish myeloid progenitors, while maintaining full potential of self-renewal to ensure life-long hematopoiesis. However, the key factors that orchestrate HSC activities during physiological stresses remain largely unknown. Here we report that Med23 controls the myeloid potential of activated HSCs. Ablation of Med23 in hematopoietic system leads to lymphocytopenia. Med23-deficient HSCs undergo myeloid-biased differentiation and lose the self-renewal capacity. Interestingly, Med23-deficient HSCs are much easier to be activated in response to physiological stresses. Mechanistically, Med23 plays essential roles in maintaining stemness genes expression and suppressing myeloid lineage genes expression. Med23 is downregulated in HSCs and Med23 deletion results in better survival under myeloablative stress. Altogether, our findings identify Med23 as a gatekeeper of myeloid potential of HSCs, thus providing unique insights into the relationship among Med23-mediated transcriptional regulations, the myeloid potential of HSCs and HSC activation upon stresses. Hematopoietic stem cells (HSCs) in the bone marrow are quiescent, but are activated in response to stress. Here, the authors show that loss of Med23 leads to greater activation and enhanced myeloid potential of HSCs in response to stress, also Med23 maintains stemness gene expression and suppresses myeloid genes.
Collapse
|
33
|
Monté D, Clantin B, Dewitte F, Lens Z, Rucktooa P, Pardon E, Steyaert J, Verger A, Villeret V. Crystal structure of human Mediator subunit MED23. Nat Commun 2018; 9:3389. [PMID: 30140054 PMCID: PMC6107663 DOI: 10.1038/s41467-018-05967-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/01/2018] [Indexed: 11/18/2022] Open
Abstract
The Mediator complex transduces regulatory information from enhancers to promoters and performs essential roles in the initiation of transcription in eukaryotes. Human Mediator comprises 26 subunits forming three modules termed Head, Middle and Tail. Here we present the 2.8 Å crystal structure of MED23, the largest subunit from the human Tail module. The structure identifies 25 HEAT repeats-like motifs organized into 5 α-solenoids. MED23 adopts an arch-shaped conformation, with an N-terminal domain (Nter) protruding from a large core region. In the core four solenoids, motifs wrap on themselves, creating triangular-shaped structural motifs on both faces of the arch, with extended grooves propagating through the interfaces between the solenoid motifs. MED23 is known to interact with several specific transcription activators and is involved in splicing, elongation, and post-transcriptional events. The structure rationalizes previous biochemical observations and paves the way for improved understanding of the cross-talk between Mediator and transcriptional activators. Mediator is a large multi-subunits complex essential to the regulation of transcription by RNA pol II. Here the authors report the crystal structure of MED23—one of the largest subunits of the complex together with MED1 and MED14—revealing a complex architecture and filling an important gap in the structural characterization of Mediator.
Collapse
Affiliation(s)
- Didier Monté
- CNRS, UMR 8576-UGSF- Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, 59000, Lille, France.
| | - Bernard Clantin
- CNRS, UMR 8576-UGSF- Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, 59000, Lille, France
| | - Frédérique Dewitte
- CNRS, UMR 8576-UGSF- Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, 59000, Lille, France
| | - Zoé Lens
- CNRS, UMR 8576-UGSF- Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, 59000, Lille, France
| | - Prakash Rucktooa
- CNRS, UMR 8576-UGSF- Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, 59000, Lille, France.,Heptares Therapeutics Ltd., Broadwater Road, Hertfordshire, AL7 3AX, UK
| | - Els Pardon
- VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050, Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Jan Steyaert
- VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050, Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Alexis Verger
- CNRS, UMR 8576-UGSF- Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, 59000, Lille, France
| | - Vincent Villeret
- CNRS, UMR 8576-UGSF- Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, 59000, Lille, France.
| |
Collapse
|
34
|
Larizza L, Finelli P. Developmental disorders with intellectual disability driven by chromatin dysregulation: Clinical overlaps and molecular mechanisms. Clin Genet 2018; 95:231-240. [DOI: 10.1111/cge.13365] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/28/2018] [Accepted: 04/14/2018] [Indexed: 12/30/2022]
Affiliation(s)
- L. Larizza
- Laboratory of Cytogenetics and Molecular Genetics; Istituto Auxologico Italiano; Milan Italy
| | - P. Finelli
- Laboratory of Cytogenetics and Molecular Genetics; Istituto Auxologico Italiano; Milan Italy
- Department of Medical Biotechnology and Translational Medicine; Università degli Studi di Milano; Milan Italy
| |
Collapse
|
35
|
Abstract
Alterations in the regulation of gene expression are frequently associated with developmental diseases or cancer. Transcription activation is a key phenomenon in the regulation of gene expression. In all eukaryotes, mediator of RNA polymerase II transcription (Mediator), a large complex with modular organization, is generally required for transcription by RNA polymerase II, and it regulates various steps of this process. The main function of Mediator is to transduce signals from the transcription activators bound to enhancer regions to the transcription machinery, which is assembled at promoters as the preinitiation complex (PIC) to control transcription initiation. Recent functional studies of Mediator with the use of structural biology approaches and functional genomics have revealed new insights into Mediator activity and its regulation during transcription initiation, including how Mediator is recruited to transcription regulatory regions and how it interacts and cooperates with PIC components to assist in PIC assembly. Novel roles of Mediator in the control of gene expression have also been revealed by showing its connection to the nuclear pore and linking Mediator to the regulation of gene positioning in the nuclear space. Clear links between Mediator subunits and disease have also encouraged studies to explore targeting of this complex as a potential therapeutic approach in cancer and fungal infections.
Collapse
Affiliation(s)
- Julie Soutourina
- Institute for Integrative Biology of the Cell (I2BC), Institute of Life Sciences Frédéric Joliot, Commissariat à l'énergie Atomique et aux énergies alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), University Paris Sud, University Paris Saclay, F-91198 Gif-sur-Yvette, France
| |
Collapse
|
36
|
Gordon CT, Chopra M, Oufadem M, Alibeu O, Bras M, Boddaert N, Bole-Feysot C, Nitschké P, Abadie V, Lyonnet S, Amiel J. MED13L
loss-of-function variants in two patients with syndromic Pierre Robin sequence. Am J Med Genet A 2017; 176:181-186. [DOI: 10.1002/ajmg.a.38536] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/06/2017] [Accepted: 10/15/2017] [Indexed: 02/02/2023]
Affiliation(s)
- Christopher T. Gordon
- Laboratory of Embryology and Genetics of Congenital Malformations; Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163; Institut Imagine; Paris France
- Paris Descartes-Sorbonne Paris Cité Université; Institut Imagine; Paris France
| | - Maya Chopra
- Laboratory of Embryology and Genetics of Congenital Malformations; Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163; Institut Imagine; Paris France
- Département de Génétique; Hôpital Necker-Enfants Malades; Assistance Publique Hôpitaux de Paris (AP-HP); Paris France
| | - Myriam Oufadem
- Laboratory of Embryology and Genetics of Congenital Malformations; Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163; Institut Imagine; Paris France
- Paris Descartes-Sorbonne Paris Cité Université; Institut Imagine; Paris France
| | - Olivier Alibeu
- Paris Descartes-Sorbonne Paris Cité Université; Institut Imagine; Paris France
- Genomics Platform, INSERM UMR 1163; Institut Imagine; Paris France
| | - Marc Bras
- Paris Descartes-Sorbonne Paris Cité Université; Institut Imagine; Paris France
- Bioinformatics Platform, INSERM UMR 1163; Institut Imagine; Paris France
| | - Nathalie Boddaert
- Service de Radiologie Pédiatrique; Hôpital Necker-Enfants Malades, AP-HP; Paris France
- INSERM U1000 and UMR 1163; Institut Imagine; Paris France
| | - Christine Bole-Feysot
- Paris Descartes-Sorbonne Paris Cité Université; Institut Imagine; Paris France
- Genomics Platform, INSERM UMR 1163; Institut Imagine; Paris France
| | - Patrick Nitschké
- Paris Descartes-Sorbonne Paris Cité Université; Institut Imagine; Paris France
- Bioinformatics Platform, INSERM UMR 1163; Institut Imagine; Paris France
| | - Véronique Abadie
- Paris Descartes-Sorbonne Paris Cité Université; Institut Imagine; Paris France
- Service de Pédiatrie Générale; Hôpital Necker-Enfants Malades, AP-HP; Paris France
| | - Stanislas Lyonnet
- Laboratory of Embryology and Genetics of Congenital Malformations; Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163; Institut Imagine; Paris France
- Paris Descartes-Sorbonne Paris Cité Université; Institut Imagine; Paris France
- Département de Génétique; Hôpital Necker-Enfants Malades; Assistance Publique Hôpitaux de Paris (AP-HP); Paris France
| | - Jeanne Amiel
- Laboratory of Embryology and Genetics of Congenital Malformations; Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163; Institut Imagine; Paris France
- Paris Descartes-Sorbonne Paris Cité Université; Institut Imagine; Paris France
- Département de Génétique; Hôpital Necker-Enfants Malades; Assistance Publique Hôpitaux de Paris (AP-HP); Paris France
| |
Collapse
|
37
|
Ranjan A, Ansari SA. Therapeutic potential of Mediator complex subunits in metabolic diseases. Biochimie 2017; 144:41-49. [PMID: 29061530 DOI: 10.1016/j.biochi.2017.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/16/2017] [Indexed: 01/16/2023]
Abstract
The multisubunit Mediator is an evolutionary conserved transcriptional coregulatory complex in eukaryotes. It is needed for the transcriptional regulation of gene expression in general as well as in a gene specific manner. Mediator complex subunits interact with different transcription factors as well as components of RNA Pol II transcription initiation complex and in doing so act as a bridge between gene specific transcription factors and general Pol II transcription machinery. Specific interaction of various Mediator subunits with nuclear receptors (NRs) and other transcription factors involved in metabolism has been reported in different studies. Evidences indicate that ligand-activated NRs recruit Mediator complex for RNA Pol II-dependent gene transcription. These NRs have been explored as therapeutic targets in different metabolic diseases; however, they show side-effects as targets due to their overlapping involvement in different signaling pathways. Here we discuss the interaction of various Mediator subunits with transcription factors involved in metabolism and whether specific interaction of these transcription factors with Mediator subunits could be potentially utilized as therapeutic strategy in a variety of metabolic diseases.
Collapse
Affiliation(s)
- Amol Ranjan
- Stowers Institute for Medical Research, 1000 E, 50th Street, Kansas City, MO, 64110, USA
| | - Suraiya A Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, UAE University, AlAin, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
38
|
Donnio LM, Bidon B, Hashimoto S, May M, Epanchintsev A, Ryan C, Allen W, Hackett A, Gecz J, Skinner C, Stevenson RE, de Brouwer APM, Coutton C, Francannet C, Jouk PS, Schwartz CE, Egly JM. MED12-related XLID disorders are dose-dependent of immediate early genes (IEGs) expression. Hum Mol Genet 2017; 26:2062-2075. [PMID: 28369444 DOI: 10.1093/hmg/ddx099] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/08/2017] [Indexed: 11/13/2022] Open
Abstract
Mediator occupies a key role in protein coding genes expression in mediating the contacts between gene specific factors and the basal transcription machinery but little is known regarding the role of each Mediator subunits. Mutations in MED12 are linked with a broad spectrum of genetic disorders with X-linked intellectual disability that are difficult to range as Lujan, Opitz-Kaveggia or Ohdo syndromes. Here, we investigated several MED12 patients mutations (p.R206Q, p.N898D, p.R961W, p.N1007S, p.R1148H, p.S1165P and p.R1295H) and show that each MED12 mutations cause specific expression patterns of JUN, FOS and EGR1 immediate early genes (IEGs), reflected by the presence or absence of MED12 containing complex at their respective promoters. Moreover, the effect of MED12 mutations has cell-type specificity on IEG expression. As a consequence, the expression of late responsive genes such as the matrix metalloproteinase-3 and the RE1 silencing transcription factor implicated respectively in neural plasticity and the specific expression of neuronal genes is disturbed as documented for MED12/p.R1295H mutation. In such case, JUN and FOS failed to be properly recruited at their AP1-binding site. Our results suggest that the differences between MED12-related phenotypes are essentially the result of distinct IEGs expression patterns, the later ones depending on the accurate formation of the transcription initiation complex. This might challenge clinicians to rethink the traditional syndromes boundaries and to include genetic criterion in patients' diagnostic.
Collapse
Affiliation(s)
- Lise-Marie Donnio
- Department of Functional Genomics and Cancer biology, IGBMC, CNRS/INSERM/Université de Strasbourg, 67404 Illkirch-Graffenstaden, France
| | - Baptiste Bidon
- Department of Functional Genomics and Cancer biology, IGBMC, CNRS/INSERM/Université de Strasbourg, 67404 Illkirch-Graffenstaden, France
| | - Satoru Hashimoto
- Department of Functional Genomics and Cancer biology, IGBMC, CNRS/INSERM/Université de Strasbourg, 67404 Illkirch-Graffenstaden, France.,Department of Clinical Pharmacology and Therapeutics Oita University Faculty of Medicine, Yufu city, Oita 879-5593, Japan
| | - Melanie May
- Greenwood Genetic Center, Greenwood, SC 29649, USA
| | - Alexey Epanchintsev
- Department of Functional Genomics and Cancer biology, IGBMC, CNRS/INSERM/Université de Strasbourg, 67404 Illkirch-Graffenstaden, France
| | - Colm Ryan
- Department of Functional Genomics and Cancer biology, IGBMC, CNRS/INSERM/Université de Strasbourg, 67404 Illkirch-Graffenstaden, France
| | | | | | - Jozef Gecz
- School of Medicine, and the Robinson Research Institute, The University of Adelaide, and South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | | | | | - Arjan P M de Brouwer
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525?HP, The Netherlands
| | - Charles Coutton
- Département de Génétique et Procréation, Centre Hospitalier-Universitaire, Institut Albert Bonniot, CNRS/INSERM/Université Grenoble Alpes, 38000 Grenoble, France
| | - Christine Francannet
- Service de Génétique Médicale, Centre Hospitalier-Universitaire, 63003 Clermont-Ferrand, France
| | - Pierre-Simon Jouk
- Département de Génétique et Procréation, Centre Hospitalier-Universitaire, Institut Albert Bonniot, CNRS/INSERM/Université Grenoble Alpes, 38000 Grenoble, France
| | | | - Jean-Marc Egly
- Department of Functional Genomics and Cancer biology, IGBMC, CNRS/INSERM/Université de Strasbourg, 67404 Illkirch-Graffenstaden, France
| |
Collapse
|
39
|
Eychenne T, Werner M, Soutourina J. Toward understanding of the mechanisms of Mediator function in vivo: Focus on the preinitiation complex assembly. Transcription 2017; 8:328-342. [PMID: 28841352 DOI: 10.1080/21541264.2017.1329000] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mediator is a multisubunit complex conserved in eukaryotes that plays an essential coregulator role in RNA polymerase (Pol) II transcription. Despite intensive studies of the Mediator complex, the molecular mechanisms of its function in vivo remain to be fully defined. In this review, we will discuss the different aspects of Mediator function starting with its interactions with specific transcription factors, its recruitment to chromatin and how, as a coregulator, it contributes to the assembly of transcription machinery components within the preinitiation complex (PIC) in vivo and beyond the PIC formation.
Collapse
Affiliation(s)
- Thomas Eychenne
- a Institute for Integrative Biology of the Cell (I2BC), Institute of Life Sciences Frédéric Joliot, CEA, CNRS , Univ. Paris Sud, University Paris Saclay , Gif-sur-Yvette , France.,b Institut Pasteur, (Epi)genomics of Animal Development Unit , Development and Stem Cell Biology Department, CNRS UMR3778 , Paris , France
| | - Michel Werner
- a Institute for Integrative Biology of the Cell (I2BC), Institute of Life Sciences Frédéric Joliot, CEA, CNRS , Univ. Paris Sud, University Paris Saclay , Gif-sur-Yvette , France
| | - Julie Soutourina
- a Institute for Integrative Biology of the Cell (I2BC), Institute of Life Sciences Frédéric Joliot, CEA, CNRS , Univ. Paris Sud, University Paris Saclay , Gif-sur-Yvette , France
| |
Collapse
|
40
|
Asadollahi R, Zweier M, Gogoll L, Schiffmann R, Sticht H, Steindl K, Rauch A. Genotype-phenotype evaluation of MED13L defects in the light of a novel truncating and a recurrent missense mutation. Eur J Med Genet 2017. [PMID: 28645799 DOI: 10.1016/j.ejmg.2017.06.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A decade after the designation of MED13L as a gene and its link to intellectual disability (ID) and dextro-looped transposition of great arteries in 2003, we previously described a recognizable syndrome due to MED13L haploinsufficiency. Subsequent reports of 22 further patients diagnosed by genome-wide testing further delineated the syndrome with expansion of the phenotypic spectrum and showed reduced penetrance for congenital heart defects. We now report two novel patients identified by whole exome sequencing, one with a de novo MED13L truncating mutation and the other with a de novo missense mutation. The first patient indicates some facial resemblance to Kleefstra syndrome as a novel differential diagnosis, and the second patient shows, for the first time, recurrence of a MED13L missense mutation (p.(Asp860Gly)). Notably, our in silico modelling predicted this missense mutation to decrease the stability of an alpha-helix and thereby affecting the MED13L secondary structure, while the majority of published missense mutations remain variants of uncertain significance. Review of the reported patients with MED13L haploinsufficiency indicates moderate to severe ID and facial anomalies in all patients, as well as severe speech delay and muscular hypotonia in the majority. Further common signs include abnormal MRI findings of myelination defects and abnormal corpus callosum, ataxia and coordination problems, autistic features, seizures/abnormal EEG, or congenital heart defects, present in about 20-50% of the patients. With reference to facial anomalies, the majority of patients were reported to show broad/prominent forehead, low set ears, bitemporal narrowing, upslanting palpebral fissures, depressed/flat nasal bridge, bulbous nose, and abnormal chin, but macroglossia and horizontal eyebrows were also observed in ∼30%. The latter are especially important in the differential diagnosis of 1p36 deletion and Kleefstra syndromes, while the more common facial gestalt shows some resemblance to 22q11.2 deletion syndrome. Despite the fact that MED13L was found to be one of the most common ID genes in the Deciphering Developmental Disorders Study, further detailed patient descriptions are needed to explore the full clinical spectrum, potential genotype-phenotype correlations, as well as the role of missense mutations and potential mutational hotspots along the gene.
Collapse
Affiliation(s)
- Reza Asadollahi
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Markus Zweier
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Laura Gogoll
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Raphael Schiffmann
- Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Heinrich Sticht
- Institute of Biochemistry, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland; Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
41
|
Khan MA, Khan S, Windpassinger C, Badar M, Nawaz Z, Mohammad RM. The Molecular Genetics of Autosomal Recessive Nonsyndromic Intellectual Disability: a Mutational Continuum and Future Recommendations. Ann Hum Genet 2017; 80:342-368. [PMID: 27870114 DOI: 10.1111/ahg.12176] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 10/03/2016] [Indexed: 12/19/2022]
Abstract
Intellectual disability (ID) is a clinical manifestation of the central nervous system without any major dysmorphologies of the brain. Biologically it affects learning capabilities, memory, and cognitive functioning. The basic defining features of ID are characterized by IQ<70, age of onset before 18 years, and impairment of at least two of the adaptive skills. Clinically it is classified in a syndromic (with additional abnormalities) and a nonsyndromic form (with only cognitive impairment). The study of nonsyndromic intellectual disability (NSID) can best explain the pathophysiology of cognition, intelligence and memory. Genetic analysis in autosomal recessive nonsyndrmic ID (ARNSID) has mapped 51 disease loci, 34 of which have revealed their defective genes. These genes play diverse physiological roles in various molecular processes, including methylation, proteolysis, glycosylation, signal transduction, transcription regulation, lipid metabolism, ion homeostasis, tRNA modification, ubiquitination and neuromorphogenesis. High-density SNP array and whole exome sequencing has increased the pace of gene discoveries and many new mutations are being published every month. The lack of uniform criteria has assigned multiple identifiers (or accession numbers) to the same MRT locus (e.g. MRT7 and MRT22). Here in this review we describe the molecular genetics of ARNSID, prioritize the candidate genes in uncharacterized loci, and propose a new nomenclature to reorganize the mutation data that will avoid the confusion of assigning duplicate accession numbers to the same ID locus and to make the data manageable in the future as well.
Collapse
Affiliation(s)
- Muzammil Ahmad Khan
- Genomic Core Facility, Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar.,Gomal Centre of Biochemistry and Biotechnology, Gomal University, D.I.Khan, 29050 KPK, Pakistan
| | - Saadullah Khan
- Genomic Core Facility, Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar.,Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, KPK, Pakistan
| | | | - Muhammad Badar
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, D.I.Khan, 29050 KPK, Pakistan
| | - Zafar Nawaz
- Genomic Core Facility, Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Ramzi M Mohammad
- Genomic Core Facility, Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
| |
Collapse
|
42
|
Genetic Defects Underlie the Non-syndromic Autosomal Recessive Intellectual Disability (NS-ARID). Open Life Sci 2017. [DOI: 10.1515/biol-2017-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractIntellectual disability (ID) is a neurodevelopmental disorder which appears frequently as the result of genetic mutations and may be syndromic (S-ID) or non-syndromic (NS-ID). ID causes an important economic burden, for patient's family, health systems, and society. Identifying genes that cause S-ID can easily be evaluated due to the clinical symptoms or physical anomalies. However, in the case of NS-ID due to the absence of co-morbid features, the latest molecular genetic techniques can be used to understand the genetic defects that underlie it. Recent studies have shown that non-syndromic autosomal recessive (NS-ARID) is extremely heterogeneous and contributes much more than X-linked ID. However, very little is known about the genes and loci involved in NS-ARID relative to X-linked ID, and whose complete genetic etiology remains obscure. In this review article, the known genetic etiology of NS-ARID and possible relationships between genes and the associated molecular pathways of their encoded proteins has been reviewed which will enhance our understanding about the underlying genes and mechanisms in NS-ARID.
Collapse
|
43
|
De novo mutations in genes of mediator complex causing syndromic intellectual disability: mediatorpathy or transcriptomopathy? Pediatr Res 2016; 80:809-815. [PMID: 27500536 DOI: 10.1038/pr.2016.162] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/13/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND Mutations in the X-linked gene MED12 cause at least three different, but closely related, entities of syndromic intellectual disability. Recently, a new syndrome caused by MED13L deleterious variants has been described, which shows similar clinical manifestations including intellectual disability, hypotonia, and other congenital anomalies. METHODS Genotyping of 1,256 genes related with neurodevelopment was performed by next-generation sequencing in three unrelated patients and their healthy parents. Clinically relevant findings were confirmed by conventional sequencing. RESULTS Each patient showed one de novo variant not previously reported in the literature or databases. Two different missense variants were found in the MED12 or MED13L genes and one nonsense mutation was found in the MED13L gene. CONCLUSION The phenotypic consequences of these mutations are closely related and/or have been previously reported in one or other gene. Additionally, MED12 and MED13L code for two closely related partners of the mediator kinase module. Consequently, we propose the concept of a common MED12/MED13L clinical spectrum, encompassing Opitz-Kaveggia syndrome, Lujan-Fryns syndrome, Ohdo syndrome, MED13L haploinsufficiency syndrome, and others.
Collapse
|
44
|
Zabidi MA, Stark A. Regulatory Enhancer-Core-Promoter Communication via Transcription Factors and Cofactors. Trends Genet 2016; 32:801-814. [PMID: 27816209 DOI: 10.1016/j.tig.2016.10.003] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/08/2016] [Accepted: 10/10/2016] [Indexed: 01/20/2023]
Abstract
Gene expression is regulated by genomic enhancers that recruit transcription factors and cofactors to activate transcription from target core promoters. Over the past years, thousands of enhancers and core promoters in animal genomes have been annotated, and we have learned much about the domain structure in which regulatory genomes are organized in animals. Enhancer-core-promoter targeting occurs at several levels, including regulatory domains, DNA accessibility, and sequence-encoded core-promoter specificities that are likely mediated by different regulatory proteins. We review here current knowledge about enhancer-core-promoter targeting, regulatory communication between enhancers and core promoters, and the protein factors involved. We conclude with an outlook on open questions that we find particularly interesting and that will likely lead to additional insights in the upcoming years.
Collapse
Affiliation(s)
- Muhammad A Zabidi
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Dr. Bohr-Gasse 7, 1030 Vienna, Austria.
| |
Collapse
|
45
|
Eychenne T, Novikova E, Barrault MB, Alibert O, Boschiero C, Peixeiro N, Cornu D, Redeker V, Kuras L, Nicolas P, Werner M, Soutourina J. Functional interplay between Mediator and TFIIB in preinitiation complex assembly in relation to promoter architecture. Genes Dev 2016; 30:2119-2132. [PMID: 27688401 PMCID: PMC5066617 DOI: 10.1101/gad.285775.116] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/12/2016] [Indexed: 11/24/2022]
Abstract
Mediator is a large coregulator complex conserved from yeast to humans and involved in many human diseases, including cancers. Together with general transcription factors, it stimulates preinitiation complex (PIC) formation and activates RNA polymerase II (Pol II) transcription. In this study, we analyzed how Mediator acts in PIC assembly using in vivo, in vitro, and in silico approaches. We revealed an essential function of the Mediator middle module exerted through its Med10 subunit, implicating a key interaction between Mediator and TFIIB. We showed that this Mediator-TFIIB link has a global role on PIC assembly genome-wide. Moreover, the amplitude of Mediator's effect on PIC formation is gene-dependent and is related to the promoter architecture in terms of TATA elements, nucleosome occupancy, and dynamics. This study thus provides mechanistic insights into the coordinated function of Mediator and TFIIB in PIC assembly in different chromatin contexts.
Collapse
Affiliation(s)
- Thomas Eychenne
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Énergie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Université Paris Sud, Université Paris Saclay, F-91198 Gif-sur-Yvette Cedex, France.,Institut de Biologie et de Technologies de Saclay (IBITECS), CEA, F-91191 Gif-sur-Yvette Cedex, France
| | - Elizaveta Novikova
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Énergie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Université Paris Sud, Université Paris Saclay, F-91198 Gif-sur-Yvette Cedex, France.,Institut de Biologie et de Technologies de Saclay (IBITECS), CEA, F-91191 Gif-sur-Yvette Cedex, France
| | - Marie-Bénédicte Barrault
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Énergie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Université Paris Sud, Université Paris Saclay, F-91198 Gif-sur-Yvette Cedex, France.,Institut de Biologie et de Technologies de Saclay (IBITECS), CEA, F-91191 Gif-sur-Yvette Cedex, France
| | - Olivier Alibert
- Laboratoire d'Exploration Fonctionnelle des Génomes (LEFG), Institut de Radiobiologie Cellulaire et Moléculaire (IRCM), CEA, Genopole G2, F-91057 Evry Cedex, France
| | - Claire Boschiero
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Énergie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Université Paris Sud, Université Paris Saclay, F-91198 Gif-sur-Yvette Cedex, France.,Institut de Biologie et de Technologies de Saclay (IBITECS), CEA, F-91191 Gif-sur-Yvette Cedex, France
| | - Nuno Peixeiro
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Énergie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Université Paris Sud, Université Paris Saclay, F-91198 Gif-sur-Yvette Cedex, France.,Institut de Biologie et de Technologies de Saclay (IBITECS), CEA, F-91191 Gif-sur-Yvette Cedex, France
| | - David Cornu
- Service d'Identification et de Caractérisation des Protéines par Spectrométrie de Masse (SICaPS), CNRS, F-91198 Gif-sur-Yvette Cedex, France
| | - Virginie Redeker
- Service d'Identification et de Caractérisation des Protéines par Spectrométrie de Masse (SICaPS), CNRS, F-91198 Gif-sur-Yvette Cedex, France.,Paris-Saclay Institute of Neuroscience (Neuro-PSI), CNRS, F-91198 Gif-sur-Yvette Cedex, France
| | - Laurent Kuras
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Énergie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Université Paris Sud, Université Paris Saclay, F-91198 Gif-sur-Yvette Cedex, France
| | - Pierre Nicolas
- Mathematiques et Informatique Appliquées du Génome à l'Environnement (MaIAGE), Institut National de la Recherche Agronomique (INRA), Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Michel Werner
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Énergie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Université Paris Sud, Université Paris Saclay, F-91198 Gif-sur-Yvette Cedex, France.,Institut de Biologie et de Technologies de Saclay (IBITECS), CEA, F-91191 Gif-sur-Yvette Cedex, France
| | - Julie Soutourina
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Énergie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Université Paris Sud, Université Paris Saclay, F-91198 Gif-sur-Yvette Cedex, France.,Institut de Biologie et de Technologies de Saclay (IBITECS), CEA, F-91191 Gif-sur-Yvette Cedex, France
| |
Collapse
|
46
|
Izumi K. Disorders of Transcriptional Regulation: An Emerging Category of Multiple Malformation Syndromes. Mol Syndromol 2016; 7:262-273. [PMID: 27867341 DOI: 10.1159/000448747] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2016] [Indexed: 01/09/2023] Open
Abstract
Some genetic disorders caused by mutations in genes encoding components of the transcriptional machinery as well as proteins involved in epigenetic modification of the genome share many overlapping features, such as facial dysmorphisms, growth problems and developmental delay/intellectual disability. As a basis for some shared phenotypic characteristics in these syndromes, a similar transcriptome disturbance, characterized by global transcriptional dysregulation, is believed to play a major role. In this review article, a general overview of gene transcription is provided, and the current knowledge of the mechanisms underlying some disorders of transcriptional regulation, such as Rubinstein- Taybi, Coffin-Siris, Cornelia de Lange, and CHOPS syndromes, are discussed.
Collapse
Affiliation(s)
- Kosuke Izumi
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pa., USA
| |
Collapse
|
47
|
Bahrami S, Drabløs F. Gene regulation in the immediate-early response process. Adv Biol Regul 2016; 62:37-49. [PMID: 27220739 DOI: 10.1016/j.jbior.2016.05.001] [Citation(s) in RCA: 256] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/03/2016] [Indexed: 05/13/2023]
Abstract
Immediate-early genes (IEGs) can be activated and transcribed within minutes after stimulation, without the need for de novo protein synthesis, and they are stimulated in response to both cell-extrinsic and cell-intrinsic signals. Extracellular signals are transduced from the cell surface, through receptors activating a chain of proteins in the cell, in particular extracellular-signal-regulated kinases (ERKs), mitogen-activated protein kinases (MAPKs) and members of the RhoA-actin pathway. These communicate through a signaling cascade by adding phosphate groups to neighboring proteins, and this will eventually activate and translocate TFs to the nucleus and thereby induce gene expression. The gene activation also involves proximal and distal enhancers that interact with promoters to simulate gene expression. The immediate-early genes have essential biological roles, in particular in stress response, like the immune system, and in differentiation. Therefore they also have important roles in various diseases, including cancer development. In this paper we summarize some recent advances on key aspects of the activation and regulation of immediate-early genes.
Collapse
Affiliation(s)
- Shahram Bahrami
- Department of Cancer Research and Molecular Medicine, NTNU - Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway.
| | - Finn Drabløs
- Department of Cancer Research and Molecular Medicine, NTNU - Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| |
Collapse
|
48
|
Lionel AC, Monfared N, Scherer SW, Marshall CR, Mercimek-Mahmutoglu S. MED23-associated refractory epilepsy successfully treated with the ketogenic diet. Am J Med Genet A 2016; 170:2421-5. [PMID: 27311965 DOI: 10.1002/ajmg.a.37802] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/06/2016] [Indexed: 01/01/2023]
Abstract
We report a new patient with refractory epilepsy associated with a novel pathogenic homozygous MED23 variant. This 7.5-year-old boy from consanguineous parents had infantile onset global developmental delay and refractory epilepsy. He was treated with the ketogenic diet at 2.5 years of age and became seizure free on the first day. He had microcephaly and truncal hypotonia. His brain MRI showed delayed myelination and thin corpus callosum. He was enrolled in a whole exome sequencing research study, which identified a novel, homozygous, likely pathogenic (c.1937A>G; p.Gln646Arg) variant in MED23. MED23 is a regulator of energy homeostasis and glucose production. Liver-specific Med23-knockout mice showed reduced liver gluconeogenesis and lower blood glucose levels compared to control mice. This is the first patient with documented refractory epilepsy caused by a novel homozygous pathogenic variant in MED23 expanding the phenotypic spectrum. Identification of the underlying genetic defect in MED23 sheds light on the possible mechanism of complete response to the ketogenic diet in this child. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anath C Lionel
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Canada
| | - Nasim Monfared
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Stephen W Scherer
- Department of Molecular Genetics and the McLaughlin Centre, University of Toronto, Toronto, Canada.,Genetics and Genome Biology Research Program, Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - Christian R Marshall
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Canada
| | - Saadet Mercimek-Mahmutoglu
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada.,Genetics and Genome Biology Research Program, Research Institute, The Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
49
|
Kobayashi K, Nakano S, Amano M, Tsuboi D, Nishioka T, Ikeda S, Yokoyama G, Kaibuchi K, Mori I. Single-Cell Memory Regulates a Neural Circuit for Sensory Behavior. Cell Rep 2015; 14:11-21. [PMID: 26725111 DOI: 10.1016/j.celrep.2015.11.064] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 09/06/2015] [Accepted: 11/22/2015] [Indexed: 01/12/2023] Open
Abstract
Unveiling the molecular and cellular mechanisms underlying memory has been a challenge for the past few decades. Although synaptic plasticity is proven to be essential for memory formation, the significance of "single-cell memory" still remains elusive. Here, we exploited a primary culture system for the analysis of C. elegans neurons and show that a single thermosensory neuron has an ability to form, retain, and reset a temperature memory. Genetic and proteomic analyses found that the expression of the single-cell memory exhibits inter-individual variability, which is controlled by the evolutionarily conserved CaMKI/IV and Raf pathway. The variable responses of a sensory neuron influenced the neural activity of downstream interneurons, suggesting that modulation of the sensory neurons ultimately determines the behavioral output in C. elegans. Our results provide proof of single-cell memory and suggest that the individual differences in neural responses at the single-cell level can confer individuality.
Collapse
Affiliation(s)
- Kyogo Kobayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Shunji Nakano
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Mutsuki Amano
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
| | - Daisuke Tsuboi
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
| | - Tomoki Nishioka
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
| | - Shingo Ikeda
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Genta Yokoyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
| | - Ikue Mori
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan; CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
50
|
Lu C, Fuller MT. Recruitment of Mediator Complex by Cell Type and Stage-Specific Factors Required for Tissue-Specific TAF Dependent Gene Activation in an Adult Stem Cell Lineage. PLoS Genet 2015; 11:e1005701. [PMID: 26624996 PMCID: PMC4666660 DOI: 10.1371/journal.pgen.1005701] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 11/04/2015] [Indexed: 01/08/2023] Open
Abstract
Onset of terminal differentiation in adult stem cell lineages is commonly marked by robust activation of new transcriptional programs required to make the appropriate differentiated cell type(s). In the Drosophila male germ line stem cell lineage, the switch from proliferating spermatogonia to spermatocyte is accompanied by one of the most dramatic transcriptional changes in the fly, as over 1000 new transcripts turn on in preparation for meiosis and spermatid differentiation. Here we show that function of the coactivator complex Mediator is required for activation of hundreds of new transcripts in the spermatocyte program. Mediator appears to act in a sequential hierarchy, with the testis activating Complex (tMAC), a cell type specific form of the Mip/dREAM general repressor, required to recruit Mediator subunits to the chromatin, and Mediator function required to recruit the testis TAFs (tTAFs), spermatocyte specific homologs of subunits of TFIID. Mediator, tMAC and the tTAFs co-regulate expression of a major set of spermatid differentiation genes. The Mediator subunit Med22 binds the tMAC component Topi when the two are coexpressed in S2 cells, suggesting direct recruitment. Loss of Med22 function in spermatocytes causes meiosis I maturation arrest male infertility, similar to loss of function of the tMAC subunits or the tTAFs. Our results illuminate how cell type specific versions of the Mip/dREAM complex and the general transcription machinery cooperate to drive selective gene activation during differentiation in stem cell lineages. Selective gene expression is crucial to making different cell types over the course of the development of an organism. In stem cell lineages, precursor cells terminally differentiate into defined cell types, with onset of terminal differentiation associated with activation of stage- and cell type-specific transcriptional programs. When spermatogonia initiate differentiation and become spermatocytes in the Drosophila male germ line, they undergo the most dramatic transcriptional changes that occur in the fly, as over 1000 new transcripts turn on in preparation for meiosis and the striking morphological changes that produce sperm. This robust spermatocyte transcription program requires cooperative action of a testis-specific protein complex, tMAC and the testis-specific basal transcription machinery TFIID. Here we show that the transcriptional co-activator complex, Mediator is key in connecting the two classes of players. We found that Mediator is recruited to spermatocyte chromatin through the interaction of its subunit, Med22 and a putative transcription activator in tMAC. Recruitment of Mediator is then required for proper localization and function of the testis-specific TFIID complex to initiate gene transcription for spermatid differentiation, illuminating how transcription factors and cell type-specific versions of the general transcription machinery cooperate to drive gene activation during differentiation in adult stem cell lineages.
Collapse
Affiliation(s)
- Chenggang Lu
- Departments of Developmental Biology and of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Margaret T. Fuller
- Departments of Developmental Biology and of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|