1
|
Gutiérrez-Ortega JS, Villarreal A. JC. A possible case of adaptive radiation in cycads. A commentary on 'Transcriptome sequencing data provide a solid base to understand the phylogenetic relationships, biogeography and reticulated evolution of the genus Zamia L. (Cycadales: Zamiaceae)'. ANNALS OF BOTANY 2024; 134:i-ii. [PMID: 39137143 PMCID: PMC11560363 DOI: 10.1093/aob/mcae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
This article comments on:
Anders Lindstrom, Sadaf Habib, Shanshan Dong, Yiqing Gong, Jian Liu, Michael Calonje, Dennis Stevenson and Shouzhou Zhang, Transcriptome sequencing data provide a solid base to understand the phylogenetic relationships, biogeography and reticulated evolution of the genus Zamia L. (Cycadales: Zamiaceae), Annals of Botany, Volume 134, Issue 5, 1 November 2024, Pages 747–768 https://doi.org/10.1093/aob/mcae065
Collapse
|
2
|
Lindstrom A, Habib S, Dong S, Gong Y, Liu J, Calonje M, Stevenson D, Zhang S. Transcriptome sequencing data provide a solid base to understand the phylogenetic relationships, biogeography and reticulated evolution of the genus Zamia L. (Cycadales: Zamiaceae). ANNALS OF BOTANY 2024; 134:747-768. [PMID: 38900840 PMCID: PMC11560380 DOI: 10.1093/aob/mcae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/16/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND AND AIMS Cycads are a key lineage to understand the early evolution of seed plants and their response to past environmental changes. However, tracing the evolutionary trajectory of cycad species is challenging when the robust relationships at inter- or infrageneric level are not well resolved. METHODS Here, using 2901 single-copy nuclear genes, we explored the species relationships and gene flow within the second largest genus of cycads, i.e. Zamia, based on phylotranscriptomic analyses of 90 % extant Zamia species. Based on a well-resolved phylogenetic framework, we performed gene flow analyses, molecular dating and biogeographical reconstruction to examine the spatiotemporal evolution of Zamia. We also performed ancestral state reconstruction of a total of 62 traits of the genus to comprehensively investigate its morphological evolution. KEY RESULTS Zamia comprises seven major clades corresponding to seven distinct distribution areas in the Americas, with at least three reticulation nodes revealed in this genus. Extant lineages of Zamia initially diversified around 18.4-32.6 (29.14) million years ago in Mega-Mexico, and then expanded eastward into the Caribbean and southward into Central and South America. Ancestral state reconstruction revealed homoplasy in most of the morphological characters. CONCLUSIONS This study revealed congruent phylogenetic relationships from comparative methods/datasets, with some conflicts being the result of incomplete lineage sorting and ancient/recent hybridization events. The strong association between the clades and the biogeographic areas suggested that ancient dispersal events shaped the modern distribution pattern, and regional climatic factors may have resulted in the following in situ diversification. Climate cooling starting during the mid-Miocene is associated with the global expansion of Zamia to tropical South America that has dramatically driven lineage diversification in the New World flora, as well as the extinction of cycad species in the nowadays cooler regions of both hemispheres, as indicated by the fossil records.
Collapse
Affiliation(s)
- Anders Lindstrom
- Global Biodiversity Conservancy 144/124 Moo 3, Soi Bua Thong, Bangsalae, Sattahip, Chonburi, 20250, Thailand
| | - Sadaf Habib
- Jiangxi Provincial Key Laboratory of Ex Situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004, China
| | - Shanshan Dong
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004, China
| | - Yiqing Gong
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004, China
| | - Jian Liu
- Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | | | | | - Shouzhou Zhang
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004, China
| |
Collapse
|
3
|
Cai Q, Codjia JEI, Buyck B, Cui YY, Ryberg M, Yorou NS, Yang ZL. The evolution of ectomycorrhizal symbiosis and host-plant switches are the main drivers for diversification of Amanitaceae (Agaricales, Basidiomycota). BMC Biol 2024; 22:230. [PMID: 39390520 PMCID: PMC11465788 DOI: 10.1186/s12915-024-02031-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 10/02/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Evolutionary radiation is widely recognized as a mode of species diversification, but the drivers of the rapid diversification of fungi remain largely unknown. Here, we used Amanitaceae, one of the most diverse families of macro-fungi, to investigate the mechanism underlying its diversification. RESULTS The ancestral state of the nutritional modes was assessed based on phylogenies obtained from fragments of 36 single-copy genes and stable isotope analyses of carbon and nitrogen. Moreover, a number of time-, trait-, and paleotemperature-dependent models were employed to investigate if the acquisition of ectomycorrhizal (ECM) symbiosis and climate changes promoted the diversification of Amanitaceae. The results indicate that the evolution of ECM symbiosis has a single evolutionary origin in Amanitaceae. The earliest increase in diversification coincided with the acquisition of the ECM symbiosis with angiosperms in the middle Cretaceous. The recent explosive diversification was primarily triggered by the host-plant switches from angiosperms to the mixed forests dominated by Fagaceae, Salicaceae, and Pinaceae or to Pinaceae. CONCLUSIONS Our study provides a good example of integrating phylogeny, nutritional mode evolution, and ecological analyses for deciphering the mechanisms underlying fungal evolutionary diversification. This study also provides new insights into how the transition to ECM symbiosis has driven the diversification of fungi.
Collapse
Affiliation(s)
- Qing Cai
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, 650201, China
| | - Jean Evans I Codjia
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Research Unit Tropical Mycology and Plants-Soil Fungi Interactions, Faculty of Agronomy, University of Parakou, Parakou, BP 123, Benin
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Bart Buyck
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP 39, 57 rue Cuvier, Paris, 75005, France
| | - Yang-Yang Cui
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, 650201, China
| | - Martin Ryberg
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Nourou S Yorou
- Research Unit Tropical Mycology and Plants-Soil Fungi Interactions, Faculty of Agronomy, University of Parakou, Parakou, BP 123, Benin
| | - Zhu L Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, 650201, China.
| |
Collapse
|
4
|
Gutiérrez-Larruscain D, Vargas P, Fernández-Mazuecos M, Pausas JG. Phylogenomic analysis reveals the evolutionary history of Paleartic needle-leaved junipers. Mol Phylogenet Evol 2024; 199:108162. [PMID: 39067655 DOI: 10.1016/j.ympev.2024.108162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Needle-leaved junipers (Juniperus sect. Juniperus, Cupressaceae) are coniferous trees and shrubs with red or blue fleshy cones. They are distributed across Asia, Macaronesia and the Mediterranean Basin, with one species (J. communis) having a circumboreal distribution. Here we aim to resolve the phylogeny of this clade to infer its intricate evolutionary history. To do so, we built a comprehensive, time-calibrated phylogeny using genotyping-by-sequencing (GBS) and combine it with species occurrence using phylogeographic tools. Our results provide solid phylogenetic resolution to propose a new taxonomic classification and a biogeographical history of the section. Specifically, we confirm the monophyly of two groups within J. sect. Juniperus: the Asian (blue-cone) species including the circumboreal J. communis, and the Mediterranean-Macaronesian (red-cone) species. In addition, we provide strong phylogenetic evidence for three distinct species (J. badia, J. conferta, J. lutchuensis) previously considered subspecies or varieties, as well as for the differentiation between the eastern and western Mediterranean lineages of J. macrocarpa. Our findings suggest that the Mediterranean basin was the primary center of diversification for Juniperus sect. Juniperus, followed by an East Asian-Tethyan disjunction resulting from uplifts of the Qinghai-Tibetan Plateau and climatic shifts. The colonization history of Macaronesia by red-cone junipers from the western Mediterranean appears to have taken place independently in two different geological periods: the Miocene (Azores) and the Pliocene (Madeira-Canary Islands). Overall, genomic data and phylogenetic analysis are key to consider a new taxonomic proposal and reconstruct the biogeographical history of the iconic needle-leaved junipers across the Paleartic.
Collapse
Affiliation(s)
- David Gutiérrez-Larruscain
- Department of Ecology and Global Change, Desertification Research Centre (CIDE: CSIC-UV-GVA), Valencia, Spain.
| | - Pablo Vargas
- Department of Biodiversity and Conservation, Real Jardín Botánico (RJB: CSIC), Madrid, Spain
| | - Mario Fernández-Mazuecos
- Department of Biology (Botany), Faculty of Sciences, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Juli G Pausas
- Department of Ecology and Global Change, Desertification Research Centre (CIDE: CSIC-UV-GVA), Valencia, Spain
| |
Collapse
|
5
|
Zhou T, Chen X, López-Pujol J, Bai G, Herrando-Moraira S, Nualart N, Zhang X, Zhao Y, Zhao G. Genetically- and environmentally-dependent processes drive interspecific and intraspecific divergence in the Chinese relict endemic genus Dipteronia. PLANT DIVERSITY 2024; 46:585-599. [PMID: 39290880 PMCID: PMC11403150 DOI: 10.1016/j.pld.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 09/19/2024]
Abstract
China is a hotspot of relict plant species that were once widespread throughout the Northern Hemisphere. Recent research has demonstrated that the occurrence of long-term stable refugia in the mountainous regions of central and south-western China allowed their persistence through the late Neogene climate fluctuations. One of these relict lineages is Dipteronia, an oligotypic tree genus with a fossil record extending to the Paleocene. Here, we investigated the genetic variability, demographic dynamics and diversification patterns of the two currently recognized Dipteronia species (D ipteronia sinensis and D . dyeriana). Molecular data were obtained from 45 populations of Dipteronia by genotyping three cpDNA regions, two single copy nuclear genes and 15 simple sequence repeat loci. The genetic study was combined with niche comparison analyses on the environmental space, ecological niche modeling, and landscape connectivity analysis. We found that the two Dipteronia species have highly diverged both in genetic and ecological terms. Despite the incipient speciation processes that can be observed in D. sinensis, the occurrence of long-term stable refugia and, particularly, a dispersal corridor along Daba Shan-west Qinling, likely ensured its genetic and ecological integrity to date. Our study will not only help us to understand how populations of Dipteronia species responded to the tectonic and climatic changes of the Cenozoic, but also provide insight into how Arcto-Tertiary relict plants in East Asia survived, evolved, and diversified.
Collapse
Affiliation(s)
- Tao Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an 710069, China
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaodan Chen
- College of Life Science, Shanxi Normal University, Taiyuan, China
| | - Jordi López-Pujol
- Botanic Institute of Barcelona (IBB), CSIC-CMCNB, Barcelona 08038, Catalonia, Spain
- Escuela de Ciencias Ambientales, Universidad Espíritu Santo (UEES), Samborondón 091650, Ecuador
| | - Guoqing Bai
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an Botanical Garden of Shaanxi Province, Xi'an 710061, China
| | | | - Neus Nualart
- Botanic Institute of Barcelona (IBB), CSIC-CMCNB, Barcelona 08038, Catalonia, Spain
| | - Xiao Zhang
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an Botanical Garden of Shaanxi Province, Xi'an 710061, China
| | - Yuemei Zhao
- School of Biological Sciences, Guizhou Education University, Guiyang, China
| | - Guifang Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an 710069, China
| |
Collapse
|
6
|
Wei ZR, Jiao D, Wehenkel CA, Wei XX, Wang XQ. Phylotranscriptomic and ecological analyses reveal the evolution and morphological adaptation of Abies. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024. [PMID: 39152659 DOI: 10.1111/jipb.13760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/19/2024]
Abstract
Coniferous forests are under severe threat of the rapid anthropogenic climate warming. Abies (firs), the fourth-largest conifer genus, is a keystone component of the boreal and temperate dark-coniferous forests and harbors a remarkably large number of relict taxa. However, the uncertainty of the phylogenetic and biogeographic history of Abies significantly impedes our prediction of future dynamics and efficient conservation of firs. In this study, using 1,533 nuclear genes generated from transcriptome sequencing and a complete sampling of all widely recognized species, we have successfully reconstructed a robust phylogeny of global firs, in which four clades are strongly supported and all intersectional relationships are resolved, although phylogenetic discordance caused mainly by incomplete lineage sorting and hybridization was detected. Molecular dating and ancestral area reconstruction suggest a Northern Hemisphere high-latitude origin of Abies during the Late Cretaceous, but all extant firs diversified during the Miocene to the Pleistocene, and multiple continental and intercontinental dispersals took place in response to the late Neogene climate cooling and orogenic movements. Notably, four critically endangered firs endemic to subtropical mountains of China, including A. beshanzuensis, A. ziyuanensis, A. fanjingshanensis and A. yuanbaoshanensis from east to west, have different origins and evolutionary histories. Moreover, three hotspots of species richness, including western North America, central Japan, and the Hengduan Mountains, were identified in Abies. Elevation and precipitation, particularly precipitation of the coldest quarter, are the most significant environmental factors driving the global distribution pattern of fir species diversity. Some morphological traits are evolutionarily constrained, and those linked to elevational variation (e.g., purple cone) and cold resistance (e.g., pubescent branch and resinous bud) may have contributed to the diversification of global firs. Our study sheds new light on the spatiotemporal evolution of global firs, which will be of great help to forest management and species conservation in a warming world.
Collapse
Affiliation(s)
- Zhou-Rui Wei
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Jiao
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | - Christian Anton Wehenkel
- Instituto de Silvicultura e Industria de la Madera, Universidad Juárez del Estado de Durango, Durango, 34000, Mexico
| | - Xiao-Xin Wei
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Xiao-Quan Wang
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Jiang GF, Qin BT, Pang YK, Qin LL, Pereira L, Roddy AB. Limited effects of xylem anatomy on embolism resistance in cycad leaves. THE NEW PHYTOLOGIST 2024; 243:1329-1346. [PMID: 38898642 DOI: 10.1111/nph.19914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024]
Abstract
Drought-induced xylem embolism is a primary cause of plant mortality. Although c. 70% of cycads are threatened by extinction and extant cycads diversified during a period of increasing aridification, the vulnerability of cycads to embolism spread has been overlooked. We quantified the vulnerability to drought-induced embolism, pressure-volume curves, in situ water potentials, and a suite of xylem anatomical traits of leaf pinnae and rachises for 20 cycad species. We tested whether anatomical traits were linked to hydraulic safety in cycads. Compared with other major vascular plant clades, cycads exhibited similar embolism resistance to angiosperms and pteridophytes but were more vulnerable to embolism than noncycad gymnosperms. All 20 cycads had both tracheids and vessels, the proportions of which were unrelated to embolism resistance. Only vessel pit membrane fraction was positively correlated to embolism resistance, contrary to angiosperms. Water potential at turgor loss was significantly correlated to embolism resistance among cycads. Our results show that cycads exhibit low resistance to xylem embolism and that xylem anatomical traits - particularly vessels - may influence embolism resistance together with tracheids. This study highlights the importance of understanding the mechanisms of drought resistance in evolutionarily unique and threatened lineages like the cycads.
Collapse
Affiliation(s)
- Guo-Feng Jiang
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, Guangxi, 530004, China
| | - Bo-Tao Qin
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, Guangxi, 530004, China
| | - Yu-Kun Pang
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, Guangxi, 530004, China
| | - Lan-Li Qin
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, Guangxi, 530004, China
- College of Chemistry and Bioengineering, Hechi University, Yizhou, Guangxi, 546300, China
| | - Luciano Pereira
- Institute of Botany, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Adam B Roddy
- Department of Biological Sciences, Institute of Environment, Florida International University, Miami, FL, 33199, USA
| |
Collapse
|
8
|
Liu J, Lindstrom AJ, Gong Y, Dong S, Liu YC, Zhang S, Gong X. Eco-evolutionary evidence for the global diversity pattern of Cycas (Cycadaceae). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1170-1191. [PMID: 38477647 DOI: 10.1111/jipb.13638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 02/04/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
The evolution of the latitudinal diversity gradient (LDG), characterized by a peak in diversity toward the tropics, has captured significant attention in evolutionary biology and ecology. However, the inverse LDG (i-LDG) mechanism, wherein species richness increases toward the poles, remains inadequately explored. Cycads are among one of the oldest lineages of extant seed plants and have undergone extensive diversification in the tropics. Intriguingly, the extant cycad abundance exhibits an i-LDG pattern, and the underlying causes for this phenomenon remain largely elusive. Here, using 1,843 nuclear genes from a nearly complete sampling, we conducted comprehensive phylogenomic analyses to establish a robust species-level phylogeny for Cycas, the largest genus within cycads. We then reconstructed the spatial-temporal dynamics and integrated global environmental data to evaluate the roles of species ages, diversification rates, contemporary environment, and conservatism to ancestral niches in shaping the i-LDG pattern. We found Cycas experienced decreased diversification rates, coupled with the cooling temperature since its origin in the Eocene from continental Asia. Different regions have distinctively contributed to the formation of i-LDG for Cycas, with the northern hemisphere acting as evolutionary museums and the southern hemisphere serving as cradles. Moreover, water-related climate variables, specifically precipitation seasonality and potential evapotranspiration, were identified as paramount factors constraining Cycas species richness in the rainforest biome near the equator. Notably, the adherence to ancestral monsoonal climates emerges as a critical factor in sustaining the diversity pattern. This study underscores the imperative of integrating both evolutionary and ecological approaches to comprehensively unravel the mechanisms underpinning global biodiversity patterns.
Collapse
Affiliation(s)
- Jian Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Anders J Lindstrom
- Global Biodiversity Conservancy, 144/124 Moo3, Soi Bua Thong, Bangsalae, Sattahip, Chonburi, 20250, Thailand
| | - Yiqing Gong
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004, China
| | - Shanshan Dong
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004, China
| | - Yusheng Chris Liu
- Department of Earth and Environmental Sciences, Indiana University-Indianapolis, Indianapolis, 46202, IN, USA
| | - Shouzhou Zhang
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004, China
| | - Xun Gong
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
9
|
Coiro M, Seyfullah LJ. Disparity of cycad leaves dispels the living fossil metaphor. Commun Biol 2024; 7:328. [PMID: 38485767 PMCID: PMC10940627 DOI: 10.1038/s42003-024-06024-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 03/07/2024] [Indexed: 03/18/2024] Open
Abstract
The living fossil metaphor is tightly linked with the cycads. This group of gymnosperms is supposed to be characterised by long-term morphological stasis, particularly after their peak of diversity and disparity in the Jurassic. However, no formal test of this hypothesis exists. Here, we use a recent phylogenetic framework and an improved character matrix to reconstruct the Disparity Through Time for cycad leaves using a Principal Coordinate Analysis and employing Pre-Ordination Ancestral State Reconstruction to test the impact of sampling on the results. Our analysis shows that the cycad leaf morsphospace expanded up to the present, with numerous shifts in its general positioning, independently of sampling biases. Moreover, they also show that Zamiaceae expanded rapidly in the Early Cretaceous and continued to expand up to the present, while now-extinct clades experienced a slow contraction from their peak in the Triassic. We also show that rates of evolution were constantly high up to the Early Cretaceous, and then experienced a slight decrease in the Paleogene, followed by a Neogene acceleration. These results show a much more dynamic history for cycads, and suggest that the 'living fossil' metaphor is actually a hindrance to our understanding of their macroevolution.
Collapse
Affiliation(s)
- Mario Coiro
- Department of Palaeontology, University of Vienna, Vienna, Austria.
- Ronin Institute for Independent Scholarship, Montclair, NJ, USA.
| | | |
Collapse
|
10
|
Gutiérrez-Ortega JS, Pérez-Farrera MA, Matsuo A, Sato MP, Suyama Y, Calonje M, Vovides AP, Kajita T, Watano Y. The phylogenetic reconstruction of the Neotropical cycad genus Ceratozamia (Zamiaceae) reveals disparate patterns of niche evolution. Mol Phylogenet Evol 2024; 190:107960. [PMID: 37918683 DOI: 10.1016/j.ympev.2023.107960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
The cycad genus Ceratozamia comprises 40 species from Mexico, Guatemala, Belize, and Honduras, where cycads occur throughout climatically varied montane habitats. Ceratozamia has the potential to reveal the history and processes of species diversification across diverse Neotropical habitats in this region. However, the species relationships within Ceratozamia and the ecological trends during its evolution remain unclear. Here, we aimed to clarify the phylogenetic relationships, the timing of clade and species divergences, and the niche evolution throughout the phylogenetic history of Ceratozamia. Genome-wide DNA sequences were obtained with MIG-seq, and multiple data-filtering steps were used to optimize the dataset used to construct an ultrametric species tree. Divergence times among branches and ancestral niches were estimated. The niche variation among species was evaluated, summarized into two principal components, and their ancestral states were reconstructed to test whether niche shifts among branches can be explained by random processes, under a Brownian Motion model. Ceratozamia comprises three main clades, and most species relationships within the clades were resolved. Ceratozamia has diversified since the Oligocene, with major branching events occurring during the Miocene. This timing is consistent with fossil evidence, the timing estimated for other Neotropical plant groups, and the major geological events that shaped the topographic and climatic variation in Mexico. Patterns of niche evolution in the genus do not accord with the Brownian Motion model. Rather, non-random evolution with shifts towards more seasonal environments at high latitudes, or shifts towards humid or dry environments at low latitudes explain the diversification of Ceratozamia. We present a comprehensive phylogenetic reconstruction for Ceratozamia and identify for the first time the environmental factors involved in clade and species diversification within the genus. This study alleviates the controversies regarding the species relationships in the genus and provides the first evidence that latitude-associated environmental factors may influence processes of niche evolution in cycads.
Collapse
Affiliation(s)
| | - Miguel Angel Pérez-Farrera
- Herbario Eizi Matuda, Laboratorio de Ecología Evolutiva, Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez 29039, Mexico.
| | - Ayumi Matsuo
- Kawatabi Field Science Center, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi 989-6711, Japan
| | - Mitsuhiko P Sato
- Kazusa DNA Research Institute, 2-6-7 Kazusakamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Yoshihisa Suyama
- Kawatabi Field Science Center, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi 989-6711, Japan
| | | | - Andrew P Vovides
- Departamento de Biología Evolutiva, Instituto de Ecología, A.C., 91070 Xalapa, Mexico
| | - Tadashi Kajita
- Iriomote Station, Tropical Biosphere Research Center, University of the Ryukyus, Uehara, Yaeyama, Okinawa 907-1541, Japan
| | - Yasuyuki Watano
- Department of Biology, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| |
Collapse
|
11
|
Kipp MA, Stüeken EE, Strömberg CAE, Brightly WH, Arbour VM, Erdei B, Hill RS, Johnson KR, Kvaček J, McElwain JC, Miller IM, Slodownik M, Vajda V, Buick R. Nitrogen isotopes reveal independent origins of N 2-fixing symbiosis in extant cycad lineages. Nat Ecol Evol 2024; 8:57-69. [PMID: 37974002 DOI: 10.1038/s41559-023-02251-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/17/2023] [Indexed: 11/19/2023]
Abstract
Cycads are ancient seed plants (gymnosperms) that emerged by the early Permian. Although they were common understory flora and food for dinosaurs in the Mesozoic, their abundance declined markedly in the Cenozoic. Extant cycads persist in restricted populations in tropical and subtropical habitats and, with their conserved morphology, are often called 'living fossils.' All surviving taxa receive nitrogen from symbiotic N2-fixing cyanobacteria living in modified roots, suggesting an ancestral origin of this symbiosis. However, such an ancient acquisition is discordant with the abundance of cycads in Mesozoic fossil assemblages, as modern N2-fixing symbioses typically occur only in nutrient-poor habitats where advantageous for survival. Here, we use foliar nitrogen isotope ratios-a proxy for N2 fixation in modern plants-to probe the antiquity of the cycad-cyanobacterial symbiosis. We find that fossilized cycad leaves from two Cenozoic representatives of extant genera have nitrogen isotopic compositions consistent with microbial N2 fixation. In contrast, all extinct cycad genera have nitrogen isotope ratios that are indistinguishable from co-existing non-cycad plants and generally inconsistent with microbial N2 fixation, pointing to nitrogen assimilation from soils and not through symbiosis. This pattern indicates that, rather than being ancestral within cycads, N2-fixing symbiosis arose independently in the lineages leading to living cycads during or after the Jurassic. The preferential survival of these lineages may therefore reflect the effects of competition with angiosperms and Cenozoic climatic change.
Collapse
Affiliation(s)
- Michael A Kipp
- Department of Earth & Space Sciences, University of Washington, Seattle, WA, USA.
- Virtual Planetary Laboratory, NASA Astrobiology Institute, Seattle, WA, USA.
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.
- Division of Earth and Climate Sciences, Nicholas School of the Environment, Duke University, Durham, NC, USA.
| | - Eva E Stüeken
- Virtual Planetary Laboratory, NASA Astrobiology Institute, Seattle, WA, USA
- School of Earth & Environmental Sciences, University of St. Andrews, St. Andrews, UK
| | - Caroline A E Strömberg
- Department of Biology, University of Washington, Seattle, WA, USA
- Burke Museum of Natural History and Culture, Seattle, WA, USA
| | | | - Victoria M Arbour
- Department of Knowledge, Royal BC Museum, Victoria, British Columbia, Canada
| | - Boglárka Erdei
- Botanical Department, Hungarian Natural History Museum, Budapest, Hungary
| | - Robert S Hill
- School of Biological Sciences and the Environment Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Kirk R Johnson
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Jiří Kvaček
- Department of Palaeontology, National Museum, Prague, Czech Republic
| | - Jennifer C McElwain
- Department of Botany, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Ian M Miller
- National Geographic Society, Washington, DC, USA
| | - Miriam Slodownik
- School of Biological Sciences and the Environment Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Vivi Vajda
- Research Division, Swedish Museum of Natural History, Stockholm, Sweden
- Department of Geology, Lund University, Lund, Sweden
| | - Roger Buick
- Department of Earth & Space Sciences, University of Washington, Seattle, WA, USA
- Virtual Planetary Laboratory, NASA Astrobiology Institute, Seattle, WA, USA
| |
Collapse
|
12
|
Yu Q, Yang FS, Chen YX, Wu H, Ickert-Bond SM, Wang XQ. Diploid species phylogeny and evolutionary reticulation indicate early radiation of Ephedra in the Tethys coast. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2619-2630. [PMID: 37837251 DOI: 10.1111/jipb.13573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 10/13/2023] [Indexed: 10/15/2023]
Abstract
Reconstructing a robust species phylogeny and disentangling the evolutionary and biogeographic history of the gymnosperm genus Ephedra, which has a large genome and rich polyploids, remain a big challenge. Here we reconstructed a transcriptome-based phylogeny of 19 diploid Ephedra species, and explored evolutionary reticulations in this genus represented by 50 diploid and polyploid species, using four low-copy nuclear and nine plastid genes. The diploid species phylogeny indicates that the Mediterranean species diverged first, and the remaining species split into three clades, including the American species (Clade A), E. rhytidosperma, and all other Asian species (Clade B). The single-gene trees placed E. rhytidosperma sister to Clade A, Clade B, or Clades A + B in similar proportions, suggesting that radiation and gene flow likely occurred in the early evolution of Ephedra. In addition, reticulate evolution occurred not only among the deep nodes, but also in the recently evolved South American species, which further caused difficulty in phylogenetic reconstruction. Moreover, we found that allopolyploid speciation was pervasive in Ephedra. Our study also suggests that Ephedra very likely originated in the Tethys coast during the late Cretaceous, and the South American Ephedra species have a single origin by dispersal from Mexico or North America.
Collapse
Affiliation(s)
- Qiong Yu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fu-Sheng Yang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ya-Xing Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | - Hui Wu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Stefanie M Ickert-Bond
- Department of Biology and Wildlife & UA Museum of the North, University of Alaska Fairbanks (UAF), Fairbanks, AK, 99775, USA
| | - Xiao-Quan Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
13
|
Coiro M, Allio R, Mazet N, Seyfullah LJ, Condamine FL. Reconciling fossils with phylogenies reveals the origin and macroevolutionary processes explaining the global cycad biodiversity. THE NEW PHYTOLOGIST 2023; 240:1616-1635. [PMID: 37302411 PMCID: PMC10953041 DOI: 10.1111/nph.19010] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/01/2023] [Indexed: 06/13/2023]
Abstract
The determinants of biodiversity patterns can be understood using macroevolutionary analyses. The integration of fossils into phylogenies offers a deeper understanding of processes underlying biodiversity patterns in deep time. Cycadales are considered a relict of a once more diverse and globally distributed group but are restricted to low latitudes today. We still know little about their origin and geographic range evolution. Combining molecular data for extant species and leaf morphological data for extant and fossil species, we study the origin of cycad global biodiversity patterns through Bayesian total-evidence dating analyses. We assess the ancestral geographic origin and trace the historical biogeography of cycads with a time-stratified process-based model. Cycads originated in the Carboniferous on the Laurasian landmass and expanded in Gondwana in the Jurassic. Through now-vanished continental connections, Antarctica and Greenland were crucial biogeographic crossroads for cycad biogeography. Vicariance is an essential speciation mode in the deep and recent past. Their latitudinal span increased in the Jurassic and restrained toward subtropical latitudes in the Neogene in line with biogeographic inferences of high-latitude extirpations. We show the benefits of integrating fossils into phylogenies to estimate ancestral areas of origin and to study evolutionary processes explaining the global distribution of present-day relict groups.
Collapse
Affiliation(s)
- Mario Coiro
- Department of PalaeontologyUniversity of Vienna1090ViennaAustria
- Ronin Institute for Independent ScholarshipMontclairNJ07043USA
| | - Rémi Allio
- Centre de Biologie pour la Gestion des Populations, INRAE, CIRAD, IRD, Montpellier SupAgroUniversité de Montpellier34988MontpellierFrance
| | - Nathan Mazet
- CNRS, Institut des Sciences de l'Evolution de Montpellier, Université de MontpellierPlace Eugène Bataillon34095MontpellierFrance
| | | | - Fabien L. Condamine
- CNRS, Institut des Sciences de l'Evolution de Montpellier, Université de MontpellierPlace Eugène Bataillon34095MontpellierFrance
| |
Collapse
|
14
|
Li XC, Hu Y, Zhang X, Xiao L, Liang LN, Zhang RZ, Qiao L. A novel seed cone of Pinus from the Miocene of coastal Southeast China indicates kinship with Southeast Asian pines. PLANT DIVERSITY 2023; 45:732-747. [PMID: 38197003 PMCID: PMC10772114 DOI: 10.1016/j.pld.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 01/11/2024]
Abstract
Pinus is an economically and ecologically important genus whose members are dominant components globally in low-latitude mountainous and mid-latitude temperate forests. Pinus species richness is currently concentrated in subtropical mid-low latitudes of the Northern Hemisphere, differing from the latitudinal diversity gradient mostly recognized in woody angiosperms. How the present pattern was developing in Earth's past is still poorly studied, particularly in eastern Asia. Here, a new fossil species, Pinus shengxianica sp. nov. is described based on a fossil seed cone from the Late Miocene Shengxian Formation in Zhejiang, southeast China. A co-occurring cone is recognized as a known fossil species, Pinus speciosa Li. Extensive comparison of extant and fossil members of Pinus suggests P. shengxianica shares a striking cone similarity to Pinus merkusii and Pinus latteri (subsection Pinus) from tropical Southeast Asia in having annular bulges around the umbo on the apophysis. The morphological resemblance indicates these two extant low-latitude pines probably possess a close affinity with the present newly-discovered P. shengxianica and originated from East Asian mid-low latitude ancestors during this generic re-diversification in the Miocene. This scenario is consistent with the evolutionary trajectory reflected by the pine fossil history and molecular data, marking the Miocene as a key period for the origin and evolution of most extant pines globally. The co-occurrences of diverse conifers and broadleaved angiosperms preferring diverse niches demonstrate Late Miocene eastern Zhejiang was one of the hot spots for coniferophyte diversity and hosted a needled-broadleaved mixed forest with complex vegetation structure and an altitudinal zonation.
Collapse
Affiliation(s)
- Xiang-Chuan Li
- School of Earth Sciences and Resources, Chang'an University, Xi'an 710054, China
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
- Shaanxi Key Laboratory of Early Life and Environments, Northwest University, Xi'an 710069, China
| | - Yi Hu
- School of Earth Sciences and Resources, Chang'an University, Xi'an 710054, China
| | - Xiang Zhang
- Exploration Company, Shaanxi Yanchang Petroleum (Group) Co., LTD., Yan'an 716099, China
| | - Liang Xiao
- School of Earth Sciences and Resources, Chang'an University, Xi'an 710054, China
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
- Shaanxi Key Laboratory of Early Life and Environments, Northwest University, Xi'an 710069, China
| | - Li-Na Liang
- School of Earth Sciences and Resources, Chang'an University, Xi'an 710054, China
| | - Rui-Zhi Zhang
- School of Earth Sciences and Resources, Chang'an University, Xi'an 710054, China
| | - Lei Qiao
- Beijing Youth Education SciTech Co., LTD., Beijing 100089, China
| |
Collapse
|
15
|
Hsiao Y, Oberprieler RG, Zwick A, Zhou YL, Ślipiński A. Museomics unveil systematics, diversity and evolution of Australian cycad-pollinating weevils. Proc Biol Sci 2023; 290:20231385. [PMID: 37788699 PMCID: PMC10547556 DOI: 10.1098/rspb.2023.1385] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/08/2023] [Indexed: 10/05/2023] Open
Abstract
Weevils have been shown to play significant roles in the obligate pollination of Australian cycads. In this study, we apply museomics to produce a first molecular phylogeny estimate of the Australian cycad weevils, allowing an assessment of their monophyly, placement and relationships. Divergence dating suggests that the Australian cycad weevils originated from the Late Oligocene to the Middle Miocene and that the main radiation of the cycad-pollinating groups occurred from the Middle to the Late Miocene, which is congruent with the diversification of the Australian cycads, thus refuting any notion of an ancient ciophilous system in Australia. Taxonomic studies reveal the existence of 19 Australian cycad weevil species and that their associations with their hosts are mostly non-species-specific. Co-speciation analysis shows no extensive co-speciation events having occurred in the ciophilous system of Australian cycads. The distribution pattern suggests that geographical factors, rather than diversifying coevolution, constitute the overriding process shaping the Australian cycad weevil diversity. The synchronous radiation of cycads and weevil pollinators is suggested to be a result of the post-Oligocene diversification common in Australian organisms.
Collapse
Affiliation(s)
- Yun Hsiao
- Australian National Insect Collection, CSIRO, Canberra, Australian Capital Territory 2601, Australia
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
| | - Rolf G. Oberprieler
- Australian National Insect Collection, CSIRO, Canberra, Australian Capital Territory 2601, Australia
| | - Andreas Zwick
- Australian National Insect Collection, CSIRO, Canberra, Australian Capital Territory 2601, Australia
| | - Yu-Lingzi Zhou
- Australian National Insect Collection, CSIRO, Canberra, Australian Capital Territory 2601, Australia
| | - Adam Ślipiński
- Australian National Insect Collection, CSIRO, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
16
|
Elgorriaga A, Atkinson BA. Cretaceous pollen cone with three-dimensional preservation sheds light on the morphological evolution of cycads in deep time. THE NEW PHYTOLOGIST 2023; 238:1695-1710. [PMID: 36943236 DOI: 10.1111/nph.18852] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The Cycadales are an ancient and charismatic group of seed plants. However, their morphological evolution in deep time is poorly understood. While molecular divergence time analyses estimate a Cretaceous origin for most major living cycad clades, much of the extant diversity is inferred to be a result of Neogene diversifications. This leads to long branches throughout the cycadalean phylogeny that, with few exceptions, have yet to be rectified by unequivocal fossil cycads. We report a permineralized pollen cone from the Campanian Holz Shale located in Silverado Canyon, CA, USA (c. 80 million yr ago). This fossil was studied via serial sectioning, SEM, 3D reconstruction and phylogenetic analyses. Microsporophyll and pollen morphology indicate this cone is assignable to Skyttegaardia, a recently described genus based on disarticulated lignitized microsporophylls from the Early Cretaceous of Denmark. Data from this new species, including a simple cone architecture, anatomical details and vasculature organization, indicate cycadalean affinities for Skyttegaardia. Phylogenetic analyses support this assignment and recover Skyttegaardia as crown-group Cycadales, nested within Zamiaceae. Our findings support a Cretaceous diversification for crown-group Zamiaceae, which included the evolution of morphological divergent extinct taxa with unique traits that have yet to be widely identified in the fossil record.
Collapse
Affiliation(s)
- Andres Elgorriaga
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA
- Biodiversity Institute, University of Kansas, Lawrence, KS, 66045, USA
| | - Brian A Atkinson
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA
- Biodiversity Institute, University of Kansas, Lawrence, KS, 66045, USA
| |
Collapse
|
17
|
Martín-Hernanz S, Nogales M, Valente L, Fernández-Mazuecos M, Pomeda-Gutiérrez F, Cano E, Marrero P, Olesen JM, Heleno R, Vargas P. Time-calibrated phylogenies reveal mediterranean and pre-mediterranean origin of the thermophilous vegetation of the Canary Islands. ANNALS OF BOTANY 2023; 131:667-684. [PMID: 36594263 PMCID: PMC10147335 DOI: 10.1093/aob/mcac160] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/21/2022] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS The Canary Islands have strong floristic affinities with the Mediterranean Basin. One of the most characteristic and diverse vegetation belts of the archipelago is the thermophilous woodland (between 200 and 900 m.a.s.l.). This thermophilous plant community consists of many non-endemic species shared with the Mediterranean Floristic Region together with Canarian endemic species. Consequently, phytogeographic studies have historically proposed the hypothesis of an origin of the Canarian thermophilous species following the establishment of the summer-dry mediterranean climate in the Mediterranean Basin around 2.8 million years ago. METHODS Time-calibrated phylogenies for 39 plant groups including Canarian thermophilous species were primarily analysed to infer colonization times. In particular, we used 26 previously published phylogenies together with 13 new time-calibrated phylogenies (including newly generated plastid and nuclear DNA sequence data) to assess whether the time interval between stem and crown ages of Canarian thermophilous lineages postdates 2.8 Ma. For lineages postdating this time threshold, we additionally conducted ancestral area reconstructions to infer the potential source area for colonization. KEY RESULTS A total of 43 Canarian thermophilous lineages were identified from 39 plant groups. Both mediterranean (16) and pre-mediterranean (9) plant lineages were found. However, we failed to determine the temporal origin for 18 lineages because a stem-crown time interval overlaps with the 2.8-Ma threshold. The spatial origin of thermophilous lineages was also heterogeneous, including ancestral areas from the Mediterranean Basin (nine) and other regions (six). CONCLUSIONS Our findings reveal an unexpectedly heterogeneous origin of the Canarian thermophilous species in terms of colonization times and mainland source areas. A substantial proportion of the lineages arrived in the Canaries before the summer-dry climate was established in the Mediterranean Basin. The complex temporal and geographic origin of Canarian thermophilous species challenges the view of the Canary Islands (and Madeira) as a subregion within the Mediterranean Floristic Region.
Collapse
Affiliation(s)
- Sara Martín-Hernanz
- Department of Biodiversity and Conservation, Real Jardín Botánico de Madrid (RJB-CSIC), 28014 Madrid, Spain
- Departament of Plant Biology and Ecology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Manuel Nogales
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206 San Cristóbal de La Laguna, Tenerife, Canary Islands, Spain
| | - Luis Valente
- Naturalis Biodiversity Center, 2333 Leiden, The Netherlands
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Mario Fernández-Mazuecos
- Department of Biology (Botany), Faculty of Sciences, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Fernando Pomeda-Gutiérrez
- Department of Biodiversity and Conservation, Real Jardín Botánico de Madrid (RJB-CSIC), 28014 Madrid, Spain
| | - Emilio Cano
- Department of Biodiversity and Conservation, Real Jardín Botánico de Madrid (RJB-CSIC), 28014 Madrid, Spain
| | - Patricia Marrero
- Department of Biodiversity and Conservation, Real Jardín Botánico de Madrid (RJB-CSIC), 28014 Madrid, Spain
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206 San Cristóbal de La Laguna, Tenerife, Canary Islands, Spain
| | - Jens M Olesen
- Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Ruben Heleno
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Pablo Vargas
- Department of Biodiversity and Conservation, Real Jardín Botánico de Madrid (RJB-CSIC), 28014 Madrid, Spain
| |
Collapse
|
18
|
Sierra‐Botero L, Calonje M, Robbins RK, Rosser N, Pierce NE, López‐Gallego C, Valencia‐Montoya WA. Cycad phylogeny predicts host plant use of Eumaeus butterflies. Ecol Evol 2023; 13:e9978. [PMID: 37056692 PMCID: PMC10085819 DOI: 10.1002/ece3.9978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/15/2023] Open
Abstract
Eumaeus butterflies are obligate herbivores of Zamia, the most diverse neotropical genus of cycads. Eumaeus-Zamia interactions have been characterized mainly for species distributed in North and Central America. However, larval host plant use by the southern Eumaeus clade remains largely unknown, precluding a comprehensive study of co-evolution between the genera. Here, we combine fieldwork with museum and literature surveys to expand herbivory records for Eumaeus from 21 to 38 Zamia species. We inferred a time-calibrated phylogeny of Eumaeus to test for distinct macroevolutionary scenarios of larval host plant conservatism and co-evolution. We found a remarkable coincidence between Eumaeus and Zamia diversification, with the butterfly stem group diverging at the same time as the most recent radiation of Zamia in the Miocene. Cophylogenetic reconciliation analyses show a strong cophylogenetic signal between cycads and their butterfly herbivores. Bipartite model-based approaches indicate that this is because closely related Zamia species are used by the same Eumaeus species, suggesting larval host plant resource tracking by the butterfly herbivores. Our results highlight a case of tight evolution between Eumaeus butterflies and cycads, pointing to the generality of correlated evolution and phylogenetic tracking in plant-herbivore interactions across seed plants.
Collapse
Affiliation(s)
| | | | - Robert K. Robbins
- Department of EntomologySmithsonian InstitutionWashingtonDistrict of Columbia20013‐7012USA
| | - Neil Rosser
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMassachusettsUSA
| | - Naomi E. Pierce
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMassachusettsUSA
- Museum of Comparative ZoologyHarvard UniversityCambridgeMassachusettsUSA
| | | | - Wendy A. Valencia‐Montoya
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMassachusettsUSA
- Museum of Comparative ZoologyHarvard UniversityCambridgeMassachusettsUSA
| |
Collapse
|
19
|
Tobgay S, Wangdi T, Wangchuck K, Dolkar J, Nidup T. Assessment of population, habitat, and threats to Cycas pectinata Buch.-Ham. (Cycadaceae), a vulnerable cycad in Bhutan. JOURNAL OF THREATENED TAXA 2023. [DOI: 10.11609/jott.7809.15.3.22866-22873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023] Open
Abstract
Cycas pectinata Buch.-Ham. is an ancient gymnosperm that is now confined to pockets of habitats in the Indian subcontinent but was once widely distributed. Its decline is attributable to habitat loss, and has reached the point where C. pectinata is listed as ‘Vulnerable’ in the IUCN Red List. C. pectinata is the only species of Cycas found in Bhutan, and in this biodiversity-rich area it is present as a relic of great scientific and conservation value because of its rarity and long evolutionary history. Although it is well known in India, it has not been studied in detail in Bhutan. This study assessed populations and threats to C. pectinata in two places in Bhutan. Field visits were made to document the distribution, habitats, and associated threats to the populations. Plants were observed growing in steep rugged terrain in the open Chir Pine forest. Populations are significantly threatened due to human activities such as habitat destruction and over collection as ornamental plant. Possible expansion of populations is naturally threatened by low seed production and by predators.
Collapse
|
20
|
Aloi F, Parlascino R, Conti Taguali S, Faedda R, Pane A, Cacciola SO. Phytophthora pseudocryptogea, P. nicotianae and P. multivora Associated to Cycas revoluta: First Report Worldwide. PLANTS (BASEL, SWITZERLAND) 2023; 12:1197. [PMID: 36904056 PMCID: PMC10005564 DOI: 10.3390/plants12051197] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
A dieback was observed on three-year-old pot-grown plants of Cycas revoluta in Sicily (Italy). Symptoms, including stunting, yellowing and blight of the leaf crown, root rot and internal browning and decay of the basal stem, closely resembled the Phytophthora root and crown rot syndrome, common in other ornamentals. Isolations from rotten stem and roots, using a selective medium, and from rhizosphere soil of symptomatic plants, using leaf baiting, yielded three Phytophthora species, P. multivora, P. nicotianae and P. pseudocryptogea, were obtained. Isolates were identified by both morphological characters and DNA barcoding analysis, using three gene regions: ITS, β-tub and COI. Phytophthora pseudocryptogea was the sole species isolated directly from the stem and roots. The pathogenicity of the isolates of the three Phytophthora species was tested on one-year-old potted plants of C. revoluta, using both stem inoculation by wounding, and root inoculation through infested soil. Phytophthora pseudocryptogea was the most virulent and, like P. nicotianae, reproduced all the symptoms of natural infections, while P. multivora was the least virulent and induced solely very mild symptoms. Phytophthora pseudocryptogea was identified as the causal agent of the decline of C. revoluta, as it was re-isolated from both the roots and stems of artificially infected symptomatic plants, thus fulfilling Koch's postulates.
Collapse
|
21
|
Habib S, Gong Y, Dong S, Lindstrom A, Stevenson DW, Wu H, Zhang S. Phylotranscriptomics Shed Light on Intrageneric Relationships and Historical Biogeography of Ceratozamia (Cycadales). PLANTS (BASEL, SWITZERLAND) 2023; 12:478. [PMID: 36771563 PMCID: PMC9921377 DOI: 10.3390/plants12030478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Ceratozamia Brongn. is one of the species-rich genera of Cycadales comprising 38 species that are mainly distributed in Mexico, with a few species reported from neighboring regions. Phylogenetic relationships within the genus need detailed investigation based on extensive datasets and reliable systematic approaches. Therefore, we used 30 of the known 38 species to reconstruct the phylogeny based on transcriptome data of 3954 single-copy nuclear genes (SCGs) via coalescent and concatenated approaches and three comparative datasets (nt/nt12/aa). Based on all these methods, Ceratozamia is divided into six phylogenetic subclades within three major clades. There were a few discrepancies regarding phylogenetic position of some species within these subclades. Using these phylogenetic trees, biogeographic history and morphological diversity of the genus are explored. Ceratozamia originated from ancestors in southern Mexico since the mid-Miocene. There is a distinct distribution pattern of species through the Trans-Mexican Volcanic Belt (TMVB), that act as a barrier for the species dispersal at TMVB and its southern and northern part. Limited dispersal events occurred during the late Miocene, and maximum diversification happened during the Pliocene epoch. Our study provides a new insight into phylogenetic relationships, the origin and dispersal routes, and morphological diversity of the genus Ceratozamia. We also explain how past climatic changes affected the diversification of this Mesoamerica-native genus.
Collapse
Affiliation(s)
- Sadaf Habib
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen and Chinese Academy of Sciences, Shenzhen 518004, China
| | - Yiqing Gong
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen and Chinese Academy of Sciences, Shenzhen 518004, China
| | - Shanshan Dong
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen and Chinese Academy of Sciences, Shenzhen 518004, China
| | - Anders Lindstrom
- Global Biodiversity Conservancy 144/124 Moo 3, Soi Bua Thong, Bangsalae, Sattahip, Chonburi 20250, Thailand
| | | | - Hong Wu
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Shouzhou Zhang
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen and Chinese Academy of Sciences, Shenzhen 518004, China
| |
Collapse
|
22
|
Caron FS, Pie MR. Arrested diversification? The phylogenetic distribution of poorly-diversifying lineages. NPJ BIODIVERSITY 2022; 1:5. [PMID: 39242884 PMCID: PMC11290602 DOI: 10.1038/s44185-022-00004-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/25/2022] [Indexed: 09/09/2024]
Abstract
Rapidly-diversifying lineages have been a major focus of modern evolutionary biology, with many hypotheses seeking to explain how they contribute to the uneven distribution of species in space and among taxa. However, an alternative view that is rarely explored is that some lineages evolve to become depauperate clades and show disproportionately low diversification, in a phenomenon we here call arrested diversification. In this study, we analyse several large-scale datasets including amphibian, squamate, mammal, and seed plant species to assess the extent to which poorly-diversifying lineages show distinct phylogenetic and spatial distributions in relation to other lineages. We found significant evidence that clades with low diversification rates tend to be more phylogenetically overdispersed than expected and show more idiosyncratic spatial distributions. These results suggest that arrested diversification is a real phenomenon that might play an important (yet largely overlooked) role in explaining asymmetries in the distribution of species across lineages.
Collapse
Affiliation(s)
- Fernanda S Caron
- Departamento de Zoologia, Universidade Federal do Paraná, C.P 19020, Curitiba PR, 81531-990, Brazil
| | - Marcio R Pie
- Biology Department, Edge Hill University, Ormskirk, Lancashire, United Kingdom.
| |
Collapse
|
23
|
Wu L, Xu H, Jian S, Gong X, Feng X. Geographic factors and climatic fluctuation drive the genetic structure and demographic history of Cycas taiwaniana (Cycadaceae), an endemic endangered species to Hainan Island in China. Ecol Evol 2022; 12:e9508. [PMID: 36415875 PMCID: PMC9674470 DOI: 10.1002/ece3.9508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/14/2022] [Accepted: 10/27/2022] [Indexed: 09/08/2024] Open
Abstract
Hainan Island had experienced several cold-warm and dry-humid fluctuations since the Late Pleistocene period, resulting in separating and connecting from the mainland several times with the cyclic rise and fall of sea level. The fluctuations can change the biota and ecological environment in the island. Cycas taiwaniana Carruthers is endemic to Hainan Island and is classified as endangered by the International Union for Conservation of Nature (IUCN). To comprehensively understand the genetic dynamics of C. taiwaniana, we sampled 12 wild populations in Hainan Island and one cultivated population in Fujian province, and analyzed the genetic diversity, genetic structure, and demographic history based on the molecular data. Results revealed that C. taiwaniana had relatively low genetic diversity and high genetic differentiation. Haplotypes of C. taiwaniana diversified during the Pleistocene based on the chloroplast DNA (cpDNA) and the concatenated nuclear DNA (nDNA) data. Genetic cluster analyses based on the microsatellite (SSR) data showed that the 12 wild populations were separated into three clusters which could be three evolutionary significant units (ESUs), indicating three basic units of protection were identified. Moreover, we also confirmed the cultivated population FJ derived from the DLS1-GSL clade. Demographic inference from different data was discordant, but overall, it uncovered that C. taiwaniana had experienced population contraction events twice during the Pleistocene and Holocene, and then expanded recently. Our study elucidated the population genetic characteristics of C. taiwaniana, and guided us to develop targeted conservation and management strategies for this endangered species.
Collapse
Affiliation(s)
- Li‐Xin Wu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
- University of Chinese Academy of ScienceBeijingChina
- Plant Science Institute, School of Life SciencesYunnan UniversityKunmingChina
| | - Hai‐Yan Xu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
- University of Chinese Academy of ScienceBeijingChina
| | - Shu‐Guang Jian
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical GardenChinese Academy of SciencesGuangzhouChina
| | - Xun Gong
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
| | - Xiu‐Yan Feng
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
| |
Collapse
|
24
|
Vozárová R, Wang W, Lunerová J, Shao F, Pellicer J, Leitch IJ, Leitch AR, Kovařík A. Mega-sized pericentromeric blocks of simple telomeric repeats and their variants reveal patterns of chromosome evolution in ancient Cycadales genomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:646-663. [PMID: 36065632 PMCID: PMC9827991 DOI: 10.1111/tpj.15969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/19/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Simple telomeric repeats composed of six to seven iterating nucleotide units are important sequences typically found at the ends of chromosomes. Here we analyzed their abundance and homogeneity in 42 gymnosperm (29 newly sequenced), 29 angiosperm (one newly sequenced), and eight bryophytes using bioinformatics, conventional cytogenetic and molecular biology approaches to explore their diversity across land plants. We found more than 10 000-fold variation in the amounts of telomeric repeats among the investigated taxa. Repeat abundance was positively correlated with increasing intragenomic sequence heterogeneity and occurrence at non-telomeric positions, but there was no correlation with genome size. The highest abundance/heterogeneity was found in the gymnosperm genus Cycas (Cycadaceae), in which megabase-sized blocks of telomeric repeats (i.e., billions of copies) were identified. Fluorescent in situ hybridization experiments using variant-specific probes revealed canonical Arabidopsis-type telomeric TTTAGGG repeats at chromosome ends, while pericentromeric blocks comprised at least four major telomeric variants with decreasing abundance: TTTAGGG>TTCAGGG >TTTAAGG>TTCAAGG. Such a diversity of repeats was not found in the sister cycad family Zamiaceae or in any other species analyzed. Using immunocytochemistry, we showed that the pericentromeric blocks of telomeric repeats overlapped with histone H3 serine 10 phosphorylation signals. We show that species of Cycas have amplified their telomeric repeats in centromeric and telomeric positions on telocentric chromosomes to extraordinary high levels. The ancestral chromosome number reconstruction suggests their occurrence is unlikely to be the product of ancient Robertsonian chromosome fusions. We speculate as to how the observed chromosome dynamics may be associated with the diversification of cycads.
Collapse
Affiliation(s)
- Radka Vozárová
- Department of Molecular EpigeneticsInstitute of Biophysics, Czech Academy of Sciencesv.v.i., Královopolská 135612 65BrnoCzech Republic
- Department of Experimental Biology, Faculty of ScienceMasaryk University611 37BrnoCzech Republic
| | - Wencai Wang
- Science and Technology Innovation CentreGuangzhou University of Chinese MedicineGuangzhou510405China
| | - Jana Lunerová
- Department of Molecular EpigeneticsInstitute of Biophysics, Czech Academy of Sciencesv.v.i., Královopolská 135612 65BrnoCzech Republic
| | - Fengqing Shao
- Science and Technology Innovation CentreGuangzhou University of Chinese MedicineGuangzhou510405China
| | - Jaume Pellicer
- Royal Botanic GardensKew, RichmondSurreyTW9 3ABUK
- Institut Botànic de Barcelona (IBB, CSIC‐Ajuntament de Barcelona)Passeig del Migdia sn08038BarcelonaSpain
| | | | - Andrew R. Leitch
- School of Biological and Chemical SciencesQueen Mary University of LondonLondonE1 4NSUK
| | - Aleš Kovařík
- Department of Molecular EpigeneticsInstitute of Biophysics, Czech Academy of Sciencesv.v.i., Královopolská 135612 65BrnoCzech Republic
| |
Collapse
|
25
|
Brownstein CD, Kim D, Orr OD, Hogue GM, Tracy BH, Pugh MW, Singer R, Myles-McBurney C, Mollish JM, Simmons JW, David SR, Watkins-Colwell G, Hoffman EA, Near TJ. Hidden species diversity in an iconic living fossil vertebrate. Biol Lett 2022; 18:20220395. [PMID: 36448369 PMCID: PMC9709656 DOI: 10.1098/rsbl.2022.0395] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022] Open
Abstract
Ancient, species-poor lineages persistently occur across the Tree of life. These lineages are likely to contain unrecognized species diversity masked by the low rates of morphological evolution that characterize living fossils. Halecomorphi is a lineage of ray-finned fishes that diverged from its closest relatives before 200 Ma and is represented by only one living species in eastern North America, the bowfin, Amia calva Linnaeus. Here, we use double digest restriction-site-associated DNA sequencing and morphology to illuminate recent speciation in bowfins. Our results support the delimitation of a second living species of Amia, with the timing of diversification dating to the Plio-Pleistocene. This delimitation expands the species diversity of an ancient lineage that is integral to studies of vertebrate genomics and development, yet is facing growing conservation threats driven by the caviar fishery.
Collapse
Affiliation(s)
- Chase D. Brownstein
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Daemin Kim
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Oliver D. Orr
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | | | - Bryn H. Tracy
- North Carolina Museum of Natural Science, Raleigh, NC 27601, USA
| | - M. Worth Pugh
- Department of Biological Science, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Randal Singer
- Museum of Zoology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Jon Michael Mollish
- River and Reservoir Compliance Monitoring, Tennessee Valley Authority, Chattanooga, TN 37402, USA
| | - Jeffrey W. Simmons
- River and Reservoir Compliance Monitoring, Tennessee Valley Authority, Chattanooga, TN 37402, USA
| | - Solomon R. David
- Department of Biological Sciences, Nicholls State University, Thibodaux, LA 70310, USA
| | | | - Eva A. Hoffman
- Division of Paleontology, American Museum of Natural History, New York, NY 10024, USA
| | - Thomas J. Near
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
- Peabody Museum, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
26
|
Martínez-Domínguez L, Nicolalde-Morejón F, Vergara-Silva F, Stevenson DW. Monograph of Ceratozamia (Zamiaceae, Cycadales): an endangered genus. PHYTOKEYS 2022; 208:1-102. [PMID: 36761399 PMCID: PMC9849018 DOI: 10.3897/phytokeys.208.80382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/22/2022] [Indexed: 06/18/2023]
Abstract
Ceratozamia (Zamiaceae, Cycadales), is a member one of the most endangered seed plant groups. Species of Ceratozamia grow from near sea level up to 2,100 meters in Mexico and Mesoamerica. We present a modern taxonomic treatment of Ceratozamia, based on fieldwork combined with detailed study of herbarium specimens in and from Mexico and Central America. This new revision is based on incorporation of morphological, molecular and biogeographic data that have been previously published in circumscriptions of species complexes by our group. Detailed morphological descriptions of the 36 species of Ceratozamia are provided and relevant characters for the genus are discussed and described. A majority are endemic to Mexico and are concentrated at high elevations in mountainous areas. Synonymies, lectotypifications, etymologies, taxonomic notes, distribution maps, illustrations and detailed species-level comparisons are included, as well as a dichotomous key for identification of all species. Data on distributional ranges and habitats of all species are summarized. Ceratozamiaosbornei D.W.Stev., Mart.-Domínguez & Nic.-Mor., sp. nov. is described from evergreen tropical forests of Belize and we highlight new populations and distributional ranges for C.subroseophylla Mart.-Domínguez & Nic.-Mor. and C.vovidesii Pérez-Farr. & Iglesias in the Mesoamerican region.
Collapse
Affiliation(s)
- Lilí Martínez-Domínguez
- Posgrado en Ciencias Biológicas, Instituto de Biología, Universidad Nacional Autónoma de México, 3er. Circuito Exterior, Ciudad Universitaria, 04510, Coyoacán, CDMX, Mexico
| | - Fernando Nicolalde-Morejón
- Laboratorio de Teoría Evolutiva e Historia de la Ciencia, Instituto de Biología, Universidad Nacional Autónoma de México, 3er. Circuito Exterior, Ciudad Universitaria, 04510, Coyoacán, CDMX. Mexico
| | - Francisco Vergara-Silva
- Posgrado en Ciencias Biológicas, Instituto de Biología, Universidad Nacional Autónoma de México, 3er. Circuito Exterior, Ciudad Universitaria, 04510, Coyoacán, CDMX, Mexico
| | - Dennis Wm. Stevenson
- Laboratorio de Taxonomía Integrativa, Instituto de Investigaciones Biológicas, Universidad Veracruzana, Xalapa, 91190, Veracruz. Mexico
| |
Collapse
|
27
|
Meng YY, Xiang W, Wen Y, Huang DL, Cao KF, Zhu SD. Correlations between leaf economics, mechanical resistance and drought tolerance across 41 cycad species. ANNALS OF BOTANY 2022; 130:345-354. [PMID: 34871356 PMCID: PMC9486883 DOI: 10.1093/aob/mcab146] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/04/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND AIMS We conducted a comprehensive analysis of the functional traits of leaves (leaflets) of cycads. The aim of this study was to clarify the functional divergence between the earlier origin Cycadaceae and the later differentiated Zamiaceae, and the differences in trait associations between cycads and angiosperms. METHODS We selected 20 Cycadaceae species and 21 Zamiaceae species from the same cycad garden in South China, and measured their leaf structure, economic traits, mechanical resistance (Fp) and leaf water potential at the turgor loss point (πtlp). In addition, we compiled a dataset of geographical distribution along with climatic variables for these cycad species, and some leaf traits of tropical-sub-tropical angiosperm woody species from the literature for comparison. KEY RESULTS The results showed significantly contrasting leaf trait syndromes between the two families, with Zamiaceae species exhibiting thicker leaves, higher carbon investments and greater Fp than Cycadaceae species. Leaf thickness (LT) and πtlp were correlated with mean climatic variables in their native distribution ranges, indicating their evolutionary adaptation to environmental conditions. Compared with the leaves of angiosperms, the cycad leaves were thicker and tougher, and more tolerant to desiccation. Greater Fp was associated with a higher structural investment in both angiosperms and cycads; however, cycads showed lower Fp at a given leaf mass per area or LT than angiosperms. Enhancement of Fp led to more negative πtlp in angiosperms, but the opposite trend was observed in cycads. CONCLUSIONS Our results reveal that variations in leaf traits of cycads are mainly influenced by taxonomy and the environment of their native range. We also demonstrate similar leaf functional associations in terms of economics, but different relationships with regard to mechanics and drought tolerance between cycads and angiosperms. This study expands our understanding of the ecological strategies and likely responses of cycads to future climate change.
Collapse
Affiliation(s)
| | | | | | - Dong-Liu Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi University, Nanning, China
| | - Kun-Fang Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi University, Nanning, China
| | | |
Collapse
|
28
|
Asar Y, Ho SYW, Sauquet H. Early diversifications of angiosperms and their insect pollinators: were they unlinked? TRENDS IN PLANT SCIENCE 2022; 27:858-869. [PMID: 35568622 DOI: 10.1016/j.tplants.2022.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/24/2022] [Accepted: 04/05/2022] [Indexed: 06/15/2023]
Abstract
The present-day ubiquity of angiosperm-insect pollination has led to the hypothesis that these two groups coevolved early in their evolutionary history. However, recent fossil discoveries and fossil-calibrated molecular dating analyses challenge the notion that early diversifications of angiosperms and insects were inextricably linked. In this article, we examine (i) the discrepancies between dates of emergence for angiosperms and major clades of insects; (ii) the long history of gymnosperm-insect pollination modes, which likely shaped early angiosperm-insect pollination mutualisms; and (iii) how the K-Pg (Cretaceous-Paleogene) mass extinction event was vital in propelling modern angiosperm-insect mutualisms. We posit that the early diversifications of angiosperms and their insect pollinators were largely decoupled until the end of the Cretaceous.
Collapse
Affiliation(s)
- Yasmin Asar
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Hervé Sauquet
- National Herbarium of New South Wales (NSW), Royal Botanic Gardens and Domain Trust, Sydney, NSW 2000, Australia; Evolution and Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
29
|
Heo N, Lomolino MV, Watkins JE, Yun S, Weber-Townsend J, Fernando DD. Evolutionary history of the Asplenium scolopendrium complex (Aspleniaceae), a relictual fern with a northern pan-temperate disjunct distribution. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Asplenium scolopendrium is distributed in northern temperate forests with many global biogeographic disjunctions. The species complex of A. scolopendrium has been generated by spatial segregation coupled with divergent evolution. We elucidated the biogeographic history of the A. scolopendrium complex by exploring its origin, dispersal and evolution, thus providing insights into the evolutionary history of the Tertiary floras with northern pan-temperate disjunct distributions. The results revealed that all infraspecific taxa descended from a widely distributed common ancestor in the Northern Hemisphere. This pan-temperate ancestral population formed by unidirectional westward dispersal from European origins primarily during the Early Eocene when the Earth’s climate was much warmer than today. The splitting of European, American and East Asian lineages occurred during the Early Miocene due to geo-climatic vicariances. Polyploidy events in the American ancestral populations created additional reproductive barriers. The star-shaped haplotypes in each continent indicated that local disjunctions also led to derived genotypes with potential to diverge into different taxa. This intracontinental lineage splitting is likely related to latitudinal range shift and habitat fragmentation caused by glacial cycles and climate change during the Pleistocene. The evolutionary history of the A. scolopendrium complex supported the Boreotropical hypothesis exhibiting range expansion during the Early Eocene Climatic Optimum.
Collapse
Affiliation(s)
- Namjoo Heo
- Department of Environmental Biology, State University of New York College of Environmental Science and Forestry , 1 Forestry Drive, Syracuse, NY 13210 , USA
| | - Mark V Lomolino
- Department of Environmental Biology, State University of New York College of Environmental Science and Forestry , 1 Forestry Drive, Syracuse, NY 13210 , USA
| | - James E Watkins
- Department of Biology, Colgate University , 13 Oak Drive, Hamilton, NY 13346 , USA
| | - Seona Yun
- Department of Environmental Biology, State University of New York College of Environmental Science and Forestry , 1 Forestry Drive, Syracuse, NY 13210 , USA
| | - Josh Weber-Townsend
- Department of Environmental Biology, State University of New York College of Environmental Science and Forestry , 1 Forestry Drive, Syracuse, NY 13210 , USA
| | - Danilo D Fernando
- Department of Environmental Biology, State University of New York College of Environmental Science and Forestry , 1 Forestry Drive, Syracuse, NY 13210 , USA
| |
Collapse
|
30
|
Mathesius U. Are legumes different? Origins and consequences of evolving nitrogen fixing symbioses. JOURNAL OF PLANT PHYSIOLOGY 2022; 276:153765. [PMID: 35952452 DOI: 10.1016/j.jplph.2022.153765] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 05/14/2023]
Abstract
Nitrogen fixing symbioses between plants and bacteria are ancient and, while not numerous, are formed in diverse lineages of plants ranging from microalgae to angiosperms. One symbiosis stands out as the most widespread one is that between legumes and rhizobia, leading to the formation of nitrogen-fixing nodules. The legume family is one of the largest and most diverse group of plants and legumes have been used by humans since the beginning of agriculture, both as high nitrogen food, as well as pastures and rotation crops. One open question is whether their ability to form a nitrogen-fixing symbiosis has contributed to legumes' success, and whether legumes have any unique characteristics that have made them more diverse and widespread than other groups of plants. This review examines the evolutionary journey that has led to the diversification of legumes, in particular its nitrogen-fixing symbiosis, and asks four questions to investigate which legume traits might have contributed to their success: 1. In what ways do legumes differ from other plant groups that have evolved nitrogen-fixing symbioses? In order to answer this question, the characteristics of the symbioses, and efficiencies of nitrogen fixation are compared between different groups of nitrogen fixing plants. 2. Could certain unique features of legumes be a reason for their success? This section examines the manifestations and possible benefits of a nitrogen-rich 'lifestyle' in legumes. 3. If nitrogen fixation was a reason for such a success, why have some species lost the symbiosis? Formation of symbioses has trade-offs, and while these are less well known for non-legumes, there are known energetic and ecological reasons for loss of symbiotic potential in legumes. 4. What can we learn from the unique traits of legumes for future crop improvements? While exploiting some of the physiological properties of legumes could be used to improve legume breeding, our increasing molecular understanding of the essential regulators of root nodule symbioses raise hope of creating new nitrogen fixing symbioses in other crop species.
Collapse
Affiliation(s)
- Ulrike Mathesius
- Division of Plant Sciences, Research School of Biology, The Australian National University, 134 Linnaeus Way, Canberra, ACT, 2601, Australia.
| |
Collapse
|
31
|
Fu Q, Huang X, Li L, Jin Y, Qian H, Kuai X, Ye Y, Wang H, Deng T, Sun H. Linking evolutionary dynamics to species extinction for flowering plants in global biodiversity hotspots. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Quansheng Fu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany Chinese Academy of Sciences Kunming China
- Yunnan International Joint Laboratory for Biodiversity of Central Asia, Kunming Institute of Botany Chinese Academy of Sciences Kunming China
- University of Chinese Academy of Sciences Beijing China
| | - Xianhan Huang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany Chinese Academy of Sciences Kunming China
- Yunnan International Joint Laboratory for Biodiversity of Central Asia, Kunming Institute of Botany Chinese Academy of Sciences Kunming China
| | - Lijuan Li
- University of Chinese Academy of Sciences Beijing China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden Chinese Academy of Sciences Wuhan China
| | - Yi Jin
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China Guizhou Normal University Guiyang China
| | - Hong Qian
- Research and Collections Center Illinois State Museum Springfield Illinois USA
| | - Xinyuan Kuai
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany Chinese Academy of Sciences Kunming China
- Yunnan International Joint Laboratory for Biodiversity of Central Asia, Kunming Institute of Botany Chinese Academy of Sciences Kunming China
- School of Life Sciences Yunnan University Kunming China
| | - Yaojun Ye
- School of Life Sciences Yunnan Normal University Kunming China
| | - Hengchang Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden Chinese Academy of Sciences Wuhan China
| | - Tao Deng
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany Chinese Academy of Sciences Kunming China
- Yunnan International Joint Laboratory for Biodiversity of Central Asia, Kunming Institute of Botany Chinese Academy of Sciences Kunming China
| | - Hang Sun
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany Chinese Academy of Sciences Kunming China
- Yunnan International Joint Laboratory for Biodiversity of Central Asia, Kunming Institute of Botany Chinese Academy of Sciences Kunming China
| |
Collapse
|
32
|
Yang Y, Ferguson DK, Liu B, Mao KS, Gao LM, Zhang SZ, Wan T, Rushforth K, Zhang ZX. Recent advances on phylogenomics of gymnosperms and a new classification. PLANT DIVERSITY 2022; 44:340-350. [PMID: 35967253 PMCID: PMC9363647 DOI: 10.1016/j.pld.2022.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 05/30/2023]
Abstract
Living gymnosperms comprise four major groups: cycads, Ginkgo, conifers, and gnetophytes. Relationships among/within these lineages have not been fully resolved. Next generation sequencing has made available a large number of sequences, including both plastomes and single-copy nuclear genes, for reconstruction of solid phylogenetic trees. Recent advances in gymnosperm phylogenomic studies have updated our knowledge of gymnosperm systematics. Here, we review major advances of gymnosperm phylogeny over the past 10 years and propose an updated classification of extant gymnosperms. This new classification includes three classes (Cycadopsida, Ginkgoopsida, and Pinopsida), five subclasses (Cycadidae, Ginkgoidae, Cupressidae, Pinidae, and Gnetidae), eight orders (Cycadales, Ginkgoales, Araucariales, Cupressales, Pinales, Ephedrales, Gnetales, and Welwitschiales), 13 families, and 86 genera. We also described six new tribes including Acmopyleae Y. Yang, Austrocedreae Y. Yang, Chamaecyparideae Y. Yang, Microcachrydeae Y. Yang, Papuacedreae Y. Yang, and Prumnopityeae Y. Yang, and made 27 new combinations in the genus Sabina.
Collapse
Affiliation(s)
- Yong Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, 159 Longpan Road, Nanjing Forestry University, Nanjing 210037, China
| | | | - Bing Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Kang-Shan Mao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Lian-Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang 674100, China
| | - Shou-Zhou Zhang
- Key Laboratory of Southern Subtropical Plant Diversity, FairyLake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Tao Wan
- Key Laboratory of Southern Subtropical Plant Diversity, FairyLake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | | | - Zhi-Xiang Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|
33
|
Taxonomic Revision of the Genus Miltotranes Zimmerman, 1994 (Coleoptera: Curculionidae: Molytinae), the Bowenia-Pollinating Cycad Weevils in Australia, with Description of a New Species and Implications for the Systematics of Bowenia. INSECTS 2022; 13:insects13050456. [PMID: 35621791 PMCID: PMC9146253 DOI: 10.3390/insects13050456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023]
Abstract
The Australian endemic weevils of the genus Miltotranes Zimmerman, 1994 (Curculionidae: Molytinae: Tranes group), comprising two species, M. prosternalis (Lea, 1929) and M. subopacus (Lea, 1929), are highly host-specific and the only known pollinators of Bowenia cycads, which comprise two CITES-protected species restricted to Tropical Queensland in Australia. In the present study, the taxonomy of Miltotranes is reviewed, a lectotype for the name Tranes prosternalis Lea, 1929 is designated and a new species associated with the Bowenia population in the McIlwraith Range is described as M. wilsoni sp. n. The descriptions and diagnoses of all species are supplemented with illustrations of their habitus and salient structures, and an identification key to all species and a distribution map are provided. Potential implications of the new species and of the taxonomy and biogeography of Miltotranes overall on the systematics and conservation of Bowenia are discussed.
Collapse
|
34
|
Chang JT, Chao CT, Nakamura K, Liu HL, Luo MX, Liao PC. Divergence With Gene Flow and Contrasting Population Size Blur the Species Boundary in Cycas Sect. Asiorientales, as Inferred From Morphology and RAD-Seq Data. FRONTIERS IN PLANT SCIENCE 2022; 13:824158. [PMID: 35615129 PMCID: PMC9125193 DOI: 10.3389/fpls.2022.824158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/15/2022] [Indexed: 06/15/2023]
Abstract
The divergence process of incipient species is fascinating but elusive by incomplete lineage sorting or gene flow. Species delimitation is also challenging among those morphologically similar allopatric species, especially when lacking comprehensive data. Cycas sect. Asiorientales, comprised of C. taitungensis and C. revoluta in the Ryukyu Archipelago and Taiwan, diverged recently with continuous gene flow, resulting in a reciprocal paraphyletic relationship. Their previous evolutionary inferences are questioned from few genetic markers, incomplete sampling, and incomprehensive morphological comparison by a long-term taxonomic misconception. By whole range sampling, this study tests the geographic mode of speciation in the two species of Asiorientales by approximate Bayesian computation (ABC) using genome-wide single nucleotide polymorphisms (SNPs). The individual tree was reconstructed to delimit the species and track the gene-flow trajectory. With the comparison of diagnostic morphological traits and genetic data, the allopatric speciation was rejected. Alternatively, continuous but spatially heterogeneous gene flow driven by transoceanic vegetative dispersal and pollen flow with contrasting population sizes blurred their species boundary. On the basis of morphological, genetic, and evolutionary evidence, we synonymized these two Cycas species. This study highlights not only the importance of the Kuroshio Current to species evolution but also the disadvantage of using species with geographically structured genealogies as conservation units.
Collapse
Affiliation(s)
- Jui-Tse Chang
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chien-Ti Chao
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Koh Nakamura
- Botanic Garden, Field Science Center for Northern Biosphere, Hokkaido University, Sapporo, Japan
| | - Hsiao-Lei Liu
- Department of Anthropology, Smithsonian Institution, National Museum of Natural History, Washington, DC, United States
| | - Min-Xin Luo
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Pei-Chun Liao
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
35
|
Clugston JAR, Kenicer GJ. Sexing cycads - a potential saviour. NATURE PLANTS 2022; 8:326-327. [PMID: 35437000 DOI: 10.1038/s41477-022-01133-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- James A R Clugston
- National Herbarium of New South Wales, Australian Institute of Botanical Science, Royal Botanic Gardens & Domain Trust, Mount Annan, NSW, Australia.
| | | |
Collapse
|
36
|
Liu Y, Wang S, Li L, Yang T, Dong S, Wei T, Wu S, Liu Y, Gong Y, Feng X, Ma J, Chang G, Huang J, Yang Y, Wang H, Liu M, Xu Y, Liang H, Yu J, Cai Y, Zhang Z, Fan Y, Mu W, Sahu SK, Liu S, Lang X, Yang L, Li N, Habib S, Yang Y, Lindstrom AJ, Liang P, Goffinet B, Zaman S, Wegrzyn JL, Li D, Liu J, Cui J, Sonnenschein EC, Wang X, Ruan J, Xue JY, Shao ZQ, Song C, Fan G, Li Z, Zhang L, Liu J, Liu ZJ, Jiao Y, Wang XQ, Wu H, Wang E, Lisby M, Yang H, Wang J, Liu X, Xu X, Li N, Soltis PS, Van de Peer Y, Soltis DE, Gong X, Liu H, Zhang S. The Cycas genome and the early evolution of seed plants. NATURE PLANTS 2022; 8:389-401. [PMID: 35437001 PMCID: PMC9023351 DOI: 10.1038/s41477-022-01129-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/10/2022] [Indexed: 05/05/2023]
Abstract
Cycads represent one of the most ancient lineages of living seed plants. Identifying genomic features uniquely shared by cycads and other extant seed plants, but not non-seed-producing plants, may shed light on the origin of key innovations, as well as the early diversification of seed plants. Here, we report the 10.5-Gb reference genome of Cycas panzhihuaensis, complemented by the transcriptomes of 339 cycad species. Nuclear and plastid phylogenomic analyses strongly suggest that cycads and Ginkgo form a clade sister to all other living gymnosperms, in contrast to mitochondrial data, which place cycads alone in this position. We found evidence for an ancient whole-genome duplication in the common ancestor of extant gymnosperms. The Cycas genome contains four homologues of the fitD gene family that were likely acquired via horizontal gene transfer from fungi, and these genes confer herbivore resistance in cycads. The male-specific region of the Y chromosome of C. panzhihuaensis contains a MADS-box transcription factor expressed exclusively in male cones that is similar to a system reported in Ginkgo, suggesting that a sex determination mechanism controlled by MADS-box genes may have originated in the common ancestor of cycads and Ginkgo. The C. panzhihuaensis genome provides an important new resource of broad utility for biologists.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China.
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China.
| | - Sibo Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Linzhou Li
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Ting Yang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Shanshan Dong
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Tong Wei
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Shengdan Wu
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Yongbo Liu
- State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Yiqing Gong
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Xiuyan Feng
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jianchao Ma
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
| | - Guanxiao Chang
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
| | - Jinling Huang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
- Department of Biology, East Carolina University, Greenville, NC, USA
| | - Yong Yang
- College of Biology and Environment, Nanjing Forestry University, Nanjing, China
| | - Hongli Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Min Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Yan Xu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hongping Liang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jin Yu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuqing Cai
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhaowu Zhang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yannan Fan
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Weixue Mu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Shuchun Liu
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Xiaoan Lang
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
- Nanning Botanical Garden, Nanning, China
| | - Leilei Yang
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Na Li
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Sadaf Habib
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yongqiong Yang
- Sichuan Cycas panzhihuaensis National Nature Reserve, Panzhihua, China
| | | | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Bernard Goffinet
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Sumaira Zaman
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Dexiang Li
- Nanning Botanical Garden, Nanning, China
| | - Jian Liu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jie Cui
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Eva C Sonnenschein
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Xiaobo Wang
- Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jue Ruan
- Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jia-Yu Xue
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Zhu-Qing Shao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Chi Song
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guangyi Fan
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, VIB UGent Center for Plant Systems Biology, Gent, Belgium
| | - Liangsheng Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Jianquan Liu
- The College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhong-Jian Liu
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuannian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Quan Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Hong Wu
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Michael Lisby
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Huanming Yang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Jian Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Xin Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Xun Xu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Nan Li
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Yves Van de Peer
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, VIB UGent Center for Plant Systems Biology, Gent, Belgium.
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA.
- Department of Biology, University of Florida, Gainesville, FL, USA.
| | - Xun Gong
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China.
| | - Shouzhou Zhang
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
37
|
Liu J, Lindstrom AJ, Gong X. Towards the plastome evolution and phylogeny of Cycas L. (Cycadaceae): molecular-morphology discordance and gene tree space analysis. BMC PLANT BIOLOGY 2022; 22:116. [PMID: 35291941 PMCID: PMC8922756 DOI: 10.1186/s12870-022-03491-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/22/2022] [Indexed: 05/20/2023]
Abstract
BACKGROUND Plastid genomes (plastomes) present great potential in resolving multiscale phylogenetic relationship but few studies have focused on the influence of genetic characteristics of plastid genes, such as genetic variation and phylogenetic discordance, in resolving the phylogeny within a lineage. Here we examine plastome characteristics of Cycas L., the most diverse genus among extant cycads, and investigate the deep phylogenetic relationships within Cycas by sampling 47 plastomes representing all major clades from six sections. RESULTS All Cycas plastomes shared consistent gene content and structure with only one gene loss detected in Philippine species C. wadei. Three novel plastome regions (psbA-matK, trnN-ndhF, chlL-trnN) were identified as containing the highest nucleotide variability. Molecular evolutionary analysis showed most of the plastid protein-coding genes have been under purifying selection except ndhB. Phylogenomic analyses that alternatively included concatenated and coalescent methods, both identified four clades but with conflicting topologies at shallow nodes. Specifically, we found three species-rich Cycas sections, namely Stangerioides, Indosinenses and Cycas, were not or only weakly supported as monophyly based on plastomic phylogeny. Tree space analyses based on different tree-inference methods both revealed three gene clusters, of which the cluster with moderate genetic properties showed the best congruence with the favored phylogeny. CONCLUSIONS Our exploration in plastomic data for Cycas supports the idea that plastid protein-coding genes may exhibit discordance in phylogenetic signals. The incongruence between molecular phylogeny and morphological classification reported here may largely be attributed to the uniparental attribute of plastid, which cannot offer sufficient information to resolve the phylogeny. Contrasting to a previous consensus that genes with longer sequences and a higher proportion of variances are superior for phylogeny reconstruction, our result implies that the most effective phylogenetic signals could come from loci that own moderate variation, GC content, sequence length, and underwent modest selection.
Collapse
Affiliation(s)
- Jian Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, China
| | - Anders J Lindstrom
- Global Biodiversity Conservancy, 144/124 Moo3, Soi Bua Thong, 20250, Bangsalae, Sattahip, Chonburi, Thailand.
| | - Xun Gong
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China.
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
38
|
Liu J, Lindstrom AJ, Marler TE, Gong X. Not that young: combining plastid phylogenomic, plate tectonic and fossil evidence indicates a Palaeogene diversification of Cycadaceae. ANNALS OF BOTANY 2022; 129:217-230. [PMID: 34520529 PMCID: PMC8796677 DOI: 10.1093/aob/mcab118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/10/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND AND AIMS Previous molecular dating studies revealed historical mass extinctions and recent radiations of extant cycads, but debates still exist between palaeobotanists and evolutionary biologists regarding the origin and evolution of Cycadaceae. METHODS Using whole plastomic data, we revisited the phylogeny of this family and found the Palawan endemic Cycas clade was strongly related to all lineages from Southeast Eurasia, coinciding with a plate drift event occurring in the Early Oligocene. By integrating fossil and biogeographical calibrations as well as molecular data from protein-coding genes, we established different calibration schemes and tested competing evolutionary timelines of Cycadaceae. KEY RESULTS We found recent dispersal cannot explain the distribution of Palawan Cycas, yet the scenario including the tectonic calibration yielded a mean crown age of extant Cycadaceae of ~69-43 million years ago by different tree priors, consistent with multiple Palaeogene fossils assigned to this family. Biogeographical analyses incorporating fossil distributions revealed East Asia as the ancestral area of Cycadaceae. CONCLUSIONS Our findings challenge the previously proposed Middle-Late Miocene diversification of cycads and an Indochina origin for Cycadaceae and highlight the importance of combining phylogenetic clades, tectonic events and fossils for rebuilding the evolutionary history of lineages that have undergone massive extinctions.
Collapse
Affiliation(s)
- Jian Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- For correspondence. Email , or
| | - Anders J Lindstrom
- Global Biodiversity Conservancy, 144/124 Moo3, Soi Bua Thong, Bangsalae, Sattahip, Chonburi 20250, Thailand
- For correspondence. Email , or
| | - Thomas E Marler
- Western Pacific Tropical Research Center, University of Guam, UOG Station, Mangilao, GU 96923, USA
| | - Xun Gong
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- For correspondence. Email , or
| |
Collapse
|
39
|
Roemer RB, Irene Terry L, Booth DT, Walter GH. Insights from an ancient gymnosperm lineage: ambient temperature and light and the timing of thermogenesis in cycad cones. AMERICAN JOURNAL OF BOTANY 2022; 109:151-165. [PMID: 35025111 DOI: 10.1002/ajb2.1810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/08/2021] [Indexed: 06/14/2023]
Abstract
PREMISE Although maintaining the appropriate mid-day timing of the diel thermogenic events of cones of the dioecious cycads Macrozamia lucida and M. macleayi is central to the survival of both plant and pollinator in this obligate pollination mutualism, the nature of the underlying mechanism remains obscure. We investigated whether it is under circadian control. Circadian mechanisms control the timing of many ecologically important processes in angiosperms, yet only a few gymnosperms have been studied in this regard. METHODS We subjected cones to different ambient temperature and lighting regimens (constant temperature and darkness; stepwise cool/warm ambient temperatures in constant darkness; stepwise dark/light exposures at constant temperature) to determine whether the resulting timing of their thermogenic events was consistent with circadian control. RESULTS Cones exposed to constant ambient temperature and darkness generated multiple temperature peaks endogenously, with an average interpeak-temperature period of 20.7 (±0.20) h that is temperature-compensated (Q10 = 1.02). Exposure to 24-h ambient temperature cycles (12 h cool/12 h warm, constant darkness) yielded an interpeak-temperature period of 24.0 (±0.05) h, accurately and precisely replicating the ambient temperature period. Exposure to 24-h photo-cycles (12 h light/12 h dark, constant ambient temperature) yielded a shorter, more variable interpeak-temperature period of 23 (±0.23) h. CONCLUSIONS Our results indicate that cycad cone thermogenesis is under circadian clock control and differentially affected by ambient temperature and light cycles. Our data from cycads (an ancient gymnosperm lineage) adds to what little is known about circadian timing in gymnosperms, which have rarely been studied from the circadian perspective.
Collapse
Affiliation(s)
- Robert B Roemer
- Department of Mechanical Engineering, University of Utah, 1543 Rio Tinto Kennecott Mechanical Engineering Bldg., 1495 E., 100 S., Salt Lake City, UT, 84112, USA
| | - L Irene Terry
- School of Biological Sciences, University of Utah, 257 S. 1400 E., Salt Lake City, UT, 84112, USA
| | - David T Booth
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Gimme H Walter
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
40
|
Zheng Y, Chiang TY, Huang CL, Feng XY, Yrjälä K, Gong X. The Predominance of Proteobacteria and Cyanobacteria in the Cycas dolichophylla Coralloid Roots Revealed by 16S rRNA Metabarcoding. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721060175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
41
|
Greenberg DA, Pyron RA, Johnson LGW, Upham NS, Jetz W, Mooers AØ. Evolutionary legacies in contemporary tetrapod imperilment. Ecol Lett 2021; 24:2464-2476. [PMID: 34510687 PMCID: PMC9048422 DOI: 10.1111/ele.13868] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/12/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022]
Abstract
The Tree of Life will be irrevocably reshaped as anthropogenic extinctions continue to unfold. Theory suggests that lineage evolutionary dynamics, such as age since origination, historical extinction filters and speciation rates, have influenced ancient extinction patterns - but whether these factors also contribute to modern extinction risk is largely unknown. We examine evolutionary legacies in contemporary extinction risk for over 4000 genera, representing ~30,000 species, from the major tetrapod groups: amphibians, birds, turtles and crocodiles, squamate reptiles and mammals. We find consistent support for the hypothesis that extinction risk is elevated in lineages with higher recent speciation rates. We subsequently test, and find modest support for, a primary mechanism driving this pattern: that rapidly diversifying clades predominantly comprise range-restricted, and extinction-prone, species. These evolutionary patterns in current imperilment may have important consequences for how we manage the erosion of biological diversity across the Tree of Life.
Collapse
Affiliation(s)
- Dan A. Greenberg
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - R. Alexander Pyron
- Department of Biological Sciences, George Washington University, Washington, District of Columbia, USA
| | - Liam G. W. Johnson
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Nathan S. Upham
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- Center for Biodiversity and Global Change, Yale University, New Haven, Connecticut, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Walter Jetz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- Center for Biodiversity and Global Change, Yale University, New Haven, Connecticut, USA
| | - Arne Ø. Mooers
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
42
|
Liu J, Lindstrom AJ, Chen YS, Nathan R, Gong X. Congruence between ocean-dispersal modelling and phylogeography explains recent evolutionary history of Cycas species with buoyant seeds. THE NEW PHYTOLOGIST 2021; 232:1863-1875. [PMID: 34342898 DOI: 10.1111/nph.17663] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/29/2021] [Indexed: 05/25/2023]
Abstract
Ocean currents play a significant role in driving the long-distance dispersal (LDD), spatial distribution and phylogeographic patterns of many organisms. Integrating phylogeographic analyses and mechanistic ocean current modelling can provide novel insights into the evolutionary history of terrestrial littoral species but has been rarely applied in this context. We focused on a group of Cycas that have buoyant seeds and occupy coastal habitats. By integrating evidence from mechanistic simulations and whole plastomic data, we examined the role of ocean circulation in shaping the phylogeography of these Cycas species. Plastomes of the studied Cycas species showed extreme conservatism, following a post-Pleistocene divergence. Phylogenies revealed three subclades, corresponding to the Pacific Ocean, Sunda Shelf and Indian Ocean. The ocean modelling results indicate that hotspots of seed stranding coincide well with the contemporary distribution of the Cycas species and that drifting trajectories from the three subclades are largely confined to separate regions. These findings suggest that ocean current systems, by driving long-distance dispersal, have shaped the distribution and phylogeography for Cycas with buoyant seeds. This study highlights how the combination of genomic data and ocean drift modelling can help explain phylogeographic patterns and diversity in terrestrial littoral ecosystems.
Collapse
Affiliation(s)
- Jian Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Anders J Lindstrom
- Global Biodiversity Conservancy, 144/124 Moo3, Soi Bua Thong, Bangsalae, Sattahip, Chonburi, 20250, Thailand
| | - Yong-Sheng Chen
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Ran Nathan
- Movement Ecology Laboratory, Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Xun Gong
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
43
|
Xia XM, Yang MQ, Li CL, Huang SX, Jin WT, Shen TT, Wang F, Li XH, Yoichi W, Zhang LH, Zheng YR, Wang XQ. Spatiotemporal evolution of the global species diversity of Rhododendron. Mol Biol Evol 2021; 39:6413646. [PMID: 34718707 PMCID: PMC8760938 DOI: 10.1093/molbev/msab314] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Evolutionary radiation is a widely recognized mode of species diversification, but its underlying mechanisms have not been unambiguously resolved for species-rich cosmopolitan plant genera. In particular, it remains largely unknown how biological and environmental factors have jointly driven its occurrence in specific regions. Here, we use Rhododendron, the largest genus of woody plants in the Northern Hemisphere, to investigate how geographic and climatic factors, as well as functional traits, worked together to trigger plant evolutionary radiations and shape the global patterns of species richness based on a solid species phylogeny. Using 3,437 orthologous nuclear genes, we reconstructed the first highly supported and dated backbone phylogeny of Rhododendron comprising 200 species that represent all subgenera, sections, and nearly all multispecies subsections, and found that most extant species originated by evolutionary radiations when the genus migrated southward from circumboreal areas to tropical/subtropical mountains, showing rapid increases of both net diversification rate and evolutionary rate of environmental factors in the Miocene. We also found that the geographically uneven diversification of Rhododendron led to a much higher diversity in Asia than in other continents, which was mainly driven by two environmental variables, that is, elevation range and annual precipitation, and were further strengthened by the adaptation of leaf functional traits. Our study provides a good example of integrating phylogenomic and ecological analyses in deciphering the mechanisms of plant evolutionary radiations, and sheds new light on how the intensification of the Asian monsoon has driven evolutionary radiations in large plant genera of the Himalaya-Hengduan Mountains.
Collapse
Affiliation(s)
- Xiao-Mei Xia
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miao-Qin Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Cong-Li Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si-Xin Huang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Tao Jin
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ting-Ting Shen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Fei Wang
- West China Subalpine Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Sichuan 611834, China
| | - Xiao-Hua Li
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiangxi 332900, China
| | - Watanabe Yoichi
- Graduate School of Horticulture, Chiba University, Chiba 271-8510, Japan
| | - Le-Hua Zhang
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiangxi 332900, China
| | - Yuan-Run Zheng
- West China Subalpine Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Sichuan 611834, China.,State Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiao-Quan Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
44
|
Velasco-García MV, Ramírez-Herrera C, López-Upton J, Valdez-Hernández JI, López-Sánchez H, López-Mata L. Diversity and Genetic Structure of Dioon holmgrenii (Cycadales: Zamiaceae) in the Mexican Pacific Coast Biogeographic Province: Implications for Conservation. PLANTS 2021; 10:plants10112250. [PMID: 34834614 PMCID: PMC8623071 DOI: 10.3390/plants10112250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 11/25/2022]
Abstract
Dioon holmgrenii De Luca, Sabato et Vázq.Torres is an endangered species; it is endemic and its distribution is restricted to the biogeographic province of the Mexican Pacific Coast. The aim of this work was to determine the diversity and genetic structure of nine populations. The genetic diversity parameters and Wright’s F statistics were determined with six microsatellite loci. The genetic structure was determined by using the Structure software and by a discriminant analysis. The genetic diversity of the populations was high. The proportion of polymorphic loci was 0.89, the observed heterogeneity was higher (Ho = 0.62 to 0.98) than expected (He = 0.48 to 0.78), and the fixation index was negative (IF = −0.091 to −0.601). Heterozygous deficiency (FIT = 0.071) was found at the species level and heterozygotes excess (FIS = −0.287) at the population level. The genetic differentiation between populations was high (FST = 0.287), with the number of migrants less than one. Three groups of populations were differentiated, and the variation within populations, between populations, and between groups was: 65.5, 26.3, and 8.2%, respectively. Multiple factors explain the high genetic diversity, while the genetic structure is due to geographic barriers. Community reserves are urgent in at least one most diverse population of each group.
Collapse
Affiliation(s)
- Mario Valerio Velasco-García
- Centro Nacional de Investigación Disciplinaria en Conservación y Mejoramiento de Ecosistemas Forestales-Instituto Nacional de Investigaciones Agrícolas Pecuarias y Forestales (INIFAP), Avenida Progreso 5, Coyoacán, Ciudad de Mexico 04010, Mexico;
| | - Carlos Ramírez-Herrera
- Colegio de Postgraduados, Carretera Mexico-Texcoco km 36.5, Montecillo, Texcoco 56230, Mexico; (J.L.-U.); (J.I.V.-H.); (L.L.-M.)
- Correspondence: ; Tel.: +52-55-7378-6568
| | - Javier López-Upton
- Colegio de Postgraduados, Carretera Mexico-Texcoco km 36.5, Montecillo, Texcoco 56230, Mexico; (J.L.-U.); (J.I.V.-H.); (L.L.-M.)
| | - Juan Ignacio Valdez-Hernández
- Colegio de Postgraduados, Carretera Mexico-Texcoco km 36.5, Montecillo, Texcoco 56230, Mexico; (J.L.-U.); (J.I.V.-H.); (L.L.-M.)
| | - Higinio López-Sánchez
- Colegio de Postgraduados, Boulevard Forjadores de Puebla No. 205, Santiago Momoxpan, San Pedro Cholula. C.P., Puebla 72760, Mexico;
| | - Lauro López-Mata
- Colegio de Postgraduados, Carretera Mexico-Texcoco km 36.5, Montecillo, Texcoco 56230, Mexico; (J.L.-U.); (J.I.V.-H.); (L.L.-M.)
| |
Collapse
|
45
|
May MR, Contreras DL, Sundue MA, Nagalingum NS, Looy CV, Rothfels CJ. Inferring the Total-Evidence Timescale of Marattialean Fern Evolution in the Face of Model Sensitivity. Syst Biol 2021; 70:1232-1255. [PMID: 33760075 PMCID: PMC8513765 DOI: 10.1093/sysbio/syab020] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/09/2021] [Accepted: 03/22/2021] [Indexed: 11/24/2022] Open
Abstract
Phylogenetic divergence-time estimation has been revolutionized by two recent developments: 1) total-evidence dating (or "tip-dating") approaches that allow for the incorporation of fossils as tips in the analysis, with their phylogenetic and temporal relationships to the extant taxa inferred from the data and 2) the fossilized birth-death (FBD) class of tree models that capture the processes that produce the tree (speciation, extinction, and fossilization) and thus provide a coherent and biologically interpretable tree prior. To explore the behavior of these methods, we apply them to marattialean ferns, a group that was dominant in Carboniferous landscapes prior to declining to its modest extant diversity of slightly over 100 species. We show that tree models have a dramatic influence on estimates of both divergence times and topological relationships. This influence is driven by the strong, counter-intuitive informativeness of the uniform tree prior, and the inherent nonidentifiability of divergence-time models. In contrast to the strong influence of the tree models, we find minor effects of differing the morphological transition model or the morphological clock model. We compare the performance of a large pool of candidate models using a combination of posterior-predictive simulation and Bayes factors. Notably, an FBD model with epoch-specific speciation and extinction rates was strongly favored by Bayes factors. Our best-fitting model infers stem and crown divergences for the Marattiales in the mid-Devonian and Late Cretaceous, respectively, with elevated speciation rates in the Mississippian and elevated extinction rates in the Cisuralian leading to a peak diversity of ${\sim}$2800 species at the end of the Carboniferous, representing the heyday of the Psaroniaceae. This peak is followed by the rapid decline and ultimate extinction of the Psaroniaceae, with their descendants, the Marattiaceae, persisting at approximately stable levels of diversity until the present. This general diversification pattern appears to be insensitive to potential biases in the fossil record; despite the preponderance of available fossils being from Pennsylvanian coal balls, incorporating fossilization-rate variation does not improve model fit. In addition, by incorporating temporal data directly within the model and allowing for the inference of the phylogenetic position of the fossils, our study makes the surprising inference that the clade of extant Marattiales is relatively young, younger than any of the fossils historically thought to be congeneric with extant species. This result is a dramatic demonstration of the dangers of node-based approaches to divergence-time estimation, where the assignment of fossils to particular clades is made a priori (earlier node-based studies that constrained the minimum ages of extant genera based on these fossils resulted in much older age estimates than in our study) and of the utility of explicit models of morphological evolution and lineage diversification. [Bayesian model comparison; Carboniferous; divergence-time estimation; fossil record; fossilized birth-death; lineage diversification; Marattiales; models of morphological evolution; Psaronius; RevBayes.].
Collapse
Affiliation(s)
- Michael R May
- Department of Integrative Biology, University of California, Berkeley, 3040 Valley Life Sciences Building #3140, Berkeley, CA 94720, USA
- University Herbarium, University of California, Berkeley, 1001 Valley Life Sciences Building #2465, Berkeley, CA 94720, USA
| | - Dori L Contreras
- Department of Paleontology, Perot Museum of Nature and Science, 2201 N. Field Street, Dallas TX 75201, USA
| | - Michael A Sundue
- Department of Plant Biology, University of Vermont, 111 Jeffords Hall, 63 Carrigan Drive, Burlington, VT 05405, USA
- The Pringle Herbarium, University of Vermont, 305 Jeffords Hall, 63 Carrigan Drive, Burlington, VT 05405, USA
| | - Nathalie S Nagalingum
- Department of Botany, California Academy of Sciences, Golden Gate Park, 55 Music Concourse Drive, San Francisco, CA 94118, USA
| | - Cindy V Looy
- Department of Integrative Biology, University of California, Berkeley, 3040 Valley Life Sciences Building #3140, Berkeley, CA 94720, USA
- University Herbarium, University of California, Berkeley, 1001 Valley Life Sciences Building #2465, Berkeley, CA 94720, USA
- Museum of Paleontology, University of California, 1101 Valley Life Sciences Building, Berkeley, CA 94720, USA
| | - Carl J Rothfels
- Department of Integrative Biology, University of California, Berkeley, 3040 Valley Life Sciences Building #3140, Berkeley, CA 94720, USA
- University Herbarium, University of California, Berkeley, 1001 Valley Life Sciences Building #2465, Berkeley, CA 94720, USA
| |
Collapse
|
46
|
Li X, Li Y, Sylvester SP, Zang M, El‐Kassaby YA, Fang Y. Evolutionary patterns of nucleotide substitution rates in plastid genomes of Quercus. Ecol Evol 2021; 11:13401-13414. [PMID: 34646478 PMCID: PMC8495791 DOI: 10.1002/ece3.8063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Molecular evolution, including nucleotide substitutions, plays an important role in understanding the dynamics and mechanisms of species evolution. Here, we sequenced whole plastid genomes (plastomes) of Quercus fabri, Quercus semecarpifolia, Quercus engleriana, and Quercus phellos and compared them with 14 other Quercus plastomes to explore their evolutionary relationships using 67 shared protein-coding sequences. While many previously identified evolutionary relationships were found, our findings do not support previous research which retrieve Quercus subg. Cerris sect. Ilex as a monophyletic group, with sect. Ilex found to be polyphyletic and composed of three strongly supported lineages inserted between sections Cerris and Cyclobalanposis. Compared with gymnosperms, Quercus plastomes showed higher evolutionary rates (Dn/Ds = 0.3793). Most protein-coding genes experienced relaxed purifying selection, and the high Dn value (0.1927) indicated that gene functions adjusted to environmental changes effectively. Our findings suggest that gene interval regions play an important role in Quercus evolution. We detected greater variation in the intergenic regions (trnH-psbA, trnK_UUU-rps16, trnfM_CAU-rps14, trnS_GCU-trnG_GCC, and atpF-atpH), intron losses (petB and petD), and pseudogene loss and degradation (ycf15). Additionally, the loss of some genes suggested the existence of gene exchanges between plastid and nuclear genomes, which affects the evolutionary rate of the former. However, the connective mechanism between these two genomes is still unclear.
Collapse
Affiliation(s)
- Xuan Li
- Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity ConservationCollege of Biology and the EnvironmentCo‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
- Department of Forest and Conservation Sciences Faculty of ForestryThe University of British ColumbiaVancouverBCCanada
| | - Yongfu Li
- Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity ConservationCollege of Biology and the EnvironmentCo‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
| | - Steven Paul Sylvester
- Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity ConservationCollege of Biology and the EnvironmentCo‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
| | - Mingyue Zang
- Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity ConservationCollege of Biology and the EnvironmentCo‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
| | - Yousry A. El‐Kassaby
- Department of Forest and Conservation Sciences Faculty of ForestryThe University of British ColumbiaVancouverBCCanada
| | - Yanming Fang
- Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity ConservationCollege of Biology and the EnvironmentCo‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
| |
Collapse
|
47
|
Tao Y, Chen B, Kang M, Liu Y, Wang J. Genome-Wide Evidence for Complex Hybridization and Demographic History in a Group of Cycas From China. Front Genet 2021; 12:717200. [PMID: 34527022 PMCID: PMC8435751 DOI: 10.3389/fgene.2021.717200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/10/2021] [Indexed: 11/24/2022] Open
Abstract
Cycads represent one of the most ancestral living seed plants as well as one of the most threatened plant groups in the world. South China is a major center and potential origin of Cycas, the most rapidly diversified lineage of cycads. However, genomic-wide diversity of Cycas remains poorly understood due to the challenge of generating genomic markers associated with their inherent large genomes. Here, we perform a comprehensive conservation genomic study based on restriction-site associated DNA sequencing (RADseq) data in six representative species of Cycas in South China. Consistently low genetic diversity and strong genetic differentiation were detected across species. Both phylogenetic inference and genetic structure analysis via several methods revealed generally congruent groups among the six Cycas species. The analysis with ADMIXTURE showed low mixing of genetic composition among species, while individuals of C. dolichophylla exhibited substantial genetic admixture with C. bifida, C. changjiangensis, and C. balansae. Furthermore, the results from Treemix, f4-statistic, and ABBA-BABA test were generally consistent and revealed the complex patterns of interspecific gene flow. Relatively strong signals of hybridization were detected between C. dolichophylla and C. szechuanensis, and the ancestor of C. taiwaniana and C. changjiangensis. Distinct patterns of demographic history were inferred for these species by Stairway Plot, and our results suggested that both climate fluctuation and frequent geological activities during the late Pleistocene exerted deep impacts on the population dynamics of these species in South China. Finally, we explore the practical implications of our findings for the development of conservation strategies in Cycas. The present study demonstrates the efficiency of RADseq for conservation genomic studies on non-model species with large and complex genomes. Given the great significance of cycads as a radical transition in the evolution of plant biodiversity, our study provides important insights into the mechanisms of diversification in such recently radiated living fossil taxa.
Collapse
Affiliation(s)
- Yueqi Tao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bin Chen
- Shanghai Chenshan Botanical Garden, Shanghai, China.,Eastern China Conservation Center for Wild Endangered Plant Resources, Shanghai, China
| | - Ming Kang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Yongbo Liu
- State Environment Protection Key Laboratory of Regional Ecological Process and Functional Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Jing Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
48
|
Stull GW, Qu XJ, Parins-Fukuchi C, Yang YY, Yang JB, Yang ZY, Hu Y, Ma H, Soltis PS, Soltis DE, Li DZ, Smith SA, Yi TS. Gene duplications and phylogenomic conflict underlie major pulses of phenotypic evolution in gymnosperms. NATURE PLANTS 2021; 7:1015-1025. [PMID: 34282286 DOI: 10.1038/s41477-021-00964-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/10/2021] [Indexed: 05/15/2023]
Abstract
Inferring the intrinsic and extrinsic drivers of species diversification and phenotypic disparity across the tree of life is a major challenge in evolutionary biology. In green plants, polyploidy (or whole-genome duplication, WGD) is known to play a major role in microevolution and speciation, but the extent to which WGD has shaped macroevolutionary patterns of diversification and phenotypic innovation across plant phylogeny remains an open question. Here, we examine the relationship of various facets of genomic evolution-including gene and genome duplication, genome size, and chromosome number-with macroevolutionary patterns of phenotypic innovation, species diversification, and climatic occupancy in gymnosperms. We show that genomic changes, such as WGD and genome-size shifts, underlie the origins of most major extant gymnosperm clades, and notably, our results support an ancestral WGD in the gymnosperm lineage. Spikes of gene duplication typically coincide with major spikes of phenotypic innovation, while increased rates of phenotypic evolution are typically found at nodes with high gene-tree conflict, representing historic population-level dynamics during speciation. Most shifts in gymnosperm diversification since the rise of angiosperms are decoupled from putative WGDs and instead are associated with increased rates of climatic occupancy evolution, particularly in cooler and/or more arid climatic conditions, suggesting that ecological opportunity, especially in the later Cenozoic, and environmental heterogeneity have driven a resurgence of gymnosperm diversification. Our study provides critical insight on the processes underlying diversification and phenotypic evolution in gymnosperms, with important broader implications for the major drivers of both micro- and macroevolution in plants.
Collapse
Affiliation(s)
- Gregory W Stull
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xiao-Jian Qu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | | | - Ying-Ying Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Zhi-Yun Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yi Hu
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Hong Ma
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
| | - Stephen A Smith
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Ting-Shuang Yi
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
49
|
Habib S, Dong S, Liu Y, Liao W, Zhang S. The complete mitochondrial genome of Cycas debaoensis revealed unexpected static evolution in gymnosperm species. PLoS One 2021; 16:e0255091. [PMID: 34293066 PMCID: PMC8297867 DOI: 10.1371/journal.pone.0255091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/11/2021] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial genomes of vascular plants are well known for their liability in architecture evolution. However, the evolutionary features of mitogenomes at intra-generic level are seldom studied in vascular plants, especially among gymnosperms. Here we present the complete mitogenome of Cycas debaoensis, an endemic cycad species to the Guangxi region in southern China. In addition to assemblage of draft mitochondrial genome, we test the conservation of gene content and mitogenomic stability by comparing it to the previously published mitogenome of Cycas taitungensis. Furthermore, we explored the factors such as structural rearrangements and nuclear surveillance of double-strand break repair (DSBR) proteins in Cycas in comparison to other vascular plant groups. The C. debaoensis mitogenome is 413,715 bp in size and encodes 69 unique genes, including 40 protein coding genes, 26 tRNAs, and 3 rRNA genes, similar to that of C. taitungensis. Cycas mitogenomes maintained the ancestral intron content of seed plants (26 introns), which is reduced in other lineages of gymnosperms, such as Ginkgo biloba, Taxus cuspidata and Welwitschia mirabilis due to selective pressure or retroprocessing events. C. debaoensis mitogenome holds 1,569 repeated sequences (> 50 bp), which partially account for fairly large intron size (1200 bp in average) of Cycas mitogenome. The comparison of RNA-editing sites revealed 267 shared non-silent editing site among predicted vs. empirically observed editing events. Another 33 silent editing sites from empirical data increase the total number of editing sites in Cycas debaoensis mitochondrial protein coding genes to 300. Our study revealed unexpected conserved evolution between the two Cycas species. Furthermore, we found strict collinearity of the gene order along with the identical set of genomic content in Cycas mt genomes. The stability of Cycas mt genomes is surprising despite the existence of large number of repeats. This structural stability may be related to the relative expansion of three DSBR protein families (i.e., RecA, OSB, and RecG) in Cycas nuclear genome, which inhibit the homologous recombinations, by monitoring the accuracy of mitochondrial chromosome repair.
Collapse
Affiliation(s)
- Sadaf Habib
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Shanshan Dong
- Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Yang Liu
- Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Wenbo Liao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shouzhou Zhang
- Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
50
|
Li MJ, Yu HX, Guo XL, He XJ. Out of the Qinghai-Tibetan Plateau and rapid radiation across Eurasia for Allium section Daghestanica (Amaryllidaceae). AOB PLANTS 2021; 13:plab017. [PMID: 34055281 PMCID: PMC8152445 DOI: 10.1093/aobpla/plab017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
The disjunctive distribution (Europe-Caucasus-Asia) and species diversification across Eurasia for the genus Allium sect. Daghestanica has fascinating attractions for researchers aiming to understanding the development and history of modern Eurasia flora. However, no any studies have been carried out to address the evolutionary history of this section. Based on the nrITS and cpDNA fragments (trnL-trnF and rpl32-trnL), the evolutionary history of the third evolutionary line (EL3) of the genus Allium was reconstructed and we further elucidated the evolutionary line of sect. Daghestanica under this background. Our molecular phylogeny recovered two highly supported clades in sect. Daghestanica: the Clade I includes Caucasian-European species and Asian A. maowenense, A. xinlongense and A. carolinianum collected in Qinghai; the Clade II comprises Asian yellowish tepal species, A. chrysanthum, A. chrysocephalum, A. herderianum, A. rude and A. xichuanense. The divergence time estimation and biogeography inference indicated that Asian ancestor located in the Qinghai-Tibetan Plateau (QTP) and the adjacent region could have migrated to Caucasus and Europe distributions around the Late Miocene and resulted in further divergence and speciation; Asian ancestor underwent the rapid radiation in the QTP and the adjacent region most likely due to the heterogeneous ecology of the QTP resulted from the orogeneses around 4-3 million years ago (Mya). Our study provides a picture to understand the origin and species diversification across Eurasia for sect. Daghestanica.
Collapse
Affiliation(s)
- Min-Jie Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, P.R. China
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & School of Life Science, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Huan-Xi Yu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, P.R. China
- Nanjing Institute of Environmental Science, MEE, Nanjing, Jiangsu 210042, P.R. China
| | - Xian-Lin Guo
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, P.R. China
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, P.R. China
| |
Collapse
|