1
|
Burtt DG, Stern JC, Webster CR, Hofmann AE, Franz HB, Sutter B, Thorpe MT, Kite ES, Eigenbrode JL, Pavlov AA, House CH, Tutolo BM, Des Marais DJ, Rampe EB, McAdam AC, Malespin CA. Highly enriched carbon and oxygen isotopes in carbonate-derived CO 2 at Gale crater, Mars. Proc Natl Acad Sci U S A 2024; 121:e2321342121. [PMID: 39374395 PMCID: PMC11494307 DOI: 10.1073/pnas.2321342121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/07/2024] [Indexed: 10/09/2024] Open
Abstract
Carbonate minerals are of particular interest in paleoenvironmental research as they are an integral part of the carbon and water cycles, both of which are relevant to habitability. Given that these cycles are less constrained on Mars than they are on Earth, the identification of carbonates has been a point of emphasis for rover missions. Here, we present carbon (δ13C) and oxygen (δ18O) isotope data from four carbonates encountered by the Curiosity rover within the Gale crater. The carbon isotope values range from 72 ± 2‰ to 110 ± 3‰ Vienna Pee Dee Belemnite while the oxygen isotope values span from 59 ± 4‰ to 91 ± 4‰ Vienna Standard Mean Ocean Water (1 SE uncertainties). Notably, these values are isotopically heavy (13C- and 18O-enriched) relative to nearly every other Martian material. The extreme isotopic difference between the carbonates and other carbon- and oxygen-rich reservoirs on Mars cannot be reconciled by standard equilibrium carbonate-CO2 fractionation, thus requiring an alternative process during or prior to carbonate formation. This paper explores two processes capable of contributing to the isotopic enrichments: 1) evaporative-driven Rayleigh distillation and 2) kinetic isotope effects related to cryogenic precipitation. In isolation, each process cannot reproduce the observed carbonate isotope values; however, a combination of these processes represents the most likely source for the extreme isotopic enrichments.
Collapse
Affiliation(s)
- David G. Burtt
- NASA Postdoctoral Fellow, Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD20771
| | - Jennifer C. Stern
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD20771
| | | | - Amy E. Hofmann
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA91109
| | - Heather B. Franz
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD20771
| | - Brad Sutter
- Jacobs Technology, Houston, TX77058
- NASA Johnson Space Center, Houston, TX77058
| | - Michael T. Thorpe
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD20771
- University of Maryland/Goddard Space Flight/Center for Research and Exploration in Space and Science Technology (CRESST II), Greenbelt, MD20771
| | - Edwin S. Kite
- Department of Geophysical Sciences, University of Chicago, Chicago, IL60637
| | | | - Alexander A. Pavlov
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD20771
| | - Christopher H. House
- Department of Geosciences, Pennsylvania State University, University Park, PA16802
| | - Benjamin M. Tutolo
- Department of Geoscience, University of Calgary, Calgary, ABT2N 1N4, Canada
| | | | | | - Amy C. McAdam
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD20771
| | - Charles A. Malespin
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD20771
| |
Collapse
|
2
|
Brotherton EE, Chan DHH, Armes SP, Janani R, Sammon C, Wills JL, Tandy JD, Burchell MJ, Wozniakiewicz PJ, Alesbrook LS, Tabata M. Synthesis of Phenanthrene/Pyrene Hybrid Microparticles: Useful Synthetic Mimics for Polycyclic Aromatic Hydrocarbon-Based Cosmic Dust. J Am Chem Soc 2024; 146:20802-20813. [PMID: 39018427 PMCID: PMC11295189 DOI: 10.1021/jacs.4c04330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/19/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are found throughout the interstellar medium and are important markers for the evolution of galaxies and both star and planet formation. They are also widely regarded as a major source of carbon, which has implications in the search for extraterrestrial life. Herein we construct a melting point phase diagram for a series of phenanthrene/pyrene binary mixtures to identify the eutectic composition (75 mol % phenanthrene) and its melting point (83 °C). The molten oil obtained on heating this eutectic composition to 90 °C in aqueous solution is homogenized in the presence of a water-soluble polymeric emulsifier. On cooling to 20 °C, polydisperse spherical phenanthrene/pyrene hybrid microparticles are obtained. Varying the stirring rate and emulsifier type enables the mean microparticle diameter to be adjusted from 11 to 279 μm. Importantly, the phenanthrene content of individual microparticles remains constant during processing, as expected for the eutectic composition. These new hybrid microparticles form impact craters and undergo partial fragmentation when fired into a metal target at 1 km s-1 using a light gas gun. When fired into an aerogel target at the same speed, microparticles are located at the ends of characteristic "carrot tracks". Autofluorescence is observed in both types of experiments, which at first sight suggests minimal degradation. However, Raman microscopy analysis of the aerogel-captured microparticles indicates prominent pyrene signals but no trace of the more volatile phenanthrene component. Such differential ablation during aerogel capture is expected to inform the in situ analysis of PAH-rich cosmic dust in future space missions.
Collapse
Affiliation(s)
- Emma E. Brotherton
- Dainton
Building, Department of Chemistry, University
of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| | - Derek H. H. Chan
- Dainton
Building, Department of Chemistry, University
of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| | - Steven P. Armes
- Dainton
Building, Department of Chemistry, University
of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| | - Ronak Janani
- Materials
and Engineering Research Institute, Sheffield
Hallam University, Sheffield, South Yorkshire S1 1WB, U.K.
| | - Chris Sammon
- Materials
and Engineering Research Institute, Sheffield
Hallam University, Sheffield, South Yorkshire S1 1WB, U.K.
| | - Jessica L. Wills
- School
of Physics and Astronomy, University of
Kent, Canterbury, Kent CT2 7NH, U.K.
| | - Jon D. Tandy
- School
of Chemistry and Forensic Science, University
of Kent, Canterbury CT2 7NZ, U.K.
| | - Mark J. Burchell
- School
of Physics and Astronomy, University of
Kent, Canterbury, Kent CT2 7NH, U.K.
| | | | - Luke S. Alesbrook
- School
of Physics and Astronomy, University of
Kent, Canterbury, Kent CT2 7NH, U.K.
| | - Makoto Tabata
- Department
of Physics, Chiba University, Chiba 2638522, Japan
| |
Collapse
|
3
|
Guo Z, Papineau D, O'Neil J, Rizo H, Chen ZQ, Qiu X, She Z. Abiotic synthesis of graphitic carbons in the Eoarchean Saglek-Hebron metasedimentary rocks. Nat Commun 2024; 15:5679. [PMID: 38971883 PMCID: PMC11227522 DOI: 10.1038/s41467-024-50134-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024] Open
Abstract
Graphite in metasedimentary rocks of the Eoarchean Saglek-Hebron Gneiss Complex (Canada) is depleted in 13C and has been interpreted as one of the oldest traces of life on Earth. The variation in crystallinity of this oldest graphitic carbon could possibly confirm the effect of metamorphism on original biomass, but this is still unexplored. Here, we report specific mineral associations with graphitic carbons that also have a range of crystallinity in the Saglek-Hebron metasedimentary rocks. Petrographic, geochemical and spectroscopic analyses in the Saglek-Hebron banded iron formations suggest that poorly crystalline graphite is likely deposited from C-H-O fluids derived from thermal decomposition of syngenetic organic matter, which is preserved as crystalline graphite during prograde metamorphism. In comparison, in the Saglek-Hebron marble, disseminations of graphite co-occur with carbonate and magnetite disseminations, pointing to abiotic synthesis of graphitic carbons via decarbonation. Our results thus highlight that variably crystalline graphitic carbons in the Saglek-Hebron metasedimentary rocks are potential abiotic products on early Earth, which lay the groundwork for identifying the preservation of prebiotic organic matter through metamorphism on Earth and beyond.
Collapse
Affiliation(s)
- Zixiao Guo
- School of Geographical Sciences, Hebei Key Laboratory of Environmental Change and Ecological Construction, Hebei Normal University, Shijiazhuang, China.
- Department of Earth Sciences, University College London, London, UK.
| | - Dominic Papineau
- Department of Earth Sciences, University College London, London, UK
- London Centre for Nanotechnology, University College London, London, UK
- Centre for Planetary Sciences, University College London, London, UK
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan, PR China
| | - Jonathan O'Neil
- Department of Earth and Environmental Sciences, Ottawa-Carleton Geoscience Centre, University of Ottawa, Ottawa, ON, Canada
| | - Hanika Rizo
- Department of Earth Sciences, Ottawa-Carleton Geoscience Centre, Carleton University, Ottawa, ON, Canada
| | - Zhong-Qiang Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan, PR China
| | - Xincheng Qiu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan, PR China
| | - Zhenbing She
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan, PR China
| |
Collapse
|
4
|
Sephton MA, Freeman K, Hays L, Thiessen F, Benison K, Carrier B, Dworkin JP, Glamoclija M, Gough R, Onofri S, Peterson R, Quinn R, Russell S, Stüeken EE, Velbel M, Zolotov M. Thresholds of Temperature and Time for Mars Sample Return: Final Report of the Mars Sample Return Temperature-Time Tiger Team. ASTROBIOLOGY 2024; 24:443-488. [PMID: 38768433 DOI: 10.1089/ast.2023.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Affiliation(s)
- Mark A Sephton
- Imperial College London, Earth Science and Engineering, South Kensington Campus, London, UK
| | - Kate Freeman
- The Pennsylvania State University, Geosciences, University Park, Pennsylvania, USA
| | - Lindsay Hays
- NASA Headquarters, Mars Sample Return Program, Washington, DC, USA
| | - Fiona Thiessen
- European Space Research and Technology Centre, Noordwijk, South Holland, Netherlands
| | - Kathleen Benison
- West Virginia University, Department of Geology and Geography, Morgantown, West Virginia, USA
| | - Brandi Carrier
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Jason P Dworkin
- NASA Goddard Space Flight Center, Astrochemistry, Greenbelt, Maryland, USA
| | - Mihaela Glamoclija
- Rutgers University Newark College of Arts and Sciences, Earth and Environmental Sciences, Newark, New Jersey, USA
| | - Raina Gough
- University of Colorado, Department of Chemistry and Biochemistry, Boulder, Colorado, USA
| | - Silvano Onofri
- University of Tuscia, Department of Ecological and Biological Sciences, Largo dell'Università snc Viterbo, Italy
| | | | - Richard Quinn
- NASA Ames Research Center, Moffett Field, California, USA
| | - Sara Russell
- Natural History Museum, Department of Earth Sciences, London, UK
| | - Eva E Stüeken
- University of St Andrews, School of Earth and Environmental Sciences, St Andrews, Fife, UK
| | - Michael Velbel
- Michigan State University, Earth and Environmental Sciences, East Lansing, Michigan, USA
- Smithsonian Institution, Department of Mineral Sciences, National Museum of Natural History, Washington, DC, USA
| | - Mikhail Zolotov
- Arizona State University, School of Earth and Space Exploration, Tempe, Arizona, USA
| |
Collapse
|
5
|
Clodoré L, Foucher F, Hickman-Lewis K, Sorieul S, Jouve J, Réfrégiers M, Collet G, Petoud S, Gratuze B, Westall F. Multi-Technique Characterization of 3.45 Ga Microfossils on Earth: A Key Approach to Detect Possible Traces of Life in Returned Samples from Mars. ASTROBIOLOGY 2024; 24:190-226. [PMID: 38393828 DOI: 10.1089/ast.2023.0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
The NASA Mars 2020 Perseverance rover is actively exploring Jezero crater to conduct analyses on igneous and sedimentary rock targets from outcrops located on the crater floor (Máaz and Séítah formations) and from the delta deposits, respectively. The rock samples collected during this mission will be recovered during the Mars Sample Return mission, which plans to bring samples back to Earth in the 2030s to conduct in-depth studies using sophisticated laboratory instrumentation. Some of these samples may contain traces of ancient martian life that may be particularly difficult to detect and characterize because of their morphological simplicity and subtle biogeochemical expressions. Using the volcanic sediments of the 3.45 Ga Kitty's Gap Chert (Pilbara, Australia), containing putative early life forms (chemolithotrophs) and considered as astrobiological analogues for potential early Mars organisms, we document the steps required to demonstrate the syngenicity and biogenicity of such biosignatures using multiple complementary analytical techniques to provide information at different scales of observation. These include sedimentological, petrological, mineralogical, and geochemical analyses to demonstrate macro- to microscale habitability. New approaches, some unavailable at the time of the original description of these features, are used to verify the syngenicity and biogenicity of the purported fossil chemolithotrophs. The combination of elemental (proton-induced X-ray emission spectrometry) and molecular (deep-ultraviolet and Fourier transform infrared) analyses of rock slabs, thin sections, and focused ion beam sections reveals that the carbonaceous matter present in the samples is enriched in trace metals (e.g., V, Cr, Fe, Co) and is associated with aromatic and aliphatic molecules, which strongly support its biological origin. Transmission electron microscopy observations of the carbonaceous matter documented an amorphous nanostructure interpreted to correspond to the degraded remains of microorganisms and their by-products (extracellular polymeric substances, filaments…). Nevertheless, a small fraction of carbonaceous particles has signatures that are more metamorphosed. They probably represent either reworked detrital biological or abiotic fragments of mantle origin. This study serves as an example of the analytical protocol that would be needed to optimize the detection of fossil traces of life in martian rocks.
Collapse
Affiliation(s)
- Laura Clodoré
- CNRS-Centre de Biophysique Moléculaire, Orléans, France
| | - Frédéric Foucher
- CNRS-Centre de Biophysique Moléculaire, Orléans, France
- CNRS-Conditions Extrêmes et Matériaux: Haute Température et Irradiation, Orléans, France
| | - Keyron Hickman-Lewis
- Natural History Museum, London, United Kingdom
- Dipartimento BiGeA, Università di Bologna, Bologna, Italy
| | | | - Jean Jouve
- University of Bordeaux, CNRS, IN2P3, CENBG, Gradignan, France
| | | | - Guillaume Collet
- CNRS-Centre de Biophysique Moléculaire, Orléans, France
- Chair of Cosmetology, AgroParisTech Innovation, Orléans, France
| | | | - Bernard Gratuze
- CNRS-Institut de Recherche sur les ArchéoMATériaux, Orléans, France
| | | |
Collapse
|
6
|
Chan DH, Wills JL, Tandy JD, Burchell MJ, Wozniakiewicz PJ, Alesbrook LS, Armes SP. Synthesis of Autofluorescent Phenanthrene Microparticles via Emulsification: A Useful Synthetic Mimic for Polycyclic Aromatic Hydrocarbon-Based Cosmic Dust. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54039-54049. [PMID: 37944021 PMCID: PMC10685351 DOI: 10.1021/acsami.3c08585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
Phenanthrene is the simplest example of a polycyclic aromatic hydrocarbon (PAH). Herein, we exploit its relatively low melting point (101 °C) to prepare microparticles from molten phenanthrene droplets by conducting high-shear homogenization in a 3:1 water/ethylene glycol mixture at 105 °C using poly(N-vinylpyrrolidone) as a non-ionic polymeric emulsifier. Scanning electron microscopy studies confirm that this protocol produces polydisperse phenanthrene microparticles with a spherical morphology: laser diffraction studies indicate a volume-average diameter of 25 ± 21 μm. Such projectiles are fired into an aluminum foil target at 1.87 km s-1 using a two-stage light gas gun. Interestingly, the autofluorescence exhibited by phenanthrene aids analysis of the resulting impact craters. More specifically, it enables assessment of the spatial distribution of any surviving phenanthrene in the vicinity of each crater. Furthermore, these phenanthrene microparticles can be coated with an ultrathin overlayer of polypyrrole, which reduces their autofluorescence. In principle, such core-shell microparticles should be useful for assessing the extent of thermal ablation that is likely to occur when they are fired into aerogel targets. Accordingly, polypyrrole-coated microparticles were fired into an aerogel target at 2.07 km s-1. Intact microparticles were identified at the end of carrot tracks and their relatively weak autofluorescence suggests that thermal ablation during aerogel capture did not completely remove the polypyrrole overlayer. Thus, these new core-shell microparticles appear to be useful model projectiles for assessing the extent of thermal processing that can occur in such experiments, which have implications for the capture of intact PAH-based dust grains originating from cometary tails or from plumes emanating from icy satellites (e.g., Enceladus) in future space missions.
Collapse
Affiliation(s)
- Derek
H. H. Chan
- Dainton
Building, Department of Chemistry, University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Jessica L. Wills
- School
of Physics and Astronomy, University of
Kent, Canterbury, Kent CT2 7NH, U.K.
| | - Jon D. Tandy
- School
of Chemistry and Forensic Science, University
of Kent, Canterbury, Kent CT2 7NZ, U.K.
| | - Mark J. Burchell
- School
of Physics and Astronomy, University of
Kent, Canterbury, Kent CT2 7NH, U.K.
| | | | - Luke S. Alesbrook
- School
of Physics and Astronomy, University of
Kent, Canterbury, Kent CT2 7NH, U.K.
| | - Steven P. Armes
- Dainton
Building, Department of Chemistry, University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| |
Collapse
|
7
|
An in situ search for organic molecules in Mars's Jezero Crater. Nature 2023:10.1038/d41586-023-02007-8. [PMID: 37438622 DOI: 10.1038/d41586-023-02007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
|
8
|
Sharma S, Roppel RD, Murphy AE, Beegle LW, Bhartia R, Steele A, Hollis JR, Siljeström S, McCubbin FM, Asher SA, Abbey WJ, Allwood AC, Berger EL, Bleefeld BL, Burton AS, Bykov SV, Cardarelli EL, Conrad PG, Corpolongo A, Czaja AD, DeFlores LP, Edgett K, Farley KA, Fornaro T, Fox AC, Fries MD, Harker D, Hickman-Lewis K, Huggett J, Imbeah S, Jakubek RS, Kah LC, Lee C, Liu Y, Magee A, Minitti M, Moore KR, Pascuzzo A, Rodriguez Sanchez-Vahamonde C, Scheller EL, Shkolyar S, Stack KM, Steadman K, Tuite M, Uckert K, Werynski A, Wiens RC, Williams AJ, Winchell K, Kennedy MR, Yanchilina A. Diverse organic-mineral associations in Jezero crater, Mars. Nature 2023; 619:724-732. [PMID: 37438522 PMCID: PMC10371864 DOI: 10.1038/s41586-023-06143-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 04/27/2023] [Indexed: 07/14/2023]
Abstract
The presence and distribution of preserved organic matter on the surface of Mars can provide key information about the Martian carbon cycle and the potential of the planet to host life throughout its history. Several types of organic molecules have been previously detected in Martian meteorites1 and at Gale crater, Mars2-4. Evaluating the diversity and detectability of organic matter elsewhere on Mars is important for understanding the extent and diversity of Martian surface processes and the potential availability of carbon sources1,5,6. Here we report the detection of Raman and fluorescence spectra consistent with several species of aromatic organic molecules in the Máaz and Séítah formations within the Crater Floor sequences of Jezero crater, Mars. We report specific fluorescence-mineral associations consistent with many classes of organic molecules occurring in different spatial patterns within these compositionally distinct formations, potentially indicating different fates of carbon across environments. Our findings suggest there may be a diversity of aromatic molecules prevalent on the Martian surface, and these materials persist despite exposure to surface conditions. These potential organic molecules are largely found within minerals linked to aqueous processes, indicating that these processes may have had a key role in organic synthesis, transport or preservation.
Collapse
Affiliation(s)
- Sunanda Sharma
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
| | - Ryan D Roppel
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | - Andrew Steele
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, USA
| | | | - Sandra Siljeström
- Department of Methodology, Textiles and Medical Technology, RISE Research Institutes of Sweden, Stockholm, Sweden
| | - Francis M McCubbin
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX, USA
| | - Sanford A Asher
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - William J Abbey
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Abigail C Allwood
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Eve L Berger
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX, USA
- Texas State University, Houston, TX, USA
- Jacobs JETS II, Houston, TX, USA
| | | | - Aaron S Burton
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX, USA
| | - Sergei V Bykov
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Emily L Cardarelli
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Pamela G Conrad
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, USA
| | - Andrea Corpolongo
- Department of Geosciences, University of Cincinnati, Cincinnati, OH, USA
| | - Andrew D Czaja
- Department of Geosciences, University of Cincinnati, Cincinnati, OH, USA
| | - Lauren P DeFlores
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | - Kenneth A Farley
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Teresa Fornaro
- Astrophysical Observatory of Arcetri, INAF, Florence, Italy
| | - Allison C Fox
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX, USA
- Texas State University, Houston, TX, USA
- Jacobs JETS II, Houston, TX, USA
| | - Marc D Fries
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX, USA
| | - David Harker
- Malin Space Science Systems, Inc., San Diego, CA, USA
| | | | | | - Samara Imbeah
- Malin Space Science Systems, Inc., San Diego, CA, USA
| | - Ryan S Jakubek
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX, USA
- Jacobs JETS II, Houston, TX, USA
| | - Linda C Kah
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, USA
| | - Carina Lee
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX, USA
- Texas State University, Houston, TX, USA
- Jacobs JETS II, Houston, TX, USA
| | - Yang Liu
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Angela Magee
- Malin Space Science Systems, Inc., San Diego, CA, USA
| | | | - Kelsey R Moore
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | | | | | - Eva L Scheller
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Svetlana Shkolyar
- Department of Astronomy, University of Maryland, College Park, MD, USA
- Planetary Geology, Geophysics and Geochemistry Lab, NASA Goddard Space Flight Center, Greenbelt, MD, USA
- Blue Marble Space Institute of Science, Seattle, WA, USA
| | - Kathryn M Stack
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Kim Steadman
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Michael Tuite
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Kyle Uckert
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | - Roger C Wiens
- Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, Lafayette, IN, USA
| | - Amy J Williams
- Department of Geological Sciences, University of Florida, Gainesville, FL, USA
| | - Katherine Winchell
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA
| | | | | |
Collapse
|
9
|
Schmitt-Kopplin P, Matzka M, Ruf A, Menez B, Chennaoui Aoudjehane H, Harir M, Lucio M, Hertzog J, Hertkorn N, Gougeon RD, Hoffmann V, Hinman NW, Ferrière L, Greshake A, Gabelica Z, Trif L, Steele A. Complex carbonaceous matter in Tissint martian meteorites give insights into the diversity of organic geochemistry on Mars. SCIENCE ADVANCES 2023; 9:eadd6439. [PMID: 36630504 PMCID: PMC9833655 DOI: 10.1126/sciadv.add6439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
We report a huge organic diversity in the Tissint Mars meteorite and the sampling of several mineralogical lithologies, which revealed that the organic molecules were nonuniformly distributed in functionality and abundance. The range of organics in Tissint meteorite were abundant C3-7 aliphatic branched carboxylic acids and aldehydes, olefins, and polyaromatics with and without heteroatoms in a homologous oxidation structural continuum. Organomagnesium compounds were extremely abundant in olivine macrocrystals and in the melt veins, reflecting specific organo-synsthesis processes in close interaction with the magnesium silicates and temperature stresses, as previously observed. The diverse chemistry and abundance in complex molecules reveal heterogeneity in organic speciation within the minerals grown in the martian mantle and crust that may have evolved over geological time.
Collapse
Affiliation(s)
- Philippe Schmitt-Kopplin
- Technische Universität München, Chair of Analytical Food Chemistry, Freising-Weihenstephan 85354, Germany
- Max Planck Institute for Extraterrestrial Physics, Center for Astrochemical Studies, Garching 85748, Germany
- Helmholtz München, Analytical BioGeoChemistry, Neuherberg 85764, Germany
| | - Marco Matzka
- Helmholtz München, Analytical BioGeoChemistry, Neuherberg 85764, Germany
| | - Alexander Ruf
- Technische Universität München, Chair of Analytical Food Chemistry, Freising-Weihenstephan 85354, Germany
- Excellence Cluster ORIGINS, Boltzmannstraße 2, Garching 85748, Germany
- Ludwig-Maximilians-University, Department of Chemistry and Pharmacy, Butenandtstr. 5-13, Munich 81377, Germany
| | - Benedicte Menez
- Université de Paris, Institut de Physique du Globe de Paris, CNRS - 1, rue Jussieu, Paris Cedex 05 75238, France
| | - Hasnaa Chennaoui Aoudjehane
- Faculty of Sciences Ain Chock, GAIA Laboratory, Hassan II University of Casablanca, km 8 Route d’El Jadida, Casablanca 20150, Morocco
| | - Mourad Harir
- Helmholtz München, Analytical BioGeoChemistry, Neuherberg 85764, Germany
| | - Marianna Lucio
- Helmholtz München, Analytical BioGeoChemistry, Neuherberg 85764, Germany
| | - Jasmine Hertzog
- Technische Universität München, Chair of Analytical Food Chemistry, Freising-Weihenstephan 85354, Germany
- Helmholtz München, Analytical BioGeoChemistry, Neuherberg 85764, Germany
| | - Norbert Hertkorn
- Helmholtz München, Analytical BioGeoChemistry, Neuherberg 85764, Germany
| | - Régis D. Gougeon
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne/AgroSupDijon, Institut Universitaire de la Vigne et du Vin Jules Guyot, Dijon 21000, France
| | - Victor Hoffmann
- Faculty of Geosciences, Dep. Geo- and Environmental Sciences, LMU, Muenchen, Germany
| | | | | | | | - Zelimir Gabelica
- Université de Haute Alsace, École Nationale Supérieure de Chimie de Mulhouse, F-68094 Mulhouse Cedex, France
| | - László Trif
- Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Budapest, Hungary
| | - Andrew Steele
- Earth and Planetary Laboratory, Carnegie Institution for Science, 5251 Broad Branch Rd., Washington, DC 20015, USA
| |
Collapse
|
10
|
O'Brien ÁC, Hallis LJ, Regnault C, Morrison D, Blackburn G, Steele A, Daly L, Tait A, Tremblay MM, Telenko DE, Gunn J, McKay E, Mari N, Salik MA, Ascough P, Toney J, Griffin S, Whitfield P, Lee M. Using Organic Contaminants to Constrain the Terrestrial Journey of the Martian Meteorite Lafayette. ASTROBIOLOGY 2022; 22:1351-1362. [PMID: 36264546 PMCID: PMC9618387 DOI: 10.1089/ast.2021.0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
A key part of the search for extraterrestrial life is the detection of organic molecules since these molecules form the basis of all living things on Earth. Instrument suites such as SHERLOC (Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals) onboard the NASA Perseverance rover and the Mars Organic Molecule Analyzer onboard the future ExoMars Rosalind Franklin rover are designed to detect organic molecules at the martian surface. However, size, mass, and power limitations mean that these instrument suites cannot yet match the instrumental capabilities available in Earth-based laboratories. Until Mars Sample Return, the only martian samples available for study on Earth are martian meteorites. This is a collection of largely basaltic igneous rocks that have been exposed to varying degrees of terrestrial contamination. The low organic molecule abundance within igneous rocks and the expectation of terrestrial contamination make the identification of martian organics within these meteorites highly challenging. The Lafayette martian meteorite exhibits little evidence of terrestrial weathering, potentially making it a good candidate for the detection of martian organics despite uncertainties surrounding its fall history. In this study, we used ultrapure solvents to extract organic matter from triplicate samples of Lafayette and analyzed these extracts via hydrophilic interaction liquid chromatography-mass spectrometry (HILIC-MS). Two hundred twenty-four metabolites (organic molecules) were detected in Lafayette at concentrations more than twice those present in the procedural blanks. In addition, a large number of plant-derived metabolites were putatively identified, the presence of which supports the unconfirmed report that Lafayette fell in a semirural location in Indiana. Remarkably, the putative identification of the mycotoxin deoxynivalenol (or vomitoxin), alongside the report that the collector was possibly a student at Purdue University, can be used to identify the most likely fall year as 1919.
Collapse
Affiliation(s)
- Áine Clare O'Brien
- School of Geographical and Earth Sciences, University of Glasgow, Lilybank Gardens, Glasgow, UK
- SUERC, University of Glasgow, East Kilbride, UK
| | - Lydia Jane Hallis
- School of Geographical and Earth Sciences, University of Glasgow, Lilybank Gardens, Glasgow, UK
| | - Clement Regnault
- Polyomics, University of Glasgow, Wolfson Wohl Cancer Research Centre, Switchback Rd, Bearsden, Glasgow, UK
| | | | - Gavin Blackburn
- Polyomics, University of Glasgow, Wolfson Wohl Cancer Research Centre, Switchback Rd, Bearsden, Glasgow, UK
| | - Andrew Steele
- Carnegie Planets, Carnegie Science, Washington DC, USA
| | - Luke Daly
- School of Geographical and Earth Sciences, University of Glasgow, Lilybank Gardens, Glasgow, UK
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, Australia
- Department of Materials, University of Oxford, Oxford, UK
| | - Alastair Tait
- School of Earth, Atmosphere & Environment Monash University, Rainforest Walk Clayton, Victoria, Australia
| | - Marissa Marie Tremblay
- Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Darcy E.P. Telenko
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| | - Jacqueline Gunn
- School of Professional Services, Glasgow Caledonian University, Cowcaddens Road, Glasgow, UK
| | | | - Nicola Mari
- Dipartimento di Scienze della Terra e dell'Ambiente, University of Pavia, Pavia, Italy
| | - Mohammad Ali Salik
- School of Geographical and Earth Sciences, University of Glasgow, Lilybank Gardens, Glasgow, UK
| | | | - Jaime Toney
- School of Geographical and Earth Sciences, University of Glasgow, Lilybank Gardens, Glasgow, UK
| | - Sammy Griffin
- School of Geographical and Earth Sciences, University of Glasgow, Lilybank Gardens, Glasgow, UK
| | - Phil Whitfield
- Polyomics, University of Glasgow, Wolfson Wohl Cancer Research Centre, Switchback Rd, Bearsden, Glasgow, UK
| | - Martin Lee
- School of Geographical and Earth Sciences, University of Glasgow, Lilybank Gardens, Glasgow, UK
| |
Collapse
|
11
|
Organic carbon concentrations in 3.5-billion-year-old lacustrine mudstones of Mars. Proc Natl Acad Sci U S A 2022; 119:e2201139119. [PMID: 35759667 PMCID: PMC9271195 DOI: 10.1073/pnas.2201139119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This work presents the first quantification of bulk organic carbon in Mars surface sedimentary rocks, enabled by a stepped combustion experiment performed by the Curiosity Rover in Gale crater, Mars. The mudstone sample analyzed by Curiosity represents a previously habitable lacustrine environment and a depositional environment favorable for preservation of organics formed in situ and/or transported from a wide catchment area. Here we present the abundance of bulk organic carbon in these mudstone samples and discuss the contributions from various carbon reservoirs on Mars. The Sample Analysis at Mars instrument stepped combustion experiment on a Yellowknife Bay mudstone at Gale crater, Mars revealed the presence of organic carbon of Martian and meteoritic origins. The combustion experiment was designed to access refractory organic carbon in Mars surface sediments by heating samples in the presence of oxygen to combust carbon to CO2. Four steps were performed, two at low temperatures (less than ∼550 °C) and two at high temperatures (up to ∼870 °C). More than 950 μg C/g was released at low temperatures (with an isotopic composition of δ13C = +1.5 ± 3.8‰) representing a minimum of 431 μg C/g indigenous organic and inorganic Martian carbon components. Above 550 °C, 273 ± 30 μg C/g was evolved as CO2 and CO (with estimated δ13C = −32.9‰ to −10.1‰ for organic carbon). The source of high temperature organic carbon cannot be definitively confirmed by isotopic composition, which is consistent with macromolecular organic carbon of igneous origin, meteoritic infall, or diagenetically altered biomass, or a combination of these. If from allochthonous deposition, organic carbon could have supported both prebiotic organic chemistry and heterotrophic metabolism at Gale crater, Mars, at ∼3.5 Ga.
Collapse
|
12
|
Siljeström S, Neubeck A, Steele A. Detection of porphyrins in vertebrate fossils from the Messel and implications for organic preservation in the fossil record. PLoS One 2022; 17:e0269568. [PMID: 35767560 PMCID: PMC9242450 DOI: 10.1371/journal.pone.0269568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/24/2022] [Indexed: 11/30/2022] Open
Abstract
Organic molecules preserved in fossils provide a wealth of new information about ancient life. The discovery of almost unaltered complex organic molecules in well-preserved fossils raise the question of how common such occurrences are in the fossil record, how to differentiate between endogenous and exogenous sources for the organic matter and what promotes such preservation. The aim of this study was the in-situ analysis of a well-preserved vertebrate fossil from 48 Ma Eocene sediments in the Messel pit, Germany for preservation of complex biomolecules. The fossil was characterized using a variety of techniques including time-of-flight secondary ion mass spectrometry (ToF-SIMS), scanning electron microscopy/energy dispersive x-ray spectroscopy (SEM/EDX), x-ray diffraction (XRD) and Raman spectroscopy. A suite of organic molecules was detected, including porphyrins, which given the context of the detected signal are most probably diagenetically altered heme originating from the fossil though a microbial contribution cannot be completely ruled out. Diagenetic changes to the porphyrin structure were observed that included the exchange of the central iron by nickel. Further analyses on the geochemistry of the fossil and surrounding sediments showed presence of pyrite and aluminosilicates, most likely clay. In addition, a carbonate and calcium phosphate dominated crust has formed around the fossil. This suggests that several different processes are involved in the preservation of the fossil and the organic molecules associated with it. Similar processes seem to have also been involved in preservation of heme in fossils from other localities.
Collapse
Affiliation(s)
- Sandra Siljeström
- Department of Methodology, Textiles and Medical Technology, RISE Research Institutes of Sweden, Stockholm, Sweden
- * E-mail:
| | - Anna Neubeck
- Department of Earth Sciences, Uppsala University, Uppsala, Sweden
| | - Andrew Steele
- Carnegie Institution for Science, Earth and Planetary Laboratory, Washington, DC, United States of America
| |
Collapse
|
13
|
Goodwin A, Garwood RJ, Tartèse R. A Review of the "Black Beauty" Martian Regolith Breccia and Its Martian Habitability Record. ASTROBIOLOGY 2022; 22:755-767. [PMID: 35230137 DOI: 10.1089/ast.2021.0069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The regolith breccia Northwest Africa (NWA) 7034 and paired samples are unique meteorite representatives of the martian crust. They are water rich, lithologically varied, and preserve the oldest martian zircon grains yet discovered that formed ca. 4500-4300 Ma. The meteorite thus provides us with an invaluable record of the crustal and environmental conditions on early Mars. Resetting of some radioisotopic chronometers occurred in response to a major thermal disturbance event ca. 1500-1400 Ma, likely caused by an impactor that brecciated and redeposited NWA 7034 near the surface in an ejecta blanket. Lithologies comprising NWA 7034 were then aqueously altered by a long-lasting impact-induced hydrothermal system, before being excavated and ejected by a subsequent impact at ca. 5-15 Ma. This review compiles chronological and petrological information into an overarching geochronological summary for NWA 7034 and paired samples. We then provide a synopsis for the volatile (H2O, C) inventory and hydrothermal alteration history of NWA 7034. From this geochronological history and volatile inventory, we interpret and assess two potential periods of martian habitability: (1) an early window of pre-Noachian planetary habitability, and (2) impact-derived hydrothermal systems that allowed intermittent habitable crater environments well into the Amazonian.
Collapse
Affiliation(s)
- Arthur Goodwin
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, United Kingdom
| | - Russell J Garwood
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, United Kingdom
- Earth Sciences Department, Natural History Museum, London, United Kingdom
| | - Romain Tartèse
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
14
|
Tait AW, Wilson SA, Tomkins AG, Hamilton JL, Gagen EJ, Holman AI, Grice K, Preston LJ, Paterson DJ, Southam G. Preservation of Terrestrial Microorganisms and Organics Within Alteration Products of Chondritic Meteorites from the Nullarbor Plain, Australia. ASTROBIOLOGY 2022; 22:399-415. [PMID: 35100042 DOI: 10.1089/ast.2020.2387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Meteorites that fall to Earth quickly become contaminated with terrestrial microorganisms. These meteorites are out of chemical equilibrium in the environments where they fall, and equilibration promotes formation of low-temperature alteration minerals that can entomb contaminant microorganisms and thus preserve them as microfossils. Given the well-understood chemistry of meteorites and their recent discovery on Mars by rovers, a similarly weathered meteorite on Mars could preserve organic and fossil evidence of a putative past biosphere at the martian surface. Here, we used several techniques to assess the potential of alteration minerals to preserve microfossils and biogenic organics in terrestrially weathered ordinary chondrites from the Nullarbor Plain, Australia. We used acid etching of ordinary chondrites to reveal entombed fungal hyphae, modern biofilms, and diatoms within alteration minerals. We employed synchrotron X-ray fluorescence microscopy of alteration mineral veins to map the distribution of redox-sensitive elements of relevance to chemolithotrophic organisms, such as Mn-cycling bacteria. We assessed the biogenicity of fungal hyphae within alteration veins using a combination of Fourier-transform infrared spectroscopy and pyrolysis gas chromatography-mass spectrometry, which showed that alteration minerals sequester and preserve organic molecules at various levels of decomposition. Our combined analyses results show that fossil microorganisms and the organic molecules they produce are preserved within calcite-gypsum admixtures in meteorites. Furthermore, the distributions of redox-sensitive elements (e.g., Mn) within alteration minerals are localized, which qualitatively suggests that climatically or microbially facilitated element mobilization occurred during the meteorite's residency on Earth. If returned as part of a sample suite from the martian surface, ordinary chondrites could preserve similar, recognizable evidence of putative past life and/or environmental change.
Collapse
Affiliation(s)
- Alastair W Tait
- School of Earth, Atmosphere and Environment, Monash University, Melbourne, Victoria, Australia
| | - Siobhan A Wilson
- School of Earth, Atmosphere and Environment, Monash University, Melbourne, Victoria, Australia
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew G Tomkins
- School of Earth, Atmosphere and Environment, Monash University, Melbourne, Victoria, Australia
| | - Jessica L Hamilton
- School of Earth, Atmosphere and Environment, Monash University, Melbourne, Victoria, Australia
- Australian Synchrotron, ANSTO, Clayton, Victoria, Australia
| | - Emma J Gagen
- School of Earth and Environmental Sciences, The University of Queensland, St. Lucia, Queensland, Australia
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Alex I Holman
- Western Australian Organic and Isotope Geochemistry Centre, The Institute for Geoscience Research, School of Earth and Planetary Sciences, Curtin University, Perth, Western Australia, Australia
| | - Kliti Grice
- Western Australian Organic and Isotope Geochemistry Centre, The Institute for Geoscience Research, School of Earth and Planetary Sciences, Curtin University, Perth, Western Australia, Australia
| | - Louisa J Preston
- Department of Earth Sciences, Natural History Museum, London, United Kingdom
| | | | - Gordon Southam
- School of Earth and Environmental Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
15
|
Price A, Macey MC, Pearson VK, Schwenzer SP, Ramkissoon NK, Olsson-Francis K. Oligotrophic Growth of Nitrate-Dependent Fe 2+-Oxidising Microorganisms Under Simulated Early Martian Conditions. Front Microbiol 2022; 13:800219. [PMID: 35418959 PMCID: PMC8997339 DOI: 10.3389/fmicb.2022.800219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/24/2022] [Indexed: 11/30/2022] Open
Abstract
Nitrate-dependent Fe2+ oxidation (NDFO) is a microbially mediated process observed in many anaerobic, low-nutrient (oligotrophic) neutral-alkaline environments on Earth, which describes oxidation of Fe2+ to Fe3+ in tandem with microbial nitrate reduction. Evidence suggests that similar environments existed on Mars during the Noachian epoch (4.1-3.7 Ga) and in periodic, localised environments more recently, indicating that NDFO metabolism could have played a role in a potential early martian biosphere. In this paper, three NDFO microorganisms, Acidovorax sp. strain BoFeN1, Pseudogulbenkiania sp. strain 2002 and Paracoccus sp. strain KS1, were assessed for their ability to grow oligotrophically in simulated martian brines and in a minimal medium with olivine as a solid Fe2+ source. These simulant-derived media were developed from modelled fluids based on the geochemistry of Mars sample locations at Rocknest (contemporary Mars soil), Paso Robles (sulphur-rich soil), Haematite Slope (haematite-rich soil) and a Shergottite meteorite (common basalt). The Shergottite medium was able to support growth of all three organisms, while the contemporary Mars medium supported growth of Acidovorax sp. strain BoFeN1 and Pseudogulbenkiania sp. strain 2002; however, growth was not accompanied by significant Fe2+ oxidation. Each of the strains was also able to grow in oligotrophic minimal media with olivine as the sole Fe2+ source. Biomineralised cells of Pseudogulbenkiania sp. strain 2002 were identified on the surface of the olivine, representing a potential biosignature for NDFO microorganisms in martian samples. The results suggest that NDFO microorganisms could have thrived in early martian groundwaters under oligotrophic conditions, depending on the local lithology. This can guide missions in identifying palaeoenvironments of interest for biosignature detection. Indeed, biomineralised cells identified on the olivine surface provide a previously unexplored mechanism for the preservation of morphological biosignatures in the martian geological record.
Collapse
Affiliation(s)
- Alex Price
- School of Environment, Earth and Ecosystem Sciences, Faculty of Science, Technology, Engineering, and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Michael C. Macey
- School of Environment, Earth and Ecosystem Sciences, Faculty of Science, Technology, Engineering, and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Victoria K. Pearson
- School of Physical Sciences, Faculty of Science, Technology, Engineering, and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Susanne P. Schwenzer
- School of Environment, Earth and Ecosystem Sciences, Faculty of Science, Technology, Engineering, and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Nisha K. Ramkissoon
- School of Environment, Earth and Ecosystem Sciences, Faculty of Science, Technology, Engineering, and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Karen Olsson-Francis
- School of Environment, Earth and Ecosystem Sciences, Faculty of Science, Technology, Engineering, and Mathematics, The Open University, Milton Keynes, United Kingdom
| |
Collapse
|
16
|
Chirality in Organic and Mineral Systems: A Review of Reactivity and Alteration Processes Relevant to Prebiotic Chemistry and Life Detection Missions. Symmetry (Basel) 2022. [DOI: 10.3390/sym14030460] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Chirality is a central feature in the evolution of biological systems, but the reason for biology’s strong preference for specific chiralities of amino acids, sugars, and other molecules remains a controversial and unanswered question in origins of life research. Biological polymers tend toward homochiral systems, which favor the incorporation of a single enantiomer (molecules with a specific chiral configuration) over the other. There have been numerous investigations into the processes that preferentially enrich one enantiomer to understand the evolution of an early, racemic, prebiotic organic world. Chirality can also be a property of minerals; their interaction with chiral organics is important for assessing how post-depositional alteration processes could affect the stereochemical configuration of simple and complex organic molecules. In this paper, we review the properties of organic compounds and minerals as well as the physical, chemical, and geological processes that affect organic and mineral chirality during the preservation and detection of organic compounds. We provide perspectives and discussions on the reactions and analytical techniques that can be performed in the laboratory, and comment on the state of knowledge of flight-capable technologies in current and future planetary missions, with a focus on organics analysis and life detection.
Collapse
|
17
|
Depleted carbon isotope compositions observed at Gale crater, Mars. Proc Natl Acad Sci U S A 2022; 119:2115651119. [PMID: 35042808 PMCID: PMC8795525 DOI: 10.1073/pnas.2115651119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2021] [Indexed: 11/20/2022] Open
Abstract
Carbon isotopic analysis is among the most pervasive geochemical approaches because the fractionation of carbon isotopes produces a natural tracer of biological and chemical processes. Rover-based carbon isotopic analyses of sedimentary rocks on Mars have the potential to reveal modes of Martian carbon cycling. We report carbon isotopic values of the methane released during pyrolysis of samples obtained at Gale crater. The values show remarkable variation indicating different origins for the carbon evolved from different samples. Samples from multiple locations within Gale crater evolved methane with highly fractionated carbon isotopes. We suggest three routes by which highly fractionated carbon could be deposited on Mars, with each suggesting that Martian carbon cycling is quite distinct from that of the present Earth. Obtaining carbon isotopic information for organic carbon from Martian sediments has long been a goal of planetary science, as it has the potential to elucidate the origin of such carbon and aspects of Martian carbon cycling. Carbon isotopic values (δ13CVPDB) of the methane released during pyrolysis of 24 powder samples at Gale crater, Mars, show a high degree of variation (−137 ± 8‰ to +22 ± 10‰) when measured by the tunable laser spectrometer portion of the Sample Analysis at Mars instrument suite during evolved gas analysis. Included in these data are 10 measured δ13C values less than −70‰ found for six different sampling locations, all potentially associated with a possible paleosurface. There are multiple plausible explanations for the anomalously depleted 13C observed in evolved methane, but no single explanation can be accepted without further research. Three possible explanations are the photolysis of biological methane released from the subsurface, photoreduction of atmospheric CO2, and deposition of cosmic dust during passage through a galactic molecular cloud. All three of these scenarios are unconventional, unlike processes common on Earth.
Collapse
|
18
|
Steele A, Benning LG, Wirth R, Schreiber A, Araki T, McCubbin FM, Fries MD, Nittler LR, Wang J, Hallis LJ, Conrad PG, Conley C, Vitale S, O'Brien AC, Riggi V, Rogers K. Organic synthesis associated with serpentinization and carbonation on early Mars. Science 2022; 375:172-177. [PMID: 35025630 DOI: 10.1126/science.abg7905] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Water-rock interactions are relevant to planetary habitability, influencing mineralogical diversity and the production of organic molecules. We examine carbonates and silicates in the martian meteorite Allan Hills 84001 (ALH 84001), using colocated nanoscale analyses, to characterize the nature of water-rock reactions on early Mars. We find complex refractory organic material associated with mineral assemblages that formed by mineral carbonation and serpentinization reactions. The organic molecules are colocated with nanophase magnetite; both formed in situ during water-rock interactions on Mars. Two potentially distinct mechanisms of abiotic organic synthesis operated on early Mars during the late Noachian period (3.9 to 4.1 billion years ago).
Collapse
Affiliation(s)
- A Steele
- Carnegie Institution for Science, Earth and Planets Laboratory, Washington, DC 20015, USA
| | - L G Benning
- Deutsches GeoForschungsZentrum, Telegrafenberg, 14473 Potsdam, Germany.,Department of Earth Sciences, Free University of Berlin, 12249 Berlin, Germany
| | - R Wirth
- Deutsches GeoForschungsZentrum, Telegrafenberg, 14473 Potsdam, Germany
| | - A Schreiber
- Deutsches GeoForschungsZentrum, Telegrafenberg, 14473 Potsdam, Germany
| | - T Araki
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - F M McCubbin
- NASA Johnson Space Center, Houston, TX 77058, USA
| | - M D Fries
- NASA Johnson Space Center, Houston, TX 77058, USA
| | - L R Nittler
- Carnegie Institution for Science, Earth and Planets Laboratory, Washington, DC 20015, USA
| | - J Wang
- Carnegie Institution for Science, Earth and Planets Laboratory, Washington, DC 20015, USA
| | - L J Hallis
- School of Geographical and Earth Science, University of Glasgow, Glasgow G12 8QQ, UK
| | - P G Conrad
- Carnegie Institution for Science, Earth and Planets Laboratory, Washington, DC 20015, USA
| | - C Conley
- NASA Ames Research Center, Mountain View, CA 94035, USA
| | - S Vitale
- Carnegie Institution for Science, Earth and Planets Laboratory, Washington, DC 20015, USA
| | - A C O'Brien
- School of Geographical and Earth Science, University of Glasgow, Glasgow G12 8QQ, UK
| | - V Riggi
- Carnegie Institution for Science, Earth and Planets Laboratory, Washington, DC 20015, USA
| | - K Rogers
- Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
19
|
Crespi S, Vadivel D, Bellisario A, Dondi D. Computational Study of the Stability of Natural Amino Acid isomers. ORIGINS LIFE EVOL B 2021; 51:287-298. [PMID: 34739664 DOI: 10.1007/s11084-021-09615-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/10/2021] [Indexed: 10/19/2022]
Abstract
The secular debate on the origin of life on our planet represents one of the open challenges for the scientific community. In this endeavour, chemistry has a pivotal role in disclosing novel scenarios that allow us to understand how the formation of simple organic molecules would be possible in the early primitive geological ages of Earth. Amino acids play a crucial role in biological processes. They are known to be formed in experiments simulating primitive conditions and were found in meteoric samples retrieved throughout the years. Understanding their formation is a key step for prebiotic chemistry. Following this reasoning, we performed a computational investigation over 100'000 structural isomers of natural amino acids. The results we have found suggest that natural amino acids are among the most thermodynamically stable structures and, therefore, one of the most probable ones to be synthesised among their possible isomers.
Collapse
Affiliation(s)
- Stefano Crespi
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Dhanalakshmi Vadivel
- Dipartimento Di Chimica, Università Di Pavia, Via Taramelli 12, 27100, Pavia, Italy. .,Istituto Nazionale Di Fisica Nucleare (INFN), Via Bassi 6, 27100, Pavia, Italy.
| | - Alfredo Bellisario
- Department of Cell and Molecular Biology, Molecular Biophysics, Husargatan 3, 752 37, Uppsala, Sweden
| | - Daniele Dondi
- Dipartimento Di Chimica, Università Di Pavia, Via Taramelli 12, 27100, Pavia, Italy.,Istituto Nazionale Di Fisica Nucleare (INFN), Via Bassi 6, 27100, Pavia, Italy
| |
Collapse
|
20
|
Treiman AH. Uninhabitable and Potentially Habitable Environments on Mars: Evidence from Meteorite ALH 84001. ASTROBIOLOGY 2021; 21:940-953. [PMID: 33857382 DOI: 10.1089/ast.2020.2306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The martian meteorite ALH 84001 formed before ∼4.0 Ga, so it could have preserved information about habitability on early Mars and habitability since then. ALH 84001 is particularly important as it contains carbonate (and other) minerals that were deposited by liquid water, raising the chance that they may have formed in a habitable environment. Despite vigorous efforts from the scientific community, there is no accepted evidence that ALH 84001 contains traces or markers of ancient martian life-all the purported signs have been shown to be incorrect or ambiguous. However, the meteorite provides evidence for three distinct episodes of potentially habitable environments on early Mars. First is evidence that the meteorite's precursors interacted with clay-rich material, formed approximately at 4.2 Ga. Second is that igneous olivine crystals in ALH 84001 were partially dissolved and removed, presumably by liquid water. Third is, of course, the deposition of the carbonate globules, which occurred at ∼15-25°C and involved near-neutral to alkaline waters. The environments of olivine dissolution and carbonate deposition are not known precisely; hydrothermal and soil environments are current possibilities. By analogies with similar alteration minerals and sequences in the nakhlite martian meteorites and volcanic rocks from Spitzbergen (Norway), a hydrothermal environment is favored. As with the nakhlite alterations, those in ALH 84001 likely formed in a hydrothermal system related to a meteoroid impact event. Following deposition of the carbonates (at 3.95 Ga), ALH 84001 preserves no evidence of habitable environments, that is, interaction with water. The meteorite contains several materials (formed by impact shock at ∼3.9 Ga) that should have reacted readily with water to form hydrous silicates, but there is no evidence any formed.
Collapse
Affiliation(s)
- Allan H Treiman
- Lunar and Planetary Institute / Universities Space Research Association, Houston, Texas, USA
| |
Collapse
|
21
|
Clark BC, Kolb VM, Steele A, House CH, Lanza NL, Gasda PJ, VanBommel SJ, Newsom HE, Martínez-Frías J. Origin of Life on Mars: Suitability and Opportunities. Life (Basel) 2021; 11:539. [PMID: 34207658 PMCID: PMC8227854 DOI: 10.3390/life11060539] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
Although the habitability of early Mars is now well established, its suitability for conditions favorable to an independent origin of life (OoL) has been less certain. With continued exploration, evidence has mounted for a widespread diversity of physical and chemical conditions on Mars that mimic those variously hypothesized as settings in which life first arose on Earth. Mars has also provided water, energy sources, CHNOPS elements, critical catalytic transition metal elements, as well as B, Mg, Ca, Na and K, all of which are elements associated with life as we know it. With its highly favorable sulfur abundance and land/ocean ratio, early wet Mars remains a prime candidate for its own OoL, in many respects superior to Earth. The relatively well-preserved ancient surface of planet Mars helps inform the range of possible analogous conditions during the now-obliterated history of early Earth. Continued exploration of Mars also contributes to the understanding of the opportunities for settings enabling an OoL on exoplanets. Favoring geochemical sediment samples for eventual return to Earth will enhance assessments of the likelihood of a Martian OoL.
Collapse
Affiliation(s)
| | - Vera M. Kolb
- Department of Chemistry, University of Wisconsin—Parkside, Kenosha, WI 53141, USA;
| | - Andrew Steele
- Earth and Planetary Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA;
| | - Christopher H. House
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, PA 16807, USA;
| | - Nina L. Lanza
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (N.L.L.); (P.J.G.)
| | - Patrick J. Gasda
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (N.L.L.); (P.J.G.)
| | - Scott J. VanBommel
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA;
| | - Horton E. Newsom
- Institute of Meteoritics, Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 88033, USA;
| | | |
Collapse
|
22
|
Royle SH, Tan JSW, Watson JS, Sephton MA. Pyrolysis of Carboxylic Acids in the Presence of Iron Oxides: Implications for Life Detection on Missions to Mars. ASTROBIOLOGY 2021; 21:673-691. [PMID: 33635150 DOI: 10.1089/ast.2020.2226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The search for, and characterization of, organic matter on Mars is central to efforts in identifying habitable environments and detecting evidence of life in the martian surface and near surface. Iron oxides are ubiquitous in the martian regolith and are known to be associated with the deposition and preservation of organic matter in certain terrestrial environments, thus iron oxide-rich sediments are potential targets for life-detection missions. The most frequently used protocol for martian organic matter characterization (also planned for use on ExoMars) has been thermal extraction for the transfer of organic matter to gas chromatography-mass spectrometry (GC-MS) detectors. For the effective use of thermal extraction for martian samples, it is necessary to explore how potential biomarker organic molecules evolve during this process in the presence of iron oxides. We have thermally decomposed iron oxides simultaneously with (z)-octadec-9-enoic and n-octadecanoic acids and analyzed the products through pyrolysis-GC-MS. We found that the thermally driven dehydration, reduction, and recrystallization of iron oxides transformed fatty acids. Overall detectability of products greatly reduced, molecular diversity decreased, unsaturated products decreased, and aromatization increased. The severity of this effect increased as reduction potential of the iron oxide and inferred free radical formation increased. Of the iron oxides tested hematite showed the least transformative effects, followed by magnetite, goethite, then ferrihydrite. It was possible to identify the saturation state of the parent carboxylic acid at high (0.5 wt %) concentrations by the distribution of n-alkylbenzenes in the pyrolysis products. When selecting life-detection targets on Mars, localities where hematite is the dominant iron oxide could be targeted preferentially, otherwise thermal analysis of carboxylic acids, or similar biomarker molecules, will lead to enhanced polymerization, aromatization, and breakdown, which will in turn reduce the fidelity of the original biomarker, similar to changes normally observed during thermal maturation.
Collapse
Affiliation(s)
- Samuel H Royle
- Department of Earth Science and Engineering, Impacts and Astromaterials Research Centre, Imperial College London, London, United Kingdom
| | - Jonathan S W Tan
- Department of Earth Science and Engineering, Impacts and Astromaterials Research Centre, Imperial College London, London, United Kingdom
| | - Jonathan S Watson
- Department of Earth Science and Engineering, Impacts and Astromaterials Research Centre, Imperial College London, London, United Kingdom
| | - Mark A Sephton
- Department of Earth Science and Engineering, Impacts and Astromaterials Research Centre, Imperial College London, London, United Kingdom
| |
Collapse
|
23
|
Picard A, Gartman A, Girguis PR. Interactions Between Iron Sulfide Minerals and Organic Carbon: Implications for Biosignature Preservation and Detection. ASTROBIOLOGY 2021; 21:587-604. [PMID: 33780638 DOI: 10.1089/ast.2020.2276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microbe-mineral interactions can produce unique composite materials, which can preserve biosignatures. Geological evidence suggests that iron sulfide (Fe-S) minerals are abundant in the subsurface of Mars. On Earth, the formation of Fe-S minerals is driven by sulfate-reducing microorganisms (SRM) that produce reactive sulfide. Moreover, SRM metabolites, as well as intact cells, can influence the morphology, particle size, aggregation, and composition of biogenic Fe-S minerals. In this work, we evaluated how simple and complex organic molecules-hexoses and amino acid/peptide mixtures, respectively-influence the formation of Fe-S minerals (simulated prebiotic conditions), and whether the observed patterns mimic the biological influence of SRM. To this end, organo-mineral aggregates were characterized with X-ray diffraction, scanning electron microscopy, and scanning transmission X-ray microscopy coupled to near-edge X-ray absorption fine structure spectroscopy. Overall, Fe-S minerals were found to have a strong affinity for proteinaceous organic matter. Fe-S minerals precipitated at simulated prebiotic conditions yielded organic carbon distributions that were more homogeneous than treatments with whole SRM cells. In prebiotic experiments, spectroscopy detected potential organic transformations during Fe-S mineral formation, including conversion of hexoses to sugar acids and polymerization of amino acids/peptides into larger peptides/proteins. In addition, prebiotic mineral-carbon assemblages produced nanometer-scaled filamentous aggregated morphologies. On the contrary, in biotic treatments with cells, organic carbon in minerals displayed a more heterogeneous distribution. Notably, "hot spots" of organic carbon and oxygen-containing functional groups, with the size, shape, and composition of microbial cells, were preserved in mineral aggregates. We propose a list of characteristics that could be used to help distinguish biogenic from prebiotic/abiotic Fe-S minerals and help refine the search of extant or extinct microbial life in the martian subsurface.
Collapse
Affiliation(s)
- Aude Picard
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| | - Amy Gartman
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Peter R Girguis
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
24
|
Chan DH, Millet A, Fisher CR, Price MC, Burchell MJ, Armes SP. Synthesis and Characterization of Polypyrrole-Coated Anthracene Microparticles: A New Synthetic Mimic for Polyaromatic Hydrocarbon-Based Cosmic Dust. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3175-3185. [PMID: 33405514 PMCID: PMC7880557 DOI: 10.1021/acsami.0c19758] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
Polyaromatic hydrocarbons (PAHs) are found throughout the universe. The ubiquity of these organic molecules means that they are of considerable interest in the context of cosmic dust, which typically travels at hypervelocities (>1 km s-1) within our solar system. However, studying such fast-moving micrometer-sized particles in laboratory-based experiments requires suitable synthetic mimics. Herein, we use ball-milling to produce microparticles of anthracene, which is the simplest member of the PAH family. Size control can be achieved by varying the milling time in the presence of a suitable anionic commercial polymeric dispersant (Morwet D-425). These anthracene microparticles are then coated with a thin overlayer of polypyrrole (PPy), which is an air-stable organic conducting polymer. The uncoated and PPy-coated anthracene microparticles are characterized in terms of their particle size, surface morphology, and chemical structure using optical microscopy, scanning electron microscopy, laser diffraction, aqueous electrophoresis, FT-IR spectroscopy, Raman microscopy, and X-ray photoelectron spectroscopy (XPS). Moreover, such microparticles can be accelerated up to hypervelocities using a light gas gun. Finally, studies of impact craters indicate carbon debris, so they are expected to serve as the first synthetic mimic for PAH-based cosmic dust.
Collapse
Affiliation(s)
- Derek H. Chan
- Department of Chemistry, University of
Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3
7HF, U.K.
| | - Arthur Millet
- Department of Chemistry, University of
Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3
7HF, U.K.
| | - Callum R. Fisher
- Centre for Astrophysics and Planetary Science, School
of Physical Sciences, University of Kent, Ingram Building,
Canterbury, Kent CT2 7NH, U.K.
| | - Mark C. Price
- Centre for Astrophysics and Planetary Science, School
of Physical Sciences, University of Kent, Ingram Building,
Canterbury, Kent CT2 7NH, U.K.
| | - Mark J. Burchell
- Centre for Astrophysics and Planetary Science, School
of Physical Sciences, University of Kent, Ingram Building,
Canterbury, Kent CT2 7NH, U.K.
| | - Steven P. Armes
- Department of Chemistry, University of
Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3
7HF, U.K.
| |
Collapse
|
25
|
Glavin DP, Burton AS, Elsila JE, Aponte JC, Dworkin JP. The Search for Chiral Asymmetry as a Potential Biosignature in our Solar System. Chem Rev 2019; 120:4660-4689. [DOI: 10.1021/acs.chemrev.9b00474] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Daniel P. Glavin
- NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States
| | - Aaron S. Burton
- NASA Johnson Space Center, Houston, Texas 77058, United States
| | - Jamie E. Elsila
- NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States
| | - José C. Aponte
- NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States
- Catholic University of America, Washington, D.C. 20064, United States
| | - Jason P. Dworkin
- NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States
| |
Collapse
|
26
|
McLoughlin N, Grosch EG, Vullum PE, Guagliardo P, Saunders M, Wacey D. Critically testing olivine-hosted putative martian biosignatures in the Yamato 000593 meteorite-Geobiological implications. GEOBIOLOGY 2019; 17:691-707. [PMID: 31478592 DOI: 10.1111/gbi.12361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/12/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
On rocky planets such as Earth and Mars the serpentinization of olivine in ultramafic crust produces hydrogen that can act as a potential energy source for life. Direct evidence of fluid-rock interaction on Mars comes from iddingsite alteration veins found in martian meteorites. In the Yamato 000593 meteorite, putative biosignatures have been reported from altered olivines in the form of microtextures and associated organic material that have been compared to tubular bioalteration textures found in terrestrial sub-seafloor volcanic rocks. Here, we use a suite of correlative, high-sensitivity, in situ chemical, and morphological analyses to characterize and re-evaluate these microalteration textures in Yamato 000593, a clinopyroxenite from the shallow subsurface of Mars. We show that the altered olivine crystals have angular and micro-brecciated margins and are also highly strained due to impact-induced fracturing. The shape of the olivine microalteration textures is in no way comparable to microtunnels of inferred biological origin found in terrestrial volcanic glasses and dunites, and rather we argue that the Yamato 000593 microtextures are abiotic in origin. Vein filling iddingsite extends into the olivine microalteration textures and contains amorphous organic carbon occurring as bands and sub-spherical concentrations <300 nm across. We propose that a martian impact event produced the micro-brecciated olivine crystal margins that reacted with subsurface hydrothermal fluids to form iddingsite containing organic carbon derived from abiotic sources. These new data have implications for how we might seek potential biosignatures in ultramafic rocks and impact craters on both Mars and Earth.
Collapse
Affiliation(s)
| | - Eugene G Grosch
- Department of Geology, Rhodes University, Grahamstown, South Africa
| | - Per Erik Vullum
- SINTEF Materials and Chemistry, Trondheim, Norway
- Department of Physics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Paul Guagliardo
- Centre for Microscopy Characterisation and Analysis, The University of Western Australia, Perth, Western Australia, Australia
| | - Martin Saunders
- Centre for Microscopy Characterisation and Analysis, The University of Western Australia, Perth, Western Australia, Australia
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - David Wacey
- Centre for Microscopy Characterisation and Analysis, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
27
|
Callefo F, Maldanis L, Teixeira VC, Abans RADO, Monfredini T, Rodrigues F, Galante D. Evaluating Biogenicity on the Geological Record With Synchrotron-Based Techniques. Front Microbiol 2019; 10:2358. [PMID: 31681221 PMCID: PMC6798071 DOI: 10.3389/fmicb.2019.02358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 09/27/2019] [Indexed: 11/17/2022] Open
Abstract
The biogenicity problem of geological materials is one of the most challenging ones in the field of paleo and astrobiology. As one goes deeper in time, the traces of life become feeble and ambiguous, blending with the surrounding geology. Well-preserved metasedimentary rocks from the Archaean are relatively rare, and in very few cases contain structures resembling biological traces or fossils. These putative biosignatures have been studied for decades and many biogenicity criteria have been developed, but there is still no consensus for many of the proposed structures. Synchrotron-based techniques, especially on new generation sources, have the potential for contributing to this field of research, providing high sensitivity and resolution that can be advantageous for different scientific problems. Exploring the X-ray and matter interactions on a range of geological materials can provide insights on morphology, elemental composition, oxidation states, crystalline structure, magnetic properties, and others, which can measurably contribute to the investigation of biogenicity of putative biosignatures. Here, we provide an overview of selected synchrotron-based techniques that have the potential to be applied in different types of questions on the study of biosignatures preserved in the geological record. The development of 3rd and recently 4th generation synchrotron sources will favor a deeper understanding of the earliest records of life on Earth and also bring up potential analytical approaches to be applied for the search of biosignatures in meteorites and samples returned from Mars in the near future.
Collapse
Affiliation(s)
- Flavia Callefo
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Lara Maldanis
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
- Institute of Physics of São Carlos, University of São Paulo, São Paulo, Brazil
| | - Verônica C. Teixeira
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Rodrigo Adrián de Oliveira Abans
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
- Interunits Graduate Program in Biotechnology, University of São Paulo, São Paulo, Brazil
| | - Thiago Monfredini
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Fabio Rodrigues
- Fundamental Chemistry Department, University of São Paulo, São Paulo, Brazil
| | - Douglas Galante
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| |
Collapse
|
28
|
Stalport F, Rouquette L, Poch O, Dequaire T, Chaouche-Mechidal N, Payart S, Szopa C, Coll P, Chaput D, Jaber M, Raulin F, Cottin H. The Photochemistry on Space Station (PSS) Experiment: Organic Matter under Mars-like Surface UV Radiation Conditions in Low Earth Orbit. ASTROBIOLOGY 2019; 19:1037-1052. [PMID: 31314573 DOI: 10.1089/ast.2018.2001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The search for organic molecules at the surface of Mars is a top priority of the Mars Science Laboratory (NASA) and ExoMars 2020 (ESA) space missions. Their main goal is to search for past and/or present molecular compounds related to a potential prebiotic chemistry and/or a biological activity on the Red Planet. A key step to interpret their data is to characterize the preservation or the evolution of organic matter in the martian environmental conditions. Several laboratory experiments have been developed especially concerning the influence of ultraviolet (UV) radiation. However, the experimental UV sources do not perfectly reproduce the solar UV radiation reaching the surface of Mars. For this reason, the International Space Station (ISS) can be advantageously used to expose the same samples studied in the laboratory to UV radiation representative of martian conditions. Those laboratory simulations can be completed by experiments in low Earth orbit (LEO) outside the ISS. Our study was part of the Photochemistry on the Space Station experiment on board the EXPOSE-R2 facility that was kept outside the ISS from October 2014 to February 2016. Chrysene, adenine, and glycine, pure or deposited on an iron-rich amorphous mineral phase, were exposed to solar UV. The total duration of exposure to UV radiation is estimated to be in the 1250-1420 h range. Each sample was characterized prior to and after the flight by Fourier transform infrared (FTIR) spectroscopy. These measurements showed that all exposed samples were partially degraded. Their quantum efficiencies of photodecomposition were calculated in the 200-250 nm wavelength range. They range from 10-4 to 10-6 molecules·photon-1 for pure organic samples and from 10-2 to 10-5 molecules·photon-1 for organic samples shielded by the mineral phase. These results highlight that none of the tested organics are stable under LEO solar UV radiation conditions. The presence of an iron-rich mineral phase increases their degradation.
Collapse
Affiliation(s)
- Fabien Stalport
- 1Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Université Paris Est Créteil et Université de Paris, Institut Pierre Simon Laplace, Créteil, France
| | - Laura Rouquette
- 1Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Université Paris Est Créteil et Université de Paris, Institut Pierre Simon Laplace, Créteil, France
| | - Olivier Poch
- 2Université Grenoble Alpes, CNRS, CNES, IPAG, Grenoble, France
| | - Tristan Dequaire
- 1Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Université Paris Est Créteil et Université de Paris, Institut Pierre Simon Laplace, Créteil, France
| | - Naïla Chaouche-Mechidal
- 1Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Université Paris Est Créteil et Université de Paris, Institut Pierre Simon Laplace, Créteil, France
| | - Shanèle Payart
- 1Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Université Paris Est Créteil et Université de Paris, Institut Pierre Simon Laplace, Créteil, France
| | - Cyril Szopa
- 3Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), UMR CNRS 8190, Université Pierre et Marie Curie, Université Versailles St-Quentin, Paris, France
| | - Patrice Coll
- 1Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Université Paris Est Créteil et Université de Paris, Institut Pierre Simon Laplace, Créteil, France
| | - Didier Chaput
- 4Centre National d'Etudes Spatiales, Toulouse, France
| | - Maguy Jaber
- 5Sorbonne Université, Laboratoire d'Archéologie Moléculaire et Structurale (LAMS), CNRS UMR 8220, Paris, France
| | - François Raulin
- 1Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Université Paris Est Créteil et Université de Paris, Institut Pierre Simon Laplace, Créteil, France
| | - Hervé Cottin
- 1Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Université Paris Est Créteil et Université de Paris, Institut Pierre Simon Laplace, Créteil, France
| |
Collapse
|
29
|
|
30
|
Fornaro T, Steele A, Brucato JR. Catalytic/Protective Properties of Martian Minerals and Implications for Possible Origin of Life on Mars. Life (Basel) 2018; 8:life8040056. [PMID: 30400661 PMCID: PMC6315534 DOI: 10.3390/life8040056] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/28/2018] [Accepted: 10/30/2018] [Indexed: 11/16/2022] Open
Abstract
Minerals might have played critical roles for the origin and evolution of possible life forms on Mars. The study of the interactions between the "building blocks of life" and minerals relevant to Mars mineralogy under conditions mimicking the harsh Martian environment may provide key insight into possible prebiotic processes. Therefore, this contribution aims at reviewing the most important investigations carried out so far about the catalytic/protective properties of Martian minerals toward molecular biosignatures under Martian-like conditions. Overall, it turns out that the fate of molecular biosignatures on Mars depends on a delicate balance between multiple preservation and degradation mechanisms, often regulated by minerals, which may take place simultaneously. Such a complexity requires more efforts in simulating realistically the Martian environment in order to better inspect plausible prebiotic pathways and shed light on the nature of the organic compounds detected both in meteorites and on the surface of Mars through in situ analysis.
Collapse
Affiliation(s)
- Teresa Fornaro
- Geophysical Laboratory of the Carnegie Institution for Science, 5251 Broad Branch Rd. NW, Washington, DC 20015, USA.
| | - Andrew Steele
- Geophysical Laboratory of the Carnegie Institution for Science, 5251 Broad Branch Rd. NW, Washington, DC 20015, USA.
| | - John Robert Brucato
- INAF-Astrophysical Observatory of Arcetri, L.go E. Fermi 5, 50125 Firenze, Italy.
| |
Collapse
|
31
|
Neveu M, Hays LE, Voytek MA, New MH, Schulte MD. The Ladder of Life Detection. ASTROBIOLOGY 2018; 18:1375-1402. [PMID: 29862836 PMCID: PMC6211372 DOI: 10.1089/ast.2017.1773] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/23/2018] [Indexed: 05/04/2023]
Abstract
We describe the history and features of the Ladder of Life Detection, a tool intended to guide the design of investigations to detect microbial life within the practical constraints of robotic space missions. To build the Ladder, we have drawn from lessons learned from previous attempts at detecting life and derived criteria for a measurement (or suite of measurements) to constitute convincing evidence for indigenous life. We summarize features of life as we know it, how specific they are to life, and how they can be measured, and sort these features in a general sense based on their likelihood of indicating life. Because indigenous life is the hypothesis of last resort in interpreting life-detection measurements, we propose a small but expandable set of decision rules determining whether the abiotic hypothesis is disproved. In light of these rules, we evaluate past and upcoming attempts at life detection. The Ladder of Life Detection is not intended to endorse specific biosignatures or instruments for life-detection measurements, and is by no means a definitive, final product. It is intended as a starting point to stimulate discussion, debate, and further research on the characteristics of life, what constitutes a biosignature, and the means to measure them.
Collapse
Affiliation(s)
- Marc Neveu
- NASA Postdoctoral Management Program Fellow, Universities Space Research Association, Columbia, Maryland
- NASA Headquarters, Washington, DC
| | - Lindsay E. Hays
- NASA Headquarters, Washington, DC
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | | | | | | |
Collapse
|
32
|
Steele A, Benning LG, Wirth R, Siljeström S, Fries MD, Hauri E, Conrad PG, Rogers K, Eigenbrode J, Schreiber A, Needham A, Wang JH, McCubbin FM, Kilcoyne D, Rodriguez Blanco JD. Organic synthesis on Mars by electrochemical reduction of CO 2. SCIENCE ADVANCES 2018; 4:eaat5118. [PMID: 30402538 PMCID: PMC6209388 DOI: 10.1126/sciadv.aat5118] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 09/25/2018] [Indexed: 05/24/2023]
Abstract
The sources and nature of organic carbon on Mars have been a subject of intense research. Steele et al. (2012) showed that 10 martian meteorites contain macromolecular carbon phases contained within pyroxene- and olivine-hosted melt inclusions. Here, we show that martian meteorites Tissint, Nakhla, and NWA 1950 have an inventory of organic carbon species associated with fluid-mineral reactions that are remarkably consistent with those detected by the Mars Science Laboratory (MSL) mission. We advance the hypothesis that interactions among spinel-group minerals, sulfides, and a brine enable the electrochemical reduction of aqueous CO2 to organic molecules. Although documented here in martian samples, a similar process likely occurs wherever igneous rocks containing spinel-group minerals and/or sulfides encounter brines.
Collapse
Affiliation(s)
- A. Steele
- Carnegie Institution for Science, Geophysical Laboratory, Washington, DC 20015, USA
| | - L. G. Benning
- German Research Centre for Geosciences, GFZ, Telegrafenberg, 14473 Potsdam, Germany
- Department of Earth Sciences, Free University of Berlin, 12249 Berlin, Germany
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
| | - R. Wirth
- German Research Centre for Geosciences, GFZ, Telegrafenberg, 14473 Potsdam, Germany
| | - S. Siljeström
- RISE Research Institutes of Sweden, Bioscience and Materials/Chemistry, Materials and Surfaces, Box 5607, 114 86 Stockholm, Sweden
| | - M. D. Fries
- NASA, Johnson Space Center, Houston, TX 77058, USA
| | - E. Hauri
- Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Rd, Washington, DC 20015, USA
| | - P. G. Conrad
- Carnegie Institution for Science, Geophysical Laboratory, Washington, DC 20015, USA
| | - K. Rogers
- Earth and Environmental Sciences, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - J. Eigenbrode
- NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
| | - A. Schreiber
- German Research Centre for Geosciences, GFZ, Telegrafenberg, 14473 Potsdam, Germany
| | - A. Needham
- USRA–Science and Technology Institute, 320 Sparkman Drive, Huntsville, AL 35805, USA
| | - J. H. Wang
- Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Rd, Washington, DC 20015, USA
| | | | - D. Kilcoyne
- Advanced Light Source, 1 Cyclotron Road, MS 7R0222, LBNL, Berkeley, CA 94720, USA
| | - Juan Diego Rodriguez Blanco
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
- ICRAG, Department of Geology, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
33
|
Huang T, Wang R, Xiao L, Wang H, Martínez JM, Escudero C, Amils R, Cheng Z, Xu Y. Dalangtan Playa (Qaidam Basin, NW China): Its microbial life and physicochemical characteristics and their astrobiological implications. PLoS One 2018; 13:e0200949. [PMID: 30067805 PMCID: PMC6070256 DOI: 10.1371/journal.pone.0200949] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/04/2018] [Indexed: 01/29/2023] Open
Abstract
Dalangtan Playa is the second largest salt playa in the Qaidam Basin, north-western China. The hyper saline deposition, extremely arid climate and high UV radiation make Dalangtan a Mars analogue both for geomorphology and life preservation. To better understand microbial life at Dalangtan, both culture-dependent and culture-independent methods were examined and simultaneously, environment conditions and the evaporitic mineral assemblages were investigated. Ten and thirteen subsurface samples were collected along a 595-cm deep profile (P1) and a 685-cm deep profile (P2) respectively, and seven samples were gathered from surface sediments. These samples are composed of salt minerals, minor silicate mineral fragments and clays. The total bacterial cell numbers are (1.54±0.49) ×10(5) g-1 for P1 and (3.22±0.95) ×10(5) g-1 for P2 as indicated by the CAtalyzed Reporter Deposition- Fluorescent in situ Hybridization (CARD-FISH). 76.6% and 75.7% of the bacteria belong to Firmicutes phylum respectively from P1 and P2. In total, 47 bacteria and 6 fungi were isolated from 22 subsurface samples. In contrast, only 3 bacteria and 1 fungus were isolated from 3 surface samples. The isolated bacteria show high homology (≥97%) with members of the Firmicutes phylum (47 strains, 8 genera) and the Actinobacteria phylum (3 strains, 2 genera), which agrees with the result of CARD-FISH. Isolated fungi showed ≥98% ITS1 homology with members of the phylum Ascomycota. Moisture content and TOC values may control the sediments colonization. Given the deliquescence of salts, evaporites may provide refuge for microbial life, which merits further investigation. Halotolerant and spore-forming microorganisms are the dominant microbial groups capable of surviving under extreme conditions. Our results offer brand-new information on microbial biomass in Dalangtan Playa and shed light on understanding the potential microbial life in the dried playa or paleo-lakes on Mars.
Collapse
Affiliation(s)
- Ting Huang
- State Key Laboratory of Geological Process and Mineral Resources, Planetary Science Institute, China University of Geosciences, Wuhan, Hubei, China
| | - Ruicheng Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, Hubei, China
| | - Long Xiao
- State Key Laboratory of Geological Process and Mineral Resources, Planetary Science Institute, China University of Geosciences, Wuhan, Hubei, China
- Space Science Institute, Macau University of Science and Technology, Macau, China
- * E-mail: (LX); (HW)
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, Hubei, China
- * E-mail: (LX); (HW)
| | - José M. Martínez
- Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), Madrid, Spain
| | - Cristina Escudero
- Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), Madrid, Spain
| | - Ricardo Amils
- Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), Madrid, Spain
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid, Spain
| | - Ziye Cheng
- State Key Laboratory of Geological Process and Mineral Resources, Planetary Science Institute, China University of Geosciences, Wuhan, Hubei, China
| | - Yi Xu
- Space Science Institute, Macau University of Science and Technology, Macau, China
| |
Collapse
|
34
|
Curtis-Harper E, Pearson VK, Summers S, Bridges JC, Schwenzer SP, Olsson-Francis K. The Microbial Community of a Terrestrial Anoxic Inter-Tidal Zone: A Model for Laboratory-Based Studies of Potentially Habitable Ancient Lacustrine Systems on Mars. Microorganisms 2018; 6:microorganisms6030061. [PMID: 29966361 PMCID: PMC6165429 DOI: 10.3390/microorganisms6030061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/18/2018] [Accepted: 06/21/2018] [Indexed: 11/16/2022] Open
Abstract
Evidence indicates that Gale crater on Mars harboured a fluvio-lacustrine environment that was subjected to physio-chemical variations such as changes in redox conditions and evaporation with salinity changes, over time. Microbial communities from terrestrial environmental analogues sites are important for studying such potential habitability environments on early Mars, especially in laboratory-based simulation experiments. Traditionally, such studies have predominantly focused on microorganisms from extreme terrestrial environments. These are applicable to a range of Martian environments; however, they lack relevance to the lacustrine systems. In this study, we characterise an anoxic inter-tidal zone as a terrestrial analogue for the Gale crater lake system according to its chemical and physical properties, and its microbiological community. The sub-surface inter-tidal environment of the River Dee estuary, United Kingdom (53°21′15.40″ N, 3°10′24.95″ W) was selected and compared with available data from Early Hesperian-time Gale crater, and temperature, redox, and pH were similar. Compared to subsurface ‘groundwater’-type fluids invoked for the Gale subsurface, salinity was higher at the River Dee site, which are more comparable to increases in salinity that likely occurred as the Gale crater lake evolved. Similarities in clay abundance indicated similar access to, specifically, the bio-essential elements Mg, Fe and K. The River Dee microbial community consisted of taxa that were known to have members that could utilise chemolithoautotrophic and chemoorganoheterotrophic metabolism and such a mixed metabolic capability would potentially have been feasible on Mars. Microorganisms isolated from the site were able to grow under environment conditions that, based on mineralogical data, were similar to that of the Gale crater’s aqueous environment at Yellowknife Bay. Thus, the results from this study suggest that the microbial community from an anoxic inter-tidal zone is a plausible terrestrial analogue for studying habitability of fluvio-lacustrine systems on early Mars, using laboratory-based simulation experiments.
Collapse
Affiliation(s)
- Elliot Curtis-Harper
- Faculty of Science, Technology, Engineering and Mathematics, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK.
| | - Victoria K Pearson
- Faculty of Science, Technology, Engineering and Mathematics, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK.
| | - Stephen Summers
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore, Singapore.
| | - John C Bridges
- Space Research Centre, Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH, UK.
| | - Susanne P Schwenzer
- Faculty of Science, Technology, Engineering and Mathematics, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK.
| | - Karen Olsson-Francis
- Faculty of Science, Technology, Engineering and Mathematics, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK.
| |
Collapse
|
35
|
Shkolyar S, Eshelman EJ, Farmer JD, Hamilton D, Daly MG, Youngbull C. Detecting Kerogen as a Biosignature Using Colocated UV Time-Gated Raman and Fluorescence Spectroscopy. ASTROBIOLOGY 2018; 18:431-453. [PMID: 29624103 DOI: 10.1089/ast.2017.1716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The Mars 2020 mission will analyze samples in situ and identify any that could have preserved biosignatures in ancient habitable environments for later return to Earth. Highest priority targeted samples include aqueously formed sedimentary lithologies. On Earth, such lithologies can contain fossil biosignatures as aromatic carbon (kerogen). In this study, we analyzed nonextracted kerogen in a diverse suite of natural, complex samples using colocated UV excitation (266 nm) time-gated (UV-TG) Raman and laser-induced fluorescence spectroscopies. We interrogated kerogen and its host matrix in samples to (1) explore the capabilities of UV-TG Raman and fluorescence spectroscopies for detecting kerogen in high-priority targets in the search for possible biosignatures on Mars; (2) assess the effectiveness of time gating and UV laser wavelength in reducing fluorescence in Raman spectra; and (3) identify sample-specific issues that could challenge rover-based identifications of kerogen using UV-TG Raman spectroscopy. We found that ungated UV Raman spectroscopy is suited to identify diagnostic kerogen Raman bands without interfering fluorescence and that UV fluorescence spectroscopy is suited to identify kerogen. These results highlight the value of combining colocated Raman and fluorescence spectroscopies, similar to those obtainable by SHERLOC on Mars 2020, to strengthen the confidence of kerogen detection as a potential biosignature in complex natural samples. Key Words: Raman spectroscopy-Laser-induced fluorescence spectroscopy-Mars Sample Return-Mars 2020 mission-Kerogen-Biosignatures. Astrobiology 18, 431-453.
Collapse
Affiliation(s)
- Svetlana Shkolyar
- 1 School of Earth and Space Exploration, Arizona State University , Tempe, Arizona
- 2 Current address: Geophysical Laboratory, Carnegie Institution of Washington , Washington, District of Columbia
| | - Evan J Eshelman
- 3 The Centre for Research in Earth and Space Science (CRESS), York University , Toronto, Ontario, Canada
| | - Jack D Farmer
- 1 School of Earth and Space Exploration, Arizona State University , Tempe, Arizona
| | - David Hamilton
- 3 The Centre for Research in Earth and Space Science (CRESS), York University , Toronto, Ontario, Canada
| | - Michael G Daly
- 3 The Centre for Research in Earth and Space Science (CRESS), York University , Toronto, Ontario, Canada
| | - Cody Youngbull
- 4 Flathead Lake Biological Station, University of Montana , Polson, Montana
| |
Collapse
|
36
|
Price A, Pearson VK, Schwenzer SP, Miot J, Olsson-Francis K. Nitrate-Dependent Iron Oxidation: A Potential Mars Metabolism. Front Microbiol 2018; 9:513. [PMID: 29616015 PMCID: PMC5869265 DOI: 10.3389/fmicb.2018.00513] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 03/06/2018] [Indexed: 11/13/2022] Open
Abstract
This work considers the hypothetical viability of microbial nitrate-dependent Fe2+ oxidation (NDFO) for supporting simple life in the context of the early Mars environment. This draws on knowledge built up over several decades of remote and in situ observation, as well as recent discoveries that have shaped current understanding of early Mars. Our current understanding is that certain early martian environments fulfill several of the key requirements for microbes with NDFO metabolism. First, abundant Fe2+ has been identified on Mars and provides evidence of an accessible electron donor; evidence of anoxia suggests that abiotic Fe2+ oxidation by molecular oxygen would not have interfered and competed with microbial iron metabolism in these environments. Second, nitrate, which can be used by some iron oxidizing microorganisms as an electron acceptor, has also been confirmed in modern aeolian and ancient sediment deposits on Mars. In addition to redox substrates, reservoirs of both organic and inorganic carbon are available for biosynthesis, and geochemical evidence suggests that lacustrine systems during the hydrologically active Noachian period (4.1-3.7 Ga) match the circumneutral pH requirements of nitrate-dependent iron-oxidizing microorganisms. As well as potentially acting as a primary producer in early martian lakes and fluvial systems, the light-independent nature of NDFO suggests that such microbes could have persisted in sub-surface aquifers long after the desiccation of the surface, provided that adequate carbon and nitrates sources were prevalent. Traces of NDFO microorganisms may be preserved in the rock record by biomineralization and cellular encrustation in zones of high Fe2+ concentrations. These processes could produce morphological biosignatures, preserve distinctive Fe-isotope variation patterns, and enhance preservation of biological organic compounds. Such biosignatures could be detectable by future missions to Mars with appropriate instrumentation.
Collapse
Affiliation(s)
- Alex Price
- Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Victoria K. Pearson
- Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Susanne P. Schwenzer
- Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Jennyfer Miot
- CNRS, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Muséum National d’Histoire Naturelle, Université Pierre et Marie Curie – Sorbonne Universités, UMR 7590, Paris, France
| | - Karen Olsson-Francis
- Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| |
Collapse
|
37
|
Oxygen Isotope Thermometry of DaG 476 and SaU 008 Martian Meteorites: Implications for Their Origin. GEOSCIENCES 2018. [DOI: 10.3390/geosciences8010015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Myers MR, King GM. Perchlorate-Coupled Carbon Monoxide (CO) Oxidation: Evidence for a Plausible Microbe-Mediated Reaction in Martian Brines. Front Microbiol 2017; 8:2571. [PMID: 29312249 PMCID: PMC5743682 DOI: 10.3389/fmicb.2017.02571] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/11/2017] [Indexed: 11/29/2022] Open
Abstract
The presence of hydrated salts on Mars indicates that some regions of its surface might be habitable if suitable metabolizable substrates are available. However, several lines of evidence have shown that Mars' regolith contains only trace levels of the organic matter needed to support heterotrophic microbes. Due to the scarcity of organic carbon, carbon monoxide (CO) at a concentration of about 700 parts per million (about 0.4 Pa) might be the single most abundant readily available substrate that could support near-surface bacterial activity. Although a variety of electron acceptors can be coupled to CO oxidation, perchlorate is likely the most abundant potential oxidant in Mars' brines. Whether perchlorate, a potent chaotrope, can support microbial CO oxidation has not been previously documented. We report here the first evidence for perchlorate-coupled CO oxidation based on assays with two distinct euryarchaeal extreme halophiles. CO oxidation occurred readily in 3.8 M NaCl brines with perchlorate concentrations from 0.01 to 1 M. Both isolates were able to couple CO with perchlorate or chlorate under anaerobic conditions with or without nitrate as an inducer for nitrate reductase, which serves as a perchlorate reductase in extreme halophiles. In the presence of perchlorate, CO concentrations were reduced to levels well below those found in Mars' atmosphere. This indicates that CO could contribute to the survival of microbial populations in hydrated salt formations or brines if water activities are suitably permissive.
Collapse
Affiliation(s)
| | - Gary M. King
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
39
|
Ehlmann BL, Edgett KS, Sutter B, Achilles CN, Litvak ML, Lapotre MGA, Sullivan R, Fraeman AA, Arvidson RE, Blake DF, Bridges NT, Conrad PG, Cousin A, Downs RT, Gabriel TSJ, Gellert R, Hamilton VE, Hardgrove C, Johnson JR, Kuhn S, Mahaffy PR, Maurice S, McHenry M, Meslin PY, Ming DW, Minitti ME, Morookian JM, Morris RV, O'Connell-Cooper CD, Pinet PC, Rowland SK, Schröder S, Siebach KL, Stein NT, Thompson LM, Vaniman DT, Vasavada AR, Wellington DF, Wiens RC, Yen AS. Chemistry, mineralogy, and grain properties at Namib and High dunes, Bagnold dune field, Gale crater, Mars: A synthesis of Curiosity rover observations. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2017; 122:2510-2543. [PMID: 29497589 DOI: 10.1002/2016je005225] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 05/25/2023]
Abstract
The Mars Science Laboratory Curiosity rover performed coordinated measurements to examine the textures and compositions of aeolian sands in the active Bagnold dune field. The Bagnold sands are rounded to subrounded, very fine to medium sized (~45-500 μm) with ≥6 distinct grain colors. In contrast to sands examined by Curiosity in a dust-covered, inactive bedform called Rocknest and soils at other landing sites, Bagnold sands are darker, less red, better sorted, have fewer silt-sized or smaller grains, and show no evidence for cohesion. Nevertheless, Bagnold mineralogy and Rocknest mineralogy are similar with plagioclase, olivine, and pyroxenes in similar proportions comprising >90% of crystalline phases, along with a substantial amorphous component (35% ± 15%). Yet Bagnold and Rocknest bulk chemistry differ. Bagnold sands are Si enriched relative to other soils at Gale crater, and H2O, S, and Cl are lower relative to all previously measured Martian soils and most Gale crater rocks. Mg, Ni, Fe, and Mn are enriched in the coarse-sieved fraction of Bagnold sands, corroborated by visible/near-infrared spectra that suggest enrichment of olivine. Collectively, patterns in major element chemistry and volatile release data indicate two distinctive volatile reservoirs in Martian soils: (1) amorphous components in the sand-sized fraction (represented by Bagnold) that are Si-enriched, hydroxylated alteration products and/or H2O- or OH-bearing impact or volcanic glasses and (2) amorphous components in the fine fraction (<40 μm; represented by Rocknest and other bright soils) that are Fe, S, and Cl enriched with low Si and adsorbed and structural H2O.
Collapse
|
40
|
Vago JL, Westall F. Habitability on Early Mars and the Search for Biosignatures with the ExoMars Rover. ASTROBIOLOGY 2017; 17:471-510. [PMID: 31067287 PMCID: PMC5685153 DOI: 10.1089/ast.2016.1533] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 03/05/2017] [Indexed: 05/19/2023]
Abstract
The second ExoMars mission will be launched in 2020 to target an ancient location interpreted to have strong potential for past habitability and for preserving physical and chemical biosignatures (as well as abiotic/prebiotic organics). The mission will deliver a lander with instruments for atmospheric and geophysical investigations and a rover tasked with searching for signs of extinct life. The ExoMars rover will be equipped with a drill to collect material from outcrops and at depth down to 2 m. This subsurface sampling capability will provide the best chance yet to gain access to chemical biosignatures. Using the powerful Pasteur payload instruments, the ExoMars science team will conduct a holistic search for traces of life and seek corroborating geological context information. Key Words: Biosignatures-ExoMars-Landing sites-Mars rover-Search for life. Astrobiology 17, 471-510.
Collapse
|
41
|
Goesmann F, Brinckerhoff WB, Raulin F, Goetz W, Danell RM, Getty SA, Siljeström S, Mißbach H, Steininger H, Arevalo RD, Buch A, Freissinet C, Grubisic A, Meierhenrich UJ, Pinnick VT, Stalport F, Szopa C, Vago JL, Lindner R, Schulte MD, Brucato JR, Glavin DP, Grand N, Li X, van Amerom FHW. The Mars Organic Molecule Analyzer (MOMA) Instrument: Characterization of Organic Material in Martian Sediments. ASTROBIOLOGY 2017; 17:655-685. [PMID: 31067288 PMCID: PMC5685156 DOI: 10.1089/ast.2016.1551] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 04/10/2017] [Indexed: 05/09/2023]
Abstract
The Mars Organic Molecule Analyzer (MOMA) instrument onboard the ESA/Roscosmos ExoMars rover (to launch in July, 2020) will analyze volatile and refractory organic compounds in martian surface and subsurface sediments. In this study, we describe the design, current status of development, and analytical capabilities of the instrument. Data acquired on preliminary MOMA flight-like hardware and experimental setups are also presented, illustrating their contribution to the overall science return of the mission. Key Words: Mars-Mass spectrometry-Life detection-Planetary instrumentation. Astrobiology 17, 655-685.
Collapse
Affiliation(s)
- Fred Goesmann
- Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany
| | | | - François Raulin
- LISA, U. Paris-Est, Créteil, U. Paris Diderot, Paris, CNRS, France
| | - Walter Goetz
- Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany
| | | | | | - Sandra Siljeström
- RISE Research Institutes of Sweden, Bioscience and Materials/Chemistry and Materials, Stockholm, Sweden
| | - Helge Mißbach
- Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany
| | | | | | - Arnaud Buch
- LPGM, CentraleParis, Chatenay-Malabry, France
| | | | - Andrej Grubisic
- NASA GSFC, Greenbelt, Maryland, USA
- University of Maryland, College Park, Maryland, USA
| | | | | | - Fabien Stalport
- LISA, U. Paris-Est, Créteil, U. Paris Diderot, Paris, CNRS, France
| | - Cyril Szopa
- LATMOS/IPSL, Guyancourt, France
- Institut Universitaire de France, Paris, France
| | | | | | | | | | | | - Noel Grand
- LISA, U. Paris-Est, Créteil, U. Paris Diderot, Paris, CNRS, France
| | - Xiang Li
- NASA GSFC, Greenbelt, Maryland, USA
- University of Maryland, Baltimore County, Baltimore, Maryland, USA
| | | |
Collapse
|
42
|
Acosta-Maeda TE, Misra AK, Porter JN, Bates DE, Sharma SK. Remote Raman Efficiencies and Cross-Sections of Organic and Inorganic Chemicals. APPLIED SPECTROSCOPY 2017; 71:1025-1038. [PMID: 27645726 DOI: 10.1177/0003702816668531] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We determined Raman cross-sections of various organic liquids and inorganic polyatomic ions in aqueous solutions with a 532 nm pulsed laser using remote Raman systems developed at the University of Hawaii. Using a calibrated integrating sphere as a light source, we converted the intensity counts in the spectrum of the light from the integrating sphere measured with UH remote Raman instrument to spectral radiance. From these data, a response function of the remote Raman instrument was obtained. With the intensity-calibrated instrument, we collected remote Raman data from a standard 1 mm path length fused silica spectrophotometer cell filled with cyclohexane. The measured value of the differential Raman cross-section for the 801 cm-1 vibrational mode of cyclohexane is 4.55 × 10-30 cm2 sr-1 molecule-1 when excited by a 532 nm laser, in good agreement with the values reported in the literature. Using the measured cyclohexane Raman cross-section as a reference and relative Raman mode intensities of the various ions and organic liquids, we calculated the Raman cross-sections of the strongest Raman lines of nitrate, sulfate, carbonate, phosphate ions, and organic liquids by maintaining same experimental conditions for remote Raman detection. These relative Raman cross-section values will be useful for estimating detection capabilities of remote Raman systems for planetary exploration.
Collapse
Affiliation(s)
- Tayro E Acosta-Maeda
- Hawai'i Institute of Geophysics and Planetology, SOEST, University of Hawaii at Manoa, Honolulu, Hawai'i, USA
| | - Anupam K Misra
- Hawai'i Institute of Geophysics and Planetology, SOEST, University of Hawaii at Manoa, Honolulu, Hawai'i, USA
| | - John N Porter
- Hawai'i Institute of Geophysics and Planetology, SOEST, University of Hawaii at Manoa, Honolulu, Hawai'i, USA
| | - David E Bates
- Hawai'i Institute of Geophysics and Planetology, SOEST, University of Hawaii at Manoa, Honolulu, Hawai'i, USA
| | - Shiv K Sharma
- Hawai'i Institute of Geophysics and Planetology, SOEST, University of Hawaii at Manoa, Honolulu, Hawai'i, USA
| |
Collapse
|
43
|
McCaig HC, Stockton A, Crilly C, Chung S, Kanik I, Lin Y, Zhong F. Supercritical Carbon Dioxide Extraction of Coronene in the Presence of Perchlorate for In Situ Chemical Analysis of Martian Regolith. ASTROBIOLOGY 2016; 16:703-714. [PMID: 27623199 DOI: 10.1089/ast.2015.1443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
UNLABELLED The analysis of the organic compounds present in the martian regolith is essential for understanding the history and habitability of Mars, as well as studying the signs of possible extant or extinct life. To date, pyrolysis, the only technique that has been used to extract organic compounds from the martian regolith, has not enabled the detection of unaltered native martian organics. The elevated temperatures required for pyrolysis extraction can cause native martian organics to react with perchlorate salts in the regolith and possibly result in the chlorohydrocarbons that have been detected by in situ instruments. Supercritical carbon dioxide (SCCO2) extraction is an alternative to pyrolysis that may be capable of delivering unaltered native organic species to an in situ detector. In this study, we report the SCCO2 extraction of unaltered coronene, a representative polycyclic aromatic hydrocarbon (PAH), from martian regolith simulants, in the presence of 3 parts per thousand (ppth) sodium perchlorate. PAHs are a class of nonpolar molecules of astrobiological interest and are delivered to the martian surface by meteoritic infall. We also determined that the extraction efficiency of coronene was unaffected by the presence of perchlorate on the regolith simulant, and that no sodium perchlorate was extracted by SCCO2. This indicates that SCCO2 extraction can provide de-salted samples that could be directly delivered to a variety of in situ detectors. SCCO2 was also used to extract trace native fluorescent organic compounds from the martian regolith simulant JSC Mars-1, providing further evidence that SCCO2 extraction may provide an alternative to pyrolysis to enable the delivery of unaltered native organic compounds to an in situ detector on a future Mars rover. KEY WORDS Biomarkers-Carbon dioxide-In situ measurement-Mars-Search for Mars' organics. Astrobiology 16, 703-714.
Collapse
Affiliation(s)
- Heather C McCaig
- 1 Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California
| | | | - Candice Crilly
- 1 Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California
- 3 Occidental College , Los Angeles, California
| | - Shirley Chung
- 1 Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California
| | - Isik Kanik
- 1 Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California
| | - Ying Lin
- 1 Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California
| | - Fang Zhong
- 1 Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California
| |
Collapse
|
44
|
Montgomery W, Bromiley GD, Sephton MA. The nature of organic records in impact excavated rocks on Mars. Sci Rep 2016; 6:30947. [PMID: 27492071 PMCID: PMC4974657 DOI: 10.1038/srep30947] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 07/11/2016] [Indexed: 11/09/2022] Open
Abstract
Impact ejected rocks are targets for life detection missions to Mars. The Martian subsurface is more favourable to organic preservation than the surface owing to an attenuation of radiation and physical separation from oxidising materials with increasing depth. Impact events bring materials to the surface where they may be accessed without complicated drilling procedures. On Earth, different assemblages of organic matter types are derived from varying depositional environments. Here we assess whether these different types of organic materials can survive impact events without corruption. We subjected four terrestrial organic matter types to elevated pressures and temperatures in piston-cylinder experiments followed by chemical characterisation using whole-rock pyrolysis-gas chromatography-mass spectrometry. Our data reveal that long chain hydrocarbon-dominated organic matter (types I and II; mainly microbial or algal) are unresistant to pressure whereas aromatic hydrocarbon-dominated organic matter types (types III and IV; mainly land plant, metamorphosed or degraded, displaying some superficial chemical similarities to abiotic meteoritic organic matter) are relatively resistant. This suggests that the impact excavated record of potential biology on Mars will be unavoidably biased, with microbial organic matter underrepresented while metamorphosed, degraded or abiotic meteoritic organic matter types will be selectively preserved.
Collapse
Affiliation(s)
- W Montgomery
- Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London, SW7 2AZ, UK
| | - G D Bromiley
- School of GeoSciences, University of Edinburgh, Grant Institute, West Main Road, Edinburgh EH9 3JW, UK
| | - M A Sephton
- Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London, SW7 2AZ, UK
| |
Collapse
|
45
|
Bower D, Steele A, Fries M, Green O, Lindsay J. Raman Imaging Spectroscopy of a Putative Microfossil from the ∼3.46 Ga Apex Chert: Insights from Quartz Grain Orientation. ASTROBIOLOGY 2016; 16:169-80. [PMID: 26848838 PMCID: PMC4770934 DOI: 10.1089/ast.2014.1207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The utility of nondestructive laser Raman for testing the biogenicity of microfossil-like structures in ancient rocks is promising, yet results from deposits like the ∼3.46 Ga Apex chert remain contentious. The essence of the debate is that associated microstructures, which are not purported to be microfossils, also contain reduced carbon that displays Raman D- and G-band peaks similar to those seen in the purported microfossils. This has led to the hypothesis that all features including reported microfossils are due to compression of nonfossil carbon during crystal growth around quartz spherulites or more angular crystals. In this scenario, the precursor to this macromolecular carbon may or may not have been of biogenic origin, while the arcuate and linear features described would be pseudofossils. To test this hypothesis, we have undertaken 2-D micro-Raman imaging of the Eoleptonema apex holotype and associated features using instrumentation with a high spatial and spectral resolution. In addition to this, we utilized the ratio of two Raman active quartz mode intensities (I129/I461) to assess quartz grain orientation and grain-splitting artifacts. These data lead us to conclude that the holotype of Eoleptonema apex is a sheet-shaped pseudofossil that appears to be a carbon infilled intragranular crack; therefore other holotypes should be carefully reexamined for syngenicity.
Collapse
Affiliation(s)
- D.M. Bower
- Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC, USA
| | - A. Steele
- Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC, USA
| | - M.D. Fries
- NASA Astromaterials Research and Exploration Science, Johnson Space Center, Houston, Texas, USA
| | - O.R. Green
- Department of Earth Sciences, University of Oxford, Oxford, UK
| | - J.F. Lindsay
- Lunar and Planetary Science Institute, Houston, Texas, USA
| |
Collapse
|
46
|
Tomescu AMF, Klymiuk AA, Matsunaga KKS, Bippus AC, Shelton GWK. Microbes and the Fossil Record: Selected Topics in Paleomicrobiology. THEIR WORLD: A DIVERSITY OF MICROBIAL ENVIRONMENTS 2016. [DOI: 10.1007/978-3-319-28071-4_3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
47
|
Cockell CS, Bush T, Bryce C, Direito S, Fox-Powell M, Harrison JP, Lammer H, Landenmark H, Martin-Torres J, Nicholson N, Noack L, O'Malley-James J, Payler SJ, Rushby A, Samuels T, Schwendner P, Wadsworth J, Zorzano MP. Habitability: A Review. ASTROBIOLOGY 2016; 16:89-117. [PMID: 26741054 DOI: 10.1089/ast.2015.1295] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Habitability is a widely used word in the geoscience, planetary science, and astrobiology literature, but what does it mean? In this review on habitability, we define it as the ability of an environment to support the activity of at least one known organism. We adopt a binary definition of "habitability" and a "habitable environment." An environment either can or cannot sustain a given organism. However, environments such as entire planets might be capable of supporting more or less species diversity or biomass compared with that of Earth. A clarity in understanding habitability can be obtained by defining instantaneous habitability as the conditions at any given time in a given environment required to sustain the activity of at least one known organism, and continuous planetary habitability as the capacity of a planetary body to sustain habitable conditions on some areas of its surface or within its interior over geological timescales. We also distinguish between surface liquid water worlds (such as Earth) that can sustain liquid water on their surfaces and interior liquid water worlds, such as icy moons and terrestrial-type rocky planets with liquid water only in their interiors. This distinction is important since, while the former can potentially sustain habitable conditions for oxygenic photosynthesis that leads to the rise of atmospheric oxygen and potentially complex multicellularity and intelligence over geological timescales, the latter are unlikely to. Habitable environments do not need to contain life. Although the decoupling of habitability and the presence of life may be rare on Earth, it may be important for understanding the habitability of other planetary bodies.
Collapse
Affiliation(s)
- C S Cockell
- 1 UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| | - T Bush
- 1 UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| | - C Bryce
- 1 UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| | - S Direito
- 1 UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| | - M Fox-Powell
- 1 UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| | - J P Harrison
- 1 UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| | - H Lammer
- 2 Austrian Academy of Sciences, Space Research Institute , Graz, Austria
| | - H Landenmark
- 1 UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| | - J Martin-Torres
- 3 Division of Space Technology, Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology , Kiruna, Sweden; and Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Armilla, Granada, Spain
| | - N Nicholson
- 1 UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| | - L Noack
- 4 Department of Reference Systems and Planetology, Royal Observatory of Belgium , Brussels, Belgium
| | - J O'Malley-James
- 5 School of Physics and Astronomy, University of St Andrews , St Andrews, UK; now at the Carl Sagan Institute, Cornell University, Ithaca, NY, USA
| | - S J Payler
- 1 UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| | - A Rushby
- 6 Centre for Ocean and Atmospheric Science (COAS), School of Environmental Sciences, University of East Anglia , Norwich, UK
| | - T Samuels
- 1 UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| | - P Schwendner
- 1 UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| | - J Wadsworth
- 1 UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| | - M P Zorzano
- 3 Division of Space Technology, Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology , Kiruna, Sweden; and Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Armilla, Granada, Spain
- 7 Centro de Astrobiología (CSIC-INTA) , Torrejón de Ardoz, Madrid, Spain
| |
Collapse
|
48
|
|
49
|
Lewis JMT, Watson JS, Najorka J, Luong D, Sephton MA. Sulfate minerals: a problem for the detection of organic compounds on Mars? ASTROBIOLOGY 2015; 15:247-58. [PMID: 25695727 PMCID: PMC4363818 DOI: 10.1089/ast.2014.1160] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 12/27/2014] [Indexed: 05/20/2023]
Abstract
The search for in situ organic matter on Mars involves encounters with minerals and requires an understanding of their influence on lander and rover experiments. Inorganic host materials can be helpful by aiding the preservation of organic compounds or unhelpful by causing the destruction of organic matter during thermal extraction steps. Perchlorates are recognized as confounding minerals for thermal degradation studies. On heating, perchlorates can decompose to produce oxygen, which then oxidizes organic matter. Other common minerals on Mars, such as sulfates, may also produce oxygen upon thermal decay, presenting an additional complication. Different sulfate species decompose within a large range of temperatures. We performed a series of experiments on a sample containing the ferric sulfate jarosite. The sulfate ions within jarosite break down from 500 °C. Carbon dioxide detected during heating of the sample was attributed to oxidation of organic matter. A laboratory standard of ferric sulfate hydrate released sulfur dioxide from 550 °C, and an oxygen peak was detected in the products. Calcium sulfate did not decompose below 1000 °C. Oxygen released from sulfate minerals may have already affected organic compound detection during in situ thermal experiments on Mars missions. A combination of preliminary mineralogical analyses and suitably selected pyrolysis temperatures may increase future success in the search for past or present life on Mars.
Collapse
Affiliation(s)
- James M T Lewis
- 1 Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London , London, United Kingdom
| | | | | | | | | |
Collapse
|
50
|
Freissinet C, Glavin DP, Mahaffy PR, Miller KE, Eigenbrode JL, Summons RE, Brunner AE, Buch A, Szopa C, Archer PD, Franz HB, Atreya SK, Brinckerhoff WB, Cabane M, Coll P, Conrad PG, Des Marais DJ, Dworkin JP, Fairén AG, François P, Grotzinger JP, Kashyap S, ten Kate IL, Leshin LA, Malespin CA, Martin MG, Martin-Torres FJ, McAdam AC, Ming DW, Navarro-González R, Pavlov AA, Prats BD, Squyres SW, Steele A, Stern JC, Sumner DY, Sutter B, Zorzano MP. Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2015; 120:495-514. [PMID: 26690960 PMCID: PMC4672966 DOI: 10.1002/2014je004737] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/12/2015] [Accepted: 02/13/2015] [Indexed: 05/04/2023]
Abstract
UNLABELLED The Sample Analysis at Mars (SAM) instrument on board the Mars Science Laboratory Curiosity rover is designed to conduct inorganic and organic chemical analyses of the atmosphere and the surface regolith and rocks to help evaluate the past and present habitability potential of Mars at Gale Crater. Central to this task is the development of an inventory of any organic molecules present to elucidate processes associated with their origin, diagenesis, concentration, and long-term preservation. This will guide the future search for biosignatures. Here we report the definitive identification of chlorobenzene (150-300 parts per billion by weight (ppbw)) and C2 to C4 dichloroalkanes (up to 70 ppbw) with the SAM gas chromatograph mass spectrometer (GCMS) and detection of chlorobenzene in the direct evolved gas analysis (EGA) mode, in multiple portions of the fines from the Cumberland drill hole in the Sheepbed mudstone at Yellowknife Bay. When combined with GCMS and EGA data from multiple scooped and drilled samples, blank runs, and supporting laboratory analog studies, the elevated levels of chlorobenzene and the dichloroalkanes cannot be solely explained by instrument background sources known to be present in SAM. We conclude that these chlorinated hydrocarbons are the reaction products of Martian chlorine and organic carbon derived from Martian sources (e.g., igneous, hydrothermal, atmospheric, or biological) or exogenous sources such as meteorites, comets, or interplanetary dust particles. KEY POINTS First in situ evidence of nonterrestrial organics in Martian surface sediments Chlorinated hydrocarbons identified in the Sheepbed mudstone by SAM Organics preserved in sample exposed to ionizing radiation and oxidative condition.
Collapse
Affiliation(s)
- C Freissinet
- Solar System Exploration Division, NASA Goddard Space Flight CenterGreenbelt, Maryland, USA
- NASA Postdoctoral Program, Oak Ridge Associated UniversitiesOak Ridge, Tennessee, USA
- Correspondence to:
C. Freissinet and P. R. Mahaffy,, ,
| | - D P Glavin
- Solar System Exploration Division, NASA Goddard Space Flight CenterGreenbelt, Maryland, USA
| | - P R Mahaffy
- Solar System Exploration Division, NASA Goddard Space Flight CenterGreenbelt, Maryland, USA
- Correspondence to:
C. Freissinet and P. R. Mahaffy,, ,
| | - K E Miller
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of TechnologyCambridge, Massachusetts, USA
| | - J L Eigenbrode
- Solar System Exploration Division, NASA Goddard Space Flight CenterGreenbelt, Maryland, USA
| | - R E Summons
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of TechnologyCambridge, Massachusetts, USA
| | - A E Brunner
- Solar System Exploration Division, NASA Goddard Space Flight CenterGreenbelt, Maryland, USA
- Center for Research and Exploration in Space Science & Technology, University of MarylandCollege Park, Maryland, USA
| | - A Buch
- Laboratoire de Génie des Procédés et Matériaux, Ecole Centrale ParisChâtenay-Malabry, France
| | - C Szopa
- Laboratoire Atmosphères, Milieux, Observations Spatiales, Pierre and Marie Curie University, Université de Versailles Saint-Quentin-en-Yvelines, and CNRSParis, France
| | - P D Archer
- Jacobs, NASA Johnson Space CenterHouston, Texas, USA
| | - H B Franz
- Solar System Exploration Division, NASA Goddard Space Flight CenterGreenbelt, Maryland, USA
- Center for Research and Exploration in Space Science & Technology, University of Maryland, Baltimore CountyBaltimore, Maryland, USA
| | - S K Atreya
- Department of Atmospheric, Oceanic and Space Sciences, University of MichiganAnn Arbor, Michigan, USA
| | - W B Brinckerhoff
- Solar System Exploration Division, NASA Goddard Space Flight CenterGreenbelt, Maryland, USA
| | - M Cabane
- Laboratoire Atmosphères, Milieux, Observations Spatiales, Pierre and Marie Curie University, Université de Versailles Saint-Quentin-en-Yvelines, and CNRSParis, France
| | - P Coll
- Laboratoire Interuniversitaire des Systèmes Atmosphériques, Université Paris-Est Créteil, Paris VII–Denis Diderot University, and CNRSCréteil, France
| | - P G Conrad
- Solar System Exploration Division, NASA Goddard Space Flight CenterGreenbelt, Maryland, USA
| | - D J Des Marais
- Exobiology Branch, NASA Ames Research CenterMoffett Field, California, USA
| | - J P Dworkin
- Solar System Exploration Division, NASA Goddard Space Flight CenterGreenbelt, Maryland, USA
| | - A G Fairén
- Department of Astronomy, Cornell UniversityIthaca, New York, USA
- Centro de Astrobiología, INTA-CSICMadrid, Spain
| | - P François
- Department of Atmospheric, Oceanic and Space Sciences, University of MichiganAnn Arbor, Michigan, USA
| | - J P Grotzinger
- Division of Geological and Planetary Sciences, California Institute of TechnologyPasadena, California, USA
| | - S Kashyap
- Solar System Exploration Division, NASA Goddard Space Flight CenterGreenbelt, Maryland, USA
- Center for Research and Exploration in Space Science & Technology, University of Maryland, Baltimore CountyBaltimore, Maryland, USA
| | - I L ten Kate
- Earth Sciences Department, Utrecht UniversityUtrecht, Netherlands
| | - L A Leshin
- Department of Earth and Environmental Sciences and School of Science, Rensselaer Polytechnic InstituteTroy, New York, USA
| | - C A Malespin
- Solar System Exploration Division, NASA Goddard Space Flight CenterGreenbelt, Maryland, USA
- Goddard Earth Sciences and Technologies and Research, Universities Space Research AssociationColumbia, Maryland, USA
| | - M G Martin
- Solar System Exploration Division, NASA Goddard Space Flight CenterGreenbelt, Maryland, USA
- Department of Chemistry, Catholic University of AmericaWashington, District of Columbia, USA
| | - F J Martin-Torres
- Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR)Granada, Spain
- Division of Space Technology, Department of Computer Science, Electrical and Space Engineering, Luleå University of TechnologyKiruna, Sweden
| | - A C McAdam
- Solar System Exploration Division, NASA Goddard Space Flight CenterGreenbelt, Maryland, USA
| | - D W Ming
- Astromaterials Research and Exploration Science Directorate, NASA Johnson Space CenterHouston, Texas, USA
| | - R Navarro-González
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad UniversitariaMéxico City, Mexico
| | - A A Pavlov
- Solar System Exploration Division, NASA Goddard Space Flight CenterGreenbelt, Maryland, USA
| | - B D Prats
- Solar System Exploration Division, NASA Goddard Space Flight CenterGreenbelt, Maryland, USA
| | - S W Squyres
- Department of Astronomy, Cornell UniversityIthaca, New York, USA
| | - A Steele
- Geophysical Laboratory, Carnegie Institution of WashingtonWashington, District of Columbia, USA
| | - J C Stern
- Solar System Exploration Division, NASA Goddard Space Flight CenterGreenbelt, Maryland, USA
| | - D Y Sumner
- Department of Earth and Planetary Sciences, University of CaliforniaDavis, California, USA
| | - B Sutter
- Jacobs, NASA Johnson Space CenterHouston, Texas, USA
| | - M-P Zorzano
- Centro de Astrobiologia (INTA-CSIC)Madrid, Spain
| |
Collapse
|