1
|
Dahlin P, Ruthes AC. Loss of Sterol Biosynthesis in Economically Important Plant Pests and Pathogens: A Review of a Potential Target for Pest Control. Biomolecules 2024; 14:1435. [PMID: 39595611 PMCID: PMC11591786 DOI: 10.3390/biom14111435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Sterol biosynthesis is a crucial metabolic pathway in plants and various plant pathogens. Their vital physiological role in multicellular organisms and their effects on growth and reproduction underline their importance as membrane compounds, hormone precursors, and signaling molecules. Insects, nematodes, and oomycetes of the Peronosporales group, which harbor important agricultural pests and pathogens, have lost the ability to synthesize their own sterols. These organisms rely on the acquisition of sterols from their host and are dependent on the sterol composition of the host. It is thought that sterol-synthesizing enzymes were lost during co-evolution with the hosts, which provided the organisms with sufficient amounts of the required sterols. To meet the essential requirements of these organisms, some sterol auxotrophs retained a few remaining sterol-modifying enzymes. Several molecular and biochemical investigations have suggested promising avenues for pest and pathogen control by targeting host sterol composition, sterol uptake, or sterol modification in organisms that have lost the ability to biosynthesize sterol de novo. This review examines the loss of sterol biosynthesis de novo in insects, nematodes, and oomycetes with the aim of investigating the sterol metabolic constraints and sterol acquisition of these organisms. This will shed light on its potential as a control target for the management of sterol-dependent organisms in a comprehensive agronomic approach.
Collapse
Affiliation(s)
- Paul Dahlin
- Entomology and Nematology, Plant Protection, Agroscope, Müller-Thurgau-Strasse 29, 8820 Wädenswil, Switzerland
| | | |
Collapse
|
2
|
Lafont R, Dinan L. Insect Sterols and Steroids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39384701 DOI: 10.1007/5584_2024_823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Insects are incapable of biosynthesising sterols de novo so they need to obtain them from their diets or, in certain cases, from symbiotic microorganisms. Sterols serve a structural role in cellular membranes and act as precursors for signalling molecules and defence compounds. Many phytophagous insects dealkylate phytosterols to yield primarily cholesterol, which is also the main sterol that carnivorous and omnivorous insects obtain in their diets. Some phytophagous species have secondarily lost the capacity to dealkylate and consequently use phytosterols for structural and functional roles. The polyhydroxylated steroid hormones of insects, the ecdysteroids, are derived from cholesterol (or phytosterols in non-dealkylating phytophagous species) and regulate many crucial aspects of insect development and reproduction by means of precisely regulated titres resulting from controlled synthesis, storage and further metabolism/excretion. Ecdysteroids differ significantly from vertebrate steroid hormones in their chemical, biochemical and biological properties. Defensive steroids (cardenolides, bufadienolides, cucurbitacins and ecdysteroids) can be accumulated from host plants or biosynthesised within the insect, depending on species, stored in significant amounts in the insect and released when it is attacked. Other allelochemical steroids serve as pheromones. Vertebrate-type steroids have also been conclusively identified from insect sources, but debate continues about their significance. Side chain dealkylation of phytosterols, ecdysteroid metabolism and ecdysteroid mode of action are targets of potential insect control strategies.
Collapse
Affiliation(s)
- René Lafont
- BIOSIPE, Sorbonne Université, Paris, France.
| | | |
Collapse
|
3
|
Vafopoulou X, Steel CGH. Halloween genes are expressed with a circadian rhythm during development in prothoracic glands of the insect RHODNIUS PROLIXUS. Comp Biochem Physiol A Mol Integr Physiol 2024; 290:111588. [PMID: 38242349 DOI: 10.1016/j.cbpa.2024.111588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
We analyse the developmental and circadian profiles of expression of the genes responsible for ecdysteroidogenesis (Halloween genes) in the PGs of Rhodnius prolixus throughout larval-adult development. Extensive use of in vitro techniques enabled multiple different parameters to be measured in individual PGs. Expression of disembodied and spook closely paralleled the ecdysteroid synthesis of the same PGs, and the ecdysteroid titre in vivo, but with functionally significant exceptions. Various tissues other than PGs expressed one, both or neither genes. Both gonads express both genes in pharate adults (larvae close to ecdysis). Both genes were expressed at low, but significant, levels in UF Rhodnius, raising questions concerning how developmental arrest is maintained in UF animals. IHC confirmed the subcellular localisation of the coded proteins. Gene knockdown suppressed transcription of both genes and ecdysteroid synthesis, with spook apparently regulating the downstream gene disembodied. Transcription of both genes occurred with a daily rhythm (with peaks at night) that was confirmed to be under circadian control using aperiodic conditions. The complex behaviour of the rhythm in LL implied two anatomically distinct oscillators regulate this transcription rhythm. First, the circadian clock in the PGs and second, the circadian rhythm of of Rhodnius PTTH which is released rhythmically from the brain under control of the circadian clock therein, both of which were described previously. We conclude ecdysteroidogenesis in Rhodnius PGs employs a similar pathway as other insects, but its control is complex, involving mechanisms both within and outside the PGs.
Collapse
Affiliation(s)
| | - Colin G H Steel
- Department of Biology, York University, Toronto M3J 1P3, Canada.
| |
Collapse
|
4
|
Ma S, Zhang T, Wang R, Wang P, Liu Y, Chang J, Wang A, Lan X, Sun L, Sun H, Shi R, Lu W, Liu D, Zhang N, Hu W, Wang X, Xing W, Jia L, Xia Q. High-throughput and genome-scale targeted mutagenesis using CRISPR in a nonmodel multicellular organism, Bombyx mori. Genome Res 2024; 34:134-144. [PMID: 38191205 PMCID: PMC10903940 DOI: 10.1101/gr.278297.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024]
Abstract
Large-scale genetic mutant libraries are powerful approaches to interrogating genotype-phenotype correlations and identifying genes responsible for certain environmental stimuli, both of which are the central goal of life science study. We produced the first large-scale CRISPR-Cas9-induced library in a nonmodel multicellular organism, Bombyx mori We developed a piggyBac-delivered binary genome editing strategy, which can simultaneously meet the requirements of mixed microinjection, efficient multipurpose genetic operation, and preservation of growth-defect lines. We constructed a single-guide RNA (sgRNA) plasmid library containing 92,917 sgRNAs targeting promoters and exons of 14,645 protein-coding genes, established 1726 transgenic sgRNA lines following microinjection of 66,650 embryos, and generated 300 mutant lines with diverse phenotypic changes. Phenomic characterization of mutant lines identified a large set of genes responsible for visual phenotypic or economically valuable trait changes. Next, we performed pooled context-specific positive screens for tolerance to environmental pollutant cadmium exposure, and identified KWMTBOMO12902 as a strong candidate gene for breeding applications in sericulture industry. Collectively, our results provide a novel and versatile approach for functional B. mori genomics, as well as a powerful resource for identifying the potential of key candidate genes for improving various economic traits. This study also shows the effectiveness, practicality, and convenience of large-scale mutant libraries in other nonmodel organisms.
Collapse
Affiliation(s)
- Sanyuan Ma
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China;
| | - Tong Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Ruolin Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Pan Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Yue Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Jiasong Chang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China
| | - Aoming Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Xinhui Lan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Le Sun
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Hao Sun
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Run Shi
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Wei Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Dan Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Na Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Wenbo Hu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Xiaogang Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
- China Chongqing Key Laboratory of Chinese Medicine & Health Science, Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
| | - Weiqing Xing
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Ling Jia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China;
| |
Collapse
|
5
|
Tang R, Liang J, Jing X, Liu T. Discrepancy in Sterol Usage between Two Polyphagous Caterpillars, Mythimna separata and Spodoptera frugiperda. INSECTS 2022; 13:876. [PMID: 36292826 PMCID: PMC9604351 DOI: 10.3390/insects13100876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Insects are sterol auxotrophs and typically obtain sterols from food. However, the sterol demand and metabolic capacity vary greatly among species, even for closely related species. The low survival of many insects on atypical sterols, such as cholestanol and cholestanone, raises the possibility of using sterol-modified plants to control insect herbivore pests. In this study, we evaluated two devastating migratory crop pests, Mythimna separata and Spodoptera frugiperda, in response to atypical sterols and explored the reasons that caused the divergences in sterol nutritional biology between them. Contrary to M. separata, S. frugiperda had unexpectedly high survival on cholestanone, and nearly 80% of the individuals pupated. Comparative studies, including insect response to multiple diets and larval body sterol/steroids analysis, were performed to explain their differences in cholestanone usage. Our results showed that, in comparison to M. separata, the superiority of S. frugiperda on cholestanone can be attributed to its higher efficiency of converting ketone into available stanol and its lower demand for sterols, which resulted in a better survival when cholesterol was unavailable. This research will help us to better understand insect sterol nutritional biology and the potential of using atypical sterols to control herbivorous insect pests.
Collapse
Affiliation(s)
| | | | - Xiangfeng Jing
- Correspondence: (X.J.); (T.L.); Tel.: +86-18220806257 (X.J.); +86-29-87092663 (T.L.)
| | - Tongxian Liu
- Correspondence: (X.J.); (T.L.); Tel.: +86-18220806257 (X.J.); +86-29-87092663 (T.L.)
| |
Collapse
|
6
|
Developmental timing of Drosophila pachea pupae is robust to temperature changes. J Therm Biol 2022; 106:103232. [DOI: 10.1016/j.jtherbio.2022.103232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 03/10/2022] [Accepted: 03/26/2022] [Indexed: 11/21/2022]
|
7
|
Kamiyama T, Niwa R. Transcriptional Regulators of Ecdysteroid Biosynthetic Enzymes and Their Roles in Insect Development. Front Physiol 2022; 13:823418. [PMID: 35211033 PMCID: PMC8863297 DOI: 10.3389/fphys.2022.823418] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/12/2022] [Indexed: 12/23/2022] Open
Abstract
Steroid hormones are responsible for coordinating many aspects of biological processes in most multicellular organisms, including insects. Ecdysteroid, the principal insect steroid hormone, is biosynthesized from dietary cholesterol or plant sterols. In the last 20 years, a number of ecdysteroidogenic enzymes, including Noppera-bo, Neverland, Shroud, Spook/Spookier, Cyp6t3, Phantom, Disembodied, Shadow, and Shade, have been identified and characterized in molecular genetic studies using the fruit fly Drosophila melanogaster. These enzymes are encoded by genes collectively called the Halloween genes. The transcriptional regulatory network, governed by multiple regulators of transcription, chromatin remodeling, and endoreplication, has been shown to be essential for the spatiotemporal expression control of Halloween genes in D. melanogaster. In this review, we summarize the latest information on transcriptional regulators that are crucial for controlling the expression of ecdysteroid biosynthetic enzymes and their roles in insect development.
Collapse
Affiliation(s)
- Takumi Kamiyama
- College of Biological Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
8
|
Gimenez S, Seninet I, Orsucci M, Audiot P, Nègre N, Nam K, Streiff R, d'Alençon E. Integrated miRNA and transcriptome profiling to explore the molecular determinism of convergent adaptation to corn in two lepidopteran pests of agriculture. BMC Genomics 2021; 22:606. [PMID: 34372780 PMCID: PMC8351448 DOI: 10.1186/s12864-021-07905-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/22/2021] [Indexed: 11/11/2022] Open
Abstract
Background The degree to which adaptation to same environment is determined by similar molecular mechanisms, is a topic of broad interest in evolutionary biology, as an indicator of evolutionary predictability. We wished to address if adaptation to the same host plant in phytophagous insects involved related gene expression patterns. We compared sRNA-Seq and RNA-Seq data between two pairs of taxa of Ostrinia and Spodoptera frugiperda sharing maize as host-plant. For the latter, we had previously carried out a reciprocal transplant experiment by feeding of the larvae of the Corn strain (Sf-C) and the Rice strain (Sf-R) on corn versus rice and characterized the mRNA and miRNA responses. Results First, we predicted the genes encoding miRNA in Ostrinia nubilalis (On) and O. scapulalis (Os). Respectively 67 and 65 known miRNA genes, as well as 196 and 190 novel ones were predicted with Os genome using sncRNAs extracted from whole larvae feeding on corn or mugwort. In On, a read counts analysis showed that 37 (55.22%) known miRNAs and 19 (9.84%) novel miRNAs were differentially expressed (DE) on mugwort compared to corn (in Os, 25 known miRs (38.46%) and 8 novel ones (4.34%)). Between species on corn, 8 (12.5%) known miRNAs and 8 (6.83%) novel ones were DE while only one novel miRNA showed expression variation between species on mugwort. Gene target prediction led to the identification of 2953 unique target genes in On and 2719 in Os, among which 11.6% (344) were DE when comparing species on corn. 1.8% (54) of On miR targets showed expression variation upon a change of host-plant. We found molecular changes matching convergent phenotype, i.e., a set of nine miRNAs that are regulated either according to the host-plant both in On and Sf-C or between them on the same plant, corn. Among DE miR target genes between taxa, 13.7% shared exactly the same annotation between the two pairs of taxa and had function related to insect host-plant interaction. Conclusion There is some similarity in underlying genetic mechanisms of convergent evolution of two distant Lepidopteran species having adopted corn in their host range, highlighting possible adaptation genes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07905-7.
Collapse
Affiliation(s)
| | | | - Marion Orsucci
- DGIMI, Univ Montpellier, INRAE, Montpellier, France.,CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France.,Department of Plant Biology, Uppsala BioCenter and Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - Philippe Audiot
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | | | - Kiwoong Nam
- DGIMI, Univ Montpellier, INRAE, Montpellier, France
| | - Réjane Streiff
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | | |
Collapse
|
9
|
Finet C, Kassner VA, Carvalho AB, Chung H, Day JP, Day S, Delaney EK, De Ré FC, Dufour HD, Dupim E, Izumitani HF, Gautério TB, Justen J, Katoh T, Kopp A, Koshikawa S, Longdon B, Loreto EL, Nunes MDS, Raja KKB, Rebeiz M, Ritchie MG, Saakyan G, Sneddon T, Teramoto M, Tyukmaeva V, Vanderlinde T, Wey EE, Werner T, Williams TM, Robe LJ, Toda MJ, Marlétaz F. DrosoPhyla: Resources for Drosophilid Phylogeny and Systematics. Genome Biol Evol 2021; 13:evab179. [PMID: 34343293 PMCID: PMC8382681 DOI: 10.1093/gbe/evab179] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2021] [Indexed: 02/06/2023] Open
Abstract
The vinegar fly Drosophila melanogaster is a pivotal model for invertebrate development, genetics, physiology, neuroscience, and disease. The whole family Drosophilidae, which contains over 4,400 species, offers a plethora of cases for comparative and evolutionary studies. Despite a long history of phylogenetic inference, many relationships remain unresolved among the genera, subgenera, and species groups in the Drosophilidae. To clarify these relationships, we first developed a set of new genomic markers and assembled a multilocus data set of 17 genes from 704 species of Drosophilidae. We then inferred a species tree with highly supported groups for this family. Additionally, we were able to determine the phylogenetic position of some previously unplaced species. These results establish a new framework for investigating the evolution of traits in fruit flies, as well as valuable resources for systematics.
Collapse
Affiliation(s)
- Cédric Finet
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, USA
| | - Victoria A Kassner
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, USA
| | - Antonio B Carvalho
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Brazil
| | - Henry Chung
- Department of Entomology, Michigan State University, USA
| | - Jonathan P Day
- Department of Genetics, University of Cambridge, United Kingdom
| | - Stephanie Day
- Department of Biological Sciences, University of Pittsburgh, USA
| | - Emily K Delaney
- Department of Evolution and Ecology, University of California-Davis, USA
| | - Francine C De Ré
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
| | - Héloïse D Dufour
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, USA
| | - Eduardo Dupim
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Brazil
| | - Hiroyuki F Izumitani
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Thaísa B Gautério
- Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Universidade Federal do Rio Grande, Rio Grande do Sul, Brazil
| | - Jessa Justen
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, USA
| | - Toru Katoh
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Artyom Kopp
- Department of Evolution and Ecology, University of California-Davis, USA
| | - Shigeyuki Koshikawa
- The Hakubi Center for Advanced Research and Graduate School of Science, Kyoto University, Japan
| | - Ben Longdon
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Elgion L Loreto
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
| | - Maria D S Nunes
- Department of Biological and Medical Sciences, Oxford Brookes University, United Kingdom
- Centre for Functional Genomics, Oxford Brookes University, United Kingdom
| | - Komal K B Raja
- Department of Biological Sciences, Michigan Technological University, USA
| | - Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, USA
| | | | - Gayane Saakyan
- Department of Evolution and Ecology, University of California-Davis, USA
| | - Tanya Sneddon
- School of Biology, University of St Andrews, United Kingdom
| | - Machiko Teramoto
- The Hakubi Center for Advanced Research and Graduate School of Science, Kyoto University, Japan
| | | | - Thyago Vanderlinde
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Brazil
| | - Emily E Wey
- Department of Biology, University of Dayton, USA
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, USA
| | | | - Lizandra J Robe
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Universidade Federal do Rio Grande, Rio Grande do Sul, Brazil
| | - Masanori J Toda
- Hokkaido University Museum, Hokkaido University, Sapporo, Japan
| | - Ferdinand Marlétaz
- Centre for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, United Kingdom
| |
Collapse
|
10
|
Yan XT, Ye ZX, Wang X, Zhang CX, Chen JP, Li JM, Huang HJ. Insight into different host range of three planthoppers by transcriptomic and microbiomic analysis. INSECT MOLECULAR BIOLOGY 2021; 30:287-296. [PMID: 33452691 DOI: 10.1111/imb.12695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/03/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Brown planthopper (BPH), white-backed planthopper (WBPH) and small brown planthopper (SBPH), are the closely related rice pests that perform differentially on wheat plants. Using fecundity as a fitness measure, we found that SBPH well-adapted on wheat plants, followed by WBPH, while BPH had the worst performance. The transcriptomic responses of SBPH and BPH to wheat plants have been compared previously. To understand the different fitness mechanisms of three planthoppers, this study first investigated the transcriptomic responses of WBPH to rice and wheat plants. Genes involved in detoxification, transportation and proteasome were significantly enriched in WBPH in response to different diets. Moreover, comparative analysis demonstrated that most co-regulated genes in BPH and SBPH showed different expression changes; whereas most co-regulated genes in BPH and WBPH exhibited similar expression changes. Subsequently, this study also investigated the influences of host plants on the bacterial community of three planthoppers. The three planthoppers harboured distant diversity of bacterial communities. However, there was no dramatic change in bacterial diversity or relative abundance in planthoppers colonized on different hosts. This study illustrates generic and species-specific changes of three rice planthoppers in response to different plants, which deepen our understanding towards the host fitness for planthopper species.
Collapse
Affiliation(s)
- X-T Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Z-X Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - X Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - C-X Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - J-P Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - J-M Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - H-J Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
11
|
Jermy T, Szentesi Á. Why are there not more herbivorous insect species? ACTA ZOOL ACAD SCI H 2021. [DOI: 10.17109/azh.67.2.119.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Insect species richness is estimated to exceed three million species, of which roughly half is herbivorous. Despite the vast number of species and varied life histories, the proportion of herbivorous species among plant-consuming organisms is lower than it could be due to constraints that impose limits to their diversification. These include ecological factors, such as vague interspecific competition; anatomical and physiological limits, such as neural limits and inability of handling a wide range of plant allelochemicals; phylogenetic constraints, like niche conservatism; and most importantly, a low level of concerted genetic variation necessary to a phyletic conversion. It is suggested that diversification ultimately depends on what we call the intrinsic trend of diversification of the insect genome. In support of the above, we survey the major types of host-specificity, the mechanisms and constraints of host specialization, possible pathways of speciation, and hypotheses concerning insect diversification.
Collapse
|
12
|
Zu P, Koch H, Schwery O, Pironon S, Phillips C, Ondo I, Farrell IW, Nes WD, Moore E, Wright GA, Farman DI, Stevenson PC. Pollen sterols are associated with phylogeny and environment but not with pollinator guilds. THE NEW PHYTOLOGIST 2021; 230:1169-1184. [PMID: 33484583 PMCID: PMC8653887 DOI: 10.1111/nph.17227] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/14/2021] [Indexed: 06/01/2023]
Abstract
Phytosterols are primary plant metabolites that have fundamental structural and regulatory functions. They are also essential nutrients for phytophagous insects, including pollinators, that cannot synthesize sterols. Despite the well-described composition and diversity in vegetative plant tissues, few studies have examined phytosterol diversity in pollen. We quantified 25 pollen phytosterols in 122 plant species (105 genera, 51 families) to determine their composition and diversity across plant taxa. We searched literature and databases for plant phylogeny, environmental conditions, and pollinator guilds of the species to examine the relationships with pollen sterols. 24-methylenecholesterol, sitosterol and isofucosterol were the most common and abundant pollen sterols. We found phylogenetic clustering of twelve individual sterols, total sterol content and sterol diversity, and of sterol groupings that reflect their underlying biosynthesis pathway (C-24 alkylation, ring B desaturation). Plants originating in tropical-like climates (higher mean annual temperature, lower temperature seasonality, higher precipitation in wettest quarter) were more likely to record higher pollen sterol content. However, pollen sterol composition and content showed no clear relationship with pollinator guilds. Our study is the first to show that pollen sterol diversity is phylogenetically clustered and that pollen sterol content may adapt to environmental conditions.
Collapse
Affiliation(s)
- Pengjuan Zu
- Royal Botanic GardensKew, Natural Capital and Plant Health DepartmentRichmondSurreyTW9 3ABUK
- Department Fish Ecology and EvolutionSwiss Federal Institute of Aquatic Science and TechnologySeestrasse 79KastanienbaumCH‐6047Switzerland
| | - Hauke Koch
- Royal Botanic GardensKew, Natural Capital and Plant Health DepartmentRichmondSurreyTW9 3ABUK
| | - Orlando Schwery
- New Mexico Consortium4200 W. Jemez Rd, Suite 301Los AlamosNM87544USA
| | - Samuel Pironon
- Royal Botanic GardensKew, Biodiversity Informatics and Spatial Analysis DepartmentRichmondSurreyTW9 3ABUK
| | - Charlotte Phillips
- Royal Botanic GardensKew, Biodiversity Informatics and Spatial Analysis DepartmentRichmondSurreyTW9 3ABUK
- Royal Botanic GardensKew, Conservation Science DepartmentWakehurst PlaceArdinglyWest SussexRH17 6TNUK
| | - Ian Ondo
- Royal Botanic GardensKew, Biodiversity Informatics and Spatial Analysis DepartmentRichmondSurreyTW9 3ABUK
| | - Iain W. Farrell
- Royal Botanic GardensKew, Natural Capital and Plant Health DepartmentRichmondSurreyTW9 3ABUK
| | - W. David Nes
- Department of Chemistry & BiochemistryTexas Tech UniversityLubbockTX79424USA
| | - Elynor Moore
- Department of ZoologyUniversity of Oxford11a Mansfield RoadOxfordOX1 3SZUK
| | | | - Dudley I. Farman
- Natural Resources InstituteUniversity of GreenwichChatham, KentME4 4TBUK
| | - Philip C. Stevenson
- Royal Botanic GardensKew, Natural Capital and Plant Health DepartmentRichmondSurreyTW9 3ABUK
- Natural Resources InstituteUniversity of GreenwichChatham, KentME4 4TBUK
| |
Collapse
|
13
|
Lefèvre BM, Catté D, Courtier-Orgogozo V, Lang M. Male genital lobe morphology affects the chance to copulate in Drosophila pachea. BMC Ecol Evol 2021; 21:23. [PMID: 33573597 PMCID: PMC7877081 DOI: 10.1186/s12862-021-01759-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/03/2021] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Male genitalia are thought to ensure transfer of sperm through direct physical contact with female during copulation. However, little attention has been given to their pre-copulatory role with respect to sexual selection and sexual conflict. Males of the fruitfly Drosophila pachea have a pair of asymmetric external genital lobes, which are primary sexual structures and stabilize the copulatory complex of female and male genitalia. We wondered if genital lobes in D. pachea may have a role before or at the onset of copulation, before genitalia contacts are made. RESULTS We tested this hypothesis with a D. pachea stock where males have variable lobe lengths. In 92 mate competition trials with a single female and two males, females preferentially engaged into a first copulation with males that had a longer left lobe and that displayed increased courtship vigor. In 53 additional trials with both males having partially amputated left lobes of different lengths, we observed a weaker and non-significant effect of left lobe length on copulation success. Courtship durations significantly increased with female age and when two males courted the female simultaneously, compared to trials with only one courting male. In addition, lobe length did not affect sperm transfer once copulation was established. CONCLUSION Left lobe length affects the chance of a male to engage into copulation. The morphology of this primary sexual trait may affect reproductive success by mediating courtship signals or by facilitating the establishment of genital contacts at the onset of copulation.
Collapse
Affiliation(s)
- Bénédicte M Lefèvre
- Team "Evolution and Genetics", Institut Jacques Monod, CNRS, UMR7592, Université de Paris, 15 rue Hélène Brion, 75013, Paris, France
| | - Diane Catté
- Team "Evolution and Genetics", Institut Jacques Monod, CNRS, UMR7592, Université de Paris, 15 rue Hélène Brion, 75013, Paris, France
| | - Virginie Courtier-Orgogozo
- Team "Evolution and Genetics", Institut Jacques Monod, CNRS, UMR7592, Université de Paris, 15 rue Hélène Brion, 75013, Paris, France
| | - Michael Lang
- Team "Evolution and Genetics", Institut Jacques Monod, CNRS, UMR7592, Université de Paris, 15 rue Hélène Brion, 75013, Paris, France.
| |
Collapse
|
14
|
Mao S, Song Z, Wu M, Wang X, Lu F, Qin HM. Expression, Purification, Refolding, and Characterization of a Neverland Protein From Caenorhabditis elegans. Front Bioeng Biotechnol 2020; 8:593041. [PMID: 33195160 PMCID: PMC7609953 DOI: 10.3389/fbioe.2020.593041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 09/24/2020] [Indexed: 11/23/2022] Open
Abstract
Steroid hormones that serve as vital compounds are necessary for the development and metabolism of a variety of organisms. The neverland (NVD) family genes encode the conserved Rieske-type oxygenases, which are accountable for the dehydrogenation during the synthesis and regulation of steroid hormones. However, the His-tagged NVD protein from Caenorhabditis elegans expresses as inclusion bodies in Escherichia coli BL21 (DE3). This bottleneck can be solved through refolding by urea or the introduction of a maltose-binding protein (MBP) tag at the N-terminus. Through further research on purification after the introduction of a MBP tag at the N-terminus, the CD measurement and fluorescence-based thermal shift assay indicated that MBP was favorable for the NVD proteins' solubility and stability, which may be beneficial for the large-scale manufacture of NVD protein for further research. The structural model contained the Rieske [2Fe-2S] domain and non-heme iron-binding motif, which were similar to 3-ketosteroid 9 α-hydroxylase.
Collapse
Affiliation(s)
- Shuhong Mao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- National Engineering Laboratory for Industrial Enzymes, Tianjin, China
| | - Zhan Song
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Mian Wu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaorui Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- National Engineering Laboratory for Industrial Enzymes, Tianjin, China
| | - Hui-Min Qin
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- National Engineering Laboratory for Industrial Enzymes, Tianjin, China
| |
Collapse
|
15
|
Watanabe K, Kanaoka Y, Mizutani S, Uchiyama H, Yajima S, Watada M, Uemura T, Hattori Y. Interspecies Comparative Analyses Reveal Distinct Carbohydrate-Responsive Systems among Drosophila Species. Cell Rep 2020; 28:2594-2607.e7. [PMID: 31484071 DOI: 10.1016/j.celrep.2019.08.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 05/17/2019] [Accepted: 08/06/2019] [Indexed: 01/31/2023] Open
Abstract
During evolution, organisms have acquired variable feeding habits. Some species are nutritional generalists that adapt to various food resources, while others are specialists, feeding on specific resources. However, much remains to be discovered about how generalists adapt to diversified diets. We find that larvae of the generalists Drosophila melanogaster and D. simulans develop on three diets with different nutrient balances, whereas specialists D. sechellia and D. elegans cannot develop on carbohydrate-rich diets. The generalist D. melanogaster downregulates the expression of diverse metabolic genes systemically by transforming growth factor β (TGF-β)/Activin signaling, maintains metabolic homeostasis, and successfully adapts to the diets. In contrast, the specialist D. sechellia expresses those metabolic genes at higher levels and accumulates various metabolites on the carbohydrate-rich diet, culminating in reduced adaptation. Phenotypic similarities and differences strongly suggest that the robust carbohydrate-responsive regulatory systems are evolutionarily retained through genome-environment interactions in the generalists and contribute to their nutritional adaptabilities.
Collapse
Affiliation(s)
- Kaori Watanabe
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Yasutetsu Kanaoka
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Shoko Mizutani
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Hironobu Uchiyama
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Shunsuke Yajima
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo 156-8502, Japan; Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Masayoshi Watada
- Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan
| | - Tadashi Uemura
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan; Research Center for Dynamic Living Systems, Kyoto University, Kyoto 606-8501, Japan; AMED-CREST, AMED, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan.
| | - Yukako Hattori
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
16
|
Huang HJ, Cui JR, Hong XY. Comparative analysis of diet-associated responses in two rice planthopper species. BMC Genomics 2020; 21:565. [PMID: 32807078 PMCID: PMC7437935 DOI: 10.1186/s12864-020-06976-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 08/10/2020] [Indexed: 11/21/2022] Open
Abstract
Background Host adaptation is the primary determinant of insect diversification. However, knowledge of different host ranges in closely related species remains scarce. The brown planthopper (Nilaparvata lugens, BPH) and the small brown planthopper (Laodelphax striatellus, SBPH) are the most destructive insect pests within the family Delphacidae. These two species differ in their host range (SBPH can well colonize rice and wheat plants, whereas BPH survives on only rice plants), but the underlying mechanism of this difference remains unknown. High-throughput sequencing provides a powerful approach for analyzing the association between changes in gene expression and the physiological responses of insects. Therefore, gut transcriptomes were performed to elucidate the genes associated with host adaptation in planthoppers. The comparative analysis of planthopper responses to different diets will improve our knowledge of host adaptation regarding herbivorous insects. Results In the present study, we analyzed the change in gene expression of SBPHs that were transferred from rice plants to wheat plants over the short term (rSBPH vs tSBPH) or were colonized on wheat plants over the long term (rSBPH vs wSBPH). The results showed that the majority of differentially expressed genes in SBPH showed similar changes in expression for short-term transfer and long-term colonization. Based on a comparative analysis of BPH and SBPH after transfer, the genes associated with sugar transporters and heat-shock proteins showed similar variation. However, most of the genes were differentially regulated between the two species. The detoxification-related genes were upregulated in SBPH after transfer from the rice plants to the wheat plants, but these genes were downregulated in BPH under the same conditions. In contrast, ribosomal-related genes were downregulated in SBPH after transfer, but these genes were upregulated in BPH under the same conditions. Conclusions The results of this study provide evidence that host plants played a dominant role in shaping gene expression and that the low fitness of BPH on wheat plants might be determined within 24 h after transfer. This study deepens our understanding of different host ranges for the two planthopper species, which may provide a potential strategy for pest management.
Collapse
Affiliation(s)
- Hai-Jian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.,Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jia-Rong Cui
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
17
|
Zhou X, Ye YZ, Ogihara MH, Takeshima M, Fujinaga D, Liu CW, Zhu Z, Kataoka H, Bao YY. Functional analysis of ecdysteroid biosynthetic enzymes of the rice planthopper, Nilaparvata lugens. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 123:103428. [PMID: 32553573 DOI: 10.1016/j.ibmb.2020.103428] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Ecdysteroids, insect steroid hormones, play key roles in regulating insect development and reproduction. Hemipteran insects require ecdysteroids for egg production; however, ecdysteroid synthesis (ecdysteroidogenesis) details have not been elucidated. We identified all known genes encoding ecdysteroidogenic enzymes in Nilaparvata lugens and clarified their necessity during nymphal and ovarian development. We confirmed that N. lugens utilized 20-hydroxyecdysone as an active hormone. Assays using heterologous expression of enzymes in Drosophila S2 cells showed conserved functions of enzymes Neverland, CYP306A2, CYP314A1 and CYP315A1, but not CYP302A1. RNA interference and rescue analysis using 20-hydroxyecdysone demonstrated that most of the genes were necessary for nymphal development. The identified N. lugens enzymes showed conserved functions and pathways for ecdysteroidogenesis. Knockdown of ecdysteroidogenic enzyme genes in newly molted females caused failure of egg production: less vitellogenic and mature eggs in ovaries, fewer laid eggs and embryonic development deficiency of laid eggs. Considering the high expressions of ecdysteroidogenic enzyme genes in adults and ovaries, ecdysteroidogenesis in ovaries was critical for N. lugens ovarian development. Our study presents initial evidence that hemipteran insects require ecdysteroidogenesis for ovarian development.
Collapse
Affiliation(s)
- Xiang Zhou
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yi-Zhou Ye
- Department of Integrated Biosciences, Graduated School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Japan
| | - Mari H Ogihara
- Department of Integrated Biosciences, Graduated School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Japan; Present Address: Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, 2 Ikenodai, Tsukuba, Ibaraki, 305-0901, Japan
| | - Mika Takeshima
- Department of Integrated Biosciences, Graduated School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Japan
| | - Daiki Fujinaga
- Department of Integrated Biosciences, Graduated School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Japan
| | - Cheng-Wen Liu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhen Zhu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China; Department of Integrated Biosciences, Graduated School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Japan
| | - Hiroshi Kataoka
- Department of Integrated Biosciences, Graduated School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Japan.
| | - Yan-Yuan Bao
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
18
|
Lebedev R, Trabelcy B, Langier Goncalves I, Gerchman Y, Sapir A. Metabolic Reconfiguration in C. elegans Suggests a Pathway for Widespread Sterol Auxotrophy in the Animal Kingdom. Curr Biol 2020; 30:3031-3038.e7. [PMID: 32559444 DOI: 10.1016/j.cub.2020.05.070] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/24/2020] [Accepted: 05/20/2020] [Indexed: 12/23/2022]
Abstract
Cholesterol is one of the hallmarks of animals. In vertebrates, the cholesterol synthesis pathway (CSP) is the primary source of cholesterol that has numerous structural and regulative roles [1]. Nevertheless, the few invertebrates tested for cholesterol synthesis show complete sterol auxotrophy [2-6], raising questions about how animals thrive without cholesterol synthesis and about the prevalence of sterol auxotrophy in animals. In the nematode Caenorhabditis elegans (C. elegans), sterols are the precursors of the steroid hormone dafachronic acid that coordinates development to adulthood [7, 8]; thus, sterol-deprived C. elegans arrest at the diapause "dauer" larval stage [9]. Using this system, we have identified a pathway that converts plant and fungal sterols into cholesterol through the activity of enzymes with sequence similarity to specific human CSP enzymes. Based on this finding, we propose that two critical steps shaped the evolution of animal sterol auxotrophy: (1) the loss of the orthologs of the first three enzymes of the CSP and (2) the co-opting of other downstream enzymes of the CSP for the utilization of dietary sterols. Using this mechanistic signature, we studied the evolution of cholesterol auxotrophy across the animal kingdom. Complete sets of CSP enzymes in basal animals suggest that the loss of cholesterol synthesis occurred during animal evolution. A sterol auxothropy signature in the genomes of many invertebrates, including nematodes and most arthropods, suggests widespread cholesterol auxotrophy in animals. Thus, we propose that this co-opted pathway supports widespread cholesterol auxotrophy by interkingdom interactions between cholesterol-auxotrophic animals and sterol-producing fungi and plants.
Collapse
Affiliation(s)
- Ron Lebedev
- Department of Biology and the Environment, Faculty of Natural Sciences, University of Haifa, Oranim, Tivon 36006, Israel
| | - Benjamin Trabelcy
- Department of Biology and the Environment, Faculty of Natural Sciences, University of Haifa, Oranim, Tivon 36006, Israel
| | - Irina Langier Goncalves
- Department of Biology and the Environment, Faculty of Natural Sciences, University of Haifa, Oranim, Tivon 36006, Israel
| | - Yoram Gerchman
- Department of Biology and the Environment, Faculty of Natural Sciences, University of Haifa, Oranim, Tivon 36006, Israel
| | - Amir Sapir
- Department of Biology and the Environment, Faculty of Natural Sciences, University of Haifa, Oranim, Tivon 36006, Israel.
| |
Collapse
|
19
|
Hjelmen CE, Holmes VR, Burrus CG, Piron E, Mynes M, Garrett MA, Blackmon H, Johnston JS. Thoracic underreplication in Drosophila species estimates a minimum genome size and the dynamics of added DNA. Evolution 2020; 74:1423-1436. [PMID: 32438451 DOI: 10.1111/evo.14022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/05/2020] [Accepted: 05/17/2020] [Indexed: 12/11/2022]
Abstract
Many cells in the thorax of Drosophila were found to stall during replication, a phenomenon known as underreplication. Unlike underreplication in nuclei of salivary and follicle cells, this stall occurs with less than one complete round of replication. This stall point allows precise estimations of early-replicating euchromatin and late-replicating heterochromatin regions, providing a powerful tool to investigate the dynamics of structural change across the genome. We measure underreplication in 132 species across the Drosophila genus and leverage these data to propose a model for estimating the rate at which additional DNA is accumulated as heterochromatin and euchromatin and also predict the minimum genome size for Drosophila. According to comparative phylogenetic approaches, the rates of change of heterochromatin differ strikingly between Drosophila subgenera. Although these subgenera differ in karyotype, there were no differences by chromosome number, suggesting other structural changes may influence accumulation of heterochromatin. Measurements were taken for both sexes, allowing the visualization of genome size and heterochromatin changes for the hypothetical path of XY sex chromosome differentiation. Additionally, the model presented here estimates a minimum genome size in Sophophora remarkably close to the smallest insect genome measured to date, in a species over 200 million years diverged from Drosophila.
Collapse
Affiliation(s)
- Carl E Hjelmen
- Department of Biology, Texas A&M University, College Station, Texas.,Department of Entomology, Texas A&M University, College Station, Texas
| | | | - Crystal G Burrus
- Department of Biology, Texas A&M University, College Station, Texas
| | - Elizabeth Piron
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Melissa Mynes
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Margaret A Garrett
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Heath Blackmon
- Department of Biology, Texas A&M University, College Station, Texas
| | | |
Collapse
|
20
|
Wang D, Shi X, Liu D, Yang Y, Shang Z. Genetic Divergence of Two Sitobion avenae Biotypes on Barley and Wheat in China. INSECTS 2020; 11:E117. [PMID: 32054103 PMCID: PMC7073604 DOI: 10.3390/insects11020117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 11/16/2022]
Abstract
Host plant affinity and geographic distance can play critical roles in the genetic divergence of insect herbivores and evolution of insect biotypes, but their relative importance in the divergence of insect populations is still poorly understood. We used microsatellite markers to test the effects of host plant species and geographic distance on divergence of two biotypes of the English grain aphid, Sitobion avenae (Fabricius). We found that clones of S. avenae from western provinces (i.e., Xinjiang, Gansu, Qinghai and Shaanxi) had significantly higher genetic diversity than those from eastern provinces (i.e., Anhui, Henan, Hubei, Zhejiang and Jiangsu), suggesting their differentiation between both areas. Based on genetic diversity and distance estimates, biotype 1 clones of eastern provinces showed high genetic divergence from those of western provinces in many cases. Western clones of S. avenae also showed higher genetic divergence among themselves than eastern clones. The Mantel test identified a significant isolation-by-distance (IBD) effect among different geographic populations of S. avenae, providing additional evidence for a critical role of geography in the genetic structure of both S. avenae biotypes. Genetic differentiation (i.e., FST) between the two biotypes was low in all provinces except Shaanxi. Surprisingly, in our analyses of molecular variance, non-significant genetic differentiation between both biotypes or between barley and wheat clones of S. avenae was identified, showing little contribution of host-plant associated differentiation to the divergence of both biotypes in this aphid. Thus, it is highly likely that the divergence of the two S. avenae biotypes involved more geographic isolation and selection of some form than host plant affinity. Our study can provide insights into understanding of genetic structure of insect populations and the divergence of insect biotypes.
Collapse
Affiliation(s)
- Da Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China; (D.W.); (Y.Y.); (Z.S.)
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoqin Shi
- Department of Foreign Languages, Northwest A&F University, Yangling 712100, Shaanxi, China;
| | - Deguang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China; (D.W.); (Y.Y.); (Z.S.)
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yujing Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China; (D.W.); (Y.Y.); (Z.S.)
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zheming Shang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China; (D.W.); (Y.Y.); (Z.S.)
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
21
|
Wang D, Shi X, Liu D, Yang Y, Shang Z. Transcriptome Profiling Revealed Potentially Critical Roles for Digestion and Defense-Related Genes in Insects' Use of Resistant Host Plants: A Case Study with Sitobion Avenae. INSECTS 2020; 11:E90. [PMID: 32019207 PMCID: PMC7074007 DOI: 10.3390/insects11020090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 12/15/2022]
Abstract
Using host plant resistance (HPR) in management of insect pests is often environmentally friendly and suitable for sustainable development of agricultural industries. However, this strategy can be limited by rapid evolution of insect populations that overcome HPR, for which the underlying molecular factors and mechanisms are not well understood. To address this issue, we analyzed transcriptomes of two distinct biotypes of the grain aphid, Sitobion avenae (Fabricius), on wheat and barley. This analysis revealed a large number of differentially expressed genes (DEGs) between biotypes 1 and 3 on wheat and barley. The majority of them were common DEGs occurring on both wheat and barley. GO and KEGG enrichment analyses for these common DEGs demonstrated significant expression divergence between both biotypes in genes associated with digestion and defense. Top defense-related common DEGs with the most significant expression changes included three peroxidases, two UGTs (UDP-glycosyltransferase), two cuticle proteins, one glutathione S-transferases (GST), one superoxide dismutase, and one esterase, suggesting their potentially critical roles in the divergence of S. avenae biotypes. A relatively high number of specific DEGs on wheat were identified for peroxidases (9) and P450s (8), indicating that phenolic compounds and hydroxamic acids may play key roles in resistance of wheat against S. avenae. Enrichment of specific DEGs on barley for P450s and ABC transporters suggested their key roles in this aphid's detoxification against secondary metabolites (e.g., alkaloids) in barley. Our results can provide insights into the molecular factors and functions that explain biotype adaptation in insects and their use of resistant plants. This study also has significant implications for developing new resistant cultivars, developing strategies that limit rapid development of insect biotypes, and extending resistant crop cultivars' durability and sustainability in integrated management programs.
Collapse
Affiliation(s)
- Da Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China; (D.W.); (Y.Y.); (Z.S.)
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Xiaoqin Shi
- Department of Foreign Languages, Northwest A&F University, Yangling 712100, China;
| | - Deguang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China; (D.W.); (Y.Y.); (Z.S.)
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Yujing Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China; (D.W.); (Y.Y.); (Z.S.)
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Zheming Shang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China; (D.W.); (Y.Y.); (Z.S.)
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
22
|
Jing X, Behmer ST. Insect Sterol Nutrition: Physiological Mechanisms, Ecology, and Applications. ANNUAL REVIEW OF ENTOMOLOGY 2020; 65:251-271. [PMID: 31600456 DOI: 10.1146/annurev-ento-011019-025017] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Insects, like all eukaryotes, require sterols for structural and metabolic purposes. However, insects, like all arthropods, cannot make sterols. Cholesterol is the dominant tissue sterol for most insects; insect herbivores produce cholesterol by metabolizing phytosterols, but not always with high efficiency. Many insects grow on a mixed-sterol diet, but this ability varies depending on the types and ratio of dietary sterols. Dietary sterol uptake, transport, and metabolism are regulated by several proteins and processes that are relatively conserved across eukaryotes. Sterol requirements also impact insect ecology and behavior. There is potential to exploit insect sterol requirements to (a) control insect pests in agricultural systems and (b) better understand sterol biology, including in humans. We suggest that future studies focus on the genetic mechanism of sterol metabolism and reverse transportation, characterizing sterol distribution and function at the cellular level, the role of bacterial symbionts in sterol metabolism, and interrupting sterol trafficking for pest control.
Collapse
Affiliation(s)
- Xiangfeng Jing
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China;
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Spencer T Behmer
- Department of Entomology, Texas A&M University, College Station, Texas 77843, USA;
- Ecology & Evolutionary Biology Graduate Program, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
23
|
Anholt RRH, O'Grady P, Wolfner MF, Harbison ST. Evolution of Reproductive Behavior. Genetics 2020; 214:49-73. [PMID: 31907301 PMCID: PMC6944409 DOI: 10.1534/genetics.119.302263] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/04/2019] [Indexed: 12/20/2022] Open
Abstract
Behaviors associated with reproduction are major contributors to the evolutionary success of organisms and are subject to many evolutionary forces, including natural and sexual selection, and sexual conflict. Successful reproduction involves a range of behaviors, from finding an appropriate mate, courting, and copulation, to the successful production and (in oviparous animals) deposition of eggs following mating. As a consequence, behaviors and genes associated with reproduction are often under strong selection and evolve rapidly. Courtship rituals in flies follow a multimodal pattern, mediated through visual, chemical, tactile, and auditory signals. Premating behaviors allow males and females to assess the species identity, reproductive state, and condition of their partners. Conflicts between the "interests" of individual males, and/or between the reproductive strategies of males and females, often drive the evolution of reproductive behaviors. For example, seminal proteins transmitted by males often show evidence of rapid evolution, mediated by positive selection. Postmating behaviors, including the selection of oviposition sites, are highly variable and Drosophila species span the spectrum from generalists to obligate specialists. Chemical recognition features prominently in adaptation to host plants for feeding and oviposition. Selection acting on variation in pre-, peri-, and postmating behaviors can lead to reproductive isolation and incipient speciation. Response to selection at the genetic level can include the expansion of gene families, such as those for detecting pheromonal cues for mating, or changes in the expression of genes leading to visual cues such as wing spots that are assessed during mating. Here, we consider the evolution of reproductive behavior in Drosophila at two distinct, yet complementary, scales. Some studies take a microevolutionary approach, identifying genes and networks involved in reproduction, and then dissecting the genetics underlying complex behaviors in D. melanogaster Other studies take a macroevolutionary approach, comparing reproductive behaviors across the genus Drosophila and how these might correlate with environmental cues. A full synthesis of this field will require unification across these levels.
Collapse
Affiliation(s)
- Robert R H Anholt
- Center for Human Genetics, Clemson University, Greenwood, South Carolina 29646
- Department of Genetics and Biochemistry, Clemson University, Greenwood, South Carolina 29646
| | - Patrick O'Grady
- Department of Entomology, Cornell University, Ithaca, New York 14853
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Susan T Harbison
- Laboratory of Systems Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
24
|
Vanderplanck M, Zerck P, Lognay G, Michez D. Generalized host-plant feeding can hide sterol-specialized foraging behaviors in bee-plant interactions. Ecol Evol 2020; 10:150-162. [PMID: 31993117 PMCID: PMC6972837 DOI: 10.1002/ece3.5868] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/24/2019] [Accepted: 11/03/2019] [Indexed: 11/17/2022] Open
Abstract
Host-plant selection is a key factor driving the ecology and evolution of insects. While the majority of phytophagous insects is highly host specific, generalist behavior is quite widespread among bees and presumably involves physiological adaptations that remain largely unexplored. However, floral visitation patterns suggest that generalist bees do not forage randomly on all available resources. While resource availability and accessibility as well as nectar composition have been widely explored, pollen chemistry could also have an impact on the range of suitable host-plants. This study focuses on particular pollen nutrients that cannot be synthesized de novo by insects but are key compounds of cell membranes and the precursor for molting process: the sterols. We compared the sterol composition of pollen from the main host-plants of three generalist bees: Anthophora plumipes, Colletes cunicularius, and Osmia cornuta, as well as one specialist bee Andrena vaga. We also analyzed the sterols of their brood cell provisions, the tissues of larvae and nonemerged females to determine which sterols are used by the different species. Our results show that sterols are not used accordingly to foraging strategy: Both the specialist species A. vaga and the generalist species C. cunicularius might metabolize a rare C27 sterol, while the two generalist species A. plumipes and O. cornuta might rather use a very common C28 sterol. Our results suggest that shared sterolic compounds among plant species could facilitate the exploitation of multiple host-plants by A. plumipes and O. cornuta whereas the generalist C. cunicularius might be more constrained due to its physiological requirements of a more uncommon dietary sterol. Our findings suggest that a bee displaying a generalist foraging behavior may sometimes hide a sterol-specialized species. This evidence challenges the hypothesis that all generalist free-living bee species are all able to develop on a wide range of different pollen types.
Collapse
Affiliation(s)
- Maryse Vanderplanck
- Laboratory of ZoologyResearch Institute for BiosciencesUniversity of MonsMonsBelgium
- Evo‐Eco‐Paleo ‐ UMR 8198CNRSUniversity of LilleLilleFrance
| | - Pierre‐Laurent Zerck
- Laboratory of ZoologyResearch Institute for BiosciencesUniversity of MonsMonsBelgium
| | - Georges Lognay
- Laboratory of Analytical ChemistryGembloux Agro‐Bio TechUniversity of LiègeGemblouxBelgium
| | - Denis Michez
- Laboratory of ZoologyResearch Institute for BiosciencesUniversity of MonsMonsBelgium
| |
Collapse
|
25
|
Etges WJ. Evolutionary genomics of host plant adaptation: insights from Drosophila. CURRENT OPINION IN INSECT SCIENCE 2019; 36:96-102. [PMID: 31542627 DOI: 10.1016/j.cois.2019.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/13/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
Variation in gene expression in response to the use of alternate host plants can reveal genetic and physiological mechanisms explaining why insect-host relationships vary from host specialism to generalism. Interpreting transcriptome variation relies on well-annotated genomes, making drosophilids valuable model systems, particularly those species with tractable ecological associations. Patterns of whole genome expression and alternate gene splicing in response to growth on different hosts have revealed expression of gene networks of known detoxification genes as well as novel functionally enriched genes of diverse metabolic and structural functions. Integrating trancriptomic responses with fitness differences and levels of phenotypic plasticity in response to alternate hosts will help to reveal the general nature of genotype-phenotype relationships.
Collapse
Affiliation(s)
- William J Etges
- Ecology, Evolution and Organismal Biology, Department of Biological Sciences, SCEN 632, 1 University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
26
|
Chanchay P, Vongsangnak W, Thancharoen A, Sriboonlert A. Reconstruction of insect hormone pathways in an aquatic firefly, Sclerotia aquatilis (Coleoptera: Lampyridae), using RNA-seq. PeerJ 2019; 7:e7428. [PMID: 31396456 PMCID: PMC6681800 DOI: 10.7717/peerj.7428] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 07/07/2019] [Indexed: 01/19/2023] Open
Abstract
Insect hormones: ecdysteroids and juvenile hormones have crucial functions during the regulation of different developmental pathways in insects. Insect metamorphosis is one of the primary pathways regulated by these hormones. The insect hormone biosynthetic pathway is conserved among arthropods, including insects, with some variations in the form of hormones used among each group of insects. In this study, the candidate genes involved in the insect hormone pathways and their functional roles were assessed in an aquatic firefly, Sclerotia aquatilis using a high-throughput RNA sequencing technique. Illumina next-generation sequencing (NGS) was used to generate transcriptome data for the different developmental stages (i.e., larva, pupa, and adult) of S. aquatilis. A total of 82,022 unigenes were generated across all different developmental stages. Functional annotation was performed for each gene, based on multiple biological databases, generating 46,230 unigenes. These unigenes were subsequently mapped using KEGG pathways. Accordingly, 221 protein-encoding genes involved in the insect hormone pathways were identified, including, JHAMT, CYP15A1, JHE, and Halloween family genes. Twenty potential gene candidates associated with the biosynthetic and degradation pathways for insect hormones were subjected to real-time PCR, reverse transcriptase PCR (RT-PCR) and sequencing analyses. The real-time PCR results showed similar expression patterns as those observed for transcriptome expression profiles for most of the examined genes. RT-PCR and Sanger sequencing confirmed the expressed coding sequences of these gene candidates. This study is the first to examine firefly insect hormone pathways, facilitating a better understanding of firefly growth and development.
Collapse
Affiliation(s)
- Pornchanan Chanchay
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Omics Center for Agriculture, Bioresources, Food, and Health, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Anchana Thancharoen
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | | |
Collapse
|
27
|
Buchberger E, Reis M, Lu TH, Posnien N. Cloudy with a Chance of Insights: Context Dependent Gene Regulation and Implications for Evolutionary Studies. Genes (Basel) 2019; 10:E492. [PMID: 31261769 PMCID: PMC6678813 DOI: 10.3390/genes10070492] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/20/2019] [Accepted: 06/26/2019] [Indexed: 12/20/2022] Open
Abstract
Research in various fields of evolutionary biology has shown that divergence in gene expression is a key driver for phenotypic evolution. An exceptional contribution of cis-regulatory divergence has been found to contribute to morphological diversification. In the light of these findings, the analysis of genome-wide expression data has become one of the central tools to link genotype and phenotype information on a more mechanistic level. However, in many studies, especially if general conclusions are drawn from such data, a key feature of gene regulation is often neglected. With our article, we want to raise awareness that gene regulation and thus gene expression is highly context dependent. Genes show tissue- and stage-specific expression. We argue that the regulatory context must be considered in comparative expression studies.
Collapse
Affiliation(s)
- Elisa Buchberger
- University Göttingen, Göttingen Center for Molecular Biosciences (GZMB), Dpt. of Developmental Biology, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany.
| | - Micael Reis
- University Göttingen, Göttingen Center for Molecular Biosciences (GZMB), Dpt. of Developmental Biology, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany.
| | - Ting-Hsuan Lu
- University Göttingen, Göttingen Center for Molecular Biosciences (GZMB), Dpt. of Developmental Biology, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany.
- International Max Planck Research School for Genome Science, Am Fassberg 11, 37077 Göttingen, Germany.
| | - Nico Posnien
- University Göttingen, Göttingen Center for Molecular Biosciences (GZMB), Dpt. of Developmental Biology, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany.
| |
Collapse
|
28
|
Sarikaya DP, Church SH, Lagomarsino LP, Magnacca KN, Montgomery SL, Price DK, Kaneshiro KY, Extavour CG. Reproductive Capacity Evolves in Response to Ecology through Common Changes in Cell Number in Hawaiian Drosophila. Curr Biol 2019; 29:1877-1884.e6. [PMID: 31130459 PMCID: PMC6673671 DOI: 10.1016/j.cub.2019.04.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/01/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023]
Abstract
Lifetime reproductive capacity is a critical fitness component. In insects, female reproductive capacity is largely determined by the number of ovarioles, the egg-producing subunits of the ovary [e.g., 1]. Recent work has provided insights into ovariole number regulation in Drosophila melanogaster. However, whether mechanisms discovered under laboratory conditions explain evolutionary variation in natural populations is an outstanding question. We investigated potential effects of ecology on the developmental processes underlying ovariole number evolution among Hawaiian Drosophila, a large adaptive radiation wherein the highest and lowest ovariole numbers of the family have evolved within 25 million years. Previous studies proposed that ovariole number correlated with oviposition substrate [2-4] but sampled largely one clade of these flies and were limited by a provisional phylogeny and the available comparative methods. We test this hypothesis by applying phylogenetic modeling to an expanded sampling of ovariole numbers and substrate types and show support for these predictions across all major groups of Hawaiian Drosophila, wherein ovariole number variation is best explained by adaptation to specific substrates. Furthermore, we show that oviposition substrate evolution is linked to changes in the allometric relationship between body size and ovariole number. Finally, we provide evidence that the major changes in ovarian cell number that regulate D. melanogaster ovariole number also regulate ovariole number in Hawaiian drosophilids. Thus, we provide evidence that this remarkable adaptive radiation is linked to evolutionary changes in a key reproductive trait regulated at least partly by variation in the same developmental parameters that operate in the model species D. melanogaster.
Collapse
Affiliation(s)
- Didem P Sarikaya
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., Cambridge, MA 02138, USA.
| | - Samuel H Church
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., Cambridge, MA 02138, USA
| | - Laura P Lagomarsino
- Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| | | | | | - Donald K Price
- Biology Department, University of Hawai'i at Hilo, 200 W. Kawili St., Hilo, HI 96720, USA
| | - Kenneth Y Kaneshiro
- Pacific Biosciences Research Center, University of Hawai'i at Manoa, 1993 East-West Rd., Manoa, HI 96822, USA
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, 52 Oxford St., Cambridge, MA 02138, USA.
| |
Collapse
|
29
|
Repeated evolution of asymmetric genitalia and right-sided mating behavior in the Drosophila nannoptera species group. BMC Evol Biol 2019; 19:109. [PMID: 31132984 PMCID: PMC6537454 DOI: 10.1186/s12862-019-1434-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/07/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Male genitals have repeatedly evolved left-right asymmetries, and the causes of such evolution remain unclear. The Drosophila nannoptera group contains four species, among which three exhibit left-right asymmetries of distinct genital organs. In the most studied species, Drosophila pachea, males display asymmetric genital lobes and they mate right-sided on top of the female. Copulation position of the other species is unknown. RESULTS To assess whether the evolution of genital asymmetry could be linked to the evolution of one-sided mating, we examined phallus morphology and copulation position in D. pachea and closely related species. The phallus was found to be symmetric in all investigated species except D. pachea, which displays an asymmetric phallus with a right-sided gonopore, and D. acanthoptera, which harbors an asymmetrically bent phallus. In all examined species, males were found to position themselves symmetrically on top of the female, except in D. pachea and D. nannoptera, where males mated right-sided, in distinctive, species-specific positions. In addition, the copulation duration was found to be increased in the nannoptera group species compared to closely related outgroup species. CONCLUSION Our study shows that gains, and possibly losses, of asymmetry in genital morphology and mating position have evolved repeatedly in the nannoptera group. Current data does not allow us to conclude whether genital asymmetry has evolved in response to changes in mating position, or vice versa.
Collapse
|
30
|
Perry C, Scanlan J, Robin C. Mining insect genomes for functionally affiliated genes. CURRENT OPINION IN INSECT SCIENCE 2019; 31:114-122. [PMID: 31109664 DOI: 10.1016/j.cois.2018.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
Several hundred insect genome assemblies are already publicly available, and this total grows on a weekly basis. A major challenge now confronting insect science is how best to use genomic data to improve our understanding of insect biology. We consider a framework for genome analysis based on functional affiliation, that is, groups of genes involved in the same biological process or pathway, and explore how such an approach furthers our understanding of several aspects of insect phenotype. We anticipate that this approach will prove useful for future research across the breadth of insect studies, whatever organism or trait it involves.
Collapse
Affiliation(s)
- Caitlyn Perry
- The University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia.
| | - Jack Scanlan
- The University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Charles Robin
- The University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| |
Collapse
|
31
|
Markow TA. Host use and host shifts in Drosophila. CURRENT OPINION IN INSECT SCIENCE 2019; 31:139-145. [PMID: 31109667 DOI: 10.1016/j.cois.2019.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 05/28/2023]
Abstract
Over a thousand Drosophila species have radiated onto a wide range of feeding and breeding sites. These radiations involve adaptations for locating, accepting, and growing in hosts with highly differing characteristics. In a number of species, owing to the availability of sequenced genomes, particular steps in host specialization and genes that control them, are being identified. Many cases of specialization involve the ability to detoxify some component of the host. Examples include Drosophila sechellia and the octanoic acid in Morinda citrifolia, alpha-amanitin in mycophagous drosophilids, and the alkaloids in cactophilic species. Owing to the known ecologies of many species for which genomes exist, the Drosophila model system provides an unprecedented opportunity to simultaneously examine the genes underlying HOST LOCATION, HOST ACCEPTANCE and HOST USE, the types of selection acting upon them and any coevolutionary interactions among the genes underlying these steps.
Collapse
Affiliation(s)
- Therese Ann Markow
- National Laboratory for the Genomics of Biodiversity, CINVESTAV, Irapuato, Mexico; Division of Biological Sciences, University of California at San Diego, La Jolla, CA, USA.
| |
Collapse
|
32
|
Wu Y, Sun Y, Sun S, Li G, Wang J, Wang B, Lin X, Huang M, Gong Z, Sanguinet KA, Zhang Z, Liu B. Aneuploidization under segmental allotetraploidy in rice and its phenotypic manifestation. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1273-1285. [PMID: 29478186 PMCID: PMC5945760 DOI: 10.1007/s00122-018-3077-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/15/2018] [Indexed: 05/24/2023]
Abstract
We report a repertoire of diverse aneuploids harbored by a newly synthesized segmental allotetraploid rice population with fully sequenced sub-genomes and demonstrate their retention features and phenotypic consequences. Aneuploidy, defined as unequal numbers of different chromosomes, is a large-effect genetic variant and may produce diverse cellular and organismal phenotypes. Polyploids are more permissive to chromosomal content imbalance than their diploid and haploid counterparts, and therefore, may enable more in-depth investigation of the phenotypic consequences of aneuploidy. Based on whole-genome resequencing, we identify that ca. 40% of the 312 selfed individual plants sampled from an early generation rice segmental allotetraploid population are constitutive aneuploids harboring 55 distinct aneuploid karyotypes. We document that gain of a chromosome is more prevalent than loss of a chromosome, and the 12 rice chromosomes have distinct tendencies to be in an aneuploid state. These properties of aneuploidy are constrained by multiple factors including the number of genes residing on the chromosome and predicted functional connectivity with other chromosomes. Two broad categories of aneuploidy-associated phenotypes are recognized: those shared by different aneuploids, and those associated with aneuploidy of a specific chromosome. A repertoire of diverse aneuploids in the context of a segmental allotetraploid rice genome with fully sequenced sub-genomes provides a tractable resource to explore the roles of aneuploidy in nascent polyploid genome evolution and helps to decipher the mechanisms conferring karyotypic stabilization on the path to polyploid speciation and towards artificial construction of novel polyploid crops.
Collapse
Affiliation(s)
- Ying Wu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Yue Sun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Shuai Sun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Guo Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bin Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xiuyun Lin
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Meng Huang
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Zhiyun Gong
- Agricultural College, Yangzhou University, Yangzhou, 225009, China
| | - Karen A Sanguinet
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Zhiwu Zhang
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
33
|
Gene regulatory network architecture in different developmental contexts influences the genetic basis of morphological evolution. PLoS Genet 2018; 14:e1007375. [PMID: 29723190 PMCID: PMC5953500 DOI: 10.1371/journal.pgen.1007375] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 05/15/2018] [Accepted: 04/23/2018] [Indexed: 01/09/2023] Open
Abstract
Convergent phenotypic evolution is often caused by recurrent changes at particular nodes in the underlying gene regulatory networks (GRNs). The genes at such evolutionary ‘hotspots’ are thought to maximally affect the phenotype with minimal pleiotropic consequences. This has led to the suggestion that if a GRN is understood in sufficient detail, the path of evolution may be predictable. The repeated evolutionary loss of larval trichomes among Drosophila species is caused by the loss of shavenbaby (svb) expression. svb is also required for development of leg trichomes, but the evolutionary gain of trichomes in the ‘naked valley’ on T2 femurs in Drosophila melanogaster is caused by reduced microRNA-92a (miR-92a) expression rather than changes in svb. We compared the expression and function of components between the larval and leg trichome GRNs to investigate why the genetic basis of trichome pattern evolution differs in these developmental contexts. We found key differences between the two networks in both the genes employed, and in the regulation and function of common genes. These differences in the GRNs reveal why mutations in svb are unlikely to contribute to leg trichome evolution and how instead miR-92a represents the key evolutionary switch in this context. Our work shows that variability in GRNs across different developmental contexts, as well as whether a morphological feature is lost versus gained, influence the nodes at which a GRN evolves to cause morphological change. Therefore, our findings have important implications for understanding the pathways and predictability of evolution. A major goal of biology is to identify the genetic causes of organismal diversity. Convergent evolution of traits is often caused by changes in the same genes–evolutionary ‘hotspots’. shavenbaby is a ‘hotspot’ for larval trichome loss in Drosophila, but microRNA-92a underlies the gain of leg trichomes. To understand this difference in the genetics of phenotypic evolution, we compared the expression and function of genes in the underlying regulatory networks. We found that the pathway of evolution is influenced by differences in gene regulatory network architecture in different developmental contexts, as well as by whether a trait is lost or gained. Therefore, hotspots in one context may not readily evolve in a different context. This has important implications for understanding the genetic basis of phenotypic change and the predictability of evolution.
Collapse
|
34
|
Dermauw W, Pym A, Bass C, Van Leeuwen T, Feyereisen R. Does host plant adaptation lead to pesticide resistance in generalist herbivores? CURRENT OPINION IN INSECT SCIENCE 2018; 26:25-33. [PMID: 29764657 DOI: 10.1016/j.cois.2018.01.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/05/2018] [Accepted: 01/06/2018] [Indexed: 05/09/2023]
Abstract
Most herbivorous arthropods feed on one or a few closely related plant species; however, certain insect and mite species have a greatly expanded host range. Several of these generalists also show a remarkable propensity to evolve resistance to chemical pesticides. In this review, we ask if the evolution of mechanisms to tolerate the diversity of plant secondary metabolites that generalist herbivores encounter, has pre-adapted them to resist synthetic pesticides. Critical examination of the evidence suggests that a generalist life-style per se is not a predictor of rapid resistance evolution to pesticides. Rather the prevalence of pesticide resistance in generalist herbivores probably reflects their economic importance as pests and thus the strong selection imposed by intensive pesticide use.
Collapse
Affiliation(s)
- Wannes Dermauw
- Department or Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | - Adam Pym
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| | - Chris Bass
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| | - Thomas Van Leeuwen
- Department or Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Department of Evolutionary Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands
| | - René Feyereisen
- Department or Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
35
|
Hemimetabolous genomes reveal molecular basis of termite eusociality. Nat Ecol Evol 2018; 2:557-566. [PMID: 29403074 PMCID: PMC6482461 DOI: 10.1038/s41559-017-0459-1] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/19/2017] [Indexed: 11/25/2022]
Abstract
Around 150 million years ago, eusocial termites evolved from within the cockroaches, 50 million years before eusocial Hymenoptera, such as bees and ants, appeared. Here, we report the 2-Gb genome of the German cockroach, Blattella germanica, and the 1.3-Gb genome of the drywood termite Cryptotermes secundus. We show evolutionary signatures of termite eusociality by comparing the genomes and transcriptomes of three termites and the cockroach against the background of 16 other eusocial and non-eusocial insects. Dramatic adaptive changes in genes underlying the production and perception of pheromones confirm the importance of chemical communication in the termites. These are accompanied by major changes in gene regulation and the molecular evolution of caste determination. Many of these results parallel molecular mechanisms of eusocial evolution in Hymenoptera. However, the specific solutions are remarkably different, thus revealing a striking case of convergence in one of the major evolutionary transitions in biological complexity.
Collapse
|
36
|
Cooperative Control of Ecdysone Biosynthesis in Drosophila by Transcription Factors Séance, Ouija Board, and Molting Defective. Genetics 2017; 208:605-622. [PMID: 29187506 PMCID: PMC5788525 DOI: 10.1534/genetics.117.300268] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/27/2017] [Indexed: 12/20/2022] Open
Abstract
Ecdysteroids are steroid hormones that control many aspects of development and physiology. During larval development, ecdysone is synthesized in an endocrine organ called the prothoracic gland through a series of ecdysteroidogenic enzymes encoded by the Halloween genes. The expression of the Halloween genes is highly restricted and dynamic, indicating that their spatiotemporal regulation is mediated by their tight transcriptional control. In this study, we report that three zinc finger-associated domain (ZAD)-C2H2 zinc finger transcription factors—Séance (Séan), Ouija board (Ouib), and Molting defective (Mld)—cooperatively control ecdysone biosynthesis in the fruit fly Drosophila melanogaster. Séan and Ouib act in cooperation with Mld to positively regulate the transcription of neverland and spookier, respectively, two Halloween genes. Remarkably, loss-of-function mutations in séan, ouib, or mld can be rescued by the expression of neverland, spookier, or both, respectively. These results suggest that the three transcription factors have distinct roles in coordinating the expression of just two genes in Drosophila. Given that neverland and spookier are located in constitutive heterochromatin, Séan, Ouib, and Mld represent the first example of a transcription factor subset that regulates genes located in constitutive heterochromatin.
Collapse
|
37
|
Copetti D, Búrquez A, Bustamante E, Charboneau JLM, Childs KL, Eguiarte LE, Lee S, Liu TL, McMahon MM, Whiteman NK, Wing RA, Wojciechowski MF, Sanderson MJ. Extensive gene tree discordance and hemiplasy shaped the genomes of North American columnar cacti. Proc Natl Acad Sci U S A 2017; 114:12003-12008. [PMID: 29078296 PMCID: PMC5692538 DOI: 10.1073/pnas.1706367114] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Few clades of plants have proven as difficult to classify as cacti. One explanation may be an unusually high level of convergent and parallel evolution (homoplasy). To evaluate support for this phylogenetic hypothesis at the molecular level, we sequenced the genomes of four cacti in the especially problematic tribe Pachycereeae, which contains most of the large columnar cacti of Mexico and adjacent areas, including the iconic saguaro cactus (Carnegiea gigantea) of the Sonoran Desert. We assembled a high-coverage draft genome for saguaro and lower coverage genomes for three other genera of tribe Pachycereeae (Pachycereus, Lophocereus, and Stenocereus) and a more distant outgroup cactus, Pereskia We used these to construct 4,436 orthologous gene alignments. Species tree inference consistently returned the same phylogeny, but gene tree discordance was high: 37% of gene trees having at least 90% bootstrap support conflicted with the species tree. Evidently, discordance is a product of long generation times and moderately large effective population sizes, leading to extensive incomplete lineage sorting (ILS). In the best supported gene trees, 58% of apparent homoplasy at amino sites in the species tree is due to gene tree-species tree discordance rather than parallel substitutions in the gene trees themselves, a phenomenon termed "hemiplasy." The high rate of genomic hemiplasy may contribute to apparent parallelisms in phenotypic traits, which could confound understanding of species relationships and character evolution in cacti.
Collapse
Affiliation(s)
- Dario Copetti
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ 85721
- International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Alberto Búrquez
- Instituto de Ecología, Unidad Hermosillo, Universidad Nacional Autónoma de México, Hermosillo, Sonora, Mexico
| | - Enriquena Bustamante
- Instituto de Ecología, Unidad Hermosillo, Universidad Nacional Autónoma de México, Hermosillo, Sonora, Mexico
| | - Joseph L M Charboneau
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721
| | - Kevin L Childs
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824
| | - Luis E Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Seunghee Lee
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ 85721
| | - Tiffany L Liu
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824
| | | | - Noah K Whiteman
- Department of Integrative Biology, University of California, Berkeley, CA 94720
| | - Rod A Wing
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ 85721
- International Rice Research Institute, Los Baños, Laguna, Philippines
| | | | - Michael J Sanderson
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721;
| |
Collapse
|
38
|
Sathapondecha P, Panyim S, Udomkit A. An essential role of Rieske domain oxygenase Neverland in the molting cycle of black tiger shrimp, Penaeus monodon. Comp Biochem Physiol A Mol Integr Physiol 2017; 213:11-19. [PMID: 28842223 DOI: 10.1016/j.cbpa.2017.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/08/2017] [Accepted: 08/15/2017] [Indexed: 11/26/2022]
|
39
|
Comeault AA, Serrato-Capuchina A, Turissini DA, McLaughlin PJ, David JR, Matute DR. A nonrandom subset of olfactory genes is associated with host preference in the fruit fly Drosophila orena. Evol Lett 2017; 1:73-85. [PMID: 30283640 PMCID: PMC6121841 DOI: 10.1002/evl3.7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/27/2017] [Indexed: 12/18/2022] Open
Abstract
Specialization onto different host plants has been hypothesized to be a major driver of diversification in insects, and traits controlling olfaction have been shown to play a fundamental role in host preferences. A diverse set of olfactory genes control olfactory traits in insects, and it remains unclear whether specialization onto different hosts is likely to involve a nonrandom subset of these genes. Here, we test the role of olfactory genes in a novel case of specialization in Drosophila orena. We report the first population‐level sample of D. orena on the West African island of Bioko, since its initial collection in Cameroon in 1975, and use field experiments and behavioral assays to show that D. orena has evolved a strong preference for waterberry (Syzygium staudtii). We then show that a nonrandom subset of genes controlling olfaction‐–those controlling odorant‐binding and chemosensory proteins–‐have an enriched signature of positive selection relative to the rest of the D. orena genome. By comparing signatures of positive selection on olfactory genes between D. orena and its sister species, D. erecta we show that odorant‐binding and chemosensory have evidence of positive selection in both species; however, overlap in the specific genes with evidence of selection in these two classes is not greater than expected by chance. Finally, we use quantitative complementation tests to confirm a role for seven olfactory loci in D. orena’s preference for waterberry fruit. Together, our results suggest that D. orena and D. erecta have specialized onto different host plants through convergent evolution at the level of olfactory gene family, but not at specific olfactory genes.
Collapse
Affiliation(s)
- Aaron A Comeault
- Department of Biology University of North Carolina Chapel Hill North Carolina 27599
| | | | - David A Turissini
- Department of Biology University of North Carolina Chapel Hill North Carolina 27599
| | - Patrick J McLaughlin
- Department of Biology Drexel University Philadelphia Pennsylvania 19104.,Bioko Biodiversity Protection Program Bioko Island Equatorial Guinea
| | - Jean R David
- Laboratoire Evolution, Genomes, Speciation (LEGS) CNRS Gif sur Yvette Cedex France.,Université Paris-Sud Orsay Cedex France.,Département Systématique et Evolution Museum National d'Histoire Naturelle (MNHN) UMR 7205 (OSEB) Paris France
| | - Daniel R Matute
- Department of Biology University of North Carolina Chapel Hill North Carolina 27599
| |
Collapse
|
40
|
Vertacnik KL, Linnen CR. Evolutionary genetics of host shifts in herbivorous insects: insights from the age of genomics. Ann N Y Acad Sci 2017; 1389:186-212. [DOI: 10.1111/nyas.13311] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/16/2016] [Accepted: 12/22/2016] [Indexed: 12/25/2022]
|
41
|
Ameku T, Yoshinari Y, Fukuda R, Niwa R. Ovarian ecdysteroid biosynthesis and female germline stem cells. Fly (Austin) 2017. [PMID: 28631993 DOI: 10.1080/19336934.2017.1291472] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The germline stem cells (GSCs) are critical for gametogenesis throughout the adult life. Stem cell identity is maintained by local signals from a specialized microenvironment called the niche. However, it is unclear how systemic signals regulate stem cell activity in response to environmental cues. In our previous article, we reported that mating stimulates GSC proliferation in female Drosophila. The mating-induced GSC proliferation is mediated by ovarian ecdysteroids, whose biosynthesis is positively controlled by Sex peptide signaling. Here, we characterized the post-eclosion and post-mating expression pattern of the genes encoding the ecdysteroidogenic enzymes in the ovary. We further investigated the biosynthetic functions of the ovarian ecdysteroid in GSC maintenance in the mated females. We also briefly discuss the regulation of the ecdysteroidogenic enzyme-encoding genes and the subsequent ecdysteroid biosynthesis in the ovary of the adult Drosophila.
Collapse
Affiliation(s)
- Tomotsune Ameku
- a Graduate School of Life and Environmental Sciences , University of Tsukuba , Tsukuba , Ibaraki , Japan
| | - Yuto Yoshinari
- a Graduate School of Life and Environmental Sciences , University of Tsukuba , Tsukuba , Ibaraki , Japan
| | - Ruriko Fukuda
- b College of Biological Sciences , University of Tsukuba , Tsukuba , Ibaraki , Japan
| | - Ryusuke Niwa
- c Faculty of Life and Environmental Sciences , University of Tsukuba , Tsukuba , Ibaraki , Japan.,d PRESTO, Japan Science and Technology Agency , Kawaguchi , Saitama , Japan
| |
Collapse
|
42
|
Hirooka Y, Hagizuka C, Ohshima I. The Effect of Combinations of Food Insects for Continuous Rearing of the Wing Polymorphic Water Strider Limnogonus Fossarum fossarum (Hemiptera: Gerridae). JOURNAL OF INSECT SCIENCE (ONLINE) 2016; 16:iew059. [PMID: 27620554 PMCID: PMC5019109 DOI: 10.1093/jisesa/iew059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/16/2016] [Indexed: 05/31/2023]
Abstract
The water strider Limnogonus fossarum fossarum (F.) (Hemiptera: Gerridae) shows a macropterous, micropterous, and apterous polymorphism. Although a long photoperiod condition induces winged morphs, preliminary studies have revealed that crossing between winged morphs increased the proportion of macropterous individuals, suggesting that the genetic factors also affect wing-morph determination in this species. Assessing the genetic backgrounds of wing polymorphism requires constant and repeatable methods for rearing. This study attempts to establish a continuous rearing method for L. f. fossarum under constant diet conditions. Initially, we maintain the water striders with two Drosophila species as a food, but viability until adulthood is less than 20%. We then add the storage pest Plodia interpunctella (Hübner), which are readily reared in the laboratory, to the diets. As a result, nymphs fed on P. interpunctella (even only until the second instar) show significantly higher viability and shorter developmental period than nymphs fed on Drosophila alone. Moreover, feeding on D. melanogaster (Meigen) reared on cholesterol-enriched medium instead of a normal medium significantly increases viability in the next generation. This means that only the two food-insect species are enough for establishing a substantial number of individuals in segregating generations (F2 and backcross), limiting DNA and RNA contaminations from food insects with genome information. Thus, the present rearing method opens the way to elucidating the genetic backgrounds of the wing polymorphism in L. f. fossarum.
Collapse
|
43
|
Rhebergen FT, Courtier-Orgogozo V, Dumont J, Schilthuizen M, Lang M. Drosophila pachea asymmetric lobes are part of a grasping device and stabilize one-sided mating. BMC Evol Biol 2016; 16:176. [PMID: 27586247 PMCID: PMC5009675 DOI: 10.1186/s12862-016-0747-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/17/2016] [Indexed: 11/28/2022] Open
Abstract
Background Multiple animal species exhibit morphological asymmetries in male genitalia. In insects, left-right genital asymmetries evolved many times independently and have been proposed to appear in response to changes in mating position. However, little is known about the relationship between mating position and the interaction of male and female genitalia during mating, and functional analyses of asymmetric morphologies in genitalia are virtually non-existent. We investigated the relationship between mating position, asymmetric genital morphology and genital coupling in the fruit fly Drosophila pachea, in which males possess an asymmetric pair of external genital lobes and mate in an unusual right-sided position on top of the female. Results We examined D. pachea copulation by video recording and by scanning electron microscopy of genital complexes. We observed that the interlocking of male and female genital organs in D. pachea is remarkably different from genital coupling in the well-studied D. melanogaster. In D. pachea, the female oviscapt valves are asymmetrically twisted during copulation. The male’s asymmetric lobes tightly grasp the female’s abdomen in an asymmetric ‘locking’ position, with the left and right lobes contacting different female structures. The male anal plates, which grasp the female genitalia in D. melanogaster, do not contact the female in D. pachea. Experimental lobe amputation by micro-surgery and laser-ablation of lobe bristles led to aberrant coupling of genitalia and variable mating positions, in which the male was tilted towards the right side of the female. Conclusion We describe, for the first time, how the mating position depends on coupling of male and female genitalia in a species with asymmetric genitalia and one-sided mating position. Our results show that D. pachea asymmetric epandrial lobes do not act as a compensatory mechanism for the change from symmetric to one-sided mating position that occurred during evolution of D. pachea’s ancestors, but as holding devices with distinct specialized functions on the left and right sides. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0747-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Flor T Rhebergen
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR, Leiden, The Netherlands. .,Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands. .,Institute Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.
| | - Virginie Courtier-Orgogozo
- Team "Évolution des drosophiles", Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 15 rue Hélène Brion, 75013, Paris, France
| | - Julien Dumont
- Team "Division cellulaire et reproduction", Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 15 rue Hélène Brion, 75013, Paris, France
| | - Menno Schilthuizen
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR, Leiden, The Netherlands.,Institute Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Michael Lang
- Team "Évolution des drosophiles", Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 15 rue Hélène Brion, 75013, Paris, France.
| |
Collapse
|
44
|
Relaxed selective constraints drove functional modifications in peripheral photoreception of the cavefish P. andruzzii and provide insight into the time of cave colonization. Heredity (Edinb) 2016; 117:383-392. [PMID: 27485669 DOI: 10.1038/hdy.2016.59] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 04/18/2016] [Accepted: 04/25/2016] [Indexed: 01/10/2023] Open
Abstract
The genetic basis of phenotypic changes in extreme environments is a key but rather unexplored topic in animal evolution. Here we provide an exemplar case of evolution by relaxed selection in the Somalian cavefish Phreatichthys andruzzii that has evolved in the complete absence of light for at least 2.8 million years. This has resulted in extreme degenerative phenotypes, including complete eye loss and partial degeneration of the circadian clock. We have investigated the molecular evolution of the nonvisual photoreceptor melanopsin opn4m2, whose mutation contributes to the inability of peripheral clocks to respond to light. Our intra- and inter-species analyses suggest that the 'blind' clock in P. andruzzii evolved because of the loss of selective constraints on a trait that was no longer adaptive. Based on this change in selective regime, we estimate that the functional constraint on cavefish opn4m2 was relaxed at ∼5.3 Myr. This implies a long subterranean history, about half in complete isolation from the surface. The visual photoreceptor rhodopsin, expressed in the brain and implicated in photophobic behavior, shows similar evolutionary patterns, suggesting that extreme isolation in darkness led to a general weakening of evolutionary constraints on light-responsive mechanisms. Conversely, the same genes are still conserved in Garra barreimiae, a cavefish from Oman, that independently and more recently colonized subterranean waters and evolved troglomorphic traits. Our results contribute substantially to the open debate on the genetic bases of regressive evolution.
Collapse
|
45
|
He Q, Knowles LL. Identifying targets of selection in mosaic genomes with machine learning: applications inAnopheles gambiaefor detecting sites within locally adapted chromosomal inversions. Mol Ecol 2016; 25:2226-43. [DOI: 10.1111/mec.13619] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 03/01/2016] [Accepted: 03/08/2016] [Indexed: 01/25/2023]
Affiliation(s)
- Qixin He
- Department of Ecology & Evolutionary Biology, Museum of Zoology; University of Michigan; 1109 Geddes Ave. Ann Arbor MI 48109-1079 USA
| | - L. Lacey Knowles
- Department of Ecology & Evolutionary Biology, Museum of Zoology; University of Michigan; 1109 Geddes Ave. Ann Arbor MI 48109-1079 USA
| |
Collapse
|
46
|
Recurrent specialization on a toxic fruit in an island Drosophila population. Proc Natl Acad Sci U S A 2016; 113:4771-6. [PMID: 27044093 DOI: 10.1073/pnas.1522559113] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recurrent specialization on similar host plants offers a unique opportunity to unravel the evolutionary and genetic mechanisms underlying dietary shifts. Recent studies have focused on ecological races belonging to the same species, but it is hard in many cases to untangle the role of adaptive introgression versus distinct mutations in facilitating recurrent evolution. We discovered on the island of Mayotte a population of the generalist fly Drosophila yakuba that is strictly associated with noni (Morinda citrifolia). This case strongly resembles Drosophila sechellia, a genetically isolated insular relative of D. yakuba whose intensely studied specialization on toxic noni fruits has always been considered a unique event in insect evolution. Experiments revealed that unlike mainland D. yakuba strains, Mayotte flies showed strong olfactory attraction and significant toxin tolerance to noni. Island females strongly discriminated against mainland males, suggesting that dietary adaptation has been accompanied by partial reproductive isolation. Population genomic analysis indicated a recent colonization (∼29 kya), at a time when year-round noni fruits may have presented a predictable resource on the small island, with ongoing migration after colonization. This relatively recent time scale allowed us to search for putatively adaptive loci based on genetic variation. Strong signals of genetic differentiation were found for several detoxification genes, including a major toxin tolerance locus in D. sechellia Our results suggest that recurrent evolution on a toxic resource can involve similar historical events and common genetic bases, and they establish an important genetic system for the study of early stages of ecological specialization and speciation.
Collapse
|
47
|
Komura-Kawa T, Hirota K, Shimada-Niwa Y, Yamauchi R, Shimell M, Shinoda T, Fukamizu A, O’Connor MB, Niwa R. The Drosophila Zinc Finger Transcription Factor Ouija Board Controls Ecdysteroid Biosynthesis through Specific Regulation of spookier. PLoS Genet 2015; 11:e1005712. [PMID: 26658797 PMCID: PMC4684333 DOI: 10.1371/journal.pgen.1005712] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 11/08/2015] [Indexed: 01/01/2023] Open
Abstract
Steroid hormones are crucial for many biological events in multicellular organisms. In insects, the principal steroid hormones are ecdysteroids, which play essential roles in regulating molting and metamorphosis. During larval and pupal development, ecdysteroids are synthesized in the prothoracic gland (PG) from dietary cholesterol via a series of hydroxylation and oxidation steps. The expression of all but one of the known ecdysteroid biosynthetic enzymes is restricted to the PG, but the transcriptional regulatory networks responsible for generating such exquisite tissue-specific regulation is only beginning to be elucidated. Here, we report identification and characterization of the C2H2-type zinc finger transcription factor Ouija board (Ouib) necessary for ecdysteroid production in the PG in the fruit fly Drosophila melanogaster. Expression of ouib is predominantly limited to the PG, and genetic null mutants of ouib result in larval developmental arrest that can be rescued by administrating an active ecdysteroid. Interestingly, ouib mutant animals exhibit a strong reduction in the expression of one ecdysteroid biosynthetic enzyme, spookier. Using a cell culture-based luciferase reporter assay, Ouib protein stimulates transcription of spok by binding to a specific ~15 bp response element in the spok PG enhancer element. Most remarkable, the developmental arrest phenotype of ouib mutants is rescued by over-expression of a functionally-equivalent paralog of spookier. These observations imply that the main biological function of Ouib is to specifically regulate spookier transcription during Drosophila development. Steroid hormones are crucial for development and reproduction in multicellular organisms. The spatially-restricted expression of almost all steroid biosynthesis genes is key to the specialization of steroid producing cells. In the last decade, insects have become the focus for research on the biosynthesis of the principal steroid hormones, ecdysteroids. However, the transcriptional regulatory mechanisms controlling the ecdysteroid biosynthesis genes are largely unknown. Here we show that a novel zinc finger transcription factor Ouija board (Ouib) is essential for activating the expression of one ecdysteroid biosynthesis gene, spookier, in the ecdysteroid producing cells. Ouib is the first invertebrate transcription factor that is predominantly expressed in the steroidogenic organs and essential for development via inducing expression of the steroidogenic gene. In addition, this is the first report showing the catalytic step-specific control of steroid hormone biosynthesis through transcriptional regulation.
Collapse
Affiliation(s)
- Tatsuya Komura-Kawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Keiko Hirota
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuko Shimada-Niwa
- Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Rieko Yamauchi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - MaryJane Shimell
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Tetsuro Shinoda
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Akiyoshi Fukamizu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Michael B. O’Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ryusuke Niwa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- * E-mail:
| |
Collapse
|
48
|
Llorens JV, Metzendorf C, Missirlis F, Lind MI. Mitochondrial iron supply is required for the developmental pulse of ecdysone biosynthesis that initiates metamorphosis in Drosophila melanogaster. J Biol Inorg Chem 2015; 20:1229-38. [PMID: 26468126 DOI: 10.1007/s00775-015-1302-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/05/2015] [Indexed: 12/23/2022]
Abstract
Synthesis of ecdysone, the key hormone that signals the termination of larval growth and the initiation of metamorphosis in insects, is carried out in the prothoracic gland by an array of iron-containing cytochrome P450s, encoded by the halloween genes. Interference, either with iron-sulfur cluster biogenesis in the prothoracic gland or with the ferredoxins that supply electrons for steroidogenesis, causes a block in ecdysone synthesis and developmental arrest in the third instar larval stage. Here we show that mutants in Drosophila mitoferrin (dmfrn), the gene encoding a mitochondrial carrier protein implicated in mitochondrial iron import, fail to grow and initiate metamorphosis under dietary iron depletion or when ferritin function is partially compromised. In mutant dmfrn larvae reared under iron replete conditions, the expression of halloween genes is increased and 20-hydroxyecdysone (20E), the active form of ecdysone, is synthesized. In contrast, addition of an iron chelator to the diet of mutant dmfrn larvae disrupts 20E synthesis. Dietary addition of 20E has little effect on the growth defects, but enables approximately one-third of the iron-deprived dmfrn larvae to successfully turn into pupae and, in a smaller percentage, into adults. This partial rescue is not observed with dietary supply of ecdysone's precursor 7-dehydrocholesterol, a precursor in the ecdysone biosynthetic pathway. The findings reported here support the notion that a physiological supply of mitochondrial iron for the synthesis of iron-sulfur clusters and heme is required in the prothoracic glands of insect larvae for steroidogenesis. Furthermore, mitochondrial iron is also essential for normal larval growth.
Collapse
Affiliation(s)
- Jose V Llorens
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, Uppsala, Sweden
| | - Christoph Metzendorf
- Heidelberg University Biochemistry Center (BZH), University of Heidelberg, Im Neuenheimer Feld 328, Heidelberg, Germany
| | - Fanis Missirlis
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. IPN 2508, Mexico City, Mexico.
| | - Maria I Lind
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, Uppsala, Sweden.
| |
Collapse
|
49
|
Elephantid Genomes Reveal the Molecular Bases of Woolly Mammoth Adaptations to the Arctic. Cell Rep 2015; 12:217-28. [PMID: 26146078 DOI: 10.1016/j.celrep.2015.06.027] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/18/2015] [Accepted: 06/05/2015] [Indexed: 12/30/2022] Open
Abstract
Woolly mammoths and living elephants are characterized by major phenotypic differences that have allowed them to live in very different environments. To identify the genetic changes that underlie the suite of woolly mammoth adaptations to extreme cold, we sequenced the nuclear genome from three Asian elephants and two woolly mammoths, and we identified and functionally annotated genetic changes unique to woolly mammoths. We found that genes with mammoth-specific amino acid changes are enriched in functions related to circadian biology, skin and hair development and physiology, lipid metabolism, adipose development and physiology, and temperature sensation. Finally, we resurrected and functionally tested the mammoth and ancestral elephant TRPV3 gene, which encodes a temperature-sensitive transient receptor potential (thermoTRP) channel involved in thermal sensation and hair growth, and we show that a single mammoth-specific amino acid substitution in an otherwise highly conserved region of the TRPV3 channel strongly affects its temperature sensitivity.
Collapse
|
50
|
Simon JC, d'Alencon E, Guy E, Jacquin-Joly E, Jaquiery J, Nouhaud P, Peccoud J, Sugio A, Streiff R. Genomics of adaptation to host-plants in herbivorous insects. Brief Funct Genomics 2015; 14:413-23. [DOI: 10.1093/bfgp/elv015] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|