1
|
Miles LS, Carlen EJ, Nassrullah Z, Munshi-South J, Johnson MTJ. No detectable effect of urbanization on genetic drift or gene flow in specialist herbivorous insects of milkweed. PLoS One 2025; 20:e0318956. [PMID: 39951478 PMCID: PMC11828359 DOI: 10.1371/journal.pone.0318956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Urbanization is hypothesized to isolate populations and restrict dispersal, leading to reduced genetic diversity and increased genetic differentiation. We tested this hypothesis in specialist herbivorous insects of milkweed, positing that higher dispersal ability would mitigate the negative effects of urbanization on genetic drift and gene flow, and that these effects would vary with city size. In this study, we collected 383 milkweed insects from urban and rural sites in Toronto, Canada, and five surrounding cities. Using ddRADseq, we generated 145,000 SPNs for monarchs, 10,000 SNPs for beetles, 6,000 SNPs for weevils to quantify genetic diversity, demographic history and population genetic structure. Contrary to our hypotheses, our results indicated no effect of urbanization or dispersal ability on diversity or genetic differentiation. Genetic diversity, measured as π, varied between 0.0013 and 0.0044 across species, with no urban vs. rural component, but with monarchs having >2 X higher diversity compared to beetles and weevils. Similarly, genetic differentiation was generally low, FST varying between 0.01 and 0.28, but there are no consistent trends among urban vs. rural samples for any of the three species. However, demographic analyses revealed a consistent decline in effective population size for all three sampled species, beginning around the last glacial maximum and intensifying over the past 1,000 years. Our findings suggest that both urbanization and dispersal ability have not been a major factor in reducing gene flow or increasing genetic drift among milkweed's herbivorous insect populations. Instead, historical events such as climatic change since the last glacial maximum, and large-scale anthropogenic disturbance in general, have had a more pronounced impact on demography. These results highlight the importance of considering the combined effects of natural and anthropogenic long-term historical processes when studying population genetics in the context of urbanization.
Collapse
Affiliation(s)
- Lindsay S. Miles
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Elizabeth J. Carlen
- Living Earth Collaborative, Washington University, St. Louis, Missouri, United States of America
- Department of Biological Sciences, Fordham University, New York City, New York, United States of America
| | - Zain Nassrullah
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Jason Munshi-South
- Department of Biological Sciences, Fordham University, New York City, New York, United States of America
| | - Marc T. J. Johnson
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| |
Collapse
|
2
|
Achi P, Christensen P, Iglesias V, McCarthy C, Pena R, Bavier L, Goldy C, Agrawal AA, Groen SC, Dillman AR. Entomopathogenic Nematode Species Vary in Their Behavior and Virulence in Response to Cardiac Glycosides Within and Around Insect Hosts. J Chem Ecol 2025; 51:12. [PMID: 39869279 PMCID: PMC11772503 DOI: 10.1007/s10886-025-01563-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 01/28/2025]
Abstract
Plants produce defensive toxins to deter herbivores. In response, some specialized herbivores evolved resistance and even the capacity to sequester toxins, affecting interactions at higher trophic levels. Here, we test the hypothesis that potential natural enemies of specialized herbivores are differentially affected by plant toxins depending on their level of adaptation to the plant-herbivore system. We focus on toxic cardiac glycosides (CGs) from milkweeds (Asclepias spp.), which inhibit animal Na+/K+-ATPases, and two CG-resistant insects, the large milkweed bug Oncopeltus fasciatus and a CRISPR-edited Drosophila melanogaster. Both have CG-resistant Na+/K+-ATPases through a set of key amino acid substitutions, which facilitate CG sequestration. We conducted infection experiments with entomopathogenic nematodes (Steinernema carpocapsae, S. feltiae, and S. hermaphroditum) as natural enemies on host insects containing mixtures of milkweed-derived CGs or purified CGs (ouabain, digoxin, and digitoxin) that vary in toxicity. The nematode S. carpocapsae is known to occur in soil near milkweed plants and naturally has several of the same Na+/K+-ATPase substitutions as the milkweed bug O. fasciatus and our Drosophila mutant. This nematode not only exhibited higher fecundity in hosts that carried CGs relative to the other nematode species (which have sensitive Na+/K+-ATPases), but also showed attraction to mixtures of CGs in milkweed root extracts and to purified ouabain when tested on agar plates. A coiling phenotype, which is a symptom of neurotoxicity, was observed more frequently in S. feltiae and S. hermaphroditum upon exposure to milkweed root extracts than in S. carpocapsae. Nematode behavior was further tested in sand, and while attraction to CGs was found for S. carpocapsae, nematodes of the other species tended to migrate away from milkweed root chemicals. Thus, S. carpocapsae can tolerate CGs and may use these as chemical cues to locate insect hosts that live on or around milkweed plants.
Collapse
Affiliation(s)
- Perla Achi
- Department of Nematology, University of California Riverside, Riverside, CA, USA
| | - Preston Christensen
- Department of Nematology, University of California Riverside, Riverside, CA, USA
| | - Victoria Iglesias
- Department of Nematology, University of California Riverside, Riverside, CA, USA
| | - Cullen McCarthy
- Department of Nematology, University of California Riverside, Riverside, CA, USA
| | - Robert Pena
- Department of Nematology, University of California Riverside, Riverside, CA, USA
| | - Lanie Bavier
- Department of Nematology, University of California Riverside, Riverside, CA, USA
| | - Connor Goldy
- Department of Nematology, University of California Riverside, Riverside, CA, USA
| | - Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | - Simon C Groen
- Department of Nematology, University of California Riverside, Riverside, CA, USA.
- Center for Infectious Disease and Vector Research, Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA, USA.
- Department of Botany & Plant Sciences, University of California Riverside, Riverside, CA, USA.
| | - Adler R Dillman
- Department of Nematology, University of California Riverside, Riverside, CA, USA.
- Center for Infectious Disease and Vector Research, Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA, USA.
| |
Collapse
|
3
|
Preising GA, Gunn T, Baczenas JJ, Powell DL, Dodge TO, Sewell ST, Pollock A, Machin Kairuz JA, Savage M, Lu Y, Fitschen-Brown M, Meyer A, Schartl M, Cummings M, Thakur S, Inman CM, Ríos-Cardenas O, Morris M, Tobler M, Schumer M. Recurrent evolution of small body size and loss of the sword ornament in Northern swordtail fish. Evolution 2024; 78:2017-2031. [PMID: 39252584 PMCID: PMC11637981 DOI: 10.1093/evolut/qpae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 09/09/2024] [Indexed: 09/11/2024]
Abstract
Across the tree of life, species have repeatedly evolved similar phenotypes. While well-studied for ecological traits, there is also evidence for recurrent evolution of sexually selected traits. Swordtail fish (Xiphophorus) is a classic model system for studying sexual selection, and female Xiphophorus exhibit strong mate preferences for large male body sizes and a range of sexually dimorphic ornaments. Interestingly, sexually selected traits have also been lost multiple times in the genus. However, there has been uncertainty over the number of losses of ornamentation and large body size because phylogenetic relationships between species in this group have historically been controversial, partially due to prevalent gene flow. Here, we use whole-genome sequencing approaches to reexamine phylogenetic relationships within a Xiphophorus clade that varies in the presence and absence of sexually selected traits. Using wild-caught individuals, we determine the phylogenetic placement of a small, unornamented species, X. continens, confirming an additional loss of ornamentation and large body size in the clade. With these revised phylogenetic relationships, we analyze evidence for coevolution between body size and other sexually selected traits using phylogenetic comparative methods. These results provide insights into the evolutionary pressures driving the recurrent loss of suites of sexually selected traits.
Collapse
Affiliation(s)
- Gabriel A Preising
- Department of Biology, Stanford University, Stanford, CA, United States
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca,” A.C., Calnali, Mexico
| | - Theresa Gunn
- Department of Biology, Stanford University, Stanford, CA, United States
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca,” A.C., Calnali, Mexico
| | - John J Baczenas
- Department of Biology, Stanford University, Stanford, CA, United States
| | - Daniel L Powell
- Department of Biology, Stanford University, Stanford, CA, United States
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca,” A.C., Calnali, Mexico
| | - Tristram O Dodge
- Department of Biology, Stanford University, Stanford, CA, United States
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca,” A.C., Calnali, Mexico
| | - Sean T Sewell
- Department of Biology, Stanford University, Stanford, CA, United States
| | - Alexa Pollock
- Department of Biology, Stanford University, Stanford, CA, United States
| | | | - Markita Savage
- Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, United States
| | - Yuan Lu
- Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, United States
| | | | - Axel Meyer
- Department of Biology, University of Konstanz, Konstanz, Germany
- Museum of Comparative Zoology, Harvard University, Cambridge, MA, United States
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Beijing, China
| | - Manfred Schartl
- Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, United States
- Developmental Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
| | - Molly Cummings
- Integrative Biology, University of Texas at Austin, Austin, TX, United States
| | - Sunishka Thakur
- Integrative Biology, University of Texas at Austin, Austin, TX, United States
| | - Callen M Inman
- Integrative Biology, University of Texas at Austin, Austin, TX, United States
| | | | - Molly Morris
- Department of Biology, Ohio University, Athens, OH, United States
| | - Michael Tobler
- Department of Biology, University of Missouri–St. Louis, St. Louis, MO, United States
- Whitney R. Harris World Ecology Center, University of Missouri–St. Louis, St. Louis, MO, United States
- WildCare Institute, Saint Louis Zoo, St. Louis, MO, United States
| | - Molly Schumer
- Department of Biology, Stanford University, Stanford, CA, United States
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca,” A.C., Calnali, Mexico
- Freeman Hrabowski Scholar, Howard Hughes Medical Institute, Chevy Chase, MD, United States
| |
Collapse
|
4
|
Röpcke M, Lu S, Plate C, Meinzer F, Lisiecki A, Dobler S. Substrate Specificity of ABCB Transporters Predicted by Docking Simulations Can Be Confirmed by Experimental Tests. Molecules 2024; 29:5272. [PMID: 39598661 PMCID: PMC11596062 DOI: 10.3390/molecules29225272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/24/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
ATP-binding cassette (ABC) transporters, particularly those of subfamily B, are involved in cell detoxification, multidrug resistance, drug treatment pharmacodynamics, and also ecological adaptation. In this regard, ABCB transporters may play a decisive role in the co-evolution between plants and herbivores. Cardenolides, toxic steroid glycosides, are secondary plant metabolites that defend plants against herbivores by targeting their sodium-potassium ATPase. Despite their toxicity, several herbivorous insects such as the large milkweed bug (Oncopeltus fasciatus) have evolved adaptations to tolerate cardenolides and sequester them for their own defense. We investigate the role of two ABCB transporters of O. fasciatus for the paracellular transport of cardenolides by docking simulations and ATPase assays. Cardenolide binding of OfABCB1 and OfABCB2 is predicted by docking simulations and calculated binding energies are compared with substrate specificities determined in ATPase assays. Both tested ABCB transporters showed activity upon exposure to cardenolides and Km values that agreed well with the predictions of our docking simulations. We conclude that docking simulations can help identify transporter binding regions and predict substrate specificity, as well as provide deeper insights into the structural basis of ABC transporter function.
Collapse
Affiliation(s)
- Mario Röpcke
- Institute of Cell and System Biology of Animals, Universität Hamburg, 20146 Hamburg, Germany; (S.L.); (C.P.); (F.M.); (A.L.)
| | | | | | | | | | - Susanne Dobler
- Institute of Cell and System Biology of Animals, Universität Hamburg, 20146 Hamburg, Germany; (S.L.); (C.P.); (F.M.); (A.L.)
| |
Collapse
|
5
|
Agrawal AA, Hastings AP, Lenhart PA, Blecher M, Duplais C, Petschenka G, Hawlena D, Wagschal V, Dobler S. Convergence and Divergence among Herbivorous Insects Specialized on Toxic Plants: Revealing Syndromes among the Cardenolide Feeders across the Insect Tree of Life. Am Nat 2024; 204:201-220. [PMID: 39179235 DOI: 10.1086/731277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
AbstractRepeatable macroevolutionary patterns provide hope for rules in biology, especially when we can decipher the underlying mechanisms. Here we synthesize natural history, genetic adaptations, and toxin sequestration in herbivorous insects that specialize on plants with cardiac glycoside defenses. Work on the monarch butterfly provided a model for evolution of the "sequestering specialist syndrome," where specific amino acid substitutions in the insect's Na+/K+-ATPase are associated with (1) high toxin resistance (target site insensitivity [TSI]), (2) sequestration of toxins, and (3) aposematic coloration. We evaluate convergence for these traits within and between Lepidoptera, Coleoptera, Diptera, Hemiptera, Hymenoptera, and Orthoptera, encompassing hundreds of toxin-adapted species. Using new and existing data on ∼28 origins of specialization, we show that the monarch model evolved independently in five taxonomic orders (but not Diptera). An additional syndrome occurs in five orders (all but Hymenoptera): aposematic sequesterers with modest to medium TSI. Indeed, all sequestering species were aposematic, and all but one had at least modest TSI. Additionally, several species were aposematic nonsequesterers (potential Batesian mimics), and this combination evolved in species with a range of TSI levels. Finally, we identified some biases among these strategies within taxonomic orders. Biodiversity in this microcosm of life evolved repeatedly with a high degree of similarity across six taxonomic orders, yet we identified alternative trait combinations as well as lineage-specific outcomes.
Collapse
|
6
|
Beran F, Heckel DG. Escalation by duplication: Milkweed bug trumps Monarch butterfly. Mol Ecol 2024; 33:e17443. [PMID: 38943372 DOI: 10.1111/mec.17443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/01/2024] [Accepted: 06/17/2024] [Indexed: 07/01/2024]
Abstract
The iconic Monarch butterfly is probably the best-known example of chemical defence against predation, as pictures of vomiting naive blue jays in countless textbooks vividly illustrate. Larvae of the butterfly take up toxic cardiac glycosides from their milkweed hostplants and carry them over to the adult stage. These compounds (cardiotonic steroids, including cardenolides and bufadienolides) inhibit the animal transmembrane sodium-potassium ATPase (Na,K-ATPase), but the Monarch enzyme resists this inhibition thanks to amino acid substitutions in its catalytic alpha-subunit. Some birds also have substitutions and can feast on cardiac glycoside-sequestering insects with impunity. A flurry of recent work has shown how the alpha-subunit gene has been duplicated multiple times in separate insect lineages specializing in cardiac glycoside-producing plants. In this issue of Molecular Ecology, Herbertz et al. toss the beta-subunit into the mix, by expressing all nine combinations of three alpha- and three beta-subunits of the milkweed bug Na,K-ATPase and testing their response to a cardenolide from the hostplant. The findings suggest that the diversification and subfunctionalization of genes allow milkweed bugs to balance trade-offs between resistance towards sequestered host plant toxins that protect the bugs from predators, and physiological costs in terms of Na,K-ATPase activity.
Collapse
Affiliation(s)
- Franziska Beran
- Population Ecology Group, Friedrich-Schiller Universität Jena, Jena, Germany
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - David G Heckel
- Emeritus Group Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
7
|
Herbertz M, Dalla S, Wagschal V, Turjalei R, Heiser M, Dobler S. Coevolutionary escalation led to differentially adapted paralogs of an insect's Na,K-ATPase optimizing resistance to host plant toxins. Mol Ecol 2024; 33:e17041. [PMID: 37296537 DOI: 10.1111/mec.17041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/24/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Cardiac glycosides are chemical defence toxins known to fatally inhibit the Na,K-ATPase (NKA) throughout the animal kingdom. Several animals, however, have evolved target-site insensitivity through substitutions in the otherwise highly conserved cardiac glycoside binding pocket of the NKA. The large milkweed bug, Oncopeltus fasciatus, shares a long evolutionary history with cardiac glycoside containing plants that led to intricate adaptations. Most strikingly, several duplications of the bugs' NKA1α gene provided the opportunity for differential resistance-conferring substitutions and subsequent sub-functionalization of the enzymes. Here, we analysed cardiac glycoside resistance and ion pumping activity of nine functional NKA α/β-combinations of O. fasciatus expressed in cell culture. We tested the enzymes with two structurally distinct cardiac glycosides, calotropin, a host plant compound, and ouabain, a standard cardiac glycoside. The identity and number of known resistance-conferring substitutions in the cardiac glycoside binding site significantly impacted activity and toxin resistance in the three α-subunits. The β-subunits also influenced the enzymes' characteristics, yet to a lesser extent. Enzymes containing the more ancient αC-subunit were inhibited by both compounds but much more strongly by the host plant toxin calotropin than by ouabain. The sensitivity to calotropin was diminished in enzymes containing the more derived αB and αA, which were only marginally inhibited by both cardiac glycosides. This trend culminated in αAβ1 having higher resistance against calotropin than against ouabain. These results support the coevolutionary escalation of plant defences and herbivore tolerance mechanisms. The possession of multiple paralogs additionally mitigates pleiotropic effects by compromising between ion pumping activity and resistance.
Collapse
Affiliation(s)
- Marlena Herbertz
- Institute of Cell and Systems Biology of Animals, Molecular Evolutionary Biology, Universität Hamburg, Hamburg, Germany
| | - Safaa Dalla
- Institute of Cell and Systems Biology of Animals, Molecular Evolutionary Biology, Universität Hamburg, Hamburg, Germany
| | - Vera Wagschal
- Institute of Cell and Systems Biology of Animals, Molecular Evolutionary Biology, Universität Hamburg, Hamburg, Germany
| | - Rohin Turjalei
- Institute of Cell and Systems Biology of Animals, Molecular Evolutionary Biology, Universität Hamburg, Hamburg, Germany
| | - Marlies Heiser
- Institute of Cell and Systems Biology of Animals, Molecular Evolutionary Biology, Universität Hamburg, Hamburg, Germany
| | - Susanne Dobler
- Institute of Cell and Systems Biology of Animals, Molecular Evolutionary Biology, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
8
|
Joseph J. Increased Positive Selection in Highly Recombining Genes Does not Necessarily Reflect an Evolutionary Advantage of Recombination. Mol Biol Evol 2024; 41:msae107. [PMID: 38829800 PMCID: PMC11173204 DOI: 10.1093/molbev/msae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/08/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024] Open
Abstract
It is commonly thought that the long-term advantage of meiotic recombination is to dissipate genetic linkage, allowing natural selection to act independently on different loci. It is thus theoretically expected that genes with higher recombination rates evolve under more effective selection. On the other hand, recombination is often associated with GC-biased gene conversion (gBGC), which theoretically interferes with selection by promoting the fixation of deleterious GC alleles. To test these predictions, several studies assessed whether selection was more effective in highly recombining genes (due to dissipation of genetic linkage) or less effective (due to gBGC), assuming a fixed distribution of fitness effects (DFE) for all genes. In this study, I directly derive the DFE from a gene's evolutionary history (shaped by mutation, selection, drift, and gBGC) under empirical fitness landscapes. I show that genes that have experienced high levels of gBGC are less fit and thus have more opportunities for beneficial mutations. Only a small decrease in the genome-wide intensity of gBGC leads to the fixation of these beneficial mutations, particularly in highly recombining genes. This results in increased positive selection in highly recombining genes that is not caused by more effective selection. Additionally, I show that the death of a recombination hotspot can lead to a higher dN/dS than its birth, but with substitution patterns biased towards AT, and only at selected positions. This shows that controlling for a substitution bias towards GC is therefore not sufficient to rule out the contribution of gBGC to signatures of accelerated evolution. Finally, although gBGC does not affect the fixation probability of GC-conservative mutations, I show that by altering the DFE, gBGC can also significantly affect nonsynonymous GC-conservative substitution patterns.
Collapse
Affiliation(s)
- Julien Joseph
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR 5558, Villeurbanne, France
| |
Collapse
|
9
|
Zhu C, Lu X, Cai T, Zhu K, Shi L, Chen Y, Wang T, Yang Y, Tu D, Fu Q, Huang J, Zhen Y. Firefly toxin lucibufagins evolved after the origin of bioluminescence. PNAS NEXUS 2024; 3:pgae215. [PMID: 38919269 PMCID: PMC11197309 DOI: 10.1093/pnasnexus/pgae215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024]
Abstract
Fireflies were believed to originally evolve their novel bioluminescence as warning signals to advertise their toxicity to predators, which was later adopted in adult mating. Although the evolution of bioluminescence has been investigated extensively, the warning signal hypothesis of its origin has not been tested. In this study, we test this hypothesis by systematically determining the presence or absence of firefly toxin lucibufagins (LBGs) across firefly species and inferring the time of origin of LBGs. We confirm the presence of LBGs in the subfamily Lampyrinae, but more importantly, we reveal the absence of LBGs in other lineages, including the subfamilies of Luciolinae, Ototretinae, and Psilocladinae, two incertae sedis lineages, and the Rhagophthalmidae family. Ancestral state reconstructions for LBGs based on firefly phylogeny constructed using genomic data suggest that the presence of LBGs in the common ancestor of the Lampyrinae subfamily is highly supported but unsupported in more ancient nodes, including firefly common ancestors. Our results suggest that firefly LBGs probably evolved much later than the evolution of bioluminescence. We thus conclude that firefly bioluminescence did not originally evolve as direct warning signals for toxic LBGs and advise that future studies should focus on other hypotheses. Moreover, LBG toxins are known to directly target and inhibit the α subunit of Na+, K+-ATPase (ATPα). We further examine the effects of amino acid substitutions in firefly ATPα on its interactions with LBGs. We find that ATPα in LBG-containing fireflies is relatively insensitive to LBGs, which suggests that target-site insensitivity contributes to LBG-containing fireflies' ability to deal with their own toxins.
Collapse
Affiliation(s)
- Chengqi Zhu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Xiaoli Lu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Tianlong Cai
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Kangli Zhu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Lina Shi
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yinjuan Chen
- Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Tianyu Wang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yaoming Yang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Dandan Tu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Qi Fu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Jing Huang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Ying Zhen
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
10
|
Li R, Zarate D, Avila-Magaña V, Li J. Comparative transcriptomics revealed parallel evolution and innovation of photosymbiosis molecular mechanisms in a marine bivalve. Proc Biol Sci 2024; 291:20232408. [PMID: 38807516 DOI: 10.1098/rspb.2023.2408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/05/2024] [Indexed: 05/30/2024] Open
Abstract
Photosymbioses between heterotrophic hosts and autotrophic symbionts are evolutionarily prevalent and ecologically significant. However, the molecular mechanisms behind such symbioses remain less elucidated, which hinders our understanding of their origin and adaptive evolution. This study compared gene expression patterns in a photosymbiotic bivalve (Fragum sueziense) and a closely related non-symbiotic species (Trigoniocardia granifera) under different light conditions to detect potential molecular pathways involved in mollusc photosymbiosis. We discovered that the presence of algal symbionts greatly impacted host gene expression in symbiont-containing tissues. We found that the host immune functions were suppressed under normal light compared with those in the dark. In addition, we found that cilia in the symbiont-containing tissues play important roles in symbiont regulation or photoreception. Interestingly, many potential photosymbiosis genes could not be annotated or do not exhibit orthologues in T. granifera transcriptomes, indicating unique molecular functions in photosymbiotic bivalves. Overall, we found both novel and known molecular mechanisms involved in animal-algal photosymbiosis within bivalves. Given that many of the molecular pathways are shared among distantly related host lineages, such as molluscs and cnidarians, it indicates that parallel and/or convergent evolution is instrumental in shaping host-symbiont interactions and responses in these organisms.
Collapse
Affiliation(s)
- Ruiqi Li
- Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, USA
- Museum of Natural History, University of Colorado Boulder, Boulder, USA
| | - Daniel Zarate
- Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, USA
- Museum of Natural History, University of Colorado Boulder, Boulder, USA
| | | | - Jingchun Li
- Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, USA
- Museum of Natural History, University of Colorado Boulder, Boulder, USA
| |
Collapse
|
11
|
Moreno JA, Dudchenko O, Feigin CY, Mereby SA, Chen Z, Ramos R, Almet AA, Sen H, Brack BJ, Johnson MR, Li S, Wang W, Gaska JM, Ploss A, Weisz D, Omer AD, Yao W, Colaric Z, Kaur P, Leger JS, Nie Q, Mena A, Flanagan JP, Keller G, Sanger T, Ostrow B, Plikus MV, Kvon EZ, Aiden EL, Mallarino R. Emx2 underlies the development and evolution of marsupial gliding membranes. Nature 2024; 629:127-135. [PMID: 38658750 PMCID: PMC11062917 DOI: 10.1038/s41586-024-07305-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 03/13/2024] [Indexed: 04/26/2024]
Abstract
Phenotypic variation among species is a product of evolutionary changes to developmental programs1,2. However, how these changes generate novel morphological traits remains largely unclear. Here we studied the genomic and developmental basis of the mammalian gliding membrane, or patagium-an adaptative trait that has repeatedly evolved in different lineages, including in closely related marsupial species. Through comparative genomic analysis of 15 marsupial genomes, both from gliding and non-gliding species, we find that the Emx2 locus experienced lineage-specific patterns of accelerated cis-regulatory evolution in gliding species. By combining epigenomics, transcriptomics and in-pouch marsupial transgenics, we show that Emx2 is a critical upstream regulator of patagium development. Moreover, we identify different cis-regulatory elements that may be responsible for driving increased Emx2 expression levels in gliding species. Lastly, using mouse functional experiments, we find evidence that Emx2 expression patterns in gliders may have been modified from a pre-existing program found in all mammals. Together, our results suggest that patagia repeatedly originated through a process of convergent genomic evolution, whereby regulation of Emx2 was altered by distinct cis-regulatory elements in independently evolved species. Thus, different regulatory elements targeting the same key developmental gene may constitute an effective strategy by which natural selection has harnessed regulatory evolution in marsupial genomes to generate phenotypic novelty.
Collapse
Affiliation(s)
- Jorge A Moreno
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Olga Dudchenko
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- The Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| | - Charles Y Feigin
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- Department of Environment and Genetics, La Trobe University, Bundoora, Victoria, Australia
| | - Sarah A Mereby
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Zhuoxin Chen
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Raul Ramos
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Axel A Almet
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
| | - Harsha Sen
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Benjamin J Brack
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Matthew R Johnson
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Sha Li
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Wei Wang
- Lewis Sigler Center for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Jenna M Gaska
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - David Weisz
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Arina D Omer
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Weijie Yao
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Zane Colaric
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Parwinder Kaur
- The University of Western Australia, Crawley, Western Australia, Australia
| | - Judy St Leger
- Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Qing Nie
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA
| | | | | | - Greta Keller
- Department of Biology, Loyola University, Chicago, IL, USA
| | - Thomas Sanger
- Department of Biology, Loyola University, Chicago, IL, USA
| | - Bruce Ostrow
- Department of Biology, Grand Valley State University, Allendale, MI, USA
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Evgeny Z Kvon
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- The Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.
| | - Ricardo Mallarino
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
12
|
Morel M, Zhukova A, Lemoine F, Gascuel O. Accurate Detection of Convergent Mutations in Large Protein Alignments With ConDor. Genome Biol Evol 2024; 16:evae040. [PMID: 38451738 PMCID: PMC10986858 DOI: 10.1093/gbe/evae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 01/30/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
Evolutionary convergences are observed at all levels, from phenotype to DNA and protein sequences, and changes at these different levels tend to be correlated. Notably, convergent mutations can lead to convergent changes in phenotype, such as changes in metabolism, drug resistance, and other adaptations to changing environments. We propose a two-component approach to detect mutations subject to convergent evolution in protein alignments. The "Emergence" component selects mutations that emerge more often than expected, while the "Correlation" component selects mutations that correlate with the convergent phenotype under study. With regard to Emergence, a phylogeny deduced from the alignment is provided by the user and is used to simulate the evolution of each alignment position. These simulations allow us to estimate the expected number of mutations in a neutral model, which is compared to the observed number of mutations in the data studied. In Correlation, a comparative phylogenetic approach, is used to measure whether the presence of each of the observed mutations is correlated with the convergent phenotype. Each component can be used on its own, for example Emergence when no phenotype is available. Our method is implemented in a standalone workflow and a webserver, called ConDor. We evaluate the properties of ConDor using simulated data, and we apply it to three real datasets: sedge PEPC proteins, HIV reverse transcriptase, and fish rhodopsin. The results show that the two components of ConDor complement each other, with an overall accuracy that compares favorably to other available tools, especially on large datasets.
Collapse
Affiliation(s)
- Marie Morel
- Institut Pasteur, Université Paris Cité, Unité Bioinformatique Evolutive, Paris, France
- Université Claude Bernard Lyon 1, LBBE, UMR 5558, CNRS, VAS, Villeurbanne, 69100, France
| | - Anna Zhukova
- Institut Pasteur, Université Paris Cité, Unité Bioinformatique Evolutive, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Frédéric Lemoine
- Institut Pasteur, Université Paris Cité, Unité Bioinformatique Evolutive, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
- Institut Pasteur, Université Paris Cité, CNR Virus Des Infections Respiratoires, Paris, France
| | - Olivier Gascuel
- Institut Pasteur, Université Paris Cité, Unité Bioinformatique Evolutive, Paris, France
- Institut de Systématique, Evolution, Biodiversité (UMR 7205—CNRS, Muséum National d’Histoire Naturelle, SU, EPHE, UA), Paris, France
| |
Collapse
|
13
|
Baum M, Dobler S. Fecal Deployment: An Alternative Way of Defensive Host Plant Cardenolide Use by Lilioceris merdigera Larvae. J Chem Ecol 2024; 50:63-70. [PMID: 38062246 PMCID: PMC10991028 DOI: 10.1007/s10886-023-01465-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 04/04/2024]
Abstract
The brilliant red Lilioceris merdigera (Coleoptera, Chrysomelidae) can spend its entire life cycle on the cardenolide-containing plant Convallaria majalis (lily of the valley) and forms stable populations on this host. Yet, in contrast to many other insects on cardenolide-containing plants L. merdigera does not sequester these plant toxins in the body but rather both adult beetles and larvae eliminate ingested cardenolides with the feces. Tracer feeding experiments showed that this holds true for radioactively labeled ouabain and digoxin, a highly polar and a rather apolar cardenolide. Both compounds or their derivatives are incorporated in the fecal shields of the larvae. The apolar digoxin, but not the polar ouabain, showed a deterrent effect on the generalist predatory ant Myrmica rubra, which occurs in the habitat of L. merdigera. The deterrent effect was detected for digoxin both in choice and feeding time assays. In a predator choice assay, a fecal shield derived from a diet of cardenolide-containing C. majalis offered L. merdigera larvae better protection from M. rubra than one derived from non-cardenolide Allium schoenoprasum (chives) or no fecal shield at all. Thus, we here present data suggesting a new way how insects may gain protection by feeding on cardenolide-containing plants.
Collapse
Affiliation(s)
- Michael Baum
- Molecular Evolutionary Biology, Institute of Zoology, Universität Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany.
- Chemistry Education Department, IPN, Leibniz Institute for Science and Mathematics Education, Olshausenstraße 62, 24118, Kiel, Germany.
| | - Susanne Dobler
- Molecular Evolutionary Biology, Institute of Zoology, Universität Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| |
Collapse
|
14
|
He J, Li J, Zhang R, Dong Z, Liu G, Chang Z, Bi W, Ruan Y, Yang Y, Liu H, Qiu L, Zhao R, Wan W, Li Z, Chen L, Li Y, Li X. Multiple Origins of Bioluminescence in Beetles and Evolution of Luciferase Function. Mol Biol Evol 2024; 41:msad287. [PMID: 38174583 PMCID: PMC10798137 DOI: 10.1093/molbev/msad287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 12/15/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
Bioluminescence in beetles has long fascinated biologists, with diverse applications in biotechnology. To date, however, our understanding of its evolutionary origin and functional variation mechanisms remains poor. To address these questions, we obtained high-quality reference genomes of luminous and nonluminous beetles in 6 Elateroidea families. We then reconstructed a robust phylogenetic relationship for all luminous families and related nonluminous families. Comparative genomic analyses and biochemical functional experiments suggested that gene evolution within Elateroidea played a crucial role in the origin of bioluminescence, with multiple parallel origins observed in the luminous beetle families. While most luciferase-like proteins exhibited a conserved nonluminous amino acid pattern (TLA346 to 348) in the luciferin-binding sites, luciferases in the different luminous beetle families showed divergent luminous patterns at these sites (TSA/CCA/CSA/LVA). Comparisons of the structural and enzymatic properties of ancestral, extant, and site-directed mutant luciferases further reinforced the important role of these sites in the trade-off between acyl-CoA synthetase and luciferase activities. Furthermore, the evolution of bioluminescent color demonstrated a tendency toward hypsochromic shifts and variations among the luminous families. Taken together, our results revealed multiple parallel origins of bioluminescence and functional divergence within the beetle bioluminescent system.
Collapse
Affiliation(s)
- Jinwu He
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Jun Li
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Ru Zhang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Zhiwei Dong
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Guichun Liu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Zhou Chang
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Wenxuan Bi
- Room 401, No. 2, Lane 155, Lianhua South Road, Shanghai 201100, China
| | - Yongying Ruan
- Plant Protection Research Center, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Yuxia Yang
- Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Haoyu Liu
- Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Lu Qiu
- Engineering Research Center for Forest and Grassland Disaster Prevention and Reduction, Mianyang Normal University, 621000 Mianyang, China
| | - Ruoping Zhao
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Wenting Wan
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Zihe Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Lei Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Yuanning Li
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Xueyan Li
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
15
|
Yang L, Borne F, Betz A, Aardema ML, Zhen Y, Peng J, Visconti R, Wu M, Roland BP, Talsma AD, Palladino MJ, Petschenka G, Andolfatto P. Predatory fireflies and their toxic firefly prey have evolved distinct toxin resistance strategies. Curr Biol 2023; 33:5160-5168.e7. [PMID: 37989309 PMCID: PMC10872512 DOI: 10.1016/j.cub.2023.10.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/04/2023] [Accepted: 10/27/2023] [Indexed: 11/23/2023]
Abstract
Toxic cardiotonic steroids (CTSs) act as a defense mechanism in many firefly species (Lampyridae) by inhibiting a crucial enzyme called Na+,K+-ATPase (NKA). Although most fireflies produce these toxins internally, species of the genus Photuris acquire them from a surprising source: predation on other fireflies. The contrasting physiology of toxin exposure and sequestration between Photuris and other firefly genera suggests that distinct strategies may be required to prevent self-intoxication. Our study demonstrates that both Photuris and their firefly prey have evolved highly resistant NKAs. Using an evolutionary analysis of the specific target of CTS (ATPα) in fireflies and gene editing in Drosophila, we find that the initial steps toward resistance were shared among Photuris and other firefly lineages. However, the Photuris lineage subsequently underwent multiple rounds of gene duplication and neofunctionalization, resulting in the development of ATPα paralogs that are differentially expressed and exhibit increasing resistance to CTS. By contrast, other firefly species have maintained a single copy. Our results implicate gene duplication as a facilitator in the transition of Photuris to its distinct ecological role as a predator of toxic firefly prey.
Collapse
Affiliation(s)
- Lu Yang
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Flora Borne
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Anja Betz
- Department of Applied Entomology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Matthew L Aardema
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA; Department of Biology, Montclair State University, Montclair, NJ 07043, USA
| | - Ying Zhen
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA; School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Julie Peng
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Regina Visconti
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Mariana Wu
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Bartholomew P Roland
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Aaron D Talsma
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Michael J Palladino
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Georg Petschenka
- Department of Applied Entomology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Peter Andolfatto
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
16
|
Breitbart ST, Agrawal AA, Wagner HH, Johnson MTJ. Urbanization and a green corridor do not impact genetic divergence in common milkweed (Asclepias syriaca L.). Sci Rep 2023; 13:20437. [PMID: 37993590 PMCID: PMC10665382 DOI: 10.1038/s41598-023-47524-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023] Open
Abstract
Urbanization is altering landscapes globally at an unprecedented rate. While ecological differences between urban and rural environments often promote phenotypic divergence among populations, it is unclear to what degree these trait differences arise from genetic divergence as opposed to phenotypic plasticity. Furthermore, little is known about how specific landscape elements, such as green corridors, impact genetic divergence in urban environments. We tested the hypotheses that: (1) urbanization, and (2) proximity to an urban green corridor influence genetic divergence in common milkweed (Asclepias syriaca) populations for phenotypic traits. Using seeds from 52 populations along three urban-to-rural subtransects in the Greater Toronto Area, Canada, one of which followed a green corridor, we grew ~ 1000 plants in a common garden setup and measured > 20 ecologically-important traits associated with plant defense/damage, reproduction, and growth over four years. We found significant heritable variation for nine traits within common milkweed populations and weak phenotypic divergence among populations. However, neither urbanization nor an urban green corridor influenced genetic divergence in individual traits or multivariate phenotype. These findings contrast with the expanding literature demonstrating that urbanization promotes rapid evolutionary change and offer preliminary insights into the eco-evolutionary role of green corridors in urban environments.
Collapse
Affiliation(s)
- Sophie T Breitbart
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada.
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada.
- Centre for Urban Environments, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada.
| | - Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, E145 Corson Hall, Ithaca, NY, 14853, USA
- Department of Entomology, Cornell University, 2126 Comstock Hall, Ithaca, NY, 14853, USA
| | - Helene H Wagner
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Centre for Urban Environments, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| | - Marc T J Johnson
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Centre for Urban Environments, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| |
Collapse
|
17
|
Yang L, Borne F, Betz A, Aardema ML, Zhen Y, Peng J, Visconti R, Wu M, Roland BP, Talsma AD, Palladino MJ, Petschenka G, Andolfatto P. Predatory fireflies and their toxic firefly prey have evolved distinct toxin resistance strategies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.08.531760. [PMID: 36945443 PMCID: PMC10028858 DOI: 10.1101/2023.03.08.531760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Toxic cardiotonic steroids (CTS) act as a defense mechanism in many firefly species (Lampyridae) by inhibiting a crucial enzyme called Na+,K+-ATPase (NKA). While most fireflies produce these toxins internally, species of the genus Photuris acquire them from a surprising source: predation on other fireflies. The contrasting physiology of toxin exposure and sequestration between Photuris and other firefly genera suggests that distinct strategies may be required to prevent self-intoxication. Our study demonstrates that both Photuris and their firefly prey have evolved highly-resistant NKAs. Using an evolutionary analysis of the specific target of CTS (ATPα) in fireflies, and gene-editing in Drosophila, we find that the initial steps towards resistance were shared among Photuris and other firefly lineages. However, the Photuris lineage subsequently underwent multiple rounds of gene duplication and neofunctionalization, resulting in the development of ATPα paralogs that are differentially expressed and exhibit increasing resistance to CTS. In contrast, other firefly species have maintained a single copy. Our results implicate gene duplication as a facilitator in the transition of Photuris to its distinct ecological role as predator of toxic firefly prey.
Collapse
Affiliation(s)
- Lu Yang
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, USA
| | - Flora Borne
- Department of Biological Sciences, Columbia University, New York, USA
| | - Anja Betz
- Department of Applied Entomology, University of Hohenheim, Stuttgart, Germany
| | - Matthew L Aardema
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, USA
- Department of Biology, Montclair State University, Montclair, USA
| | - Ying Zhen
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, USA
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Julie Peng
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, USA
| | - Regina Visconti
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, USA
| | - Mariana Wu
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, USA
| | - Bartholomew P Roland
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, USA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Aaron D Talsma
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, USA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Mike J Palladino
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, USA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Georg Petschenka
- Department of Applied Entomology, University of Hohenheim, Stuttgart, Germany
| | - Peter Andolfatto
- Department of Biological Sciences, Columbia University, New York, USA
| |
Collapse
|
18
|
Cerca J. Understanding natural selection and similarity: Convergent, parallel and repeated evolution. Mol Ecol 2023; 32:5451-5462. [PMID: 37724599 DOI: 10.1111/mec.17132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/21/2023]
Abstract
Parallel and convergent evolution offer some of the most compelling evidence for the significance of natural selection in evolution, as the emergence of similar adaptive solutions is unlikely to occur by random chance alone. However, these terms are often employed inconsistently, leading to misinterpretation and confusion, and recently proposed definitions have unintentionally diminished the emphasis on the evolution of similar adaptive solutions. Here, I examine various conceptual frameworks and definitions related to parallel and convergent evolution and propose a consolidated framework that enhances our comprehension of these evolutionary patterns. The primary aim of this framework is to harmonize the concepts of parallel and convergent evolution together with natural selection and the idea of similarity. Both concepts involve the evolution of similar adaptive solutions as a result of environmental challenges. The distinction lies in ancestral phenotypes. Parallel evolution takes place when the ancestral phenotypes (before selection) of the lineages are similar. Convergent evolution happens when the lineages have distinct ancestral phenotypes (before selection). Because an ancestral-based distinction will inevitably lead to cases where uncertainty in the distinction may arise, the framework includes a general term, repeated evolution, which can be used as a term applying to the evolution of similar phenotypes and genotypes as well as similar responses to environmental pressures. Based on the argument that genetic similarity may frequently arise without selection, the framework posits that the similarity of genetic sequences is not of great interest unless linked to the actions of natural selection or to the origins (mutation, standing genetic variation, gene flow) and locations of the similar sequences.
Collapse
Affiliation(s)
- José Cerca
- CEES - Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
19
|
Barnbrook M, Durán‐Castillo M, Critchley J, Wilson Y, Twyford A, Hudson A. Recent parallel speciation in Antirrhinum involved complex haplotypes and multiple adaptive characters. Mol Ecol 2023; 32:5305-5322. [PMID: 37602497 PMCID: PMC10947308 DOI: 10.1111/mec.17101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/22/2023]
Abstract
A role of ecological adaptation in speciation can be obscured by stochastic processes and differences that species accumulate after genetic isolation. One way to identify adaptive characters and their underlying genes is to study cases of speciation involving parallel adaptations. Recently resolved phylogenies reveal that alpine morphology has evolved in parallel in the genus Antirrhinum (snapdragons): first in an early split of an alpine from a lowland lineage and, more recently, from within the lowland lineage to produce closely related sympatric species with contrasting alpine and lowland forms. Here, we find that two of these later diverged sympatric species are differentiated by only around 2% of nuclear loci. Though showing evidence of recent gene flow, the species remain distinct for a suite of morphological characters typical of earlier-diverged alpine or lowland lineages and their morphologies correlate with features of the local landscape, as expected of ecological adaptations. Morphological differences between the two species involve multiple, unlinked genes so that parental character combinations are readily broken up by recombination in hybrids. We detect little evidence for post-pollination barriers to gene flow or recombination, suggesting that genetic isolation related to ecological adaptation is important in maintaining character combinations and might have contributed to parallel speciation. We also find evidence that genes involved in the earlier alpine-lowland split were reused in parallel evolution of alpine species, consistent with introgressive hybridisation, and speculate that many non-ecological barriers to gene flow might have been purged during the process.
Collapse
Affiliation(s)
| | | | - Jo Critchley
- University of Edinburgh School of Biological SciencesEdinburghUK
| | - Yvette Wilson
- University of Edinburgh School of Biological SciencesEdinburghUK
| | - Alex Twyford
- University of Edinburgh School of Biological SciencesEdinburghUK
- Royal Botanic Garden EdinburghEdinburghUK
| | - Andrew Hudson
- University of Edinburgh School of Biological SciencesEdinburghUK
| |
Collapse
|
20
|
Vertacnik KL, Herrig DK, Godfrey RK, Hill T, Geib SM, Unckless RL, Nelson DR, Linnen CR. Evolution of five environmentally responsive gene families in a pine-feeding sawfly, Neodiprion lecontei (Hymenoptera: Diprionidae). Ecol Evol 2023; 13:e10506. [PMID: 37791292 PMCID: PMC10542623 DOI: 10.1002/ece3.10506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 10/05/2023] Open
Abstract
A central goal in evolutionary biology is to determine the predictability of adaptive genetic changes. Despite many documented cases of convergent evolution at individual loci, little is known about the repeatability of gene family expansions and contractions. To address this void, we examined gene family evolution in the redheaded pine sawfly Neodiprion lecontei, a noneusocial hymenopteran and exemplar of a pine-specialized lineage evolved from angiosperm-feeding ancestors. After assembling and annotating a draft genome, we manually annotated multiple gene families with chemosensory, detoxification, or immunity functions before characterizing their genomic distributions and molecular evolution. We find evidence of recent expansions of bitter gustatory receptor, clan 3 cytochrome P450, olfactory receptor, and antimicrobial peptide subfamilies, with strong evidence of positive selection among paralogs in a clade of gustatory receptors possibly involved in the detection of bitter compounds. In contrast, these gene families had little evidence of recent contraction via pseudogenization. Overall, our results are consistent with the hypothesis that in response to novel selection pressures, gene families that mediate ecological interactions may expand and contract predictably. Testing this hypothesis will require the comparative analysis of high-quality annotation data from phylogenetically and ecologically diverse insect species and functionally diverse gene families. To this end, increasing sampling in under-sampled hymenopteran lineages and environmentally responsive gene families and standardizing manual annotation methods should be prioritized.
Collapse
Affiliation(s)
- Kim L. Vertacnik
- Department of EntomologyUniversity of KentuckyLexingtonKentuckyUSA
| | | | - R. Keating Godfrey
- McGuire Center for Lepidoptera and Biodiversity, University of FloridaGainesvilleFloridaUSA
| | - Tom Hill
- National Institute of Allergy and Infectious DiseasesBethesdaMarylandUSA
| | - Scott M. Geib
- Tropical Crop and Commodity Protection Research UnitUnited States Department of Agriculture: Agriculture Research Service Pacific Basin Agricultural Research CenterHiloHawaiiUSA
| | - Robert L. Unckless
- Department of Molecular BiosciencesUniversity of KansasLawrenceKansasUSA
| | - David R. Nelson
- Department of Microbiology, Immunology and BiochemistryUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | | |
Collapse
|
21
|
Cano AV, Gitschlag BL, Rozhoňová H, Stoltzfus A, McCandlish DM, Payne JL. Mutation bias and the predictability of evolution. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220055. [PMID: 37004719 PMCID: PMC10067271 DOI: 10.1098/rstb.2022.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/16/2023] [Indexed: 04/04/2023] Open
Abstract
Predicting evolutionary outcomes is an important research goal in a diversity of contexts. The focus of evolutionary forecasting is usually on adaptive processes, and efforts to improve prediction typically focus on selection. However, adaptive processes often rely on new mutations, which can be strongly influenced by predictable biases in mutation. Here, we provide an overview of existing theory and evidence for such mutation-biased adaptation and consider the implications of these results for the problem of prediction, in regard to topics such as the evolution of infectious diseases, resistance to biochemical agents, as well as cancer and other kinds of somatic evolution. We argue that empirical knowledge of mutational biases is likely to improve in the near future, and that this knowledge is readily applicable to the challenges of short-term prediction. This article is part of the theme issue 'Interdisciplinary approaches to predicting evolutionary biology'.
Collapse
Affiliation(s)
- Alejandro V. Cano
- Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Bryan L. Gitschlag
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Hana Rozhoňová
- Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Arlin Stoltzfus
- Office of Data and Informatics, Material Measurement Laboratory, National Institute of Standards and Technology, Rockville, MD 20899, USA
- Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - David M. McCandlish
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Joshua L. Payne
- Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| |
Collapse
|
22
|
Herbertz M, Lohr J, Lohr C, Dobler S. Knockdown of Na,K-ATPase β-subunits in Oncopeltus fasciatus induces molting problems and alterations in tracheal morphology. INSECT SCIENCE 2023; 30:375-397. [PMID: 36102008 DOI: 10.1111/1744-7917.13117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The ubiquitously expressed transmembrane enzyme Na,K-ATPase (NKA) is vital in maintaining functionality of cells. The association of α- and β-subunits is believed to be essential for forming a functional enzyme. In the large milkweed bug Oncopeltus fasciatus four α1-paralogs and four β-subunits exist that can associate into NKA complexes. This diversity raises the question of possible tissue-specific distribution and function. While the α1-subunits are known to modulate cardenolide-resistance and ion-transport efficiency, the functional importance of the β-subunits needed further investigation. We here characterize all four different β-subunits at the cellular, tissue, and whole organismal scales. A knockdown of different β-subunits heavily interferes with molting success resulting in strongly hampered phenotypes. The failure of ecdysis might be related to disrupted septate junction (SJ) formation, also reflected in β2-suppression-induced alteration in tracheal morphology. Our data further suggest the existence of isolated β-subunits forming homomeric or β-heteromeric complexes. This possible standalone and structure-specific distribution of the β-subunits predicts further, yet unknown pump-independent functions. The different effects caused by β knockdowns highlight the importance of the various β-subunits to fulfill tissue-specific requirements.
Collapse
Affiliation(s)
- Marlena Herbertz
- Division of Molecular Evolutionary Biology, Department of Biology, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Hamburg, 20146, Germany
| | - Jennifer Lohr
- Division of Molecular Evolutionary Biology, Department of Biology, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Hamburg, 20146, Germany
| | - Christian Lohr
- Division of Neurophysiology, Department of Biology, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Hamburg, 20146, Germany
| | - Susanne Dobler
- Division of Molecular Evolutionary Biology, Department of Biology, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Hamburg, 20146, Germany
| |
Collapse
|
23
|
Szukala A, Lovegrove‐Walsh J, Luqman H, Fior S, Wolfe TM, Frajman B, Schönswetter P, Paun O. Polygenic routes lead to parallel altitudinal adaptation in Heliosperma pusillum (Caryophyllaceae). Mol Ecol 2023; 32:1832-1847. [PMID: 35152499 PMCID: PMC10946620 DOI: 10.1111/mec.16393] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/29/2021] [Accepted: 02/02/2022] [Indexed: 11/28/2022]
Abstract
Understanding how organisms adapt to the environment is a major goal of modern biology. Parallel evolution-the independent evolution of similar phenotypes in different populations-provides a powerful framework to investigate the evolutionary potential of populations, the constraints of evolution, its repeatability and therefore its predictability. Here, we quantified the degree of gene expression and functional parallelism across replicated ecotype formation in Heliosperma pusillum (Caryophyllaceae), and gained insights into the architecture of adaptive traits. Population structure analyses and demographic modelling support a previously formulated hypothesis of parallel polytopic divergence of montane and alpine ecotypes. We detect a large proportion of differentially expressed genes (DEGs) underlying divergence within each replicate ecotype pair, with a strikingly low number of shared DEGs across pairs. Functional enrichment of DEGs reveals that the traits affected by significant expression divergence are largely consistent across ecotype pairs, in strong contrast to the nonshared genetic basis. The remarkable redundancy of differential gene expression indicates a polygenic architecture for the diverged adaptive traits. We conclude that polygenic traits appear key to opening multiple routes for adaptation, widening the adaptive potential of organisms.
Collapse
Affiliation(s)
- Aglaia Szukala
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
- Vienna Graduate School of Population GeneticsViennaAustria
| | | | - Hirzi Luqman
- Department of Environmental System ScienceETH ZürichZürichSwitzerland
| | - Simone Fior
- Department of Environmental System ScienceETH ZürichZürichSwitzerland
| | - Thomas M. Wolfe
- Institute for Forest EntomologyForest Pathology and Forest Protection, BOKUViennaAustria
| | - Božo Frajman
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| | | | - Ovidiu Paun
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| |
Collapse
|
24
|
Zhang X, Kuang T, Dong W, Qian Z, Zhang H, Landis JB, Feng T, Li L, Sun Y, Huang J, Deng T, Wang H, Sun H. Genomic convergence underlying high-altitude adaptation in alpine plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36960823 DOI: 10.1111/jipb.13485] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
Evolutionary convergence is one of the most striking examples of adaptation driven by natural selection. However, genomic evidence for convergent adaptation to extreme environments remains scarce. Here, we assembled reference genomes of two alpine plants, Saussurea obvallata (Asteraceae) and Rheum alexandrae (Polygonaceae), with 37,938 and 61,463 annotated protein-coding genes. By integrating an additional five alpine genomes, we elucidated genomic convergence underlying high-altitude adaptation in alpine plants. Our results detected convergent contractions of disease-resistance genes in alpine genomes, which might be an energy-saving strategy for surviving in hostile environments with only a few pathogens present. We identified signatures of positive selection on a set of genes involved in reproduction and respiration (e.g., MMD1, NBS1, and HPR), and revealed signatures of molecular convergence on genes involved in self-incompatibility, cell wall modification, DNA repair and stress resistance, which may underlie adaptation to extreme cold, high ultraviolet radiation and hypoxia environments. Incorporating transcriptomic data, we further demonstrated that genes associated with cuticular wax and flavonoid biosynthetic pathways exhibit higher expression levels in leafy bracts, shedding light on the genetic mechanisms of the adaptive "greenhouse" morphology. Our integrative data provide novel insights into convergent evolution at a high-taxonomic level, aiding in a deep understanding of genetic adaptation to complex environments.
Collapse
Affiliation(s)
- Xu Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, The Chinese Academy of Sciences, Wuhan Botanical Garden, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, The Chinese Academy of Sciences, Wuhan, 430074, China
| | - Tianhui Kuang
- Yunnan International Joint Laboratory for Biodiversity of Central Asia, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming, 650201, China
| | - Wenlin Dong
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, The Chinese Academy of Sciences, Wuhan Botanical Garden, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, The Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihao Qian
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, The Chinese Academy of Sciences, Wuhan Botanical Garden, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, The Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huajie Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, The Chinese Academy of Sciences, Wuhan Botanical Garden, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, The Chinese Academy of Sciences, Wuhan, 430074, China
| | - Jacob B Landis
- School of Integrative Plant Science, Section of Plant Biology and the L. H. Bailey Hortorium, Cornell University, Ithaca, New York, 14850, USA
- BTI Computational Biology Center, Boyce Thompson Institute, Ithaca, New York, 14853, USA
| | - Tao Feng
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, The Chinese Academy of Sciences, Wuhan Botanical Garden, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, The Chinese Academy of Sciences, Wuhan, 430074, China
| | - Lijuan Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, The Chinese Academy of Sciences, Wuhan Botanical Garden, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, The Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanxia Sun
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, The Chinese Academy of Sciences, Wuhan Botanical Garden, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, The Chinese Academy of Sciences, Wuhan, 430074, China
| | - Jinling Huang
- Yunnan International Joint Laboratory for Biodiversity of Central Asia, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming, 650201, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Department of Biology, East Carolina University, Greenville, North Carolina, 27858, USA
| | - Tao Deng
- Yunnan International Joint Laboratory for Biodiversity of Central Asia, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming, 650201, China
| | - Hengchang Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, The Chinese Academy of Sciences, Wuhan Botanical Garden, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, The Chinese Academy of Sciences, Wuhan, 430074, China
| | - Hang Sun
- Yunnan International Joint Laboratory for Biodiversity of Central Asia, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
25
|
Medina-Ortiz K, Navia F, Mosquera-Gil C, Sánchez A, Sterling G, Fierro L, Castaño S. Identification of the NA +/K +-ATPase α-Isoforms in Six Species of Poison Dart Frogs and their Sensitivity to Cardiotonic Steroids. J Chem Ecol 2023; 49:116-132. [PMID: 36877397 PMCID: PMC10102066 DOI: 10.1007/s10886-023-01404-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 03/07/2023]
Abstract
Cardiotonic steroids (CTS) are a group of compounds known to be toxic due to their ability to inhibit the Na+/K+-ATPase (NKA), which is essential to maintain the balance of ions in animal cells. An evolutionary strategy of molecular adaptation to avoid self-intoxication acquired by CTS defended organisms and their predators is the structural modification of their NKA where specific amino acid substitutions confer resistant phenotypes. Several lineages of poison dart frogs (Dendrobatidae) are well known to sequester a wide variety of lipophilic alkaloids from their arthropod diet, however there is no evidence of CTS-sequestration or dietary exposure. Interestingly this study identified the presence of α-NKA isoforms (α1 and α2) with amino acid substitutions indicative of CTS-resistant phenotypes in skeletal muscle transcriptomes obtained from six species of dendrobatids: Phyllobates aurotaenia, Oophaga anchicayensis, Epipedobates boulengeri, Andinobates bombetes, Andinobates minutus, and Leucostethus brachistriatus, collected in the Valle del Cauca (Colombia). P. aurotaenia, A. minutus, and E. boulengeri presented two variants for α1-NKA, with one of them having these substitutions. In contrast, O. anchicayensis and A. bombetes have only one α1-NKA isoform with an amino acid sequence indicative of CTS susceptibility and an α2-NKA with one substitution that could confer a reduced affinity for CTS. The α1 and α2 isoforms of L. brachistriatus do not contain substitutions imparting CTS resistance. Our findings indicate that poison dart frogs express α-NKA isoforms with different affinities for CTS and the pattern of this expression might be influenced by factors related to evolutionary, physiological, ecological, and geographical burdens.
Collapse
Affiliation(s)
- Katherine Medina-Ortiz
- Laboratorio de Herpetología Y Toxinología, Department of Physiological Sciences, Faculty of Health, Universidad del Valle, Cali, Colombia.
| | - Felipe Navia
- Laboratorio de Herpetología Y Toxinología, Department of Physiological Sciences, Faculty of Health, Universidad del Valle, Cali, Colombia
| | - Claudia Mosquera-Gil
- Laboratorio de Herpetología Y Toxinología, Department of Physiological Sciences, Faculty of Health, Universidad del Valle, Cali, Colombia
| | - Adalberto Sánchez
- Laboratorio de Herpetología Y Toxinología, Department of Physiological Sciences, Faculty of Health, Universidad del Valle, Cali, Colombia
| | - Gonzalo Sterling
- Laboratorio de Herpetología Y Toxinología, Department of Physiological Sciences, Faculty of Health, Universidad del Valle, Cali, Colombia
| | - Leonardo Fierro
- Laboratorio de Herpetología Y Toxinología, Department of Physiological Sciences, Faculty of Health, Universidad del Valle, Cali, Colombia
| | - Santiago Castaño
- Laboratorio de Herpetología Y Toxinología, Department of Physiological Sciences, Faculty of Health, Universidad del Valle, Cali, Colombia.
| |
Collapse
|
26
|
Hu Y, Wang X, Xu Y, Yang H, Tong Z, Tian R, Xu S, Yu L, Guo Y, Shi P, Huang S, Yang G, Shi S, Wei F. Molecular mechanisms of adaptive evolution in wild animals and plants. SCIENCE CHINA. LIFE SCIENCES 2023; 66:453-495. [PMID: 36648611 PMCID: PMC9843154 DOI: 10.1007/s11427-022-2233-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 08/30/2022] [Indexed: 01/18/2023]
Abstract
Wild animals and plants have developed a variety of adaptive traits driven by adaptive evolution, an important strategy for species survival and persistence. Uncovering the molecular mechanisms of adaptive evolution is the key to understanding species diversification, phenotypic convergence, and inter-species interaction. As the genome sequences of more and more non-model organisms are becoming available, the focus of studies on molecular mechanisms of adaptive evolution has shifted from the candidate gene method to genetic mapping based on genome-wide scanning. In this study, we reviewed the latest research advances in wild animals and plants, focusing on adaptive traits, convergent evolution, and coevolution. Firstly, we focused on the adaptive evolution of morphological, behavioral, and physiological traits. Secondly, we reviewed the phenotypic convergences of life history traits and responding to environmental pressures, and the underlying molecular convergence mechanisms. Thirdly, we summarized the advances of coevolution, including the four main types: mutualism, parasitism, predation and competition. Overall, these latest advances greatly increase our understanding of the underlying molecular mechanisms for diverse adaptive traits and species interaction, demonstrating that the development of evolutionary biology has been greatly accelerated by multi-omics technologies. Finally, we highlighted the emerging trends and future prospects around the above three aspects of adaptive evolution.
Collapse
Affiliation(s)
- Yibo Hu
- CAS Key Lab of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiaoping Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Yongchao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hui Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zeyu Tong
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Ran Tian
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Shaohua Xu
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China.
| | - Yalong Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Peng Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Shuangquan Huang
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
| | - Guang Yang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Fuwen Wei
- CAS Key Lab of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
27
|
Detecting macroevolutionary genotype-phenotype associations using error-corrected rates of protein convergence. Nat Ecol Evol 2023; 7:155-170. [PMID: 36604553 PMCID: PMC9834058 DOI: 10.1038/s41559-022-01932-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/12/2022] [Indexed: 01/07/2023]
Abstract
On macroevolutionary timescales, extensive mutations and phylogenetic uncertainty mask the signals of genotype-phenotype associations underlying convergent evolution. To overcome this problem, we extended the widely used framework of non-synonymous to synonymous substitution rate ratios and developed the novel metric ωC, which measures the error-corrected convergence rate of protein evolution. While ωC distinguishes natural selection from genetic noise and phylogenetic errors in simulation and real examples, its accuracy allows an exploratory genome-wide search of adaptive molecular convergence without phenotypic hypothesis or candidate genes. Using gene expression data, we explored over 20 million branch combinations in vertebrate genes and identified the joint convergence of expression patterns and protein sequences with amino acid substitutions in functionally important sites, providing hypotheses on undiscovered phenotypes. We further extended our method with a heuristic algorithm to detect highly repetitive convergence among computationally non-trivial higher-order phylogenetic combinations. Our approach allows bidirectional searches for genotype-phenotype associations, even in lineages that diverged for hundreds of millions of years.
Collapse
|
28
|
Duchemin L, Lanore V, Veber P, Boussau B. Evaluation of Methods to Detect Shifts in Directional Selection at the Genome Scale. Mol Biol Evol 2022; 40:6889995. [PMID: 36510704 PMCID: PMC9940701 DOI: 10.1093/molbev/msac247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 12/15/2022] Open
Abstract
Identifying the footprints of selection in coding sequences can inform about the importance and function of individual sites. Analyses of the ratio of nonsynonymous to synonymous substitutions (dN/dS) have been widely used to pinpoint changes in the intensity of selection, but cannot distinguish them from changes in the direction of selection, that is, changes in the fitness of specific amino acids at a given position. A few methods that rely on amino-acid profiles to detect changes in directional selection have been designed, but their performances have not been well characterized. In this paper, we investigate the performance of six of these methods. We evaluate them on simulations along empirical phylogenies in which transition events have been annotated and compare their ability to detect sites that have undergone changes in the direction or intensity of selection to that of a widely used dN/dS approach, codeml's branch-site model A. We show that all methods have reduced performance in the presence of biased gene conversion but not CpG hypermutability. The best profile method, Pelican, a new implementation of Tamuri AU, Hay AJ, Goldstein RA. (2009. Identifying changes in selective constraints: host shifts in influenza. PLoS Comput Biol. 5(11):e1000564), performs as well as codeml in a range of conditions except for detecting relaxations of selection, and performs better when tree length increases, or in the presence of persistent positive selection. It is fast, enabling genome-scale searches for site-wise changes in the direction of selection associated with phenotypic changes.
Collapse
Affiliation(s)
| | - Vincent Lanore
- Laboratoire de Biométrie et Biologie Evolutive, Univ Lyon, Univ Lyon 1, CNRS, VetAgro Sup, UMR5558, Villeurbanne, France
| | - Philippe Veber
- Laboratoire de Biométrie et Biologie Evolutive, Univ Lyon, Univ Lyon 1, CNRS, VetAgro Sup, UMR5558, Villeurbanne, France
| | | |
Collapse
|
29
|
Mohammadi S, Özdemir Hİ, Ozbek P, Sumbul F, Stiller J, Deng Y, Crawford AJ, Rowland HM, Storz JF, Andolfatto P, Dobler S. Epistatic Effects Between Amino Acid Insertions and Substitutions Mediate Toxin resistance of Vertebrate Na+,K+-ATPases. Mol Biol Evol 2022; 39:6874786. [PMID: 36472530 PMCID: PMC9778839 DOI: 10.1093/molbev/msac258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
The recurrent evolution of resistance to cardiotonic steroids (CTS) across diverse animals most frequently involves convergent amino acid substitutions in the H1-H2 extracellular loop of Na+,K+-ATPase (NKA). Previous work revealed that hystricognath rodents (e.g., chinchilla) and pterocliform birds (sandgrouse) have convergently evolved amino acid insertions in the H1-H2 loop, but their functional significance was not known. Using protein engineering, we show that these insertions have distinct effects on CTS resistance in homologs of each of the two species that strongly depend on intramolecular interactions with other residues. Removing the insertion in the chinchilla NKA unexpectedly increases CTS resistance and decreases NKA activity. In the sandgrouse NKA, the amino acid insertion and substitution Q111R both contribute to an augmented CTS resistance without compromising ATPase activity levels. Molecular docking simulations provide additional insight into the biophysical mechanisms responsible for the context-specific mutational effects on CTS insensitivity of the enzyme. Our results highlight the diversity of genetic substrates that underlie CTS insensitivity in vertebrate NKA and reveal how amino acid insertions can alter the phenotypic effects of point mutations at key sites in the same protein domain.
Collapse
Affiliation(s)
- Shabnam Mohammadi
- Molecular Evolutionary Biology, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Hamburg 20146, Germany.,Max Planck Institute for Chemical Ecology, Research Group Predators and Toxic Prey, Jena 07745, Germany
| | | | - Pemra Ozbek
- Department of Bioengineering, Marmara University, Göztepe, İstanbul 34722, Turkey
| | - Fidan Sumbul
- INSERM, Aix-Marseille Université, Inserm, CNRS, Marseille 13009, France
| | - Josefin Stiller
- Villum Centre for Biodiversity Genomics, University of Copenhagen, Copenhagen 2100, Denmark
| | - Yuan Deng
- Villum Centre for Biodiversity Genomics, University of Copenhagen, Copenhagen 2100, Denmark.,BGI-Shenzhen, Shenzhen 518083, China
| | - Andrew J Crawford
- Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Hannah M Rowland
- Max Planck Institute for Chemical Ecology, Research Group Predators and Toxic Prey, Jena 07745, Germany
| | - Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE
| | - Peter Andolfatto
- Department of Biological Sciences, Columbia University, New York, NY
| | - Susanne Dobler
- Molecular Evolutionary Biology, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Hamburg 20146, Germany
| |
Collapse
|
30
|
Tong C, Avilés L, Rayor LS, Mikheyev AS, Linksvayer TA. Genomic signatures of recent convergent transitions to social life in spiders. Nat Commun 2022; 13:6967. [PMID: 36414623 PMCID: PMC9681848 DOI: 10.1038/s41467-022-34446-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 10/25/2022] [Indexed: 11/24/2022] Open
Abstract
The transition from solitary to social life is a major phenotypic innovation, but its genetic underpinnings are largely unknown. To identify genomic changes associated with this transition, we compare the genomes of 22 spider species representing eight recent and independent origins of sociality. Hundreds of genes tend to experience shifts in selection during the repeated transition to social life. These genes are associated with several key functions, such as neurogenesis, behavior, and metabolism, and include genes that previously have been implicated in animal social behavior and human behavioral disorders. In addition, social species have elevated genome-wide rates of molecular evolution associated with relaxed selection caused by reduced effective population size. Altogether, our study provides unprecedented insights into the genomic signatures of social evolution and the specific genetic changes that repeatedly underpin the evolution of sociality. Our study also highlights the heretofore unappreciated potential of transcriptomics using ethanol-preserved specimens for comparative genomics and phylotranscriptomics.
Collapse
Affiliation(s)
- Chao Tong
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Leticia Avilés
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Linda S Rayor
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Alexander S Mikheyev
- Evolutionary Genomics Group, Research School of Biology, Australian National University, Canberra, 0200, Australia
| | - Timothy A Linksvayer
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
31
|
Bittner NKJ, Mack KL, Nachman MW. Shared Patterns of Gene Expression and Protein Evolution Associated with Adaptation to Desert Environments in Rodents. Genome Biol Evol 2022; 14:evac155. [PMID: 36268582 PMCID: PMC9648513 DOI: 10.1093/gbe/evac155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 01/18/2023] Open
Abstract
Desert specialization has arisen multiple times across rodents and is often associated with a suite of convergent phenotypes, including modification of the kidneys to mitigate water loss. However, the extent to which phenotypic convergence in desert rodents is mirrored at the molecular level is unknown. Here, we sequenced kidney mRNA and assembled transcriptomes for three pairs of rodent species to search for shared differences in gene expression and amino acid sequence associated with adaptation to deserts. We conducted phylogenetically independent comparisons between a desert specialist and a non-desert relative in three families representing ∼70 million years of evolution. Overall, patterns of gene expression faithfully recapitulated the phylogeny of these six taxa providing a strong evolutionary signal in levels of mRNA abundance. We also found that 8.6% of all genes showed shared patterns of expression divergence between desert and non-desert taxa, much of which likely reflects convergent evolution, and representing more than expected by chance under a model of independent gene evolution. In addition to these shared changes, we observed many species-pair-specific changes in gene expression indicating that instances of adaptation to deserts include a combination of unique and shared changes. Patterns of protein evolution revealed a small number of genes showing evidence of positive selection, the majority of which did not show shared changes in gene expression. Overall, our results suggest that convergent changes in gene regulation play an important role in the complex trait of desert adaptation in rodents.
Collapse
Affiliation(s)
- Noëlle K J Bittner
- Department of Integrative Biology and Museum of Vertebrate Zoology, 3101 Valley Life Sciences Building, University of California Berkeley, California 94720
| | - Katya L Mack
- Department of Integrative Biology and Museum of Vertebrate Zoology, 3101 Valley Life Sciences Building, University of California Berkeley, California 94720
| | - Michael W Nachman
- Department of Integrative Biology and Museum of Vertebrate Zoology, 3101 Valley Life Sciences Building, University of California Berkeley, California 94720
| |
Collapse
|
32
|
Marker-free co-selection for successive rounds of prime editing in human cells. Nat Commun 2022; 13:5909. [PMID: 36207338 PMCID: PMC9546848 DOI: 10.1038/s41467-022-33669-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
Prime editing enables the introduction of precise point mutations, small insertions, or short deletions without requiring donor DNA templates. However, efficiency remains a key challenge in a broad range of human cell types. In this work, we design a robust co-selection strategy through coediting of the ubiquitous and essential sodium/potassium pump (Na+/K+ ATPase). We readily engineer highly modified pools of cells and clones with homozygous modifications for functional studies with minimal pegRNA optimization. This process reveals that nicking the non-edited strand stimulates multiallelic editing but often generates tandem duplications and large deletions at the target site, an outcome dictated by the relative orientation of the protospacer adjacent motifs. Our approach streamlines the production of cell lines with multiple genetic modifications to create cellular models for biological research and lays the foundation for the development of cell-type specific co-selection strategies. Prime editing enables the introduction of precise point mutations, small insertions, or short deletions without requiring donor DNA templates. Here the authors develop a co-selection strategy to facilitate prime editing in human cells and provide design principles to prevent the formation of undesired editing byproducts at the target site.
Collapse
|
33
|
Mohammadi S, Yang L, Bulbert M, Rowland HM. Defence mitigation by predators of chemically defended prey integrated over the predation sequence and across biological levels with a focus on cardiotonic steroids. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220363. [PMID: 36133149 PMCID: PMC9449480 DOI: 10.1098/rsos.220363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/17/2022] [Indexed: 05/10/2023]
Abstract
Predator-prey interactions have long served as models for the investigation of adaptation and fitness in natural environments. Anti-predator defences such as mimicry and camouflage provide some of the best examples of evolution. Predators, in turn, have evolved sensory systems, cognitive abilities and physiological resistance to prey defences. In contrast to prey defences which have been reviewed extensively, the evolution of predator counter-strategies has received less attention. To gain a comprehensive view of how prey defences can influence the evolution of predator counter-strategies, it is essential to investigate how and when selection can operate. In this review we evaluate how predators overcome prey defences during (i) encounter, (ii) detection, (iii) identification, (iv) approach, (v) subjugation, and (vi) consumption. We focus on prey that are protected by cardiotonic steroids (CTS)-defensive compounds that are found in a wide range of taxa, and that have a specific physiological target. In this system, coevolution is well characterized between specialist insect herbivores and their host plants but evidence for coevolution between CTS-defended prey and their predators has received less attention. Using the predation sequence framework, we organize 574 studies reporting predators overcoming CTS defences, integrate these counter-strategies across biological levels of organization, and discuss the costs and benefits of attacking CTS-defended prey. We show that distinct lineages of predators have evolved dissecting behaviour, changes in perception of risk and of taste perception, and target-site insensitivity. We draw attention to biochemical, hormonal and microbiological strategies that have yet to be investigated as predator counter-adaptations to CTS defences. We show that the predation sequence framework will be useful for organizing future studies of chemically mediated systems and coevolution.
Collapse
Affiliation(s)
- Shabnam Mohammadi
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
- Institut für Zell- und Systembiologie der Tiere, Universität Hamburg, Hamburg, Germany
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Lu Yang
- Wellcome Sanger Institute, Cambridge, UK
| | - Matthew Bulbert
- Department of Biological Sciences, Macquarie University North Ryde, New South Wales, Australia
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, University of Oxford Brookes, Oxford, UK
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | | |
Collapse
|
34
|
Mohammadi S, Yang L, Bulbert M, Rowland HM. Defence mitigation by predators of chemically defended prey integrated over the predation sequence and across biological levels with a focus on cardiotonic steroids. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220363. [PMID: 36133149 DOI: 10.6084/m9.figshare.c.6168216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/17/2022] [Indexed: 05/25/2023]
Abstract
Predator-prey interactions have long served as models for the investigation of adaptation and fitness in natural environments. Anti-predator defences such as mimicry and camouflage provide some of the best examples of evolution. Predators, in turn, have evolved sensory systems, cognitive abilities and physiological resistance to prey defences. In contrast to prey defences which have been reviewed extensively, the evolution of predator counter-strategies has received less attention. To gain a comprehensive view of how prey defences can influence the evolution of predator counter-strategies, it is essential to investigate how and when selection can operate. In this review we evaluate how predators overcome prey defences during (i) encounter, (ii) detection, (iii) identification, (iv) approach, (v) subjugation, and (vi) consumption. We focus on prey that are protected by cardiotonic steroids (CTS)-defensive compounds that are found in a wide range of taxa, and that have a specific physiological target. In this system, coevolution is well characterized between specialist insect herbivores and their host plants but evidence for coevolution between CTS-defended prey and their predators has received less attention. Using the predation sequence framework, we organize 574 studies reporting predators overcoming CTS defences, integrate these counter-strategies across biological levels of organization, and discuss the costs and benefits of attacking CTS-defended prey. We show that distinct lineages of predators have evolved dissecting behaviour, changes in perception of risk and of taste perception, and target-site insensitivity. We draw attention to biochemical, hormonal and microbiological strategies that have yet to be investigated as predator counter-adaptations to CTS defences. We show that the predation sequence framework will be useful for organizing future studies of chemically mediated systems and coevolution.
Collapse
Affiliation(s)
- Shabnam Mohammadi
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
- Institut für Zell- und Systembiologie der Tiere, Universität Hamburg, Hamburg, Germany
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Lu Yang
- Wellcome Sanger Institute, Cambridge, UK
| | - Matthew Bulbert
- Department of Biological Sciences, Macquarie University North Ryde, New South Wales, Australia
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, University of Oxford Brookes, Oxford, UK
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | | |
Collapse
|
35
|
Miles LS, Murray‐Stoker D, Nhan VJ, Johnson MTJ. Effects of urbanization on specialist insect communities of milkweed are mediated by spatial and temporal variation. Ecosphere 2022. [DOI: 10.1002/ecs2.4222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Lindsay S. Miles
- Department of Biology University of Toronto Mississauga Mississauga Ontario Canada
- Centre for Urban Environments, University of Toronto Mississauga Mississauga Ontario Canada
| | - David Murray‐Stoker
- Department of Biology University of Toronto Mississauga Mississauga Ontario Canada
- Centre for Urban Environments, University of Toronto Mississauga Mississauga Ontario Canada
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Ontario Canada
| | - Vanessa J. Nhan
- Department of Biology University of Toronto Mississauga Mississauga Ontario Canada
| | - Marc T. J. Johnson
- Department of Biology University of Toronto Mississauga Mississauga Ontario Canada
- Centre for Urban Environments, University of Toronto Mississauga Mississauga Ontario Canada
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Ontario Canada
| |
Collapse
|
36
|
Mohammadi S, Herrera-Álvarez S, Yang L, Rodríguez-Ordoñez MDP, Zhang K, Storz JF, Dobler S, Crawford AJ, Andolfatto P. Constraints on the evolution of toxin-resistant Na,K-ATPases have limited dependence on sequence divergence. PLoS Genet 2022; 18:e1010323. [PMID: 35972957 DOI: 10.1101/2021.11.29.470343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/09/2022] [Accepted: 07/04/2022] [Indexed: 05/25/2023] Open
Abstract
A growing body of theoretical and experimental evidence suggests that intramolecular epistasis is a major determinant of rates and patterns of protein evolution and imposes a substantial constraint on the evolution of novel protein functions. Here, we examine the role of intramolecular epistasis in the recurrent evolution of resistance to cardiotonic steroids (CTS) across tetrapods, which occurs via specific amino acid substitutions to the α-subunit family of Na,K-ATPases (ATP1A). After identifying a series of recurrent substitutions at two key sites of ATP1A that are predicted to confer CTS resistance in diverse tetrapods, we then performed protein engineering experiments to test the functional consequences of introducing these substitutions onto divergent species backgrounds. In line with previous results, we find that substitutions at these sites can have substantial background-dependent effects on CTS resistance. Globally, however, these substitutions also have pleiotropic effects that are consistent with additive rather than background-dependent effects. Moreover, the magnitude of a substitution's effect on activity does not depend on the overall extent of ATP1A sequence divergence between species. Our results suggest that epistatic constraints on the evolution of CTS-resistant forms of Na,K-ATPase likely depend on a small number of sites, with little dependence on overall levels of protein divergence. We propose that dependence on a limited number sites may account for the observation of convergent CTS resistance substitutions observed among taxa with highly divergent Na,K-ATPases (See S1 Text for Spanish translation).
Collapse
Affiliation(s)
- Shabnam Mohammadi
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
- Molecular Evolutionary Biology, Institut für Zell- und Systembiologie der Tiere, Universität Hamburg, Hamburg, Germany
| | - Santiago Herrera-Álvarez
- Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Lu Yang
- Department of Ecology and Evolution, Princeton University, Princeton, New Jersey, United States of America
| | | | - Karen Zhang
- Department of Ecology and Evolution, Princeton University, Princeton, New Jersey, United States of America
| | - Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Susanne Dobler
- Molecular Evolutionary Biology, Institut für Zell- und Systembiologie der Tiere, Universität Hamburg, Hamburg, Germany
| | - Andrew J Crawford
- Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Peter Andolfatto
- Department of Biological Sciences, Columbia University, New York city, New York, United States of America
| |
Collapse
|
37
|
Mohammadi S, Herrera-Álvarez S, Yang L, Rodríguez-Ordoñez MDP, Zhang K, Storz JF, Dobler S, Crawford AJ, Andolfatto P. Constraints on the evolution of toxin-resistant Na,K-ATPases have limited dependence on sequence divergence. PLoS Genet 2022; 18:e1010323. [PMID: 35972957 PMCID: PMC9462791 DOI: 10.1371/journal.pgen.1010323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/09/2022] [Accepted: 07/04/2022] [Indexed: 11/19/2022] Open
Abstract
A growing body of theoretical and experimental evidence suggests that intramolecular epistasis is a major determinant of rates and patterns of protein evolution and imposes a substantial constraint on the evolution of novel protein functions. Here, we examine the role of intramolecular epistasis in the recurrent evolution of resistance to cardiotonic steroids (CTS) across tetrapods, which occurs via specific amino acid substitutions to the α-subunit family of Na,K-ATPases (ATP1A). After identifying a series of recurrent substitutions at two key sites of ATP1A that are predicted to confer CTS resistance in diverse tetrapods, we then performed protein engineering experiments to test the functional consequences of introducing these substitutions onto divergent species backgrounds. In line with previous results, we find that substitutions at these sites can have substantial background-dependent effects on CTS resistance. Globally, however, these substitutions also have pleiotropic effects that are consistent with additive rather than background-dependent effects. Moreover, the magnitude of a substitution's effect on activity does not depend on the overall extent of ATP1A sequence divergence between species. Our results suggest that epistatic constraints on the evolution of CTS-resistant forms of Na,K-ATPase likely depend on a small number of sites, with little dependence on overall levels of protein divergence. We propose that dependence on a limited number sites may account for the observation of convergent CTS resistance substitutions observed among taxa with highly divergent Na,K-ATPases (See S1 Text for Spanish translation).
Collapse
Affiliation(s)
- Shabnam Mohammadi
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
- Molecular Evolutionary Biology, Institut für Zell- und Systembiologie der Tiere, Universität Hamburg, Hamburg, Germany
| | - Santiago Herrera-Álvarez
- Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Lu Yang
- Department of Ecology and Evolution, Princeton University, Princeton, New Jersey, United States of America
| | | | - Karen Zhang
- Department of Ecology and Evolution, Princeton University, Princeton, New Jersey, United States of America
| | - Jay F. Storz
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Susanne Dobler
- Molecular Evolutionary Biology, Institut für Zell- und Systembiologie der Tiere, Universität Hamburg, Hamburg, Germany
| | - Andrew J. Crawford
- Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Peter Andolfatto
- Department of Biological Sciences, Columbia University, New York city, New York, United States of America
| |
Collapse
|
38
|
Ishikawa A, Yamanouchi S, Iwasaki W, Kitano J. Convergent copy number increase of genes associated with freshwater colonization in fishes. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200509. [PMID: 35634928 PMCID: PMC9149799 DOI: 10.1098/rstb.2020.0509] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/14/2022] [Indexed: 07/20/2023] Open
Abstract
Copy number variation (CNV) can cause phenotypic changes. However, in contrast to amino acid substitutions and cis-regulatory changes, little is known about the functional categories of genes in which CNV is important for adaptation to novel environments. It is also unclear whether the same genes repeatedly change the copy numbers for adapting to similar environments. Here, we investigate CNV associated with freshwater colonization in fishes, which was observed multiple times across different lineages. Using 48 ray-finned fishes across diverse orders, we identified 23 genes whose copy number increases were associated with freshwater colonization. These genes showed enrichment for peptide receptor activity, hexosyltransferase activity and unsaturated fatty acid metabolism. We further revealed that three of the genes showed copy number increases in freshwater populations compared to marine ancestral populations of the stickleback genus Gasterosteus. These results indicate that copy number increases of genes involved in fatty acid metabolism (FADS2), immune function (PSMB8a) and thyroid hormone metabolism (UGT2) may be important for freshwater colonization at both the inter-order macroevolutionary scale and at the intra-genus microevolutionary scale. Further analysis across diverse taxa will help to understand the role of CNV in the adaptation to novel environments. This article is part of the theme issue 'Genetic basis of adaptation and speciation: from loci to causative mutations'.
Collapse
Affiliation(s)
- Asano Ishikawa
- Ecological Genetics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Shun Yamanouchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Wataru Iwasaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
39
|
An enhancer of Agouti contributes to parallel evolution of cryptically colored beach mice. Proc Natl Acad Sci U S A 2022; 119:e2202862119. [PMID: 35776547 PMCID: PMC9271204 DOI: 10.1073/pnas.2202862119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Identifying the genetic basis of repeatedly evolved traits provides a way to reconstruct their evolutionary history and ultimately investigate the predictability of evolution. Here, we focus on the oldfield mouse (Peromyscus polionotus), which occurs in the southeastern United States, where it exhibits considerable color variation. Dorsal coats range from dark brown in mainland mice to near white in mice inhabiting sandy beaches; this light pelage has evolved independently on Florida's Gulf and Atlantic coasts as camouflage from predators. To facilitate genomic analyses, we first generated a chromosome-level genome assembly of Peromyscus polionotus subgriseus. Next, in a uniquely variable mainland population (Peromyscus polionotus albifrons), we scored 23 pigment traits and performed targeted resequencing in 168 mice. We find that pigment variation is strongly associated with an ∼2-kb region ∼5 kb upstream of the Agouti signaling protein coding region. Using a reporter-gene assay, we demonstrate that this regulatory region contains an enhancer that drives expression in the dermis of mouse embryos during the establishment of pigment prepatterns. Moreover, extended tracts of homozygosity in this Agouti region indicate that the light allele experienced recent and strong positive selection. Notably, this same light allele appears fixed in both Gulf and Atlantic coast beach mice, despite these populations being separated by >1,000 km. Together, our results suggest that this identified Agouti enhancer allele has been maintained in mainland populations as standing genetic variation and from there, has spread to and been selected in two independent beach mouse lineages, thereby facilitating their rapid and parallel evolution.
Collapse
|
40
|
Cogni R, Quental TB, Guimarães PR. Ehrlich and Raven escape and radiate coevolution hypothesis at different levels of organization: Past and future perspectives. Evolution 2022; 76:1108-1123. [PMID: 35262199 DOI: 10.1111/evo.14456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/02/2022] [Accepted: 02/22/2022] [Indexed: 01/21/2023]
Abstract
The classic paper by Ehrlich and Raven on coevolution will soon be 60 years old. Although they were not the first to develop the idea of coevolution, their thought-provoking paper certainly popularized this idea and inspired several generations of scientists interested in coevolution. Here, we describe some of their main contributions, quantitatively measure the impact of their seminal paper on different fields of research, and discuss how ideas related to their original paper might push the study of coevolution forward. To guide our discussion, we explore their original hypothesis into three research fields that are associated with distinct scales/levels of organization: (1) the genetic mechanisms underlying coevolutionary interactions; (2) the potential association between coevolutionary diversification and the organization of ecological networks; and (3) the micro- and macroevolutionary mechanisms and expected patterns under their hypothesis. By doing so, we discuss potentially overlooked aspects and future directions for the study of coevolutionary dynamics and diversification.
Collapse
Affiliation(s)
- Rodrigo Cogni
- Department of Ecology, University of São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Tiago B Quental
- Department of Ecology, University of São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Paulo R Guimarães
- Department of Ecology, University of São Paulo, São Paulo, SP, 05508-900, Brazil
| |
Collapse
|
41
|
Naragon TH, Wagner JM, Parker J. Parallel evolutionary paths of rove beetle myrmecophiles: replaying a deep-time tape of life. CURRENT OPINION IN INSECT SCIENCE 2022; 51:100903. [PMID: 35301166 DOI: 10.1016/j.cois.2022.100903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
The rise of ants over the past ~100 million years reshaped the biosphere, presenting ecological challenges for many organisms, but also opportunities. No insect group has been so adept at exploiting niches inside ant colonies as the rove beetles (Staphylinidae) - a global clade of>64,000 predominantly free-living predators from which numerous socially parasitic 'myrmecophile' lineages have emerged. Myrmecophilous staphylinids are specialized for colony life through changes in behavior, chemistry, anatomy, and life history that are often strikingly convergent, and hence potentially adaptive for this symbiotic way of life. Here, we examine how the interplay between ecological pressures and molecular, cellular, and neurobiological mechanisms shape the evolutionary trajectories of symbiotic lineages in this ancient, convergent system.
Collapse
Affiliation(s)
- Thomas H Naragon
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA, USA; Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA, USA
| | - Julian M Wagner
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA, USA
| | - Joseph Parker
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA, USA.
| |
Collapse
|
42
|
van Thiel J, Khan MA, Wouters RM, Harris RJ, Casewell NR, Fry BG, Kini RM, Mackessy SP, Vonk FJ, Wüster W, Richardson MK. Convergent evolution of toxin resistance in animals. Biol Rev Camb Philos Soc 2022; 97:1823-1843. [PMID: 35580905 PMCID: PMC9543476 DOI: 10.1111/brv.12865] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 12/17/2022]
Abstract
Convergence is the phenomenon whereby similar phenotypes evolve independently in different lineages. One example is resistance to toxins in animals. Toxins have evolved many times throughout the tree of life. They disrupt molecular and physiological pathways in target species, thereby incapacitating prey or deterring a predator. In response, molecular resistance has evolved in many species exposed to toxins to counteract their harmful effects. Here, we review current knowledge on the convergence of toxin resistance using examples from a wide range of toxin families. We explore the evolutionary processes and molecular adaptations driving toxin resistance. However, resistance adaptations may carry a fitness cost if they disrupt the normal physiology of the resistant animal. Therefore, there is a trade‐off between maintaining a functional molecular target and reducing toxin susceptibility. There are relatively few solutions that satisfy this trade‐off. As a result, we see a small set of molecular adaptations appearing repeatedly in diverse animal lineages, a phenomenon that is consistent with models of deterministic evolution. Convergence may also explain what has been called ‘autoresistance’. This is often thought to have evolved for self‐protection, but we argue instead that it may be a consequence of poisonous animals feeding on toxic prey. Toxin resistance provides a unique and compelling model system for studying the interplay between trophic interactions, selection pressures and the molecular mechanisms underlying evolutionary novelties.
Collapse
Affiliation(s)
- Jory van Thiel
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Muzaffar A Khan
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Roel M Wouters
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Richard J Harris
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, 4072, Australia
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, U.K
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, 4072, Australia
| | - R Manjunatha Kini
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.,Department of Biochemistry, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, 23298, U.S.A
| | - Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, Greeley, CO, 80639-0017, U.S.A
| | - Freek J Vonk
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands.,Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Wolfgang Wüster
- Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Bangor, LL57 2UW, U.K
| | - Michael K Richardson
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
43
|
Zhang SK, Wang Y, Li ZK, Xue HJ, Zhou XD, Huang JH. Two Apriona Species Sharing a Host Niche Have Different Gut Microbiome Diversity. MICROBIAL ECOLOGY 2022; 83:1059-1072. [PMID: 34302194 DOI: 10.1007/s00248-021-01799-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/16/2021] [Indexed: 05/27/2023]
Abstract
The adaptability of herbivorous insects to toxic plant defense compounds is partly related to the structure of the gut microbiome. To overcome plant resistance, the insect gut microbiome should respond to a wide range of allelochemicals derived from dietary niches. Nevertheless, for sibling herbivorous insect species, whether the gut microbiome contributes to success in food niche competition is unclear. Based on 16S rDNA high-throughput sequencing, the gut microbiomes of two Apriona species that share the same food niche were investigated in this study to determine whether the gut microbiome contributes to insect success in food-niche competition. Our observations indicated that the gut microbiome tended to play a part in host niche competition between the two Apriona species. The gut microbiome of Apriona swainsoni had many enriched pathways that can help degrade plant toxic secondary compounds, including xenobiotic biodegradation and metabolism, terpenoid and polyketide metabolism, and secondary metabolite biosynthesis. Meanwhile, A. swainsoni hosted a much greater variety of microorganisms and had more viable bacteria than A. germari. We conclude that gut microbes may influence the coevolution of herbivores and host plants. Gut bacteria may not only serve to boost nutritional relationships, but may also play an important role in insect food niche competition.
Collapse
Affiliation(s)
- Shou-Ke Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, People's Republic of China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Yi Wang
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Zi-Kun Li
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Huai-Jun Xue
- College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Xu-Dong Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, People's Republic of China.
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China.
| | - Jun-Hao Huang
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China.
| |
Collapse
|
44
|
López-Goldar X, Hastings A, Züst T, Agrawal A. Evidence for tissue-specific defense-offense interactions between milkweed and its community of specialized herbivores. Mol Ecol 2022; 31:3254-3265. [PMID: 35363921 DOI: 10.1111/mec.16450] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/08/2022] [Accepted: 03/28/2022] [Indexed: 11/28/2022]
Abstract
Coevolution between plants and herbivores often involves escalation of defense-offense strategies, but attack by multiple herbivores may obscure the match of plant defense to any one attacker. As herbivores often specialize on distinct plant parts, we hypothesized that defense-offense interactions in coevolved systems may become physiologically and evolutionarily compartmentalized between plant tissues. We report that roots, leaves, flower buds and seeds of the tropical milkweed (Asclepias curassavica) show increasing concentrations of cardenolide toxins acropetally, with latex showing the highest concentration. In vitro assays of the physiological target of cardenolides, the Na+ /K+ -ATPase (hereafter 'sodium pump'), of three specialized milkweed herbivores (root-feeding Tetraopes tetrophthalmus, leaf-feeding Danaus plexippus, and seed-feeding Oncopeltus fasciatus) show that they are proportionally tolerant to the cardenolide concentrations of the tissues they eat. Indeed, molecular substitutions in the insects' sodium pumps predicted their tolerance to toxins from their target tissues. Nonetheless, the relative inhibition of the sodium pumps of these specialists by the concentration vs. composition (inhibition controlled for concentration, what we term 'potency') of cardenolides from their target vs. non-target plant tissues revealed different degrees of insect adaptation to tissue-specific toxins. In addition, a trade-off between toxin concentration and potency emerged across plant tissues, potentially reflecting coevolutionary history or plant physiological constraints. Our findings suggest that tissue-specific coevolutionary dynamics may be proceeding between the plant and its specialized community of herbivores. This novel finding may be common in nature, contributing to ways in which coevolution proceeds in multi-species communities.
Collapse
Affiliation(s)
- Xosé López-Goldar
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Amy Hastings
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Tobias Züst
- Department of Systematic and Evolutionary Botany, University of Zürich, Switzerland
| | - Anurag Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.,Department of Entomology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
45
|
Herbertz M, Harder S, Schlüter H, Lohr C, Dobler S. Na,K-ATPase α1 and β-subunits show distinct localizations in the nervous tissue of the large milkweed bug. Cell Tissue Res 2022; 388:503-519. [PMID: 35332371 PMCID: PMC9110512 DOI: 10.1007/s00441-022-03580-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 01/11/2022] [Indexed: 11/28/2022]
Abstract
The Na,K-ATPase (NKA) is an essential ion transporter and signaling molecule in all animal tissues and believed to consist at least one α and one ß-subunit to form a functional enzyme. In the large milkweed bug, Oncopeltus fasciatus, adaptation to dietary cardiac glycosides (CGs), which can fatally block the NKA, has resulted in gene duplications leading to four α1-subunits. These differ in sensitivity to CGs, but resistance trades off against ion pumping activity, thus influencing the α1-subunits’ suitability for specific tissues. Besides, O. fasciatus possesses four different ß-subunits that can alter the NKA's kinetics and should play an essential role in the formation of cellular junctions. Proteomic analyses revealed the distribution and composition of α1/ß-complexes in the nervous tissue of O. fasciatus. The highly CG-resistant, but less active α1B and the highly active, but less resistant α1C predominated in the nervous tissue and co-occurred with ß2 and ß3, partly forming larger complexes than just heterodimers. Immunohistochemical analyses provided a fine scale resolution of the subunits’ distribution in different morphological structures of the nervous tissue. This may suggest that α1 as well as ß-subunits occur in isolation without the other subunit, which contradicts the present understanding that the two types of subunits have to associate to form functional complexes. An isolated occurrence was especially prominent for ß3 and βx, the enigmatic fourth and N-terminally largely truncated ß-subunit. We hypothesize that dimerization of these ß-subunits plays a role in cell–cell contacts.
Collapse
Affiliation(s)
- Marlena Herbertz
- Institute of Cell and Systems Biology of Animals, Molecular Evolutionary Biology, Universität Hamburg, 20146, Hamburg, Germany.
| | - Sönke Harder
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Hartmut Schlüter
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Christian Lohr
- Institute of Cell and Systems Biology of Animals, Neurophysiology, Universität Hamburg, 20146, Hamburg, Germany
| | - Susanne Dobler
- Institute of Cell and Systems Biology of Animals, Molecular Evolutionary Biology, Universität Hamburg, 20146, Hamburg, Germany
| |
Collapse
|
46
|
Whiteman NK. Evolution in small steps and giant leaps. Evolution 2022; 76:67-77. [PMID: 35040122 PMCID: PMC9387839 DOI: 10.1111/evo.14432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 02/03/2023]
Abstract
The first Editor of Evolution was Ernst Mayr. His foreword to the first issue of Evolution published in 1947 framed evolution as a "problem of interaction" that was just beginning to be studied in this broad context. First, I explore progress and prospects on understanding the subsidiary interactions identified by Mayr, including interactions between parts of organisms, between individuals and populations, between species, and between the organism and its abiotic environment. Mayr's overall "problem of interaction" framework is examined in the context of coevolution within and among levels of biological organization. This leads to a comparison in the relative roles of biotic versus abiotic agents of selection and fluctuating versus directional selection, followed by stabilizing selection in shaping the genomic architecture of adaptation. Oligogenic architectures may be typical for traits shaped more by fluctuating selection and biotic selection. Conversely, polygenic architectures may be typical for traits shaped more by directional followed by stabilizing selection and abiotic selection. The distribution of effect sizes and turnover dynamics of adaptive alleles in these scenarios deserves further study. Second, I review two case studies on the evolution of acquired toxicity in animals, one involving cardiac glycosides obtained from plants and one involving bacterial virulence factors horizontally transferred to animals. The approaches used in these studies and the results gained directly flow from Mayr's vision of an evolutionary biology that revolves around the "problem of interaction."
Collapse
Affiliation(s)
- Noah K. Whiteman
- Department of Integrative Biology, University of California, Berkeley, California 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| |
Collapse
|
47
|
Petschenka G, Halitschke R, Züst T, Roth A, Stiehler S, Tenbusch L, Hartwig C, Gámez JFM, Trusch R, Deckert J, Chalušová K, Vilcinskas A, Exnerová A. Sequestration of defenses against predators drives specialized host plant associations in preadapted milkweed bugs (Heteroptera: Lygaeinae). Am Nat 2022; 199:E211-E228. [DOI: 10.1086/719196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
48
|
Beran F, Petschenka G. Sequestration of Plant Defense Compounds by Insects: From Mechanisms to Insect-Plant Coevolution. ANNUAL REVIEW OF ENTOMOLOGY 2022; 67:163-180. [PMID: 34995091 DOI: 10.1146/annurev-ento-062821-062319] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plant defense compounds play a key role in the evolution of insect-plant associations by selecting for behavioral, morphological, and physiological insect adaptations. Sequestration, the ability of herbivorous insects to accumulate plant defense compounds to gain a fitness advantage, represents a complex syndrome of adaptations that has evolved in all major lineages of herbivorous insects and involves various classes of plant defense compounds. In this article, we review progress in understanding how insects selectively accumulate plant defense metabolites and how the evolution of specific resistance mechanisms to these defense compounds enables sequestration. These mechanistic considerations are further integrated into the concept of insect-plant coevolution. Comparative genome and transcriptome analyses, combined with approaches based on analytical chemistry that are centered in phylogenetic frameworks, will help to reveal adaptations underlying the sequestration syndrome, which is essential to understanding the influence of sequestration on insect-plant coevolution.
Collapse
Affiliation(s)
- Franziska Beran
- Research Group Sequestration and Detoxification in Insects, Max Planck Institute for Chemical Ecology, Jena 07745, Germany;
| | - Georg Petschenka
- Department of Applied Entomology, University of Hohenheim, Stuttgart 70599, Germany;
| |
Collapse
|
49
|
Cheng Y, Miller MJ, Zhang D, Xiong Y, Hao Y, Jia C, Cai T, Li SH, Johansson US, Liu Y, Chang Y, Song G, Qu Y, Lei F. Parallel genomic responses to historical climate change and high elevation in East Asian songbirds. Proc Natl Acad Sci U S A 2021; 118:e2023918118. [PMID: 34873033 PMCID: PMC8685689 DOI: 10.1073/pnas.2023918118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2021] [Indexed: 12/01/2022] Open
Abstract
Parallel evolution can be expected among closely related taxa exposed to similar selective pressures. However, parallelism is typically stronger at the phenotypic level, while genetic solutions to achieve these phenotypic similarities may differ. For polygenic traits, the availability of standing genetic variation (i.e., heterozygosity) may influence such genetic nonparallelism. Here, we examine the extent to which high-elevation adaptation is parallel-and whether the level of parallelism is affected by heterozygosity-by analyzing genomes of 19 Paridae species distributed across East Asia with a dramatic east-west elevation gradient. We find that western highlands endemic parids have consistently lower levels of heterozygosity-likely the result of late-Pleistocene demographic contraction-than do parids found exclusively in eastern lowlands, which remained unglaciated during the late Pleistocene. Three widespread species (east to west) have high levels of heterozygosity similar to that observed in eastern species, although their western populations are less variable than eastern ones. Comparing genomic responses to extreme environments of the Qinghai-Tibet Plateau, we find that the most differentiated genomic regions between each high-elevation taxon and its low-elevation relative are significantly enriched for genes potentially related to the oxygen transport cascade and/or thermogenesis. Despite no parallelism at particular genes, high similarity in gene function is found among comparisons. Furthermore, parallelism is not higher in more heterozygous widespread parids than in highland endemics. Thus, in East Asian parids, parallel functional response to extreme elevation appears to rely on different genes, with differences in heterozygosity having no effect on the degree of genetic parallelism.
Collapse
Affiliation(s)
- Yalin Cheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Matthew J Miller
- Reneco International Wildlife Consultants, LLC, Abu Dhabi, UAE
- University of Alaska Museum, University of Alaska Fairbanks, AK
| | - Dezhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Xiong
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Hao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenxi Jia
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tianlong Cai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shou-Hsien Li
- Department of Life Sciences, National Taiwan Normal University, Taipei, 116, Taiwan, China
| | - Ulf S Johansson
- Department of Zoology, Swedish Museum of Natural History, SE-104 05 Stockholm, Sweden
| | - Yang Liu
- State Key Laboratory of Biocontrol, Department of Ecology/School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yongbin Chang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
50
|
Pokharel P, Steppuhn A, Petschenka G. Dietary cardenolides enhance growth and change the direction of the fecundity-longevity trade-off in milkweed bugs (Heteroptera: Lygaeinae). Ecol Evol 2021; 11:18042-18054. [PMID: 35003656 PMCID: PMC8717354 DOI: 10.1002/ece3.8402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/14/2021] [Accepted: 10/23/2021] [Indexed: 12/16/2022] Open
Abstract
Sequestration, that is, the accumulation of plant toxins into body tissues for defense, was predicted to incur physiological costs and may require resistance traits different from those of non-sequestering insects. Alternatively, sequestering species could experience a cost in the absence of toxins due to selection on physiological homeostasis under permanent exposure of sequestered toxins in body tissues. Milkweed bugs (Heteroptera: Lygaeinae) sequester high amounts of plant-derived cardenolides. Although being potent inhibitors of the ubiquitous animal enzyme Na+/K+-ATPase, milkweed bugs can tolerate cardenolides by means of resistant Na+/K+-ATPases. Both adaptations, resistance and sequestration, are ancestral traits of the Lygaeinae. Using four milkweed bug species (Heteroptera: Lygaeidae: Lygaeinae) and the related European firebug (Heteroptera: Pyrrhocoridae: Pyrrhocoris apterus) showing different combinations of the traits "cardenolide resistance" and "cardenolide sequestration," we tested how the two traits affect larval growth upon exposure to dietary cardenolides in an artificial diet system. While cardenolides impaired the growth of P. apterus nymphs neither possessing a resistant Na+/K+-ATPase nor sequestering cardenolides, growth was not affected in the non-sequestering milkweed bug Arocatus longiceps, which possesses a resistant Na+/K+-ATPase. Remarkably, cardenolides increased growth in the sequestering dietary specialists Caenocoris nerii and Oncopeltus fasciatus but not in the sequestering dietary generalist Spilostethus pandurus, which all possess a resistant Na+/K+-ATPase. We furthermore assessed the effect of dietary cardenolides on additional life history parameters, including developmental speed, longevity of adults, and reproductive success in O. fasciatus. Unexpectedly, nymphs under cardenolide exposure developed substantially faster and lived longer as adults. However, fecundity of adults was reduced when maintained on cardenolide-containing diet for their entire lifetime but not when adults were transferred to non-toxic sunflower seeds. We speculate that the resistant Na+/K+-ATPase of milkweed bugs is selected for working optimally in a "toxic environment," that is, when sequestered cardenolides are stored in the body.
Collapse
Affiliation(s)
- Prayan Pokharel
- Department of Applied EntomologyInstitute of PhytomedicineUniversity of HohenheimStuttgartGermany
| | - Anke Steppuhn
- Department of Molecular BotanyInstitute of BiologyUniversity of HohenheimStuttgartGermany
| | - Georg Petschenka
- Department of Applied EntomologyInstitute of PhytomedicineUniversity of HohenheimStuttgartGermany
| |
Collapse
|