1
|
Rao C, Zhang Z, Qiao J, Nan D, Wu P, Wang L, Yao C, Zheng S, Huang J, Liao Y, Liu W, Hu Z, Wang S, Wen Y, Yan J, Mao X, Li Q. Burkholderia pseudomallei BopE suppresses the Rab32-dependent defense pathway to promote its intracellular replication and virulence. mSphere 2024:e0045324. [PMID: 39431830 DOI: 10.1128/msphere.00453-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/18/2024] [Indexed: 10/22/2024] Open
Abstract
Melioidosis is a serious infectious disease caused by the Gram-negative bacterium Burkholderia pseudomallei. Recently, Rab32-dependent immune vesicles emerge as a critical defense pathway to restrict the intracellular B. pseudomallei. However, B. pseudomallei can evade host immune vesicles and survive in the cytoplasm, although this mechanism is not well understood. In this study, we found Rab32-dependent vesicles could effectively combat B. pseudomallei infection, but not all intracellular B. pseudomallei were encapsulated in Rab32-positive vesicles. To explore how B. pseudomallei counteracted the Rab32-dependent defense pathway, transcriptomic profiling of B. pseudomallei was performed to characterize the response dynamics during infection. We found that the type III secretion system of B. pseudomallei was activated, and a variety of effector proteins were highly upregulated. Among them, BopE, BprD, and BipC were shown to interact with Rab32. Interestingly, BopE directly interacts with host Rab32, potentially suppressing Rab32 function by interfering with nucleotide exchange, which in turn restricts the recruitment of Rab32 to bacterial-containing vesicles. Knocking out of BopE can increase the proportion of Rab32-positive vesicles, suppressing the intracellular replication and virulence of B. pseudomallei. Collectively, our findings have demonstrated that BopE may be an important effector for B. pseudomallei to evade from the Rab32-dependent killing vesicles into the cytosol for survival and replication. Therefore, a deeper understanding of the interaction between BopE and the host Rab32-dependent restriction pathway may provide an effective therapeutic strategy for the elimination of intracellular B. pseudomallei.IMPORTANCEB. pseudomallei is facultative intracellular bacterium that has evolved numerous strategies to evade host immune vesicles and survive in the cytoplasm. Rab32-dependent vesicles are one of these immune vesicles, but the mechanism by which B. pseudomallei escape Rab32-dependent vesicles remains elusive. Here, we find B. pseudomallei infection leading the activation of the type III secretion system (T3SS-3) and increasing the expression of various effectors. Specifically, we identify that BopE, an effector secreted by T3SS-3, triggers vesicle escape to promote B. pseudomallei pathogenicity and survival. Mechanistically, BopE suppresses the activation of Rab32 by interfering with nucleotide exchange, ultimately triggering vesicle escape and intracellular survival. We also find knocking out the bopE gene can increase the proportion of Rab32-positive vesicles that trap B. pseudomallei, dampening the survival of B. pseudomallei both in vitro and in vivo. Taken together, our findings provide insights into the molecular mechanisms of pathogen effector-induced vesicle escape, indicating a potential melioidosis treatment via blocking B. pseudomallei BopE-host Rab32 interaction.
Collapse
Affiliation(s)
- Chenglong Rao
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ziyuan Zhang
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jianpeng Qiao
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
- Second Brigate of Student, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, China
| | - Dongqi Nan
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Pan Wu
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Liting Wang
- Biomedical Analysis Center, Army Medical University (Third Military Medical University), Chongqing, China
| | - Changhao Yao
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Senquan Zheng
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jinzhu Huang
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yaling Liao
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wenzheng Liu
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhiqiang Hu
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shiwei Wang
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yuan Wen
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jingmin Yan
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xuhu Mao
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qian Li
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
2
|
Li J, Yin Q, Xuan N, Gan Q, Liu C, Zhang Q, Yang M, Yang C. LYSMD proteins promote activation of Rab32-family GTPases for lysosome-related organelle biogenesis. J Cell Biol 2024; 223:e202402016. [PMID: 39078368 PMCID: PMC11289520 DOI: 10.1083/jcb.202402016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/28/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024] Open
Abstract
Lysosome-related organelles (LROs) are specialized lysosomes with cell type-specific roles in organismal homeostasis. Dysregulation of LROs leads to many human disorders, but the mechanisms underlying their biogenesis are not fully understood. Here, we identify a group of LYSMD proteins as evolutionarily conserved regulators of LROs. In Caenorhabditis elegans, mutations of LMD-2, a LysM domain-containing protein, reduce the levels of the Rab32 GTPase ortholog GLO-1 on intestine-specific LROs, the gut granules, leading to their abnormal enlargement and defective biogenesis. LMD-2 interacts with GLO-3, a subunit of GLO-1 guanine nucleotide exchange factor (GEF), thereby promoting GLO-1 activation. Mammalian homologs of LMD-2, LYSMD1, and LYSMD2 can functionally replace LMD-2 in C. elegans. In mammals, LYSMD1/2 physically interact with the HPS1 subunit of BLOC-3, the GEF of Rab32/38, thus promoting Rab32 activation. Inactivation of both LYSMD1 and LYSMD2 reduces Rab32 activation, causing melanosome enlargement and decreased melanin production in mouse melanoma cells. These findings provide important mechanistic insights into LRO biogenesis and functions.
Collapse
Affiliation(s)
- Jinglin Li
- Center for Life Sciences, School of Life Sciences, Yunnan University , Kunming, China
| | - Qiuyuan Yin
- Center for Life Sciences, School of Life Sciences, Yunnan University , Kunming, China
| | - Nan Xuan
- Center for Life Sciences, School of Life Sciences, Yunnan University , Kunming, China
| | - Qiwen Gan
- Center for Life Sciences, School of Life Sciences, Yunnan University , Kunming, China
| | - Chaolian Liu
- Center for Life Sciences, School of Life Sciences, Yunnan University , Kunming, China
| | - Qian Zhang
- Center for Life Sciences, School of Life Sciences, Yunnan University , Kunming, China
| | - Mei Yang
- Center for Life Sciences, School of Life Sciences, Yunnan University , Kunming, China
| | - Chonglin Yang
- Center for Life Sciences, School of Life Sciences, Yunnan University , Kunming, China
- Southwest United Graduate School, Yunnan University , Kunming, China
| |
Collapse
|
3
|
Xu H, Wang S, Wang X, Zhang P, Zheng Q, Qi C, Liu X, Li M, Liu Y, Liu J. Role of Rab GTPases in Bacteria Escaping from Vesicle Trafficking of Host Cells. J Microbiol 2024; 62:581-590. [PMID: 39212865 DOI: 10.1007/s12275-024-00162-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/03/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
Most bacteria will use their toxins to interact with the host cell, causing damage to the cell and then escaping from it. When bacteria enter the cell, they will be transported via the endosomal pathway. Rab GTPases are involved in bacterial transport as major components of endosomes that bind to their downstream effector proteins. The bacteria manipulate some Rab GTPases, escape the cell, and get to survive. In this review, we will focus on summarizing the many processes of how bacteria manipulate Rab GTPases to control their escape.
Collapse
Affiliation(s)
- Huiling Xu
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, 271018, Shandong, People's Republic of China
| | - Shengnan Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, 271018, Shandong, People's Republic of China
- The ShangHai Hanvet Bio-Pharm Co. Ltd., Shanghai, 200135, People's Republic of China
| | - Xiaozhou Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, 271018, Shandong, People's Republic of China
| | - Pu Zhang
- The Affiliated Taian City Central Hospital of Qingdao University, Tai`an, 271000, Shandong, People's Republic of China
| | - Qi Zheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, 271018, Shandong, People's Republic of China
| | - ChangXi Qi
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Xiaoting Liu
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Muzi Li
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, 271018, Shandong, People's Republic of China
| | - Yongxia Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, 271018, Shandong, People's Republic of China.
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, 271018, Shandong, People's Republic of China.
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China.
| |
Collapse
|
4
|
Herrera A, Packer MM, Rosas-Lemus M, Minasov G, Chen J, Brumell JH, Satchell KJF. Vibrio MARTX toxin processing and degradation of cellular Rab GTPases by the cytotoxic effector Makes Caterpillars Floppy. Proc Natl Acad Sci U S A 2024; 121:e2316143121. [PMID: 38861595 PMCID: PMC11194500 DOI: 10.1073/pnas.2316143121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/19/2024] [Indexed: 06/13/2024] Open
Abstract
Vibrio vulnificus causes life-threatening wound and gastrointestinal infections, mediated primarily by the production of a Multifunctional-Autoprocessing Repeats-In-Toxin (MARTX) toxin. The most commonly present MARTX effector domain, the Makes Caterpillars Floppy-like (MCF) toxin, is a cysteine protease stimulated by host adenosine diphosphate (ADP) ribosylation factors (ARFs) to autoprocess. Here, we show processed MCF then binds and cleaves host Ras-related proteins in brain (Rab) guanosine triphosphatases within their C-terminal tails resulting in Rab degradation. We demonstrate MCF binds Rabs at the same interface occupied by ARFs. Moreover, we show MCF preferentially binds to ARF1 prior to autoprocessing and is active to cleave Rabs only subsequent to autoprocessing. We then use structure prediction algorithms to demonstrate that structural composition, rather than sequence, determines Rab target specificity. We further determine a crystal structure of aMCF as a swapped dimer, revealing an alternative conformation we suggest represents the open, activated state of MCF with reorganized active site residues. The cleavage of Rabs results in Rab1B dispersal within cells and loss of Rab1B density in the intestinal tissue of infected mice. Collectively, our work describes an extracellular bacterial mechanism whereby MCF is activated by ARFs and subsequently induces the degradation of another small host guanosine triphosphatase (GTPase), Rabs, to drive organelle damage, cell death, and promote pathogenesis of these rapidly fatal infections.
Collapse
Affiliation(s)
- Alfa Herrera
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Megan M. Packer
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Monica Rosas-Lemus
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
- Center for Structural Biology of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - George Minasov
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
- Center for Structural Biology of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Jiexi Chen
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - John H. Brumell
- Cell Biology Program, The Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5G 0A4, Canada
- Institute of Medical Science, University of Toronto, Toronto, ONM5S 1A8, Canada
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
| | - Karla J. F. Satchell
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
- Center for Structural Biology of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| |
Collapse
|
5
|
Kreimendahl S, Pernas L. Metabolic immunity against microbes. Trends Cell Biol 2024; 34:496-508. [PMID: 38030541 DOI: 10.1016/j.tcb.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/11/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023]
Abstract
Pathogens, including viruses, bacteria, fungi, and parasites, remodel the metabolism of their host to acquire the nutrients they need to proliferate. Thus, host cells are often perceived as mere exploitable nutrient pools during infection. Mounting reports challenge this perception and instead suggest that host cells can actively reprogram their metabolism to the detriment of the microbial invader. In this review, we present metabolic mechanisms that host cells use to defend against pathogens. We highlight the contribution of domesticated microbes to host defenses and discuss examples of host-pathogen arms races that are derived from metabolic conflict.
Collapse
Affiliation(s)
| | - Lena Pernas
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
6
|
Oke MT, D’Costa VM. Functional Divergence of the Paralog Salmonella Effector Proteins SopD and SopD2 and Their Contributions to Infection. Int J Mol Sci 2024; 25:4191. [PMID: 38673776 PMCID: PMC11050076 DOI: 10.3390/ijms25084191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Salmonella enterica is a leading cause of bacterial food-borne illness in humans and is responsible for millions of cases annually. A critical strategy for the survival of this pathogen is the translocation of bacterial virulence factors termed effectors into host cells, which primarily function via protein-protein interactions with host proteins. The Salmonella genome encodes several paralogous effectors believed to have arisen from duplication events throughout the course of evolution. These paralogs can share structural similarities and enzymatic activities but have also demonstrated divergence in host cell targets or interaction partners and contributions to the intracellular lifecycle of Salmonella. The paralog effectors SopD and SopD2 share 63% amino acid sequence similarity and extensive structural homology yet have demonstrated divergence in secretion kinetics, intracellular localization, host targets, and roles in infection. SopD and SopD2 target host Rab GTPases, which represent critical regulators of intracellular trafficking that mediate diverse cellular functions. While SopD and SopD2 both manipulate Rab function, these paralogs display differences in Rab specificity, and the effectors have also evolved multiple mechanisms of action for GTPase manipulation. Here, we highlight this intriguing pair of paralog effectors in the context of host-pathogen interactions and discuss how this research has presented valuable insights into effector evolution.
Collapse
Affiliation(s)
- Mosopefoluwa T. Oke
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Vanessa M. D’Costa
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
7
|
Noda K, Lu SL, Chen S, Tokuda K, Li Y, Hao F, Wada Y, Sun-Wada GH, Murakami S, Fukuda M, Itoh T, Noda T. Characterization of Rab32- and Rab38-positive lysosome-related organelles in osteoclasts and macrophages. J Biol Chem 2023; 299:105191. [PMID: 37625588 PMCID: PMC10518718 DOI: 10.1016/j.jbc.2023.105191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Both the biogenesis and functions of osteoclasts and macrophages involves dynamic membrane traffic. We screened transcript levels for Rab family small GTPases related to osteoclasts and identified Rab38. Rab38 expression is upregulated during osteoclast differentiation and maturation. In osteoclasts, both Rab38 and its paralog, Rab32, colocalize to lysosome-related organelles (LROs). In macrophages, Rab32 is also found in LROs. LROs are part of the endocytic pathway but are distinct from lysosomes. After receptor activator of NF-κB ligand stimulation, LROs contain cathepsin K and tartrate-resistant acid phosphatase inside and help both proteins to accumulate around bone resorption pits. After osteoclast maturation, these enzymes are hardly found within LROs. In macrophages derived from Rab32 and Rab38 double knockout mice, both acidification and V-ATPase a3 localization were severely compromised. Both the double knockout macrophage and bafilomycin-treated wildtype macrophage show an increase in Lamp1-positive organelles, implying that biogenesis of lysosomes and LROs are related. These results indicate that Rab32 and Rab38 both play a crucial role in LRO biogenesis in macrophages and in osteoclasts.
Collapse
Affiliation(s)
- Kazuya Noda
- Department of Oral Cell Biology, Center for Frontier Oral Science, Graduate School of Dentistry, Osaka University, Osaka, Japan; Department of Periodontology, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Shiou-Ling Lu
- Department of Oral Cell Biology, Center for Frontier Oral Science, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Siyu Chen
- Department of Oral Cell Biology, Center for Frontier Oral Science, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Kanako Tokuda
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Yangjie Li
- Department of Oral Cell Biology, Center for Frontier Oral Science, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Feike Hao
- Department of Oral Cell Biology, Center for Frontier Oral Science, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Yoh Wada
- Department of Biological Sciences, Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan; Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Ge-Hong Sun-Wada
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Doshisha Women's College, Kyoto, Japan
| | - Shinya Murakami
- Department of Periodontology, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Mitsunori Fukuda
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Miyagi, Japan
| | - Takashi Itoh
- Department of Oral Cell Biology, Center for Frontier Oral Science, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Takeshi Noda
- Department of Oral Cell Biology, Center for Frontier Oral Science, Graduate School of Dentistry, Osaka University, Osaka, Japan; Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan; Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan.
| |
Collapse
|
8
|
Unapanta A, Shavarebi F, Porath J, Shen Y, Balen C, Nguyen A, Tseng J, Leong WS, Liu M, Lis P, Di Pietro SM, Hiniker A. Endogenous Rab38 regulates LRRK2's membrane recruitment and substrate Rab phosphorylation in melanocytes. J Biol Chem 2023; 299:105192. [PMID: 37625589 PMCID: PMC10551901 DOI: 10.1016/j.jbc.2023.105192] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Point mutations in leucine-rich repeat kinase 2 (LRRK2) cause Parkinson's disease and augment LRRK2's kinase activity. However, cellular pathways that endogenously enhance LRRK2 kinase function have not been identified. While overexpressed Rab29 draws LRRK2 to Golgi membranes to increase LRRK2 kinase activity, there is little evidence that endogenous Rab29 performs this function under physiological conditions. Here, we identify Rab38 as a novel physiologic regulator of LRRK2 in melanocytes. In mouse melanocytes, which express high levels of Rab38, Rab32, and Rab29, knockdown (or CRISPR knockout) of Rab38, but not Rab32 or Rab29, decreases phosphorylation of multiple LRRK2 substrates, including Rab10 and Rab12, by both endogenous LRRK2 and exogenous Parkinson's disease-mutant LRRK2. In B16-F10 mouse melanoma cells, Rab38 drives LRRK2 membrane association and overexpressed kinase-active LRRK2 shows striking pericentriolar recruitment, which is dependent on the presence of endogenous Rab38 but not Rab32 or Rab29. Consistently, knockdown or mutation of BLOC-3, the guanine nucleotide exchange factor for Rab38 and Rab32, inhibits Rab38's regulation of LRRK2. Deletion or mutation of LRRK2's Rab38-binding site in the N-terminal armadillo domain decreases LRRK2 membrane association, pericentriolar recruitment, and ability to phosphorylate Rab10. In sum, our data identify Rab38 as a physiologic regulator of LRRK2 function and lend support to a model in which LRRK2 plays a central role in Rab GTPase coordination of vesicular trafficking.
Collapse
Affiliation(s)
- Alexandra Unapanta
- Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Farbod Shavarebi
- Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Jacob Porath
- Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Yiyi Shen
- Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Carson Balen
- Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Albert Nguyen
- Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Josh Tseng
- Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Weng Si Leong
- Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Michelle Liu
- Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Pawel Lis
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, Scotland, UK
| | - Santiago M Di Pietro
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Annie Hiniker
- Department of Pathology, University of California San Diego, San Diego, California, USA.
| |
Collapse
|
9
|
Lian H, Park D, Chen M, Schueder F, Lara-Tejero M, Liu J, Galán JE. Parkinson's disease kinase LRRK2 coordinates a cell-intrinsic itaconate-dependent defence pathway against intracellular Salmonella. Nat Microbiol 2023; 8:1880-1895. [PMID: 37640963 PMCID: PMC10962312 DOI: 10.1038/s41564-023-01459-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023]
Abstract
Cell-intrinsic defences constitute the first line of defence against intracellular pathogens. The guanosine triphosphatase RAB32 orchestrates one such defence response against the bacterial pathogen Salmonella, through delivery of antimicrobial itaconate. Here we show that the Parkinson's disease-associated leucine-rich repeat kinase 2 (LRRK2) orchestrates this defence response by scaffolding a complex between RAB32 and aconitate decarboxylase 1, which synthesizes itaconate from mitochondrial precursors. Itaconate delivery to Salmonella-containing vacuoles was impaired and Salmonella replication increased in LRRK2-deficient cells. Loss of LRRK2 also restored virulence of a Salmonella mutant defective in neutralizing this RAB32-dependent host defence pathway in mice. Cryo-electron tomography revealed tether formation between Salmonella-containing vacuoles and host mitochondria upon Salmonella infection, which was significantly impaired in LRRK2-deficient cells. This positions LRRK2 centrally within a host defence mechanism, which may have favoured selection of a common familial Parkinson's disease mutant allele in the human population.
Collapse
Affiliation(s)
- Huan Lian
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Donghyun Park
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
- Microbial Science Institute, Yale University School of Medicine, New Haven, CT, USA
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Meixin Chen
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China
| | - Florian Schueder
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Maria Lara-Tejero
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
- Microbial Science Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Jorge E Galán
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
10
|
Hajdú G, Somogyvári M, Csermely P, Sőti C. Lysosome-related organelles promote stress and immune responses in C. elegans. Commun Biol 2023; 6:936. [PMID: 37704756 PMCID: PMC10499889 DOI: 10.1038/s42003-023-05246-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/15/2023] [Indexed: 09/15/2023] Open
Abstract
Lysosome-related organelles (LROs) play diverse roles and their dysfunction causes immunodeficiency. However, their primordial functions remain unclear. Here, we report that C. elegans LROs (gut granules) promote organismal defenses against various stresses. We find that toxic benzaldehyde exposure induces LRO autofluorescence, stimulates the expression of LRO-specific genes and enhances LRO transport capacity as well as increases tolerance to benzaldehyde, heat and oxidative stresses, while these responses are impaired in glo-1/Rab32 and pgp-2 ABC transporter LRO biogenesis mutants. Benzaldehyde upregulates glo-1- and pgp-2-dependent expression of heat shock, detoxification and antimicrobial effector genes, which requires daf-16/FOXO and/or pmk-1/p38MAPK. Finally, benzaldehyde preconditioning increases resistance against Pseudomonas aeruginosa PA14 in a glo-1- and pgp-2-dependent manner, and PA14 infection leads to the deposition of fluorescent metabolites in LROs and induction of LRO genes. Our study suggests that LROs may play a role in systemic responses to stresses and in pathogen resistance.
Collapse
Affiliation(s)
- Gábor Hajdú
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Milán Somogyvári
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Péter Csermely
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Csaba Sőti
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
11
|
Chatterjee R, Chowdhury AR, Mukherjee D, Chakravortty D. From Eberthella typhi to Salmonella Typhi: The Fascinating Journey of the Virulence and Pathogenicity of Salmonella Typhi. ACS OMEGA 2023; 8:25674-25697. [PMID: 37521659 PMCID: PMC10373206 DOI: 10.1021/acsomega.3c02386] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023]
Abstract
Salmonella Typhi (S. Typhi), the invasive typhoidal serovar of Salmonella enterica that causes typhoid fever in humans, is a severe threat to global health. It is one of the major causes of high morbidity and mortality in developing countries. According to recent WHO estimates, approximately 11-21 million typhoid fever illnesses occur annually worldwide, accounting for 0.12-0.16 million deaths. Salmonella infection can spread to healthy individuals by the consumption of contaminated food and water. Typhoid fever in humans sometimes is accompanied by several other critical extraintestinal complications related to the central nervous system, cardiovascular system, pulmonary system, and hepatobiliary system. Salmonella Pathogenicity Island-1 and Salmonella Pathogenicity Island-2 are the two genomic segments containing genes encoding virulent factors that regulate its invasion and systemic pathogenesis. This Review aims to shed light on a comparative analysis of the virulence and pathogenesis of the typhoidal and nontyphoidal serovars of S. enterica.
Collapse
Affiliation(s)
- Ritika Chatterjee
- Department
of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Atish Roy Chowdhury
- Department
of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Debapriya Mukherjee
- Department
of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Dipshikha Chakravortty
- Department
of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
- Centre
for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
12
|
Chatterjee R, Nair AV, Singh A, Mehta N, Setty SRG, Chakravortty D. Syntaxin 3 SPI-2 dependent crosstalk facilitates the division of Salmonella containing vacuole. Traffic 2023; 24:270-283. [PMID: 37114883 DOI: 10.1111/tra.12887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023]
Abstract
Intracellular membrane fusion is mediated by membrane-bridging complexes of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). SNARE proteins are one of the key players in vesicular transport. Several reports shed light on intracellular bacteria modulating host SNARE machinery to establish infection successfully. The critical SNAREs in macrophages responsible for phagosome maturation are Syntaxin 3 (STX3) and Syntaxin 4 (STX4). Reports also suggest that Salmonella actively modulates its vacuole membrane composition to escape lysosomal fusion. Salmonella containing vacuole (SCV) harbours recycling endosomal SNARE Syntaxin 12 (STX12). However, the role of host SNAREs in SCV biogenesis and pathogenesis remains unclear. Upon knockdown of STX3, we observed a reduction in bacterial proliferation, which is concomitantly restored upon the overexpression of STX3. Live-cell imaging of Salmonella-infected cells showed that STX3 localises to the SCV membranes and thus might help in the fusion of SCV with intracellular vesicles to acquire membrane for its division. We also found the interaction STX3-SCV was abrogated when we infected with SPI-2 encoded Type 3 secretion system (T3SS) apparatus mutant (STM ∆ssaV) but not with SPI-1 encoded T3SS apparatus mutant (STM ∆invC). These observations were also consistent in the mice model of Salmonella infection. Together, these results shed light on the effector molecules secreted through T3SS encoded by SPI-2, possibly involved in interaction with host SNARE STX3, which is essential to maintain the division of Salmonella in SCV and help to maintain a single bacterium per vacuole.
Collapse
Affiliation(s)
- Ritika Chatterjee
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Abhilash Vijay Nair
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Anmol Singh
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Nishi Mehta
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Subba Rao Gangi Setty
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| |
Collapse
|
13
|
Pillay TD, Hettiarachchi SU, Gan J, Diaz-Del-Olmo I, Yu XJ, Muench JH, Thurston TL, Pearson JS. Speaking the host language: how Salmonella effector proteins manipulate the host. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001342. [PMID: 37279149 PMCID: PMC10333799 DOI: 10.1099/mic.0.001342] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023]
Abstract
Salmonella injects over 40 virulence factors, termed effectors, into host cells to subvert diverse host cellular processes. Of these 40 Salmonella effectors, at least 25 have been described as mediating eukaryotic-like, biochemical post-translational modifications (PTMs) of host proteins, altering the outcome of infection. The downstream changes mediated by an effector's enzymatic activity range from highly specific to multifunctional, and altogether their combined action impacts the function of an impressive array of host cellular processes, including signal transduction, membrane trafficking, and both innate and adaptive immune responses. Salmonella and related Gram-negative pathogens have been a rich resource for the discovery of unique enzymatic activities, expanding our understanding of host signalling networks, bacterial pathogenesis as well as basic biochemistry. In this review, we provide an up-to-date assessment of host manipulation mediated by the Salmonella type III secretion system injectosome, exploring the cellular effects of diverse effector activities with a particular focus on PTMs and the implications for infection outcomes. We also highlight activities and functions of numerous effectors that remain poorly characterized.
Collapse
Affiliation(s)
- Timesh D. Pillay
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
- The Francis Crick Institute, London NW1 1AT, UK
| | - Sahampath U. Hettiarachchi
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Jiyao Gan
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Ines Diaz-Del-Olmo
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
| | - Xiu-Jun Yu
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
| | - Janina H. Muench
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
- The Francis Crick Institute, London NW1 1AT, UK
| | - Teresa L.M. Thurston
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
- The Francis Crick Institute, London NW1 1AT, UK
| | - Jaclyn S. Pearson
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
14
|
Herrera A, Packer MM, Rosas-Lemus M, Minasov G, Brummel JH, Satchell KJF. Vibrio MARTX toxin processing and degradation of cellular Rab GTPases by the cytotoxic effector Makes Caterpillars Floppy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537381. [PMID: 37131655 PMCID: PMC10153396 DOI: 10.1101/2023.04.19.537381] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Vibrio vulnificus causes life threatening infections dependent upon the effectors released from the Multifunctional-Autoprocessing Repeats-In-Toxin (MARTX) toxin. The Makes Caterpillars Floppy-like (MCF) cysteine protease effector is activated by host ADP ribosylation factors (ARFs), although the targets of processing activity were unknown. In this study we show MCF binds Ras-related proteins in brain (Rab) GTPases at the same interface occupied by ARFs and then cleaves and/or degrades 24 distinct members of the Rab GTPases family. The cleavage occurs in the C-terminal tails of Rabs. We determine the crystal structure of MCF as a swapped dimer revealing the open, activated state of MCF and then use structure prediction algorithms to show that structural composition, rather than sequence or localization, determine Rabs selected as MCF proteolytic targets. Once cleaved, Rabs become dispersed in cells to drive organelle damage and cell death to promote pathogenesis of these rapidly fatal infections.
Collapse
Affiliation(s)
- Alfa Herrera
- Department of Microbiology-Immunology and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Megan M. Packer
- Department of Microbiology-Immunology and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Monica Rosas-Lemus
- Department of Microbiology-Immunology and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Center for Structural Biology of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - George Minasov
- Department of Microbiology-Immunology and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Center for Structural Biology of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - John H. Brummel
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- SickKids IBD Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Karla J. F. Satchell
- Department of Microbiology-Immunology and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Center for Structural Biology of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
15
|
Li Z, Zheng W, Kong W, Zeng T. Itaconate: A Potent Macrophage Immunomodulator. Inflammation 2023:10.1007/s10753-023-01819-0. [PMID: 37142886 PMCID: PMC10159227 DOI: 10.1007/s10753-023-01819-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/25/2023] [Accepted: 04/06/2023] [Indexed: 05/06/2023]
Abstract
With advances in immunometabolic studies, more and more evidence has shown that metabolic changes profoundly affect the immune function of macrophages. The tricarboxylic acid cycle is a central metabolic pathway of cells. Itaconate, a byproduct of the tricarboxylic acid cycle, is an emerging metabolic small molecule that regulates macrophage inflammation and has received much attention for its potent anti-inflammatory effects in recent years. Itaconate regulates macrophage function through multiple mechanisms and has demonstrated promising therapeutic potential in a variety of immune and inflammatory diseases. New progress in the mechanism of itaconate continues to be made, but it also implies complexity in its action and a need for a more comprehensive understanding of its role in macrophages. In this article, we review the primary mechanisms and current research progress of itaconate in regulating macrophage immune metabolism, hoping to provide new insights and directions for future research and disease treatment.
Collapse
Affiliation(s)
- Zeyu Li
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan, China
| | - Wenbin Zheng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan, China
| | - Wen Kong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, China.
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan, China.
| | - Tianshu Zeng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, China.
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan, China.
| |
Collapse
|
16
|
Wang BX, Butler DS, Hamblin M, Monack DM. One species, different diseases: the unique molecular mechanisms that underlie the pathogenesis of typhoidal Salmonella infections. Curr Opin Microbiol 2023; 72:102262. [PMID: 36640585 PMCID: PMC10023398 DOI: 10.1016/j.mib.2022.102262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 01/15/2023]
Abstract
Salmonella enterica is one of the most widespread bacterial pathogens found worldwide, resulting in approximately 100 million infections and over 200 000 deaths per year. Salmonella isolates, termed 'serovars', can largely be classified as either nontyphoidal or typhoidal Salmonella, which differ in regard to disease manifestation and host tropism. Nontyphoidal Salmonella causes gastroenteritis in many hosts, while typhoidal Salmonella is human-restricted and causes typhoid fever, a systemic disease with a mortality rate of up to 30% without treatment. There has been considerable interest in understanding how different Salmonella serovars cause different diseases, but the molecular details that underlie these infections have not yet been fully characterized, especially in the case of typhoidal Salmonella. In this review, we highlight the current state of research into understanding the pathogenesis of both nontyphoidal and typhoidal Salmonella, with a specific interest in serovar-specific traits that allow human-adapted strains of Salmonella to cause enteric fever. Overall, a more detailed molecular understanding of how different Salmonella isolates infect humans will provide critical insights into how we can eradicate these dangerous enteric pathogens.
Collapse
Affiliation(s)
- Benjamin X Wang
- Department of Microbiology & Immunology, Stanford University, Stanford, CA, USA
| | - Daniel Sc Butler
- Department of Microbiology & Immunology, Stanford University, Stanford, CA, USA
| | - Meagan Hamblin
- Department of Microbiology & Immunology, Stanford University, Stanford, CA, USA
| | - Denise M Monack
- Department of Microbiology & Immunology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
17
|
Meng K, Zhu P, Shi L, Li S. Determination of the Salmonella intracellular lifestyle by the diversified interaction of Type III secretion system effectors and host GTPases. WIREs Mech Dis 2023; 15:e1587. [PMID: 36250298 DOI: 10.1002/wsbm.1587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/03/2022] [Accepted: 09/03/2022] [Indexed: 11/06/2022]
Abstract
Intracellular bacteria have developed sophisticated strategies to subvert the host endomembrane system to establish a stable replication niche. Small GTPases are critical players in regulating each step of membrane trafficking events, such as vesicle biogenesis, cargo transport, tethering, and fusion events. Salmonella is a widely studied facultative intracellular bacteria. Salmonella delivers several virulence proteins, termed effectors, to regulate GTPase dynamics and subvert host trafficking for their benefit. In this review, we summarize an updated and systematic understanding of the interactions between bacterial effectors and host GTPases in determining the intracellular lifestyle of Salmonella. This article is categorized under: Infectious Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Kun Meng
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Ping Zhu
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Liuliu Shi
- School of Basic Medical Science, Hubei University of Medicine, Shiyan, Hubei, China
| | - Shan Li
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
18
|
Qi M, Jiang Q, Yang S, Zhang C, Liu J, Liu W, Lin P, Chen H, Zhou D, Tang K, Wang A, Jin Y. The endoplasmic reticulum stress-mediated unfolded protein response protects against infection of goat endometrial epithelial cells by Trueperella pyogenes via autophagy. Virulence 2022; 13:122-136. [PMID: 34967271 PMCID: PMC9794013 DOI: 10.1080/21505594.2021.2021630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Trueperella pyogenes is an important bacterial pathogen of a wide range of domestic and wild animals. Autophagy plays a key role in eliminating T. pyogenes in a process that is dependent on mechanistic target of rapamycin (mTOR). The endoplasmic reticulum (ER) stress response also is critical for autophagy regulation. However, the relationship between ER stress and T. pyogenes is uncharacterized and the intracellular survival mechanisms of T. pyogenes have not been investigated adequately. In this study, we show that T. pyogenes invades goat endometrial epithelial cells (gEECs). Meanwhile, we observed that GRP78 was upregulated significantly, and that unfolded protein response (UPR) also were activated after infection. Additionally, treatment with activators and inhibitors of ER stress downregulated and upregulated, respectively, intracellular survival of T. pyogenes. Blocking the three arms of the UPR pathway separately enhanced T. pyogenes survival and inflammatory reaction to different levels. We also show that LC3-labeled autophagosomes formed around the invading T. pyogenes and that autolysosome-like vesicles were visible in gEECs using transmission electron microscopy. Moreover, tunicamycin did not inhibit the intracellular survival of T. pyogenes under conditions in which autophagy was blocked. Finally, severe challenge with T. pyogenes induced host cell apoptosis which also may indicate a role for ER stress in the infection response. In summary, we demonstrate here that ER stress and UPR are novel modulators of autophagy that inhibit T. pyogenes intracellular survival in gEECs, which has the potential to be developed as an effective therapeutic target in T. pyogenes infectious disease.
Collapse
Affiliation(s)
- Maozhen Qi
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&f University, Yanglin, Shaanxi, China
| | - Qingran Jiang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&f University, Yanglin, Shaanxi, China
| | - Siwei Yang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&f University, Yanglin, Shaanxi, China
| | - Chenxi Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&f University, Yanglin, Shaanxi, China
| | - Jianguo Liu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&f University, Yanglin, Shaanxi, China
| | - Wei Liu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&f University, Yanglin, Shaanxi, China
| | - Pengfei Lin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&f University, Yanglin, Shaanxi, China
| | - Huatao Chen
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&f University, Yanglin, Shaanxi, China
| | - Dong Zhou
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&f University, Yanglin, Shaanxi, China
| | - Keqiong Tang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&f University, Yanglin, Shaanxi, China
| | - Aihua Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&f University, Yanglin, Shaanxi, China
| | - Yaping Jin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&f University, Yanglin, Shaanxi, China,CONTACT Yaping Jin
| |
Collapse
|
19
|
Shikov AE, Belousova ME, Belousov MV, Nizhnikov AA, Antonets KS. Salmonella-Based Biorodenticides: Past Applications and Current Contradictions. Int J Mol Sci 2022; 23:ijms232314595. [PMID: 36498920 PMCID: PMC9736839 DOI: 10.3390/ijms232314595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/03/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
Abstract
The idea of using pathogens to control pests has existed since the end of the 19th century. Enterobacteria from the genus Salmonella, discovered at that time, are the causative agents of many serious diseases in mammals often leading to death. Mostly, the strains of Salmonella are able to infect a wide spectrum of hosts belonging to vertebrates, but some of them show host restriction. Several strains of these bacteria have been used as biorodenticides due to the host restriction until they were banned in many countries in the second part of the 20th century. The main reason for the ban was their potential pathogenicity for some domestic animals and poultry and the outbreaks of gastroenteritis in humans. Since that time, a lot of data regarding the host specificity and host restriction of different strains of Salmonella have been accumulated, and the complexity of the molecular mechanisms affecting it has been uncovered. In this review, we summarize the data regarding the history of studying and application of Salmonella-based rodenticides, discuss molecular systems controlling the specificity of Salmonella interactions within its multicellular hosts at different stages of infection, and attempt to reconstruct the network of genes and their allelic variants which might affect the host-restriction mechanisms.
Collapse
Affiliation(s)
- Anton E. Shikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Pushkin, St. Petersburg 196608, Russia
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Maria E. Belousova
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Pushkin, St. Petersburg 196608, Russia
| | - Mikhail V. Belousov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Pushkin, St. Petersburg 196608, Russia
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Pushkin, St. Petersburg 196608, Russia
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Pushkin, St. Petersburg 196608, Russia
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia
- Correspondence:
| |
Collapse
|
20
|
Cavounidis A, Pandey S, Capitani M, Friedrich M, Cross A, Gartner L, Aschenbrenner D, Kim-Schulze S, Lam YK, Berridge G, McGovern DPB, Kessler B, Fischer R, Klenerman P, Hester J, Issa F, Torres EA, Powrie F, Gochuico BR, Gahl WA, Cohen L, Uhlig HH. Hermansky-Pudlak syndrome type 1 causes impaired anti-microbial immunity and inflammation due to dysregulated immunometabolism. Mucosal Immunol 2022; 15:1431-1446. [PMID: 36302964 PMCID: PMC9607658 DOI: 10.1038/s41385-022-00572-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 08/11/2022] [Accepted: 08/24/2022] [Indexed: 02/04/2023]
Abstract
Hermansky-Pudlak syndrome (HPS) types 1 and 4 are caused by defective vesicle trafficking. The mechanism for Crohn's disease-like inflammation, lung fibrosis, and macrophage lipid accumulation in these patients remains enigmatic. The aim of this study is to understand the cellular basis of inflammation in HPS-1. We performed mass cytometry, proteomic and transcriptomic analyses to investigate peripheral blood cells and serum of HPS-1 patients. Using spatial transcriptomics, granuloma-associated signatures in the tissue of an HPS-1 patient with granulomatous colitis were dissected. In vitro studies were conducted to investigate anti-microbial responses of HPS-1 patient macrophages and cell lines. Monocytes of HPS-1 patients exhibit an inflammatory phenotype associated with dysregulated TNF, IL-1α, OSM in serum, and monocyte-derived macrophages. Inflammatory macrophages accumulate in the intestine and granuloma-associated macrophages in HPS-1 show transcriptional signatures suggestive of a lipid storage and metabolic defect. We show that HPS1 deficiency leads to an altered metabolic program and Rab32-dependent amplified mTOR signaling, facilitated by the accumulation of mTOR on lysosomes. This pathogenic mechanism translates into aberrant bacterial clearance, which can be rescued with mTORC1 inhibition. Rab32-mediated mTOR signaling acts as an immuno-metabolic checkpoint, adding to the evidence that defective bioenergetics can drive hampered anti-microbial activity and contribute to inflammation.
Collapse
Affiliation(s)
- Athena Cavounidis
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- GSK, Wavre, Belgium
| | - Sumeet Pandey
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- GSK Immunology Network, GSK Medicines Research Center, Stevenage, UK
| | - Melania Capitani
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- SenTcell Ltd, London, UK
| | - Matthias Friedrich
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Amy Cross
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Lisa Gartner
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Dominik Aschenbrenner
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Seunghee Kim-Schulze
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ying Ka Lam
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Georgina Berridge
- Target Discovery Institute, Center for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Dermot P B McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Benedikt Kessler
- Target Discovery Institute, Center for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Roman Fischer
- Target Discovery Institute, Center for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Paul Klenerman
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Joanna Hester
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Fadi Issa
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Esther A Torres
- University of Puerto Rico School of Medicine, Puerto Rico, USA
| | - Fiona Powrie
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Bernadette R Gochuico
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - William A Gahl
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Louis Cohen
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Holm H Uhlig
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Department of Paediatrics, University of Oxford, Oxford, UK.
- Oxford NIHR Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
21
|
Chang SJ, Hsu YT, Chen Y, Lin YY, Lara-Tejero M, Galan JE. Typhoid toxin sorting and exocytic transport from Salmonella Typhi-infected cells. eLife 2022; 11:e78561. [PMID: 35579416 PMCID: PMC9142146 DOI: 10.7554/elife.78561] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/15/2022] [Indexed: 11/13/2022] Open
Abstract
Typhoid toxin is an essential virulence factor for Salmonella Typhi, the cause of typhoid fever in humans. This toxin has an unusual biology in that it is produced by Salmonella Typhi only when located within host cells. Once synthesized, the toxin is secreted to the lumen of the Salmonella-containing vacuole from where it is transported to the extracellular space by vesicle carrier intermediates. Here, we report the identification of the typhoid toxin sorting receptor and components of the cellular machinery that packages the toxin into vesicle carriers, and exports it to the extracellular space. We found that the cation-independent mannose-6-phosphate receptor serves as typhoid toxin sorting receptor and that the coat protein COPII and the GTPase Sar1 mediate its packaging into vesicle carriers. Formation of the typhoid toxin carriers requires the specific environment of the Salmonella Typhi-containing vacuole, which is determined by the activities of specific effectors of its type III protein secretion systems. We also found that Rab11B and its interacting protein Rip11 control the intracellular transport of the typhoid toxin carriers, and the SNARE proteins VAMP7, SNAP23, and Syntaxin 4 their fusion to the plasma membrane. Typhoid toxin's cooption of specific cellular machinery for its transport to the extracellular space illustrates the remarkable adaptation of an exotoxin to exert its function in the context of an intracellular pathogen.
Collapse
Affiliation(s)
- Shu-Jung Chang
- Department of Microbial Pathogenesis, Yale University School of MedicineNew HavenUnited States
- Graduate Institute of Microbiology, College of Medicine, National Taiwan UniversityTaipeiTaiwan
| | - Yu-Ting Hsu
- Graduate Institute of Microbiology, College of Medicine, National Taiwan UniversityTaipeiTaiwan
| | - Yun Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan UniversityTaipeiTaiwan
| | - Yen-Yi Lin
- Graduate Institute of Microbiology, College of Medicine, National Taiwan UniversityTaipeiTaiwan
| | - Maria Lara-Tejero
- Department of Microbial Pathogenesis, Yale University School of MedicineNew HavenUnited States
| | - Jorge E Galan
- Department of Microbial Pathogenesis, Yale University School of MedicineNew HavenUnited States
| |
Collapse
|
22
|
Zheng D, Yin G, Liu M, Hou L, Yang Y, Liu X, Jiang Y, Chen C, Wu H. Metagenomics highlights the impact of climate and human activities on antibiotic resistance genes in China's estuaries. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 301:119015. [PMID: 35183662 DOI: 10.1016/j.envpol.2022.119015] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/28/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Estuarine environments faced with contaminations from coastal zones and the inland are vital sinks of antibiotic resistance genes (ARGs). However, little is known about the temporal-spatial pattern of ARGs and its predominant constraints in estuarine environments. Here, we leveraged metagenomics to investigate ARG profiles from 16 China's estuaries across 6 climate zones in dry and wet seasons, and disentangled their relationships with environmental constraints. Our results revealed that ARG abundance, richness, and diversity in dry season were higher than those in wet season, and ARG abundance exhibited an increasing trend with latitude. The prevalence of ARGs was significantly driven by human activities, mobile gene elements, microbial communities, antibiotic residuals, physicochemical properties, and climatic variables. Among which, climatic variables and human activities ranked the most important factors, contributing 44% and 36% of the total variance of observed ARGs, respectively. The most important climatic variable shaping ARGs is temperature, where increasing temperature is associated with decreased ARGs. Our results highlight that the prevalence of ARGs in estuarine environments would be co-driven by anthropogenic activities and climate, and suggest the dynamics of ARGs under future changing climate and socioeconomic development.
Collapse
Affiliation(s)
- Dongsheng Zheng
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China; School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Guoyu Yin
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China; School of Geographic Sciences, East China Normal University, Shanghai, 200241, China.
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China; School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Yi Yang
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China; School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Xinran Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China; School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Yinghui Jiang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Cheng Chen
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China; School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Han Wu
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China; School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
23
|
Stévenin V, Neefjes J. Control of host PTMs by intracellular bacteria: An opportunity toward novel anti-infective agents. Cell Chem Biol 2022; 29:741-756. [PMID: 35512694 DOI: 10.1016/j.chembiol.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/15/2022] [Accepted: 04/15/2022] [Indexed: 02/08/2023]
Abstract
Intracellular bacteria have developed a multitude of mechanisms to influence the post-translational modifications (PTMs) of host proteins to pathogen advantages. The recent explosion of insights into the diversity and sophistication of host PTMs and their manipulation by infectious agents challenges us to formulate a comprehensive vision of this complex and dynamic facet of the host-pathogen interaction landscape. As new discoveries continue to shed light on the central roles of PTMs in infectious diseases, technological advances foster our capacity to detect old and new PTMs and investigate their control and impact during pathogenesis, opening new possibilities for chemical intervention and infection treatment. Here, we present a comprehensive overview of these pathogenic mechanisms and offer perspectives on how these insights may contribute to the development of a new class of therapeutics that are urgently needed to face rising antibiotic resistances.
Collapse
Affiliation(s)
- Virginie Stévenin
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center (LUMC), Leiden 2333 ZC, the Netherlands.
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center (LUMC), Leiden 2333 ZC, the Netherlands
| |
Collapse
|
24
|
Feng Y, Wang Z, Chien KY, Chen HL, Liang YH, Hua X, Chiu CH. "Pseudo-pseudogenes" in bacterial genomes: Proteogenomics reveals a wide but low protein expression of pseudogenes in Salmonella enterica. Nucleic Acids Res 2022; 50:5158-5170. [PMID: 35489061 PMCID: PMC9122581 DOI: 10.1093/nar/gkac302] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 12/03/2022] Open
Abstract
Pseudogenes (genes disrupted by frameshift or in-frame stop codons) are ubiquitously present in the bacterial genome and considered as nonfunctional fossil. Here, we used RNA-seq and mass-spectrometry technologies to measure the transcriptomes and proteomes of Salmonella enterica serovars Paratyphi A and Typhi. All pseudogenes’ mRNA sequences remained disrupted, and were present at comparable levels to their intact homologs. At the protein level, however, 101 out of 161 pseudogenes suggested successful translation, with their low expression regardless of growth conditions, genetic background and pseudogenization causes. The majority of frameshifting detected was compensatory for -1 frameshift mutations. Readthrough of in-frame stop codons primarily involved UAG; and cytosine was the most frequent base adjacent to the codon. Using a fluorescence reporter system, fifteen pseudogenes were confirmed to express successfully in vivo in Escherichia coli. Expression of the intact copy of the fifteen pseudogenes in S. Typhi affected bacterial pathogenesis as revealed in human macrophage and epithelial cell infection models. The above findings suggest the need to revisit the nonstandard translation mechanism as well as the biological role of pseudogenes in the bacterial genome.
Collapse
Affiliation(s)
- Ye Feng
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Zeyu Wang
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Kun-Yi Chien
- Graduate Institute of Biomedical Sciences, Chang Gung University College of Medicine, Taoyuan, Republic of China
| | - Hsiu-Ling Chen
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Republic of China
| | - Yi-Hua Liang
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Republic of China
| | - Xiaoting Hua
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Cheng-Hsun Chiu
- Graduate Institute of Biomedical Sciences, Chang Gung University College of Medicine, Taoyuan, Republic of China.,Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Republic of China.,Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Republic of China
| |
Collapse
|
25
|
Development of a Genomics-Based Approach To Identify Putative Hypervirulent Nontyphoidal Salmonella Isolates: Salmonella enterica Serovar Saintpaul as a Model. mSphere 2022; 7:e0073021. [PMID: 34986312 PMCID: PMC8731237 DOI: 10.1128/msphere.00730-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While differences in human virulence have been reported across nontyphoidal Salmonella (NTS) serovars and associated subtypes, a rational and scalable approach to identify Salmonella subtypes with differential ability to cause human diseases is not available. Here, we used NTS serovar Saintpaul (S. Saintpaul) as a model to determine if metadata and associated whole-genome sequence (WGS) data in the NCBI Pathogen Detection (PD) database can be used to identify (i) subtypes with differential likelihoods of causing human diseases and (ii) genes and single nucleotide polymorphisms (SNPs) potentially responsible for such differences. S. Saintpaul SNP clusters (n = 211) were assigned different epidemiology types (epi-types) based on statistically significant over- or underrepresentation of human clinical isolates, including human associated (HA; n = 29), non-human associated (NHA; n = 23), and other (n = 159). Comparative genomic analyses identified 384 and 619 genes overrepresented among isolates in 5 HA and 4 NHA SNP clusters most significantly associated with the respective isolation source. These genes included 5 HA-associated virulence genes previously reported to be present on Gifsy-1/Gifsy-2 prophages. Additionally, premature stop codons in 3 and 7 genes were overrepresented among the selected HA and NHA SNP clusters, respectively. Tissue culture experiments with strains representing 4 HA and 3 NHA SNP clusters did not reveal evidence for enhanced invasion or intracellular survival for HA strains. However, the presence of sodCI (encoding a superoxide dismutase), found in 4 HA and 1 NHA SNP clusters, was positively correlated with intracellular survival in macrophage-like cells. Post hoc analyses also suggested a possible difference in intracellular survival among S. Saintpaul lineages. IMPORTANCE Not all Salmonella isolates are equally likely to cause human disease, and Salmonella control strategies may unintentionally focus on serovars and subtypes with high prevalence in source populations but are rarely associated with human clinical illness. We describe a framework leveraging WGS data in the NCBI PD database to identify Salmonella subtypes over- and underrepresented among human clinical cases. While we identified genomic signatures associated with HA/NHA SNP clusters, tissue culture experiments failed to identify consistent phenotypic characteristics indicative of enhanced human virulence of HA strains. Our findings illustrate the challenges of defining hypo- and hypervirulent S. Saintpaul and potential limitations of phenotypic assays when evaluating human virulence, for which in vivo experiments are essential. Identification of sodCI, an HA-associated virulence gene associated with enhanced intracellular survival, however, illustrates the potential of the framework and is consistent with prior work identifying specific genomic features responsible for enhanced or reduced virulence of nontyphoidal Salmonella.
Collapse
|
26
|
Macrophages in Microbial Pathogenesis: Commonalities of Defense Evasion Mechanisms. Infect Immun 2021; 90:e0029121. [PMID: 34780281 DOI: 10.1128/iai.00291-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Macrophages are key arsenals of the immune system against invaders. After compartmental isolation of a pathogen in phagosomes, the host immune response attempts to neutralize the pathogen. However, pathogens possess the ability to subvert these assaults and can also convert macrophages into their replicative niche. The multiple host defense evasion mechanisms employed by these pathogens like phagosome maturation arrest, molecular mimicry through secretory antigens, interference with host signaling, active radical neutralization, inhibition of phagosome acidification, alteration of programmed cell death and many other mechanisms. Macrophage biology as a part of the host-pathogen interaction has expanded rapidly in the past decade. The present review aims to shed some light upon the macrophage defense evasion strategies employed by infecting pathogens. We have also incorporated recent knowledge in the field of macrophage dynamics during infection and evolutionary perspectives of macrophage dynamics.
Collapse
|
27
|
Viana F, Peringathara SS, Rizvi A, Schroeder GN. Host manipulation by bacterial type III and type IV secretion system effector proteases. Cell Microbiol 2021; 23:e13384. [PMID: 34392594 PMCID: PMC11475232 DOI: 10.1111/cmi.13384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 01/08/2023]
Abstract
Proteases are powerful enzymes, which cleave peptide bonds, leading most of the time to irreversible fragmentation or degradation of their substrates. Therefore they control many critical cell fate decisions in eukaryotes. Bacterial pathogens exploit this power and deliver protease effectors through specialised secretion systems into host cells. Research over the past years revealed that the functions of protease effectors during infection are diverse, reflecting the lifestyles and adaptations to specific hosts; however, only a small number of peptidase families seem to have given rise to most of these protease virulence factors by the evolution of different substrate-binding specificities, intracellular activation and subcellular targeting mechanisms. Here, we review our current knowledge about the enzymology and function of protease effectors, which Gram-negative bacterial pathogens translocate via type III and IV secretion systems to irreversibly manipulate host processes. We highlight emerging concepts such as signalling by protease cleavage products and effector-triggered immunity, which host cells employ to detect and defend themselves against a protease attack. TAKE AWAY: Proteases irreversibly cleave proteins to control critical cell fate decisions. Gram-negative bacteria use type III and IV secretion systems to inject effectors. Protease effectors are integral weapons for the manipulation of host processes. Effectors evolved from few peptidase families to target diverse substrates. Effector-triggered immunity upon proteolytic attack emerges as host defence.
Collapse
Affiliation(s)
- Flávia Viana
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfast, Northern IrelandUK
| | - Shruthi Sachidanandan Peringathara
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfast, Northern IrelandUK
| | - Arshad Rizvi
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfast, Northern IrelandUK
| | - Gunnar N. Schroeder
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfast, Northern IrelandUK
| |
Collapse
|
28
|
Schultz BM, Melo-Gonzalez F, Salazar GA, Porto BN, Riedel CA, Kalergis AM, Bueno SM. New Insights on the Early Interaction Between Typhoid and Non-typhoid Salmonella Serovars and the Host Cells. Front Microbiol 2021; 12:647044. [PMID: 34276584 PMCID: PMC8282409 DOI: 10.3389/fmicb.2021.647044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
Salmonella enterica is a common source of food and water-borne infections, causing a wide range of clinical ailments in both human and animal hosts. Immunity to Salmonella involves an interplay between different immune responses, which are rapidly initiated to control bacterial burden. However, Salmonella has developed several strategies to evade and modulate the host immune responses. In this sense, the main knowledge about the pathogenicity of this bacterium has been obtained by the study of mouse models with non-typhoidal serovars. However, this knowledge is not representative of all the pathologies caused by non-typhoidal serovars in the human. Here we review the most important features of typhoidal and non-typhoidal serovars and the diseases they cause in the human host, describing the virulence mechanisms used by these pathogens that have been identified in different models of infection.
Collapse
Affiliation(s)
- Bárbara M Schultz
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Melo-Gonzalez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Geraldyne A Salazar
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bárbara N Porto
- Laboratory of Clinical and Experimental Immunology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil.,Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Claudia A Riedel
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Millennium Institute on Immunology and Immunotherapy, Universidad Andrés Bello, Santiago, Chile
| | - Alexis M Kalergis
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
29
|
Stevens MP, Kingsley RA. Salmonella pathogenesis and host-adaptation in farmed animals. Curr Opin Microbiol 2021; 63:52-58. [PMID: 34175673 DOI: 10.1016/j.mib.2021.05.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
Salmonella is an animal and zoonotic pathogen of global importance. Depending on pathogen and host factors, infections can be asymptomatic or involve acute gastroenteritis or invasive disease. Genomic signatures associated with host-range, tissue tropism or differential virulence of Salmonella enterica serovars, and their variants, have emerged. In turn, it is becoming feasible to predict invasive potential, host-adaptation and zoonotic risk of Salmonella from sequence data to improve outbreak investigation, risk assessment and control strategies. Functional annotation of Salmonella genomes has accelerated with the screening of high-density mutant libraries, revealing host-specific, niche-specific and serovar-specific virulence factors. As natural hosts and reservoirs, farmed animals provide powerful insights into host-adaptation and pathogenesis of Salmonella not always evident from surrogate rodent or cell-based models.
Collapse
Affiliation(s)
- Mark P Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, United Kingdom.
| | - Robert A Kingsley
- Quadram Institute Bioscience, Norwich Research Park, NR4 7UQ, United Kingdom; School of Biological Science, University of East Anglia, Norwich, NR4 7EA, United Kingdom.
| |
Collapse
|
30
|
Savitskiy S, Itzen A. SopD from Salmonella specifically inactivates Rab8. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140661. [PMID: 33872771 DOI: 10.1016/j.bbapap.2021.140661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
Salmonella outer protein D (SopD) is secreted into a host during the first stages of the Salmonella infection and contributes to the systemic virulence of the bacterium. SopD2 is a SopD homolog and possesses GTPase activating protein (GAP) activity towards Rab32. Here, we identified Rab-proteins as putative SopD-targets using a yeast two-hybrid approach. In vitro investigations subsequently revealed Rab8a as an exclusive SopD substrate in contrast to SopD2, which has a broader specificity targeting Rab29, Rab32 and Rab38 in vitro. Additionally, we determined the catalytic efficiencies of SopD and SopD2 towards their physiologically relevant substrates. Moreover, mutagenesis studies provided insights into possible key residues of the Rab-protein and the GAP involved in the conversion of active to inactive GTPase. In conclusion, we demonstrate that Salmonella SopD and SopD2 act as RabGAPs and can inactivate Rab signaling.
Collapse
Affiliation(s)
- Sergey Savitskiy
- Institute of Biochemistry and Signal Transduction, University Medical Centre Hamburg-Eppendorf (UKE), Martinistrasse 52, 20246 Hamburg, Germany; Center for Integrated Protein Science Munich (CIPSM), Department Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Aymelt Itzen
- Institute of Biochemistry and Signal Transduction, University Medical Centre Hamburg-Eppendorf (UKE), Martinistrasse 52, 20246 Hamburg, Germany; Center for Integrated Protein Science Munich (CIPSM), Department Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching, Germany; Centre for Structural Systems Biology (CSSB), University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, Germany.
| |
Collapse
|
31
|
Solano-Collado V, Colamarino RA, Calderwood DA, Baldassarre M, Spanò S. A Small-Scale shRNA Screen in Primary Mouse Macrophages Identifies a Role for the Rab GTPase Rab1b in Controlling Salmonella Typhi Growth. Front Cell Infect Microbiol 2021; 11:660689. [PMID: 33898333 PMCID: PMC8059790 DOI: 10.3389/fcimb.2021.660689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/22/2021] [Indexed: 01/21/2023] Open
Abstract
Salmonella Typhi is a human-restricted bacterial pathogen that causes typhoid fever, a life-threatening systemic infection. A fundamental aspect of S. Typhi pathogenesis is its ability to survive in human macrophages but not in macrophages from other animals (i.e. mice). Despite the importance of macrophages in establishing systemic S. Typhi infection, the mechanisms that macrophages use to control the growth of S. Typhi and the role of these mechanisms in the bacterium's adaptation to the human host are mostly unknown. To facilitate unbiased identification of genes involved in controlling the growth of S. Typhi in macrophages, we report optimized experimental conditions required to perform loss-of function pooled shRNA screens in primary mouse bone-marrow derived macrophages. Following infection with a fluorescent-labeled S. Typhi, infected cells are sorted based on the intensity of fluorescence (i.e. number of intracellular fluorescent bacteria). shRNAs enriched in the fluorescent population are identified by next-generation sequencing. A proof-of-concept screen targeting the mouse Rab GTPases confirmed Rab32 as important to restrict S. Typhi in mouse macrophages. Interestingly and rather unexpectedly, this screen also revealed that Rab1b controls S. Typhi growth in mouse macrophages. This constitutes the first report of a Rab GTPase other than Rab32 involved in S. Typhi host-restriction. The methodology described here should allow genome-wide screening to identify mechanisms controlling the growth of S. Typhi and other intracellular pathogens in primary immune cells.
Collapse
Affiliation(s)
| | | | - David A. Calderwood
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, United States
| | | | - Stefania Spanò
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
32
|
Li DY, Liu YL, Liao XJ, He TT, Sun SS, Nie P, Xie HX. Identification and Characterization of EvpQ, a Novel T6SS Effector Encoded on a Mobile Genetic Element in Edwardsiella piscicida. Front Microbiol 2021; 12:643498. [PMID: 33776977 PMCID: PMC7991086 DOI: 10.3389/fmicb.2021.643498] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/05/2021] [Indexed: 11/13/2022] Open
Abstract
In this study, a hypothetical protein (ORF02740) secreted by Edwardsiella piscicida was identified. We renamed the ORF02740 protein as EvpQ, which is encoded by a mobile genetic element (MGE) in E. piscicida genome. The evpQ gene is spaced by 513 genes from type VI secretion system (T6SS) gene cluster. Low GC content, three tRNA, and three transposase genes nearby evpQ define this MGE that evpQ localizes as a genomic island. Sequence analysis reveals that EvpQ shares a conserved domain of C70 family cysteine protease and shares 23.91% identity with T3SS effector AvrRpt2 of phytopathogenic Erwinia amylovora. Instead, EvpQ of E. piscicida is proved to be secreted at a T6SS-dependent manner, and it can be translocated into host cells. EvpQ is thereof a novel T6SS effector. Significantly decreased competitive index of ΔevpQ strain in blue gourami fish (0.53 ± 0.27 in head kidney and 0.44 ± 0.19 in spleen) indicates that EvpQ contributes to the pathogenesis of E. piscicida. At 8-, 18-, and 24-h post-subculture into DMEM, the transcription of evpQ was found to be negatively regulated by Fur and positively regulated by EsrC, and the steady-state protein levels of EvpQ are negatively controlled by RpoS. Our study lays a foundation for further understanding the pathogenic role of T6SS in edwardsiellosis.
Collapse
Affiliation(s)
- Duan You Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Li Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiao Jian Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tian Tian He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shan Shan Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Hai Xia Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
33
|
J Barton A, Hill J, J Blohmke C, J Pollard A. Host restriction, pathogenesis and chronic carriage of typhoidal Salmonella. FEMS Microbiol Rev 2021; 45:6159486. [PMID: 33733659 PMCID: PMC8498562 DOI: 10.1093/femsre/fuab014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/03/2021] [Indexed: 12/16/2022] Open
Abstract
While conjugate vaccines against typhoid fever have recently been recommended by the World Health Organization for deployment, the lack of a vaccine against paratyphoid, multidrug resistance and chronic carriage all present challenges for the elimination of enteric fever. In the past decade, the development of in vitro and human challenge models has resulted in major advances in our understanding of enteric fever pathogenesis. In this review, we summarise these advances, outlining mechanisms of host restriction, intestinal invasion, interactions with innate immunity and chronic carriage, and discuss how this knowledge may progress future vaccines and antimicrobials.
Collapse
Affiliation(s)
- Amber J Barton
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford OX3 7LE, UK.,National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford OX4 2PG, UK.,Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Jennifer Hill
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford OX3 7LE, UK.,National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford OX4 2PG, UK
| | - Christoph J Blohmke
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford OX3 7LE, UK.,National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford OX4 2PG, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford OX3 7LE, UK.,National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford OX4 2PG, UK
| |
Collapse
|
34
|
Homma Y, Hiragi S, Fukuda M. Rab family of small GTPases: an updated view on their regulation and functions. FEBS J 2021; 288:36-55. [PMID: 32542850 PMCID: PMC7818423 DOI: 10.1111/febs.15453] [Citation(s) in RCA: 231] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/27/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022]
Abstract
The Rab family of small GTPases regulates intracellular membrane trafficking by orchestrating the biogenesis, transport, tethering, and fusion of membrane-bound organelles and vesicles. Like other small GTPases, Rabs cycle between two states, an active (GTP-loaded) state and an inactive (GDP-loaded) state, and their cycling is catalyzed by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Because an active form of each Rab localizes on a specific organelle (or vesicle) and recruits various effector proteins to facilitate each step of membrane trafficking, knowing when and where Rabs are activated and what effectors Rabs recruit is crucial to understand their functions. Since the discovery of Rabs, they have been regarded as one of the central hubs for membrane trafficking, and numerous biochemical and genetic studies have revealed the mechanisms of Rab functions in recent years. The results of these studies have included the identification and characterization of novel GEFs, GAPs, and effectors, as well as post-translational modifications, for example, phosphorylation, of Rabs. Rab functions beyond the simple effector-recruiting model are also emerging. Furthermore, the recently developed CRISPR/Cas technology has enabled acceleration of knockout analyses in both animals and cultured cells and revealed previously unknown physiological roles of many Rabs. In this review article, we provide the most up-to-date and comprehensive lists of GEFs, GAPs, effectors, and knockout phenotypes of mammalian Rabs and discuss recent findings in regard to their regulation and functions.
Collapse
Affiliation(s)
- Yuta Homma
- Laboratory of Membrane Trafficking MechanismsDepartment of Integrative Life SciencesGraduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Shu Hiragi
- Laboratory of Membrane Trafficking MechanismsDepartment of Integrative Life SciencesGraduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking MechanismsDepartment of Integrative Life SciencesGraduate School of Life SciencesTohoku UniversitySendaiJapan
| |
Collapse
|
35
|
Baldassarre M, Solano-Collado V, Balci A, Colamarino RA, Dambuza IM, Reid DM, Wilson HM, Brown GD, Mukhopadhyay S, Dougan G, Spanò S. The Rab32/BLOC-3-dependent pathway mediates host defense against different pathogens in human macrophages. SCIENCE ADVANCES 2021; 7:7/3/eabb1795. [PMID: 33523895 PMCID: PMC7810368 DOI: 10.1126/sciadv.abb1795] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 11/24/2020] [Indexed: 05/06/2023]
Abstract
Macrophages provide a first line of defense against microorganisms, and while some mechanisms to kill pathogens such as the oxidative burst are well described, others are still undefined or unknown. Here, we report that the Rab32 guanosine triphosphatase and its guanine nucleotide exchange factor BLOC-3 (biogenesis of lysosome-related organelles complex-3) are central components of a trafficking pathway that controls both bacterial and fungal intracellular pathogens. This host-defense mechanism is active in both human and murine macrophages and is independent of well-known antimicrobial mechanisms such as the NADPH (reduced form of nicotinamide adenine dinucleotide phosphate)-dependent oxidative burst, production of nitric oxide, and antimicrobial peptides. To survive in human macrophages, Salmonella Typhi actively counteracts the Rab32/BLOC-3 pathway through its Salmonella pathogenicity island-1-encoded type III secretion system. These findings demonstrate that the Rab32/BLOC-3 pathway is a novel and universal host-defense pathway and protects mammalian species from various pathogens.
Collapse
Affiliation(s)
| | - Virtu Solano-Collado
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB252ZD, UK
| | - Arda Balci
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB252ZD, UK
| | - Rosa A Colamarino
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB252ZD, UK
| | - Ivy M Dambuza
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB252ZD, UK
- MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Delyth M Reid
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB252ZD, UK
| | - Heather M Wilson
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB252ZD, UK
| | - Gordon D Brown
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB252ZD, UK
- MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Subhankar Mukhopadhyay
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Great Maze Pond, London, SE1 9RT, UK
| | - Gordon Dougan
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Stefania Spanò
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB252ZD, UK
| |
Collapse
|
36
|
Balci A, Solano-Collado V, Baldassarre M, Spanò S. VARP and Rab9 Are Dispensable for the Rab32/BLOC-3 Dependent Salmonella Killing. Front Cell Infect Microbiol 2020; 10:581024. [PMID: 33392103 PMCID: PMC7772198 DOI: 10.3389/fcimb.2020.581024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/17/2020] [Indexed: 01/22/2023] Open
Abstract
Salmonella enterica serovar Typhi (S. Typhi) is the causative agent of typhoid fever, a disease that kills an estimated 200,000 people annually. Previously, we discovered an antimicrobial pathway dependent on Rab32 and BLOC-3 (BRAM) that is critical to kill S. Typhi in murine macrophages. The BLOC-3 complex is comprised of the two sub-units HPS1 and HPS4 and exhibits guanine-nucleotide exchange factor (GEF) activity to Rab32. In melanocytes, Rab9 has been shown to interact with HPS4 and RUTBC1, a Rab32 GTPase activating (GAP) protein, and regulate the Rab32-mediated melanosome biogenesis. Intriguingly, Rab9-deficient melanocytes exhibit hypopigmentation, a similar phenotype to Rab32 or BLOC-3 deficient melanocytes. Additionally, VPS9-ankyrin-repeat-protein (VARP) has been shown to regulate melanocytic enzyme trafficking into the melanosomes through interaction with Rab32. Although Rab32, Rab9 and VARP are a part of melanogenesis in melanocytes, whether Rab9 and VARP are required for the BRAM mediated killing in macrophages is currently unknown. Here we showed that HPS4 is recruited to the Salmonella-containing vacuoles (SCV) and over-expression of BLOC-3 significantly increased Rab32-positive bacteria vacuoles. We found that SCV acquire Rab9, however over-expressing Rab9 did not change HPS4 localization on bacteria vacuoles. Importantly, we used shRNA to knock-down Rab9 and VARP in macrophages and showed that these proteins are dispensable for Rab32 recruitment to the SCV. Furthermore, we assessed the survival of S. Typhimurium in macrophages deficient for Rab9 or VARP and demonstrated that these proteins are not essential for BRAM pathway-dependent killing.
Collapse
|
37
|
Savitskiy S, Wachtel R, Pourjafar-Dehkordi D, Kang HS, Trauschke V, Lamb DC, Sattler M, Zacharias M, Itzen A. Proteolysis of Rab32 by Salmonella GtgE induces an inactive GTPase conformation. iScience 2020; 24:101940. [PMID: 33426511 PMCID: PMC7779776 DOI: 10.1016/j.isci.2020.101940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/18/2020] [Accepted: 12/10/2020] [Indexed: 12/26/2022] Open
Abstract
Rab GTPases are central regulators of intracellular vesicular trafficking. They are frequently targeted by bacterial pathogens through post-translational modifications. Salmonella typhimurium secretes the cysteine protease GtgE during infection, leading to a regioselective proteolytic cleavage of the regulatory switch I loop in the small GTPases of the Rab32 subfamily. Here, using a combination of biochemical methods, molecular dynamics simulations, NMR spectroscopy, and single-pair Förster resonance energy transfer, we demonstrate that the cleavage of Rab32 causes a local increase of conformational flexibility in both switch regions. Cleaved Rab32 maintains its ability to interact with the GDP dissociation inhibitor (GDI). Interestingly, the Rab32 cleavage enables GDI binding also with an active GTP-bound Rab32 in vitro. Furthermore, the Rab32 proteolysis provokes disturbance in the interaction with its downstream effector VARP. Thus, the proteolysis of Rab32 is not a globally degradative mechanism but affects various biochemical and structural properties of the GTPase in a diverse manner.
Collapse
Affiliation(s)
- Sergey Savitskiy
- Department of Biochemistry and Signaltransduction, University Medical Centre Hamburg-Eppendorf (UKE), Martinistrasse 52, 20246 Hamburg, Germany.,Center for Integrated Protein Science Munich (CIPSM), Department Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Rudolf Wachtel
- Center for Integrated Protein Science Munich (CIPSM), Department Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Danial Pourjafar-Dehkordi
- Physics Department T38, Technical University of Munich, James-Franck-Strasse 1, 85748 Garching, Germany
| | - Hyun-Seo Kang
- Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany.,Chemistry Department, Biomolecular NMR and Center for Integrated Protein Science Munich, Technical University of Munich, 85748 Garching, Germany
| | - Vanessa Trauschke
- Department of Chemistry, Center for Nanoscience (CeNS), NanoSystems Initiative Munich (NIM) and Center for Integrated Protein Science Munich (CIPSM), Ludwig Maximilians-Universität München, Munich Germany
| | - Don C Lamb
- Department of Chemistry, Center for Nanoscience (CeNS), NanoSystems Initiative Munich (NIM) and Center for Integrated Protein Science Munich (CIPSM), Ludwig Maximilians-Universität München, Munich Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany.,Chemistry Department, Biomolecular NMR and Center for Integrated Protein Science Munich, Technical University of Munich, 85748 Garching, Germany
| | - Martin Zacharias
- Physics Department T38, Technical University of Munich, James-Franck-Strasse 1, 85748 Garching, Germany
| | - Aymelt Itzen
- Department of Biochemistry and Signaltransduction, University Medical Centre Hamburg-Eppendorf (UKE), Martinistrasse 52, 20246 Hamburg, Germany.,Center for Integrated Protein Science Munich (CIPSM), Department Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching, Germany.,Centre for Structural Systems Biology (CSSB), University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, Germany
| |
Collapse
|
38
|
Gan J, Scott NE, Newson JPM, Wibawa RR, Wong Fok Lung T, Pollock GL, Ng GZ, van Driel I, Pearson JS, Hartland EL, Giogha C. The Salmonella Effector SseK3 Targets Small Rab GTPases. Front Cell Infect Microbiol 2020; 10:419. [PMID: 32974215 PMCID: PMC7466453 DOI: 10.3389/fcimb.2020.00419] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/08/2020] [Indexed: 01/10/2023] Open
Abstract
During infection, Salmonella species inject multiple type III secretion system (T3SS) effector proteins into host cells that mediate invasion and subsequent intracellular replication. At early stages of infection, Salmonella exploits key regulators of host intracellular vesicle transport, including the small GTPases Rab5 and Rab7, to subvert host endocytic vesicle trafficking and establish the Salmonella-containing vacuole (SCV). At later stages of intracellular replication, interactions of the SCV with Rab GTPases are less well defined. Here we report that Rab1, Rab5, and Rab11 are modified at later stages of Salmonella infection by SseK3, an arginine N-acetylglucosamine (GlcNAc) transferase effector translocated via the Salmonella pathogenicity island 2 (SPI-2) type III secretion system. SseK3 modified arginines at positions 74, 82, and 111 within Rab1 and this modification occurred independently of Rab1 nucleotide binding. SseK3 exhibited Golgi localization that was independent of its glycosyltransferase activity but Arg-GlcNAc transferase activity was required for inhibition of alkaline phosphatase secretion in transfected cells. While SseK3 had a modest effect on SEAP secretion during infection of HeLa229 cells, inhibition of IL-1 and GM-CSF cytokine secretion was only observed upon over-expression of SseK3 during infection of RAW264.7 cells. Our results suggest that, in addition to targeting death receptor signaling, SseK3 may contribute to Salmonella infection by interfering with the activity of key Rab GTPases.
Collapse
Affiliation(s)
- Jiyao Gan
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Nichollas E. Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Joshua P. M. Newson
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Rachelia R. Wibawa
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Tania Wong Fok Lung
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Georgina L. Pollock
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Garrett Z. Ng
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Ian van Driel
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Jaclyn S. Pearson
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Elizabeth L. Hartland
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Cristina Giogha
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| |
Collapse
|
39
|
Chen M, Sun H, Boot M, Shao L, Chang SJ, Wang W, Lam TT, Lara-Tejero M, Rego EH, Galán JE. Itaconate is an effector of a Rab GTPase cell-autonomous host defense pathway against Salmonella. Science 2020; 369:450-455. [PMID: 32703879 DOI: 10.1126/science.aaz1333] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/26/2020] [Accepted: 05/15/2020] [Indexed: 11/02/2022]
Abstract
The guanosine triphosphatase (GTPase) Rab32 coordinates a cell-intrinsic host defense mechanism that restricts the replication of intravacuolar pathogens such as Salmonella Here, we show that this mechanism requires aconitate decarboxylase 1 (IRG1), which synthesizes itaconate, a metabolite with antimicrobial activity. We find that Rab32 interacts with IRG1 on Salmonella infection and facilitates the delivery of itaconate to the Salmonella-containing vacuole. Mice defective in IRG1 rescued the virulence defect of a S. enterica serovar Typhimurium mutant specifically defective in its ability to counter the Rab32 defense mechanism. These studies provide a link between a metabolite produced in the mitochondria after stimulation of innate immune receptors and a cell-autonomous defense mechanism that restricts the replication of an intracellular bacterial pathogen.
Collapse
Affiliation(s)
- Meixin Chen
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Hui Sun
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Maikel Boot
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Lin Shao
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Shu-Jung Chang
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Weiwei Wang
- WM Keck Foundation Biotechnology Resource Laboratory, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Tukiet T Lam
- WM Keck Foundation Biotechnology Resource Laboratory, Yale University School of Medicine, New Haven, CT 06536, USA.,Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Maria Lara-Tejero
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
| | - E Hesper Rego
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Jorge E Galán
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA.
| |
Collapse
|
40
|
Whole-Genome Comparative and Pathogenicity Analysis of Salmonella enterica subsp. enterica Serovar Rissen. G3-GENES GENOMES GENETICS 2020; 10:2159-2170. [PMID: 32358017 PMCID: PMC7341144 DOI: 10.1534/g3.120.401201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Salmonella are a type of bacteria known to cause food-borne illness. Their host range varies widely, and their susceptibility to the host determines its pathogenicity. Salmonella enterica serovar Rissen (S. Rissen) is a widely distributed serotype; however, its virulence and pathogenicity are poorly understood. In this study, the pathogenicity and antibiotic resistance of a representative S. Rissen isolate were investigated. The cell model results showed that S. Rissen preferred to replicate in human macrophage cells U937 compared to murine macrophage cells RAW264.7, suggesting that it has a level of host adaptability. Genome sequencing and comparison analysis revealed that the distribution and nonsynonymous single nucleotide polymorphisms of virulence factors in S. Rissen were similar to those in S. Typhi rather than to those in S. Typhimurium. Taken together, our results suggest that although S. Rissen is a common serotype distributed in swine herds, pork and chicken products, it has strong ability to infect humans.
Collapse
|
41
|
Fauser J, Savitskiy S, Fottner M, Trauschke V, Gulen B. Sortase-Mediated Quantifiable Enzyme Immobilization on Magnetic Nanoparticles. Bioconjug Chem 2020; 31:1883-1892. [DOI: 10.1021/acs.bioconjchem.0c00322] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Joel Fauser
- Department of Biochemistry and Signaltransduction, University Medical Center Hamburg-Eppendorf (UKE), Martinistrasse 52, 20251, Hamburg, Germany
- Center for Integrated Protein Science Munich (CIPSM), Department Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Sergey Savitskiy
- Department of Biochemistry and Signaltransduction, University Medical Center Hamburg-Eppendorf (UKE), Martinistrasse 52, 20251, Hamburg, Germany
- Center for Integrated Protein Science Munich (CIPSM), Department Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Maximilian Fottner
- Center for Integrated Protein Science Munich (CIPSM), Department Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Vanessa Trauschke
- Department of Chemistry, Center for Nanoscience (CeNS), Ludwig Maximilians-Universität, Schellingstrasse 4, 80799, Munich, Germany
| | - Burak Gulen
- Department of Biochemistry and Signaltransduction, University Medical Center Hamburg-Eppendorf (UKE), Martinistrasse 52, 20251, Hamburg, Germany
- Center for Integrated Protein Science Munich (CIPSM), Department Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| |
Collapse
|
42
|
Bowman SL, Bi-Karchin J, Le L, Marks MS. The road to lysosome-related organelles: Insights from Hermansky-Pudlak syndrome and other rare diseases. Traffic 2020; 20:404-435. [PMID: 30945407 DOI: 10.1111/tra.12646] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/11/2022]
Abstract
Lysosome-related organelles (LROs) comprise a diverse group of cell type-specific, membrane-bound subcellular organelles that derive at least in part from the endolysosomal system but that have unique contents, morphologies and functions to support specific physiological roles. They include: melanosomes that provide pigment to our eyes and skin; alpha and dense granules in platelets, and lytic granules in cytotoxic T cells and natural killer cells, which release effectors to regulate hemostasis and immunity; and distinct classes of lamellar bodies in lung epithelial cells and keratinocytes that support lung plasticity and skin lubrication. The formation, maturation and/or secretion of subsets of LROs are dysfunctional or entirely absent in a number of hereditary syndromic disorders, including in particular the Hermansky-Pudlak syndromes. This review provides a comprehensive overview of LROs in humans and model organisms and presents our current understanding of how the products of genes that are defective in heritable diseases impact their formation, motility and ultimate secretion.
Collapse
Affiliation(s)
- Shanna L Bowman
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jing Bi-Karchin
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Linh Le
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael S Marks
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
43
|
Bawn M, Alikhan NF, Thilliez G, Kirkwood M, Wheeler NE, Petrovska L, Dallman TJ, Adriaenssens EM, Hall N, Kingsley RA. Evolution of Salmonella enterica serotype Typhimurium driven by anthropogenic selection and niche adaptation. PLoS Genet 2020; 16:e1008850. [PMID: 32511244 PMCID: PMC7302871 DOI: 10.1371/journal.pgen.1008850] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/18/2020] [Accepted: 05/12/2020] [Indexed: 12/25/2022] Open
Abstract
Salmonella enterica serotype Typhimurium (S. Typhimurium) is a leading cause of gastroenteritis and bacteraemia worldwide, and a model organism for the study of host-pathogen interactions. Two S. Typhimurium strains (SL1344 and ATCC14028) are widely used to study host-pathogen interactions, yet genotypic variation results in strains with diverse host range, pathogenicity and risk to food safety. The population structure of diverse strains of S. Typhimurium revealed a major phylogroup of predominantly sequence type 19 (ST19) and a minor phylogroup of ST36. The major phylogroup had a population structure with two high order clades (α and β) and multiple subclades on extended internal branches, that exhibited distinct signatures of host adaptation and anthropogenic selection. Clade α contained a number of subclades composed of strains from well characterized epidemics in domesticated animals, while clade β contained multiple subclades associated with wild avian species. The contrasting epidemiology of strains in clade α and β was reflected by the distinct distribution of antimicrobial resistance (AMR) genes, accumulation of hypothetically disrupted coding sequences (HDCS), and signatures of functional diversification. These observations were consistent with elevated anthropogenic selection of clade α lineages from adaptation to circulation in populations of domesticated livestock, and the predisposition of clade β lineages to undergo adaptation to an invasive lifestyle by a process of convergent evolution with of host adapted Salmonella serotypes. Gene flux was predominantly driven by acquisition and recombination of prophage and associated cargo genes, with only occasional loss of these elements. The acquisition of large chromosomally-encoded genetic islands was limited, but notably, a feature of two recent pandemic clones (DT104 and monophasic S. Typhimurium ST34) of clade α (SGI-1 and SGI-4).
Collapse
Affiliation(s)
- Matt Bawn
- Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | | | - Gaëtan Thilliez
- Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
| | - Mark Kirkwood
- Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
| | - Nicole E. Wheeler
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Cambridge, United Kingdom
| | | | - Timothy J. Dallman
- Gastrointestinal Bacteria Reference Unit, National Infection Service, Public Health England, London, United Kingdom
| | | | - Neil Hall
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Robert A. Kingsley
- Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
- University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
44
|
Folorunso OS, Adeola S, Giwa Ajeniya AO. <i>Syzygium samarangense</i> Volatile Oil Inhibited Bacteria Growth and Extracellular Protease of <i>Salmonella typhimurium</i>. Pak J Biol Sci 2020; 23:628-637. [PMID: 32363819 DOI: 10.3923/pjbs.2020.628.637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Medicinal plants are fast becoming essential pharmaceuticals for disease and infection management. The vast antimicrobial properties of these plants reside in the inhibitory properties of their endogenous secondary metabolites. Therefore, this study aimed to assess if the volatile oil of Syzygium samarangense inhibits enteric bacteria growth and its effect against the caseinolytic activity of the extracellular protease of Salmonella typhimurium. MATERIALS AND METHODS The volatile oil was extracted by hydrodistillation, while the antimicrobial assay was assessed with the microdilution method. The extracellular protease was partially purified by salting out, followed by size-exclusion chromatography. The mode of inhibition of this enzyme was deduced from the enzyme-substrate kinetics using a line-weaver burke plot. RESULTS The antimicrobial properties of the oil were reported against ten enteric bacteria. Proteus vulgaris has the highest IC50 value of 0.75±0.004% v/v, while S. typhimurium, the most sensitive bacterium, showed the lowest IC50 value of 0.17±0.005% v/v. The extracellular protease of S. typhimurium was partially purified to achieve 3.73 purification fold and 314.2 μmol min-1 mg-1 protein. The optimal caseinolytic activity of this enzyme was found at pH 7.5 and 40 °C. The protease showed significantly higher activity in the presence of Zn2+ (9.3±0.33 U min-1) as compared to the control (7.0±0.58 U min-1) (p<0.05), however, K+, Ca2+, Co2+, Ba2+, Pb2+ and Hg2+ considerably reduced the enzyme activity. The activity of this enzyme was competitively inhibited by the volatile oil as an inhibitor. CONCLUSION The volatile oil of S. samarangense inhibited a wide range of enteric bacteria and, therefore proposed as a potential antimicrobial agent. Inhibiting the extracellular protease of S. typhimurium may be one of its modes of action against these pathogens.
Collapse
|
45
|
The Dynll1-Cox4i1 Complex Regulates Intracellular Pathogen Clearance via Release of Mitochondrial Reactive Oxygen Species. Infect Immun 2020; 88:IAI.00738-19. [PMID: 32041786 PMCID: PMC7093135 DOI: 10.1128/iai.00738-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 01/28/2020] [Indexed: 12/16/2022] Open
Abstract
Cellular membrane proteins are a critical part of the host defense mechanisms against infection and intracellular survival of Listeria monocytogenes The complex spatiotemporal regulation of bacterial infection by various membrane proteins has been challenging to study. Here, using mass spectrometry analyses, we depicted the dynamic expression landscape of membrane proteins upon L. monocytogenes infection in dendritic cells. We showed that Dynein light chain 1 (Dynll1) formed a persistent complex with the mitochondrial cytochrome oxidase Cox4i1, which is disturbed by pathogen insult. We discovered that the dissociation of the Dynll1-Cox4i1 complex is required for the release of mitochondrial reactive oxygen species and serves as a regulator of intracellular proliferation of Listeria monocytogenes Our study shows that Dynll1 is an inhibitor of mitochondrial reactive oxygen species and can serve as a potential molecular drug target for antibacterial treatment.
Collapse
|
46
|
Kanaya T, Williams IR, Ohno H. Intestinal M cells: Tireless samplers of enteric microbiota. Traffic 2019; 21:34-44. [DOI: 10.1111/tra.12707] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/12/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Takashi Kanaya
- Department of PathologyEmory University School of Medicine Atlanta Georgia
| | - Ifor R. Williams
- Laboratory for Intestinal EcosystemRIKEN Center for Integrative Medical Sciences Yokohama Japan
| | - Hiroshi Ohno
- Department of PathologyEmory University School of Medicine Atlanta Georgia
| |
Collapse
|
47
|
BioID screen of Salmonella type 3 secreted effectors reveals host factors involved in vacuole positioning and stability during infection. Nat Microbiol 2019; 4:2511-2522. [PMID: 31611645 DOI: 10.1038/s41564-019-0580-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/09/2019] [Indexed: 12/17/2022]
Abstract
Many bacterial pathogens express virulence proteins that are translocated into host cells (herein referred to as effectors), where they can interact with target proteins to manipulate host cell processes. These effector-host protein interactions are often dynamic and transient in nature, making them difficult to identify using traditional interaction-based methods. Here, we performed a systematic comparison between proximity-dependent biotin labelling (BioID) and immunoprecipitation coupled with mass spectrometry to investigate a series of Salmonella type 3 secreted effectors that manipulate host intracellular trafficking (SifA, PipB2, SseF, SseG and SopD2). Using BioID, we identified 632 candidate interactions with 381 unique human proteins, collectively enriched for roles in vesicular trafficking, cytoskeleton components and transport activities. From the subset of proteins exclusively identified by BioID, we report that SifA interacts with BLOC-2, a protein complex that regulates dynein motor activity. We demonstrate that the BLOC-2 complex is necessary for SifA-mediated positioning of Salmonella-containing vacuoles, and affects stability of the vacuoles during infection. Our study provides insight into the coordinated activities of Salmonella type 3 secreted effectors and demonstrates the utility of BioID as a powerful, complementary tool to characterize effector-host protein interactions.
Collapse
|
48
|
Rab GTPases: Switching to Human Diseases. Cells 2019; 8:cells8080909. [PMID: 31426400 PMCID: PMC6721686 DOI: 10.3390/cells8080909] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023] Open
Abstract
Rab proteins compose the largest family of small GTPases and control the different steps of intracellular membrane traffic. More recently, they have been shown to also regulate cell signaling, division, survival, and migration. The regulation of these processes generally occurs through recruitment of effectors and regulatory proteins, which control the association of Rab proteins to membranes and their activation state. Alterations in Rab proteins and their effectors are associated with multiple human diseases, including neurodegeneration, cancer, and infections. This review provides an overview of how the dysregulation of Rab-mediated functions and membrane trafficking contributes to these disorders. Understanding the altered dynamics of Rabs and intracellular transport defects might thus shed new light on potential therapeutic strategies.
Collapse
|
49
|
Gibani MM, Jones E, Barton A, Jin C, Meek J, Camara S, Galal U, Heinz E, Rosenberg-Hasson Y, Obermoser G, Jones C, Campbell D, Black C, Thomaides-Brears H, Darlow C, Dold C, Silva-Reyes L, Blackwell L, Lara-Tejero M, Jiao X, Stack G, Blohmke CJ, Hill J, Angus B, Dougan G, Galán J, Pollard AJ. Investigation of the role of typhoid toxin in acute typhoid fever in a human challenge model. Nat Med 2019; 25:1082-1088. [PMID: 31270506 PMCID: PMC6892374 DOI: 10.1038/s41591-019-0505-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 05/30/2019] [Indexed: 11/09/2022]
Abstract
Salmonella Typhi is a human host-restricted pathogen that is responsible for typhoid fever in approximately 10.9 million people annually1. The typhoid toxin is postulated to have a central role in disease pathogenesis, the establishment of chronic infection and human host restriction2–6. However, its precise role in typhoid disease in humans is not fully defined. We studied the role of typhoid toxin in acute infection using a randomized, double-blind S. Typhi human challenge model7. Forty healthy volunteers were randomized (1:1) to oral challenge with 104 colony-forming units of wild-type or an isogenic typhoid toxin deletion mutant (TN) of S. Typhi. We observed no significant difference in the rate of typhoid infection (fever ≥38 °C for ≥12 h and/or S. Typhi bacteremia) between participants challenged with wild-type or TN S. Typhi (15 out of 21 (71%) versus 15 out of 19 (79%); P = 0.58). The duration of bacteremia was significantly longer in participants challenged with the TN strain compared with wild-type (47.6 hours (28.9–97.0) versus 30.3(3.6–49.4); P ≤ 0.001). The clinical syndrome was otherwise indistinguishable between wild-type and TN groups. These data suggest that the typhoid toxin is not required for infection and the development of early typhoid fever symptoms within the context of a human challenge model. Further clinical data are required to assess the role of typhoid toxin in severe disease or the establishment of bacterial carriage. Typhoid toxin is not essential for the pathogenesis of typhoid fever in healthy humans challenged with Salmonella Typhi.
Collapse
Affiliation(s)
- Malick M Gibani
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK. .,Department of Medicine, Imperial College London, London, UK.
| | - Elizabeth Jones
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Amber Barton
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Celina Jin
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Juliette Meek
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Susana Camara
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Ushma Galal
- Nuffield Department of Primary Care Health Sciences, Clinical Trials Unit, University of Oxford, Oxford, UK
| | - Eva Heinz
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.,Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Yael Rosenberg-Hasson
- Human Immune Monitoring Center, Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Gerlinde Obermoser
- Human Immune Monitoring Center, Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Claire Jones
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Danielle Campbell
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Charlotte Black
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Helena Thomaides-Brears
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Christopher Darlow
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Christina Dold
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Laura Silva-Reyes
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Luke Blackwell
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Maria Lara-Tejero
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Xuyao Jiao
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Gabrielle Stack
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Christoph J Blohmke
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Jennifer Hill
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Brian Angus
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Gordon Dougan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.,Department of Medicine, University of Cambridge, Hinxton, UK
| | - Jorge Galán
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
50
|
Lima NCB, Tanmoy AM, Westeel E, de Almeida LGP, Rajoharison A, Islam M, Endtz HP, Saha SK, de Vasconcelos ATR, Komurian-Pradel F. Analysis of isolates from Bangladesh highlights multiple ways to carry resistance genes in Salmonella Typhi. BMC Genomics 2019; 20:530. [PMID: 31253105 PMCID: PMC6599262 DOI: 10.1186/s12864-019-5916-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/20/2019] [Indexed: 12/12/2022] Open
Abstract
Background Typhoid fever, caused by Salmonella Typhi, follows a fecal-oral transmission route and is a major global public health concern, especially in developing countries like Bangladesh. Increasing emergence of antimicrobial resistance (AMR) is a serious issue; the list of treatments for typhoid fever is ever-decreasing. In addition to IncHI1-type plasmids, Salmonella genomic island (SGI) 11 has been reported to carry AMR genes. Although reports suggest a recent reduction in multidrug resistance (MDR) in the Indian subcontinent, the corresponding genomic changes in the background are unknown. Results Here, we assembled and annotated complete closed chromosomes and plasmids for 73 S. Typhi isolates using short-length Illumina reads. S. Typhi had an open pan-genome, and the core genome was smaller than previously reported. Considering AMR genes, we identified five variants of SGI11, including the previously reported reference sequence. Five plasmids were identified, including the new plasmids pK91 and pK43; pK43and pHCM2 were not related to AMR. The pHCM1, pPRJEB21992 and pK91 plasmids carried AMR genes and, along with the SGI11 variants, were responsible for resistance phenotypes. pK91 also contained qnr genes, conferred high ciprofloxacin resistance and was related to the H58-sublineage Bdq, which shows the same phenotype. The presence of plasmids (pHCM1 and pK91) and SGI11 were linked to two H58-lineages, Ia and Bd. Loss of plasmids and integration of resistance genes in genomic islands could contribute to the fitness advantage of lineage Ia isolates. Conclusions Such events may explain why lineage Ia is globally widespread, while the Bd lineage is locally restricted. Further studies are required to understand how these S. Typhi AMR elements spread and generate new variants. Preventive measures such as vaccination programs should also be considered in endemic countries; such initiatives could potentially reduce the spread of AMR. Electronic supplementary material The online version of this article (10.1186/s12864-019-5916-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicholas Costa Barroso Lima
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil.,Laboratório Nacional de Computação Científica, Petrópolis, Brazil
| | - Arif M Tanmoy
- Department of Medical Microbiology & Infectious Diseases, Erasmus MC, Rotterdam, the Netherlands.,Fondation Mérieux - Laboratoire des Pathogènes Emergents, Lyon, France.,Child Health Research Foundation, Department of Microbiology, Dhaka Shishu Hospital, Dhaka, 1207, Bangladesh
| | - Emilie Westeel
- Fondation Mérieux - Laboratoire des Pathogènes Emergents, Lyon, France
| | | | - Alain Rajoharison
- Fondation Mérieux - Laboratoire des Pathogènes Emergents, Lyon, France
| | - Maksuda Islam
- Child Health Research Foundation, Department of Microbiology, Dhaka Shishu Hospital, Dhaka, 1207, Bangladesh
| | - Hubert P Endtz
- Department of Medical Microbiology & Infectious Diseases, Erasmus MC, Rotterdam, the Netherlands.,Fondation Mérieux - Laboratoire des Pathogènes Emergents, Lyon, France
| | - Samir K Saha
- Child Health Research Foundation, Department of Microbiology, Dhaka Shishu Hospital, Dhaka, 1207, Bangladesh.,Bangladesh Institute of Child Health, Dhaka Shishu Hospital, Dhaka, 1207, Bangladesh
| | | | | |
Collapse
|