1
|
Li Z, Gao Y, Chen X, Xu L, Li Z, Chai R. Study on Recovery Strategy of Hearing Loss & SGN Regeneration Under Physical Regulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410919. [PMID: 39716878 PMCID: PMC11791950 DOI: 10.1002/advs.202410919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/18/2024] [Indexed: 12/25/2024]
Abstract
The World Health Organization (WHO) reports that by 2050, nearly 2.5 billion people are expected to have some degree of hearing loss (HL) and at least 700 million will need hearing rehabilitation. Therefore, there is an urgent need to develop treatment strategies for HL. At present, the main treatment strategies for HL are hearing aids and cochlear implants (CIs), which cannot achieve a radical cure for HL. Relevant studies have shown that the most fundamental treatment strategy for sensorineural hearing loss (SNHL) is to regenerate hair cells and spiral ganglion neurons (SGNs) through stem cells to repair the structure and function of cochlea. In addition, physical stimulation strategies, such as electricity, light, and magnetism have also been used to promote SGN regeneration. This review systematically introduces the classification, principle and latest progress of the existing hearing treatment strategies and summarizes the advantages and disadvantages of each strategy. The research progress of physical regulation mechanism is discussed in detail. Finally, the problems in HL repair strategies are summarized and the future development direction is prospected, which could provide new ideas and technologies for the optimization of hearing treatment strategies and the research of SGN repair and regeneration through physical regulation.
Collapse
Affiliation(s)
- Zhe Li
- Department of NeurologyAerospace Center HospitalSchool of LifeBeijing Institute of TechnologyBeijing100081China
| | - Yijia Gao
- Department of NeurologyAerospace Center HospitalSchool of LifeBeijing Institute of TechnologyBeijing100081China
| | - Xingyu Chen
- Department of NeurologyAerospace Center HospitalSchool of LifeBeijing Institute of TechnologyBeijing100081China
| | - Lei Xu
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
| | - Zhou Li
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- School of Nanoscience and EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Renjie Chai
- Department of NeurologyAerospace Center HospitalSchool of LifeBeijing Institute of TechnologyBeijing100081China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantong226001China
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| |
Collapse
|
2
|
Lai Y, Qiu J, Zheng K, Li X, Lin Y, Li Z, Sun H. Metformin-induced mitophagy suppresses auditory hair cell apoptosis via AMPK pathway. Brain Res Bull 2025; 221:111214. [PMID: 39826756 DOI: 10.1016/j.brainresbull.2025.111214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Hearing loss is a pervasive issue affecting numerous individuals, and its etiology and categorization are multifaceted. Among these, sensorineural hearing loss (SNHL) emerges as the most prevalent variant among these. The primary causative factor underlying SNHL resides in the depletion of auditory hair cells within the cochlea, yet the pursuit of efficacious therapeutic interventions remains an ongoing challenge. Previous investigations have illuminated the role of mitochondrial dysfunction in precipitating cellular apoptosis, and mitophagy has emerged as a promising mechanism to ameliorate such dysfunction. Additionally, it has been noted that metformin possesses the specific ability to induce mitophagy. Herein, our objective is to explore the protective effects of metformin-induced mitophagy against apoptosis in auditory hair cells (HEI-OC1 cells) and explore its potential mechanisms. Our results revealed that metformin effectively triggered mitophagy in HEI-OC1 cells. Moreover, metformin treatment showed the ability to prevent tert-butyl hydroperoxide (TBHP) induced mitochondrial dysfunction and intrinsic apoptotic pathways. Mechanistically, we discovered that metformin activates AMP-activated protein kinase (AMPK) signaling in HEI-OC1 cells stimulated by TBHP, thereby triggering mitophagy. Overall, our results suggest that metformin may represent a promising and innovative therapeutic strategy for mitigating the onset of hearing loss.
Collapse
Affiliation(s)
- Yifan Lai
- Department of Otolaryngology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; The First Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiawei Qiu
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Kuang Zheng
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiang Li
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yinuo Lin
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Zhengzheng Li
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Haiqiu Sun
- Department of Otolaryngology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
3
|
Li W, Xu B, Huang Y, Wang X, Yu D. Rodent models in sensorineural hearing loss research: A comprehensive review. Life Sci 2024; 358:123156. [PMID: 39442868 DOI: 10.1016/j.lfs.2024.123156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Sensorineural hearing loss (SNHL) constitutes a major global health challenge, affecting millions of individuals and substantially impairing social integration and quality of life. The complexity of the auditory system and the multifaceted nature of SNHL necessitate advanced methodologies to understand its etiology, progression, and potential therapeutic interventions. This review provides a comprehensive overview of the current animal models used in SNHL research, focusing on their selection based on specific characteristics and their contributions to elucidating pathophysiological mechanisms and evaluating novel treatment strategies. It discusses the most commonly used rodent models in hearing research, including mice, rats, guinea pigs, Mongolian gerbils, and chinchillas. Through a comparative analysis, this review underscores the importance of selecting models that align with specific research objectives in SNHL studies, discussing the advantages and limitations of each model. By advocating for a multidisciplinary approach that leverages the strengths of various animal models with technological advancements, this review aims to facilitate significant advancements in the prevention, diagnosis, and treatment of sensorineural hearing loss.
Collapse
Affiliation(s)
- Wenjing Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, PR China
| | - Baoying Xu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Yuqi Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Xueling Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, PR China
| | - Dehong Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
4
|
Zhang L, Tan F, Qi J, Lu Y, Wang X, Yang X, Chen X, Zhang X, Fan J, Zhou Y, Peng L, Li N, Xu L, Yang S, Chai R. AAV-mediated Gene Therapy for Hereditary Deafness: Progress and Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402166. [PMID: 39556694 DOI: 10.1002/advs.202402166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/19/2024] [Indexed: 11/20/2024]
Abstract
Hereditary deafness is the most prevalent sensory deficit disorder, with over 100 identified deafness-related genes. Clinical treatment options are currently limited to external devices like hearing aids and cochlear implants. Gene therapy has shown promising results in various genetic disorders and has emerged as a potential treatment for hereditary deafness. It has successfully restored hearing function in >20 types of genetic deafness model mice and can almost completely cure patients with hereditary autosomal recessvie deafness 9 (DFNB9) caused by the OTOFERLIN (OTOF) mutation, thus serving as a translational paradigm for gene therapy for other forms of genetic deafness. However, due to the complexity of the inner ear structure, the diverse nature of deafness genes, and variations in transduction efficiency among different types of inner ear cells targeted by adeno-associated virus (AAV), precision gene therapy approaches are required for different genetic forms of deafness. This review provides a comprehensive overview of gene therapy for hereditary deafness, including preclinical studies and recent research advancements in this field as well as challenges associated with AAV-mediated gene therapy.
Collapse
Affiliation(s)
- Liyan Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Fangzhi Tan
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Jieyu Qi
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
- State Key Laboratory of Hearing and Balance Science, Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yicheng Lu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xiaohan Wang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xuehan Yang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xiangyan Chen
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xinru Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Jinyi Fan
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yinyi Zhou
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Li Peng
- Otovia Therapeutics Inc., Suzhou, 215101, China
| | - Nianci Li
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Lei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, 250022, China
| | - Shiming Yang
- Senior Department of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, 100853, China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
- State Key Laboratory of Hearing and Balance Science, Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
- University of Electronic Science and Technology of China, Chengdu, 610072, China
- Southeast University Shenzhen Research Institute, Shenzhen, 518063, China
| |
Collapse
|
5
|
Yilmaz NK, Ozen D, da Costa Monsanto R, Ocak E, Schuster AK, Shimura T, Cureoglu S. Efficiency of gene therapy for sensorineural hearing loss in mouse model: A meta-analysis. Laryngoscope Investig Otolaryngol 2024; 9:e70048. [PMID: 39655096 PMCID: PMC11626480 DOI: 10.1002/lio2.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024] Open
Abstract
Objectives Sensorineural hearing loss (SNHL) is a disorder characterized by the loss or impairment of cochlear hair cells or the auditory nerve. In recent years, gene therapy has emerged as a promising approach for SNHL treatment. The objective of this study is to evaluate the impact of gene therapy on the restoration or improvement of auditory function in mouse model with loss or impairment of hearing. Methods Studies with clear experimental designs, and auditory brainstem response (ABR) analysis as relevant outcome measures were included by searching PubMed, Scopus, and Web of Science databases. The PRISMA guideline was used for abstracting data and assessing data quality and validity. A quantitative synthesis was performed using a random effects model to examine the effect of gene therapy on auditory function in SNHL. Results Nine articles including 71 studies meeting the inclusion criteria were identified. These studies explored therapies targeting the TMC1, VGLUT3, USH1C, CLRN1, WHRN, and PJVK genes, with genetic material ranging from 1.8 × 1011 and 1.4 × 1014 gc/mL being delivered to the inner ear through round window membrane, cochleostomy, or posterior semicircular canal injection methods. The hearing test results showed a significant mean difference of 26.91 dB (95% CI: 22.01-31.85) in favor of the experimental group. Conclusions Although promising results have been obtained regarding the potential success of gene therapy in SNHL, further investigation is needed to explore the long-term effects of gene therapy, treatment response rates, and the relationships between different genetic mutation types.
Collapse
Affiliation(s)
- Nevra Keskin Yilmaz
- Department of Internal MedicineFaculty of Veterinary Medicine, Ankara UniversityAnkaraTurkey
- Department of Otolaryngology Head & Neck SurgeryUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Dogukan Ozen
- Department of BiostatisticsFaculty of Veterinary Medicine, Ankara UniversityAnkaraTurkey
| | | | - Emre Ocak
- Department of Otolaryngology Head & Neck SurgeryFaculty of Medicine, Ankara UniversityAnkaraTurkey
| | - Artur Koerig Schuster
- Postgraduate Program in Medicine: Surgical Sciences, Universidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreRSBrazil
| | - Tomotaka Shimura
- Department of Otolaryngology Head & Neck SurgeryUniversity of MinnesotaMinneapolisMinnesotaUSA
- Department of OtorhinolaryngologyShowa University Fujigaoka HospitalYokohamaJapan
| | - Sebahattin Cureoglu
- Department of Otolaryngology Head & Neck SurgeryUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
6
|
Cheng C, Zhu G, Wang K, Bu C, Li S, Qiu Y, Lu J, Ji X, Hao W, Wang J, Zhu C, Yang Y, Gu Y, Qian X, Yu C, Gao X. Deletion of Luzp2 Does Not Cause Hearing Loss in Mice. Neurosci Bull 2024; 40:1519-1528. [PMID: 38589712 PMCID: PMC11422540 DOI: 10.1007/s12264-024-01202-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/19/2023] [Indexed: 04/10/2024] Open
Abstract
Deafness is the prevailing sensory impairment among humans, impacting every aspect of one's existence. Half of congenital deafness cases are attributed to genetic factors. Studies have shown that Luzp2 is expressed in hair cells (HCs) and supporting cells of the inner ear, but its specific role in hearing remains unclear. To determine the importance of Luzp2 in auditory function, we generated mice deficient in Luzp2. Our results revealed that Luzp2 has predominant expression within the HCs and pillar cells. However, the loss of Luzp2 did not result in any changes in auditory threshold. HCs or synapse number and HC stereocilia morphology in Luzp2 knockout mice did not show any notable distinctions. This was the first study of the role of Luzp2 in hearing in mice, and our results provide important guidance for the screening of deafness genes.
Collapse
Affiliation(s)
- Cheng Cheng
- Department of Otolaryngology-Head and Neck Surgery, Drum Tower Hospital, Affiliated Hospital of the Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing University, Nanjing, 210008, China
- Research Institute of Otolaryngology, Nanjing, 210008, China
| | - Guangjie Zhu
- Department of Otolaryngology-Head and Neck Surgery, Drum Tower Hospital, Affiliated Hospital of the Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing University, Nanjing, 210008, China
- Research Institute of Otolaryngology, Nanjing, 210008, China
| | - Kaijian Wang
- Department of Otorhinolaryngology, Qidong People's Hospital, Qidong Liver Cancer Institute, Affiliated Qidong Hospital of Nantong University, Nantong, 226200, China
| | - Chuan Bu
- The First Affiliated Hospital of Kangda College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang, 222000, China
| | - Siyu Li
- Department of Otolaryngology-Head and Neck Surgery, Drum Tower Hospital, Affiliated Hospital of the Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing University, Nanjing, 210008, China
| | - Yue Qiu
- Department of Otolaryngology-Head and Neck Surgery, Drum Tower Hospital, Affiliated Hospital of the Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing University, Nanjing, 210008, China
| | - Jie Lu
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
| | - Xinya Ji
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
| | - Wenli Hao
- Department of Otolaryngology-Head and Neck Surgery, Drum Tower Hospital, Affiliated Hospital of the Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing University, Nanjing, 210008, China
| | - Junguo Wang
- Department of Otolaryngology-Head and Neck Surgery, Drum Tower Hospital, Affiliated Hospital of the Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing University, Nanjing, 210008, China
- Research Institute of Otolaryngology, Nanjing, 210008, China
| | - Chengwen Zhu
- Department of Otolaryngology-Head and Neck Surgery, Drum Tower Hospital, Affiliated Hospital of the Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing University, Nanjing, 210008, China
- Research Institute of Otolaryngology, Nanjing, 210008, China
| | - Ye Yang
- Department of Otolaryngology-Head and Neck Surgery, Drum Tower Hospital, Affiliated Hospital of the Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing University, Nanjing, 210008, China
- Research Institute of Otolaryngology, Nanjing, 210008, China
| | - Yajun Gu
- Department of Otolaryngology-Head and Neck Surgery, Drum Tower Hospital, Affiliated Hospital of the Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing University, Nanjing, 210008, China
| | - Xiaoyun Qian
- Department of Otolaryngology-Head and Neck Surgery, Drum Tower Hospital, Affiliated Hospital of the Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing University, Nanjing, 210008, China
- Research Institute of Otolaryngology, Nanjing, 210008, China
| | - Chenjie Yu
- Department of Otolaryngology-Head and Neck Surgery, Drum Tower Hospital, Affiliated Hospital of the Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing University, Nanjing, 210008, China.
- Research Institute of Otolaryngology, Nanjing, 210008, China.
| | - Xia Gao
- Department of Otolaryngology-Head and Neck Surgery, Drum Tower Hospital, Affiliated Hospital of the Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing University, Nanjing, 210008, China.
- Research Institute of Otolaryngology, Nanjing, 210008, China.
| |
Collapse
|
7
|
Wang X, Xu L, Meng Y, Chen F, Zhuang J, Wang M, An W, Han Y, Chu B, Chai R, Liu W, Wang H. FOXO1-NCOA4 Axis Contributes to Cisplatin-Induced Cochlea Spiral Ganglion Neuron Ferroptosis via Ferritinophagy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402671. [PMID: 39206719 PMCID: PMC11515924 DOI: 10.1002/advs.202402671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Mammalian cochlea spiral ganglion neurons (SGNs) are crucial for sound transmission, they can be damaged by chemotherapy drug cisplatin and lead to irreversible sensorineural hearing loss (SNHL), while such damage can also render cochlear implants ineffective. However, the mechanisms underlying cisplatin-induced SGNs damage and subsequent SNHL are still under debate and there is no currently effective clinical treatment. Here, this study demonstrates that ferroptosis is triggered in SGNs following exposure to cisplatin. Inhibiting ferroptosis protects against cisplatin-induced SGNs damage and hearing loss, while inducing ferroptosis intensifies these effects. Furthermore, cisplatin prompts nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy in SGNs, while knocking down NCOA4 mitigates cisplatin-induced ferroptosis and hearing loss. Notably, the upstream regulator of NCOA4 is identified and transcription factor forkhead box O1 (FOXO1) is shown to directly suppress NCOA4 expression in SGNs. The knocking down of FOXO1 amplifies NCOA4-mediated ferritinophagy, increases ferroptosis and lipid peroxidation, while disrupting the interaction between FOXO1 and NCOA4 in NCOA4 knock out mice prevents the cisplatin-induced SGN ferroptosis and hearing loss. Collectively, this study highlights the critical role of the FOXO1-NCOA4 axis in regulating ferritinophagy and ferroptosis in cisplatin-induced SGNs damage, offering promising therapeutic targets for SNHL mitigation.
Collapse
Affiliation(s)
- Xue Wang
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
- Shandong Institute of OtorhinolaryngologyJinan250022China
| | - Lei Xu
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
- Shandong Institute of OtorhinolaryngologyJinan250022China
| | - Yu Meng
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
- Shandong Institute of OtorhinolaryngologyJinan250022China
| | - Fang Chen
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
- Shandong Institute of OtorhinolaryngologyJinan250022China
| | - Jinzhu Zhuang
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
- Shandong Institute of OtorhinolaryngologyJinan250022China
| | - Man Wang
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
- Shandong Institute of OtorhinolaryngologyJinan250022China
| | - Weibin An
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
- Shandong Institute of OtorhinolaryngologyJinan250022China
| | - Yuechen Han
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
- Shandong Institute of OtorhinolaryngologyJinan250022China
| | - Bo Chu
- Department of Cell BiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinan250012China
| | - Renjie Chai
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantong226001China
- Department of NeurologyAerospace Center HospitalSchool of Life ScienceBeijing Institute of TechnologyBeijing100081China
- Department of Otolaryngology Head and Neck SurgerySichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610072China
- Southeast University Shenzhen Research InstituteShenzhen518063China
| | - Wenwen Liu
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
- Shandong Institute of OtorhinolaryngologyJinan250022China
| | - Haibo Wang
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
- Shandong Institute of OtorhinolaryngologyJinan250022China
| |
Collapse
|
8
|
Messat Y, Martin-Fernandez M, Assou S, Chung K, Guérin F, Gergely C, Cuisinier F, Zine A. Differentiation of Spiral Ganglion Neurons from Human Dental Pulp Stem Cells: A Further Step towards Autologous Auditory Nerve Recovery. Int J Mol Sci 2024; 25:9115. [PMID: 39201803 PMCID: PMC11354632 DOI: 10.3390/ijms25169115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
The degeneration of spiral ganglion neurons (SGNs), which convey auditory signals from hair cells to the brain, can be a primary cause of sensorineural hearing loss (SNHL) or can occur secondary to hair cell loss. Emerging therapies for SNHL include the replacement of damaged SGNs using stem cell-derived otic neuronal progenitors (ONPs). However, the availability of renewable, accessible, and patient-matched sources of human stem cells is a prerequisite for successful replacement of the auditory nerve. In this study, we derived ONP and SGN-like cells by a reliable and reproducible stepwise guidance differentiation procedure of self-renewing human dental pulp stem cells (hDPSCs). This in vitro differentiation protocol relies on the modulation of BMP and TGFβ pathways using a free-floating 3D neurosphere method, followed by differentiation on a Geltrex-coated surface using two culture paradigms to modulate the major factors and pathways involved in early otic neurogenesis. Gene and protein expression analyses revealed efficient induction of a comprehensive panel of known ONP and SGN-like cell markers during the time course of hDPSCs differentiation. Atomic force microscopy revealed that hDPSC-derived SGN-like cells exhibit similar nanomechanical properties as their in vivo SGN counterparts. Furthermore, spiral ganglion neurons from newborn rats come in close contact with hDPSC-derived ONPs 5 days after co-culturing. Our data demonstrate the capability of hDPSCs to generate SGN-like neurons with specific lineage marker expression, bipolar morphology, and the nanomechanical characteristics of SGNs, suggesting that the neurons could be used for next-generation cochlear implants and/or inner ear cell-based strategies for SNHL.
Collapse
Affiliation(s)
- Yassine Messat
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
| | - Marta Martin-Fernandez
- L2C, Laboratoire Charles Coulomb, University of Montpellier, CNRS, 34095 Montpellier, France
| | - Said Assou
- IRMB, Institute for Regenerative Medicine & Biotherapy, University of Montpellier, INSERM, CHU Montpellier, 34295 Montpellier, France;
| | - Keshi Chung
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
| | - Frederic Guérin
- Faculté de Médecine, University of Montpellier, 34090 Montpellier, France
| | - Csilla Gergely
- L2C, Laboratoire Charles Coulomb, University of Montpellier, CNRS, 34095 Montpellier, France
| | - Frederic Cuisinier
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
| | - Azel Zine
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
| |
Collapse
|
9
|
Wang L, Zhang R, Jiang L, Gao S, Wu J, Jiao Y. Biomaterials as a new option for treating sensorineural hearing loss. Biomater Sci 2024; 12:4006-4023. [PMID: 38979939 DOI: 10.1039/d4bm00518j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Sensorineural hearing loss (SNHL) usually involves damage to complex auditory pathways such as inner ear cells and auditory nerves. The highly intricate and nuanced characteristics of these cells render their repair and regeneration extremely challenging, making it difficult to restore hearing to normal levels once it has been compromised. The effectiveness of traditional drugs is so minimal that they provide little help with the treatment. Fortunately, extensive experiments have demonstrated that combining biomaterials with conventional techniques significantly enhances drug effectiveness. This article reviews the research progress of biomaterials in protecting hair cells and the auditory nerve, repairing genes related to hearing, and developing artificial cochlear materials. By organizing the knowledge presented in this article, perhaps new insights can be provided for the clinical management of SNHL.
Collapse
Affiliation(s)
- Liwen Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Guangzhou Twelfth People's Hospital (The Affiliated Twelfth People's Hospital of Guangzhou Medical University), Guangzhou 510620, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, Guangzhou Medical University, Guangzhou 510620, China.
| | - Ruhe Zhang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Linlan Jiang
- Department of Otorhinolaryngology Head and Neck Surgery, Guangzhou Twelfth People's Hospital (The Affiliated Twelfth People's Hospital of Guangzhou Medical University), Guangzhou 510620, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, Guangzhou Medical University, Guangzhou 510620, China.
| | - Shuyi Gao
- Department of Otorhinolaryngology Head and Neck Surgery, Guangzhou Twelfth People's Hospital (The Affiliated Twelfth People's Hospital of Guangzhou Medical University), Guangzhou 510620, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, Guangzhou Medical University, Guangzhou 510620, China.
| | - Jun Wu
- Institute of Otorhinolaryngology, Head and Neck Surgery, Guangzhou Medical University, Guangzhou 510620, China.
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China.
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yuenong Jiao
- Department of Otorhinolaryngology Head and Neck Surgery, Guangzhou Twelfth People's Hospital (The Affiliated Twelfth People's Hospital of Guangzhou Medical University), Guangzhou 510620, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, Guangzhou Medical University, Guangzhou 510620, China.
| |
Collapse
|
10
|
Xu C, Zhang L, Zhou Y, Du H, Qi J, Tan F, Peng L, Gu X, Li N, Sun Q, Zhang Z, Lu Y, Qian X, Tong B, Sun J, Chai R, Shi Y. Pcolce2 overexpression promotes supporting cell reprogramming in the neonatal mouse cochlea. Cell Prolif 2024; 57:e13633. [PMID: 38528645 PMCID: PMC11294419 DOI: 10.1111/cpr.13633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/30/2024] [Accepted: 03/06/2024] [Indexed: 03/27/2024] Open
Abstract
Hair cell (HC) damage is a leading cause of sensorineural hearing loss, and in mammals supporting cells (SCs) are unable to divide and regenerate HCs after birth spontaneously. Procollagen C-endopeptidase enhancer 2 (Pcolce2), which encodes a glycoprotein that acts as a functional procollagen C protease enhancer, was screened as a candidate regulator of SC plasticity in our previous study. In the current study, we used adeno-associated virus (AAV)-ie (a newly developed adeno-associated virus that targets SCs) to overexpress Pcolce2 in SCs. AAV-Pcolce2 facilitated SC re-entry into the cell cycle both in cultured cochlear organoids and in the postnatal cochlea. In the neomycin-damaged model, regenerated HCs were detected after overexpression of Pcolce2, and these were derived from SCs that had re-entered the cell cycle. These findings reveal that Pcolce2 may serve as a therapeutic target for the regeneration of HCs to treat hearing loss.
Collapse
Affiliation(s)
- Changling Xu
- Health Management Center, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026)Sichuan Academy of Medical SciencesChengduSichuanChina
| | - Liyan Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Yinyi Zhou
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Haoliang Du
- Department of Otolaryngology‐Head and Neck SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline LaboratoryNanjingChina
| | - Jieyu Qi
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Department of Neurology, Aerospace Center Hospital, School of Life ScienceBeijing Institute of TechnologyBeijingChina
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Fangzhi Tan
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Li Peng
- Otovia Therapeutics IncSuzhouChina
| | - Xingliang Gu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Nianci Li
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Qiuhan Sun
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Ziyu Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Yicheng Lu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Xiaoyun Qian
- Department of Otolaryngology‐Head and Neck SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline LaboratoryNanjingChina
| | - Busheng Tong
- Department of Otolaryngology, Head and Neck SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Jiaqiang Sun
- Department of Otolaryngology‐Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhuiChina
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Department of Neurology, Aerospace Center Hospital, School of Life ScienceBeijing Institute of TechnologyBeijingChina
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
- Southeast University Shenzhen Research InstituteShenzhenChina
| | - Yi Shi
- Health Management Center, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026)Sichuan Academy of Medical SciencesChengduSichuanChina
| |
Collapse
|
11
|
Zhu W, Du W, Rameshbabu AP, Armstrong AM, Silver S, Kim Y, Wei W, Shu Y, Liu X, Lewis MA, Steel KP, Chen ZY. Targeted genome editing restores auditory function in adult mice with progressive hearing loss caused by a human microRNA mutation. Sci Transl Med 2024; 16:eadn0689. [PMID: 38985856 PMCID: PMC7616320 DOI: 10.1126/scitranslmed.adn0689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/18/2024] [Indexed: 07/12/2024]
Abstract
Mutations in microRNA-96 (MIR96) cause autosomal dominant deafness-50 (DFNA50), a form of delayed-onset hearing loss. Genome editing has shown efficacy in hearing recovery through intervention in neonatal mice, yet editing in the adult inner ear is necessary for clinical applications, which has not been done. Here, we developed a genome editing therapy for the MIR96 mutation 14C>A by screening different CRISPR systems and optimizing Cas9 expression and the sgRNA scaffold for efficient and specific mutation editing. AAV delivery of the KKH variant of Staphylococcus aureus Cas9 (SaCas9-KKH) and sgRNA to the cochleae of presymptomatic (3-week-old) and symptomatic (6-week-old) adult Mir9614C>A/+ mutant mice improved hearing long term, with efficacy increased by injection at a younger age. Adult inner ear delivery resulted in transient Cas9 expression without evidence of AAV genomic integration, indicating the good safety profile of our in vivo genome editing strategy. We developed a dual-AAV system, including an AAV-sgmiR96-master carrying sgRNAs against all known human MIR96 mutations. Because mouse and human MIR96 sequences share 100% homology, our approach and sgRNA selection for efficient and specific hair cell editing for long-term hearing recovery lay the foundation for the development of treatment for patients with DFNA50 caused by MIR96 mutations.
Collapse
Affiliation(s)
- Wenliang Zhu
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
- Eaton-Peabody laboratory, Massachusetts Eye and Ear, Boston, MA02114, USA
| | - Wan Du
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
- Eaton-Peabody laboratory, Massachusetts Eye and Ear, Boston, MA02114, USA
| | - Arun Prabhu Rameshbabu
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
- Eaton-Peabody laboratory, Massachusetts Eye and Ear, Boston, MA02114, USA
| | - Ariel Miura Armstrong
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
- Eaton-Peabody laboratory, Massachusetts Eye and Ear, Boston, MA02114, USA
| | - Stewart Silver
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
- Eaton-Peabody laboratory, Massachusetts Eye and Ear, Boston, MA02114, USA
| | - Yehree Kim
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
- Eaton-Peabody laboratory, Massachusetts Eye and Ear, Boston, MA02114, USA
| | - Wei Wei
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
- Eaton-Peabody laboratory, Massachusetts Eye and Ear, Boston, MA02114, USA
| | - Yilai Shu
- ENT Institute and Otorhinolaryngology Department of Eye & ENT hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai200031, China
- Institutes of Biomedical Science, Fudan University, Shanghai200032, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai200031, China
| | - Xuezhong Liu
- Department of Otolaryngology, University of Miami School of Medicine, Miami, FL 33136, USA
| | - Morag A. Lewis
- Wolfson Sensory, Pain and Regeneration Centre, King’s College London, LondonWC2R 2LS, UK
| | - Karen P. Steel
- Wolfson Sensory, Pain and Regeneration Centre, King’s College London, LondonWC2R 2LS, UK
| | - Zheng-Yi Chen
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
- Eaton-Peabody laboratory, Massachusetts Eye and Ear, Boston, MA02114, USA
| |
Collapse
|
12
|
Kaboodkhani R, Mehrabani D, Moghaddam A, Salahshoori I, Khonakdar HA. Tissue engineering in otology: a review of achievements. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1105-1153. [PMID: 38386362 DOI: 10.1080/09205063.2024.2318822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Tissue engineering application in otology spans a distance from the pinna to auditory nerve covered with specialized tissues and functions such as sense of hearing and aesthetics. It holds the potential to address the barriers of lack of donor tissue, poor tissue match, and transplant rejection through provision of new and healthy tissues similar to the host and possesses the capacity to renew, to regenerate, and to repair in-vivo and was shown to be a bypasses for any need to immunosuppression. This review aims to investigate the application of tissue engineering in otology and to evaluate the achievements and challenges in external, middle and inner ear sections. Since gaining the recent knowledge and training on use of different scaffolds is essential for otology specialists and who look for the recovery of ear function and aesthetics of patients, it is shown in this review how utilizing tissue engineering and cell transplantation, regenerative medicine can provide advancements in hearing and ear aesthetics to fit different patients' needs.
Collapse
Affiliation(s)
- Reza Kaboodkhani
- Otorhinolaryngology Research Center, Department of Otorhinolaryngology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Davood Mehrabani
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | | | | | - Hossein Ali Khonakdar
- Iran Polymer and Petrochemical Institute (IPPI), Tehran, Iran
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
13
|
Kurashina Y, Kurihara S, Kubota T, Takatsuka S, Hirabayashi M, Shimmura H, Miyahara H, Hioki A, Matsushita Y, Muramatsu J, Ogawa Y, Fujioka M, Okano HJ, Onoe H. Adeno-Associated Virus-Encapsulated Alginate Microspheres Loaded in Collagen Gel Carriers for Localized Gene Transfer. Adv Healthc Mater 2024; 13:e2303546. [PMID: 38224572 DOI: 10.1002/adhm.202303546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Indexed: 01/17/2024]
Abstract
This work reports localized in vivo gene transfer by biodegradation of the adeno-associated virus-encapsulating alginate microspheres (AAV-AMs) loaded in collagen gel carriers. AAV-AMs are centrifugally synthesized by ejecting a mixed pre-gel solution of alginate and AAV to CaCl2 solution to form an ionically cross-linked hydrogel microsphere immediately. The AAV-AMs are able to preserve the AAV without diffusing out even after spreading them on the cells, and the AAV is released and transfected by the degradation of the alginate microsphere. In addition, AAV-AMs can be stored by cryopreservation until use. By implanting this highly convenient AAV-encapsulated hydrogel, AAV-AMs can be loaded into collagen gel carriers to fix the position of the implanted AAV-AMs and achieve localized gene transfer in vivo. In vivo experiments show that the AAV-AMs loaded in collagen gel carriers are demonstrated to release the encapsulated AAV for gene transfer in the buttocks muscles of mice. While conventional injections caused gene transfer to the entire surrounding tissue, the biodegradation of AAV-AMs shows that gene transfer is achieved locally to the muscles. This means that the proposed AAV-loaded system is shown to be a superior method for selective gene transfer.
Collapse
Affiliation(s)
- Yuta Kurashina
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
- Division of Advanced Mechanical Systems Engineering, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Sho Kurihara
- Department of Otorhinolaryngology, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, 105-8461, Japan
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, 105-8461, Japan
| | - Takeshi Kubota
- School of Integrated Design Engineering, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Shuhei Takatsuka
- School of Integrated Design Engineering, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Motoki Hirabayashi
- Department of Otorhinolaryngology, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, 105-8461, Japan
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, 105-8461, Japan
| | - Hajime Shimmura
- Department of Otorhinolaryngology, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, 105-8461, Japan
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, 105-8461, Japan
| | - Hideo Miyahara
- School of Integrated Design Engineering, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Aiki Hioki
- School of Integrated Design Engineering, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Yutaka Matsushita
- Department of Otorhinolaryngology, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, 105-8461, Japan
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, 105-8461, Japan
| | - Jumpei Muramatsu
- School of Integrated Design Engineering, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Yuki Ogawa
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, 105-8461, Japan
| | - Masato Fujioka
- Department of Molecular Genetics, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
- Clinical and Translational Research Center, Keio University Hospital, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hirotaka J Okano
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, 105-8461, Japan
| | - Hiroaki Onoe
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| |
Collapse
|
14
|
Shah JJ, Jimenez-Jaramillo CA, Lybrand ZR, Yuan TT, Erbele ID. Modern In Vitro Techniques for Modeling Hearing Loss. Bioengineering (Basel) 2024; 11:425. [PMID: 38790292 PMCID: PMC11118046 DOI: 10.3390/bioengineering11050425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 05/26/2024] Open
Abstract
Sensorineural hearing loss (SNHL) is a prevalent and growing global health concern, especially within operational medicine, with limited therapeutic options available. This review article explores the emerging field of in vitro otic organoids as a promising platform for modeling hearing loss and developing novel therapeutic strategies. SNHL primarily results from the irreversible loss or dysfunction of cochlear mechanosensory hair cells (HCs) and spiral ganglion neurons (SGNs), emphasizing the need for innovative solutions. Current interventions offer symptomatic relief but do not address the root causes. Otic organoids, three-dimensional multicellular constructs that mimic the inner ear's architecture, have shown immense potential in several critical areas. They enable the testing of gene therapies, drug discovery for sensory cell regeneration, and the study of inner ear development and pathology. Unlike traditional animal models, otic organoids closely replicate human inner ear pathophysiology, making them invaluable for translational research. This review discusses methodological advances in otic organoid generation, emphasizing the use of human pluripotent stem cells (hPSCs) to replicate inner ear development. Cellular and molecular characterization efforts have identified key markers and pathways essential for otic organoid development, shedding light on their potential in modeling inner ear disorders. Technological innovations, such as 3D bioprinting and microfluidics, have further enhanced the fidelity of these models. Despite challenges and limitations, including the need for standardized protocols and ethical considerations, otic organoids offer a transformative approach to understanding and treating auditory dysfunctions. As this field matures, it holds the potential to revolutionize the treatment landscape for hearing and balance disorders, moving us closer to personalized medicine for inner ear conditions.
Collapse
Affiliation(s)
- Jamie J. Shah
- Department of Pathology, San Antonio Uniformed Services Health Education Consortium, JBSA, Fort Sam Houston, TX 78234, USA;
| | - Couger A. Jimenez-Jaramillo
- Department of Pathology, San Antonio Uniformed Services Health Education Consortium, JBSA, Fort Sam Houston, TX 78234, USA;
| | - Zane R. Lybrand
- Division of Biology, Texas Woman’s University, Denton, TX 76204, USA;
| | - Tony T. Yuan
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (T.T.Y.); (I.D.E.)
| | - Isaac D. Erbele
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (T.T.Y.); (I.D.E.)
- Department of Otolaryngology, San Antonio Uniformed Services Health Education Consortium, JBSA, Fort Sam Houston, TX 78234, USA
| |
Collapse
|
15
|
Park JH, Sahbaz BD, Pekhale K, Chu X, Okur MN, Grati M, Isgrig K, Chien W, Chrysostomou E, Sullivan L, Croteau DL, Manor U, Bohr VA. Early-Onset Hearing Loss in Mouse Models of Alzheimer's Disease and Increased DNA Damage in the Cochlea. AGING BIOLOGY 2024; 1:20240025. [PMID: 38500536 PMCID: PMC10948084 DOI: 10.59368/agingbio.20240025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
There is considerable interest in whether sensory deficiency is associated with the development of Alzheimer's disease (AD). Notably, the relationship between hearing impairment and AD is of high relevance but still poorly understood. In this study, we found early-onset hearing loss in two AD mouse models, 3xTgAD and 3xTgAD/Polβ+/-. The 3xTgAD/Polβ+/- mouse is DNA repair deficient and has more humanized AD features than the 3xTgAD. Both AD mouse models showed increased auditory brainstem response (ABR) thresholds between 16 and 32 kHz at 4 weeks of age, much earlier than any AD cognitive and behavioral changes. The ABR thresholds were significantly higher in 3xTgAD/Polβ+/- mice than in 3xTgAD mice at 16 kHz, and distortion product otoacoustic emission signals were reduced, indicating that DNA damage may be a factor underlying early hearing impairment in AD. Poly ADP-ribosylation and protein expression levels of DNA damage markers increased significantly in the cochlea of the AD mice but not in the adjacent auditory cortex. Phosphoglycerate mutase 2 levels and the number of synaptic ribbons in the presynaptic zones of inner hair cells were decreased in the cochlea of the AD mice. Furthermore, the activity of sirtuin 3 was downregulated in the cochlea of these mice, indicative of impaired mitochondrial function. Taken together, these findings provide new insights into potential mechanisms for hearing dysfunction in AD and suggest that DNA damage in the cochlea might contribute to the development of early hearing loss in AD.
Collapse
Affiliation(s)
- Jae-Hyeon Park
- DNA repair Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Burcin Duan Sahbaz
- DNA repair Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Komal Pekhale
- DNA repair Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Xixia Chu
- DNA repair Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Mustafa N. Okur
- DNA repair Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Mhamed Grati
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Kevin Isgrig
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Wade Chien
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
- Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Elena Chrysostomou
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Lauren Sullivan
- Department of Cell & Developmental Biology School of Biological Sciences University of California, San Diego, La Jolla, CA, USA
| | - Deborah L. Croteau
- DNA repair Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- Computational Biology & Genomics Core, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Uri Manor
- Department of Cell & Developmental Biology School of Biological Sciences University of California, San Diego, La Jolla, CA, USA
| | - Vilhelm A. Bohr
- DNA repair Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- Danish Center for Healthy Aging, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
16
|
Liu R, Shang W, Liu Y, Xie Y, Luan J, Zhang T, Ma Y, Wang Z, Sun Y, Song X, Han F. Inhibition of the ILK-AKT pathway by upregulation of PARVB contributes to the cochlear cell death in Fascin2 gene knockout mice. Cell Death Discov 2024; 10:89. [PMID: 38374196 PMCID: PMC10876960 DOI: 10.1038/s41420-024-01851-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 02/21/2024] Open
Abstract
The Fscn2 (Fascin2) gene encodes an actin cross-linking protein that is involved in the formation of hair cell stereocilia and retina structure. Mutations in Fscn2 gene have been linked to hearing impairment and retinal degeneration in humans and mice. To understand the function of the Fscn2 gene, we generated the Fscn2 knockout mice, which showed progressive loss of hearing and hair cells. Our goal of the present study was to investigate the mechanism underlying cochlear cell death in the Fscn2 knockout mice. Microarray analysis revealed upregulation of expression of PARVB, a local adhesion protein, in the inner ears of Fscn2 knockout mice at 8 weeks of age. Further studies showed increased levels of PARVB together with cleaved-Caspase9 and decreased levels of ILK, p-ILK, p-AKT, and Bcl-2 in the inner ears of Fscn2 knockout mice of the same age. Knockdown of Fscn2 in HEI-OCI cells led to decreased cell proliferation ability and migration rate, along with increased levels of PARVB and decreased levels of ILK, p-ILK, p-AKT, Bcl-2 and activated Rac1 and Cdc42. Overexpression of Fscn2 or inhibition of Parvb expression in HEI-OC1 cells promoted cell proliferation and migration, with increased levels of ILK, p-ILK, p-AKT, and Bcl-2. Finally, FSCN2 binds with PPAR-γ to reduce its nuclear translocation in HEI-OC1 cells, and inhibition of PPAR-γ by GW9662 decreased the level of PARVB and increased the levels of p-AKT, p-ILK, and Bcl-2. Our results suggest that FSCN2 negatively regulates PARVB expression by inhibiting the entry of PPAR-γ into the cell nucleus, resulting in inhibition of ILK-AKT related pathways and of cochlear cell survival in Fscn2 knockout mice. Our findings provide new insights and ideas for the prevention and treatment of genetic hearing loss.
Collapse
Affiliation(s)
- Rongrong Liu
- Department of Biochemistry and Molecular Biology, and Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, PR China
| | - Wenjing Shang
- Department of Biochemistry and Molecular Biology, and Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China
| | - Yingying Liu
- Department of Biochemistry and Molecular Biology, and Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China
| | - Yi Xie
- Department of Biochemistry and Molecular Biology, and Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China
| | - Jun Luan
- Department of Biochemistry and Molecular Biology, and Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China
| | - Ting Zhang
- Department of Biochemistry and Molecular Biology, and Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China
| | - Ying Ma
- Department of Biochemistry and Molecular Biology, and Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China
| | - Zengxian Wang
- Institute of Neurobiology, School of Medicine, Xi'an Siyuan University, 28 Shui An Road, Xi'an, 710038, Shaanxi, PR China
| | - Yan Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, PR China.
| | - Xicheng Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, PR China.
| | - Fengchan Han
- Department of Biochemistry and Molecular Biology, and Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China.
- Institute of Neurobiology, School of Medicine, Xi'an Siyuan University, 28 Shui An Road, Xi'an, 710038, Shaanxi, PR China.
| |
Collapse
|
17
|
Wang M, Wang J, Liang J, Yao W. Vibration modes of three-dimensional spiral cochlea covering the organ of Corti. Comput Methods Biomech Biomed Engin 2024:1-10. [PMID: 38317606 DOI: 10.1080/10255842.2024.2313065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/23/2024] [Indexed: 02/07/2024]
Abstract
So far, explaining the mechanism on active phonosensitive amplification in the cochlea is a major and difficult medical question. Among them, one of the key problems is that the motion pattern of the organ of Corti (OC) is still unknown. To this end, a multi-scale cochlear model including a three-dimensional spiral OC was established based on CT data and light source imaging experimental data, which complete combined the macroscopic and microscopic structure. On the basis of verifying the reliability of the model, acoustic-solid coupling calculation and modal analysis were performed on the model, and the vibration modes of basilar membrane (BM) and structures of the OC at different characteristic frequencies were discussed. The results show that tectorial membrane (TM) exhibits completely different vibration modes from BM at low frequencies, while the two movements gradually synchronize as the frequency increases. The amplitude position of OC's motion moves laterally with increasing frequency from Deiters' cells to Hensen's cells and then back to Deiters' cells. The OC exhibits longitudinal vibrations following BM when BM's displacement is large, while it manifests more as lateral movement of Deiters' cells when BM's displacement is small. This model can well simulate the motion process of BM and OC in the lymphatic fluid, which provides theoretical support and a numerical simulation computational platform to explore the interaction between macroscopic and microscopic tissue structures of the overall cochlea.
Collapse
Affiliation(s)
- Mianzhi Wang
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai, China
- School of Mechanics and Engineering Science, Shanghai University, Shanghai, China
| | - Jiakun Wang
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai, China
- School of Mechanics and Engineering Science, Shanghai University, Shanghai, China
| | - Junyi Liang
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Wenjuan Yao
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai, China
- School of Mechanics and Engineering Science, Shanghai University, Shanghai, China
| |
Collapse
|
18
|
Pianigiani G, Roccio M. Inner Ear Organoids: Strengths and Limitations. J Assoc Res Otolaryngol 2024; 25:5-11. [PMID: 38334886 PMCID: PMC10907556 DOI: 10.1007/s10162-024-00929-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
Inner ear organoids derived from differentiation of human pluripotent stem cells have recently gained momentum as tools to study inner ear development and developmental defects. An additional exciting aspect about this technology is represented by its translational potential, specifically, the use of organoids to validate therapeutics for hearing and balance restoration on human/patient-specific cells. This latter aspect will be briefly discussed here including opportunities and current limitations.
Collapse
Affiliation(s)
- Giulia Pianigiani
- Institute for Maternal and Child Health - I.R.C.C.S. "Burlo Garofolo", Trieste, Italy
| | - Marta Roccio
- Inner Ear Stem Cell Lab, Department Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich and University of Zurich, USZ Campus WAGI18, Wagistrasse 18, 8952, Schlieren, Switzerland.
| |
Collapse
|
19
|
Li L, Shen T, Liu S, Qi J, Zhao Y. Advancements and future prospects of adeno-associated virus-mediated gene therapy for sensorineural hearing loss. Front Neurosci 2024; 18:1272786. [PMID: 38327848 PMCID: PMC10847333 DOI: 10.3389/fnins.2024.1272786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
Sensorineural hearing loss (SNHL), a highly prevalent sensory impairment, results from a multifaceted interaction of genetic and environmental factors. As we continually gain insights into the molecular basis of auditory development and the growing compendium of deafness genes identified, research on gene therapy for SNHL has significantly deepened. Adeno-associated virus (AAV), considered a relatively secure vector for gene therapy in clinical trials, can deliver various transgenes based on gene therapy strategies such as gene replacement, gene silencing, gene editing, or gene addition to alleviate diverse types of SNHL. This review delved into the preclinical advances in AAV-based gene therapy for SNHL, spanning hereditary and acquired types. Particular focus is placed on the dual-AAV construction method and its application, the vector delivery route of mouse inner ear models (local, systemic, fetal, and cerebrospinal fluid administration), and the significant considerations in transforming from AAV-based animal model inner ear gene therapy to clinical implementation.
Collapse
Affiliation(s)
- Linke Li
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Tian Shen
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Shixi Liu
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jieyu Qi
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Yu Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Liu H, Kuang H, Wang Y, Bao L, Cao W, Yu L, Qi M, Wang R, Yang X, Ye Q, Ding F, Ren L, Liu S, Ma F, Liu S. MSC-derived exosomes protect auditory hair cells from neomycin-induced damage via autophagy regulation. Biol Res 2024; 57:3. [PMID: 38217055 PMCID: PMC10787390 DOI: 10.1186/s40659-023-00475-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/10/2023] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Sensorineural hearing loss (SNHL) poses a major threat to both physical and mental health; however, there is still a lack of effective drugs to treat the disease. Recently, novel biological therapies, such as mesenchymal stem cells (MSCs) and their products, namely, exosomes, are showing promising therapeutic potential due to their low immunogenicity, few ethical concerns, and easy accessibility. Nevertheless, the precise mechanisms underlying the therapeutic effects of MSC-derived exosomes remain unclear. RESULTS Exosomes derived from MSCs reduced hearing and hair cell loss caused by neomycin-induced damage in models in vivo and in vitro. In addition, MSC-derived exosomes modulated autophagy in hair cells to exert a protective effect. Mechanistically, exogenously administered exosomes were internalized by hair cells and subsequently upregulated endocytic gene expression and endosome formation, ultimately leading to autophagy activation. This increased autophagic activity promoted cell survival, decreased the mitochondrial oxidative stress level and the apoptosis rate in hair cells, and ameliorated neomycin-induced ototoxicity. CONCLUSIONS In summary, our findings reveal the otoprotective capacity of exogenous exosome-mediated autophagy activation in hair cells in an endocytosis-dependent manner, suggesting possibilities for deafness treatment.
Collapse
Affiliation(s)
- Huan Liu
- Department of Otolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing, China
| | - Huijuan Kuang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology,, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yiru Wang
- Anesthesiology Department, Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Lili Bao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology,, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wanxin Cao
- Department of Otolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing, China
| | - Lu Yu
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration and Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Meihao Qi
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Air Force Military, Xi'an, Shaanxi, China
| | - Renfeng Wang
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Air Force Military, Xi'an, Shaanxi, China
| | - Xiaoshan Yang
- School of Stomatology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Qingyuan Ye
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Digital Dentistry Center, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Feng Ding
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology,, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lili Ren
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology,, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Siying Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology,, The Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Furong Ma
- Department of Otolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing, China.
| | - Shiyu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology,, The Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
21
|
Lu J, Wang M, Meng Y, An W, Wang X, Sun G, Wang H, Liu W. Current advances in biomaterials for inner ear cell regeneration. Front Neurosci 2024; 17:1334162. [PMID: 38282621 PMCID: PMC10811200 DOI: 10.3389/fnins.2023.1334162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/28/2023] [Indexed: 01/30/2024] Open
Abstract
Inner ear cell regeneration from stem/progenitor cells provides potential therapeutic strategies for the restoration of sensorineural hearing loss (SNHL), however, the efficiency of regeneration is low and the functions of differentiated cells are not yet mature. Biomaterials have been used in inner ear cell regeneration to construct a more physiologically relevant 3D culture system which mimics the stem cell microenvironment and facilitates cellular interactions. Currently, these biomaterials include hydrogel, conductive materials, magneto-responsive materials, photo-responsive materials, etc. We analyzed the characteristics and described the advantages and limitations of these materials. Furthermore, we reviewed the mechanisms by which biomaterials with different physicochemical properties act on the inner ear cell regeneration and depicted the current status of the material selection based on their characteristics to achieve the reconstruction of the auditory circuits. The application of biomaterials in inner ear cell regeneration offers promising opportunities for the reconstruction of the auditory circuits and the restoration of hearing, yet biomaterials should be strategically explored and combined according to the obstacles to be solved in the inner ear cell regeneration research.
Collapse
Affiliation(s)
- Junze Lu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Man Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Yu Meng
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Weibin An
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Xue Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Gaoying Sun
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Wenwen Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| |
Collapse
|
22
|
Luo Y, Wu K, Zhang X, Wang H, Wang Q. Genetic correction of induced pluripotent stem cells from a DFNA36 patient results in morphologic and functional recovery of derived hair cell-like cells. Stem Cell Res Ther 2024; 15:4. [PMID: 38167128 PMCID: PMC10763492 DOI: 10.1186/s13287-023-03617-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND TMC1 is one of the most common deafness genes causing DFNA36. Patient-derived human induced pluripotent stem cells (iPSCs) provide an opportunity to modelling diseases. TMC1 p.M418K mutation in human is orthologous to Beethoven mice. Here, we investigated the differentiation, morphology and electrophysiological properties of hair cell-like cells (HC-like cells) derived from DFNA36 patient. METHODS Inner ear HC-like cells were induced from iPSCs derived from DFNA36 (TMC1 p.M418K) patient (M+/-), normal control (M+/+) and genetic corrected iPSCs (M+/C). Immunofluorescence, scanning electron microscopy and whole-cell patch-clamp were used to study the mechanism and influence of TMC1 p.M418K mutation. RESULTS In this study we successfully generated HC-like cells from iPSCs with three different genotypes. HC-like cells from M+/- showed defected morphology of microvilli and physiological properties compared to M+/+. HC-like cells from M+/C showed recovery in morphology of microvilli and physiological properties. CONCLUSIONS Our results indicate that TMC1 p.M418K mutation didn't influence inner ear hair cell differentiation but the morphology of microvilli and electrophysiological properties and gene correction induced recovery. CRISPR/Cas9 gene therapy is feasible in human patient with TMC1 p.M418K mutation.
Collapse
Affiliation(s)
- Yi Luo
- Department of Audiology and Vestibular Medicine, Senior Department of Otolaryngology, Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, the Sixth Medical Center of PLA General Hospital, 6 Fucheng Road, Beijing, 100048, China
- National Clinical Research Center for Otolaryngologic Diseases, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
- Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853, China
| | - Kaiwen Wu
- Department of Audiology and Vestibular Medicine, Senior Department of Otolaryngology, Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, the Sixth Medical Center of PLA General Hospital, 6 Fucheng Road, Beijing, 100048, China
- National Clinical Research Center for Otolaryngologic Diseases, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Xiaolong Zhang
- Department of Audiology and Vestibular Medicine, Senior Department of Otolaryngology, Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, the Sixth Medical Center of PLA General Hospital, 6 Fucheng Road, Beijing, 100048, China
- National Clinical Research Center for Otolaryngologic Diseases, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Hongyang Wang
- Department of Audiology and Vestibular Medicine, Senior Department of Otolaryngology, Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, the Sixth Medical Center of PLA General Hospital, 6 Fucheng Road, Beijing, 100048, China.
- National Clinical Research Center for Otolaryngologic Diseases, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| | - Qiuju Wang
- Department of Audiology and Vestibular Medicine, Senior Department of Otolaryngology, Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, the Sixth Medical Center of PLA General Hospital, 6 Fucheng Road, Beijing, 100048, China.
- National Clinical Research Center for Otolaryngologic Diseases, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
23
|
Lye J, Delaney DS, Leith FK, Sardesai VS, McLenachan S, Chen FK, Atlas MD, Wong EYM. Recent Therapeutic Progress and Future Perspectives for the Treatment of Hearing Loss. Biomedicines 2023; 11:3347. [PMID: 38137568 PMCID: PMC10741758 DOI: 10.3390/biomedicines11123347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Up to 1.5 billion people worldwide suffer from various forms of hearing loss, with an additional 1.1 billion people at risk from various insults such as increased consumption of recreational noise-emitting devices and ageing. The most common type of hearing impairment is sensorineural hearing loss caused by the degeneration or malfunction of cochlear hair cells or spiral ganglion nerves in the inner ear. There is currently no cure for hearing loss. However, emerging frontier technologies such as gene, drug or cell-based therapies offer hope for an effective cure. In this review, we discuss the current therapeutic progress for the treatment of hearing loss. We describe and evaluate the major therapeutic approaches being applied to hearing loss and summarize the key trials and studies.
Collapse
Affiliation(s)
- Joey Lye
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA 6009, Australia; (J.L.); (D.S.D.); (F.K.L.); (V.S.S.); (M.D.A.)
- Centre for Ear Sciences, Medical School, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Derek S. Delaney
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA 6009, Australia; (J.L.); (D.S.D.); (F.K.L.); (V.S.S.); (M.D.A.)
- Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Fiona K. Leith
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA 6009, Australia; (J.L.); (D.S.D.); (F.K.L.); (V.S.S.); (M.D.A.)
- Centre for Ear Sciences, Medical School, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Varda S. Sardesai
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA 6009, Australia; (J.L.); (D.S.D.); (F.K.L.); (V.S.S.); (M.D.A.)
| | - Samuel McLenachan
- Ocular Tissue Engineering Laboratory, Lions Eye Institute, Nedlands, WA 6009, Australia; (S.M.); (F.K.C.)
- Centre for Ophthalmology and Visual Sciences, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Fred K. Chen
- Ocular Tissue Engineering Laboratory, Lions Eye Institute, Nedlands, WA 6009, Australia; (S.M.); (F.K.C.)
- Centre for Ophthalmology and Visual Sciences, The University of Western Australia, Nedlands, WA 6009, Australia
- Vitroretinal Surgery, Royal Perth Hospital, Perth, WA 6000, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC 3002, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| | - Marcus D. Atlas
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA 6009, Australia; (J.L.); (D.S.D.); (F.K.L.); (V.S.S.); (M.D.A.)
- Centre for Ear Sciences, Medical School, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Elaine Y. M. Wong
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA 6009, Australia; (J.L.); (D.S.D.); (F.K.L.); (V.S.S.); (M.D.A.)
- Centre for Ear Sciences, Medical School, The University of Western Australia, Nedlands, WA 6009, Australia
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| |
Collapse
|
24
|
Hahn R, Avraham KB. Gene Therapy for Inherited Hearing Loss: Updates and Remaining Challenges. Audiol Res 2023; 13:952-966. [PMID: 38131808 PMCID: PMC10740825 DOI: 10.3390/audiolres13060083] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/13/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Hearing loss stands as the most prevalent sensory deficit among humans, posing a significant global health challenge. Projections indicate that by 2050, approximately 10% of the world's population will grapple with disabling hearing impairment. While approximately half of congenital hearing loss cases have a genetic etiology, traditional interventions such as hearing aids and cochlear implants do not completely restore normal hearing. The absence of biological treatment has prompted significant efforts in recent years, with a strong focus on gene therapy to address hereditary hearing loss. Although several studies have exhibited promising recovery from common forms of genetic deafness in mouse models, existing challenges must be overcome to make gene therapy applicable in the near future. Herein, we summarize the primary gene therapy strategies employed over past years, provide an overview of the recent achievements in preclinical studies for genetic hearing loss, and outline the current key obstacles to cochlear gene therapy.
Collapse
Affiliation(s)
| | - Karen B. Avraham
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel;
| |
Collapse
|
25
|
Hu Y, Fang L, Zhang H, Zheng S, Liao M, Cui Q, Wei H, Wu D, Cheng H, Qi Y, Wang H, Xin T, Wang T, Chai R. Emerging biotechnologies and biomedical engineering technologies for hearing reconstruction. SMART MEDICINE 2023; 2:e20230021. [PMID: 39188297 PMCID: PMC11235852 DOI: 10.1002/smmd.20230021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/09/2023] [Indexed: 08/28/2024]
Abstract
Hearing impairment is a global health problem that affects social communications and the economy. The damage and loss of cochlear hair cells and spiral ganglion neurons (SGNs) as well as the degeneration of neurites of SGNs are the core causes of sensorineural hearing loss. Biotechnologies and biomedical engineering technologies provide new hope for the treatment of auditory diseases, which utilizes biological strategies or tissue engineering methods to achieve drug delivery and the regeneration of cells, tissues, and even organs. Here, the advancements in the applications of biotechnologies (including gene therapy and cochlear organoids) and biomedical engineering technologies (including drug delivery, electrode coating, electrical stimulation and bionic scaffolds) in the field of hearing reconstruction are presented. Moreover, we summarize the challenges and provide a perspective on this field.
Collapse
Affiliation(s)
- Yangnan Hu
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Le Fang
- Department of NeurologyThe China‐Japan Union Hospital of Jilin UniversityChangchunJilinChina
| | - Hui Zhang
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Shasha Zheng
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Menghui Liao
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Qingyue Cui
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Hao Wei
- Department of Otolaryngology Head and Neck SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolJiangsu Provincial Key Medical DisciplineNanjingChina
| | - Danqi Wu
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Hong Cheng
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Yanru Qi
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Huan Wang
- The Eighth Affiliated HospitalSun Yat‐Sen UniversityShenzhenChina
| | - Tao Xin
- Department of NeurosurgeryThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanChina
- Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Tian Wang
- Department of Otolaryngology‐Head and Neck SurgeryStanford University School of MedicineStanfordCaliforniaUSA
- Department of Otolaryngology‐Head and Neck SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunan ProvinceChina
| | - Renjie Chai
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
- Department of Otolaryngology Head and Neck SurgerySichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- Beijing Key Laboratory of Neural Regeneration and RepairCapital Medical UniversityBeijingChina
| |
Collapse
|
26
|
Zhu W, Du W, Rameshbabu AP, Armstrong AM, Silver S, Kim Y, Wei W, Shu Y, Liu X, Lewis MA, Steel KP, Chen ZY. Targeted genome editing restores auditory function in adult mice with progressive hearing loss caused by a human microRNA mutation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564008. [PMID: 37961137 PMCID: PMC10634841 DOI: 10.1101/2023.10.26.564008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Mutations in microRNA-96 ( MIR96 ) cause dominant delayed onset hearing loss DFNA50 without treatment. Genome editing has shown efficacy in hearing recovery by intervention in neonatal mice, yet editing in the adult inner ear is necessary for clinical applications. Here, we developed an editing therapy for a C>A point mutation in the seed region of the Mir96 gene, Mir96 14C>A associated with hearing loss by screening gRNAs for genome editors and optimizing Cas9 and sgRNA scaffold for efficient and specific mutation editing in vitro. By AAV delivery in pre-symptomatic (3-week-old) and symptomatic (6-week-old) adult Mir96 14C>A mutant mice, hair cell on-target editing significantly improved hearing long-term, with an efficacy inversely correlated with injection age. We achieved transient Cas9 expression without the evidence of AAV genomic integration to significantly reduce the safety concerns associated with editing. We developed an AAV-sgmiR96-master system capable of targeting all known human MIR96 mutations. As mouse and human MIR96 sequences share 100% homology, our approach and sgRNA selection for efficient and specific hair cell editing for long-term hearing recovery lays the foundation for future treatment of DFNA50 caused by MIR96 mutations.
Collapse
|
27
|
Delaney DS, Liew LJ, Lye J, Atlas MD, Wong EYM. Overcoming barriers: a review on innovations in drug delivery to the middle and inner ear. Front Pharmacol 2023; 14:1207141. [PMID: 37927600 PMCID: PMC10620978 DOI: 10.3389/fphar.2023.1207141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
Despite significant advances in the development of therapeutics for hearing loss, drug delivery to the middle and inner ear remains a challenge. As conventional oral or intravascular administration are ineffective due to poor bioavailability and impermeability of the blood-labyrinth-barrier, localized delivery is becoming a preferable approach for certain drugs. Even then, localized delivery to the ear precludes continual drug delivery due to the invasive and potentially traumatic procedures required to access the middle and inner ear. To address this, the preclinical development of controlled release therapeutics and drug delivery devices have greatly advanced, with some now showing promise clinically. This review will discuss the existing challenges in drug development for treating the most prevalent and damaging hearing disorders, in particular otitis media, perforation of the tympanic membrane, cholesteatoma and sensorineural hearing loss. We will then address novel developments in drug delivery that address these including novel controlled release therapeutics such as hydrogel and nanotechnology and finally, novel device delivery approaches such as microfluidic systems and cochlear prosthesis-mediated delivery. The aim of this review is to investigate how drugs can reach the middle and inner ear more efficiently and how recent innovations could be applied in aiding drug delivery in certain pathologic contexts.
Collapse
Affiliation(s)
- Derek S. Delaney
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA, Australia
- Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Lawrence J. Liew
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA, Australia
- Centre for Ear Sciences, Medical School, The University of Western Australia, Nedlands, WA, Australia
| | - Joey Lye
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA, Australia
| | - Marcus D. Atlas
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA, Australia
- Centre for Ear Sciences, Medical School, The University of Western Australia, Nedlands, WA, Australia
- Faculty of Health Sciences, Curtin Medical School, Curtin University, Bentley, WA, Australia
| | - Elaine Y. M. Wong
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA, Australia
- Centre for Ear Sciences, Medical School, The University of Western Australia, Nedlands, WA, Australia
- Faculty of Health Sciences, Curtin Medical School, Curtin University, Bentley, WA, Australia
| |
Collapse
|
28
|
Du W, Ergin V, Loeb C, Huang M, Silver S, Armstrong AM, Huang Z, Gurumurthy CB, Staecker H, Liu X, Chen ZY. Rescue of auditory function by a single administration of AAV-TMPRSS3 gene therapy in aged mice of human recessive deafness DFNB8. Mol Ther 2023; 31:2796-2810. [PMID: 37244253 PMCID: PMC10491991 DOI: 10.1016/j.ymthe.2023.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/23/2023] [Accepted: 05/04/2023] [Indexed: 05/29/2023] Open
Abstract
Patients with mutations in the TMPRSS3 gene suffer from recessive deafness DFNB8/DFNB10. For these patients, cochlear implantation is the only treatment option. Poor cochlear implantation outcomes are seen in some patients. To develop biological treatment for TMPRSS3 patients, we generated a knockin mouse model with a frequent human DFNB8 TMPRSS3 mutation. The Tmprss3A306T/A306T homozygous mice display delayed onset progressive hearing loss similar to human DFNB8 patients. Using AAV2 as a vector to carry a human TMPRSS3 gene, AAV2-hTMPRSS3 injection in the adult knockin mouse inner ear results in TMPRSS3 expression in the hair cells and the spiral ganglion neurons. A single AAV2-hTMPRSS3 injection in Tmprss3A306T/A306T mice of an average age of 18.5 months leads to sustained rescue of the auditory function to a level similar to wild-type mice. AAV2-hTMPRSS3 delivery rescues the hair cells and the spiral ganglions neurons. This study demonstrates successful gene therapy in an aged mouse model of human genetic deafness. It lays the foundation to develop AAV2-hTMPRSS3 gene therapy to treat DFNB8 patients, as a standalone therapy or in combination with cochlear implantation.
Collapse
Affiliation(s)
- Wan Du
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA 02115, USA; Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA; Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA
| | - Volkan Ergin
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA 02115, USA; Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA; Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA
| | - Corena Loeb
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA 02115, USA; Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA; Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA
| | - Mingqian Huang
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA 02115, USA; Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA; Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA
| | - Stewart Silver
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA 02115, USA; Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA; Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA
| | - Ariel Miura Armstrong
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA 02115, USA; Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA; Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA
| | - Zaohua Huang
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | - Hinrich Staecker
- Kansas University Center for Hearing and Balance Disorders, Kansas City, KS 66160, USA
| | - Xuezhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Zheng-Yi Chen
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA 02115, USA; Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA; Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA.
| |
Collapse
|
29
|
Tao Y, Lamas V, Du W, Zhu W, Li Y, Whittaker MN, Zuris JA, Thompson DB, Rameshbabu AP, Shu Y, Gao X, Hu JH, Pei C, Kong WJ, Liu X, Wu H, Kleinstiver BP, Liu DR, Chen ZY. Treatment of monogenic and digenic dominant genetic hearing loss by CRISPR-Cas9 ribonucleoprotein delivery in vivo. Nat Commun 2023; 14:4928. [PMID: 37582836 PMCID: PMC10427623 DOI: 10.1038/s41467-023-40476-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/31/2023] [Indexed: 08/17/2023] Open
Abstract
Mutations in Atp2b2, an outer hair cell gene, cause dominant hearing loss in humans. Using a mouse model Atp2b2Obl/+, with a dominant hearing loss mutation (Oblivion), we show that liposome-mediated in vivo delivery of CRISPR-Cas9 ribonucleoprotein complexes leads to specific editing of the Obl allele. Large deletions encompassing the Obl locus and indels were identified as the result of editing. In vivo genome editing promotes outer hair cell survival and restores their function, leading to hearing recovery. We further show that in a double-dominant mutant mouse model, in which the Tmc1 Beethoven mutation and the Atp2b2 Oblivion mutation cause digenic genetic hearing loss, Cas9/sgRNA delivery targeting both mutations leads to partial hearing recovery. These findings suggest that liposome-RNP delivery can be used as a strategy to recover hearing with dominant mutations in OHC genes and with digenic mutations in the auditory hair cells, potentially expanding therapeutics of gene editing to treat hearing loss.
Collapse
Affiliation(s)
- Yong Tao
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, MA, 02114, USA
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Veronica Lamas
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, MA, 02114, USA
- Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Wan Du
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, MA, 02114, USA
| | - Wenliang Zhu
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, MA, 02114, USA
| | - Yiran Li
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, MA, 02114, USA
- C.S. Mott Children's Hospital, Ann Harbor, MI, USA
| | - Madelynn N Whittaker
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General hospital, Boston, MA, 02114, USA
| | - John A Zuris
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - David B Thompson
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Arun Prabhu Rameshbabu
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, MA, 02114, USA
| | - Yilai Shu
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, MA, 02114, USA
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratory of Hearing Medicine, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200031, China
| | - Xue Gao
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Johnny H Hu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Charles Pei
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, MA, 02114, USA
| | - Wei-Jia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuezhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Benjamin P Kleinstiver
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General hospital, Boston, MA, 02114, USA
- Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| | - Zheng-Yi Chen
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA.
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, MA, 02114, USA.
| |
Collapse
|
30
|
Kompis M, Langmair M, Mantokoudis G, Weder S, Gawliczek T, Caversaccio MD. Using a Bone Conduction Hearing Device as a Tactile Aid. Audiol Res 2023; 13:459-465. [PMID: 37366686 DOI: 10.3390/audiolres13030040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND With the advent of cochlear implants, tactile aids for the profoundly deaf became obsolete decades ago. Nevertheless, they might still be useful in rare cases. We report the case of a 25-year-old woman with Bosley-Salih-Alorainy Syndrome and bilateral cochlear aplasia. METHODS After it was determined that cochlear or brainstem implants were not an option and tactile aids were not available anymore, a bone conduction device (BCD) on a softband was tried as a tactile aid. The usual retroauricular position and a second position close to the wrist, preferred by the patient, were compared. Sound detection thresholds were measured with and without the aid. Additionally, three bilaterally deaf adult cochlear implant users were tested under the same conditions. RESULTS At 250-1000 Hz, sounds were perceived as vibrations above approximately 45-60 dB with the device at the wrist. Thresholds were approximately 10 dB poorer when placed retroauricularly. Differentiation between different sounds seemed difficult. Nevertheless, the patient uses the device and can perceive loud sounds. CONCLUSIONS Cases where the use of tactile aids may make sense are probably very rare. The use of BCD, placed, e.g., at the wrist, may be useful, but sound perception is limited to low frequencies and relatively loud levels.
Collapse
Affiliation(s)
- Martin Kompis
- Department of ENT, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Manfred Langmair
- Department of ENT, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Georgios Mantokoudis
- Department of ENT, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Stefan Weder
- Department of ENT, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Tom Gawliczek
- Department of ENT, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Marco Domenico Caversaccio
- Department of ENT, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
31
|
Amariutei AE, Jeng JY, Safieddine S, Marcotti W. Recent advances and future challenges in gene therapy for hearing loss. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230644. [PMID: 37325593 PMCID: PMC10265000 DOI: 10.1098/rsos.230644] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023]
Abstract
Hearing loss is the most common sensory deficit experienced by humans and represents one of the largest chronic health conditions worldwide. It is expected that around 10% of the world's population will be affected by disabling hearing impairment by 2050. Hereditary hearing loss accounts for most of the known forms of congenital deafness, and over 25% of adult-onset or progressive hearing loss. Despite the identification of well over 130 genes associated with deafness, there is currently no curative treatment for inherited deafness. Recently, several pre-clinical studies in mice that exhibit key features of human deafness have shown promising hearing recovery through gene therapy involving the replacement of the defective gene with a functional one. Although the potential application of this therapeutic approach to humans is closer than ever, substantial further challenges need to be overcome, including testing the safety and longevity of the treatment, identifying critical therapeutic time windows and improving the efficiency of the treatment. Herein, we provide an overview of the recent advances in gene therapy and highlight the current hurdles that the scientific community need to overcome to ensure a safe and secure implementation of this therapeutic approach in clinical trials.
Collapse
Affiliation(s)
- Ana E. Amariutei
- School of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Jing-Yi Jeng
- School of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Saaid Safieddine
- Institut Pasteur, Université Paris Cité, Inserm, Institut de l'Audition, F-75012 Paris, France
| | - Walter Marcotti
- School of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
- Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
32
|
Jones M, Kovacevic B, Ionescu CM, Wagle SR, Quintas C, Wong EYM, Mikov M, Mooranian A, Al-Salami H. The applications of Targeted Delivery for Gene Therapies in Hearing Loss. J Drug Target 2023:1-22. [PMID: 37211674 DOI: 10.1080/1061186x.2023.2216900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/07/2022] [Accepted: 04/09/2023] [Indexed: 05/23/2023]
Abstract
Gene therapies are becoming more abundantly researched for use in a multitude of potential treatments, including for hearing loss. Hearing loss is a condition which impacts an increasing number of the population each year, with significant burdens associated. As such, this review will present the concept that delivering a gene effectively to the inner ear may assist in expanding novel treatment options and improving patient outcomes. Historically, several drawbacks have been associated with the use of gene therapies, some of which may be overcome via targeted delivery. Targeted delivery has the potential to alleviate off-target effects and permit a safer delivery profile. Viral vectors have often been described as a delivery method, however, there is an emerging depiction of the potential for nanotechnology to be used. Resulting nanoparticles may also be tuned to allow for targeted delivery. Therefore, this review will focus on hearing loss, gene delivery techniques and inner ear targets, including highlighting promising research. Targeted delivery is a key concept to permitting gene delivery in a safe effective manner, however, further research is required, both in the determination of genes to use in functional hearing recovery and formulating nanoparticles for targeted delivery.
Collapse
Affiliation(s)
- Melissa Jones
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Christina Quintas
- School of human sciences, University of Western Australia, Crawley 6009, Perth, Western Australia, Australia
| | - Elaine Y M Wong
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21101 Novi Sad, Serbia
| | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
- School of Pharmacy, University of Otago, Dunedin, Otago, New Zealand
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
- Medical School, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
33
|
Du W, Ergin V, Loeb C, Huang M, Silver S, Armstrong AM, Huang Z, Gurumurthy CB, Staecker H, Liu X, Chen ZY. Rescue of Auditory Function by a Single Administration of AAV- TMPRSS3 Gene Therapy in Aged Mice of Human Recessive Deafness DFNB8. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.25.530035. [PMID: 36865298 PMCID: PMC9980176 DOI: 10.1101/2023.02.25.530035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Patients with mutations in the TMPRSS3 gene suffer from recessive deafness DFNB8/DFNB10 for whom cochlear implantation is the only treatment option. Poor cochlear implantation outcomes are seen in some patients. To develop biological treatment for TMPRSS3 patients, we generated a knock-in mouse model with a frequent human DFNB8 TMPRSS3 mutation. The Tmprss3 A306T/A306T homozygous mice display delayed onset progressive hearing loss similar to human DFNB8 patients. Using AAV2 as a vector to carry a human TMPRSS3 gene, AAV2-h TMPRSS3 injection in the adult knock-in mouse inner ears results in TMPRSS3 expression in the hair cells and the spiral ganglion neurons. A single AAV2-h TMPRSS3 injection in aged Tmprss3 A306T/A306T mice leads to sustained rescue of the auditory function, to a level similar to the wildtype mice. AAV2-h TMPRSS3 delivery rescues the hair cells and the spiral ganglions. This is the first study to demonstrate successful gene therapy in an aged mouse model of human genetic deafness. This study lays the foundation to develop AAV2-h TMPRSS3 gene therapy to treat DFNB8 patients, as a standalone therapy or in combination with cochlear implantation.
Collapse
|
34
|
Liang J, Wang J, Yao W, Wang M. Development of an Assessment Model for the Effect of the Replacement of Minimal Artificial Ossicles on Hearing in the Inner Ear. MICROMACHINES 2023; 14:483. [PMID: 36838183 PMCID: PMC9962337 DOI: 10.3390/mi14020483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Due to ethical issues and the nature of the ear, it is difficult to directly perform experimental measurements on living body elements of the human ear. Therefore, a numerical model has been developed to effectively assess the effect of the replacement of artificial ossicles on hearing in the inner ear. A healthy volunteer's right ear was scanned to obtain CT data, which were digitalized through the use of a self-compiling program and coalescent Patran-Nastran software to establish a 3D numerical model of the whole ear, and a frequency response of a healthy human ear was analyzed. The vibration characteristics of the basilar membrane (BM) after total ossicular replacement prosthesis (TORP) implantation were then analyzed. The results show that although the sound conduction function of the middle ear was restored after replacement of the TORP, the sensory sound function of the inner ear was affected. In the low frequency and medium frequency range, hearing loss was 5.2~10.7%. Meanwhile, in the middle-high frequency range, the replacement of a middle ear TORP in response to high sound pressure produced a high acoustic stimulation effect in the inner ear, making the inner ear structures susceptible to fatigue and more prone to fatigue damage compared to the structures in healthy individuals. This developed model is able to assess the effects of surgical operation on the entire hearing system.
Collapse
Affiliation(s)
- Junyi Liang
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44106, USA
| | - Jiakun Wang
- School of Mechanics and Engineering Science, Shanghai University, Shanghai 200072, China
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai 200072, China
| | - Wenjuan Yao
- School of Mechanics and Engineering Science, Shanghai University, Shanghai 200072, China
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai 200072, China
| | - Mianzhi Wang
- School of Mechanics and Engineering Science, Shanghai University, Shanghai 200072, China
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai 200072, China
| |
Collapse
|
35
|
Optical Coherence Tomography-Based Atlas of the Human Cochlear Hook Region. J Clin Med 2022; 12:jcm12010238. [PMID: 36615042 PMCID: PMC9820872 DOI: 10.3390/jcm12010238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022] Open
Abstract
Advancements in intracochlear diagnostics, as well as prosthetic and regenerative inner ear therapies, rely on a good understanding of cochlear microanatomy. The human cochlea is very small and deeply embedded within the densest skull bone, making nondestructive visualization of its internal microstructures extremely challenging. Current imaging techniques used in clinical practice, such as MRI and CT, fall short in their resolution to visualize important intracochlear landmarks, and histological analysis of the cochlea cannot be performed on living patients without compromising their hearing. Recently, optical coherence tomography (OCT) has been shown to be a promising tool for nondestructive micrometer resolution imaging of the mammalian inner ear. Various studies performed on human cadaveric tissue and living animals demonstrated the ability of OCT to visualize important cochlear microstructures (scalae, organ of Corti, spiral ligament, and osseous spiral lamina) at micrometer resolution. However, the interpretation of human intracochlear OCT images is non-trivial for researchers and clinicians who are not yet familiar with this novel technology. In this study, we present an atlas of intracochlear OCT images, which were acquired in a series of 7 fresh and 10 fresh-frozen human cadaveric cochleae through the round window membrane and describe the qualitative characteristics of visualized intracochlear structures. Likewise, we describe several intracochlear abnormalities, which could be detected with OCT and are relevant for clinical practice.
Collapse
|
36
|
Qi J, Fu X, Zhang L, Tan F, Li N, Sun Q, Hu X, He Z, Xia M, Chai R. Current AAV-mediated gene therapy in sensorineural hearing loss. FUNDAMENTAL RESEARCH 2022. [DOI: 10.1016/j.fmre.2022.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
37
|
Hua JC, Xu XM, Xu ZG, Xue Y, Xu JJ, Hu JH, Wu Y, Chen YC. Abnormal cerebellar network and effective connectivity in sudden and long-term sensorineural hearing loss. Front Aging Neurosci 2022; 14:964349. [PMID: 36034151 PMCID: PMC9403534 DOI: 10.3389/fnagi.2022.964349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
Sudden sensorineural hearing loss (SSNHL) is a common otology emergency and some SSNHL will develop into a long-term hearing loss (LSNHL). However, whether SSNHL and LSNHL have similar psychiatric patterns remains unknown, as well as the neural substrates. Increasing evidence has proved that the cerebellar network plays a vital role in hearing, cognition processing, and emotion control. Thus, we recruited 20 right SSNHL (RSSNHL), 20 right LSNHL (RLSNHL), and 24 well-matched healthy controls to explore the cerebellar patterns among the three groups. Every participant underwent pure tone audiometry tests, neuropsychological evaluations, and MRI scanning. Independent component analysis (ICA) was carried out on the MRI data and the cerebellar network was extracted. Granger causality analysis (GCA) was conducted using the significant cerebellar region as a seed. Pearson’s correlation analysis was computed between imaging characteristics and clinical features. ICA found the effect of group on right cerebellum lobule V for the cerebellar network. Then, we found decreased outflow from right cerebellum lobule V to right middle orbitofrontal cortex, inferior frontal gyrus, anterior cingulate cortex, superior temporal gyrus, and dorsal lateral prefrontal cortex in RSSNHL group in GCA analysis. No significance was found in RLSNHL subjects. Additionally, the RSSNHL group showed increased effective connectivity from the right middle frontal gyrus (MFG) and the RLSNHL group showed increased effective connectivity from the right insula and temporal pole to the right cerebellum lobule V. Moreover, connections between right cerebellum lobule V and mean time series of the cerebellar network was negatively correlated with anxiety score in RSSNHL and negatively correlated with depression scores in RLSNHL. Effective connectivity from right MFG to right cerebellum lobule V could predict anxiety status in RSSNHL subjects. Our results may prove potential imaging biomarkers and treatment targets for hearing loss in future work.
Collapse
Affiliation(s)
- Jin-Chao Hua
- Department of Otolaryngology, Nanjing Pukou Central Hospital, Pukou Branch Hospital of Jiangsu Province Hospital, Nanjing, China
| | - Xiao-Min Xu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhen-Gui Xu
- Department of Otolaryngology, Nanjing Pukou Central Hospital, Pukou Branch Hospital of Jiangsu Province Hospital, Nanjing, China
| | - Yuan Xue
- Department of Otolaryngology, Nanjing Pukou Central Hospital, Pukou Branch Hospital of Jiangsu Province Hospital, Nanjing, China
| | - Jin-Jing Xu
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jing-Hua Hu
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yuanqing Wu
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Yu-Chen Chen Yuanqing Wu
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Yu-Chen Chen Yuanqing Wu
| |
Collapse
|
38
|
Ren H, Hu B, Jiang G. Advancements in prevention and intervention of sensorineural hearing loss. Ther Adv Chronic Dis 2022; 13:20406223221104987. [PMID: 35782345 PMCID: PMC9243368 DOI: 10.1177/20406223221104987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 05/16/2022] [Indexed: 11/28/2022] Open
Abstract
The inner ear is a complex and difficult organ to study, and sensorineural hearing loss (SNHL) is a multifactorial sensorineural disorder with characteristics of impaired speech discrimination, recognition, sound detection, and localization. Till now, SNHL is recognized as an incurable disease because the potential mechanisms underlying SNHL have not been elucidated. The risk of developing SNHL is no longer viewed as primarily due to environmental factors. Instead, SNHL seems to result from a complicated interplay of genetic and environmental factors affecting numerous fundamental cellular processes. The complexity of SNHL is presented as an inability to make an early diagnosis at the earliest stages of the disease and difficulties in the management of symptoms during the process. To date, there are no treatments that slow the neurodegenerative process. In this article, we review the recent advances about SHNL and discuss the complexities and challenges of prevention and intervention of SNHL.
Collapse
Affiliation(s)
- Hongmiao Ren
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Bing Hu
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Guangli Jiang
- Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
39
|
Feng P, Xu Z, Chen J, Liu M, Zhao Y, Wang D, Han L, Wang L, Wan B, Xu X, Li D, Shu Y, Hua Y. Rescue of mis-splicing of a common SLC26A4 mutant associated with sensorineural hearing loss by antisense oligonucleotides. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 28:280-292. [PMID: 35433113 PMCID: PMC8987850 DOI: 10.1016/j.omtn.2022.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 03/18/2022] [Indexed: 11/11/2022]
Abstract
A wide spectrum of SLC26A4 mutations causes Pendred syndrome and enlarged vestibular aqueduct, both associated with sensorineural hearing loss (SNHL). A splice-site mutation, c.919-2A>G (A-2G), which is common in Asian populations, impairs the 3′ splice site of intron 7, resulting in exon 8 skipping during pre-mRNA splicing and a subsequent frameshift that creates a premature termination codon in the following exon. Currently, there is no effective drug treatment for SHNL. For A-2G-triggered SNHL, molecules that correct mis-splicing of the mutant hold promise to treat the disease. Antisense oligonucleotides (ASOs) can promote exon inclusion when targeting specific splicing silencers. Here, we systematically screened a large number of ASOs in a minigene system and identified a few that markedly repressed exon 8 skipping. A lead ASO, which targets a heterogeneous nuclear ribonucleoprotein (hnRNP) A1/A2 intronic splicing silencer (ISS) in intron 8, promoted efficient exon 8 inclusion in cultured peripheral blood mononuclear cells derived from two homozygous patients. In a partially humanized Slc26a4 A-2G mouse model, two subcutaneous injections of the ASO at 160 mg/kg significantly rescued exon 8 splicing in the liver. Our results demonstrate that the ISS-targeting ASO has therapeutic potential to treat genetic hearing loss caused by the A-2G mutation in SLC26A4.
Collapse
|
40
|
Tao Y, Liu X, Yang L, Chu C, Tan F, Yu Z, Ke J, Li X, Zheng X, Zhao X, Qi J, Lin CP, Chai R, Zhong G, Wu H. AAV-ie-K558R mediated cochlear gene therapy and hair cell regeneration. Signal Transduct Target Ther 2022; 7:109. [PMID: 35449181 PMCID: PMC9023545 DOI: 10.1038/s41392-022-00938-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/29/2022] [Accepted: 02/14/2022] [Indexed: 12/19/2022] Open
Abstract
The cochlea consists of multiple types of cells, including hair cells, supporting cells and spiral ganglion neurons, and is responsible for converting mechanical forces into electric signals that enable hearing. Genetic and environmental factors can result in dysfunctions of cochlear and auditory systems. In recent years, gene therapy has emerged as a promising treatment in animal deafness models. One major challenge of the gene therapy for deafness is to effectively deliver genes to specific cells of cochleae. Here, we screened and identified an AAV-ie mutant, AAV-ie-K558R, that transduces hair cells and supporting cells in the cochleae of neonatal mice with high efficiency. AAV-ie-K558R is a safe vector with no obvious deficits in the hearing system. We found that AAV-ie-K558R can partially restore the hearing loss in Prestin KO mice and, importantly, deliver Atoh1 into cochlear supporting cells to generate hair cell-like cells. Our results demonstrate the clinical potential of AAV-ie-K558R for treating the hearing loss caused by hair cell death.
Collapse
Affiliation(s)
- Yong Tao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, 200011, PR China
| | - Xiaoyi Liu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, PR China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, PR China
| | - Liu Yang
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, PR China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, PR China
| | - Cenfeng Chu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, PR China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, PR China
| | - Fangzhi Tan
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, PR China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, PR China
| | - Zehua Yu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, PR China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, PR China
| | - Junzi Ke
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, PR China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, PR China
| | - Xiang Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, 200011, PR China
| | - Xiaofei Zheng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, 200011, PR China
| | - Xingle Zhao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, 200011, PR China
| | - Jieyu Qi
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, PR China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, PR China
| | - Chao-Po Lin
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, PR China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, PR China. .,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, PR China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, PR China. .,Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, 100069, Beijing, PR China.
| | - Guisheng Zhong
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China. .,iHuman Institute, ShanghaiTech University, Shanghai, 201210, PR China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, PR China.
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China. .,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China. .,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, 200011, PR China.
| |
Collapse
|
41
|
Maudoux A, Vitry S, El-Amraoui A. Vestibular Deficits in Deafness: Clinical Presentation, Animal Modeling, and Treatment Solutions. Front Neurol 2022; 13:816534. [PMID: 35444606 PMCID: PMC9013928 DOI: 10.3389/fneur.2022.816534] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
The inner ear is responsible for both hearing and balance. These functions are dependent on the correct functioning of mechanosensitive hair cells, which convert sound- and motion-induced stimuli into electrical signals conveyed to the brain. During evolution of the inner ear, the major changes occurred in the hearing organ, whereas the structure of the vestibular organs remained constant in all vertebrates over the same period. Vestibular deficits are highly prevalent in humans, due to multiple intersecting causes: genetics, environmental factors, ototoxic drugs, infections and aging. Studies of deafness genes associated with balance deficits and their corresponding animal models have shed light on the development and function of these two sensory systems. Bilateral vestibular deficits often impair individual postural control, gaze stabilization, locomotion and spatial orientation. The resulting dizziness, vertigo, and/or falls (frequent in elderly populations) greatly affect patient quality of life. In the absence of treatment, prosthetic devices, such as vestibular implants, providing information about the direction, amplitude and velocity of body movements, are being developed and have given promising results in animal models and humans. Novel methods and techniques have led to major progress in gene therapies targeting the inner ear (gene supplementation and gene editing), 3D inner ear organoids and reprograming protocols for generating hair cell-like cells. These rapid advances in multiscale approaches covering basic research, clinical diagnostics and therapies are fostering interdisciplinary research to develop personalized treatments for vestibular disorders.
Collapse
Affiliation(s)
- Audrey Maudoux
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy, Institut Pasteur, Institut de l'Audition, Université de Paris, INSERM-UMRS1120, Paris, France
- Center for Balance Evaluation in Children (EFEE), Otolaryngology Department, Assistance Publique des Hôpitaux de Paris, Robert-Debré University Hospital, Paris, France
| | - Sandrine Vitry
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy, Institut Pasteur, Institut de l'Audition, Université de Paris, INSERM-UMRS1120, Paris, France
| | - Aziz El-Amraoui
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy, Institut Pasteur, Institut de l'Audition, Université de Paris, INSERM-UMRS1120, Paris, France
| |
Collapse
|
42
|
Yao W, Gao L, Su J, Karpeta N, Xie W, Duan M. Effects of lesions of the organ of corti on hearing. Acta Otolaryngol 2022; 142:118-126. [PMID: 35098870 DOI: 10.1080/00016489.2022.2027517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
BACKGROUND Lesions causing changes in the microstructure of the organ of Corti may lead to hearing impairment. AIMS/OBJECTIVES The aim of this study was to investigate the effect of various structural lesions on the organ of Corti and the auditory function. METHODS A finite element method of the cochlea and the organ of Corti were established based on computed tomography scanning and anatomical data. We evaluated the accuracy of the model by comparing the simulation results to reported experimental data. We simulated and analyzed the impact of the lesions on the sound-sensing function of the cochlea by adjusting the biomaterial parameters of each component of the cochlea. RESULTS In the explored frequency range, the stereocilia and outer hair cells and basilar membrane sclerosis resulted in 23.4%, 47.2%, and 57.8% reduction of basilar membrane displacement, respectively. Lesions of the basilar membrane and stereocilia and outer hair cells in the Corti caused a hearing response curve shift to higher frequencies and a decrease of the amplitude of the basilar membrane. CONCLUSIONS AND SIGNIFICANCE Lesions of the internal structure of the Corti cause diminished movement of basement membrane and decreased sensorial function, which ultimately lead to hearing loss.
Collapse
Affiliation(s)
- Wenjuan Yao
- School of Mechanics and Engineering Science, Shanghai University, Shanghai, P.R. China
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai, P.R. China
| | - Lei Gao
- School of Mechanics and Engineering Science, Shanghai University, Shanghai, P.R. China
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai, P.R. China
| | - Jiangtao Su
- School of Mechanics and Engineering Science, Shanghai University, Shanghai, P.R. China
| | - Niki Karpeta
- Division of ENT section, Department of Clinical Science, Intervention and Technology and Department of Otolaryngology Head and Neck & Audiology and Neurotology, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Wen Xie
- Department of Otolaryngology, Head and Neck Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Maoli Duan
- Division of ENT section, Department of Clinical Science, Intervention and Technology and Department of Otolaryngology Head and Neck & Audiology and Neurotology, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
43
|
OUP accepted manuscript. Hum Mol Genet 2022; 31:3068-3082. [DOI: 10.1093/hmg/ddac096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/28/2022] [Accepted: 04/20/2022] [Indexed: 11/14/2022] Open
|
44
|
Li W, Zhang Y, Xu J, Chen J, Gao X. Fasudil prevents neomycin-induced hair cell damage by inhibiting autophagy through the miR-489/NDP52 signaling pathway in HEI-OC1 cells. Exp Ther Med 2021; 23:43. [PMID: 34849158 DOI: 10.3892/etm.2021.10965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 08/11/2021] [Indexed: 11/05/2022] Open
Abstract
Hearing loss is a common sensory disorder that is mainly caused by the loss of hair cells (HCs). Drug-induced deafness, for which there is currently no effective treatment, is mainly caused by the inappropriate use of aminoglycoside antibiotics. Fasudil (Fas), a novel isoquinoline sulfonamide derivative, has exhibited antioxidant abilities in a number of previous studies. The aim of the present study was to investigate the potential effects of Fas against neomycin (Neo)-induced hair cell damage and elucidate the underlying mechanism. Flow cytometry and western blot analysis were used to detect the effects of Fas on cell apoptosis and to determine the expression levels of autophagy-related proteins, LC3B and Beclin 1, induced by Neo. Mitochondrial membrane potential and reactive oxygen species (ROS) levels were detected using fluorescent probes. The effect of Fas on Neo-induced hair cell injury marker, GFP-LC3B, was also examined using the immunofluorescence technique. Fas was found to inhibit Neo-induced mitochondrial autophagy and mitochondrial membrane potential decline, in addition to reducing ROS levels and cell apoptosis caused by Neo treatment. However, Fas failed to inhibit the Neo-induced these above changes in cells with NDP52 overexpression. The putative binding sites of microRNA (miR)-489 on the 3'-untranslated region of nuclear dot protein 52 (NDP52) were predicted using the TargetScan 7.0 online tool, and this association was further verified using a dual-luciferase reporter assay. Moreover, the expression of miR-489 negatively regulated the expression of NDP52. Fas and miR-489 mimic inhibited the Neo-induced mitochondrial autophagy and mitochondrial membrane potential decline, in addition to reducing ROS levels and cell apoptosis. Knockdown of miR-489 expression using a miR-489 inhibitor blocked the inhibitory effects of Fas on the mitochondrial membrane potential, cell apoptosis and ROS production. Therefore, Fas may upregulate the expression of miR-489 to negatively regulate the expression of NDP52 at the post-transcriptional level, which in turn inhibits the activation of mitophagy and cell injury induced by Neo. Thus, Fas may act as a novel therapeutic option in the clinical treatment of hearing loss in the future.
Collapse
Affiliation(s)
- Wei Li
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Yanqiu Zhang
- Department of Otolaryngology Head and Neck Surgery, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221005, P.R. China
| | - Jifeng Xu
- Department of Otolaryngology Head and Neck Surgery, The First Clinical Medical College of Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Jincan Chen
- Department of Otolaryngology Head and Neck Surgery, The First Clinical Medical College of Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Xia Gao
- Research Institute of Otolaryngology, Gulou Hospital Affiliated to Medical College of Nanjing University, Nanjing, Jiangsu 210008, P.R. China.,Department of Otolaryngology Head and Neck Surgery, Gulou Hospital Affiliated to Medical College of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
45
|
Ebrahimi A, Ahmadi H, Ghasrodashti ZP, Tanideh N, Shahriarirad R, Erfani A, Ranjbar K, Ashkani-Esfahani S. Therapeutic effects of stem cells in different body systems, a novel method that is yet to gain trust: A comprehensive review. Bosn J Basic Med Sci 2021; 21:672-701. [PMID: 34255619 PMCID: PMC8554700 DOI: 10.17305/bjbms.2021.5508] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/25/2021] [Indexed: 11/30/2022] Open
Abstract
Stem cell therapy has been used to treat several types of diseases, and it is expected that its therapeutic uses shall increase as novel lines of evidence begin to appear. Furthermore, stem cells have the potential to make new tissues and organs. Thus, some scientists propose that organ transplantation will significantly rely on stem cell technology and organogenesis in the future. Stem cells and its robust potential to differentiate into specific types of cells and regenerate tissues and body organs, have been investigated by numerous clinician scientists and researchers for their therapeutic effects. Degenerative diseases in different organs have been the main target of stem cell therapy. Neurodegenerative diseases such as Alzheimer's, musculoskeletal diseases such as osteoarthritis, congenital cardiovascular diseases, and blood cell diseases such as leukemia are among the health conditions that have benefited from stem cell therapy advancements. One of the most challenging parts of the process of incorporating stem cells into clinical practice is controlling their division and differentiation potentials. Sometimes, their potential for uncontrolled growth will make these cells tumorigenic. Another caveat in this process is the ability to control the differentiation process. While stem cells can easily differentiate into a wide variety of cells, a paracrine effect controlled activity, being in an appropriate medium will cause abnormal differentiation leading to treatment failure. In this review, we aim to provide an overview of the therapeutic effects of stem cells in diseases of various organ systems. In order to advance this new treatment to its full potential, researchers should focus on establishing methods to control the differentiation process, while policymakers should take an active role in providing adequate facilities and equipment for these projects. Large population clinical trials are a necessary tool that will help build trust in this method. Moreover, improving social awareness about the advantages and adverse effects of stem cell therapy is required to develop a rational demand in the society, and consequently, healthcare systems should consider established stem cell-based therapeutic methods in their treatment algorithms.
Collapse
Affiliation(s)
- Alireza Ebrahimi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hanie Ahmadi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Pourfraidon Ghasrodashti
- Molecular Pathology and Cytogenetics Laboratory, Department of Pathology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Tanideh
- Stem Cells Technology Research Center, Department of Pharmacology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Shahriarirad
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirhossein Erfani
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Keivan Ranjbar
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soheil Ashkani-Esfahani
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
46
|
Wang Q, Shen Y, Pan Y, Chen K, Ding R, Zou T, Zhang A, Guo D, Ji P, Fan C, Mei L, Hu H, Ye B, Xiang M. Tlr2/4 Double Knockout Attenuates the Degeneration of Primary Auditory Neurons: Potential Mechanisms From Transcriptomic Perspectives. Front Cell Dev Biol 2021; 9:750271. [PMID: 34760891 PMCID: PMC8573328 DOI: 10.3389/fcell.2021.750271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/28/2021] [Indexed: 11/30/2022] Open
Abstract
The transcriptomic landscape of mice with primary auditory neurons degeneration (PAND) indicates key pathways in its pathogenesis, including complement cascades, immune responses, tumor necrosis factor (TNF) signaling pathway, and cytokine-cytokine receptor interaction. Toll-like receptors (TLRs) are important immune and inflammatory molecules that have been shown to disrupt the disease network of PAND. In a PAND model involving administration of kanamycin combined with furosemide to destroy cochlear hair cells, Tlr 2/4 double knockout (DKO) mice had auditory preservation advantages, which were mainly manifested at 4–16 kHz. DKO mice and wild type (WT) mice had completely damaged cochlear hair cells on the 30th day, but the density of spiral ganglion neurons (SGN) in the Rosenthal canal was significantly higher in the DKO group than in the WT group. The results of immunohistochemistry for p38 and p65 showed that the attenuation of SGN degeneration in DKO mice may not be mediated by canonical Tlr signaling pathways. The SGN transcriptome of DKO and WT mice indicated that there was an inverted gene set enrichment relationship between their different transcriptomes and the SGN degeneration transcriptome, which is consistent with the morphology results. Core module analysis suggested that DKO mice may modulate SGN degeneration by activating two clusters, and the involved molecules include EGF, STAT3, CALB2, LOX, SNAP25, CAV2, SDC4, MYL1, NCS1, PVALB, TPM4, and TMOD4.
Collapse
Affiliation(s)
- Quan Wang
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yilin Shen
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Pan
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaili Chen
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Ding
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyuan Zou
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Andi Zhang
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongye Guo
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peilin Ji
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cui Fan
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Mei
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haixia Hu
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Ye
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingliang Xiang
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
47
|
He Z, Ding Y, Mu Y, Xu X, Kong W, Chai R, Chen X. Stem Cell-Based Therapies in Hearing Loss. Front Cell Dev Biol 2021; 9:730042. [PMID: 34746126 PMCID: PMC8567027 DOI: 10.3389/fcell.2021.730042] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/04/2021] [Indexed: 12/19/2022] Open
Abstract
In recent years, neural stem cell transplantation has received widespread attention as a new treatment method for supplementing specific cells damaged by disease, such as neurodegenerative diseases. A number of studies have proved that the transplantation of neural stem cells in multiple organs has an important therapeutic effect on activation and regeneration of cells, and restore damaged neurons. This article describes the methods for inducing the differentiation of endogenous and exogenous stem cells, the implantation operation and regulation of exogenous stem cells after implanted into the inner ear, and it elaborates the relevant signal pathways of stem cells in the inner ear, as well as the clinical application of various new materials. At present, stem cell therapy still has limitations, but the role of this technology in the treatment of hearing diseases has been widely recognized. With the development of related research, stem cell therapy will play a greater role in the treatment of diseases related to the inner ear.
Collapse
Affiliation(s)
- Zuhong He
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yanyan Ding
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yurong Mu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxiang Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Weijia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.,Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Xiong Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
48
|
Ueda Y, Moore ST, Hashino E. Directed Differentiation of Human Pluripotent Stem Cells into Inner Ear Organoids. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2520:135-150. [PMID: 34724191 DOI: 10.1007/7651_2021_448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The sensory epithelia of the inner ear contain mechanosensitive hair cells that detect sound and head acceleration. This protocol details a 3D differentiation method to generate inner ear organoids containing sensory epithelia with hair cells. Human pluripotent stem cells are aggregated in low-binding 96-well plates and treated in chemically defined media with extracellular matrix to promote epithelialization. Small molecules and recombinant proteins are applied in a stepwise manner to recapitulate the morphogenic cues (BMP, TGF-β, FGF, and WNT) present during inner ear development in vivo. These treatments induce the sequential formation of nonneural ectoderm, otic-epibranchial progenitor domain, and otic placodes. The derived otic placodes then undergo self-guided morphogenesis to form otic vesicles, which eventually give rise to sensory epithelia containing hair cells and supporting cells, as well as neurons with synaptic formations to hair cells. This human stem cell-derived inner ear organoid system provides an ideal platform to study human inner ear development and disease in vitro.
Collapse
Affiliation(s)
- Yoshitomo Ueda
- Department of Otolaryngology - Head and Neck Surgery, and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Stephen T Moore
- Department of Otolaryngology - Head and Neck Surgery, and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Eri Hashino
- Department of Otolaryngology - Head and Neck Surgery, and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
49
|
Montalbano G, Olivotto I, Germanà A, Randazzo B. Evaluation of the hair cell regeneration and claudin b and phoenix gene expression during exposure to low concentrations of cadmium and zinc in early developing zebrafish larvae. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109116. [PMID: 34182097 DOI: 10.1016/j.cbpc.2021.109116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 12/28/2022]
Abstract
Zebrafish possess hair cells on the body surface similar to that of mammals inner hear, in particular in the neuromasts, and due to its ability in regenerating damaged hair cells, is regularly used as a powerful animal model to study in vivo cytotoxicity. Among the factors leading to hair cell disruption, metal ions are of particular concern since they are important environmental pollutants. To date, several studies on zebrafish hair cell regeneration after metal exposure exist, while no data on regeneration during continuous metal exposure are available. In the present study, neuromast hair cell disruption and regeneration were assessed in zebrafish larvae for the first time during zinc (Zn) and cadmium (Cd) continuous exposure and a visual and molecular approach was adopted. Fluorescent vital dye DASPEI was used to assess hair cell regeneration and the gene expression of claudin b (cldnb) and phoenix (pho), was analyzed. Metallotionein-2 (mt2) gene expression was used as standard molecular marker of metal toxicity and confirmed the higher toxicity of Cd compared to Zn. In addition, Cd caused a delay in hair cell regeneration compared to Zn. Molecular analysis showed cldnb gene expression increased in relation to the metal concentrations used, confirming the involvement of this gene in hair cell regeneration. On the contrary, a dramatic decrease of pho gene expression was observed in Cd exposed groups, suggesting a negative impact of Cd on pho expression, thus negatively interfering with hair cell regeneration in zebrafish larvae exposed to this metal.
Collapse
Affiliation(s)
| | - Ike Olivotto
- Polytechnic University of Marche, Department of Life and Environmental Sciences, Ancona, Italy
| | - Antonino Germanà
- Messina Study University, Department of Veterinary Sciences, Messina, Italy
| | - Basilio Randazzo
- Polytechnic University of Marche, Department of Life and Environmental Sciences, Ancona, Italy.
| |
Collapse
|
50
|
Moeinvaziri F, Shojaei A, Haghparast N, Yakhkeshi S, Nemati S, Hassani SN, Baharvand H. Towards maturation of human otic hair cell-like cells in pluripotent stem cell-derived organoid transplants. Cell Tissue Res 2021; 386:321-333. [PMID: 34319434 DOI: 10.1007/s00441-021-03510-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 07/14/2021] [Indexed: 12/21/2022]
Abstract
Human otic organoids generated from pluripotent stem cells (PSCs) provide a promising platform for modeling, drug testing, and cell-based therapies of inner ear diseases. However, providing the appropriate niche that resembles inner ear development and its vasculature to generate otic organoids is less conspicuous. Here, we devised a strategy to enhance maturation of otic progenitor cells toward human hair cell-like cells (HCLCs) by assembling three-dimensional (3D) otic organoids that contain human PSC-derived otic cells, endothelial cells, and mesenchymal stem cells (MSCs). Heterotopic implantation of otic organoids, designated as grafted otic organoids (GOs), in ex ovo chick embryo chorioallantoic membrane (CAM) stimulated maturation of the HCLCs. Functional analysis revealed the presence of voltage-gated potassium currents without detectable sodium currents in these cells in the GOs. Our results demonstrated that implantation of 3D heterotypic cell mixtures of otic organoids improved maturation of human HCLCs. This GO-derived HCLCs could be an attractive source for drug discovery and other biomedical applications.
Collapse
Affiliation(s)
- Farideh Moeinvaziri
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Amir Shojaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Newsha Haghparast
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Saeed Yakhkeshi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Shadman Nemati
- Department of Otolaryngology and Head & Neck Surgery, School of Medicine, Otorhinolaryngology Research Center, Amir Al Momenin Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran. .,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|