1
|
Wang D, Ge Y, Chen F, Deng H, Liu Y, Chen Y. The Design, Synthesis, and Characterization of Photochromic and Mechanochromic Functional Fibers. Macromol Rapid Commun 2025:e2400979. [PMID: 39871504 DOI: 10.1002/marc.202400979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/15/2025] [Indexed: 01/29/2025]
Abstract
Mechanically responsive polymer materials have garnered significant interest due to their unique ability to respond to external forces, leading to groundbreaking applications in visual stress mapping and damage detection. However, their use in fibers remains relatively unexplored. In this study, a mechanoresponsive polymer is synthesized by incorporating a spiropyran (SP) mechanophore into a polyurethane backbone. Based on this mechanoresponsive polyurethane, mechanochromic fibers are fabricated via solution spinning. The fibers exhibits a clear color change from colorless to blue when subjected to external tensile stress or ultraviolet irradiation, triggered by the activation of the SP mechanophore. Furthermore, the mechanical sensitivity of the fibers can be tailored by adjusting the orientation of the polymer chains through hot stretching. Fibers subjected to higher pre-stretching during post-processing displayed a mechanochromic response at lower strain levels. Various pre-stretched fibers are then made into a barcode, which exhibits distinct dynamic information via color change during stretching. The innovative application of function fibers, capable of storing information through mechanochromic response, offers a novel approach to the development of anti-counterfeit fibers.
Collapse
Affiliation(s)
- Deqiang Wang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 200051, China
| | - Yifan Ge
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 200051, China
| | - Fengbiao Chen
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 200051, China
| | - Hairui Deng
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 200051, China
| | - Yang Liu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 200051, China
| | - Yinjun Chen
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 200051, China
| |
Collapse
|
2
|
Li X, Zou W, Zhao W, Sun Y, Tang A, Zhang S, Niu W. Weak Covalent Bonds and Mechanochemistry for Synergistic Self-Strengthening of Elastomers. J Am Chem Soc 2025. [PMID: 39849848 DOI: 10.1021/jacs.4c14796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
The macroscopic properties of elastomers are intimately linked to their molecular reactivity and mechanisms. Here, we propose a new strategy for designing strengthening materials based on the synergy of weak covalent bonds and mechanochemistry. After mechanical treatment, the failure strength and toughness of the elastomer increased from 2.37 ± 0.05 MPa and 11.34 ± 0.30 MJ/m3 to 6.02 ± 0.04 MPa and 18.40 ± 0.30 MJ/m3, respectively, while maintaining excellent tensile properties. Notably, experimental tests, theoretical calculations, and small-molecule reaction model results show that the sulfur-carbon bond is more prone to homolysis, and the reactive sites are between sulfur radicals and the end-positioned carbon of the vinyl. The C-S weak bond of spirothiopyran (STP) first undergoes homolysis to dissipate energy suffering from external stress, and the radical-mediated click reaction leads to the interchain cross-linking, thus enhancing the mechanical strength. In the end, the prepared elastomer is further used to construct a photonic elastomer, which exhibits not only mechanical force-enhanced strength but also mechanochromism. The present work provides an opportunity for innovative design of self-strengthening materials, and the prepared novel self-strengthening elastomer has broad applications in visualized strain monitoring, electronic skin, soft robots, and other fields.
Collapse
Affiliation(s)
- Xuefen Li
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, West Campus, 2# Linggong Road, Dalian 116024, China
| | - Wensheng Zou
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, West Campus, 2# Linggong Road, Dalian 116024, China
| | - Wenshuai Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, West Campus, 2# Linggong Road, Dalian 116024, China
| | - Yudong Sun
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, West Campus, 2# Linggong Road, Dalian 116024, China
| | - Anyang Tang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, West Campus, 2# Linggong Road, Dalian 116024, China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, West Campus, 2# Linggong Road, Dalian 116024, China
| | - Wenbin Niu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, West Campus, 2# Linggong Road, Dalian 116024, China
| |
Collapse
|
3
|
Xu D, Wang M, Huang R, Stoddart JF, Wang Y. A Dual-Pathway Responsive Mechanophore for Intelligent Luminescent Polymer Materials. J Am Chem Soc 2025. [PMID: 39849299 DOI: 10.1021/jacs.4c15655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Mechanoluminescent units, when integrated into polymer matrices, undergo structural transformations in response to mechanical force, resulting in changes in fluorescence. This phenomenon holds considerable promise for the development of stress-sensing materials. Despite the high demand for robust, tunable mechanoluminescent mechanophores for force assessment and smart force-responsive materials, strategies for their design and synthesis remain underdeveloped. In an attempt to address this challenge, we have introduced a novel dual-pathway responsive mechanophore, bis(2-(2-(tert-butyldimethylsilanyloxy)benzylidene)amino)aryl disulfides (SSTBS), which, when incorporated into polymer chains, exhibits fluorescence upon the combined application of force and chemical stimulus, irrespective of their sequence. This property is facilitated by the disulfide bond's sensitivity to mechanical force and the fluoride anion-induced desilylation and deprotonation. Notably, the force-responsive threshold of the SSTBS mechanophore can be finely tuned by TBAF treatment, as supported by both experimental and computational studies, providing a simple, yet effective means, to regulate polymer force responsiveness on demand. We believe that the strategy developed in this investigation will shed light on the design of mechanophores for the fabrication of intelligent luminescent polymer materials and advance the development of smart force-reporting systems.
Collapse
Affiliation(s)
- Dejing Xu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China
| | - Maolin Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China
| | - Ruozhou Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China
| | - J Fraser Stoddart
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, P. R. China
- Weinberg College of Arts and Science, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, University of Hong Kong, Kowloon Hong Kong SAR 999077, PR China
- Center for Regenerative Nanomedieine, Northwestern University, Chicago, Illinois 60611, United States
- School of Chemistry, University of New South Wales, Sydney 2052, Australia
| | - Yuping Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, PR China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, P. R. China
| |
Collapse
|
4
|
Haque N, Chang HC, Chang CC, Davis CS. Visualizing fiber end geometry effects on stress distribution in composites using mechanophores. SOFT MATTER 2025; 21:573-584. [PMID: 39576240 DOI: 10.1039/d4sm00967c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
Localized stress concentrations at fiber ends in short fiber-reinforced polymer composites (SFRCs) significantly affect their mechanical properties. Our research targets these stress concentrations by embedding nitro-spiropyran (SPN) mechanophores into the polymer matrix. SPN mechanophores change color under mechanical stress, allowing us to visualize and quantify stress distributions at the fiber ends. We utilize glass fibers as the reinforcing material and employ confocal fluorescence microscopy to detect color changes in the SPN mechanophores, providing real-time insights into the stress distribution. By combining this mechanophore-based stress sensing with finite element analysis (FEA), we evaluate localized stresses that develop during a single fiber pull-out test near different fiber end geometries-flat, cone, round, and sharp. This method precisely quantifies stress distributions for each fiber end geometry. The mechanophore activation intensity varies with fiber end geometry and pull-out displacement. Our results indicate that round fiber ends exhibit more gradual stress transfer into the matrix, promoting effective stress distribution. Also, different fiber end geometries lead to distinct failure mechanisms. These findings demonstrate that fiber end geometry plays a crucial role in stress distribution management, critical for optimizing composite design and enhancing the reliability of SFRCs in practical applications. By integrating mechanophores for real-time stress visualization, we can accurately map quantified stress distributions that arise during loading and identify failure mechanisms in polymer composites, offering a comprehensive approach to enhancing their durability and performance.
Collapse
Affiliation(s)
- Nazmul Haque
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47906, USA.
| | - Hao Chun Chang
- National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | | | - Chelsea S Davis
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47906, USA.
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| |
Collapse
|
5
|
Zhang X, Wang L, Zhang K, Zhou K, Hou K, Zhao Z, Li G, Yao Q, Sun N, Wang X. Hybrid Soft Segments Boost the Development of Ultratough Thermoplastic Elastomers with Tunable Hardness. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2414720. [PMID: 39828592 DOI: 10.1002/adma.202414720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/05/2025] [Indexed: 01/22/2025]
Abstract
The hardness of thermoplastic elastomers (TPEs) significantly influences their suitability for various applications, but traditionally, enhancing hardness reduces toughness. Herein a method is introduced that leverages hybrid soft segments to fine-tune the hardness of TPEs without compromising their exceptional toughness. Through the selective copolymerization of polytetramethylene ether glycols (PTMEGs) at various molecular weights, supramolecular poly(urethane-urea) TPEs are molecularly engineered to cover a wide spectrum of hardness while retaining good toughness. It is achieved through the formation of graded functional zones-densely packed for enhanced hardness and strength, and loosely packed for greater extensibility and toughness-driven by variations in PTMEG chain length and mismatched supramolecular interactions. Through the establishment and systematic investigation of a TPE library, the intricate interplay between design, structure, and performance of these materials is elucidated, refining the optimization techniques. The TPEs demonstrate exceptional mechanical properties, including a variant with a Shore hardness of 86A and a toughness of 819 MJ m-3, alongside a softer variant with a 59A hardness and a 786 MJ m-3 toughness. The innovation extends to a scalable solvent-based TPE production line, promising widespread industrial application. This advancement reimagines the potential of high-performance TPEs and composites, offering versatile materials for demanding applications.
Collapse
Affiliation(s)
- Xingxue Zhang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Luping Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Kaiqiang Zhang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Kunyang Zhou
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Kaiyang Hou
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Zhixun Zhao
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Guiliang Li
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Qing Yao
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Nan Sun
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Xu Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| |
Collapse
|
6
|
Meng Y, Xu L, Cheng G. Bioelectronics hydrogels for implantable cardiac and brain disease medical treatment application. Int J Biol Macromol 2025:139945. [PMID: 39837454 DOI: 10.1016/j.ijbiomac.2025.139945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/28/2024] [Accepted: 01/14/2025] [Indexed: 01/23/2025]
Abstract
Hydrogel-based bioelectronic systems offer significant benefits for point-of-care diagnosis, treatment of cardiac and cerebral disease, surgical procedures, and other medical applications, ushering in a new era of advancements in medical technology. Progress in hydrogel-based bioelectronics has advanced from basic instrument and sensing capabilities to sophisticated multimodal perceptions and feedback systems. Addressing challenges related to immune responses and inflammation regulation after implantation, physiological dynamic mechanism, biological toxicology as well as device size, power consumption, stability, and signal conversion is crucial for the practical implementation of hydrogel-based bioelectronics in medical implants. Therefore, further exploration of hydrogel-based bioelectronics is imperative, and a comprehensive review is necessary to steer the development of these technologies for use in implantable therapies for cardiac and brain/neural conditions. In this review, a concise overview is provided on the fundamental principles underlying ionic electronic and ionic bioelectronic mechanisms. Additionally, a comprehensive examination is conducted on various bioelectronic materials integrated within hydrogels for applications in implantable medical treatments. The analysis encompasses a detailed discussion on the representative structures and physical attributes of hydrogels. This includes an exploration of their intrinsic properties such as mechanical strength, dynamic capabilities, shape-memory features, stability, stretchability, and water retention characteristics. Moreover, the discussion extends to properties related to interactions with tissues or the environment, such as adhesiveness, responsiveness, and degradability. The intricate relationships between the structure and properties of hydrogels are thoroughly examined, along with an elucidation of how these properties influence their applications in implantable medical treatments. The review also delves into the processing techniques and characterization methods employed for hydrogels. Furthermore, recent breakthroughs in the applications of hydrogels are logically explored, covering aspects such as materials, structure, properties, functions, fabrication procedures, and hybridization with other materials. Finally, the review concludes by outlining the future prospects and challenges associated with hydrogels-based bioelectronics systems.
Collapse
Affiliation(s)
- Yanfang Meng
- School of Mechanical Engineering, Jiangsu University, No.301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Lin Xu
- School of Mechanical Engineering, Jiangsu University, No.301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China.
| | - Guanggui Cheng
- School of Mechanical Engineering, Jiangsu University, No.301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China.
| |
Collapse
|
7
|
Hu R, Jiang X, Chen Y, Wang J, Guo Y, Zheng Q, Shangguan Y. Strain hysteresis and Mullins effect of rubber vulcanizates with a reversible sacrificial network. SOFT MATTER 2025; 21:399-410. [PMID: 39690965 DOI: 10.1039/d4sm01064g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The incorporation of reversible sacrificial bonds is an important strategy for enhancing the mechanical properties of elastomers. However, the research on the viscoelasticity of vulcanized rubber with a reversible sacrificial bond network lags seriously. In this paper, the effects of metal coordination bonds on the mechanical properties of butadiene-styrene-vinylpyridine rubber vulcanizates (VPR) were systematically investigated. The experimental results showed that lower temperature and higher strain rate under smaller strain were advantageous in reflecting the significant contribution of sacrificial bonding. Compared with the conventional rubber nanocomposites, the sacrificial bond enhanced the energy dissipation while also improving reversible hysteresis energy and its proportion, revealing the origin of better self-healing and damping properties. The high-temperature rearrangement of sacrificial bonds promoted not only the recovery of mechanical properties, but also the recovery of covalent networks. The evolution mechanism of the network structure and viscoelasticity research under different thermal-mechanical coupling conditions could help to control the rubber network structure, providing a promising method for the regulation of the nonlinear behavior of rubber composites.
Collapse
Affiliation(s)
- Rongyan Hu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China.
| | - Xin Jiang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China.
| | - Yaxin Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China.
| | - Jinlong Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China.
| | - Yuhao Guo
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China.
| | - Qiang Zheng
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China.
| | - Yonggang Shangguan
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China.
| |
Collapse
|
8
|
Yiming B, Hubert S, Cartier A, Bresson B, Mello G, Ringuede A, Creton C. Elastic, strong and tough ionically conductive elastomers. Nat Commun 2025; 16:431. [PMID: 39762246 PMCID: PMC11704283 DOI: 10.1038/s41467-024-55472-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Stretchable elastic materials with high strength, toughness, and good ionic conductivity are highly desirable for wearable devices and stretchable batteries. Unfortunately, limited success has been reported to attain all of these properties simultaneously. Here, we report a family of ionically conductive elastomers (ICEs) without compromise between mechanical properties (high stiffness, reversible elasticity, fracture resistance) and ionic conductivity, by introducing a multiple network elastomer (MNE) architecture into a lowT g polymer. The ICEs with the MNE architecture exhibit a room temperature ionic conductivity of the order of10 - 6 S . cm - 1 and stress at break of ~8 MPa, whereas the simple networks without an MNE architecture show two orders magnitude lower ionic conductivity (10 - 8 S . cm - 1 ) and comparably low strength (<1.5 MPa) at 25 °C than their MNE architecture based counterparts. The MNE architecture with a lowT g monomer combines the stiffness and fracture toughness given by sacrificial bond breakage while improving ionic conductivity through increased segmental mobility.
Collapse
Affiliation(s)
- Burebi Yiming
- Laboratoire Sciences et Ingénierie de la Matiére Molle, ESPCI Paris, CNRS, PSL University, Paris, France
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Simon Hubert
- Chimie Paris Tech, CNRS, Institut de Recherche de Chimie Paris, PSL University, Paris, France
| | - Alex Cartier
- Laboratoire Sciences et Ingénierie de la Matiére Molle, ESPCI Paris, CNRS, PSL University, Paris, France
| | - Bruno Bresson
- Laboratoire Sciences et Ingénierie de la Matiére Molle, ESPCI Paris, CNRS, PSL University, Paris, France
| | - Gabriel Mello
- Laboratoire Sciences et Ingénierie de la Matiére Molle, ESPCI Paris, CNRS, PSL University, Paris, France
| | - Armelle Ringuede
- Chimie Paris Tech, CNRS, Institut de Recherche de Chimie Paris, PSL University, Paris, France
| | - Costantino Creton
- Laboratoire Sciences et Ingénierie de la Matiére Molle, ESPCI Paris, CNRS, PSL University, Paris, France.
| |
Collapse
|
9
|
Gridneva T, Khusnutdinova JR. Functional coordination compounds for mechanoresponsive polymers. Chem Commun (Camb) 2025; 61:441-454. [PMID: 39636308 DOI: 10.1039/d4cc05622a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Small molecule probes that respond to a mechanical force ("mechanophores") have emerged as an important tool in the design of stimuli-responsive polymer materials. Although the majority of such mechanohphores are based on organic molecules, the utilization of metal complexes has also attracted attention as they offer a possibility to tune their spectroscopic properties and reactivity, and have the ability to reversibly form and break metal-ligand bonds through rational design of the ligand environment surrounding the metal. This review features representative examples of coordination compounds which were utilized as new, tunable tools to create various types of mechanoresponsive polymers.
Collapse
Affiliation(s)
- Tatiana Gridneva
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan.
| | - Julia R Khusnutdinova
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan.
| |
Collapse
|
10
|
Zhang J, Zhang M, Wan H, Zhou J, Lu A. Coordinatively stiffen and toughen polymeric gels via the synergy of crystal-domain cross-linking and chelation cross-linking. Nat Commun 2025; 16:320. [PMID: 39746978 PMCID: PMC11695677 DOI: 10.1038/s41467-024-55245-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025] Open
Abstract
Polymer gels have been widely used in flexible electronics, soft machines and impact protection materials. Conventional gels usually suffer from the inherent conflict between stiffness and toughness, severely hampering their applications. This work proposes a facile yet versatile strategy to break through this trade-off via the synergistic effect of crystal-domain cross-linking and chelation cross-linking, without the need for specific structure design or adding other reinforcements. Both effects are proven to boost the mechanical performance of the originally weak gel, and result in a stiff and tough conductive gel, achieving significant enhancements in elastic modulus and toughness by up to 366-, and 104-folds, respectively. The resultant gel achieves coordinatively enhanced stiffness (110.26 MPa) and toughness (219.93 MJ m-3), reconciling the challenging trade-off between them. In addition, the presented strategy is found generalizable to a variety of metal ions and polymers, offering a promising way to expand the applicability of gels.
Collapse
Affiliation(s)
- Jipeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Miaoqian Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Huixiong Wan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Jinping Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Ang Lu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China.
| |
Collapse
|
11
|
Yang J, Zhang W, Pan R, Zhuo Y, Cheng H, Zhang A, Liu M, Wang Z, Gong Y, Hu R, Ding J, Chen L, Zhang X, Tian X. Development of tough and stiff elastomers by leveraging hydrophilic-hydrophobic supramolecular segment interaction. SOFT MATTER 2025; 21:216-225. [PMID: 39641136 DOI: 10.1039/d4sm01182a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The presence of supramolecular interactions plays a crucial role in the formation of resilient multifunctional elastomers. Nevertheless, achieving elastomers with fabulous mechanical properties remains a significant challenge due to the incomplete understanding of the underlying principles. In this study, we have presented a simple yet efficient approach for manipulating the microstructure, resulting in a significant enhancement of the mechanical properties of the elastomers. By utilizing hydrophobic and hydrophilic extended chain segments to elongate a hydrophilic oligomer, we successfully created elastomers with improved toughness and stiffness through supramolecular interactions. The elastomer with hydrophobic extended chain segments demonstrates a fracture energy (94 842 J m-2) and high tensile stress (16 MPa). In contrast, the elastomer with hydrophilic extended segments showed significantly lower tensile stress (0.18 MPa), even though their molecular chain structures are nearly identical. We conducted a systematic demonstration and investigation of the significant difference mentioned above and ultimately found that due to the hydrophobic-hydrophilic difference between the oligomer and extended chain segments, the hydrophobic chain segments are able to create hydrophobic association and the association can further facilitate the development of stronger and more abundant supramolecular interactions (hydrogen bonds). The resulting hydrogen bonds, combined with the hydrophobic association, effectively disperse energy and consequently improve the elastomer's capacity to withstand external forces. The hydrophilic-hydrophobic mechanism showcases the potential for creating durable supramolecular materials with promising applications in biology and electronics.
Collapse
Affiliation(s)
- Jihua Yang
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China.
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Wei Zhang
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China.
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Rui Pan
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China.
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Yizhi Zhuo
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China.
| | - Hua Cheng
- Department of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230061, People's Republic of China
- China Europe Electronic Materials International Innovation Center Co., Ltd, Hefei 230093, Anhui, People's Republic of China
| | - Awang Zhang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, People's Republic of China
| | - Mengru Liu
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China.
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Zeqing Wang
- China Europe Electronic Materials International Innovation Center Co., Ltd, Hefei 230093, Anhui, People's Republic of China
| | - Yi Gong
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China.
| | - Rui Hu
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China.
| | - Jianjun Ding
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China.
- Anhui Institute of Innovation for Industrial Technology, Hefei 230088, Anhui, People's Republic of China
| | - Lin Chen
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China.
| | - Xian Zhang
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China.
| | - Xingyou Tian
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China.
| |
Collapse
|
12
|
Tang J, Gao C, Li Y, Xu J, Huang J, Xu D, Hu Z, Han F, Liu J. A Review on Multi-Scale Toughening and Regulating Methods for Modern Concrete: From Toughening Theory to Practical Engineering Application. RESEARCH (WASHINGTON, D.C.) 2024; 7:0518. [PMID: 39726918 PMCID: PMC11670900 DOI: 10.34133/research.0518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 12/28/2024]
Abstract
Concrete is the most widely used and highest-volume basic material in the word today. Enhancing its toughness, including tensile strength and deformation resistance, can boost the structural load-bearing capacity, minimize cracking, and decrease the amount of concrete and steel required in engineering projects. These advancements are crucial for the safety, durability, energy efficiency, and emission reduction of structural engineering. This paper systematically summarized the brittle characteristics of concrete and the various structural factors influencing its performance at multiple scales, including molecular, nano-micro, and meso-macro levels. It outlines the principles and impacts of concrete toughening and crack prevention from both internal and external perspectives, and discusses recent advancements and engineering applications of toughened concrete. In situ polymerization and fiber reinforcement are currently practical and highly efficient methods for enhancing concrete toughness. These techniques can boost the matrix's flexural strength by 30% and double its fracture energy, achieving an ultimate tensile strength of up to 20 MPa and a tensile strain exceeding 0.6%. In the future, achieving breakthroughs in concrete toughening will probably rely heavily on the seamless integration and effective synergy of multi-scale toughening methods.
Collapse
Affiliation(s)
- Jinhui Tang
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Construction Materials,
Southeast University, Nanjing, China
| | - Chang Gao
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Construction Materials,
Southeast University, Nanjing, China
| | - Yi Li
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Construction Materials,
Southeast University, Nanjing, China
| | - Jie Xu
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Construction Materials,
Southeast University, Nanjing, China
| | - Jiale Huang
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Construction Materials,
Southeast University, Nanjing, China
| | - Disheng Xu
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Construction Materials,
Southeast University, Nanjing, China
| | - Zhangli Hu
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Construction Materials,
Southeast University, Nanjing, China
| | - Fangyu Han
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Construction Materials,
Southeast University, Nanjing, China
- State Key Laboratory of High Performance Civil Engineering Materials, Jiangsu Sobute New Materials Co. Ltd., Nanjing, China
| | - Jiaping Liu
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Construction Materials,
Southeast University, Nanjing, China
- State Key Laboratory of High Performance Civil Engineering Materials, Jiangsu Sobute New Materials Co. Ltd., Nanjing, China
| |
Collapse
|
13
|
Zheng Y, Sen D, Zou W, Dai K, Olsen BD. Real-Time Quantification of Molecular-Level Dynamic Behaviors Underpinning Shear Thinning in End-Linked Associative Polymer Networks. J Am Chem Soc 2024; 146:35285-35294. [PMID: 39663649 DOI: 10.1021/jacs.4c12652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Shear thinning of associative polymers is tied to bond breakage under deformation and retraction of dangling chains, as predicted by transient network theories. However, an in-depth understanding of the molecular mechanisms is limited by our ability to measure the molecular states of the polymers during deformation. Herein, utilizing a custom-built rheo-fluorescence setup, bond dissociation in model end-linked associative polymers is quantified in real time with nonlinear shear deformation based on a fluorescence quench transition when phenanthroline ligands bind with Ni2+. All of the networks exhibit shear thinning, and the dangling chain fraction increases with the shear rate. However, the number of broken bonds is smaller than that predicted by transient network theories, indicating additional relaxation modes or topological inhomogeneities in the networks. Through tuning counteranion chemistry, networks with similar relaxation times but varying dissociation and association rate constants (kd and ka) of Ni2+-phenanthroline cross-links are developed. Decreasing ka contributes to more dangling chain formation, while the effect of kd is less pronounced. Following force-accelerated bond dissociation of bridging chains, the dangling ends in networks with higher ka tend to reassociate to form elastically inactive loops, while the dangling chains are preserved in networks with lower ka. This indicates the critical role of bond reassociation kinetics in dictating shear-induced topological interchange of different chain configurations. Besides reaction kinetics, decreasing network junction functionality results in less shear thinning and broken bonds, originating from the lower amount of bond breakage required to flow and the higher tendency of the dissociated bonds to reform bridging chains.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina 27708, United States
| | - Devosmita Sen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina 27708, United States
| | - Weizhong Zou
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, Florida 33620, United States
| | - Kexin Dai
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Bradley D Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
14
|
Shannon D, Cerdan K, Kim M, Mecklenburg M, Su J, Chen Y, Helgeson ME, Valentine MT, Hawker CJ. Bioinspired Metal-Ligand Networks with Enhanced Stability and Performance: Facile Preparation of Hydroxypyridinone (HOPO)-Functionalized Materials. Macromolecules 2024; 57:11339-11349. [PMID: 39741960 PMCID: PMC11684171 DOI: 10.1021/acs.macromol.4c02250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 01/03/2025]
Abstract
Bioinspired hydroxypyridinone (HOPO)functionalized materials are shown to display a remarkable capacity for stability and for chelating a wide array of metal ions. This allows for the synthesis of multifunctional networks with diverse physical properties when compared to traditional catechol systems. In the present study, we report a facile, one-pot synthesis of an amino HOPO ligand and simple, scalable incorporation into PEG-acrylate based networks via active ester chemistry. This modular network approach allows for fabrication of patterned HOPO containing networks which can chelate a range of metal ions, such as transition metals (Fe3+) and lanthanides (Ho3+, Tb3+), leading to modulation of mechanical, magnetic, and fluorescent properties. Moreover, networks with tailored, heterogeneous properties can be prepared through localization of metal ion incorporation in 3-dimensions via masking techniques, creating distinctly soft, hard, magnetic, and fluorescent domains.
Collapse
Affiliation(s)
- Declan
P. Shannon
- Materials
Department, University of California Santa
Barbara, Santa
Barbara, California 93106-5050, United States
- Materials
Research Laboratory, University of California
Santa Barbara, Santa Barbara, California 93106-5121, United States
| | - Kenneth Cerdan
- Department
of Mechanical Engineering, University of
California, Santa Barbara, Santa
Barbara, California 93106-5070, United States
- Department
of Chemical Engineering, University of California,
Santa Barbara, Santa Barbara, California 93106-5080, United States
| | - Minseong Kim
- Materials
Department, University of California Santa
Barbara, Santa
Barbara, California 93106-5050, United States
- Materials
Research Laboratory, University of California
Santa Barbara, Santa Barbara, California 93106-5121, United States
| | - Matthew Mecklenburg
- California
NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Judy Su
- California
NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Yueyun Chen
- California
NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Department
of Physics and Astronomy, University of
California, Los Angeles, California 90095, United States
| | - Matthew E. Helgeson
- Department
of Chemical Engineering, University of California,
Santa Barbara, Santa Barbara, California 93106-5080, United States
| | - Megan T. Valentine
- Department
of Mechanical Engineering, University of
California, Santa Barbara, Santa
Barbara, California 93106-5070, United States
| | - Craig J. Hawker
- Materials
Department, University of California Santa
Barbara, Santa
Barbara, California 93106-5050, United States
- Department
of Chemistry & Biochemistry, University
of California Santa Barbara, Santa
Barbara, California 93106-9510, United States
- Materials
Research Laboratory, University of California
Santa Barbara, Santa Barbara, California 93106-5121, United States
| |
Collapse
|
15
|
Qin WY, Shi CY, Liu GQ, Tian H, Qu DH. Tunable Mechanically Interlocked Semi-Crystalline Networks. Angew Chem Int Ed Engl 2024:e202423029. [PMID: 39716015 DOI: 10.1002/anie.202423029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 12/25/2024]
Abstract
High-performance polymers based on dynamic chemistry have been widely explored for multi-field advanced applications. However, noncovalent sacrificial bond-mediated energy dissipation mechanism causes a trade-off between mechanical toughness and resilience. Herein, we achieved the synchronous boost of seemingly conflicting material properties including mechanical robustness, toughness and elasticity via the incorporation of mechanical chemistry into traditional semi-crystalline networks. Detailed rheological tests and all-atom molecular dynamics simulation reveal that the excellent mechanical robustness and toughness are attributed to the dissociation of crystalline domains threading through the sieve-shape macrocycles. Reversible nano-crystalline domains and ring-sliding-effect accelerated segment motion efficiently reduce energy dissipation to achieve instantaneous resilience. Moreover, the model polymers demonstrate that the multiple dynamic components endow the resulting polymer with excellent reprocessability under mild conditions. This mechanically interlocked semi-crystalline polymer exhibits potential applications as a thermal/photo actuator. This work reveals the synergic effects of mechanically interlocked sites and tunable crystalline domains, thus providing a reliable guide for the comprehensive improvement of material performance.
Collapse
Affiliation(s)
- Wen-Yu Qin
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Chen-Yu Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Guo-Quan Liu
- School of Chemistry and Chemical Engineering, Frontiers, Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| |
Collapse
|
16
|
Onori I, Formon GJM, Weder C, Augusto Berrocal J. Toughening Healable Supramolecular Double Polymer Networks Based on Hydrogen Bonding and Metal Coordination. Chemistry 2024; 30:e202402511. [PMID: 39382353 DOI: 10.1002/chem.202402511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/13/2024] [Accepted: 10/08/2024] [Indexed: 10/10/2024]
Abstract
Double polymer networks (DNs) consist of two interpenetrating polymer networks and can offer properties that are not merely a sum of the parts. Here, we report an elastic DN made from two supramolecular polymers (SMPs) that consist of the same poly(n-butyl acrylate) (BA) backbone. The two polymers feature different non-covalent binding motifs, which form dynamic, reversible cross-links. The polymers were prepared by reversible addition-fragmentation chain-transfer polymerization of n-butyl acrylate and either the self-complementary hydrogen-bonding motif 2-ureido-4[1H]pyrimidinone, or the 2,6-bis(1'-methylbenzimidazolyl)pyridine ligand, which forms complexes with metal ions. The supramolecular DN made by these components combines features of the single networks, including high thermal stability and resistance to creep. The DN further exhibits excellent healability and displays a higher extensibility and a higher toughness than its constituents. The mechanical characteristics of the DN can be further enhanced by selectively pre-stretching one of the networks, which is readily possible due to the reversible formation of the supramolecular cross-links and their orthogonal stimuli-responsiveness.
Collapse
Affiliation(s)
- Ilaria Onori
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Georges J M Formon
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
- NCCR Bio-Inspired Materials, University of Fribourg, 1700, Fribourg, Switzerland
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
- NCCR Bio-Inspired Materials, University of Fribourg, 1700, Fribourg, Switzerland
| | - José Augusto Berrocal
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avda. Països Catalans 16, E- 43007, Tarragona, Spain
| |
Collapse
|
17
|
Zeng F, Wu J, Hua Z, Liu G. Complementary Nucleobase-Containing Double-Network Elastomers with High Energy Dissipation and Room-Temperature Fast Recovery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2411446. [PMID: 39670704 DOI: 10.1002/smll.202411446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Indexed: 12/14/2024]
Abstract
Elastomers have been widely employed in various industrial products such as tires, actuators, dampers, and sealants. While various methods have been developed to strengthen elastomers, achieving continuously high energy dissipation with fast room-temperature recovery remains challenging, prompting the need for further structural optimization. Herein, high energy dissipated and fast recoverable double-network (DN) elastomers are fabricated, in which the supramolecular polymers of complementary adenine and thymine serve as the first network and the covalently cross-linked soft polymer as the second network. Both networks are efficiently prepared via photopolymerization. The resulting DN elastomer displays high energy dissipation and room temperature fast recovery, which can be attributed to the good independence of supramolecular and covalent networks. Furthermore, it is demonstrated that the DN elastomer can be exploited as excellent cushioning materials under continuous impacts. This work presents a feasible avenue for fabricating DN elastomers with high energy dissipation and fast recovery based on the multiple hydrogen bonds of complementary nucleobases.
Collapse
Affiliation(s)
- Fanxuan Zeng
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jiang Wu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zan Hua
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, and Department of Materials Chemistry, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Guangming Liu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
18
|
Xing Y, Li J, Cheng J, Lu L, Xue T, Xu J, Xu X, Zhang F. 2D Polyamides Enable Self-Healing and Recyclable Elastomers with High Robustness, Toughness, and Crack Resistance via Supramolecular Interactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2411040. [PMID: 39668450 DOI: 10.1002/smll.202411040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Indexed: 12/14/2024]
Abstract
High-performance elastomers with exceptional mechanical properties and self-healing capabilities have garnered significant attention due to their wide range of potential applications. However, designing elastomers that strike a balance between self-healing capabilities and mechanical properties remains a considerable challenge. Inspired by biological cartilage, a highly robust, tough, and crack-resistant self-healing elastomer is presented by incorporating hydrogen-bond-rich 2D polyamide (2DPA) into a poly(urethane-urea) matrix. This integration enhances supramolecular interactions driven by multiple hydrogen bonds. The resulting elastomer exhibits impressive strength (54.6 MPa), remarkable elongation at break (705.4%), exceptional toughness (116.7 MJ m-3), outstanding crack resistance (fracture energy up to 187.2 kJ m-2), high self-healing efficiency (98.9% at 50 °C for 9 h, 97.9% at room temperature for 48 h), and excellent recyclability, capable of lifting ≈40 000 times its own weight. Furthermore, a damage-tolerant, fatigue-resistant anticorrosive coating from this elastomer, showcasing its potential for protective skin applications in underwater robotics is developed. The underlying enhancement mechanism is validated through testing of various elastomers and molecular dynamics simulations, confirming the potential of engineering 2DPA for high-performance elastomers by leveraging supramolecular interactions.
Collapse
Affiliation(s)
- Yuedong Xing
- Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, College of Material Science and Engineering, Guilin University of Technology, Guilin, Guangxi, 541004, China
| | - Jiongchao Li
- Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, College of Material Science and Engineering, Guilin University of Technology, Guilin, Guangxi, 541004, China
| | - Jie Cheng
- College of Chemistry and Biology Engineering, Guilin University of Technology, Guilin, Guangxi, 541004, China
| | - Liwei Lu
- Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, College of Material Science and Engineering, Guilin University of Technology, Guilin, Guangxi, 541004, China
| | - Tao Xue
- Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, College of Material Science and Engineering, Guilin University of Technology, Guilin, Guangxi, 541004, China
| | - Jianben Xu
- Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, College of Material Science and Engineering, Guilin University of Technology, Guilin, Guangxi, 541004, China
- College of Chemistry and Bioengineering, Guangxi Minzu Normal University, Chongzuo, Guangxi, 532200, China
| | - Xiang Xu
- Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, College of Material Science and Engineering, Guilin University of Technology, Guilin, Guangxi, 541004, China
| | - Faai Zhang
- Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, College of Material Science and Engineering, Guilin University of Technology, Guilin, Guangxi, 541004, China
| |
Collapse
|
19
|
Huang B, Nian S, Cai LH. A universal strategy for decoupling stiffness and extensibility of polymer networks. SCIENCE ADVANCES 2024; 10:eadq3080. [PMID: 39602542 PMCID: PMC11601196 DOI: 10.1126/sciadv.adq3080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024]
Abstract
Since the invention of polymer networks such as cross-linked natural rubber in the 19th century, it has been a dogma that stiffer networks are less stretchable. We report a universal strategy for decoupling the stiffness and extensibility of single-network elastomers. Instead of using linear polymers as network strands, we use foldable bottlebrush polymers, which feature a collapsed backbone grafted with many linear side chains. Upon elongation, the collapsed backbone unfolds to release stored length, enabling remarkable extensibility. By contrast, the network elastic modulus is inversely proportional to network strand mass and is determined by the side chains. We validate this concept by creating single-network elastomers with nearly constant Young's modulus (30 kilopascals) while increasing tensile breaking strain by 40-fold, from 20 to 800%. We show that this strategy applies to networks of different polymer species and topologies. Our discovery opens an avenue for developing polymeric materials with extraordinary mechanical properties.
Collapse
Affiliation(s)
- Baiqiang Huang
- Soft Biomatter Laboratory, Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Shifeng Nian
- Soft Biomatter Laboratory, Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Li-Heng Cai
- Soft Biomatter Laboratory, Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904, USA
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22904, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
20
|
Le Blay H, Deffieux T, Laiarinandrasana L, Tanter M, Marcellan A. Stress amplification and relaxation imaging around cracks in nanocomposite gels using ultrasound elastography. SOFT MATTER 2024; 20:9127-9139. [PMID: 39450766 DOI: 10.1039/d4sm00909f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
The quantification and modeling of gel fracture under large strain and dissipative conditions is still an open issue. In this study, a novel method for investigating the mechanical behavior of gels under highly deformed states, specifically in the vicinity of the crack tip, was developed to gain insights into fracture processes. Shear wave elastography, originally developed for the biomedical community, is employed as a powerful tool to quantitatively map the local elasticity of model gels. Here, the local stress is experimentally measured from the shear wave velocity according to nonlinear acoustoelasticity theory. The stress concentration observed at the crack tip in elastic gels is validated using classical finite element methods. Subsequently, the mechanisms of network rearrangements in viscoelastic gels (with silica nanoparticles) are analyzed both spatially and temporally. These gels consist of 90 wt% water and are synthesized with sticky nanoparticles to introduce exchangeable sacrificial bonds that facilitate stress relaxation. The nanoparticles efficiently provide stress relaxation around the crack tip, mitigating a stress singularity. The amplitude of stress relaxation was measured quantitatively and appears to be higher closer to the crack. This paper showcases the feasibility and potential of a new experimental approach that enables non-invasive and dynamic mapping of gel fracture mechanics.
Collapse
Affiliation(s)
- H Le Blay
- Laboratoire de Sciences et Ingénierie de la Matière Molle, ESPCI Paris, Université PSL, Sorbonne Université, CNRS, F-75005 Paris, France
- Institute Physics for Medicine Paris, Inserm U1273, ESPCI Paris, Université PSL CNRS UMR8631, Paris, France
| | - T Deffieux
- Institute Physics for Medicine Paris, Inserm U1273, ESPCI Paris, Université PSL CNRS UMR8631, Paris, France
| | - L Laiarinandrasana
- Centre des Matériaux, Mines Paris, PSL University, CNRS UMR 7633, F-91003 Evry Cedex, France
| | - M Tanter
- Institute Physics for Medicine Paris, Inserm U1273, ESPCI Paris, Université PSL CNRS UMR8631, Paris, France
| | - A Marcellan
- Laboratoire de Sciences et Ingénierie de la Matière Molle, ESPCI Paris, Université PSL, Sorbonne Université, CNRS, F-75005 Paris, France
- Institut Universitaire de France
| |
Collapse
|
21
|
Aydonat S, Campagna D, Kumar S, Storch S, Neudecker T, Göstl R. Accelerated Mechanochemical Bond Scission and Stabilization against Heat and Light in Carbamoyloxime Mechanophores. J Am Chem Soc 2024; 146:32117-32123. [PMID: 39509547 DOI: 10.1021/jacs.4c13319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Current approaches to the discovery of mechanochemical reactions in polymers are limited by the interconnection of the zero-force and force-modified potential energy surfaces since most mechanochemical reactions are force-biased thermal reactions. Here, carbamoyloximes are developed as a mechanophore class in which the mechanochemical reaction rates counterintuitively increase together with the thermal stability. All carbamoyloxime mechanophores undergo force-induced homolytic bond scission at the N-O bond, and their mechanochemical scission rate increases with the degree of substitution on the α-substituent. Yet, carbamoylaldoximes react to both heat and light with a pericyclic syn elimination, while carbamoylketoximes undergo thermal decomposition at high temperature and photochemical homolytic scission only from the triplet state. Thereby, the mechanochemical and thermal reaction trajectories are separated, and the thermal stability increases alongside the mechanochemical reaction kinetics. This approach may play an important role in the future of systematic mechanochemical reaction discovery.
Collapse
Affiliation(s)
- Simay Aydonat
- Department of Chemistry and Biology, University of Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
- DWI─Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Davide Campagna
- DWI─Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Sourabh Kumar
- Institute for Physical and Theoretical Chemistry, University of Bremen, Leobener Str. NW2, 28359 Bremen, Germany
| | - Sonja Storch
- DWI─Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Tim Neudecker
- Institute for Physical and Theoretical Chemistry, University of Bremen, Leobener Str. NW2, 28359 Bremen, Germany
- Bremen Center for Computational Materials Science, Am Fallturm 1, 28359 Bremen, Bremen, Germany
- MAPEX Center for Materials and Processes, Postfach 330 440, 28334 Bremen, Germany
| | - Robert Göstl
- Department of Chemistry and Biology, University of Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
- DWI─Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| |
Collapse
|
22
|
Wu D, Wang M, Yu W, Wang GG, Zhang J. Strong, tough, and freeze-tolerant all-natural cellulose-based ionic conductor enabled by multiscale cellulose networks. Carbohydr Polym 2024; 344:122472. [PMID: 39218567 DOI: 10.1016/j.carbpol.2024.122472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024]
Abstract
Soft ionic conductors are widely used in flexible electronics. However, the simultaneous enhancement of their mechanical properties and ionic conductivity remains challenging. This paper reports the successful development of a strong and tough cellulose-based ionic conductor with exceptional mechanical properties and high ionic conductivity by in situ dissolution and reorganization of the fiber matrix of filter paper to create a multiscale structure. The resulting ionic conductor exhibits a fracture strength of 14.13 MPa and a fracture energy of up to 2.84 MJ/m3, exceeding most reported ionic conductors. It also exhibits an impressive ionic conductivity of up to 76.3 mS/cm. Results of experiments on its use in a flexible quasi-solid-state zinc-hybrid supercapacitor show its remarkable features, such as a high capacity of 218 mAh/g, an energy density of 217 Wh/kg, and a power density of 17,520 W/kg. Furthermore, it exhibits excellent temperature resistance, working effectively even at -60 °C. In addition, by incorporating kirigami structures, we fabricated a strain sensor with the cellulose-based ionic conductor with a high gauge factor, as well as a piezoresistive sensor for handwriting recognition and a capacitance pressure sensor for force mapping with wide range and sensitivity. This study opens up new possibilities for fabricating flexible electronics with superior performance using sustainable and renewable resources.
Collapse
Affiliation(s)
- Dong Wu
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, China; Research Centre of Printed Flexible Electronics, Harbin Institute of Technology, Shenzhen 518055, China
| | - Mi Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, China; Research Centre of Printed Flexible Electronics, Harbin Institute of Technology, Shenzhen 518055, China
| | - Wen Yu
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, China; Research Centre of Printed Flexible Electronics, Harbin Institute of Technology, Shenzhen 518055, China
| | - Gui-Gen Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China.
| | - Jiaheng Zhang
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, China; Research Centre of Printed Flexible Electronics, Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|
23
|
Ju J, Sanoja GE, Cipelletti L, Ciccotti M, Zhu B, Narita T, Yuen Hui C, Creton C. Role of molecular damage in crack initiation mechanisms of tough elastomers. Proc Natl Acad Sci U S A 2024; 121:e2410515121. [PMID: 39475650 PMCID: PMC11551418 DOI: 10.1073/pnas.2410515121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 09/23/2024] [Indexed: 11/13/2024] Open
Abstract
Tough soft materials such as multiple network elastomers (MNE) or filled elastomers are typically stretchable and include significant energy dissipation mechanisms that prevent or delay crack growth. Yet most studies and fracture models focus on steady-state propagation and damage is assumed to be decoupled from the local stress and strain fields near the crack tip. We report an in situ spatial-temporally resolved 3D measurement of molecular damage in mechanophore-labeled MNE just before a crack propagates. This technique, complemented by digital image correlation, allows us to compare the spatial distribution of both damage and deformation in single network (SN) elastomers and in MNE. Compared to SN, MNE have a wide-spread damage in front of the crack and, surprisingly, delocalize strain concentration. A continuum model, where damage distribution is fully coupled to the crack tip fields, is proposed to explain these results. Additional measurements of time-dependent molecular damage during fixed grips relaxation in the presence of a crack reveal that the less localized damage distribution delays fracture initiation. The observations and exploratory modeling reveal the dynamic fracture mechanism of MNE, providing guidance for rational design of high-performance tough elastomers.
Collapse
Affiliation(s)
- Jianzhu Ju
- Sciences et Ingénierie de la Matière Molle, CNRS UMR 7615, École supérieure de physique et de chimie industrielles de la Ville de Paris, Sorbonne Université, Paris Sciences et Lettres Université, Paris 75005, France
| | - Gabriel E Sanoja
- Sciences et Ingénierie de la Matière Molle, CNRS UMR 7615, École supérieure de physique et de chimie industrielles de la Ville de Paris, Sorbonne Université, Paris Sciences et Lettres Université, Paris 75005, France
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78723
| | - Luca Cipelletti
- Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, Montpellier 34095, France
- Institut Universitaire de France, Paris 75005, France
| | - Matteo Ciccotti
- Sciences et Ingénierie de la Matière Molle, CNRS UMR 7615, École supérieure de physique et de chimie industrielles de la Ville de Paris, Sorbonne Université, Paris Sciences et Lettres Université, Paris 75005, France
| | - Bangguo Zhu
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853
| | - Tetsuharu Narita
- Sciences et Ingénierie de la Matière Molle, CNRS UMR 7615, École supérieure de physique et de chimie industrielles de la Ville de Paris, Sorbonne Université, Paris Sciences et Lettres Université, Paris 75005, France
| | - Chung Yuen Hui
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853
| | - Costantino Creton
- Sciences et Ingénierie de la Matière Molle, CNRS UMR 7615, École supérieure de physique et de chimie industrielles de la Ville de Paris, Sorbonne Université, Paris Sciences et Lettres Université, Paris 75005, France
| |
Collapse
|
24
|
Sun ZY, Li Y, Wu M, He W, Yuan Y, Cao Y, Chen Y. A Rhodamine-Spiropyran Conjugate Empowering Tunable Mechanochromism in Polymers under Multiple Stimuli. Angew Chem Int Ed Engl 2024; 63:e202411629. [PMID: 38966872 DOI: 10.1002/anie.202411629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
Mechanochromic functionality realized via the force-responsive mechanophores in polymers has great potential for damage sensing and information storage. Mechanophores with the ability to recognize multiple stimuli for tunable chromic characteristics are highly sought after for versatile sensing ability and color programmability. Nevertheless, the majority of mechanophores are based on single-component chromophores with limited sensitivity, or require additional fabrication technology for multi-modal chromism. Here, we report a novel multifunctional mechanophore capable of vividly detectable and tunable mechanochromism in polymers. This synergistic optical coupling relies on strategically fusing rhodamine and spiropyran (Rh-SP), and tethering polymer chains on both subunits. The mechanochromic behaviors of the Rh-SP-linked polymers under sonication and compression are thoroughly evaluated in response to changes in force and the light-controlled relaxation process. Non-sequential ring-opening of the two subunits under force is identified, endowing high-contrast mechanochromism. Light-induced differential ring-closing reactions of the two subunits, together with the acidichromism of the SP moiety, are employed to engineer elastomers with programmable and wide-spectrum colors. Our work presents an effective strategy for highly appreciable and regulable mechanochromic functionality, and also provides new insights into the rupture mechanisms of π-fused mechanophores, as well as how the stimuli history controls stress accumulation in polymers.
Collapse
Affiliation(s)
- Ze-Ying Sun
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300354, P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yiran Li
- School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, P. R. China
| | - Mengjiao Wu
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300354, P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Weiye He
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300354, P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yuan Yuan
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300354, P. R. China
| | - Yi Cao
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210000, P. R. China
| | - Yulan Chen
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300354, P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
25
|
Rennekamp B, Grubmüller H, Gräter F. Hidden length lets collagen buffer mechanical and chemical stress. Phys Rev E 2024; 110:054408. [PMID: 39690676 DOI: 10.1103/physreve.110.054408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/27/2024] [Indexed: 12/19/2024]
Abstract
Collagen, the most abundant protein in the human body, must withstand high mechanical loads due to its structural role in tendons, skin, bones, and other connective tissue. It was recently found that tensed collagen creates mechanoradicals by homolytic bond scission. We here employ scale-bridging simulations to determine the influence of collagen's mesoscale fibril structure on molecular breakages, combining atomistic molecular dynamics simulations with a newly developed mesoscopic ultra-coarse-grained description of a collagen fibril. Our simulations identify a conserved structural feature, a length difference of the two helices between pairs of crosslinks, to play a critical role. The release of the extra hidden length enables collagen to buffer mechanical stress. At the same time, this topology funnels ruptures such that the potentially harmful mechanoradicals are readily stabilized, buffering the arising oxidative stress. Our results suggest collagen's hidden length to exploit a sweet spot in the trade-off between breakage specificity and strength.
Collapse
|
26
|
Chu C, Sun W, Chen S, Jia Y, Ni Y, Wang S, Han Y, Zuo H, Chen H, You Z, Zhu M. Squid-Inspired Anti-Salt Skin-Like Elastomers With Superhigh Damage Resistance for Aquatic Soft Robots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406480. [PMID: 39267419 DOI: 10.1002/adma.202406480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/30/2024] [Indexed: 09/17/2024]
Abstract
Cephalopod skins evolve multiple functions in response to environmental adaptation, encompassing nonlinear mechanoreponse, damage tolerance property, and resistance to seawater. Despite tremendous progress in skin-mimicking materials, the integration of these desirable properties into a single material system remains an ongoing challenge. Here, drawing inspiration from the structure of reflectin proteins in cephalopod skins, a long-term anti-salt elastomer with skin-like nonlinear mechanical properties and extraordinary damage resistance properties is presented. Cation-π interaction is incorporated to induce the geometrically confined nanophases of hydrogen bond domains, resulting in elastomers with exceptional true tensile strength (456.5 ± 68.9 MPa) and unprecedently high fracture energy (103.7 ± 45.7 kJ m-2). Furthermore, the cation-π interaction effectively protects the hydrogen bond domains from corrosion by high-concentration saline solution. The utilization of the resultant skin-like elastomer has been demonstrated by aquatic soft robotics capable of grasping sharp objects. The combined advantages render the present elastomer highly promising for salt enviroment applications, particularly in addressing the challenges posed by sweat, in vivo, and harsh oceanic environments.
Collapse
Affiliation(s)
- Chengzhen Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Wei Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Shuo Chen
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yujie Jia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Yufeng Ni
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Shaofan Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Yufei Han
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Han Zuo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Huifang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
27
|
Li B, Alexandris S, Pantazidis C, Moghimi E, Sakellariou G, Vlassopoulos D, Filippidi E. Mechanical Properties of Epoxy Networks with Metal Coordination Bonds: Insights from Temperature and Molar Mass Variation. Macromolecules 2024; 57:9088-9096. [PMID: 39399830 PMCID: PMC11468226 DOI: 10.1021/acs.macromol.4c01143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/06/2024] [Accepted: 08/29/2024] [Indexed: 10/15/2024]
Abstract
We investigate the thermal and mechanical properties of poly(ethylene glycol), PEG, networks with either solely covalent epoxy bonds (single networks, SNs) or coexisting epoxy and iron-catecholate bonds (dual networks, DNs). The latter has recently been shown to be a promising material that combines mechanical strength with significant deformability. Here, we address the previously unexplored effects of the temperature and PEG precursor molar mass on the mechanical properties of the networks. We focus on PEG molar masses of 500 g/mol, where crystallization is suppressed, and 1000 g/mol, where some weak crystals are formed. SNs soften with an increasing PEG molar mass. Heating reversibly softens the DN, but it has a minimal effect on SNs. Nonlinear shear deformation of the DN breaks iron-catecholate bonds, and subsequent recovery upon shear cessation occurs to a long-time steady-state modulus whose value is almost triple the original one, likely due to the formation of tris-complexes versus initial sterically or kinetically trapped bis-complexation. The response under elongation indicates that the DN with sacrificial bonds is stiffer and more extensible than the other networks. These results may provide guidelines for designing dual networks with tunable mechanics at the molecular level.
Collapse
Affiliation(s)
- Benke Li
- Institute
of Electronic Structure and Laser, FORTH, Heraklion, 70013, Greece
| | - Stelios Alexandris
- Institute
of Electronic Structure and Laser, FORTH, Heraklion, 70013, Greece
| | - Christos Pantazidis
- Department
of Chemistry, National and Kapodistrian
University of Athens, Athens, 15784, Greece
| | - Esmaeel Moghimi
- Institute
of Electronic Structure and Laser, FORTH, Heraklion, 70013, Greece
| | - Georgios Sakellariou
- Department
of Chemistry, National and Kapodistrian
University of Athens, Athens, 15784, Greece
| | - Dimitris Vlassopoulos
- Institute
of Electronic Structure and Laser, FORTH, Heraklion, 70013, Greece
- Department
of Materials Science and Engineering, University
of Crete, Heraklion, 70013, Greece
| | - Emmanouela Filippidi
- Institute
of Electronic Structure and Laser, FORTH, Heraklion, 70013, Greece
- Department
of Materials Science and Engineering, University
of Crete, Heraklion, 70013, Greece
| |
Collapse
|
28
|
Cui P, Chen J, Fu K, Deng J, Sun T, Chen K, Yin P. Bioinspired Bouligand-Structured Cellulose Nanocrystals/Poly(vinyl alcohol) Composite Hydrogel for Enhanced Impact Resistance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53022-53032. [PMID: 39306751 DOI: 10.1021/acsami.4c13264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Impact-protective materials are gaining importance because of the widespread occurrence of impact damage. Hydrogels have emerged as promising candidates owing to their lightweight and flexible nature. However, achieving soft impact-resistant hydrogels with exceptional stiffness, strength, and toughness remains a challenge. Inspired by the Bouligand structure found in the smasher dactyl club of stomatopods, we propose a straightforward multiscale hierarchical structural design strategy. This strategy integrates self-assembly and salting-out techniques to enhance the impact resistance of soft hydrogels. Rigid cellulose nanocrystals (CNCs) self-assemble into Bouligand-like structures within soft poly(vinyl alcohol) (PVA) matrix via supramolecular interactions. This rational structural design combines the CNC Bouligand structure with a cross-linked network of soft PVA crystalline domains, resulting in a composite hydrogel with impressive mechanical properties: high tensile fracture strength (30.2 MPa), elastic modulus (62.7 MPa), and fracture energy (75.6 kJ m-2), surpassing those of other tough hydrogels. Moreover, the multiscale hierarchical structure facilitates various energy dissipation mechanisms, including crack twisting, tortuous crack paths, and PVA chain orientation, resulting in notable force attenuation (80.4%) in the composite hydrogel. This biomimetic design strategy opens new avenues for developing soft and lightweight impact-resistant materials.
Collapse
Affiliation(s)
- Pengcheng Cui
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510641, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510641, China
| | - Jiadong Chen
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510641, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510641, China
| | - Kewen Fu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510641, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510641, China
| | - Jie Deng
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510641, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510641, China
| | - Taolin Sun
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510641, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510641, China
| | - Kun Chen
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510641, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510641, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510641, China
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510641, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
29
|
Siavoshani AY, Fan Z, Yang M, Liu S, Wang MC, Liu J, Xu W, Wang J, Lin S, Wang SQ. How do stretch rate, temperature, and solvent exchange affect elastic network rupture? SOFT MATTER 2024; 20:7657-7667. [PMID: 39291705 DOI: 10.1039/d4sm00794h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In this study, we investigate three different polymeric networks in terms of their tensile strength as a function of stretching rate, or temperature, or medium viscosity. Both an acrylate-based elastomer and a crosslinked poly(methyl acrylate) are stronger, more stretchable, and tougher at high rates. They are also much stronger at lower temperatures. Such phenomena systematically suggest that the kinetics of bond dissociation in backbones of those load-bearing strands dictate the rate and temperature dependencies. We apply Eyring's activation idea for chain scission to rationalize the influence of rate and temperature on rupture for both elastomers and hydrogels where hydrogels become much more stretchable and stronger when water is replaced by glycerol.
Collapse
Affiliation(s)
- Asal Y Siavoshani
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, USA.
| | - Zehao Fan
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, USA.
| | - Muxuan Yang
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, USA.
| | - Shan Liu
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, USA.
| | - Ming-Chi Wang
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, USA.
| | - Jiabin Liu
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, USA.
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA
| | - Weinan Xu
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, USA.
| | - Junpeng Wang
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, USA.
| | - Shaoting Lin
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, USA.
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA
| | - Shi-Qing Wang
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, USA.
| |
Collapse
|
30
|
Xu J, Shao M, Chen T, Li S, Zhang Y, Yang Z, Zhang N, Zhang X, Wang Q, Wang T. Super-Durable, Tough Shape-Memory Polymeric Materials Woven from Interlocking Rigid-Flexible Chains. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406193. [PMID: 39099450 PMCID: PMC11481217 DOI: 10.1002/advs.202406193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/13/2024] [Indexed: 08/06/2024]
Abstract
Developing advanced engineering polymers that combine high strength and toughness represents not only a necessary path to excellence but also a major technical challenge. Here for the first time a rigid-flexible interlocking polymer (RFIP) is reported featuring remarkable mechanical properties, consisting of flexible polyurethane (PU) and rigid polyimide (PI) chains cleverly woven together around the copper(I) ions center. By rationally weaving PI, PU chains, and copper(I) ions, RFIP exhibits ultra-high strength (twice that of unwoven polymers, 91.4 ± 3.3 MPa), toughness (448.0 ± 14.2 MJ m-3), fatigue resistance (recoverable after 10 000 cyclic stretches), and shape memory properties. Simulation results and characterization analysis together support the correlation between microstructure and macroscopic features, confirming the greater cohesive energy of the interwoven network and providing insights into strengthening toughening mechanisms. The essence of weaving on the atomic and molecular levels is fused to obtain brilliant and valuable mechanical properties, opening new perspectives in designing robust and stable polymers.
Collapse
Affiliation(s)
- Jing Xu
- State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
- Key Laboratory of Science and Technology on Wear and Protection of MaterialsLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000China
| | - Mingchao Shao
- State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000China
- Key Laboratory of Science and Technology on Wear and Protection of MaterialsLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000China
| | - Tianze Chen
- State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
- Key Laboratory of Science and Technology on Wear and Protection of MaterialsLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000China
| | - Song Li
- State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000China
- Key Laboratory of Science and Technology on Wear and Protection of MaterialsLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000China
| | - Yaoming Zhang
- State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000China
- Key Laboratory of Science and Technology on Wear and Protection of MaterialsLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000China
| | - Zenghui Yang
- State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000China
- Key Laboratory of Science and Technology on Wear and Protection of MaterialsLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000China
| | - Nan Zhang
- State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000China
- Key Laboratory of Science and Technology on Wear and Protection of MaterialsLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000China
| | - Xinrui Zhang
- State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000China
- Key Laboratory of Science and Technology on Wear and Protection of MaterialsLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000China
| | - Qihua Wang
- State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
- Key Laboratory of Science and Technology on Wear and Protection of MaterialsLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000China
| | - Tingmei Wang
- State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
- Key Laboratory of Science and Technology on Wear and Protection of MaterialsLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000China
| |
Collapse
|
31
|
Liu J, Li W, Yu S, Blanchard S, Lin S. Fatigue-Resistant Mechanoresponsive Color-Changing Hydrogels for Vision-Based Tactile Robots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2407925. [PMID: 39328076 DOI: 10.1002/adma.202407925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/26/2024] [Indexed: 09/28/2024]
Abstract
Mechanoresponsive color-changing materials that can reversibly and resiliently change color in response to mechanical deformation are highly desirable for diverse modern technologies in optics, sensors, and robots; however, such materials are rarely achieved. Here, a fatigue-resistant mechanoresponsive color-changing hydrogel (FMCH) is reported that exhibits reversible, resilient, and predictable color changes under mechanical stress. At its undeformed state, the FMCH remains dark under a circular polariscope; upon uniaxial stretching of up to six times its initial length, it gradually shifts its color from black, to gray, yellow, and purple. Unlike traditional mechanoresponsive color-changing materials, FMCH maintains its performance across various strain rates for up to 10 000 cycles. Moreover, FMCH demonstrates superior mechanical properties with fracture toughness of 3000 J m-2, stretchability of 6, and fatigue threshold up to 400 J m-2. These exceptional mechanical and optical features are attributed to FMCH's substantial molecular entanglements and desirable hygroscopic salts, which synergistically enhance its mechanical toughness while preserving its color-changing performance. One application of this FMCH as a tactile sensoris then demonstrated for vision-based tactile robots, enabling them to discern material stiffness, object shape, spatial location, and applied pressure by translating stress distribution on the contact surface into discernible images.
Collapse
Affiliation(s)
- Jiabin Liu
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Wei Li
- Department of Civil Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - She Yu
- Department of Industrial Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Sean Blanchard
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Shaoting Lin
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
32
|
Xu C, Chen Y, Zhao S, Li D, Tang X, Zhang H, Huang J, Guo Z, Liu W. Mechanical Regulation of Polymer Gels. Chem Rev 2024; 124:10435-10508. [PMID: 39284130 DOI: 10.1021/acs.chemrev.3c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The mechanical properties of polymer gels devote to emerging devices and machines in fields such as biomedical engineering, flexible bioelectronics, biomimetic actuators, and energy harvesters. Coupling network architectures and interactions has been explored to regulate supportive mechanical characteristics of polymer gels; however, systematic reviews correlating mechanics to interaction forces at the molecular and structural levels remain absent in the field. This review highlights the molecular engineering and structural engineering of polymer gel mechanics and a comprehensive mechanistic understanding of mechanical regulation. Molecular engineering alters molecular architecture and manipulates functional groups/moieties at the molecular level, introducing various interactions and permanent or reversible dynamic bonds as the dissipative energy. Molecular engineering usually uses monomers, cross-linkers, chains, and other additives. Structural engineering utilizes casting methods, solvent phase regulation, mechanochemistry, macromolecule chemical reactions, and biomanufacturing technology to construct and tailor the topological network structures, or heterogeneous modulus compositions. We envision that the perfect combination of molecular and structural engineering may provide a fresh view to extend exciting new perspectives of this burgeoning field. This review also summarizes recent representative applications of polymer gels with excellent mechanical properties. Conclusions and perspectives are also provided from five aspects of concise summary, mechanical mechanism, biofabrication methods, upgraded applications, and synergistic methodology.
Collapse
Affiliation(s)
- Chenggong Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Chen
- Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China
| | - Siyang Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deke Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- School of materials engineering, Lanzhou Institute of Technology, Lanzhou 730000, China
| | - Xing Tang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Haili Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhiguang Guo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
33
|
Huang L, Li H, Wen S, Xia P, Zeng F, Peng C, Yang J, Tan Y, Liu J, Jiang L, Wang J. Control nucleation for strong and tough crystalline hydrogels with high water content. Nat Commun 2024; 15:7777. [PMID: 39237555 PMCID: PMC11377714 DOI: 10.1038/s41467-024-52264-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024] Open
Abstract
Hydrogels, provided that they integrate strength and toughness at desired high content of water, promise in load-bearing tissues such as articular cartilage, ligaments, tendons. Many developed strategies impart hydrogels with some mechanical properties akin to natural tissues, but compromise water content. Herein, a strategy deprotonation-complexation-reprotonation is proposed to prepare polyvinyl alcohol hydrogels with water content as high as ~80% and favorable mechanical properties, including tensile strength of 7.4 MPa, elongation of around 1350%, and fracture toughness of 12.4 kJ m-2. The key to water holding yet improved mechanical properties lies in controllable nucleation for refinement of crystalline morphology. With nearly constant water content, mechanical properties of as-prepared hydrogels are successfully tailored by tuning crystal nuclei density via deprotonation degree and their distribution uniformity via complexation temperature. This work provides a nucleation concept to design robust hydrogels with desired water content, holding implications for practical application in tissue engineering.
Collapse
Affiliation(s)
- Limei Huang
- College of Materials Science and Engineering, Hunan University, Changsha, China
| | - Hao Li
- Institute of Laser Manufacturing, Henan Academy of Sciences, Zhengzhou, China
| | - Shunxi Wen
- College of Materials Science and Engineering, Hunan University, Changsha, China
| | - Penghui Xia
- College of Materials Science and Engineering, Hunan University, Changsha, China
| | - Fanzhan Zeng
- College of Materials Science and Engineering, Hunan University, Changsha, China
| | - Chaoyi Peng
- Zhuzhou Times New Material Technology CO., LTD., Zhuzhou, China
| | - Jun Yang
- Zhuzhou Times New Material Technology CO., LTD., Zhuzhou, China
| | - Yun Tan
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Ji Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry Chinese, Academy of Sciences, Beijing, China
| | - Jianfeng Wang
- College of Materials Science and Engineering, Hunan University, Changsha, China.
| |
Collapse
|
34
|
Shagufta A, Wang L, Fang S, Kong Q, Zhang H. Endowing rubber with intrinsic self-healing properties using thiourea-based polymer. RSC Adv 2024; 14:26198-26207. [PMID: 39161452 PMCID: PMC11332185 DOI: 10.1039/d4ra03808h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024] Open
Abstract
Self-healing polymers are extensively researched for the sustainability of materials. The introduction of dynamic networks instead of traditional cross-linkers for an autonomous healing mechanism in elastomers is a promising strategy for improving rubber properties. However, exchangeable covalent bonds in a dynamic network generally rely on external stimulants and fillers, which can compromise the material's performance. Herein, we introduce a mechanically strong yet resilient and independent self-healing polymeric network by dual cross-linking of bonds based on covalent and non-covalent dual interaction. The thiourea-based polymer polyether thiourea ethylene glycol (PTUEG) was blended with natural rubber (NR) and epoxidized natural rubber (ENR) to strengthen the mechanical characteristics of the material NR-ENR-PTUEG3. In the material, the thermoplastic polymer PTUEG3 applied the thiourea linkage as a hydrogen bonding and dynamic covalent motif together to enhance mechanical adaptability in a self-healing polymer network exhibiting stiffness, toughness, and resilience, thereby extending its longevity. The resulting mechanical characteristics of the NR-ENR-PTUEG3 with 25 phr PTUEG3 exhibited tensile stress 4.8 ± 0.3 MPa and high elongation at break 833 ± 0.1%, demonstrating far better performance than that of pristine NR, and 85% recovery of its original strength at ambient temperature. The healing behaviour is strongly influenced by thiourea-based polymer contents, enabling autonomous self-healing at ambient temperature, exhibiting in situ load-bearing efficiency in the repaired material, and maintaining their mechanical characteristics.
Collapse
Affiliation(s)
- Afreen Shagufta
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao 266101 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Qingdao New Energy Shandong Laboratory Qingdao 266101 China
- Shandong Energy Institute Qingdao 266101 China
| | - Lei Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao 266101 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Qingdao New Energy Shandong Laboratory Qingdao 266101 China
- Shandong Energy Institute Qingdao 266101 China
| | - Senbiao Fang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao 266101 China
- Qingdao New Energy Shandong Laboratory Qingdao 266101 China
- Shandong Energy Institute Qingdao 266101 China
| | - Qingshan Kong
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao 266101 China
- Qingdao New Energy Shandong Laboratory Qingdao 266101 China
- Shandong Energy Institute Qingdao 266101 China
| | - Haibo Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao 266101 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Qingdao New Energy Shandong Laboratory Qingdao 266101 China
- Shandong Energy Institute Qingdao 266101 China
| |
Collapse
|
35
|
Liu P, Tseng YL, Ge L, Zeng T, Shabat D, Robb MJ. Mechanically Triggered Bright Chemiluminescence from Polymers by Exploiting a Synergy between Masked 2-Furylcarbinol Mechanophores and 1,2-Dioxetane Chemiluminophores. J Am Chem Soc 2024; 146:22151-22156. [PMID: 39078378 PMCID: PMC11328125 DOI: 10.1021/jacs.4c07592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Mechanoluminescence, or the generation of light from materials under external force, is a powerful tool for biology and materials science. However, direct mechanoluminescence from polymers remains limited. Here, we report a novel design strategy for mechanoluminescent polymers that leverages the synergy between a masked 2-furylcarbinol mechanophore for mechanically triggered release and an adamantylidene-phenoxy-1,2-dioxetane chemiluminophore payload. Ultrasound-induced mechanochemical activation of polymers, in both organic and aqueous solutions, triggers a cascade reaction that ultimately results in bright green light emission. This novel strategy capitalizes on the modularity of the masked 2-furylcarbinol mechanophore system in combination with advances in the design of exceptionally bright and highly tunable adamantylidene-1,2-dioxetane chemiluminophores. We anticipate that this chemistry will enable diverse applications in optoelectronics, sensing, bioimaging, optogenetics, and many other areas.
Collapse
Affiliation(s)
- Peng Liu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Yu-Ling Tseng
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Liang Ge
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Tian Zeng
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Doron Shabat
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Maxwell J Robb
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
36
|
He P, Wei C, Wang Q, Liu F, Liang S, Xu Y, Kang B. Mechanochromic Polymer Film with High Sensitivity toward Tensile Strain by the Post-Curing Ring-Closure Induced Pre-Stretching. Macromol Rapid Commun 2024; 45:e2400145. [PMID: 38776530 DOI: 10.1002/marc.202400145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/06/2024] [Indexed: 05/25/2024]
Abstract
Mechanochromic materials have received broad research interests recently, owing to its ability to monitor the in situ stress/strain in polymer materials in a straightforward way. However, one major setback that hinders the practical application of these materials is their low sensitivity toward tensile strain. Here a new strategy for pre-stretching of the mechanochromic agent in a polymer film on the molecular scale, which can effectively enhance the mechanochromic sensitivity of a polymer film toward tensile strain, is shown. In situ fluorescent measurement during tensile test shows an early activation of the mechanochromic agent at tensile strain as low as 50%. The pre-stretching effect is realized by first inducing ring-opening of the mechanochromic agent by molecular functionalization, and then compelling the ring-closure process in the cured film by elevated temperature. This post-curing ring-closure process will result in pre-stretched mechanochromic agent in a crosslinked network. The mechanism for mechanochromic activation of polymer films with different composition is elaborated by visco-elastic measurements, and the effect of pre-stretching is further confirmed by films with other compositions. Combined with the simplicity of the method developed, this work could offer an alternative strategy to enhance the sensitivity of different mechanochromic agents toward tensile strain.
Collapse
Affiliation(s)
- Peiyu He
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science, Mianyang, 621900, Sichuan, P. R. China
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, Sichuan, P. R. China
| | - Cheng Wei
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, Sichuan, P. R. China
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, Sichuan, P. R. China
| | - Qin Wang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, Sichuan, P. R. China
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, Sichuan, P. R. China
| | - Fengrui Liu
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, Sichuan, P. R. China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Shuen Liang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, Sichuan, P. R. China
| | - Yewei Xu
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science, Mianyang, 621900, Sichuan, P. R. China
| | - Biao Kang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, Sichuan, P. R. China
| |
Collapse
|
37
|
Ishaqat A, Hahmann J, Lin C, Zhang X, He C, Rath WH, Habib P, Sahnoun SEM, Rahimi K, Vinokur R, Mottaghy FM, Göstl R, Bartneck M, Herrmann A. In Vivo Polymer Mechanochemistry with Polynucleotides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403752. [PMID: 38804595 DOI: 10.1002/adma.202403752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Polymer mechanochemistry utilizes mechanical force to activate latent functionalities in macromolecules and widely relies on ultrasonication techniques. Fundamental constraints of frequency and power intensity have prohibited the application of the polymer mechanochemistry principles in a biomedical context up to now, although medical ultrasound is a clinically established modality. Here, a universal polynucleotide framework is presented that allows the binding and release of therapeutic oligonucleotides, both DNA- and RNA-based, as cargo by biocompatible medical imaging ultrasound. It is shown that the high molar mass, colloidal assembly, and a distinct mechanochemical mechanism enable the force-induced release of cargo and subsequent activation of biological function in vitro and in vivo. Thereby, this work introduces a platform for the exploration of biological questions and therapeutics development steered by mechanical force.
Collapse
Affiliation(s)
- Aman Ishaqat
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Johannes Hahmann
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Max Planck School Matter to Life, Jahnstr. 29, 69120, Heidelberg, Germany
| | - Cheng Lin
- Department of Medicine III, University Hospital Aachen, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
- Department of Rheumatology and Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 1630 Dongfang Road, Shanghai, 200127, China
| | - Xiaofeng Zhang
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Chuanjiang He
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Wolfgang H Rath
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Pardes Habib
- Department of Neurosurgery and Stanford Stroke Center, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94304, USA
| | - Sabri E M Sahnoun
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Khosrow Rahimi
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Rostislav Vinokur
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), P. Debyelaan 25, Maastricht, 6229 HX, The Netherlands
| | - Robert Göstl
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Department of Chemistry and Biology, University of Wuppertal, Gaußstraße 20, 42119, Wuppertal, Germany
| | - Matthias Bartneck
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Department of Medicine III, University Hospital Aachen, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Andreas Herrmann
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Max Planck School Matter to Life, Jahnstr. 29, 69120, Heidelberg, Germany
| |
Collapse
|
38
|
Sun PB, Pomfret MN, Elardo MJ, Suresh A, Rentería-Gómez Á, Lalisse RF, Keating S, Chen C, Hilburg SL, Chakma P, Wu Y, Bell RC, Rowan SJ, Gutierrez O, Golder MR. Molecular Ball Joints: Mechanochemical Perturbation of Bullvalene Hardy-Cope Rearrangements in Polymer Networks. J Am Chem Soc 2024; 146:19229-19238. [PMID: 38961828 DOI: 10.1021/jacs.4c04401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The solution-state fluxional behavior of bullvalene has fascinated physical organic and supramolecular chemists alike. Little effort, however, has been put into investigating bullvalene applications in bulk, partially due to difficulties in characterizing such dynamic systems. To address this knowledge gap, we herein probe whether bullvalene Hardy-Cope rearrangements can be mechanically perturbed in bulk polymer networks. We use dynamic mechanical analysis to demonstrate that the activation barrier to the glass transition process is significantly elevated for bullvalene-containing materials relative to "static" control networks. Furthermore, bullvalene rearrangements can be mechanically perturbed at low temperatures in the glassy region; such behavior facilitates energy dissipation (i.e., increased hysteresis energy) and polymer chain alignment to stiffen the material (i.e., increased Young's modulus) under load. Computational simulations corroborate our work that showcases bullvalene as a reversible "low-force" covalent mechanophore in the modulation of viscoelastic behavior.
Collapse
Affiliation(s)
- Peiguan B Sun
- Department of Chemistry and Molecular Engineering & Science Institute, University of Washington, Seattle, Washington 98115, United States
| | - Meredith N Pomfret
- Department of Chemistry and Molecular Engineering & Science Institute, University of Washington, Seattle, Washington 98115, United States
| | - Matthew J Elardo
- Department of Chemistry and Molecular Engineering & Science Institute, University of Washington, Seattle, Washington 98115, United States
| | - Adhya Suresh
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Ángel Rentería-Gómez
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Remy F Lalisse
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Sheila Keating
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Chuqiao Chen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Shayna L Hilburg
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98115, United States
| | - Progyateg Chakma
- Department of Chemistry and Molecular Engineering & Science Institute, University of Washington, Seattle, Washington 98115, United States
| | - Yunze Wu
- Department of Chemistry and Molecular Engineering & Science Institute, University of Washington, Seattle, Washington 98115, United States
| | - Rowina C Bell
- Department of Chemistry and Molecular Engineering & Science Institute, University of Washington, Seattle, Washington 98115, United States
| | - Stuart J Rowan
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Osvaldo Gutierrez
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Matthew R Golder
- Department of Chemistry and Molecular Engineering & Science Institute, University of Washington, Seattle, Washington 98115, United States
| |
Collapse
|
39
|
Wang ZJ, Lin J, Nakajima T, Gong JP. Hydrogel morphogenesis induced by force-controlled growth. Proc Natl Acad Sci U S A 2024; 121:e2402587121. [PMID: 38923994 PMCID: PMC11228514 DOI: 10.1073/pnas.2402587121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Morphogenesis is one of the most marvelous natural phenomena. The morphological characteristics of biological organs develop through growth, which is often triggered by mechanical force. In this study, we propose a bioinspired strategy for hydrogel morphogenesis through force-controlled chemical reaction and growth under isothermal conditions. We adopted a double network (DN) hydrogel with sacrificial bonds. Applying mechanical force to the gel caused deformation and sacrificial bond rupture. By supplying monomers to the gel, the radicals generated by the bond rupture triggered the formation of a new network inside the deformed gel. This new network conferred plasticity to the elastic gel, allowing it to maintain its deformed shape, along with increased volume and strength. We demonstrated that sheet-shaped DN hydrogels rapidly adopted various three-dimensional shapes at ambient temperature when subjected to forces such as drawing and blowing. This mechanism enables morphogenesis of elastic hydrogels and will promote the application of these materials in biomedical fields and soft machines.
Collapse
Affiliation(s)
- Zhi Jian Wang
- Graduate School of Life Science, Hokkaido University, Sapporo001-0021, Japan
- Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo001-0021, Japan
| | - Ji Lin
- Center for Mechanics Plus under Extreme Environments, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo315211, China
| | - Tasuku Nakajima
- Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo001-0021, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo001-0021, Japan
| | - Jian Ping Gong
- Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo001-0021, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo001-0021, Japan
| |
Collapse
|
40
|
Fang Z, Mu H, Sun Z, Zhang K, Zhang A, Chen J, Zheng N, Zhao Q, Yang X, Liu F, Wu J, Xie T. 3D printable elastomers with exceptional strength and toughness. Nature 2024; 631:783-788. [PMID: 38961297 DOI: 10.1038/s41586-024-07588-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/21/2024] [Indexed: 07/05/2024]
Abstract
Three-dimensional (3D) printing has emerged as an attractive manufacturing technique because of its exceptional freedom in accessing geometrically complex customizable products. Its potential for mass manufacturing, however, is hampered by its low manufacturing efficiency (print speed) and insufficient product quality (mechanical properties). Recent progresses in ultra-fast 3D printing of photo-polymers1-5 have alleviated the issue of manufacturing efficiency, but the mechanical performance of typical printed polymers still falls far behind what is achievable with conventional processing techniques. This is because of the printing requirements that restrict the molecular design towards achieving high mechanical performance. Here we report a 3D photo-printable resin chemistry that yields an elastomer with tensile strength of 94.6 MPa and toughness of 310.4 MJ m-3, both of which far exceed that of any 3D printed elastomer6-10. Mechanistically, this is achieved by the dynamic covalent bonds in the printed polymer that allow network topological reconfiguration. This facilitates the formation of hierarchical hydrogen bonds (in particular, amide hydrogen bonds), micro-phase separation and interpenetration architecture, which contribute synergistically to superior mechanical performance. Our work suggests a brighter future for mass manufacturing using 3D printing.
Collapse
Affiliation(s)
- Zizheng Fang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Hongfeng Mu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Zhuo Sun
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Kaihang Zhang
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Anyang Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, China
| | - Jiada Chen
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Ning Zheng
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Qian Zhao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Xuxu Yang
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Feng Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, China
| | - Jingjun Wu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.
- Ningbo Innovation Center, Zhejiang University, Ningbo, China.
| | - Tao Xie
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.
| |
Collapse
|
41
|
Li X, Li W, Cheng J, Sun X, Zhang Y, Xiang C, Chen S. Determining fatigue threshold of elastomers through an elastic limit strain point. SOFT MATTER 2024; 20:4402-4413. [PMID: 38764423 DOI: 10.1039/d4sm00266k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Determining the fatigue threshold of elastomers is particularly important to predict their durability and lifespan. However, there has been almost no effective approach to calculate this threshold fast and accurately so far. To realize rapid fatigue performance testing, in this paper, a new method is proposed to calculate the fatigue threshold through the elastic limit strain point of elastomers that can be obtained from the continuous Mullins test. Compared with the traditional binary method to predict fatigue threshold, this method significantly reduces the time required for fatigue testing of elastomers, which can save approximately 2-3 sampling points in the fatigue test, i.e. a time savings of around 40%. Our method also proved to be effective for the elastomers at 0 °C. Additionally, a dual-network elastomer was synthesized using the interpenetrating network method, exhibiting improved elasticity (2.1 MPa and 3.1 MPa), toughness (1423 J m-2 and 2100 J m-2), and higher fatigue threshold (125 J m-2 and 385 J m-2) at 0 °C and room temperature. This material presents great application potential in marine anti-fouling.
Collapse
Affiliation(s)
- Xinglinmao Li
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China.
| | - Wen Li
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China.
- Qingdao Key Laboratory of Marine Extreme Environmental Materials, Qingdao, 266100, P. R. China
| | - Jia Cheng
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China.
| | - Xiao Sun
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China.
| | - Yue Zhang
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China.
- Qingdao Key Laboratory of Marine Extreme Environmental Materials, Qingdao, 266100, P. R. China
| | - Chunping Xiang
- School of Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Shougang Chen
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China.
- Qingdao Key Laboratory of Marine Extreme Environmental Materials, Qingdao, 266100, P. R. China
| |
Collapse
|
42
|
Qin J, Chen Y, Guo X, Huang Y, Chen G, Zhang Q, He G, Zhu S, Ruan X, Zhu H. Regulation of Hard Segment Cluster Structures for High-performance Poly(urethane-urea) Elastomers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400255. [PMID: 38602431 PMCID: PMC11165464 DOI: 10.1002/advs.202400255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/21/2024] [Indexed: 04/12/2024]
Abstract
Elastomers are widely used in daily life; however, the preparation of degradable and recyclable elastomers with high strength, high toughness, and excellent crack resistance remains a challenging task. In this report, a polycaprolactone-based poly(urethane-urea) elastomer is presented with excellent mechanical properties by optimizing the arrangement of hard segment clusters. It is found that long alkyl chains of the chain extenders lead to small and evenly distributed hard segment clusters, which is beneficial for improving mechanical properties. Together with the multiple hydrogen bond structure and stress-induced crystallization, the obtained elastomer exhibits a high strength of 63.3 MPa, an excellent toughness of 431 MJ m-3 and an outstanding fracture energy of 489 kJ m-2, while maintaining good recyclability and degradability. It is believed that the obtained elastomer holds great promise in various application fields and it contributes to the development of a sustainable society.
Collapse
Affiliation(s)
- Jianliang Qin
- School of Science and EngineeringThe Chinese University of Hong Kong, ShenzhenShenzhen518172China
| | - Yifei Chen
- School of Chemical Engineering at PanjinDalian University of TechnologyPanjin124221China
| | - Xiwei Guo
- School of Science and EngineeringThe Chinese University of Hong Kong, ShenzhenShenzhen518172China
| | - Yi Huang
- School of Science and EngineeringThe Chinese University of Hong Kong, ShenzhenShenzhen518172China
| | - Guoqing Chen
- School of Science and EngineeringThe Chinese University of Hong Kong, ShenzhenShenzhen518172China
| | - Qi Zhang
- School of Science and EngineeringThe Chinese University of Hong Kong, ShenzhenShenzhen518172China
| | - Gaohong He
- School of Chemical Engineering at PanjinDalian University of TechnologyPanjin124221China
- State Key Laboratory of Fine ChemicalsR&D Center of Membrane Science and TechnologySchool of Chemical EngineeringDalian University of TechnologyDalian116023China
| | - Shiping Zhu
- School of Science and EngineeringThe Chinese University of Hong Kong, ShenzhenShenzhen518172China
| | - Xuehua Ruan
- School of Chemical Engineering at PanjinDalian University of TechnologyPanjin124221China
| | - He Zhu
- School of Science and EngineeringThe Chinese University of Hong Kong, ShenzhenShenzhen518172China
| |
Collapse
|
43
|
Xie T, Ou F, Ning C, Tuo L, Zhang Z, Gao Y, Pan W, Li Z, Gao W. Dual-network carboxymethyl chitosan conductive hydrogels for multifunctional sensors and high-performance triboelectric nanogenerators. Carbohydr Polym 2024; 333:121960. [PMID: 38494218 DOI: 10.1016/j.carbpol.2024.121960] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024]
Abstract
With the development of technology, there is a growing demand for wearable electronics that can fulfill different application scenarios. Hydrogel-based sensors are considered ideal candidates for realizing multifunctional wearable flexible devices. However, there are great challenges in preparing hydrogel-based sensors with both superior mechanical and electrical properties. Herein, we report a composite conductive hydrogel prepared by using a dynamically crosslinked carboxymethyl chitosan network and a covalently crosslinked polymer network, and carboxylated carbon nanotubes as conductive filler. The carboxymethyl chitosan-based hydrogels had excellent mechanical properties and strength (tensile strength of 475.4 kPa, and compressive strength of 1.9 MPa) and ultra-high conductivity (0.19 S·cm-1). Based on the above characteristics, the hydrogel could accurately identify the movement signals of the human body and different writing signals, and achieve encrypted transmission of signals, broadening the application scenarios. In addition, a triboelectric nanogenerator (TENG) was fabricated based on the hydrogel, which had an outstanding output performance with open-circuit voltage of 336 V, short-circuit current of 18 μA, transferred charge of 52 nC and maximum power density of 340 mW·m-2, and could power small devices. This work is expected to provide new ideas for the development of self-powered, multi-functional wearable, and flexible polysaccharide-based devices.
Collapse
Affiliation(s)
- Ting Xie
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, Guangxi, China; Guangxi Engineering and Technology Research Center for High Quality Structural Panels from Biomass Wastes, Nanning 530004, Guangxi, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| | - Fangyan Ou
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, Guangxi, China; Guangxi Engineering and Technology Research Center for High Quality Structural Panels from Biomass Wastes, Nanning 530004, Guangxi, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| | - Chuang Ning
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, Guangxi, China; Guangxi Engineering and Technology Research Center for High Quality Structural Panels from Biomass Wastes, Nanning 530004, Guangxi, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| | - Liang Tuo
- Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
| | - Zhichao Zhang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, Guangxi, China; Guangxi Engineering and Technology Research Center for High Quality Structural Panels from Biomass Wastes, Nanning 530004, Guangxi, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| | - Yi Gao
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, Guangxi, China; Guangxi Engineering and Technology Research Center for High Quality Structural Panels from Biomass Wastes, Nanning 530004, Guangxi, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| | - Wenyu Pan
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, Guangxi, China; Guangxi Engineering and Technology Research Center for High Quality Structural Panels from Biomass Wastes, Nanning 530004, Guangxi, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| | - Zequan Li
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, Guangxi, China; Guangxi Engineering and Technology Research Center for High Quality Structural Panels from Biomass Wastes, Nanning 530004, Guangxi, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| | - Wei Gao
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, Guangxi, China; Guangxi Engineering and Technology Research Center for High Quality Structural Panels from Biomass Wastes, Nanning 530004, Guangxi, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China; Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, Guangxi, China; Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, Guangxi University, Nanning 530004, Guangxi, China.
| |
Collapse
|
44
|
Kong V, Staunton TA, Laaser JE. Effect of Cross-Link Homogeneity on the High-Strain Behavior of Elastic Polymer Networks. Macromolecules 2024; 57:4670-4679. [PMID: 38827963 PMCID: PMC11140753 DOI: 10.1021/acs.macromol.3c02565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/07/2024] [Accepted: 04/26/2024] [Indexed: 06/05/2024]
Abstract
Cross-link heterogeneity and topological defects have been shown to affect the moduli of polymer networks in the low-strain regime. Probing their role in the high-strain regime, however, has been difficult because of premature network fracture. Here, we address this problem by using a double-network approach to investigate the high-strain behavior of both randomly and regularly cross-linked networks with the same backbone chemistry. Randomly cross-linked poly(n-butyl acrylate) networks with target molecular weights between cross-links of 5-30 kg/mol were synthesized via free-radical polymerization, while regularly cross-linked poly(n-butyl acrylate) networks with molecular weights between cross-links of 7-38 kg/mol were synthesized via cross-linking of tetrafunctional star polymers. Both types of networks were then swollen in a monomer/cross-linker mixture, polymerized to form double networks, and characterized via uniaxial tensile testing. The onset of strain stiffening was found to occur later in regular networks than in random networks with the same modulus but was well-predicted by the target molecular weight between cross-links of each sample. These results indicate that the low- and high-strain behavior of polymer networks result from different molecular-scale features of the material and suggest that controlling network architecture offers new opportunities to both further fundamental understanding of architecture-property relationships and design materials with independently controlled moduli and strain stiffening responses.
Collapse
Affiliation(s)
- Victoria
A. Kong
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Thomas A. Staunton
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jennifer E. Laaser
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
45
|
Heidari M, Gaichies T, Leibler L, Labousse M. Polymer time crystal: Mechanical activation of reversible bonds by low-amplitude high frequency excitations. SCIENCE ADVANCES 2024; 10:eadn6107. [PMID: 38781335 PMCID: PMC11114238 DOI: 10.1126/sciadv.adn6107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/17/2024] [Indexed: 05/25/2024]
Abstract
Reversible supramolecular bonds play an important role in materials science and in biological systems. The equilibrium between open and closed bonds and the association rate can be controlled thermally, chemically, by mechanical pulling, by ultrasound, or by catalysts. In practice, these intrinsic equilibrium methods either suffer from a limited range of tunability or may damage the material. Here, we present a nonequilibrium strategy that exploits the dissipative properties of the system to control and change the dynamic properties of sacrificial and reversible networks. We show theoretically and numerically how high-frequency mechanical oscillations of very low amplitude can open or close bonds. This mechanism indicates how reversible bonds could alleviate mechanical fatigue of materials especially at low temperatures where they are fragile. In another area, it suggests that the system can be actively modified by the application of ultrasound to induce gel-fluid transitions and to activate or deactivate adhesion properties.
Collapse
Affiliation(s)
- Maziar Heidari
- Gulliver, CNRS, ESPCI Paris, Université PSL, 75005 Paris, France
| | - Théophile Gaichies
- Gulliver, CNRS, ESPCI Paris, Université PSL, 75005 Paris, France
- Département de chimie, École normale supérieure, Université PSL, 75005 Paris, France
| | - Ludwik Leibler
- Gulliver, CNRS, ESPCI Paris, Université PSL, 75005 Paris, France
| | | |
Collapse
|
46
|
Wang ZJ, Wang S, Jiang J, Hu Y, Nakajima T, Maeda S, Craig SL, Gong JP. Effect of the Activation Force of Mechanophore on Its Activation Selectivity and Efficiency in Polymer Networks. J Am Chem Soc 2024; 146:13336-13346. [PMID: 38697646 DOI: 10.1021/jacs.4c01879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
In recent decades, more than 100 different mechanophores with a broad range of activation forces have been developed. For various applications of mechanophores in polymer materials, it is crucial to selectively activate the mechanophores with high efficiency, avoiding nonspecific bond scission of the material. In this study, we embedded cyclobutane-based mechanophore cross-linkers (I and II) with varied activation forces (fa) in the first network of the double network hydrogels and quantitively investigated the activation selectivity and efficiency of these mechanophores. Our findings revealed that cross-linker I, with a lower activation force relative to the bonds in the polymer main chain (fa-I/fa-chain = 0.8 nN/3.4 nN), achieved efficient activation with 100% selectivity. Conversely, an increase of the activation force of mechanophore II (fa-II/fa-chain = 2.5 nN/3.4 nN) led to a significant decrease of its activation efficiency, accompanied by a substantial number of nonspecific bond scission events. Furthermore, with the coexistence of two cross-linkers, significantly different activation forces resulted in the almost complete suppression of the higher-force one (i.e., I and III, fa-I/fa-III = 0.8 nN/3.4 nN), while similar activation forces led to simultaneous activations with moderate efficiencies (i.e., I and IV, fa-I/fa-IV = 0.8 nN/1.6 nN). These findings provide insights into the prevention of nonspecific bond rupture during mechanophore activation and enhance our understanding of the damage mechanism within polymer networks when using mechanophores as detectors. Besides, it establishes a principle for combining different mechanophores to design multiple mechanoresponsive functional materials.
Collapse
Affiliation(s)
- Zhi Jian Wang
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| | - Shu Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708-0346, United States
| | - Julong Jiang
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-8628, Japan
| | - Yixin Hu
- Department of Chemistry, Duke University, Durham, North Carolina 27708-0346, United States
| | - Tasuku Nakajima
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Satoshi Maeda
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-8628, Japan
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27708-0346, United States
| | - Jian Ping Gong
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
47
|
Xian W, Zhan YS, Maiti A, Saab AP, Li Y. Filled Elastomers: Mechanistic and Physics-Driven Modeling and Applications as Smart Materials. Polymers (Basel) 2024; 16:1387. [PMID: 38794580 PMCID: PMC11125212 DOI: 10.3390/polym16101387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Elastomers are made of chain-like molecules to form networks that can sustain large deformation. Rubbers are thermosetting elastomers that are obtained from irreversible curing reactions. Curing reactions create permanent bonds between the molecular chains. On the other hand, thermoplastic elastomers do not need curing reactions. Incorporation of appropriated filler particles, as has been practiced for decades, can significantly enhance mechanical properties of elastomers. However, there are fundamental questions about polymer matrix composites (PMCs) that still elude complete understanding. This is because the macroscopic properties of PMCs depend not only on the overall volume fraction (ϕ) of the filler particles, but also on their spatial distribution (i.e., primary, secondary, and tertiary structure). This work aims at reviewing how the mechanical properties of PMCs are related to the microstructure of filler particles and to the interaction between filler particles and polymer matrices. Overall, soft rubbery matrices dictate the elasticity/hyperelasticity of the PMCs while the reinforcement involves polymer-particle interactions that can significantly influence the mechanical properties of the polymer matrix interface. For ϕ values higher than a threshold, percolation of the filler particles can lead to significant reinforcement. While viscoelastic behavior may be attributed to the soft rubbery component, inelastic behaviors like the Mullins and Payne effects are highly correlated to the microstructures of the polymer matrix and the filler particles, as well as that of the polymer-particle interface. Additionally, the incorporation of specific filler particles within intelligently designed polymer systems has been shown to yield a variety of functional and responsive materials, commonly termed smart materials. We review three types of smart PMCs, i.e., magnetoelastic (M-), shape-memory (SM-), and self-healing (SH-) PMCs, and discuss the constitutive models for these smart materials.
Collapse
Affiliation(s)
- Weikang Xian
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (W.X.); (Y.-S.Z.)
| | - You-Shu Zhan
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (W.X.); (Y.-S.Z.)
| | - Amitesh Maiti
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (A.M.); (A.P.S.)
| | - Andrew P. Saab
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (A.M.); (A.P.S.)
| | - Ying Li
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (W.X.); (Y.-S.Z.)
| |
Collapse
|
48
|
Zhao D, Zhang Z, Wei Z, Zhao J, Li T, Yan X. A Crown-Ether-Based Elastomer Bearing Loop Structures with Dissipating Characteristics and Enhanced Mechanical Performance. Angew Chem Int Ed Engl 2024; 63:e202402394. [PMID: 38499462 DOI: 10.1002/anie.202402394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
Loops are prevalent topological structures in cross-linked polymer networks, resulting from the folding of polymer chains back onto themselves. Traditionally, they have been considered as defects that compromise the mechanical properties of the network, leading to extensive efforts in synthesis to prevent their formation. In this study, we introduce the inclusion of cyclic dibenzo-24-crown-8 (DB24C8) moieties within the polymer network strands to form CCNs, and surprisingly, these loops enhance the mechanical performances of the network, leading to tough elastomers. The toughening effect can be attributed to the unique cyclic structure of DB24C8. The relatively small size and the presence of rigid phenyl rings provide the loops with relatively stable conformations, allowing for substantial energy dissipation upon the application of force. Furthermore, the DB24C8 rings possess a broad range of potential conformations, imparting the materials with exceptional elasticity. The synergistic combination of these two features effectively toughens the materials, resulting in a remarkable 66-fold increase in toughness compared to the control sample of covalent networks. Moreover, the mechanical properties, particularly the recovery performance of the network, can be effectively tuned by introducing guests to bind with DB24C8, such as potassium ions and secondary ammonium salts.
Collapse
Affiliation(s)
- Dong Zhao
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, P. R. China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhaoming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhiyou Wei
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, P. R. China
| | - Jun Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Tao Li
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, P. R. China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
49
|
Jia Y, Qian J, Hao S, Zhang S, Wei F, Zheng H, Li Y, Song J, Zhao Z. New Prospects Arising from Dynamically Crosslinked Polymers: Reprogramming Their Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313164. [PMID: 38577834 DOI: 10.1002/adma.202313164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/18/2024] [Indexed: 04/06/2024]
Abstract
Dynamically crosslinked polymers (DCPs) have gained significant attention owing to their applications in fabricating (re)processable, recyclable, and self-healable thermosets, which hold great promise in addressing ecological issues, such as plastic pollution and resource scarcity. However, the current research predominantly focuses on redefining and/or manipulating their geometries while replicating their bulk properties. Given the inherent design flexibility of dynamic covalent networks, DCPs also exhibit a remarkable potential for various novel applications through postsynthesis reprogramming their properties. In this review, the recent advancements in strategies that enable DCPs to transform their bulk properties after synthesis are presented. The underlying mechanisms and associated material properties are overviewed mainly through three distinct strategies, namely latent catalysts, material-growth, and topology isomerizable networks. Furthermore, the mutual relationship and impact of these strategies when integrated within one material system are also discussed. Finally, the application prospects and relevant issues necessitating further investigation, along with the potential solutions are analyzed.
Collapse
Affiliation(s)
- Yunchao Jia
- School of Materials Science and Engineering, Henan University of Technology, 100 Lianhua St., Zhengzhou, 450001, P. R. China
| | - Jingjing Qian
- School of Materials Science and Engineering, Henan University of Technology, 100 Lianhua St., Zhengzhou, 450001, P. R. China
| | - Senyuan Hao
- School of Materials Science and Engineering, Henan University of Technology, 100 Lianhua St., Zhengzhou, 450001, P. R. China
| | - Shijie Zhang
- School of Materials Science and Engineering, Henan University of Technology, 100 Lianhua St., Zhengzhou, 450001, P. R. China
| | - Fengchun Wei
- School of Materials Science and Engineering, Henan University of Technology, 100 Lianhua St., Zhengzhou, 450001, P. R. China
| | - Hongjuan Zheng
- School of Materials Science and Engineering, Henan University of Technology, 100 Lianhua St., Zhengzhou, 450001, P. R. China
| | - Yilong Li
- School of Materials Science and Engineering, Henan University of Technology, 100 Lianhua St., Zhengzhou, 450001, P. R. China
| | - Jingwen Song
- School of Materials Science and Engineering, Zhengzhou University, 100 Science Ave., Zhengzhou, 450001, P. R. China
| | - Zhiwei Zhao
- School of Materials Science and Engineering, Henan University of Technology, 100 Lianhua St., Zhengzhou, 450001, P. R. China
| |
Collapse
|
50
|
Huang J, Tang Y, Wang P, Zhou H, Li H, Cheng Z, Wu Y, Xie Z, Cai Z, Wu D, Shen H. One-Pot Construction of Articular Cartilage-Like Hydrogel Coating for Durable Aqueous Lubrication. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309141. [PMID: 38339915 DOI: 10.1002/adma.202309141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/22/2024] [Indexed: 02/12/2024]
Abstract
Articular cartilage has an appropriate multilayer structure and superior tribological properties and provides a structural paradigm for design of lubricating materials. However, mimicking articular cartilage traits on prosthetic materials with durable lubrication remains a huge challenge. Herein, an ingenious three-in-one strategy is developed for constructing an articular cartilage-like bilayer hydrogel coating on the surface of ultra-high molecular weight polyethylene (BH-UPE), which makes full use of conceptions of interfacial interlinking, high-entanglement crosslinking, and interface-modulated polymerization. The hydrogel coating is tightly interlinked with UPE substrate through hydrogel-UPE interchain entanglement and bonding. The hydrogel chains are highly entangled with each other to form a dense tough layer with negligible hysteresis for load-bearing by reducing the amounts of crosslinker and hydrophilic initiator to p.p.m. levels. Meanwhile, the polymerization of monomers in the top surface region is suppressed via interface-modulated polymerization, thus introducing a porous surface for effective aqueous lubrication. As a result, BH-UPE exhibits an ultralow friction coefficient of 0.0048 during 10 000 cycles under a load of 0.9 MPa, demonstrating great potential as an advanced bearing material for disc prosthesis. This work may provide a new way to build stable bilayer coatings and have important implications for development of biological lubricating materials.
Collapse
Affiliation(s)
- Jiajun Huang
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Youchen Tang
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Peng Wang
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Hao Zhou
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - He Li
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Ziying Cheng
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Yanfeng Wu
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Zhongyu Xie
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Zhaopeng Cai
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Dingcai Wu
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Huiyong Shen
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
| |
Collapse
|