1
|
Kaplieva-Dudek I, Samak NA, Bormann J, Kaschani F, Kaiser M, Meckenstock RU. Characterization of 2-phenanthroate:CoA ligase from the sulfate-reducing, phenanthrene-degrading enrichment culture TRIP. Appl Environ Microbiol 2024; 90:e0129624. [PMID: 39248461 PMCID: PMC11497795 DOI: 10.1128/aem.01296-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are chemically stable pollutants that are poorly degraded by microorganisms in anoxic sediments. The anaerobic degradation pathway of PAHs such as phenanthrene starts with a carboxylation reaction forming phenanthroic acid. In this study, we identified and characterized the next enzyme in the pathway, the 2-phenanthroate:CoA ligase involved in the ATP-dependent formation of 2-phenanthroyl-CoA from cell-free extracts of the sulfate-reducing enrichment culture TRIP grown anaerobically with phenanthrene. The identified gene sequence indicated that 2-phenanthroate:CoA ligase belongs to the phenylacetate:CoA ligase-like enzyme family. Based on the sequence, we predict a two-domain structure of the 2-phenanthroate:CoA ligase with a typical large N-terminal and a smaller C-terminal domain. Partial purification of 2-phenanthroate:CoA ligase allowed us to identify the coding gene in the genome. 2-Phenanthroate:CoA ligase gene was heterologously expressed in Escherichia coli. Characterization of the 2-phenanthroate:CoA ligase was performed using the partially purified enzyme from cell-free extract and the purified recombinant enzyme. Testing all possible phenanthroic acid isomers as substrate for the ligase reaction showed that 2-phenanthroic acid is the preferred substrate and only 3-phenanthroic acid can be utilized to a minor extent. This also suggests that the product of the prior carboxylase reaction is 2-phenanthroic acid. 2-Phenanthroate:CoA ligase has an optimal activity at pH 7.5 and is oxygen-insensitive, analogous to other aryl-CoA ligases. In contrast to aryl-Coenzyme A ligases reported in the literature, which need Mg2+ as cofactor, 2-phenanthroate:CoA ligase showed greatest activity with a combination of 5 mM MgCl2 and 5 mM KCl. Furthermore, a substrate inhibition was observed at ATP concentrations above 1 mM and the enzyme was also active with ADP. IMPORTANCE Polycyclic aromatic hydrocarbons (PAHs) constitute a class of very toxic and persistent pollutants in the environment. However, the anaerobic degradation of three-ring PAHs such as phenanthrene is barely investigated. The initial degradation step starts with a carboxylation followed by a CoA‑thioesterification reaction performed by an aryl-CoA ligase. The formation of a CoA-thioester is an important step in the degradation pathway of aromatic compounds because the CoA-ester is needed for all downstream biochemical reactions in the pathway. Furthermore, we provide biochemical proof for the identification of the first genes for anaerobic phenanthrene degradation. Results presented here provide information about the biochemical and structural properties of the purified 2‑phenanthroate:CoA ligase and expand our knowledge of aryl-CoA ligases.
Collapse
Affiliation(s)
- I. Kaplieva-Dudek
- Environmental Microbiology and Biotechnology (EMB), Aquatic Microbiology, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Nadia A. Samak
- Environmental Microbiology and Biotechnology (EMB), Aquatic Microbiology, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Jenny Bormann
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
- Analytics Core Facility Essen, ZMB, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Farnusch Kaschani
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
- Analytics Core Facility Essen, ZMB, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Markus Kaiser
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Rainer U. Meckenstock
- Environmental Microbiology and Biotechnology (EMB), Aquatic Microbiology, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
2
|
Ali DC, Pan T, Wu Q, Wang Z. Oil-water interfaces of Pickering emulsions: microhabitats for living cell biocatalysis. Trends Biotechnol 2024:S0167-7799(24)00275-0. [PMID: 39395882 DOI: 10.1016/j.tibtech.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/14/2024]
Abstract
Based on the size of bacterial cells and bacterial surface hydrophobicity, some bacteria meet the requirements of Pickering particles to stabilize Pickering emulsions. Here, we discuss the oil-water interfaces of bacteria-stabilized Pickering emulsions as microhabitats for microbial metabolism of oil-soluble chemicals. The correlation between living bacteria-stabilized Pickering emulsions and microhabitats of living bacteria at oil-water interfaces offers a new perspective to study bioprocess engineering at the mesoscale between the cell and reactor scales, which not only provides novel parameters to optimize the bioprocess engineering, but also unravels the paradox of some natural phenomena related to living cell biocatalysis.
Collapse
Affiliation(s)
- Daniel Chikere Ali
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Shanghai 200240, China
| | - Tao Pan
- Jiangxi Province Key Laboratory of Environmental Pollution Prevention and Control in Mining and Metallurgy, School of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Qingping Wu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Shanghai 200240, China
| | - Zhilong Wang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Shanghai 200240, China.
| |
Collapse
|
3
|
An L, Liu X, Wang J, Xu J, Chen X, Liu X, Hu B, Nie Y, Wu XL. Global diversity and ecological functions of viruses inhabiting oil reservoirs. Nat Commun 2024; 15:6789. [PMID: 39117673 PMCID: PMC11310422 DOI: 10.1038/s41467-024-51101-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Oil reservoirs, being one of the significant subsurface repositories of energy and carbon, host diverse microbial communities affecting energy production and carbon emissions. Viruses play crucial roles in the ecology of microbiomes, however, their distribution and ecological significance in oil reservoirs remain undetermined. Here, we assemble a catalogue encompassing viral and prokaryotic genomes sourced from oil reservoirs. The catalogue comprises 7229 prokaryotic genomes and 3,886 viral Operational Taxonomic Units (vOTUs) from 182 oil reservoir metagenomes. The results show that viruses are widely distributed in oil reservoirs, and 85% vOTUs in oil reservoir are detected in less than 10% of the samples, highlighting the heterogeneous nature of viral communities within oil reservoirs. Through combined microcosm enrichment experiments and bioinformatics analysis, we validate the ecological roles of viruses in regulating the community structure of sulfate reducing microorganisms, primarily through a virulent lifestyle. Taken together, this study uncovers a rich diversity of viruses and their ecological functions within oil reservoirs, offering a comprehensive understanding of the role of viral communities in the biogeochemical cycles of the deep biosphere.
Collapse
Affiliation(s)
- Liyun An
- College of architecture and environment, Sichuan University, Chengdu, 610065, China
| | - Xinwu Liu
- College of Engineering, Peking University, Beijing, 100871, China
| | - Jianwei Wang
- College of Engineering, Peking University, Beijing, 100871, China
| | - Jinbo Xu
- School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Xiaoli Chen
- College of Engineering, Peking University, Beijing, 100871, China
- Institute of Ocean Research, Peking University, Beijing, 100871, China
| | - Xiaonan Liu
- College of Engineering, Peking University, Beijing, 100871, China
| | - Bingxin Hu
- College of Engineering, Peking University, Beijing, 100871, China
| | - Yong Nie
- College of Engineering, Peking University, Beijing, 100871, China.
| | - Xiao-Lei Wu
- College of architecture and environment, Sichuan University, Chengdu, 610065, China.
- College of Engineering, Peking University, Beijing, 100871, China.
- School of Earth and Space Sciences, Peking University, Beijing, 100871, China.
- Institute of Ocean Research, Peking University, Beijing, 100871, China.
- Institute of Ecology, Peking University, Beijing, 100871, China.
| |
Collapse
|
4
|
Zhu F, Wei Y, Wang F, Xia Z, Gou M, Tang Y. Enrichment of microbial consortia for MEOR in crude oil phase of reservoir-produced liquid and their response to environmental disturbance. Int Microbiol 2024; 27:1049-1062. [PMID: 38010566 DOI: 10.1007/s10123-023-00458-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023]
Abstract
Developing microbial consortiums is necessary for microbial enhanced oil recovery (MEOR) in heavy crude oil production. The aqueous phase of produced fluid has long been considered an ideal source of microorganisms for MEOR. However, it is recently found that rich microorganisms (including hydrocarbon-degrading bacteria) are present in the crude oil phase, which is completely different from the aqueous phase of produced fluid. So, in this study, the microbial consortia from the crude oil phase of produced fluids derived from four wells were enriched, respectively. The microbial community structure during passage was dynamically tracked, and the response of enriched consortia to successive disturbance of environmental factors was investigated. The results showed the crude oil phase had high microbial diversity, and the original microbial community structure from four wells was significantly different. After ten generations of consecutive enrichment, different genera were observed in the four enriched microbial consortia, namely, Geobacillus, Bacillus, Brevibacillus, Chelativorans, Ureibacillus, and Ornithinicoccus. In addition, two enriched consortia (eG1614 and eP30) exhibited robustness to temperature and oxygen perturbations. These results further suggested that the crude oil phase of produced fluids can serve as a potential microbial source for MEOR.
Collapse
Affiliation(s)
- Fangfang Zhu
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan Province, China
| | - Yanfeng Wei
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan Province, China
| | - Fangzhou Wang
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan Province, China
| | - Ziyuan Xia
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan Province, China
| | - Min Gou
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan Province, China.
| | - Yueqin Tang
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan Province, China
| |
Collapse
|
5
|
Nassery HR, Shahsavari AA, Vogt C, Kümmel S, Kuntze K, Khodaei K, Nikpeyman Y, Richnow HH. Source differentiation of BTEX compounds in groundwater contaminated due to refinery activities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121893. [PMID: 39025004 DOI: 10.1016/j.jenvman.2024.121893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/22/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
This study aims to identify sources of groundwater contamination in a refinery area using integrated compound-specific stable isotope analysis (CSIA), oil fingerprinting techniques, hydrogeological data, and distillation analysis. The investigations focused on determination of the origin of benzene, toluene, ethylbenzene, and xylenes (BTEX), and aliphatic hydrocarbons as well. Groundwater and floating oil samples were collected from extraction wells for analysis. Results indicate presence of active leaks in both the northern and southern zones. In the northern zone, toluene was found to primarily originate from oil products like aviation turbine kerosene (ATK or aviation fuel), kerosene, regular gasoline, and diesel fuel. Additionally, stable isotope ratios of carbon and hydrogen for ethylbenzene, o-xylene (ortho xylene) and p-xylene (para xylene) in zone A suggested the pollution originated from gasoline within the northern zone. The origin of super gasoline (with higher octane) identified in southern zone using δ13C and δ2H values of toluene in the floating oil and groundwater samples. Further, biodegradation of toluene likely occurred in southern zone according to δ13C and δ2H. The findings underscore the critical importance of integrating CSIA and fingerprinting techniques to effectively address the challenges of source identification and relying solely on each method independently is insufficient. Accordingly, comparing the GC-MS results of floating oil samples with ATK and jet fuel (JP4) standards can be effectively utilized for source differentiation. However, this method showed no practical application to distinguish different types of diesel or gasoline. The accuracy and reliability of source identification of BTEX compounds may significantly improve when hydrogeological data incorporates with stable isotopes analysis. Additionally, the results of this study will elevate the procedures for fuel-related contaminants source identification of the polluted groundwater that is crucial to develop effective remediation strategies.
Collapse
Affiliation(s)
- Hamid Reza Nassery
- Department of Minerals and Groundwater Resources, School of Earth Sciences, Shahid Beheshti University, Tehran, Iran
| | - Ali Akbar Shahsavari
- Research Institute of Applied Sciences (RIAS), ACECR, Shahid Beheshti University, Tehran, Iran.
| | - Carsten Vogt
- Department Isotope Biogeochemistry, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15 04318, Leipzig, Germany
| | - Steffen Kümmel
- Department Isotope Biogeochemistry, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15 04318, Leipzig, Germany
| | - Kevin Kuntze
- Isodetect GmbH, Deutscher Platz 5b, 04103, Leipzig, Germany
| | - Kamal Khodaei
- Research Institute of Applied Sciences (RIAS), ACECR, Shahid Beheshti University, Tehran, Iran
| | - Yaser Nikpeyman
- Department of Minerals and Groundwater Resources, School of Earth Sciences, Shahid Beheshti University, Tehran, Iran
| | | |
Collapse
|
6
|
Brauer VS, Voskuhl L, Mohammadian S, Pannekens M, Haque S, Meckenstock RU. Imprints of ecological processes in the taxonomic core community: an analysis of naturally replicated microbial communities enclosed in oil. FEMS Microbiol Ecol 2024; 100:fiae074. [PMID: 38734895 PMCID: PMC11110866 DOI: 10.1093/femsec/fiae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/02/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024] Open
Abstract
It is widely assumed that a taxonomic core community emerges among microbial communities from similar habitats because similar environments select for the same taxa bearing the same traits. Yet, a core community itself is no indicator of selection because it may also arise from dispersal and neutral drift, i.e. by chance. Here, we hypothesize that a core community produced by either selection or chance processes should be distinguishable. While dispersal and drift should produce core communities with similar relative taxon abundances, especially when the proportional core community, i.e. the sum of the relative abundances of the core taxa, is large, selection may produce variable relative abundances. We analyzed the core community of 16S rRNA gene sequences of 193 microbial communities occurring in tiny water droplets enclosed in heavy oil from the Pitch Lake, Trinidad and Tobago. These communities revealed highly variable relative abundances along with a large proportional core community (68.0 ± 19.9%). A dispersal-drift null model predicted a negative relationship of proportional core community and compositional variability along a range of dispersal probabilities and was largely inconsistent with the observed data, suggesting a major role of selection for shaping the water droplet communities in the Pitch Lake.
Collapse
Affiliation(s)
- Verena S Brauer
- Aquatic Microbiology, Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, 45141 Essen, Germany
| | - Lisa Voskuhl
- Aquatic Microbiology, Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
| | - Sadjad Mohammadian
- Aquatic Microbiology, Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
| | - Mark Pannekens
- Aquatic Microbiology, Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
- IWW Water Center, 45476 Mülheim an der Ruhr, Germany
| | - Shirin Haque
- Department of Physics, Faculty of Science and Technology, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Rainer U Meckenstock
- Aquatic Microbiology, Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|
7
|
Ali DC, Zhang X, Wang Z. Adding nanoparticles to improve emulsion efficiency and enhance microbial degradation in Pickering emulsions. Appl Microbiol Biotechnol 2023; 107:5843-5854. [PMID: 37466667 DOI: 10.1007/s00253-023-12688-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/02/2023] [Accepted: 07/09/2023] [Indexed: 07/20/2023]
Abstract
Interfacial microbial degradation of alkane in Pickering emulsions stabilized by hydrophobic bacterial cells is a new mechanism for microbial degradation of water-insoluble chemicals, where both water-insoluble chemicals in the oil phase and water-soluble nutrients (such as nitrogen and phosphorus) in the water phase are bio-accessible to living microorganisms anchoring onto the oil-water interfaces. In the present work, super-hydrophobic Mycobacterium sp. (contact angle 168.6°) degradation of tetradecane was set up as a model. Addition of fumed SiO2 particles (Aerosil® R974) as a new strategy was developed to enhance tetradecane degradation where the biodegradation rate (based on the accumulated biomass) increased by approximately 80%. The enhanced effect of SiO2 particles on the tetradecane degradation attributed to the synergistic effect of SiO2 particles on the emulsion efficiency of Pickering emulsions stabilized by bacterial cells and then on the enhancement of interfacial microbial degradation in Pickering emulsions. KEY POINTS: • Interfacial microbial degradation in bacterial cells stabilized Pickering emulsions. • Adding fumed SiO2 particles to enhance microbial degradation of tetradecane. • Correlation relationship between emulsion efficiency and interfacial microbial degradation.
Collapse
Affiliation(s)
- Daniel Chikere Ali
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Shanghai, 200240, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan, Shanghai, 200240, China
| | - Zhilong Wang
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Shanghai, 200240, China.
| |
Collapse
|
8
|
Wang Q, Zhao Y, Chen Z, Zhang C, Jia X, Zhao M, Tong Y, Liu Y. Nitrate Bioreduction under Cr(VI) Stress: Crossroads of Denitrification and Dissimilatory Nitrate Reduction to Ammonium. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37449976 DOI: 10.1021/acs.est.2c09624] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
This study explored the response of NO3--N bioreduction to Cr(VI) stress, including reduction efficiency and the pathways involved (denitrification and dissimilatory nitrate reduction to ammonium (DNRA)). Different response patterns of NO3--N conversion were proposed under Cr(VI) suppress (0, 0.5, 5, 15, 30, 50, and 80 mg/L) by evaluating Cr(VI) dose dependence, toxicity accumulation, bioelectron behavior, and microbial community structure. Cr(VI) concentrations of >30 mg/L rapidly inhibited NO3--N removal and immediately induced DNRA. However, denitrification completely dominated the NO3--N reduction pathway at Cr(VI) concentrations of <15 mg/L. Therefore, 30 and 80 mg/L Cr(VI) (R4 and R6) were selected to explore the selection of the different NO3--N removal pathways. The pathway of NO3--N reduction at 30 mg/L Cr(VI) exhibited continuous adaptation, wherein the coexistence of denitrification (51.7%) and DNRA (13.6%) was achieved by regulating the distribution of denitrifiers (37.6%) and DNRA bacteria (32.8%). Comparatively, DNRA gradually replaced denitrification at 80 mg/L Cr(VI). The intracellular Cr(III) accumulation in R6 was 6.60-fold greater than in R4, causing more severe oxidant injury and cell death. The activated NO3--N reduction pathway depended on the value of nitrite reductase activity/nitrate reductase activity, with 0.84-1.08 associated with DNRA activation and 1.48-1.57 with DNRA predominance. Although Cr(VI) increased microbial community richness and improved community structure stability, the inhibition or death of nitrogen-reducing microorganisms caused by Cr(VI) decreased NO3--N reduction efficiency.
Collapse
Affiliation(s)
- Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zhihui Chen
- China Water Resources Bei Fang Investigation, Design & Research CO.LTD, Tianjin 300222, China
| | - Chenggong Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xulong Jia
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Minghao Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
9
|
Surger MJ, Mayer K, Shivaram K, Stibany F, Plum W, Schäffer A, Eiden S, Blank LM. Evaluating microbial contaminations of alternative heating oils. Eng Life Sci 2023; 23:e2300010. [PMID: 37275211 PMCID: PMC10235886 DOI: 10.1002/elsc.202300010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/20/2023] [Accepted: 04/13/2023] [Indexed: 06/07/2023] Open
Abstract
Since 2008, European and German legislative initiatives for climate protection and reduced dependency on fossil resources led to the introduction of biofuels as CO2-reduced alternatives in the heating oil sector. In the case of biodiesel, customers were confronted with accelerated microbial contaminations during storage. Since then, other fuel alternatives, like hydrogenated vegetable oils (HVOs), gas-to-liquid (GtL) products, or oxymethylene ether (OME) have been developed. In this study, we use online monitoring of microbial CO2 production and the simulation of onset of microbial contamination to investigate the contamination potential of fuel alternatives during storage. As references, fossil heating oil of German refineries are used. Biodiesel blends with fossil heating oils confirmed the promotion of microbial activity. In stark contrast, OMEs have an antimicrobial effect. The paraffinic Fischer-Tropsch products and biogenic hydrogenation products demonstrate to be at least as resistant to microbial contamination as fossil heating oils despite allowing a diversity of representative microbes. Through mass spectrometry, elemental analysis, and microbial sequencing, we can discuss fuel properties that affect microbial contaminations. In summary, novel, non-fossil heating oils show clear differences in microbial resistance during long-term storage. Designing blends with an intrinsic resistance against microbial contamination and hence reduced activity might be an option.
Collapse
Affiliation(s)
- Maximilian J. Surger
- Institute of Applied Microbiology (iAMB)Aachen Biology and Biotechnology (ABBt)RWTH Aachen UniversityAachenGermany
| | - Katharina Mayer
- Institute for Environmental ResearchRWTH Aachen UniversityAachenGermany
| | - Karthik Shivaram
- Institute of Applied Microbiology (iAMB)Aachen Biology and Biotechnology (ABBt)RWTH Aachen UniversityAachenGermany
| | - Felix Stibany
- Institute for Environmental ResearchRWTH Aachen UniversityAachenGermany
| | | | - Andreas Schäffer
- Institute for Environmental ResearchRWTH Aachen UniversityAachenGermany
| | | | - Lars M. Blank
- Institute of Applied Microbiology (iAMB)Aachen Biology and Biotechnology (ABBt)RWTH Aachen UniversityAachenGermany
| |
Collapse
|
10
|
Yun Y, Su T, Gui Z, Tian X, Chen Y, Cao Y, Yang S, Xie J, Anwar N, Li M, Li G, Ma T. Stress-responses of microbes in oil reservoir under high tetracycline exposure and their environmental risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120355. [PMID: 36243187 DOI: 10.1016/j.envpol.2022.120355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/10/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
As the groundwater ecosystem is connected with surface, antibiotics and antibiotic resistance genes (ARGs) in aquatic environments will gradually infiltrate into the deep environment, posing a potential threat to groundwater ecosystem. However, knowledge on the environmental risk of antibiotics and ARGs in groundwater ecosystem and their ecological process still remains unexplored. In this study, lab-scale oil reservoirs under high tetracycline stress were performed to evaluate the dynamics of microbial communities, ARGs and potential functions by using 16S rRNA gene sequencing and metagenomics analysis. Although the presence of antibiotics remarkably reduced the microbial abundance and diversity in a short term, but remain stable or even increased after a long-term incubation. Antibiotic stress caused a greater diversity and abundance of ARGs, and higher numbers of ARGs-related species with the capacity to transfer ARGs to other microbes through horizontal gene transfer. Thus, a much more frequent associations of microbial community at both node- and network-level and a selective pressure on enrichment of antibiotic resistant bacteria related to "anaerobic n-alkane degradation" and "methylotrophic methanogenesis" were observed. It is important to emphasize that high antibiotic stress could also prevent some microbes related to "Sulfate reduction", "Fe(II) oxidation", "Nitrate reduction", and "Xylene and Toluene degradation". This study provides an insight into the long-term stress-responses of microbial communities and functions in oil reservoir under tetracycline exposure, which may help to elucidate the effect of antibiotic stress on biogeochemical cycling with microbial involvement in groundwater ecosystem.
Collapse
Affiliation(s)
- Yuan Yun
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Tianqi Su
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Ziyu Gui
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Xuefeng Tian
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yu Chen
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yunke Cao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Shicheng Yang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Jinxia Xie
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Nusratgul Anwar
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Mingchang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Guoqiang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
11
|
Brünjes J, Seidel M, Dittmar T, Niggemann J, Schubotz F. Natural Asphalt Seeps Are Potential Sources for Recalcitrant Oceanic Dissolved Organic Sulfur and Dissolved Black Carbon. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9092-9102. [PMID: 35584055 DOI: 10.1021/acs.est.2c01123] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Natural oil seepages contribute about one-half of the annual petroleum input to marine systems. Yet, environmental implications and the persistence of water-soluble hydrocarbons from these seeps are vastly unknown. We investigated the release of oil-derived dissolved organic matter (DOM) from natural deep sea asphalt seeps using laboratory incubation experiments. Fresh asphalt samples collected at the Chapopote asphalt volcano in the Southern Gulf of Mexico were incubated aerobically in artificial seawater over 4 weeks. The compositional changes in the water-soluble fraction of asphalt-derived DOM were determined with ultrahigh-resolution mass spectrometry (Fourier-transform ion cyclotron resonance mass spectrometry, FT-ICR-MS) and by excitation-emission matrix spectroscopy to characterize fluorescent DOM (FDOM) applying parallel factor (PARAFAC) analysis. Highly reduced aliphatic asphalt-derived DOM was readily biodegraded, while aromatic and sulfur-enriched DOM appeared to be less bioavailable and accumulated in the aqueous phase. A quantitative molecular tracer approach revealed the abundance of highly condensed aromatic molecules of thermogenic origin. Our results indicate that natural asphalt and potentially other petroleum seepages can be sources of recalcitrant dissolved organic sulfur and dissolved black carbon to the ocean.
Collapse
Affiliation(s)
- Jonas Brünjes
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen 28359, Germany
| | - Michael Seidel
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg 26129, Germany
| | - Thorsten Dittmar
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg 26129, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg, Oldenburg 26129, Germany
| | - Jutta Niggemann
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg 26129, Germany
| | - Florence Schubotz
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen 28359, Germany
| |
Collapse
|
12
|
Natural Source Zone Depletion (NSZD) Quantification Techniques: Innovations and Future Directions. SUSTAINABILITY 2022. [DOI: 10.3390/su14127027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Natural source zone depletion (NSZD) is an emerging technique for sustainable and cost-effective bioremediation of light non-aqueous phase liquid (LNAPL) in oil spill sites. Depending on regulatory objectives, NSZD has the potential to be used as either the primary or sole LNAPL management technique. To achieve this goal, NSZD rate (i.e., rate of bulk LNAPL mass depletion) should be quantified accurately and precisely. NSZD has certain characteristic features that have been used as surrogates to quantify the NSZD rates. This review highlights the most recent trends in technology development for NSZD data collection and rate estimation, with a focus on the operational and technical advantages and limitations of the associated techniques. So far, four principal techniques are developed, including concentration gradient (CG), dynamic closed chamber (DCC), CO2 trap and thermal monitoring. Discussions revolving around two techniques, “CO2 trap” and “thermal monitoring”, are expanded due to the particular attention to them in the current industry. The gaps of knowledge relevant to the NSZD monitoring techniques are identified and the issues which merit further research are outlined. It is hoped that this review can provide researchers and practitioners with sufficient information to opt the best practice for the research and application of NSZD for the management of LNAPL impacted sites.
Collapse
|
13
|
Yun Y, Gui Z, Su T, Tian X, Wang S, Chen Y, Su Z, Fan H, Xie J, Li G, Xia W, Ma T. Deep mining decreases the microbial taxonomic and functional diversity of subsurface oil reservoirs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153564. [PMID: 35101516 DOI: 10.1016/j.scitotenv.2022.153564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Microbes in subsurface oil reservoirs play important roles in elemental cycles and biogeochemical processes. However, the community assembly pattern of indigenous microbiome and their succession under long-term human activity remain poorly understood. Here we studied the microbial community assembly in underground sandstone cores from 190 to 2050 m in northeast China and their response to long-term oil recovery (10-50 years). Indigenous microbiome in subsurface petroleum reservoirs were dominated by Gammaproteobacteria, Firmicutes, Alphaproteobacteria, Bacteroidetes, and Actinobacteria, which exhibited a higher contribution of homogenizing dispersal assembly and different taxonomy distinct ecological modules when compared with perturbed samples. Specifically, the long-term oil recovery reduced the bacterial taxonomic- and functional-diversity, and increased the community co-occurrence associations in subsurface oil reservoirs. Moreover, distinguished from the perturbed samples, both variation partition analysis and structural equation model revealed that the contents of quartz, NO3- and Cl- significantly structured the α- and β-diversity in indigenous subsurface bacterial communities. These findings first provide the holistic picture of microbiome in the deep oil reservoirs, which demonstrate the significant impact of human activity on microbiome in deep continental subsurface.
Collapse
Affiliation(s)
- Yuan Yun
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Ziyu Gui
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Tianqi Su
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Xuefeng Tian
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Shaojing Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yu Chen
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhaoying Su
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Huiqiang Fan
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Jinxia Xie
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Guoqiang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Wenjie Xia
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
14
|
Wei YF, Wang L, Xia ZY, Gou M, Sun ZY, Lv WF, Tang YQ. Microbial communities in crude oil phase and filter-graded aqueous phase from a Daqing oilfield after polymer flooding. J Appl Microbiol 2022; 133:842-856. [PMID: 35490352 DOI: 10.1111/jam.15603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/23/2022] [Accepted: 04/27/2022] [Indexed: 12/01/2022]
Abstract
AIMS The aim was to characterize indigenous microorganisms in oil reservoirs after polymer flooding (RAPF). METHODS The microbial communities in the crude oil phase (Oil) and in the filter-graded aqueous phases Aqu0.22 (>0.22 μm) and Aqu0.1 (0.1~0.22 μm) were investigated by 16S rRNA gene high-throughput sequencing. RESULTS Indigenous microorganisms related to hydrocarbon degradation prevailed in the three phases of each well. However, obvious differences of bacterial compositions were observed among the three phases of the same well and among the same phase of different wells. The crude oil and Aqu0.22 shared many dominant bacteria. Aqu0.1 contained a unique bacterial community in each well. Most bacteria in Aqu0.1 were affiliated to culturable genera, suggesting that they may adapt to the oil reservoir environment by reduction of cell size. Contrary to the bacterial genera, archaeal genera were similar in the three phases but varied in relative abundances. The observed microbial differences may be driven by specific environmental factors in each oil well. CONCLUSIONS The results suggest an application potential of microbial enhanced oil recovery (MEOR) technology in RAPF. The crude oil and Aqu0.1 contain many different functional microorganisms related to hydrocarbon degradation. Both should not be overlooked when investing and exploring the indigenous microorganisms for MEOR. SIGNIFICANCE AND IMPACT OF THE STUDY This work facilitates the understanding of microbial community structures in RAPF and provides information for microbial control in oil fields.
Collapse
Affiliation(s)
- Yan-Feng Wei
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Lu Wang
- State Key Laboratory of Enhanced Oil Recovery, Research Institute of Petroleum Exploration and Development, CNPC, Beijing 100083, China
| | - Zi-Yuan Xia
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Min Gou
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Zhao-Yong Sun
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Wei-Feng Lv
- State Key Laboratory of Enhanced Oil Recovery, Research Institute of Petroleum Exploration and Development, CNPC, Beijing 100083, China
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| |
Collapse
|
15
|
Péquin B, Cai Q, Lee K, Greer CW. Natural attenuation of oil in marine environments: A review. MARINE POLLUTION BULLETIN 2022; 176:113464. [PMID: 35231783 DOI: 10.1016/j.marpolbul.2022.113464] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/31/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Natural attenuation is an important process for oil spill management in marine environments. Natural attenuation affects the fate of oil by physical, chemical, and biological processes, which include evaporation, dispersion, dissolution, photo-oxidation, emulsification, oil particle aggregation, and biodegradation. This review examines the cumulative knowledge regarding these natural attenuation processes as well as their simulation and prediction using modelling approaches. An in-depth discussion is provided on how oil type, microbial community and environmental factors contribute to the biodegradation process. It describes how our understanding of the structure and function of indigenous oil degrading microbial communities in the marine environment has been advanced by the application of next generation sequencing tools. The synergetic and/or antagonist effects of oil spill countermeasures such as the application of chemical dispersants, in-situ burning and nutrient enrichment on natural attenuation were explored. Several knowledge gaps were identified regarding the synergetic and/or antagonistic effects of active response countermeasures on the natural attenuation/biodegradation process. This review highlighted the need for field data on both the effectiveness and potential detrimental effects of oil spill response options to support modelling and decision-making on their selection and application.
Collapse
Affiliation(s)
- Bérangère Péquin
- McGill University, Department of Natural Resource Sciences, Ste-Anne-de-Bellevue, Quebec, Canada.
| | - Qinhong Cai
- McGill University, Department of Natural Resource Sciences, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Kenneth Lee
- Ecosystem Science, Fisheries and Oceans Canada, Ottawa, Ontario, Canada
| | - Charles W Greer
- McGill University, Department of Natural Resource Sciences, Ste-Anne-de-Bellevue, Quebec, Canada; Energy, Mining and Environment Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| |
Collapse
|
16
|
Voskuhl L, Brusilova D, Brauer VS, Meckenstock RU. Inhibition of sulfate-reducing bacteria with formate. FEMS Microbiol Ecol 2022; 98:6510814. [PMID: 35040992 PMCID: PMC8831227 DOI: 10.1093/femsec/fiac003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/13/2021] [Accepted: 01/14/2022] [Indexed: 11/14/2022] Open
Abstract
Despite hostile environmental conditions, microbial communities have been found in µL-sized water droplets enclosed in heavy oil of the Pitch Lake, Trinidad. Some droplets showed high sulfate concentrations and surprisingly low relative abundances of sulfate-reducing bacteria in a previous study. Hence, we investigated here whether sulfate reduction might be inhibited naturally. Ion chromatography revealed very high formate concentrations around 2.37 mM in 21 out of 43 examined droplets. Since these concentrations were unexpectedly high, we performed growth experiments with the three sulfate-reducing type strains Desulfovibrio vulgaris, Desulfobacter curvatus, and Desulfococcus multivorans, and tested the effects of 2.5, 8 or 10 mM formate on sulfate reduction. Experiments demonstrated that 8 or 10 mM formate slowed down the growth rate of D. vulgaris and D. curvatus and the sulfate reduction rate of D. curvatus and D. multivorans. Concerning D. multivorans, increasing formate concentrations delayed the onsets of growth and sulfate reduction, which were even inhibited completely while formate was added constantly. Contrary to previous studies, D. multivorans was the only organism capable of formate consumption. Our study suggests that formate accumulates in the natural environment of the water droplets dispersed in oil and that such levels are very likely inhibiting sulfate-reducing microorganisms.
Collapse
Affiliation(s)
- L Voskuhl
- University of Duisburg-Essen - Faculty of Chemistry - Environmental Microbiology and Biotechnology (EMB) - Aquatic Microbiology, Universitätsstr. 5, 45141 Essen, Germany
| | - D Brusilova
- University of Duisburg-Essen - Faculty of Chemistry - Environmental Microbiology and Biotechnology (EMB) - Aquatic Microbiology, Universitätsstr. 5, 45141 Essen, Germany
| | - V S Brauer
- University of Duisburg-Essen - Faculty of Chemistry - Environmental Microbiology and Biotechnology (EMB) - Aquatic Microbiology, Universitätsstr. 5, 45141 Essen, Germany
| | - R U Meckenstock
- University of Duisburg-Essen - Faculty of Chemistry - Environmental Microbiology and Biotechnology (EMB) - Aquatic Microbiology, Universitätsstr. 5, 45141 Essen, Germany
| |
Collapse
|
17
|
Voskuhl L, Akbari A, Müller H, Pannekens M, Brusilova D, Dyksma S, Haque S, Graupner N, Dunthorn M, Meckenstock RU, Brauer VS. Indigenous microbial communities in heavy oil show a threshold response to salinity. FEMS Microbiol Ecol 2021; 97:6447536. [PMID: 34864985 PMCID: PMC8684454 DOI: 10.1093/femsec/fiab157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/29/2021] [Indexed: 11/14/2022] Open
Abstract
Microbial degradation influences the quality of oil resources. The environmental factors that shape the composition of oil microbial communities are largely unknown because most samples from oil fields are impacted by anthropogenic oil production, perturbing the native ecosystem with exogenous fluids and microorganisms. We investigated the relationship between formation water geochemistry and microbial community composition in undisturbed oil samples. We isolated 43 microliter-sized water droplets naturally enclosed in the heavy oil of the Pitch Lake, Trinidad and Tobago. The water chemistry and microbial community composition within the same water droplet were determined by ion chromatography and 16S rRNA gene amplicon sequencing, respectively. The results revealed a high variability in ion concentrations and community composition between water droplets. Microbial community composition was mostly affected by the chloride concentration, which ranged from freshwater to brackish-sea water. Remarkably, microbial communities did not respond gradually to increasing chloride concentration but showed a sudden change to less diverse and uneven communities when exceeding a chloride concentration of 57.3 mM. The results reveal a threshold-regulated response of microbial communities to salinity, offering new insights into the microbial ecology of oil reservoirs.
Collapse
Affiliation(s)
- Lisa Voskuhl
- Environmental Microbiology and Biotechnology (EMB) - Aquatic Microbiology, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - Ali Akbari
- Environmental Microbiology and Biotechnology (EMB) - Aquatic Microbiology, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - Hubert Müller
- Environmental Microbiology and Biotechnology (EMB) - Aquatic Microbiology, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - Mark Pannekens
- Environmental Microbiology and Biotechnology (EMB) - Aquatic Microbiology, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - Darya Brusilova
- Environmental Microbiology and Biotechnology (EMB) - Aquatic Microbiology, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - Stefan Dyksma
- Faculty of Technology, Microbiology - Biotechnology, University of Applied Sciences Emden/Leer, Emden, Germany.,German Collection of Microorganisms and Cell Cultures, Leibniz Institute DSMZ, Inhoffenstr. 7B, D-38124 Braunschweig, Germany
| | - Shirin Haque
- Faculty of Science and Technology, Department of Physics, The University of The West Indies, St. Augustine, Trinidad and Tobago
| | - Nadine Graupner
- Eukaryotic Microbiology, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - Micah Dunthorn
- Eukaryotic Microbiology, Natural History Museum of Oslo, P.O. Box 1172, Blindern, Oslo 0318, Norway
| | - Rainer U Meckenstock
- Environmental Microbiology and Biotechnology (EMB) - Aquatic Microbiology, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - Verena S Brauer
- Environmental Microbiology and Biotechnology (EMB) - Aquatic Microbiology, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| |
Collapse
|
18
|
Lee KH, Kim TH. Recent Advances in Multicellular Tumor Spheroid Generation for Drug Screening. BIOSENSORS 2021; 11:445. [PMID: 34821661 PMCID: PMC8615712 DOI: 10.3390/bios11110445] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 05/12/2023]
Abstract
Multicellular tumor spheroids (MCTs) have been employed in biomedical fields owing to their advantage in designing a three-dimensional (3D) solid tumor model. For controlling multicellular cancer spheroids, mimicking the tumor extracellular matrix (ECM) microenvironment is important to understand cell-cell and cell-matrix interactions. In drug cytotoxicity assessments, MCTs provide better mimicry of conventional solid tumors that can precisely represent anticancer drug candidates' effects. To generate incubate multicellular spheroids, researchers have developed several 3D multicellular spheroid culture technologies to establish a research background and a platform using tumor modelingvia advanced materials science, and biosensing techniques for drug-screening. In application, drug screening was performed in both invasive and non-invasive manners, according to their impact on the spheroids. Here, we review the trend of 3D spheroid culture technology and culture platforms, and their combination with various biosensing techniques for drug screening in the biomedical field.
Collapse
Affiliation(s)
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Korea;
| |
Collapse
|
19
|
Singh NK, Choudhary S. Bacterial and archaeal diversity in oil fields and reservoirs and their potential role in hydrocarbon recovery and bioprospecting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:58819-58836. [PMID: 33410029 DOI: 10.1007/s11356-020-11705-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Hydrocarbon is a primary source of energy in the current urbanized society. Considering the increasing demand, worldwide oil productions are declining due to maturity of oil fields and because of difficulty in discovering new oil fields to substitute the exploited ones. To meet current and future energy demands, further exploitation of oil resources is highly required. Microorganisms inhabiting in these areas exhibit highly diverse catabolic activities to degrade, transform, or accumulate various hydrocarbons. Enrichment of hydrocarbon-utilizing bacteria in oil basin is caused by continuous long duration and low molecular weight hydrocarbon microseepage which plays a very important role as an indicator for petroleum prospecting. The important microbial metabolic processes in most of the oil reservoir are sulfate reduction, fermentation, acetogenesis, methanogenesis, NO3- reduction, and Fe (III) and Mn (IV) reduction. The microorganisms residing in these sites have critical control on petroleum composition, recovery, and production methods. Physical characteristics of heavy oil are altered by microbial biotransformation and biosurfactant production. Considering oil to be one of the most vital energy resources, it is important to have a comprehensive understanding of petroleum microbiology. This manuscript reviews the recent research work referring to the diversity of bacteria in oil field and reservoir sites and their applications for enhancing oil transformation in the target reservoir and geomicrobial prospecting scope for petroleum exploration.
Collapse
Affiliation(s)
- Nishi Kumari Singh
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Vanasthali, Rajasthan, 304022, India
| | - Sangeeta Choudhary
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Vanasthali, Rajasthan, 304022, India.
| |
Collapse
|
20
|
Cockell CS. Are microorganisms everywhere they can be? Environ Microbiol 2021; 23:6355-6363. [PMID: 34693610 DOI: 10.1111/1462-2920.15825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 10/15/2021] [Indexed: 11/27/2022]
Abstract
Baas-Becking is famously attributed with the conjecture that 'everything is everywhere, but the environment selects'. Although this aphorism is largely challenged by microbial biogeographical data, even weak versions of the claim leave unanswered the question about whether all environments that could theoretically support life contain life. In the last decade, the discovery of thermally sterilized habitable environments disconnected from inhabited regions, and habitats within organisms such as the sterile, but habitable human fetal gut, suggest the existence of a diversity of macroscopic habitable environments apparently devoid of actively metabolizing or reproducing life. Less clear is the status of such environments at the micron scale, for example, between colonies of organisms within rock interstices or on and within other substrates. I discuss recent evidence for these types of environments. These environments have practical uses in: (i) being negative controls for understanding the role of microbial processes in geochemical cycles and geological processes, (ii) yielding insights into the extent to which the biosphere extends into all spaces it theoretically can, (iii) suggesting caution in interpreting the results of life detection instrumentation, and (iv) being useful for establishing the conditions for the origin of life and its prevalence on other planetary bodies.
Collapse
Affiliation(s)
- Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, James Clerk Maxwell Building, The King's Buildings, University of Edinburgh, Edinburgh, EH9 3JZ, UK
| |
Collapse
|
21
|
Yun Y, Gui Z, Chen Y, Tian X, Gao P, Li G, Ma T. Disentangling the distinct mechanisms shaping the subsurface oil reservoir bacterial and archaeal communities across northern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:148074. [PMID: 34323826 DOI: 10.1016/j.scitotenv.2021.148074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/13/2021] [Accepted: 05/23/2021] [Indexed: 06/13/2023]
Abstract
Microbes in surface ecosystem exhibit strong biogeographic patterns, and are less apparent after human management. However, in contrast with the considerable knowledge on the surface ecosystem, the microbial biogeographic patterns in deep subsurface ecosystem under artificial disturbance is poorly understood. Here, we explored the spatial scale-dependence patterns of bacterial and archaeal communities in oil reservoirs under different artificial flooding duration and environmental conditions across northern China. Bacterial and archaeal communities of oil reservoirs exhibited distinct assembly patterns with a stronger distance-decay relationship in archaeal communities than bacterial communities, as different environmental factors linked to the diversity of bacteria and archaea. Specifically, bacterial and archaeal network properties revealed a significant correlation with spatial reservoir isolation by distinct co-occurrence patterns. The co-occurrences of bacterial communities were more complex in high temperature and alkaline pH, while archaeal co-occurrences were more frequent in low temperature and neutral pH. Potential functions in bacterial communities were more connected with chemoheterotrophy, whereas methanogenesis was abundant in archaeal communities, as confirmed by both keystone taxa and main ecological clusters in networks. This revealed that different mechanisms underlain geography and co-occurrence patterns of bacteria and archaea in oil reservoirs, providing a new insight for understanding biogeography and coexistence theory in deep subsurface ecosystem.
Collapse
Affiliation(s)
- Yuan Yun
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Ziyu Gui
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yu Chen
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Xuefeng Tian
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Peike Gao
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Guoqiang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
22
|
Ramdass AC, Rampersad SN. Biodiversity and biocatalyst activity of culturable hydrocarbonoclastic fungi isolated from Marac-Moruga mud volcano in South Trinidad. Sci Rep 2021; 11:19466. [PMID: 34593929 PMCID: PMC8484666 DOI: 10.1038/s41598-021-98979-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/17/2021] [Indexed: 11/09/2022] Open
Abstract
Mud volcanoes (MVs) are visible signs of oil and gas reserves present deep beneath land and sea. The Marac MV in Trinidad is the only MV associated with natural hydrocarbon seeps. Petrogenic polyaromatic hydrocarbons (PAHs) in its sediments must undergo biogeochemical cycles of detoxification as they can enter the water table and aquifers threatening ecosystems and biota. Recurrent hydrocarbon seep activity of MVs consolidates the growth of hydrocarbonoclastic fungal communities. Fungi possess advantageous metabolic and ecophysiological features for remediation but are underexplored compared to bacteria. Additionally, indigenous fungi are more efficient at PAH detoxification than commercial/foreign counterparts and remediation strategies remain site-specific. Few studies have focused on hydrocarbonoclastic fungal incidence and potential in MVs, an aspect that has not been explored in Trinidad. This study determined the unique biodiversity of culturable fungi from the Marac MV capable of metabolizing PAHs in vitro and investigated their extracellular peroxidase activity to utilize different substrates ergo their extracellular oxidoreductase activity (> 50% of the strains decolourized of methylene blue dye). Dothideomycetes and Eurotiomycetes (89% combined incidence) were predominantly isolated. ITS rDNA sequence cluster analysis confirmed strain identities. 18 indigenous hydrocarbonoclastic strains not previously reported in the literature and some of which were biosurfactant-producing, were identified. Intra-strain variability was apparent for PAH utilization, oil-tolerance and hydroxylase substrate specificity. Comparatively high levels of extracellular protein were detected for strains that demonstrated low substrate specificity. Halotolerant strains were also recovered which indicated marine-mixed substrata of the MV as a result of deep sea conduits. This work highlighted novel MV fungal strains as potential bioremediators and biocatalysts with a broad industrial applications.
Collapse
Affiliation(s)
- Amanda C Ramdass
- Biochemistry Research Laboratory (Rm216), Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Sephra N Rampersad
- Biochemistry Research Laboratory (Rm216), Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine, Trinidad and Tobago.
| |
Collapse
|
23
|
Hu B, Zhao JY, Nie Y, Qin XY, Zhang KD, Xing JM, Wu XL. Bioemulsification and Microbial Community Reconstruction in Thermally Processed Crude Oil. Microorganisms 2021; 9:microorganisms9102054. [PMID: 34683375 PMCID: PMC8539444 DOI: 10.3390/microorganisms9102054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 11/16/2022] Open
Abstract
Utilization of low-cost, environmental-friendly microbial enhanced oil recovery (MEOR) techniques in thermal recovery-processed oil reservoirs is potentially feasible. However, how exogenous microbes facilitate crude oil recovery in this deep biosphere, especially under mesophilic conditions, is scarcely investigated. In this study, a thermal treatment and a thermal recurrence were processed on crude oil collected from Daqing Oilfield, and then a 30-day incubation of the pretreated crude oil at 37 °C was operated with the addition of two locally isolated hydrocarbon-degrading bacteria, Amycolicicoccus subflavus DQS3-9A1T and Dietzia sp. DQ12-45-1b, respectively. The pH, surface tension, hydrocarbon profiles, culture-dependent cell densities and taxonomies, and whole and active microbial community compositions were determined. It was found that both A. subflavus DQS3-9A1T and Dietzia sp. DQ12-45-1b successfully induced culture acidification, crude oil bioemulsification, and residual oil sub-fraction alteration, no matter whether the crude oil was thermally pretreated or not. Endogenous bacteria which could proliferate on double heated crude oil were very few. Compared with A. subflavus, Dietzia sp. was substantially more effective at inducing the proliferation of varied species in one-time heated crude oil. Meanwhile, the effects of Dietzia sp. on crude oil bioemulsification and hydrocarbon profile alteration were not significantly influenced by the ploidy increasing of NaCl contents (from 5 g/L to 50 g/L), but the reconstructed bacterial communities became very simple, in which the Dietzia genus was predominant. Our study provides useful information to understand MEOR trials on thermally processed oil reservoirs, and proves that this strategy could be operated by using the locally available hydrocarbon-degrading microbes in mesophilic conditions with different salinity degrees.
Collapse
Affiliation(s)
- Bing Hu
- Group of Biochemical Engineering, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102401, China;
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology of China, Beijing 102401, China
| | - Jie-Yu Zhao
- College of Engineering, Peking University, Beijing 100871, China; (J.-Y.Z.); (X.-Y.Q.); (K.-D.Z.)
| | - Yong Nie
- College of Engineering, Peking University, Beijing 100871, China; (J.-Y.Z.); (X.-Y.Q.); (K.-D.Z.)
- Correspondence: (Y.N.); (X.-L.W.)
| | - Xiao-Yu Qin
- College of Engineering, Peking University, Beijing 100871, China; (J.-Y.Z.); (X.-Y.Q.); (K.-D.Z.)
| | - Kai-Duan Zhang
- College of Engineering, Peking University, Beijing 100871, China; (J.-Y.Z.); (X.-Y.Q.); (K.-D.Z.)
| | - Jian-Min Xing
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China;
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiao-Lei Wu
- College of Engineering, Peking University, Beijing 100871, China; (J.-Y.Z.); (X.-Y.Q.); (K.-D.Z.)
- Institute of Ecology, Peking University, Beijing 100871, China
- Correspondence: (Y.N.); (X.-L.W.)
| |
Collapse
|
24
|
Pannekens M, Voskuhl L, Mohammadian S, Köster D, Meier A, Köhne JM, Kulbatzki M, Akbari A, Haque S, Meckenstock RU. Microbial Degradation Rates of Natural Bitumen. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8700-8708. [PMID: 34169718 PMCID: PMC8264945 DOI: 10.1021/acs.est.1c00596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Microorganisms are present in nearly every oil or bitumen sample originating from temperate reservoirs. Nevertheless, it is very difficult to obtain reliable estimates about microbial processes taking place in deep reservoirs, since metabolic rates are rather low and differ strongly during artificially cultivation. Here, we demonstrate the importance and impact of microorganisms entrapped in microscale water droplets for the overall biodegradation process in bitumen. To this end, we measured degradation rates of heavily biodegraded bitumen from the Pitch Lake (Trinidad and Tobago) using the novel technique of reverse stable isotope labeling, allowing precise measurements of comparatively low mineralization rates in the ng range in microcosms under close to natural conditions. Freshly taken bitumen samples were overlain with artificial brackish water and incubated for 945 days. Additionally, three-dimensional distribution of water droplets in bitumen was studied with computed tomography, revealing a water bitumen interface of 1134 cm2 per liter bitumen, resulting in an average mineralization rate of 9.4-38.6 mmol CO2 per liter bitumen and year. Furthermore, a stable and biofilm-forming microbial community established on the bitumen itself, mainly composed of fermenting and sulfate-reducing bacteria. Our results suggest that small water inclusions inside the bitumen substantially increase the bitumen-water interface and might have a major impact on the overall oil degradation process.
Collapse
Affiliation(s)
- Mark Pannekens
- Environmental
Microbiology and Biotechnology, Aquatic Microbiology, University of Duisburg—Essen, 45141 Essen, Germany
| | - Lisa Voskuhl
- Environmental
Microbiology and Biotechnology, Aquatic Microbiology, University of Duisburg—Essen, 45141 Essen, Germany
| | - Sadjad Mohammadian
- Environmental
Microbiology and Biotechnology, Aquatic Microbiology, University of Duisburg—Essen, 45141 Essen, Germany
| | - Daniel Köster
- Instrumental
Analytical Chemistry, University of Duisburg—Essen, 45141 Essen, Germany
| | - Arne Meier
- Environmental
Microbiology and Biotechnology, Aquatic Microbiology, University of Duisburg—Essen, 45141 Essen, Germany
| | - John M. Köhne
- Department
of Soil System Science, Helmholtz Centre
for Environmental Research, 06120 Halle, Germany
| | - Michelle Kulbatzki
- Environmental
Microbiology and Biotechnology, Aquatic Microbiology, University of Duisburg—Essen, 45141 Essen, Germany
| | - Ali Akbari
- Environmental
Microbiology and Biotechnology, Aquatic Microbiology, University of Duisburg—Essen, 45141 Essen, Germany
| | - Shirin Haque
- Department
of Physics, Faculty of Science and Technology, The University of The West Indies, St. Augustine, Trinidad and Tobago
| | - Rainer U. Meckenstock
- Environmental
Microbiology and Biotechnology, Aquatic Microbiology, University of Duisburg—Essen, 45141 Essen, Germany
| |
Collapse
|
25
|
Ramdass AC, Rampersad SN. Diversity and Oil Degradation Potential of Culturable Microbes Isolated from Chronically Contaminated Soils in Trinidad. Microorganisms 2021; 9:1167. [PMID: 34071489 PMCID: PMC8230346 DOI: 10.3390/microorganisms9061167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/29/2022] Open
Abstract
Trinidad and Tobago is the largest producer of oil and natural gas in Central America and the Caribbean. Natural crude oil seeps, in addition to leaking petroleum pipelines, have resulted in chronic contamination of the surrounding terrestrial environments since the time of petroleum discovery, production, and refinement in Trinidad. In this study, we isolated microbes from soils chronically contaminated with crude oil using a culture-dependent approach with enrichment. The sampling of eight such sites located in the southern peninsula of Trinidad revealed a diverse microbial composition and novel oil-degrading filamentous fungi and yeast as single-isolate degraders and naturally occurring consortia, with specific bacterial species not previously reported in the literature. Multiple sequence comparisons and phylogenetic analyses confirmed the identity of the top degraders. The filamentous fungal community based on culturable species was dominated by Ascomycota, and the recovered yeast isolates were affiliated with Basidiomycota (65.23%) and Ascomycota (34.78%) phyla. Enhanced biodegradation of petroleum hydrocarbons is maintained by biocatalysts such as lipases. Five out of seven species demonstrated extracellular lipase activity in vitro. Our findings could provide new insights into microbial resources from chronically contaminated terrestrial environments, and this information will be beneficial to the bioremediation of petroleum contamination and other industrial applications.
Collapse
Affiliation(s)
| | - Sephra N. Rampersad
- Biochemistry Research Laboratory (Rm216), Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, Trinidad and Tobago, West Indies;
| |
Collapse
|
26
|
Shlimon A, Mansurbeg H, Othman R, Head I, Kjeldsen KU, Finster K. Identity and hydrocarbon degradation activity of enriched microorganisms from natural oil and asphalt seeps in the Kurdistan Region of Iraq (KRI). Biodegradation 2021; 32:251-271. [PMID: 33782778 DOI: 10.1007/s10532-021-09931-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 02/19/2021] [Indexed: 10/21/2022]
Abstract
A previous cultivation-independent investigation of the microbial community structure of natural oil and asphalt seeps in the Kurdistan Region of Iraq (KRI) revealed the dominance of uncultured bacterial taxa belonging to the phyla Deferribacterota and Coprothermobacterota and the orders Thermodesulfobacteriales, Thermales, and Burkholderiales. Here we report on a cultivation-dependent approach to identify members of these groups involved in hydrocarbon degradation in the KRI oil and asphalt seeps. For this purpose, we set up anoxic crude oil-degrading enrichment cultures based on cultivation media known to support the growth of members of the above-mentioned taxonomic groups. During 100-200 days incubation periods, nitrate-reducing and fermentative enrichments showed up to 90% degradation of C8-C17 alkanes and up to 28% degradation of C18-C33 alkanes along with aromatic hydrocarbons. Community profiling of the enrichment cultures showed that they were dominated by diverse bacterial taxa, which were rare in situ community members in the investigated seeps. Groups initially targeted by our approach were not enriched, possibly because their members are slow-growing and involved in the degradation of recalcitrant hydrocarbons. Nevertheless, the enriched taxa were taxonomically related to phylotypes recovered from hydrocarbon-impacted environments as well as to characterized bacterial isolates not previously known to be involved in hydrocarbon degradation. Marker genes (assA and bssA), diagnostic for fumarate addition-based anaerobic hydrocarbon degradation, were not detectable in the enrichment cultures by PCR. We conclude that hydrocarbon biodegradation in our enrichments occurred via unknown pathways and synergistic interactions among the enriched taxa. We suggest, that although not representing abundant populations in situ, studies of the cultured close relatives of these taxa will reveal an unrecognized potential for anaerobic hydrocarbon degradation, possibly involving poorly characterized mechanisms.
Collapse
Affiliation(s)
- Adris Shlimon
- Department of Biology, Soran University, Soran, Iraq. .,Section of Microbiology, Department of Biology, Aarhus University, Ny Munkegade 116, 8000, Aarhus, Denmark.
| | - Howri Mansurbeg
- Department of Petroleum Geoscience, Soran University, Soran, Iraq.,Department of Earth and Environmental Sciences, University of Windsor, Windsor, ON, Canada
| | - Rushdy Othman
- Department of Petroleum Geoscience, Soran University, Soran, Iraq
| | - Ian Head
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Kasper U Kjeldsen
- Section of Microbiology, Department of Biology, Aarhus University, Ny Munkegade 116, 8000, Aarhus, Denmark
| | - Kai Finster
- Section of Microbiology, Department of Biology, Aarhus University, Ny Munkegade 116, 8000, Aarhus, Denmark
| |
Collapse
|
27
|
Schulze-Makuch D. The Case (or Not) for Life in the Venusian Clouds. Life (Basel) 2021; 11:255. [PMID: 33804625 PMCID: PMC8003671 DOI: 10.3390/life11030255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/04/2023] Open
Abstract
The possible detection of the biomarker of phosphine as reported by Greaves et al. in the Venusian atmosphere stirred much excitement in the astrobiology community. While many in the community are adamant that the environmental conditions in the Venusian atmosphere are too extreme for life to exist, others point to the claimed detection of a convincing biomarker, the conjecture that early Venus was doubtlessly habitable, and any Venusian life might have adapted by natural selection to the harsh conditions in the Venusian clouds after the surface became uninhabitable. Here, I first briefly characterize the environmental conditions in the lower Venusian atmosphere and outline what challenges a biosphere would face to thrive there, and how some of these obstacles for life could possibly have been overcome. Then, I discuss the significance of the possible detection of phosphine and what it means (and does not mean) and provide an assessment on whether life may exist in the temperate cloud layer of the Venusian atmosphere or not.
Collapse
Affiliation(s)
- Dirk Schulze-Makuch
- Astrobiology Research Group, Center for Astronomy and Astrophysics (ZAA), Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany; ; Tel.: +49-30-314-23736
- German Research Centre for Geosciences (GFZ), Section Geomicrobiology, 14473 Potsdam, Germany
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, (IGB), 12587 Stechlin, Germany
- School of the Environment, Washington State University, Pullman, WA 99163, USA
| |
Collapse
|
28
|
Li D, Cao Y, Huang B, Han M, Wu X, Sun Q, Zheng C, Zhao L, Ma C, Jin H, Wang X, Liu Y, Zhang Y. Active Femtoliter Droplet Generation in Microfluidics by Confined Interface Vibration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1297-1305. [PMID: 33428403 DOI: 10.1021/acs.langmuir.0c03368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The precise and effective generation of micron-sized droplets is one of the most common and important issues for droplet-based microfluidics. Active droplet generation makes use of additional energy input in promoting interfacial instabilities for droplet generation. Here, we report a new technique for the active generation of femtoliter droplets in microfluidic systems using confined interfacial vibration (CIV). The CIV is formed at the orifice of a traditional inkjet nozzle first by pushing the liquid out and then pulling it back. Droplets are pinched off during the withdrawal process, and this is different from the current active droplet generation techniques, which only monodirectionally push the liquid out. Droplets with radius ranging from ca. 1 to 28 μm can be actively generated by CIV at an orifice with radius 30 μm, distinguishing from conventional active generation techniques in which the droplets are always comparable or slightly bigger than the orifice. Experimental results showed that the droplet volume can be customized by controlling the intensity of the CIV. The inherent digital nature of the inkjet technique enables easy and precise regulating of the droplet volume, making it seamlessly compatible with the digital microfluidic systems.
Collapse
Affiliation(s)
- Dege Li
- College of Mechanical and Electronic Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yi Cao
- College of Mechanical and Electronic Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Bingfang Huang
- College of Mechanical and Electronic Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Molong Han
- Centre of Micro-photonics, Swinburne University of Technology, Melbourne 3122, Australia
| | - Xinlei Wu
- College of Mechanical and Electronic Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Qiang Sun
- College of Mechanical and Electronic Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Chao Zheng
- Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, U.K
| | - Lilong Zhao
- College of Mechanical and Electronic Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Chi Ma
- College of Mechanical and Electronic Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Hui Jin
- College of Mechanical and Electronic Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaolong Wang
- Dongying Science and Technology Bureau, Dongying 257000, China
| | - Yonghong Liu
- College of Mechanical and Electronic Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yanzhen Zhang
- College of Mechanical and Electronic Engineering, China University of Petroleum (East China), Qingdao 266580, China
- Centre of Micro-photonics, Swinburne University of Technology, Melbourne 3122, Australia
| |
Collapse
|
29
|
Cui H, Wang X, Wesslowski J, Tronser T, Rosenbauer J, Schug A, Davidson G, Popova AA, Levkin PA. Assembly of Multi-Spheroid Cellular Architectures by Programmable Droplet Merging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006434. [PMID: 33325613 PMCID: PMC11469186 DOI: 10.1002/adma.202006434] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/30/2020] [Indexed: 05/26/2023]
Abstract
Artificial multicellular systems are gaining importance in the field of tissue engineering and regenerative medicine. Reconstruction of complex tissue architectures in vitro is nevertheless challenging, and methods permitting controllable and high-throughput fabrication of complex multicellular architectures are needed. Here, a facile and high-throughput method is developed based on a tunable droplet-fusion technique, allowing programmed assembly of multiple cell spheroids into complex multicellular architectures. The droplet-fusion technique allows for construction of various multicellular architectures (double-spheroids, multi-spheroids, hetero-spheroids) in a miniaturized high-density array format. As an example of application, the propagation of Wnt signaling is investigated within hetero-spheroids formed from two fused Wnt-releasing and Wnt-reporter cell spheroids. The developed method provides an approach for miniaturized, high-throughput construction of complex 3D multicellular architectures and can be applied for studying various biological processes including cell signaling, cancer invasion, embryogenesis, and neural development.
Collapse
Affiliation(s)
- Haijun Cui
- Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS‐FMS)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
- CAS Key Laboratory of Bio‐inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and ChemistryChinese Academy of Sciences (CAS)Zhongguancun East Road 29Beijing100190P. R. China
| | - Xianxian Wang
- Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS‐FMS)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| | - Janine Wesslowski
- Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS‐FMS)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| | - Tina Tronser
- Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS‐FMS)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| | - Jakob Rosenbauer
- John von Neumann Institute for ComputingJülich Supercomputer CentreForschungszentrum JülichWilhelm‐Johnen‐StraßeJülich52428Germany
| | - Alexander Schug
- John von Neumann Institute for ComputingJülich Supercomputer CentreForschungszentrum JülichWilhelm‐Johnen‐StraßeJülich52428Germany
- Faculty of BiologyUniversity of Duisburg‐EssenUniversitätsstraße 5Essen45141Germany
| | - Gary Davidson
- Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS‐FMS)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| | - Anna A. Popova
- Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS‐FMS)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| | - Pavel A. Levkin
- Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS‐FMS)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz‐Haber Weg 6Karlsruhe76131Germany
| |
Collapse
|
30
|
Michas A, Harir M, Lucio M, Vestergaard G, Himmelberg A, Schmitt-Kopplin P, Lueders T, Hatzinikolaou DG, Schöler A, Rabus R, Schloter M. Sulfate Alters the Competition Among Microbiome Members of Sediments Chronically Exposed to Asphalt. Front Microbiol 2020; 11:556793. [PMID: 33133031 PMCID: PMC7550536 DOI: 10.3389/fmicb.2020.556793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/09/2020] [Indexed: 01/23/2023] Open
Abstract
Sulfate-reducing microorganisms (SRMs) often compete with methanogens for common substrates. Due to thermodynamic reasons, SRMs should outcompete methanogens in the presence of sulfate. However, many studies have documented coexistence of these microbial groups in natural environments, suggesting that thermodynamics alone cannot explain the interactions among them. In this study, we investigated how SRMs compete with the established methanogenic communities in sediment from a long-term, electron acceptor-depleted, asphalt-exposed ecosystem and how they affect the composition of the organic material. We hypothesized that, upon addition of sulfate, SRMs (i) outcompete the methanogenic communities and (ii) markedly contribute to transformations of the organic material. We sampled sediments from the test and proximate control sites under anoxic conditions and incubated them in seawater medium with or without sulfate. Abundance and activity pattern of SRMs and methanogens, as well as the total prokaryotic community, were followed for 6 weeks by using qPCR targeting selected marker genes. Some of these genes were also subjected to amplicon sequencing to assess potential shifts in diversity patterns. Alterations of the organic material in the microcosms were determined by mass spectrometry. Our results indicate that the competition of SRMs with methanogens upon sulfate addition strongly depends on the environment studied and the starting microbiome composition. In the asphalt-free sediments (control), the availability of easily degradable organic material (mainly plant-derived) allows SRMs to use a larger variety of substrates, reducing interspecies competition with methanogens. In contrast, the abundant presence of recalcitrant compounds in the asphalt-exposed sediment was associated with a strong competition between SRMs and methanogens, ultimately detrimental for the latter. Our data underpin the importance of the quality of bioavailable organic materials in anoxic environments as a driver for microbial community structure and function.
Collapse
Affiliation(s)
- Antonios Michas
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Helmholtz Association of German Research Centers, Neuherberg, Germany.,Chair of Soil Science, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Mourad Harir
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Helmholtz Association of German Research Centers, Neuherberg, Germany.,Chair of Analytical Food Chemistry, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Marianna Lucio
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Helmholtz Association of German Research Centers, Neuherberg, Germany
| | - Gisle Vestergaard
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Anne Himmelberg
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Helmholtz Association of German Research Centers, Neuherberg, Germany
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Helmholtz Association of German Research Centers, Neuherberg, Germany.,Chair of Analytical Food Chemistry, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Tillmann Lueders
- Department of Ecological Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Dimitris G Hatzinikolaou
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, Attica, Greece
| | - Anne Schöler
- Institute for Neuropathology, Charité University Hospital Berlin, Berlin, Germany
| | - Ralf Rabus
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Michael Schloter
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Helmholtz Association of German Research Centers, Neuherberg, Germany.,Chair of Soil Science, Technical University of Munich, Freising-Weihenstephan, Germany
| |
Collapse
|
31
|
Hidalgo KJ, Sierra-Garcia IN, Dellagnezze BM, de Oliveira VM. Metagenomic Insights Into the Mechanisms for Biodegradation of Polycyclic Aromatic Hydrocarbons in the Oil Supply Chain. Front Microbiol 2020; 11:561506. [PMID: 33072021 PMCID: PMC7530279 DOI: 10.3389/fmicb.2020.561506] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/24/2020] [Indexed: 02/01/2023] Open
Abstract
Petroleum is a very complex and diverse organic mixture. Its composition depends on reservoir location and in situ conditions and changes once crude oil is spilled into the environment, making the characteristics associated with every spill unique. Polycyclic aromatic hydrocarbons (PAHs) are common components of the crude oil and constitute a group of persistent organic pollutants. Due to their highly hydrophobic, and their low solubility tend to accumulate in soil and sediment. The process by which oil is sourced and made available for use is referred to as the oil supply chain and involves three parts: (1) upstream, (2) midstream and (3) downstream activities. As consequence from oil supply chain activities, crude oils are subjected to biodeterioration, acidification and souring, and oil spills are frequently reported affecting not only the environment, but also the economy and human resources. Different bioremediation techniques based on microbial metabolism, such as natural attenuation, bioaugmentation, biostimulation are promising approaches to minimize the environmental impact of oil spills. The rate and efficiency of this process depend on multiple factors, like pH, oxygen content, temperature, availability and concentration of the pollutants and diversity and structure of the microbial community present in the affected (contaminated) area. Emerging approaches, such as (meta-)taxonomics and (meta-)genomics bring new insights into the molecular mechanisms of PAH microbial degradation at both single species and community levels in oil reservoirs and groundwater/seawater spills. We have scrutinized the microbiological aspects of biodegradation of PAHs naturally occurring in oil upstream activities (exploration and production), and crude oil and/or by-products spills in midstream (transport and storage) and downstream (refining and distribution) activities. This work addresses PAH biodegradation in different stages of oil supply chain affecting diverse environments (groundwater, seawater, oil reservoir) focusing on genes and pathways as well as key players involved in this process. In depth understanding of the biodegradation process will provide/improve knowledge for optimizing and monitoring bioremediation in oil spills cases and/or to impair the degradation in reservoirs avoiding deterioration of crude oil quality.
Collapse
Affiliation(s)
- Kelly J. Hidalgo
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Paulínia, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Isabel N. Sierra-Garcia
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Paulínia, Brazil
- Biology Department & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Bruna M. Dellagnezze
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Paulínia, Brazil
| | - Valéria Maia de Oliveira
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Paulínia, Brazil
| |
Collapse
|
32
|
Abstract
Most definitions of life assume that, at a minimum, life is a physical form of matter distinct from its environment at a lower state of entropy than its surroundings, using energy from the environment for internal maintenance and activity, and capable of autonomous reproduction. These assumptions cover all of life as we know it, though more exotic entities can be envisioned, including organic forms with novel biochemistries, dynamic inorganic matter, and self-replicating machines. The probability that any particular form of life will be found on another planetary body depends on the nature and history of that alien world. So the biospheres would likely be very different on a rocky planet with an ice-covered global ocean, a barren planet devoid of surface liquid, a frigid world with abundant liquid hydrocarbons, on a rogue planet independent of a host star, on a tidally locked planet, on super-Earths, or in long-lived clouds in dense atmospheres. While life at least in microbial form is probably pervasive if rare throughout the Universe, and technologically advanced life is likely much rarer, the chance that an alternative form of life, though not intelligent life, could exist and be detected within our Solar System is a distinct possibility.
Collapse
|
33
|
Densely Populated Water Droplets in Heavy-Oil Seeps. Appl Environ Microbiol 2020; 86:AEM.00164-20. [PMID: 32220837 PMCID: PMC7237766 DOI: 10.1128/aem.00164-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/19/2020] [Indexed: 11/20/2022] Open
Abstract
Most of the microbial degradation in oil reservoirs is believed to take place at the oil-water transition zone (OWTZ). However, a recent study indicates that there is microbial life enclosed in microliter-sized water droplets dispersed in heavy oil of Pitch Lake in Trinidad and Tobago. This life in oil suggests that microbial degradation of oil also takes place in water pockets in the oil-bearing rock of an oil leg independent of the OWTZ. However, it is unknown whether microbial life in water droplets dispersed in oil is a generic property of oil reservoirs rather than an exotic exception. Hence, we took samples from three heavy-oil seeps, Pitch Lake (Trinidad and Tobago), the La Brea Tar Pits (California, USA), and an oil seep on the McKittrick oil field (California, USA). All three tested oil seeps contained dispersed water droplets. Larger droplets between 1 and 10 μl revealed high cell densities of up to 109 cells ml-1 Testing for ATP content and LIVE/DEAD staining showed that these populations consist of active and viable microbial cells with an average of 60% membrane-intact cells and ATP concentrations comparable to those of other subsurface ecosystems. Microbial community analyses based on 16S rRNA gene amplicon sequencing revealed the presence of known anaerobic oil-degrading microorganisms. Surprisingly, the community analyses showed similarities between all three oil seeps, revealing common OTUs, although the sampling sites were thousands of kilometers apart. Our results indicate that small water inclusions are densely populated microhabitats in heavy oil and possibly a generic trait of degraded-oil reservoirs.IMPORTANCE Our results confirmed that small water droplets in oil are densely populated microhabitats containing active microbial communities. Since these microhabitats occurred in three tested oil seeps which are located thousands of kilometers away from each other, such populated water droplets might be a generic trait of biodegraded oil reservoirs and might be involved in the overall oil degradation process. Microbial degradation might thus also take place in water pockets in the oil-bearing oil legs of the reservoir rock rather than only at the oil-water transition zone.
Collapse
|
34
|
Schulze-Makuch D, Haque S, Beckles D, Schmitt-Kopplin P, Harir M, Schneider B, Stumpp C, Wagner D. A chemical and microbial characterization of selected mud volcanoes in Trinidad reveals pathogens introduced by surface water and rain water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:136087. [PMID: 31874397 DOI: 10.1016/j.scitotenv.2019.136087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
Terrestrial mud volcanoes are unique structures driven by tectonic pressure and fluids from the deep subsurface. These structures are mainly found in active tectonic zones, such as the area near the Los Bajos Fault in Trinidad. Here we report a chemical and microbiological characterization of three mud volcanoes, which included analyses of multiple liquid and solid samples from the mud volcanoes. Our study confirms previous suggestions that at least some of the mud volcano fluids are a mixture of deeper salt-rich water and surficial/precipitation water. No apparent water quality differences were found between sampling sites north and south of a major geological fault line. Microbiological analyses revealed diverse communities, both aerobic and anaerobic, including sulfate reducers, methanogens, carbon dioxide fixing and denitrifying bacteria. Several identified species were halophilic and likely derived from the deeper salt-rich subsurface water, while we also cultivated pathogenic species from the Vibrionaceae, Enterobacteriaceae, Shewanellaceae, and Clostridiaceae. These microorganisms were likely introduced into the mud volcano fluids both from surface water or shallow ground-water, and perhaps to a more minor degree by rain water. The identified pathogens are a major health concern that needs to be addressed.
Collapse
Affiliation(s)
- Dirk Schulze-Makuch
- Astrobiology Group, Center for Astronomy and Astrophysics, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany; GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany; Department of Experimental Limnology, Leibniz Institute of Groundwater Ecology and Inland Fisheries (IGB), 16775 Stechlin, Germany.
| | - Shirin Haque
- University of The West Indies, St. Augustine, Trinidad and Tobago
| | - Denise Beckles
- University of The West Indies, St. Augustine, Trinidad and Tobago
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical Biogeochemistry, Department of Environmental Sciences, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany; Analytical Food Chemistry, Technische Universität München, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany
| | - Mourad Harir
- Research Unit Analytical Biogeochemistry, Department of Environmental Sciences, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany; Analytical Food Chemistry, Technische Universität München, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany
| | - Beate Schneider
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany
| | - Christine Stumpp
- Institute of Groundwater Ecology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute for Soil Physics and Rural Water Management, University of Natural Resources and Life Sciences Vienna, 1190 Wien, Austria
| | - Dirk Wagner
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany; University of Potsdam, Institute of Geosciences, 14476 Potsdam, Germany
| |
Collapse
|
35
|
Microbial Degradation of Hydrocarbons-Basic Principles for Bioremediation: A Review. Molecules 2020; 25:molecules25040856. [PMID: 32075198 PMCID: PMC7070569 DOI: 10.3390/molecules25040856] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/01/2022] Open
Abstract
Crude oil-derived hydrocarbons constitute the largest group of environmental pollutants worldwide. The number of reports concerning their toxicity and emphasizing the ultimate need to remove them from marine and soil environments confirms the unceasing interest of scientists in this field. Among the various techniques used for clean-up actions, bioremediation seems to be the most acceptable and economically justified. Analysis of recent reports regarding unsuccessful bioremediation attempts indicates that there is a need to highlight the fundamental aspects of hydrocarbon microbiology in a clear and concise manner. Therefore, in this review, we would like to elucidate some crucial, but often overlooked, factors. First, the formation of crude oil and abundance of naturally occurring hydrocarbons is presented and compared with bacterial ability to not only survive but also to utilize such compounds as an attractive energy source. Then, the significance of nutrient limitation on biomass growth is underlined on the example of a specially designed experiment and discussed in context of bioremediation efficiency. Next, the formation of aerobic and anaerobic conditions, as well as the role of surfactants for maintaining appropriate C:N:P ratio during initial stages of biodegradation is explained. Finally, a summary of recent scientific reports focused on the removal of hydrocarbon contaminants using bioaugmentation, biostimulation and introduction of surfactants, as well as biosurfactants, is presented. This review was designed to be a comprehensive source of knowledge regarding the unique aspects of hydrocarbon microbiology that may be useful for planning future biodegradation experiments. In addition, it is a starting point for wider debate regarding the limitations and possible improvements of currently employed bioremediation strategies.
Collapse
|
36
|
Evidence in the Japan Sea of microdolomite mineralization within gas hydrate microbiomes. Sci Rep 2020; 10:1876. [PMID: 32024862 PMCID: PMC7002378 DOI: 10.1038/s41598-020-58723-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 01/20/2020] [Indexed: 11/30/2022] Open
Abstract
Over the past 15 years, massive gas hydrate deposits have been studied extensively in Joetsu Basin, Japan Sea, where they are associated primarily with active gas chimney structures. Our research documents the discovery of spheroidal microdolomite aggregates found in association with other impurities inside of these massive gas hydrates. The microdolomites are often conjoined and show dark internal cores occasionally hosting saline fluid inclusions. Bacteroidetes sp. are concentrated on the inner rims of microdolomite grains, where they degrade complex petroleum-macromolecules present as an impurity within yellow methane hydrate. These oils show increasing biodegradation with depth which is consistent with the microbial activity of Bacteroidetes. Further investigation of these microdolomites and their contents can potentially yield insight into the dynamics and microbial ecology of other hydrate localities. If microdolomites are indeed found to be ubiquitous in both present and fossil hydrate settings, the materials preserved within may provide valuable insights into an unusual microhabitat which could have once fostered ancient life.
Collapse
|
37
|
Kamjunke N, Hertkorn N, Harir M, Schmitt-Kopplin P, Griebler C, Brauns M, von Tümpling W, Weitere M, Herzsprung P. Molecular change of dissolved organic matter and patterns of bacterial activity in a stream along a land-use gradient. WATER RESEARCH 2019; 164:114919. [PMID: 31382154 DOI: 10.1016/j.watres.2019.114919] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
Fluvial networks are globally relevant for the processing of dissolved organic matter (DOM). To investigate the change in molecular DOM diversity along the river course, high-field FTICR mass spectrometry and NMR spectroscopy of riverine DOM as well as bacterial abundance and activity were measured in a third order stream along a land-use gradient from pristine, agricultural to urban landscapes. DOM composition showed a clear evolution along the river course with an initial decrease of average oxidation and unsaturation followed by an increased relative abundance of CHNO and CHOS compounds introduced by agriculture and waste water, respectively. DOM composition was dominated by rather unsaturated CHO compounds (H/C ≤ 1) in headwaters and by more aliphatic molecules at downstream sites. Oxygenated functional groups shifted from aromatic ethers and hydroxyl groups to aliphatic carboxylic acids and aliphatic hydroxyl groups. This massive dislocation of oxygen significantly increased the diversity of atomic environments in branched aliphatic groups from headwater to downstream DOM. Mass spectra of DOM enabled the detection of compositional relationships to bacterial abundance and activity which was positively related to more aliphatic components (H/C > 1) and negatively related to unsaturated components. FTICR mass and NMR spectra corroborated the initial decline in DOM molecular diversity predicted by the River Continuum Concept (RCC) but demonstrated an anthropogenic increase in the molecular diversity of DOM further downstream. While the high DOM molecular diversity in first order headwater streams was the result of small scale ecosystem plurality, agriculture and waste water treatment introduced many components in the lower reaches. These anthropogenic influences together with massive bacterial oxidation of DOM contributed to a growth of molecular diversity of downstream DOM whose composition and structure differed entirely from those found in pristine headwaters.
Collapse
Affiliation(s)
- Norbert Kamjunke
- Helmholtz-Centre for Environmental Research - UFZ, Department of River Ecology, Brückstraße 3a, D-39114, Magdeburg, Germany.
| | - Norbert Hertkorn
- Helmholtz-Centre Munich, German Research Center for Environmental Health, Research Unit Analytical Biogeochemistry (BGC), Ingolstädter Landstraße 1, P. O. Box 1129, D-85758 Neuherberg, Germany
| | - Mourad Harir
- Helmholtz-Centre Munich, German Research Center for Environmental Health, Research Unit Analytical Biogeochemistry (BGC), Ingolstädter Landstraße 1, P. O. Box 1129, D-85758 Neuherberg, Germany; Technical University Munich, Chair Analytical Food Chemistry, Maximus-von-Imhof-Forum 2, D-85354, Freising Weihenstephan, Germany
| | - Philippe Schmitt-Kopplin
- Helmholtz-Centre Munich, German Research Center for Environmental Health, Research Unit Analytical Biogeochemistry (BGC), Ingolstädter Landstraße 1, P. O. Box 1129, D-85758 Neuherberg, Germany; Technical University Munich, Chair Analytical Food Chemistry, Maximus-von-Imhof-Forum 2, D-85354, Freising Weihenstephan, Germany
| | - Christian Griebler
- Helmholtz-Centre Munich, German Research Center for Environmental Health, Institute of Groundwater Hydrology (IGOE), Ingolstädter Landstraße 1, P. O. Box 1129, D-85758, Neuherberg, Germany; Present Address: University of Vienna, Department of Limnology & Bio-Oceanography, Althanstrasse 14, 1090, Vienna, Austria
| | - Mario Brauns
- Helmholtz-Centre for Environmental Research - UFZ, Department of River Ecology, Brückstraße 3a, D-39114, Magdeburg, Germany
| | - Wolf von Tümpling
- Helmholtz-Centre for Environmental Research - UFZ, Department of River Ecology, Brückstraße 3a, D-39114, Magdeburg, Germany
| | - Markus Weitere
- Helmholtz-Centre for Environmental Research - UFZ, Department of River Ecology, Brückstraße 3a, D-39114, Magdeburg, Germany
| | - Peter Herzsprung
- Helmholtz-Centre for Environmental Research - UFZ, Department of Lake Research, Brückstraße 3a, D-39114, Magdeburg, Germany
| |
Collapse
|
38
|
Santi F, Bierbach D, Schartl M, Riesch R. Life histories of guppies (Poecilia reticulata Peters, 1869; Poeciliidae) from the Pitch Lake in Trinidad. CARIBB J SCI 2019. [DOI: 10.18475/cjos.v49i2.a13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Francesco Santi
- School of Biological Sciences, Royal Holloway, University of London, Egham, TW20 0EX, UK
| | - David Bierbach
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
| | - Manfred Schartl
- Department Physiological Chemistry, Biocenter, University of Würzburg, and Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, 97078 Würzburg, Germany, and Hagler Institute for Advanced Studies and Department of Biology, Texas A&M Un
| | - Rüdiger Riesch
- School of Biological Sciences, Royal Holloway, University of London, Egham, TW20 0EX, UK
| |
Collapse
|
39
|
Bochner de Araujo S, Reyssat M, Monteux C, Fuller GG. Ablation of water drops suspended in asphaltene/heptol solutions due to spontaneous emulsification. SCIENCE ADVANCES 2019; 5:eaax8227. [PMID: 31692789 PMCID: PMC6814400 DOI: 10.1126/sciadv.aax8227] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Complex molecules from crude oil, such as asphaltenes, can adsorb onto oil/water interfaces. This creates a viscoelastic network that may cause difficulties in oil recovery and oil spills. In addition to stabilization of oil/water emulsions, they may also cause the spontaneous formation of micron-sized droplets. Here, we investigate spontaneous emulsification in the presence of asphaltenes, probing parameters that may affect this phenomenon by observing isolated drops of water immersed in asphaltene/hydrocarbon solutions within a co-flow microfluidic device. The results indicate that the initial internal pressure of the drop strongly influences the rate at which the drop will shrink due to spontaneous emulsification. In addition, the viscoelastic skin formation by the asphaltenes inhibits increases in this pressure that normally accompanies a decrease in drop radius. Understanding this spontaneous emulsification has implications not only for the oil industry, but also to the cosmetics, foods, medical, and pharmaceutical industries.
Collapse
Affiliation(s)
- S. Bochner de Araujo
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - M. Reyssat
- UMR CNRS Gulliver 7083, ESPCI Paris, PSL Research University, 75005 Paris, France
| | - C. Monteux
- Sciences et Ingénierie de La Matière Molle, ESPCI Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris, France
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - G. G. Fuller
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
40
|
Schmitt-Kopplin P, Hemmler D, Moritz F, Gougeon RD, Lucio M, Meringer M, Müller C, Harir M, Hertkorn N. Systems chemical analytics: introduction to the challenges of chemical complexity analysis. Faraday Discuss 2019; 218:9-28. [DOI: 10.1039/c9fd00078j] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We present concepts of complexity, and complex chemistry in systems subjected to biotic and abiotic transformations, and introduce analytical possibilities to disentangle chemical complexity into its elementary parts as a global integrated approach termed systems chemical analytics.
Collapse
Affiliation(s)
- Philippe Schmitt-Kopplin
- HelmholtzZentrum Muenchen
- German Research Center for Environmental Health
- Department of Environmental Sciences
- D-85764 Neuherberg
- Germany
| | - Daniel Hemmler
- HelmholtzZentrum Muenchen
- German Research Center for Environmental Health
- Department of Environmental Sciences
- D-85764 Neuherberg
- Germany
| | - Franco Moritz
- HelmholtzZentrum Muenchen
- German Research Center for Environmental Health
- Department of Environmental Sciences
- D-85764 Neuherberg
- Germany
| | - Régis D. Gougeon
- UMR PAM Université de Bourgogne/AgroSup Dijon
- Institut Universitaire de la Vigne et du Vin
- Dijon
- France
| | - Marianna Lucio
- HelmholtzZentrum Muenchen
- German Research Center for Environmental Health
- Department of Environmental Sciences
- D-85764 Neuherberg
- Germany
| | - Markus Meringer
- German Aerospace Center (DLR)
- Earth Observation Center (EOC)
- 82234 Oberpfaffenhofen-Wessling
- Germany
| | - Constanze Müller
- HelmholtzZentrum Muenchen
- German Research Center for Environmental Health
- Department of Environmental Sciences
- D-85764 Neuherberg
- Germany
| | - Mourad Harir
- HelmholtzZentrum Muenchen
- German Research Center for Environmental Health
- Department of Environmental Sciences
- D-85764 Neuherberg
- Germany
| | - Norbert Hertkorn
- HelmholtzZentrum Muenchen
- German Research Center for Environmental Health
- Department of Environmental Sciences
- D-85764 Neuherberg
- Germany
| |
Collapse
|
41
|
Pannekens M, Kroll L, Müller H, Mbow FT, Meckenstock RU. Oil reservoirs, an exceptional habitat for microorganisms. N Biotechnol 2018; 49:1-9. [PMID: 30502541 PMCID: PMC6323355 DOI: 10.1016/j.nbt.2018.11.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 01/21/2023]
Abstract
Water-containing parts within oil reservoirs extend the zone of biodegradation. Biodegradation is controlled by environmental factors. Proteobacteria and Euryarchaeota are ubiquitous in oil reservoirs over all temperature ranges. Biofilms as microbial adaption in oil reservoirs. Viruses as potential control for microbial activity and function.
Microorganisms are present in oil reservoirs around the world where they degrade oil and lead to changes in oil quality. Unfortunately, our knowledge about processes in deep oil reservoirs is limited due to the lack of undisturbed samples. In this review, we discuss the distribution of microorganisms at the oil-water transition zone as well as in water saturated parts of the oil leg and their possible physiological adaptations to abiotic and biotic ecological factors such as temperature, salinity and viruses. We show the importance of studying the water phase within the oil, because small water inclusions and pockets within the oil leg provide an exceptional habitat for microorganisms within a natural oil reservoir and concurrently enlarge the zone of oil biodegradation. Environmental factors such as temperature and salinity control oil biodegradation. Temperature determines the type of microorganisms which are able to inhabit the reservoir. Proteobacteria and Euryarchaeota, are ubiquitous in oil reservoirs over all temperature ranges, whereas some others are tied to specific temperatures. It is proposed that biofilm formation is the dominant way of life within oil reservoirs, enhancing nutrient uptake, syntrophic interactions and protection against environmental stress. Literature shows that viruses are abundant in oil reservoirs and the possible impact on microbial community composition due to control of microbial activity and function is discussed.
Collapse
Affiliation(s)
- Mark Pannekens
- University of Duisburg-Essen, Biofilm Centre, Universitätsstr. 5, 41451, Essen, Germany
| | - Lisa Kroll
- University of Duisburg-Essen, Biofilm Centre, Universitätsstr. 5, 41451, Essen, Germany
| | - Hubert Müller
- University of Duisburg-Essen, Biofilm Centre, Universitätsstr. 5, 41451, Essen, Germany
| | - Fatou Tall Mbow
- University of Duisburg-Essen, Biofilm Centre, Universitätsstr. 5, 41451, Essen, Germany
| | - Rainer U Meckenstock
- University of Duisburg-Essen, Biofilm Centre, Universitätsstr. 5, 41451, Essen, Germany.
| |
Collapse
|
42
|
Huang Z, Yang Q, Su M, Li Z, Hu X, Li Y, Pan Q, Ren W, Li F, Song Y. A General Approach for Fluid Patterning and Application in Fabricating Microdevices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1802172. [PMID: 29920800 DOI: 10.1002/adma.201802172] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/14/2018] [Indexed: 06/08/2023]
Abstract
Engineering the fluid interface such as the gas-liquid interface is of great significance for solvent processing applications including functional material assembly, inkjet printing, and high-performance device fabrication. However, precisely controlling the fluid interface remains a great challenge owing to its flexibility and fluidity. Here, a general method to manipulate the fluid interface for fluid patterning using micropillars in the microchannel is reported. The principle of fluid patterning for immiscible fluid pairs including air, water, and oils is proposed. This understanding enables the preparation of programmable multiphase fluid patterns and assembly of multilayer functional materials to fabricate micro-optoelectronic devices. This general strategy of fluid patterning provides a promising platform to study the fundamental processes occurring on the fluid interface, and benefits applications in many subjects, such as microfluidics, microbiology, chemical analysis and detection, material synthesis and assembly, device fabrication, etc.
Collapse
Affiliation(s)
- Zhandong Huang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qiang Yang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Meng Su
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
| | - Zheng Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaotian Hu
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yifan Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qi Pan
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wanjie Ren
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Fengyu Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
| |
Collapse
|
43
|
Dobson TE, Maxwell AR, Ramsubhag A. Antimicrobial cholic acid derivatives from the Pitch Lake bacterium Bacillus amyloliquefaciens UWI-W23. Steroids 2018; 135:50-53. [PMID: 29702138 DOI: 10.1016/j.steroids.2018.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/18/2018] [Accepted: 04/18/2018] [Indexed: 02/08/2023]
Abstract
Six cholic acid derivatives (1-6) were isolated from broth cultures of Bacillus amyloliquefaciens UWI-W23, an isolate from the Trinidad Pitch Lake. The compounds were extracted via solvent extraction and/or XAD resin adsorption and purified using silica gel column chromatography. Their structures were elucidated using 1D, 2D NMR and ESI-MS spectrometry and FT-IR spectrophotometry. One of the compounds, taurodeoxycholate (2) is for the first time being reported from a bacterial source while deoxycholate (4) is for the first time being reported from a Gram-positive bacterium. The other compounds have not been previously isolated from Bacillus spp. viz. cholate (1), taurocholic acid (3); glycodeoxycholic acid (5) and glycocholic acid (6). All six compounds exhibited antimicrobial activity against P. aeruginosa and B. cereus with MICs ranging from 7 to 250 µg/mL. Cholate (1) also showed activity against MRSA (MICs = 125 µg/mL) and glycocholic acid (6) against S. cerevisiae (MICs = 15.6 µg/mL).
Collapse
Affiliation(s)
- Tresha E Dobson
- Department of Chemistry, The University of the West Indies, St. Augustine, Trinidad and Tobago.
| | - Anderson R Maxwell
- Department of Chemistry, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Adesh Ramsubhag
- Department of Life Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| |
Collapse
|
44
|
Dann LM, McKerral JC, Smith RJ, Tobe SS, Paterson JS, Seymour JR, Oliver RL, Mitchell JG. Microbial micropatches within microbial hotspots. PLoS One 2018; 13:e0197224. [PMID: 29787564 PMCID: PMC5963804 DOI: 10.1371/journal.pone.0197224] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/28/2018] [Indexed: 11/19/2022] Open
Abstract
The spatial distributions of organism abundance and diversity are often heterogeneous. This includes the sub-centimetre distributions of microbes, which have 'hotspots' of high abundance, and 'coldspots' of low abundance. Previously we showed that 300 μl abundance hotspots, coldspots and background regions were distinct at all taxonomic levels. Here we build on these results by showing taxonomic micropatches within these 300 μl microscale hotspots, coldspots and background regions at the 1 μl scale. This heterogeneity among 1 μl subsamples was driven by heightened abundance of specific genera. The micropatches were most pronounced within hotspots. Micropatches were dominated by Pseudomonas, Bacteroides, Parasporobacterium and Lachnospiraceae incertae sedis, with Pseudomonas and Bacteroides being responsible for a shift in the most dominant genera in individual hotspot subsamples, representing up to 80.6% and 47.3% average abundance, respectively. The presence of these micropatches implies the ability these groups have to create, establish themselves in, or exploit heterogeneous microenvironments. These genera are often particle-associated, from which we infer that these micropatches are evidence for sub-millimetre aggregates and the aquatic polymer matrix. These findings support the emerging paradigm that the microscale distributions of planktonic microbes are numerically and taxonomically heterogeneous at scales of millimetres and less. We show that microscale microbial hotspots have internal structure within which specific local nutrient exchanges and cellular interactions might occur.
Collapse
Affiliation(s)
- Lisa M. Dann
- College of Science and Engineering at Flinders University, Adelaide, South Australia, Australia
- * E-mail:
| | - Jody C. McKerral
- School of Computer Science, Engineering and Mathematics at Flinders University, Adelaide, South Australia, Australia
| | - Renee J. Smith
- College of Science and Engineering at Flinders University, Adelaide, South Australia, Australia
| | - Shanan S. Tobe
- College of Science and Engineering at Flinders University, Adelaide, South Australia, Australia
| | - James S. Paterson
- College of Science and Engineering at Flinders University, Adelaide, South Australia, Australia
| | - Justin R. Seymour
- Plant Functional Biology and Climate Change Cluster (C3) at University of Technology Sydney, Sydney, New South Wales, Australia
| | - Rod L. Oliver
- CSIRO Land and Water Waite Research Institute, Adelaide, South Australia, Australia
| | - James G. Mitchell
- College of Science and Engineering at Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
45
|
Liang B, Zhang K, Wang LY, Liu JF, Yang SZ, Gu JD, Mu BZ. Different Diversity and Distribution of Archaeal Community in the Aqueous and Oil Phases of Production Fluid From High-Temperature Petroleum Reservoirs. Front Microbiol 2018; 9:841. [PMID: 29755446 PMCID: PMC5934436 DOI: 10.3389/fmicb.2018.00841] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 04/12/2018] [Indexed: 11/13/2022] Open
Abstract
To get a better knowledge on how archaeal communities differ between the oil and aqueous phases and whether environmental factors promote substantial differences on microbial distributions among production wells, we analyzed archaeal communities in oil and aqueous phases from four high-temperature petroleum reservoirs (55–65°C) by using 16S rRNA gene based 454 pyrosequencing. Obvious dissimilarity of the archaeal composition between aqueous and oil phases in each independent production wells was observed, especially in production wells with higher water cut, and diversity in the oil phase was much higher than that in the corresponding aqueous phase. Statistical analysis further showed that archaeal communities in oil phases from different petroleum reservoirs tended to be more similar, but those in aqueous phases were the opposite. In the high-temperature ecosystems, temperature as an environmental factor could have significantly affected archaeal distribution, and archaeal diversity raised with the increase of temperature (p < 0.05). Our results suggest that to get a comprehensive understanding of petroleum reservoirs microbial information both in aqueous and oil phases should be taken into consideration. The microscopic habitats of oil phase, technically the dispersed minuscule water droplets in the oil could be a better habitat that containing the indigenous microorganisms.
Collapse
Affiliation(s)
- Bo Liang
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, China
| | - Kai Zhang
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, China
| | - Li-Ying Wang
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, China
| | - Jin-Feng Liu
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, China.,Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, China
| | - Shi-Zhong Yang
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, China.,Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, China
| | - Ji-Dong Gu
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Bo-Zhong Mu
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, China.,Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
46
|
Ostapenko T, Schwarzendahl FJ, Böddeker TJ, Kreis CT, Cammann J, Mazza MG, Bäumchen O. Curvature-Guided Motility of Microalgae in Geometric Confinement. PHYSICAL REVIEW LETTERS 2018; 120:068002. [PMID: 29481277 DOI: 10.1103/physrevlett.120.068002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Indexed: 06/08/2023]
Abstract
Microorganisms, such as bacteria and microalgae, often live in habitats consisting of a liquid phase and a plethora of interfaces. The precise ways in which these motile microbes behave in their confined environment remain unclear. Using experiments and Brownian dynamics simulations, we study the motility of a single Chlamydomonas microalga in an isolated microhabitat with controlled geometric properties. We demonstrate how the geometry of the habitat controls the cell's navigation in confinement. The probability of finding the cell swimming near the boundary increases with the wall curvature, as seen for both circular and elliptical chambers. The theory, utilizing an asymmetric dumbbell model of the cell and steric wall interactions, captures this curvature-guided navigation quantitatively with no free parameters.
Collapse
Affiliation(s)
- Tanya Ostapenko
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, D-37077 Göttingen, Germany
| | - Fabian Jan Schwarzendahl
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, D-37077 Göttingen, Germany
- Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
| | - Thomas J Böddeker
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, D-37077 Göttingen, Germany
| | - Christian Titus Kreis
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, D-37077 Göttingen, Germany
- Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
| | - Jan Cammann
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, D-37077 Göttingen, Germany
| | - Marco G Mazza
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, D-37077 Göttingen, Germany
| | - Oliver Bäumchen
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, D-37077 Göttingen, Germany
| |
Collapse
|
47
|
From Compartmentalization of Bacteria within Inorganic Macrocellular Beads to the Assembly of Microbial Consortia. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201700233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
48
|
Dong X, Jochmann MA, Elsner M, Meyer AH, Bäcker LE, Rahmatullah M, Schunk D, Lens G, Meckenstock RU. Monitoring Microbial Mineralization Using Reverse Stable Isotope Labeling Analysis by Mid-Infrared Laser Spectroscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:11876-11883. [PMID: 28903553 PMCID: PMC5647565 DOI: 10.1021/acs.est.7b02909] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Assessing the biodegradation of organic compounds is a frequent question in environmental science. Here, we present a sensitive, inexpensive, and simple approach to monitor microbial mineralization using reverse stable isotope labeling analysis (RIL) of dissolved inorganic carbon (DIC). The medium for the biodegradation assay contains regular organic compounds and 13C-labeled DIC with 13C atom fractions (x(13C)DIC) higher than natural abundance (typically 2-50%). The produced CO2 (x(13C) ≈ 1.11%) gradually dilutes the initial x(13C)DIC allowing to quantify microbial mineralization using mass-balance calculations. For 13C-enriched CO2 samples, a newly developed isotope ratio mid-infrared spectrometer was introduced with a precision of x(13C) < 0.006%. As an example for extremely difficult and slowly degradable compounds, CO2 production was close to the theoretical stoichiometry for anaerobic naphthalene degradation by a sulfate-reducing enrichment culture. Furthermore, we could measure the aerobic degradation of dissolved organic carbon (DOC) adsorbed to granular activated carbon in a drinking water production plant, which cannot be labeled with 13C. Thus, the RIL approach can be applied to sensitively monitor biodegradation of various organic compounds under anoxic or oxic conditions.
Collapse
Affiliation(s)
- Xiyang Dong
- Biofilm
Centre, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
- Institute
of Groundwater Ecology, Helmholtz Zentrum
München, Ingolstädter
Landstrasse 1, 85764 Neuherberg, Germany
| | - Maik A. Jochmann
- Instrumental
Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - Martin Elsner
- Institute
of Groundwater Ecology, Helmholtz Zentrum
München, Ingolstädter
Landstrasse 1, 85764 Neuherberg, Germany
- Chair
of Analytical Chemistry and Water Chemistry, Technical University of Munich, Marchioninistrasse 17, D-81377 Munich, Germany
| | - Armin H. Meyer
- Institute
of Groundwater Ecology, Helmholtz Zentrum
München, Ingolstädter
Landstrasse 1, 85764 Neuherberg, Germany
| | - Leonard E. Bäcker
- Biofilm
Centre, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Mona Rahmatullah
- Biofilm
Centre, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Daniel Schunk
- RWW Rheinisch-Westfälische
Wasserwerksgesellschaft mbH, Am Schloß
Broich 1-3, 45479 Mülheim an der Ruhr, Germany
| | - Guido Lens
- RWW Rheinisch-Westfälische
Wasserwerksgesellschaft mbH, Am Schloß
Broich 1-3, 45479 Mülheim an der Ruhr, Germany
| | - Rainer U. Meckenstock
- Biofilm
Centre, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
- Phone: +49 (201) 183-6601; fax: +49 (201) 183-6603; e-mail:
| |
Collapse
|
49
|
Schulze-Makuch D, Airo A, Schirmack J. The Adaptability of Life on Earth and the Diversity of Planetary Habitats. Front Microbiol 2017; 8:2011. [PMID: 29085352 PMCID: PMC5650640 DOI: 10.3389/fmicb.2017.02011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/29/2017] [Indexed: 11/13/2022] Open
Abstract
The evolutionary adaptability of life to extreme environments is astounding given that all life on Earth is based on the same fundamental biochemistry. The range of some physicochemical parameters on Earth exceeds the ability of life to adapt, but stays within the limits of life for other parameters. Certain environmental conditions such as low water availability in hyperarid deserts on Earth seem to be close to the limit of biological activity. A much wider range of environmental parameters is observed on planetary bodies within our Solar System such as Mars or Titan, and presumably even larger outside of our Solar System. Here we review the adaptability of life as we know it, especially regarding temperature, pressure, and water activity. We use then this knowledge to outline the range of possible habitable environments for alien planets and moons and distinguish between a variety of planetary environment types. Some of these types are present in our Solar System, others are hypothetical. Our schematic categorization of alien habitats is limited to life as we know it, particularly regarding to the use of solvent (water) and energy source (light and chemical compounds).
Collapse
Affiliation(s)
- Dirk Schulze-Makuch
- Astrobiology Group, Center for Astronomy and Astrophysics, Technical University Berlin, Berlin, Germany.,Beyond Center, Arizona State University, Tempe, AZ, United States.,School of the Environment, Washington State University, Pullman, WA, United States
| | - Alessandro Airo
- Astrobiology Group, Center for Astronomy and Astrophysics, Technical University Berlin, Berlin, Germany
| | - Janosch Schirmack
- Astrobiology Group, Center for Astronomy and Astrophysics, Technical University Berlin, Berlin, Germany
| |
Collapse
|
50
|
Foght JM, Gieg LM, Siddique T. The microbiology of oil sands tailings: past, present, future. FEMS Microbiol Ecol 2017; 93:3064888. [PMID: 28334283 DOI: 10.1093/femsec/fix034] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 03/08/2017] [Indexed: 01/30/2023] Open
Abstract
Surface mining of enormous oil sands deposits in northeastern Alberta, Canada since 1967 has contributed greatly to Canada's economy but has also received negative international attention due largely to environmental concerns and challenges. Not only have microbes profoundly affected the composition and behavior of this petroleum resource over geological time, they currently influence the management of semi-solid tailings in oil sands tailings ponds (OSTPs) and tailings reclamation. Historically, microbial impacts on OSTPs were generally discounted, but next-generation sequencing and biogeochemical studies have revealed unexpectedly diverse indigenous communities and expanded our fundamental understanding of anaerobic microbial functions. OSTPs that experienced different processing and management histories have developed distinct microbial communities that influence the behavior and reclamation of the tailings stored therein. In particular, the interactions of Deltaproteobacteria and Firmicutes with methanogenic archaea impact greenhouse gas emissions, sulfur cycling, pore water toxicity, sediment biogeochemistry and densification, water usage and the trajectory of long-term mine waste reclamation. This review summarizes historical data; synthesizes current understanding of microbial diversity and activities in situ and in vitro; predicts microbial effects on tailings remediation and reclamation; and highlights knowledge gaps for future research.
Collapse
Affiliation(s)
- Julia M Foght
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
| | - Lisa M Gieg
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Tariq Siddique
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada T6G 2G7
| |
Collapse
|