1
|
Wei J, Zheng H, Li G, Chen Z, Fang G, Yan J. Involvement of oxytocin receptor deficiency in psychiatric disorders and behavioral abnormalities. Front Cell Neurosci 2023; 17:1164796. [PMID: 37153633 PMCID: PMC10159063 DOI: 10.3389/fncel.2023.1164796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/24/2023] [Indexed: 05/10/2023] Open
Abstract
Oxytocin and its target receptor (oxytocin receptor, OXTR) exert important roles in the regulation of complex social behaviors and cognition. The oxytocin/OXTR system in the brain could activate and transduce several intracellular signaling pathways to affect neuronal functions or responses and then mediate physiological activities. The persistence and outcome of the oxytocin activity in the brain are closely linked to the regulation, state, and expression of OXTR. Increasing evidence has shown that genetic variations, epigenetic modification states, and the expression of OXTR have been implicated in psychiatric disorders characterized by social deficits, especially in autism. Among these variations and modifications, OXTR gene methylation and polymorphism have been found in many patients with psychiatric disorders and have been considered to be associated with those psychiatric disorders, behavioral abnormalities, and individual differences in response to social stimuli or others. Given the significance of these new findings, in this review, we focus on the progress of OXTR's functions, intrinsic mechanisms, and its correlations with psychiatric disorders or deficits in behaviors. We hope that this review can provide a deep insight into the study of OXTR-involved psychiatric disorders.
Collapse
Affiliation(s)
- Jinbao Wei
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- Department of Pharmacy, Ningde Municipal Hospital Affiliated to Ningde Normal University, Ningde, Fujian, China
| | - Huanrui Zheng
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Guokai Li
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Zichun Chen
- Department of Pharmacy, Ningde Municipal Hospital Affiliated to Ningde Normal University, Ningde, Fujian, China
| | - Gengjing Fang
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate (Fujian Maternity and Child Health Hospital), Fuzhou, Fujia, China
- Gengjing Fang
| | - Jianying Yan
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
- Department of Obstetrics, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- *Correspondence: Jianying Yan
| |
Collapse
|
2
|
Mehra S, Ul Ahsan A, Seth E, Chopra M. Critical Evaluation of Valproic Acid-Induced Rodent Models of Autism: Current and Future Perspectives. J Mol Neurosci 2022; 72:1259-1273. [DOI: 10.1007/s12031-022-02033-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/21/2022] [Indexed: 11/29/2022]
|
3
|
Lv H, Gu X, Shan X, Zhu T, Ma B, Zhang HT, Bambini-Junior V, Zhang T, Li WG, Gao X, Li F. Nanoformulated Bumetanide Ameliorates Social Deficiency in BTBR Mice Model of Autism Spectrum Disorder. Front Immunol 2022; 13:870577. [PMID: 35693812 PMCID: PMC9179025 DOI: 10.3389/fimmu.2022.870577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a prevalent neurodevelopmental disorder with few medication options. Bumetanide, an FDA-approved diuretic, has been proposed as a viable candidate to treat core symptoms of ASD, however, neither the brain region related to its effect nor the cell-specific mechanism(s) is clear. The availability of nanoparticles provides a viable way to identify pharmacological mechanisms for use in ASD. Here, we found that treatment with bumetanide, in a systemic and medial prefrontal cortex (mPFC) region-specific way, attenuated social deficits in BTBR mice. Furthermore, using poly (ethylene glycol)-poly(l-lactide) (PEG-PLA) nanoparticles [NP(bumetanide)], we showed that the administration of NP(bumetanide) in a mPFC region-specific way also alleviated the social deficits of BTBR mice. Mechanistically, the behavioral effect of NP(bumetanide) was dependent on selective microglia-specific targeting in the mPFC. Pharmacological depletion of microglia significantly reduced the effect of nanoencapsulation and depletion of microglia alone did not improve the social deficits in BTBR mice. These findings suggest the potential therapeutic capabilities of nanotechnology for ASD, as well as the relevant link between bumetanide and immune cells.
Collapse
Affiliation(s)
- Hui Lv
- Department of Developmental and Behavioral Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Gu
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingyue Shan
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Life Sciences, East China Normal University, Shanghai, China
| | - Tailin Zhu
- Department of Developmental and Behavioral Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingke Ma
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Life Sciences, East China Normal University, Shanghai, China
| | - Hao-Tian Zhang
- Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education (MOE)-Shanghai Key Laboratory for Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Victorio Bambini-Junior
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Tiantian Zhang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Life Sciences, East China Normal University, Shanghai, China
| | - Wei-Guang Li
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Li
- Department of Developmental and Behavioral Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
van Andel DM, Sprengers JJ, Keijzer-Veen MG, Schulp AJA, Lillien MR, Scheepers FE, Bruining H. Bumetanide for Irritability in Children With Sensory Processing Problems Across Neurodevelopmental Disorders: A Pilot Randomized Controlled Trial. Front Psychiatry 2022; 13:780281. [PMID: 35211042 PMCID: PMC8861379 DOI: 10.3389/fpsyt.2022.780281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Treatment development for neurodevelopmental disorders (NDDs) such as autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) is impeded by heterogeneity in clinical manifestation and underlying etiologies. Symptom traits such as aberrant sensory reactivity are present across NDDs and might reflect common mechanistic pathways. Here, we test the effectiveness of repurposing a drug candidate, bumetanide, on irritable behavior in a cross-disorder neurodevelopmental cohort defined by the presence of sensory reactivity problems. METHODS Participants, aged 5-15 years and IQ ≥ 55, with ASD, ADHD, and/or epilepsy and proven aberrant sensory reactivity according to deviant Sensory Profile scores were included. Participants were randomly allocated (1:1) to bumetanide (max 1 mg twice daily) or placebo tablets for 91 days followed by a 28-day wash-out period using permuted block design and minimization. Participants, parents, healthcare providers, and outcome assessors were blinded for treatment allocation. Primary outcome was the differences in ABC-irritability at day 91. Secondary outcomes were differences in SRS-2, RBS-R, SP-NL, BRIEF parent, BRIEF teacher at D91. Differences were analyzed in a modified intention-to-treat sample with linear mixed models and side effects in the intention-to-treat population. RESULTS A total of 38 participants (10.1 [SD 3.1] years) were enrolled between June 2017 and June 2019 in the Netherlands. Nineteen children were allocated to bumetanide and nineteen to placebo. Five patients discontinued (n = 3 bumetanide). Bumetanide was superior to placebo on the ABC-irritability [mean difference (MD) -4.78, 95%CI: -8.43 to -1.13, p = 0.0125]. No effects were found on secondary endpoints. No wash-out effects were found. Side effects were as expected: hypokalemia (p = 0.046) and increased diuresis (p = 0.020). CONCLUSION Despite the results being underpowered, this study raises important recommendations for future cross-diagnostic trial designs.
Collapse
Affiliation(s)
- Dorinde M van Andel
- Department of Psychiatry, University Medical Center Utrecht Brain Centre, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jan J Sprengers
- Department of Psychiatry, University Medical Center Utrecht Brain Centre, University Medical Center Utrecht, Utrecht, Netherlands
| | - Mandy G Keijzer-Veen
- Department of Pediatric Nephrology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Annelien J A Schulp
- Department of Pediatric Nephrology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marc R Lillien
- Department of Pediatric Nephrology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Floortje E Scheepers
- Department of Psychiatry, University Medical Center Utrecht Brain Centre, University Medical Center Utrecht, Utrecht, Netherlands
| | - Hilgo Bruining
- N=You Neurodevelopmental Precision Center, Amsterdam Neuroscience, Amsterdam Reproduction and Development, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
5
|
Savardi A, Borgogno M, De Vivo M, Cancedda L. Pharmacological tools to target NKCC1 in brain disorders. Trends Pharmacol Sci 2021; 42:1009-1034. [PMID: 34620512 DOI: 10.1016/j.tips.2021.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/27/2021] [Accepted: 09/08/2021] [Indexed: 02/06/2023]
Abstract
The chloride importer NKCC1 and the chloride exporter KCC2 are key regulators of neuronal chloride concentration. A defective NKCC1/KCC2 expression ratio is associated with several brain disorders. Preclinical/clinical studies have shown that NKCC1 inhibition by the United States FDA-approved diuretic bumetanide is a potential therapeutic strategy in preclinical/clinical studies of multiple neurological conditions. However, bumetanide has poor brain penetration and causes unwanted diuresis by inhibiting NKCC2 in the kidney. To overcome these issues, a growing number of studies have reported more brain-penetrating and/or selective bumetanide prodrugs, analogs, and new molecular entities. Here, we review the evidence for NKCC1 pharmacological inhibition as an effective strategy to manage neurological disorders. We also discuss the advantages and limitations of bumetanide repurposing and the benefits and risks of new NKCC1 inhibitors as therapeutic agents for brain disorders.
Collapse
Affiliation(s)
- Annalisa Savardi
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy; Dulbecco Telethon Institute, 00185 Rome, Italy; Molecular Modeling and Drug Discovery Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Marco Borgogno
- Molecular Modeling and Drug Discovery Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Marco De Vivo
- Molecular Modeling and Drug Discovery Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy.
| | - Laura Cancedda
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy; Dulbecco Telethon Institute, 00185 Rome, Italy.
| |
Collapse
|
6
|
Crutel V, Lambert E, Penelaud PF, Albarrán Severo C, Fuentes J, Rosier A, Hervás A, Marret S, Oliveira G, Parellada M, Kyaga S, Gouttefangeas S, Bertrand M, Ravel D, Falissard B. Bumetanide Oral Liquid Formulation for the Treatment of Children and Adolescents with Autism Spectrum Disorder: Design of Two Phase III Studies (SIGN Trials). J Autism Dev Disord 2021; 51:2959-2972. [PMID: 33151500 PMCID: PMC8254707 DOI: 10.1007/s10803-020-04709-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
There are currently no approved pharmacological treatments to improve social reciprocity and limit repetitive and rigid behaviors in autism spectrum disorder (ASD). We describe the design of two Phase III studies evaluating the efficacy/safety of bumetanide oral liquid formulation in ASD. These are international, multicenter, randomized, double-blind, placebo-controlled studies in children and adolescents with ASD aged 7 to 17 years (n = 200; study 1), or younger children with ASD aged 2 to 6 years (n = 200; study 2). The primary endpoint of each is change in Childhood Autism Rating Scale 2 total raw score after 6 months. These studies could contribute to the first pharmacological treatment to improve social reciprocity and limit repetitive and rigid behaviors in children and adolescents with ASD.
Collapse
Affiliation(s)
- Véronique Crutel
- Neuro Immuno-Inflammation Therapeutic Area, Institut de Recherches Internationales Servier, Suresnes, France
| | - Estelle Lambert
- Neuro Immuno-Inflammation Therapeutic Area, Institut de Recherches Internationales Servier, Suresnes, France
| | - Pierre-François Penelaud
- Neuro Immuno-Inflammation Therapeutic Area, Institut de Recherches Internationales Servier, Suresnes, France
| | - Cristina Albarrán Severo
- Neuro Immuno-Inflammation Therapeutic Area, Institut de Recherches Internationales Servier, Suresnes, France
| | - Joaquin Fuentes
- Child & Adolescent Psychiatry Service, Policlínica Gipuzkoa & GAUTENA Autism Society, San Sebastián, Spain
| | - Antoine Rosier
- Department of Neonatal Pediatrics, CHU de Rouen and CHU Le Rouvray, Sotteville les Rouen, France
| | - Amaia Hervás
- Child and Adolescent Mental Health Service, Hospital Universitari Mútua de Terrassa, and Global Institute of Neurodevelopment Integrated Care (IGAIN), Barcelona, Spain
| | - Stéphane Marret
- Department of Neonatal Pediatrics, Intensive Care, and Neuropediatrics, Rouen University Hospital, Rouen, France
- INSERM U 1245 team 4 Neovasc, School of Medicine, Normandy University, Rouen, France
| | - Guiomar Oliveira
- Neurodevelopmental and Autism Unit from Child Developmental Center and Centro de Investigação e Formação Clínica, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculty of Medicine, University Clinic of Pediatrics, University of Coimbra, Coimbra, Portugal
| | - Mara Parellada
- Servicio de Psiquiatría del Niño y del Adolescente Hospital General Universitario Gregorio Marañón, CIBERSAM, IiSGM, Ibiza 43, Madrid, Spain
| | - Simon Kyaga
- Global Medical and Patient Affairs, Servier, 35 rue de Verdun, 92284, Suresnes cedex, Suresnes, France.
| | - Sylvie Gouttefangeas
- Neuro Immuno-Inflammation Therapeutic Area, Institut de Recherches Internationales Servier, Suresnes, France
| | - Marianne Bertrand
- Neuro Immuno-Inflammation Therapeutic Area, Institut de Recherches Internationales Servier, Suresnes, France
| | | | - Bruno Falissard
- University Paris-Sud, Univ. Paris-Descartes, AP-HP, INSERM U1178, Paris, France
| |
Collapse
|
7
|
Chiesa M, Rabiei H, Riffault B, Ferrari DC, Ben-Ari Y. Brain Volumes in Mice are Smaller at Birth After Term or Preterm Cesarean Section Delivery. Cereb Cortex 2021; 31:3579-3591. [PMID: 33754629 DOI: 10.1093/cercor/bhab033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/31/2022] Open
Abstract
The rate of cesarean section (CS) delivery has steadily increased over the past decades despite epidemiological studies reporting higher risks of neonatal morbidity and neurodevelopmental disorders. Yet, little is known about the immediate impact of CS birth on the brain, hence the need of experimental studies to evaluate brain parameters following this mode of delivery. Using the solvent clearing method iDISCO and 3D imaging technique, we report that on the day of birth, whole-brain, hippocampus, and striatum volumes are reduced in CS-delivered as compared to vaginally-born mice, with a stronger effect observed in preterm CS pups. These results stress the impact of CS delivery, at term or preterm, during parturition and at birth. In contrast, cellular activity and apoptosis are reduced in mice born by CS preterm but not term, suggesting that these early-life processes are only impacted by the combination of preterm birth and CS delivery.
Collapse
Affiliation(s)
- Morgane Chiesa
- Fundamental Research Department, Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Marseille cedex 09, 13288, France
| | - Hamed Rabiei
- Fundamental Research Department, Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Marseille cedex 09, 13288, France
| | - Baptiste Riffault
- Fundamental Research Department, Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Marseille cedex 09, 13288, France
| | - Diana Carolina Ferrari
- Fundamental Research Department, Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Marseille cedex 09, 13288, France
| | - Yehezkel Ben-Ari
- Fundamental Research Department, Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Marseille cedex 09, 13288, France
| |
Collapse
|
8
|
Caly H, Rabiei H, Coste-Mazeau P, Hantz S, Alain S, Eyraud JL, Chianea T, Caly C, Makowski D, Hadjikhani N, Lemonnier E, Ben-Ari Y. Machine learning analysis of pregnancy data enables early identification of a subpopulation of newborns with ASD. Sci Rep 2021; 11:6877. [PMID: 33767300 PMCID: PMC7994821 DOI: 10.1038/s41598-021-86320-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 03/10/2021] [Indexed: 01/31/2023] Open
Abstract
To identify newborns at risk of developing ASD and to detect ASD biomarkers early after birth, we compared retrospectively ultrasound and biological measurements of babies diagnosed later with ASD or neurotypical (NT) that are collected routinely during pregnancy and birth. We used a supervised machine learning algorithm with a cross-validation technique to classify NT and ASD babies and performed various statistical tests. With a minimization of the false positive rate, 96% of NT and 41% of ASD babies were identified with a positive predictive value of 77%. We identified the following biomarkers related to ASD: sex, maternal familial history of auto-immune diseases, maternal immunization to CMV, IgG CMV level, timing of fetal rotation on head, femur length in the 3rd trimester, white blood cell count in the 3rd trimester, fetal heart rate during labor, newborn feeding and temperature difference between birth and one day after. Furthermore, statistical models revealed that a subpopulation of 38% of babies at risk of ASD had significantly larger fetal head circumference than age-matched NT ones, suggesting an in utero origin of the reported bigger brains of toddlers with ASD. Our results suggest that pregnancy follow-up measurements might provide an early prognosis of ASD enabling pre-symptomatic behavioral interventions to attenuate efficiently ASD developmental sequels.
Collapse
Affiliation(s)
- Hugues Caly
- Gynecology-Obstetrics Department, Mère-Enfant Hospital, University Hospital Center, Limoges, France
| | - Hamed Rabiei
- BABiomedical, Luminy Scientific Campus, Marseille, France
- Neurochlore, Luminy Scientific Campus, Marseille, France
| | - Perrine Coste-Mazeau
- Gynecology-Obstetrics Department, Mère-Enfant Hospital, University Hospital Center, Limoges, France
| | - Sebastien Hantz
- Bacteriology-Virology-Hygiene Department, University Hospital Center, Limoges, France
- French National Reference Center for Herpes Viruses, University Hospital Center, Limoges, France
| | - Sophie Alain
- Bacteriology-Virology-Hygiene Department, University Hospital Center, Limoges, France
- French National Reference Center for Herpes Viruses, University Hospital Center, Limoges, France
| | - Jean-Luc Eyraud
- Gynecology-Obstetrics Department, Mère-Enfant Hospital, University Hospital Center, Limoges, France
| | - Thierry Chianea
- Department of Biochemistry and Molecular Genetics, Dupuytren University Hospital, Limoges, France
| | - Catherine Caly
- Gynecology-Obstetrics Department, Mère-Enfant Hospital, University Hospital Center, Limoges, France
| | - David Makowski
- INRAE, UMR MIA 518, INRA AgroParisTech Université Paris-Saclay, Paris, France
| | - Nouchine Hadjikhani
- Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, USA
- Gillberg Neuropsychiatry Center, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Eric Lemonnier
- Autism Expert Center and Autism Resource Center of Limousin, University Hospital Center, Limoges, France
| | - Yehezkel Ben-Ari
- BABiomedical, Luminy Scientific Campus, Marseille, France.
- Neurochlore, Luminy Scientific Campus, Marseille, France.
| |
Collapse
|
9
|
Environmental regulation of the chloride transporter KCC2: switching inflammation off to switch the GABA on? Transl Psychiatry 2020; 10:349. [PMID: 33060559 PMCID: PMC7562743 DOI: 10.1038/s41398-020-01027-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022] Open
Abstract
Chloride homeostasis, the main determinant factor for the dynamic tuning of GABAergic inhibition during development, has emerged as a key element altered in a wide variety of brain disorders. Accordingly, developmental disorders such as schizophrenia, Autism Spectrum Disorder, Down syndrome, epilepsy, and tuberous sclerosis complex (TSC) have been associated with alterations in the expression of genes codifying for either of the two cotransporters involved in the excitatory-to-inhibitory GABA switch, KCC2 and NKCC1. These alterations can result from environmental insults, including prenatal stress and maternal separation which share, as common molecular denominator, the elevation of pro-inflammatory cytokines. In this review we report and systemize recent research articles indicating that different perinatal environmental perturbations affect the expression of chloride transporters, delaying the developmental switch of GABA signaling, and that inflammatory cytokines, in particular interleukin 1β, may represent a key causal factor for this phenomenon. Based on literature data, we provide therefore a unifying conceptual framework, linking environmental hits with the excitatory-to-inhibitory GABA switch in the context of brain developmental disorders.
Collapse
|
10
|
Fernandez A, Dumon C, Guimond D, Tyzio R, Bonifazi P, Lozovaya N, Burnashev N, Ferrari DC, Ben-Ari Y. The GABA Developmental Shift Is Abolished by Maternal Immune Activation Already at Birth. Cereb Cortex 2020; 29:3982-3992. [PMID: 30395185 DOI: 10.1093/cercor/bhy279] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/14/2018] [Accepted: 10/11/2018] [Indexed: 01/27/2023] Open
Abstract
Epidemiological and experimental studies suggest that maternal immune activation (MIA) leads to developmental brain disorders, but whether the pathogenic mechanism impacts neurons already at birth is not known. We now report that MIA abolishes in mice the oxytocin-mediated delivery γ-aminobutyric acid (GABA) shift from depolarizing to hyperpolarizing in CA3 pyramidal neurons, and this is restored by the NKCC1 chloride importer antagonist bumetanide. Furthermore, MIA hippocampal pyramidal neurons at birth have a more exuberant apical arbor organization and increased apical dendritic length than age-matched controls. The frequency of spontaneous glutamatergic postsynaptic currents is also increased in MIA offspring, as well as the pairwise correlation of the synchronized firing of active cells in CA3. These alterations produced by MIA persist, since at P14-15 GABA action remains depolarizing, produces excitatory action, and network activity remains elevated with a higher frequency of spontaneous glutamatergic postsynaptic currents. Therefore, the pathogenic actions of MIA lead to important morphophysiological and network alterations in the hippocampus already at birth.
Collapse
Affiliation(s)
- Amandine Fernandez
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc Scientifique et Technologique de Luminy, MARSEILLE Cedex 09, France.,Mediterranean Institute of Neurobiology (INMED), INSERM UMR1249, Marseille, France.,Aix-Marseille University UMR 1249, Marseille, France
| | - Camille Dumon
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc Scientifique et Technologique de Luminy, MARSEILLE Cedex 09, France.,Aix-Marseille University UMR 1249, Marseille, France
| | - Damien Guimond
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc Scientifique et Technologique de Luminy, MARSEILLE Cedex 09, France
| | - Roman Tyzio
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc Scientifique et Technologique de Luminy, MARSEILLE Cedex 09, France.,Mediterranean Institute of Neurobiology (INMED), INSERM UMR1249, Marseille, France.,Aix-Marseille University UMR 1249, Marseille, France
| | - Paolo Bonifazi
- Biocruces Health Research Institute, Barakaldo, Spain.,IKERBASQUE: The Basque Foundation for Science, Bilbao, Spain
| | - Natalia Lozovaya
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc Scientifique et Technologique de Luminy, MARSEILLE Cedex 09, France
| | - Nail Burnashev
- Mediterranean Institute of Neurobiology (INMED), INSERM UMR1249, Marseille, France.,Aix-Marseille University UMR 1249, Marseille, France
| | - Diana C Ferrari
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc Scientifique et Technologique de Luminy, MARSEILLE Cedex 09, France
| | - Yehezkel Ben-Ari
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc Scientifique et Technologique de Luminy, MARSEILLE Cedex 09, France.,Mediterranean Institute of Neurobiology (INMED), INSERM UMR1249, Marseille, France
| |
Collapse
|
11
|
Pisella LI, Gaiarsa JL, Diabira D, Zhang J, Khalilov I, Duan J, Kahle KT, Medina I. Impaired regulation of KCC2 phosphorylation leads to neuronal network dysfunction and neurodevelopmental pathology. Sci Signal 2019; 12:eaay0300. [PMID: 31615899 PMCID: PMC7192243 DOI: 10.1126/scisignal.aay0300] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
KCC2 is a vital neuronal K+/Cl- cotransporter that is implicated in the etiology of numerous neurological diseases. In normal cells, KCC2 undergoes developmental dephosphorylation at Thr906 and Thr1007 We engineered mice with heterozygous phosphomimetic mutations T906E and T1007E (KCC2E/+ ) to prevent the normal developmental dephosphorylation of these sites. Immature (postnatal day 15) but not juvenile (postnatal day 30) KCC2E/+ mice exhibited altered GABAergic inhibition, an increased glutamate/GABA synaptic ratio, and greater susceptibility to seizure. KCC2E/+ mice also had abnormal ultrasonic vocalizations at postnatal days 10 to 12 and impaired social behavior at postnatal day 60. Postnatal bumetanide treatment restored network activity by postnatal day 15 but failed to restore social behavior by postnatal day 60. Our data indicate that posttranslational KCC2 regulation controls the GABAergic developmental sequence in vivo, indicating that deregulation of KCC2 could be a risk factor for the emergence of neurological pathology.
Collapse
Affiliation(s)
- Lucie I Pisella
- Aix-Marseille University, UMR 1249, INSERM (Institut National de la Santé et de la Recherche Médicale) Unité 1249, INMED (Institut de Neurobiologie de la Méditerranée), Marseille, France
| | - Jean-Luc Gaiarsa
- Aix-Marseille University, UMR 1249, INSERM (Institut National de la Santé et de la Recherche Médicale) Unité 1249, INMED (Institut de Neurobiologie de la Méditerranée), Marseille, France
| | - Diabé Diabira
- Aix-Marseille University, UMR 1249, INSERM (Institut National de la Santé et de la Recherche Médicale) Unité 1249, INMED (Institut de Neurobiologie de la Méditerranée), Marseille, France
| | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, College of Medicine and Health, University of Exeter Medical School, Hatherly Laboratories, Exeter EX4 4PS, UK
| | - Ilgam Khalilov
- Aix-Marseille University, UMR 1249, INSERM (Institut National de la Santé et de la Recherche Médicale) Unité 1249, INMED (Institut de Neurobiologie de la Méditerranée), Marseille, France
- Laboratory of Neurobiology, Kazan Federal University, Kazan 420008, Russia
| | - JingJing Duan
- Department of Neurobiology, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
- Departments of Neurosurgery, Pediatrics, and Cellular and Molecular Physiology and Centers for Mendelian Genomics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Kristopher T Kahle
- Departments of Neurosurgery, Pediatrics, and Cellular and Molecular Physiology and Centers for Mendelian Genomics, Yale School of Medicine, New Haven, CT 06510, USA.
| | - Igor Medina
- Aix-Marseille University, UMR 1249, INSERM (Institut National de la Santé et de la Recherche Médicale) Unité 1249, INMED (Institut de Neurobiologie de la Méditerranée), Marseille, France.
| |
Collapse
|
12
|
Mollajani R, Joghataei MT, Tehrani-Doost M. Bumetanide Therapeutic Effect in Children and Adolescents With Autism Spectrum Disorder: A Review Study. Basic Clin Neurosci 2019; 10:433-441. [PMID: 32284832 PMCID: PMC7149950 DOI: 10.32598/bcn.9.10.380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/10/2018] [Accepted: 10/17/2018] [Indexed: 11/23/2022] Open
Abstract
Introduction: Autism Spectrum Disorder (ASD) is characterized by several impairments in communications and social interactions, as well as restricted interests or stereotyped behaviors. Interventions applied for this disorder are based on multi-modal approaches, including pharmacotherapy. No definitive cure or medication has been introduced so far; therefore, researchers still investigate potential drugs for treating ASD. One of the new medications introduced for this purpose is bumetanide. The present article aimed to review the efficacy of this drug on the core symptoms of ASD and its potential side effects. Methods: We searched all papers reported on pharmacokinetics, pharmacodynamics, efficacy, and adverse effects of bumetanide on animal models and humans with ASD. The papers were extracted from the main databases of PubMed, Web of Science, and Scopus. Results: The findings revealed that cortical neurons have high Chloride ion (Cl−)i and excitatory actions of gamma-aminobutyric acid in the valproic acid animal model with ASD and mice with fragile X syndrome. Bumetanide, which has been introduced as a diuretic, is also a high-affinity-specific Na+−K+−Cl− cotransporter (NKCC1) antagonist that can reduce Cl− level. The results also indicate that bumetanide can attenuate behavioral features of autism in both animal and human models. Moreover, the studies showed that such medication could activate fusiform face area in individuals with ASD while viewing emotional faces. Also, recent findings suggest that a dose of 1 mg/d of this drug, taken twice daily, might be the best compromise between safety and efficacy. Conclusion: Recent studies provided some evidence that bumetanide can be a novel pharmacological agent in treating core symptoms of ASD. Future studies are required to confirm the efficacy of this medication in individuals with ASD.
Collapse
Affiliation(s)
- Raheleh Mollajani
- Cognitive Neuroscience Institute for Cognitive Science Studies, Tehran, Iran
| | - Mohamad Taghi Joghataei
- Department of Anatomy and Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Tehrani-Doost
- Research Center for Cognitive and Behavioral Sciences, Tehran university of Medial Sciences, Tehran, Iran
| |
Collapse
|
13
|
Enhanced Glutamatergic Currents at Birth in Shank3 KO Mice. Neural Plast 2019; 2019:2382639. [PMID: 31354805 PMCID: PMC6636579 DOI: 10.1155/2019/2382639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/13/2019] [Accepted: 05/30/2019] [Indexed: 12/25/2022] Open
Abstract
Autism spectrum disorders (ASD) are neurodevelopmental disorders induced by genetic and environmental factors. In our recent studies, we showed that the GABA developmental shifts during delivery and the second postnatal week are abolished in two rodent models of ASD. Maternal treatment around birth with bumetanide restored the GABA developmental sequence and attenuated the autism pathogenesis in offspring. Clinical trials conducted in parallel confirmed the usefulness of bumetanide treatment to attenuate the symptoms in children with ASD. Collectively, these observations suggest that an alteration of the GABA developmental sequence is a hallmark of ASD. Here, we investigated whether similar alterations occur in the Shank3 mouse model of ASD. We report that in CA3 pyramidal neurons, the driving force and inhibitory action of GABA are not different in naïve and Shank3-mutant age-matched animals at birth and during the second postnatal week. In contrast, the frequency of spontaneous excitatory postsynaptic currents is already enhanced at birth and persists through postnatal day 15. Therefore, in CA3 pyramidal neurons of Shank3-mutant mice, glutamatergic but not GABAergic activity is affected at early developmental stages, hence reflecting the heterogeneity of mechanisms underlying the pathogenesis of ASD.
Collapse
|
14
|
Lozovaya N, Nardou R, Tyzio R, Chiesa M, Pons-Bennaceur A, Eftekhari S, Bui TT, Billon-Grand M, Rasero J, Bonifazi P, Guimond D, Gaiarsa JL, Ferrari DC, Ben-Ari Y. Early alterations in a mouse model of Rett syndrome: the GABA developmental shift is abolished at birth. Sci Rep 2019; 9:9276. [PMID: 31239460 PMCID: PMC6592949 DOI: 10.1038/s41598-019-45635-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
Genetic mutations of the Methyl-CpG-binding protein-2 (MECP2) gene underlie Rett syndrome (RTT). Developmental processes are often considered to be irrelevant in RTT pathogenesis but neuronal activity at birth has not been recorded. We report that the GABA developmental shift at birth is abolished in CA3 pyramidal neurons of Mecp2-/y mice and the glutamatergic/GABAergic postsynaptic currents (PSCs) ratio is increased. Two weeks later, GABA exerts strong excitatory actions, the glutamatergic/GABAergic PSCs ratio is enhanced, hyper-synchronized activity is present and metabotropic long-term depression (LTD) is impacted. One day before delivery, maternal administration of the NKCC1 chloride importer antagonist bumetanide restored these parameters but not respiratory or weight deficits, nor the onset of mortality. Results suggest that birth is a critical period in RTT with important alterations that can be attenuated by bumetanide raising the possibility of early treatment of the disorder.
Collapse
Affiliation(s)
- N Lozovaya
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc scientifique et technologique de Luminy, 13288, Marseille, cedex 09, France
| | - R Nardou
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc scientifique et technologique de Luminy, 13288, Marseille, cedex 09, France
| | - R Tyzio
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc scientifique et technologique de Luminy, 13288, Marseille, cedex 09, France.,Mediterranean Institute of Neurobiology (INMED), Department of Neurobiology, Aix-Marseille University, INSERM U1249, 13273, Marseille, France
| | - M Chiesa
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc scientifique et technologique de Luminy, 13288, Marseille, cedex 09, France.,Mediterranean Institute of Neurobiology (INMED), Department of Neurobiology, Aix-Marseille University, INSERM U1249, 13273, Marseille, France
| | - A Pons-Bennaceur
- Mediterranean Institute of Neurobiology (INMED), Department of Neurobiology, Aix-Marseille University, INSERM U1249, 13273, Marseille, France
| | - S Eftekhari
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc scientifique et technologique de Luminy, 13288, Marseille, cedex 09, France.,Mediterranean Institute of Neurobiology (INMED), Department of Neurobiology, Aix-Marseille University, INSERM U1249, 13273, Marseille, France
| | - T-T Bui
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc scientifique et technologique de Luminy, 13288, Marseille, cedex 09, France.,Mediterranean Institute of Neurobiology (INMED), Department of Neurobiology, Aix-Marseille University, INSERM U1249, 13273, Marseille, France
| | - M Billon-Grand
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc scientifique et technologique de Luminy, 13288, Marseille, cedex 09, France
| | - J Rasero
- Biocruces Health Research Institute, 48903, Barakaldo, Spain
| | - P Bonifazi
- Biocruces Health Research Institute, 48903, Barakaldo, Spain.,IKERBASQUE: The Basque Foundation for Science, 48013, Bilbao, Spain
| | - D Guimond
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc scientifique et technologique de Luminy, 13288, Marseille, cedex 09, France
| | - J-L Gaiarsa
- Mediterranean Institute of Neurobiology (INMED), Department of Neurobiology, Aix-Marseille University, INSERM U1249, 13273, Marseille, France
| | - D C Ferrari
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc scientifique et technologique de Luminy, 13288, Marseille, cedex 09, France
| | - Y Ben-Ari
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc scientifique et technologique de Luminy, 13288, Marseille, cedex 09, France.
| |
Collapse
|
15
|
Anacker AMJ, Moran JT, Santarelli S, Forsberg CG, Rogers TD, Stanwood GD, Hall BJ, Delpire E, Veenstra-VanderWeele J, Saxe MD. Enhanced Social Dominance and Altered Neuronal Excitability in the Prefrontal Cortex of Male KCC2b Mutant Mice. Autism Res 2019; 12:732-743. [PMID: 30977597 DOI: 10.1002/aur.2098] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/06/2019] [Accepted: 03/13/2019] [Indexed: 01/20/2023]
Abstract
The K-Cl cotransporter KCC2 is essential in the development of the "GABA switch" that produces a change in neuronal responses to GABA signaling from excitatory to inhibitory early in brain development, and alterations in this progression have previously been hypothesized to play a causal role in autism spectrum disorder (ASD). We investigated the KCC2b (Slc12a5) heterozygous knockout mouse using a battery of rodent behavioral tests relevant to core and comorbid ASD symptoms. Compared to wild-type littermates, KCC2+/- mice were normal in standard measures of locomotor activity, grooming and digging behaviors, and social, vocalization, and anxiety-like behaviors. However, KCC2+/- mice exhibited increased social dominance behaviors and increased amplitude of spontaneous postsynaptic currents in the medial prefrontal cortex (PFC) that were previously implicated in governing social hierarchy and dominance behaviors. Treatment of wild-type mouse brain slices with the KCC2 inhibitor VU0240511 increased the amplitude and frequency of excitatory postsynaptic currents, partially recapitulating the phenotype of KCC2+/- mice. These findings indicate that the activity of KCC2 plays a role in social dominance, in parallel with effects on PFC signaling, further suggesting that KCC2 function has some relevance to social behavior but without the breadth of impact on autism-like behavior suggested by previous studies. Further testing could assess whether KCC2 alters other circuits and whether additional factors such as environmental insults may precipitate autism-related behavioral phenotypes. Autism Research 2019, 12: 732-743. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: A mouse model of altered chloride transporter expression was used to look for a role in behaviors and brain function relevant to autism. There was an imbalance in signaling in the prefrontal cortex, and increased social dominance behavior, although other autism-related behaviors were not changed. These findings indicate that altered chloride transporter function affects prefrontal cortex function and social dominance without a broader impact on autism-like behaviors.
Collapse
Affiliation(s)
- Allison M J Anacker
- Division of Child & Adolescent Psychiatry, New York State Psychiatric Institute, Columbia University, New York, New York
| | - Jacqueline T Moran
- Roche Pharmaceutical Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.,Tulane University Department of Cell and Molecular Biology and the Neuroscience Program, New Orleans, Louisiana
| | - Sara Santarelli
- Roche Pharmaceutical Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - C Gunnar Forsberg
- Departments of Psychiatry, Pediatrics, and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Tiffany D Rogers
- Departments of Psychiatry, Pediatrics, and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Gregg D Stanwood
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida
| | - Benjamin J Hall
- Roche Pharmaceutical Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.,Tulane University Department of Cell and Molecular Biology and the Neuroscience Program, New Orleans, Louisiana
| | - Eric Delpire
- Departments of Psychiatry, Pediatrics, and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jeremy Veenstra-VanderWeele
- Division of Child & Adolescent Psychiatry, New York State Psychiatric Institute, Columbia University, New York, New York.,Departments of Psychiatry, Pediatrics, and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Michael D Saxe
- Roche Pharmaceutical Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| |
Collapse
|
16
|
Cloarec R, Riffault B, Dufour A, Rabiei H, Gouty-Colomer LA, Dumon C, Guimond D, Bonifazi P, Eftekhari S, Lozovaya N, Ferrari DC, Ben-Ari Y. Pyramidal neuron growth and increased hippocampal volume during labor and birth in autism. SCIENCE ADVANCES 2019; 5:eaav0394. [PMID: 30746473 PMCID: PMC6357736 DOI: 10.1126/sciadv.aav0394] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
We report that the apical dendrites of CA3 hippocampal pyramidal neurons are increased during labor and birth in the valproate model of autism but not in control animals. Using the iDISCO clearing method, we show that hippocampal, especially CA3 region, and neocortical volumes are increased and that the cerebral volume distribution shifts from normal to lognormal in valproate-treated animals. Maternal administration during labor and birth of the NKCC1 chloride transporter antagonist bumetanide, which reduces [Cl-]i levels and attenuates the severity of autism, abolished the neocortical and hippocampal volume changes and reduced the whole-brain volume in valproate-treated animals. These results suggest that the abolition of the oxytocin-mediated excitatory-to-inhibitory shift of GABA actions during labor and birth contributes to the pathogenesis of autism spectrum disorders by stimulating growth during a vulnerable period.
Collapse
Affiliation(s)
- R. Cloarec
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Zone Luminy Biotech Entreprises, 13288 Cedex 09 , Marseille, France
| | - B. Riffault
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Zone Luminy Biotech Entreprises, 13288 Cedex 09 , Marseille, France
| | - A. Dufour
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Zone Luminy Biotech Entreprises, 13288 Cedex 09 , Marseille, France
| | - H. Rabiei
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Zone Luminy Biotech Entreprises, 13288 Cedex 09 , Marseille, France
| | - L.-A. Gouty-Colomer
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Zone Luminy Biotech Entreprises, 13288 Cedex 09 , Marseille, France
| | - C. Dumon
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Zone Luminy Biotech Entreprises, 13288 Cedex 09 , Marseille, France
| | - D. Guimond
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Zone Luminy Biotech Entreprises, 13288 Cedex 09 , Marseille, France
| | - P. Bonifazi
- Biocruces Health Research Institute, Barakaldo, Spain & IKERBASQUE: The Basque Foundation for Science, Bilbao, Spain
| | - S. Eftekhari
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Zone Luminy Biotech Entreprises, 13288 Cedex 09 , Marseille, France
| | - N. Lozovaya
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Zone Luminy Biotech Entreprises, 13288 Cedex 09 , Marseille, France
| | - D. C. Ferrari
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Zone Luminy Biotech Entreprises, 13288 Cedex 09 , Marseille, France
| | - Y. Ben-Ari
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Zone Luminy Biotech Entreprises, 13288 Cedex 09 , Marseille, France
| |
Collapse
|
17
|
Lopatina OL, Komleva YK, Gorina YV, Olovyannikova RY, Trufanova LV, Hashimoto T, Takahashi T, Kikuchi M, Minabe Y, Higashida H, Salmina AB. Oxytocin and excitation/inhibition balance in social recognition. Neuropeptides 2018; 72:1-11. [PMID: 30287150 DOI: 10.1016/j.npep.2018.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 12/15/2022]
Abstract
Social recognition is the sensitive domains of complex behavior critical for identification, interpretation and storage of socially meaningful information. Social recognition develops throughout childhood and adolescent, and is affected in a wide variety of psychiatric disorders. Recently, new data appeared on the molecular mechanisms of these processes, particularly, the excitatory-inhibitory (E/I) ratio which is modified during development, and then E/I balance is established in the adult brain. While E/I imbalance has been proposed as a mechanism for schizophrenia, it also seems to be the common mechanism in autism spectrum disorder (ASD). In addition, there is a strong suggestion that the oxytocinergic system is related to GABA-mediated E/I control in the context of brain socialization. In this review, we attempt to summarize the underpinning molecular mechanisms of E/I balance and its imbalance, and related biomarkers in the brain in healthiness and pathology. In addition, because there are increasing interest on oxytocin in the social neuroscience field, we will pay intensive attention to the role of oxytocin in maintaining E/I balance from the viewpoint of its effects on improving social impairment in psychiatric diseases, especially in ASD.
Collapse
Affiliation(s)
- Olga L Lopatina
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia; Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Yulia K Komleva
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia
| | - Yana V Gorina
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia
| | - Raisa Ya Olovyannikova
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia
| | - Lyudmila V Trufanova
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia
| | - Takanori Hashimoto
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Tetsuya Takahashi
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Mitsuru Kikuchi
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Yoshio Minabe
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Haruhiro Higashida
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia; Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Alla B Salmina
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia; Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan.
| |
Collapse
|
18
|
Kuo HY, Liu FC. Molecular Pathology and Pharmacological Treatment of Autism Spectrum Disorder-Like Phenotypes Using Rodent Models. Front Cell Neurosci 2018; 12:422. [PMID: 30524240 PMCID: PMC6262306 DOI: 10.3389/fncel.2018.00422] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/29/2018] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder with a high prevalence rate. The core symptoms of ASD patients are impaired social communication and repetitive behavior. Genetic and environmental factors contribute to pathophysiology of ASD. Regarding environmental risk factors, it is known that valproic acid (VPA) exposure during pregnancy increases the chance of ASD among offspring. Over a decade of animal model studies have shown that maternal treatment with VPA in rodents recapitulates ASD-like pathophysiology at a molecular, cellular and behavioral level. Here, we review the prevailing theories of ASD pathogenesis, including excitatory/inhibitory imbalance, neurotransmitter dysfunction, dysfunction of mTOR and endocannabinoid signaling pathways, neuroinflammation and epigenetic alterations that have been associated with ASD. We also describe the evidence linking neuropathological changes to ASD-like behavioral abnormalities in maternal VPA-treated rodents. In addition to obtaining an understanding of the neuropathological mechanisms, the VPA-induced ASD-like animal models also serve as a good platform for testing pharmacological reagents that might be use treating ASD. We therefore have summarized the various pharmacological studies that have targeted the classical neurotransmitter systems, the endocannabinoids, the Wnt signal pathway and neuroinflammation. These approaches have been shown to often be able to ameliorate the ASD-like phenotypes induced by maternal VPA treatments.
Collapse
Affiliation(s)
- Hsiao-Ying Kuo
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | - Fu-Chin Liu
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
19
|
Ben-Ari Y. Oxytocin and Vasopressin, and the GABA Developmental Shift During Labor and Birth: Friends or Foes? Front Cell Neurosci 2018; 12:254. [PMID: 30186114 PMCID: PMC6110879 DOI: 10.3389/fncel.2018.00254] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/24/2018] [Indexed: 12/15/2022] Open
Abstract
Oxytocin (OT) and vasopressin (AVP) are usually associated with sociability and reduced stress for the former and antidiuretic agent associated with severe stress and pathological conditions for the latter. Both OT and AVP play major roles during labor and birth. Recent contradictory studies suggest that they might exert different roles on the GABA excitatory/inhibitory developmental shift. We reported (Tyzio et al., 2006) that at birth, OT exerts a neuro-protective action mediated by an abrupt reduction of intracellular chloride levels ([Cl-]i) that are high in utero, reinforcing GABAergic inhibition and modulating the generation of the first synchronized patterns of cortical networks. This reduction of [Cl-]i levels is abolished in rodent models of Fragile X Syndrome and Autism Spectrum Disorders, and its restoration attenuates the severity of the pathological sequels, stressing the importance of the shift at birth (Tyzio et al., 2014). In contrast, Kaila and co-workers (Spoljaric et al., 2017) reported excitatory GABA actions before and after birth that are modulated by AVP but not by OT, challenging both the developmental shift and the roles of OT. Here, I analyze the differences between these studies and suggest that the ratio AVP/OT like that of excitatory/inhibitory GABA depend on stress and pathological conditions.
Collapse
Affiliation(s)
- Yehezkel Ben-Ari
- Neurochlore and Ben-Ari Institute of Neuroarcheology (IBEN), Marseille, France
| |
Collapse
|
20
|
Chiesa M, Guimond D, Tyzio R, Pons-Bennaceur A, Lozovaya N, Burnashev N, Ferrari DC, Ben-Ari Y. Term or Preterm Cesarean Section Delivery Does Not Lead to Long-term Detrimental Consequences in Mice. Cereb Cortex 2018; 29:2424-2436. [DOI: 10.1093/cercor/bhy112] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/19/2018] [Indexed: 12/26/2022] Open
Affiliation(s)
- Morgane Chiesa
- Neurochlore, Fundamental Research Department, bâtiment Beret-Delaage, Parc scientifique et technologique de Luminy, 13288 Marseille cedex, France
- Mediterranean Institute of Neurobiology (INMED), Department of Neurobiology, Aix-Marseille University, INSERM U1249, Marseille, France
| | - Damien Guimond
- Neurochlore, Fundamental Research Department, bâtiment Beret-Delaage, Parc scientifique et technologique de Luminy, 13288 Marseille cedex, France
| | - Roman Tyzio
- Neurochlore, Fundamental Research Department, bâtiment Beret-Delaage, Parc scientifique et technologique de Luminy, 13288 Marseille cedex, France
- Mediterranean Institute of Neurobiology (INMED), Department of Neurobiology, Aix-Marseille University, INSERM U1249, Marseille, France
| | - Alexandre Pons-Bennaceur
- Mediterranean Institute of Neurobiology (INMED), Department of Neurobiology, Aix-Marseille University, INSERM U1249, Marseille, France
| | - Natalia Lozovaya
- Neurochlore, Fundamental Research Department, bâtiment Beret-Delaage, Parc scientifique et technologique de Luminy, 13288 Marseille cedex, France
| | - Nail Burnashev
- Mediterranean Institute of Neurobiology (INMED), Department of Neurobiology, Aix-Marseille University, INSERM U1249, Marseille, France
| | - Diana C Ferrari
- Neurochlore, Fundamental Research Department, bâtiment Beret-Delaage, Parc scientifique et technologique de Luminy, 13288 Marseille cedex, France
| | - Yehezkel Ben-Ari
- Neurochlore, Fundamental Research Department, bâtiment Beret-Delaage, Parc scientifique et technologique de Luminy, 13288 Marseille cedex, France
- Mediterranean Institute of Neurobiology (INMED), Department of Neurobiology, Aix-Marseille University, INSERM U1249, Marseille, France
| |
Collapse
|
21
|
Lee E, Lee J, Kim E. Excitation/Inhibition Imbalance in Animal Models of Autism Spectrum Disorders. Biol Psychiatry 2017; 81:838-847. [PMID: 27450033 DOI: 10.1016/j.biopsych.2016.05.011] [Citation(s) in RCA: 302] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/02/2016] [Accepted: 05/16/2016] [Indexed: 12/19/2022]
Abstract
Imbalances between excitation and inhibition in synaptic transmission and neural circuits have been implicated in autism spectrum disorders. Excitation and inhibition imbalances are frequently observed in animal models of autism spectrum disorders, and their correction normalizes key autistic-like phenotypes in these animals. These results suggest that excitation and inhibition imbalances may contribute to the development and maintenance of autism spectrum disorders and represent an important therapeutic target.
Collapse
Affiliation(s)
- Eunee Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Korea
| | - Jiseok Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Korea; Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea.
| |
Collapse
|
22
|
Effects of bumetanide on neurobehavioral function in children and adolescents with autism spectrum disorders. Transl Psychiatry 2017; 7:e1056. [PMID: 28291262 PMCID: PMC5416661 DOI: 10.1038/tp.2017.10] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 12/17/2016] [Accepted: 01/09/2017] [Indexed: 12/17/2022] Open
Abstract
In animal models of autism spectrum disorder (ASD), the NKCC1 chloride-importer inhibitor bumetanide restores physiological (Cl-)i levels, enhances GABAergic inhibition and attenuates electrical and behavioral symptoms of ASD. In an earlier phase 2 trial; bumetanide reduced the severity of ASD in children and adolescents (3-11 years old). Here we report the results of a multicenter phase 2B study primarily to assess dose/response and safety effects of bumetanide. Efficacy outcome measures included the Childhood Autism Rating Scale (CARS), the Social Responsive Scale (SRS) and the Clinical Global Impressions (CGI) Improvement scale (CGI-I). Eighty-eight patients with ASD spanning across the entire pediatric population (2-18 years old) were subdivided in four age groups and randomized to receive bumetanide (0.5, 1.0 or 2.0 mg twice daily) or placebo for 3 months. The mean CARS value was significantly improved in the completers group (P: 0.015). Also, 23 treated children had more than a six-point improvement in the CARS compared with only one placebo-treated individual. Bumetanide significantly improved CGI (P: 0.0043) and the SRS score by more than 10 points (P: 0.02). The most frequent adverse events were hypokalemia, increased urine elimination, loss of appetite, dehydration and asthenia. Hypokalemia occurred mainly at the beginning of the treatment at 1.0 and 2.0 mg twice-daily doses and improved gradually with oral potassium supplements. The frequency and incidence of adverse event were directly correlated with the dose of bumetanide. Therefore, bumetanide improves the core symptoms of ASD and presents a favorable benefit/risk ratio particularly at 1.0 mg twice daily.
Collapse
|
23
|
Sannino S, Chini B, Grinevich V. Lifespan oxytocin signaling: Maturation, flexibility, and stability in newborn, adolescent, and aged brain. Dev Neurobiol 2017; 77:158-168. [DOI: 10.1002/dneu.22450] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/21/2016] [Accepted: 09/04/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Sara Sannino
- Department of Medical Biotechnology and Translational Medicine, Universitá degli Studi di Milano, National Research Council, Institute of Neuroscience; Milan Italy
| | - Bice Chini
- Department of Medical Biotechnology and Translational Medicine, Universitá degli Studi di Milano, National Research Council, Institute of Neuroscience; Milan Italy
| | - Valery Grinevich
- Schaller Research Group on Neuropeptides at German Cancer Research Center DKFZ, Central Institute of Mental Health and CellNetworks Cluster of Excellence at the University of Heidelberg; Heidelberg Mannheim Germany
| |
Collapse
|
24
|
Molecular Basis of Oxytocin Receptor Signalling in the Brain: What We Know and What We Need to Know. Curr Top Behav Neurosci 2017; 35:3-29. [PMID: 28812263 DOI: 10.1007/7854_2017_6] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxytocin (OT), a hypothalamic neuropeptide involved in regulating the social behaviour of all vertebrates, has been proposed as a treatment for a number of neuropsychiatric disorders characterised by deficits in the social domain. Over the last few decades, advances focused on understanding the social effects of OT and its role in physiological conditions and brain diseases, but much less has been done to clarify the molecular cascade of events involved in mediating such effects and in particular the cellular and molecular pharmacology of OT and its target receptor (OTR) in neuronal and glial cells.The entity and persistence of OT activity in the brain is closely related to the expression and regulation of the OTR expressed on the cell surface, which transmits the signal intracellularly and permits OT to affect cell function. Understanding the various signalling mechanisms mediating OTR-induced cell responses is crucial to determine the different responses in different cells and brain regions, and the success of OT and OT-derived analogues in the treatment of neurodevelopmental and psychiatric diseases depends on how well we can control such responses. In this review, we will consider the most important aspects of OT/OTR signalling by focusing on the molecular events involved in OT binding and coupling, on the main signalling pathways activated by the OTR in neuronal cells and on intracellular and plasma membrane OTR trafficking, all of which contribute to the quantitative and qualitative features of OT responses in the brain.
Collapse
|
25
|
Abstract
Autism spectrum disorder (ASD) is a group of complex neurodevelopmental conditions characterized by deficits in social communication and by repetitive and stereotypic patterns of behaviors, with no pharmacological treatments available to treat these core symptoms. Oxytocin is a neuropeptide that powerfully regulates mammalian social behavior and has been shown to exert pro-social effects when administered intranasally to healthy human subjects. In the last decade, there has been a significant interest in using oxytocin to treat social behavior deficits in ASD. However, little attention has been paid to whether the oxytocin system is perturbed in subgroups of individuals with ASD and whether these individuals are likely to benefit more from an oxytocin treatment. This oversight may in part be due to the enormous heterogeneity of ASD and the lack of methods to carefully probe the OXT system in human subjects. Animal models for ASD are valuable tools to clarify the implication of the oxytocin system in ASD and can help determine whether perturbation in this system should be considered in future clinical studies as stratifying biomarkers to inform targeted treatments in subgroups of individuals with ASD. In this chapter, we review the literature on genetic- and environmental-based animal models for ASD, in which perturbations in the oxytocin system and/or the effect of oxytocin administration on the ASD-associated phenotype have been investigated.
Collapse
|
26
|
Jaggi AS, Kaur A, Bali A, Singh N. Expanding Spectrum of Sodium Potassium Chloride Co-transporters in the Pathophysiology of Diseases. Curr Neuropharmacol 2016; 13:369-88. [PMID: 26411965 PMCID: PMC4812803 DOI: 10.2174/1570159x13666150205130359] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Sodium potassium chloride co-transporter (NKCC) belongs to cation-dependent chloride co-transporter family, whose activation allows the entry of Na(+), K(+) and 2Cl(-) inside the cell. It acts in concert with K(+) Cl(-) co-transporter (KCC), which extrudes K(+) and Cl(-) ions from cell. NKCC1 is widely distributed throughout the body, while NKCC2 is exclusively present in kidney. Protein kinase A, protein kinase C, Ste20-related proline-alanine-rich kinase, oxidative stress responsive kinases, With No K=lysine kinase and protein phosphatase type 1 control the phosphorylation/dephosphorylation of key threonine residues of in regulatory domain of NKCC1. The selective inhibitors of NKCC1 including bumetanide and furosemide are conventionally employed as diuretics. However, recent studies have indicated that NKCC1 may be involved in the pathophysiology of anxiety, cerebral ischemia, epilepsy, neuropathic pain, fragile X syndrome, autism and schizophrenia. The inhibitors of NKCC1 are shown to produce anxiolytic effects; attenuate cerebral ischemia-induced neuronal injury; produce antiepileptic effects and attenuate neuropathic pain. In the early developing brain, GABAA activation primarily produces excitatory actions due to high NKCC1/KCC2 ratio. However, as the development progresses, the ratio of NKCC1/KCC2 ratio reverses and there is switch in the polarity of GABAA actions and latter acquires the inhibitory actions. The recapitulation of developmental-like state during pathological state may be associated with increase in the expression and functioning of NKCC1, which decreases the strength of inhibitory GABAergic neurotransmission. The present review describes the expanding role and mechanism of NKCC1 in the pathophysiology of different diseases.
Collapse
Affiliation(s)
- Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala- 147002.
| | | | | | | |
Collapse
|
27
|
Ben-Ari Y, Damier P, Lemonnier E. Failure of the Nemo Trial: Bumetanide Is a Promising Agent to Treat Many Brain Disorders but Not Newborn Seizures. Front Cell Neurosci 2016; 10:90. [PMID: 27147965 PMCID: PMC4830840 DOI: 10.3389/fncel.2016.00090] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/21/2016] [Indexed: 11/13/2022] Open
Abstract
The diuretic bumetanide failed to treat acute seizures due to hypoxic ischemic encephalopathy (HIE) in newborn babies and was associated with hearing loss (NEMO trial, Pressler et al., 2015). On the other hand, clinical and experimental observations suggest that the diuretic might provide novel therapy for many brain disorders including Autism Spectrum Disorders (ASD), schizophrenia, Rett syndrome, and Parkinson disease. Here, we discuss the differences between the pathophysiology of severe recurrent seizures in the neonates and neurological and psychiatric disorders stressing the uniqueness of severe seizures in newborn in comparison to other disorders.
Collapse
Affiliation(s)
- Yehezkel Ben-Ari
- INMED - Institut National de la Santé et de la Recherche Médicale U901, Aix-Marseille University Marseilles, France
| | - Philippe Damier
- Institut National de la Santé et de la Recherche Médicale, Centre d'Investigation Clinique 0004 Nantes, France
| | | |
Collapse
|
28
|
Leonzino M, Busnelli M, Antonucci F, Verderio C, Mazzanti M, Chini B. The Timing of the Excitatory-to-Inhibitory GABA Switch Is Regulated by the Oxytocin Receptor via KCC2. Cell Rep 2016; 15:96-103. [PMID: 27052180 PMCID: PMC4826440 DOI: 10.1016/j.celrep.2016.03.013] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 02/05/2016] [Accepted: 02/27/2016] [Indexed: 01/15/2023] Open
Abstract
Oxytocin and its receptor (Oxtr) play a crucial role in the postnatal transition of neuronal GABA neurotransmission from excitatory to inhibitory, a developmental process known as the GABA switch. Using hippocampal neurons from Oxtr-null mice, we show that (1) Oxtr is necessary for the correct timing of the GABA switch by upregulating activity of the chloride cotransporter KCC2, (2) Oxtr, in a very early and narrow time window, directly modulates the functional activity of KCC2 by promoting its phosphorylation and insertion/stabilization at the neuronal surface, and (3) in the absence of Oxtr, electrophysiological alterations are recorded in mature neurons, a finding consistent with a reduced level of KCC2 and increased susceptibility to seizures observed in adult Oxtr-null mice. These data identify KCC2 as a key target of oxytocin in postnatal events that may be linked to pathogenesis of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Marianna Leonzino
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Milan 20129, Italy; Department of Biotechnology and Translational Medicine, University of Milan, Milan 20129, Italy
| | - Marta Busnelli
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Milan 20129, Italy
| | - Flavia Antonucci
- Department of Biotechnology and Translational Medicine, University of Milan, Milan 20129, Italy
| | - Claudia Verderio
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Milan 20129, Italy; Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan 20089, Italy
| | - Michele Mazzanti
- Department of Bioscience, University of Milan, Milan 20133, Italy
| | - Bice Chini
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Milan 20129, Italy; Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan 20089, Italy.
| |
Collapse
|
29
|
Grinevich V, Knobloch-Bollmann HS, Eliava M, Busnelli M, Chini B. Assembling the Puzzle: Pathways of Oxytocin Signaling in the Brain. Biol Psychiatry 2016; 79:155-64. [PMID: 26001309 DOI: 10.1016/j.biopsych.2015.04.013] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/01/2015] [Accepted: 04/19/2015] [Indexed: 12/24/2022]
Abstract
Oxytocin (OT) is a neuropeptide, which can be seen to be one of the molecules of the decade due to its profound prosocial effects in nonvertebrate and vertebrate species, including humans. Although OT can be detected in various physiological fluids (blood, saliva, urine, cerebrospinal fluid) and brain tissue, it is unclear whether peripheral and central OT releases match and synergize. Moreover, the pathways of OT delivery to brain regions involved in specific behaviors are far from clear. Here, we discuss the evolutionarily and ontogenetically determined pathways of OT delivery and OT signaling, which orchestrate activity of the mesolimbic social decision-making network. Furthermore, we speculate that both the alteration in OT delivery and OT receptor expression may cause behavioral abnormalities in patients afflicted with psychosocial diseases.
Collapse
Affiliation(s)
- Valery Grinevich
- Schaller Research Group on Neuropeptides, German Cancer Research Center DKFZ, Heidelberg, Germany; CellNetworks Cluster of Excellence, University of Heidelberg, Heidelberg, Germany.
| | - H Sophie Knobloch-Bollmann
- Schaller Research Group on Neuropeptides, German Cancer Research Center DKFZ, Heidelberg, Germany; CellNetworks Cluster of Excellence, University of Heidelberg, Heidelberg, Germany
| | - Marina Eliava
- Schaller Research Group on Neuropeptides, German Cancer Research Center DKFZ, Heidelberg, Germany; CellNetworks Cluster of Excellence, University of Heidelberg, Heidelberg, Germany
| | - Marta Busnelli
- National Research Council, Institute of Neuroscience, Milan, Italy
| | - Bice Chini
- National Research Council, Institute of Neuroscience, Milan, Italy
| |
Collapse
|
30
|
Ben-Ari Y. Is birth a critical period in the pathogenesis of autism spectrum disorders? Nat Rev Neurosci 2015; 16:498-505. [DOI: 10.1038/nrn3956] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|