1
|
Rudd CE. How the Discovery of the CD4/CD8-p56 lck Complexes Changed Immunology and Immunotherapy. Front Cell Dev Biol 2021; 9:626095. [PMID: 33791292 PMCID: PMC8005572 DOI: 10.3389/fcell.2021.626095] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/11/2021] [Indexed: 12/22/2022] Open
Abstract
The past 25 years have seen enormous progress in uncovering the receptors and signaling mechanisms on T-cells that activate their various effecter functions. Until the late 1980s, most studies on T-cells had focused on the influx of calcium and the levels of cAMP/GMP in T-cells. My laboratory then uncovered the interaction of CD4 and CD8 co-receptors with the protein-tyrosine kinase p56lck which are now widely accepted as the initiators of the tyrosine phosphorylation cascade leading to T-cell activation. The finding explained how immune recognition receptors expressed by many immune cells, which lack intrinsic catalytic activity, can transduce activation signals via non-covalent association with non-receptor tyrosine kinases. The discovery also established the concept that a protein tyrosine phosphorylation cascade operated in T-cells. In this vein, we and others then showed that the CD4- and CD8-p56lck complexes phosphorylate the TCR complexes which led to the identification of other protein-tyrosine kinases such as ZAP-70 and an array of substrates that are now central to studies in T-cell immunity. Other receptors such as B-cell receptor, Fc receptors and others were also subsequently found to use src kinases to control cell growth. In T-cells, p56lck driven phosphorylation targets include co-receptors such as CD28 and CTLA-4 and immune cell-specific adaptor proteins such as LAT and SLP-76 which act to integrate signals proximal to surface receptors. CD4/CD8-p56lck regulated events in T-cells include intracellular calcium mobilization, integrin activation and the induction of transcription factors for gene expression. Lastly, the identification of the targets of p56lck in the TCR and CD28 provided the framework for the development of chimeric antigen receptor (CAR) therapy in the treatment of cancer. In this review, I outline a history of the development of events that led to the development of the "TCR signaling paradigm" and its implications to immunology and immunotherapy.
Collapse
Affiliation(s)
- Christopher E. Rudd
- Division of Immunology-Oncology, Centre de Recherche Hôpital Maisonneuve-Rosemont (CR-HMR), Montreal, QC, Canada
- Department of Microbiology, Infection and Immunology, Faculty of Medicine, Universite de Montreal, Montreal, QC, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University Health Center, McGill University, Montreal, QC, Canada
| |
Collapse
|
2
|
A Novel, LAT/Lck Double Deficient T Cell Subline J.CaM1.7 for Combined Analysis of Early TCR Signaling. Cells 2021; 10:cells10020343. [PMID: 33562083 PMCID: PMC7915312 DOI: 10.3390/cells10020343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 11/21/2022] Open
Abstract
Intracellular signaling through the T cell receptor (TCR) is essential for T cell development and function. Proper TCR signaling requires the sequential activities of Lck and ZAP-70 kinases, which result in the phosphorylation of tyrosine residues located in the CD3 ITAMs and the LAT adaptor, respectively. LAT, linker for the activation of T cells, is a transmembrane adaptor protein that acts as a scaffold coupling the early signals coming from the TCR with downstream signaling pathways leading to cellular responses. The leukemic T cell line Jurkat and its derivative mutants J.CaM1.6 (Lck deficient) and J.CaM2 (LAT deficient) have been widely used to study the first signaling events upon TCR triggering. In this work, we describe the loss of LAT adaptor expression found in a subline of J.CaM1.6 cells and analyze cis-elements responsible for the LAT expression defect. This new cell subline, which we have called J.CaM1.7, can re-express LAT adaptor after Protein Kinase C (PKC) activation, which suggests that activation-induced LAT expression is not affected in this new cell subline. Contrary to J.CaM1.6 cells, re-expression of Lck in J.CaM1.7 cells was not sufficient to recover TCR-associated signals, and both LAT and Lck had to be introduced to recover activatory intracellular signals triggered after CD3 crosslinking. Overall, our work shows that the new LAT negative J.CaM1.7 cell subline could represent a new model to study the functions of the tyrosine kinase Lck and the LAT adaptor in TCR signaling, and their mutual interaction, which seems to constitute an essential early signaling event associated with the TCR/CD3 complex.
Collapse
|
3
|
How the T cell signaling network processes information to discriminate between self and agonist ligands. Proc Natl Acad Sci U S A 2020; 117:26020-26030. [PMID: 33020303 DOI: 10.1073/pnas.2008303117] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
T cells exhibit remarkable sensitivity and selectivity in detecting and responding to agonist peptides (p) bound to MHC molecules in a sea of self pMHC molecules. Despite much work, understanding of the underlying mechanisms of distinguishing such ligands remains incomplete. Here, we quantify T cell discriminatory capacity using channel capacity, a direct measure of the signaling network's ability to discriminate between antigen-presenting cells (APCs) displaying either self ligands or a mixture of self and agonist ligands. This metric shows how differences in information content between these two types of peptidomes are decoded by the topology and rates of kinetic proofreading signaling steps inside T cells. Using channel capacity, we constructed numerically substantiated hypotheses to explain the discriminatory role of a recently identified slow LAT Y132 phosphorylation step. Our results revealed that in addition to the number and kinetics of sequential signaling steps, a key determinant of discriminatory capability is spatial localization of a minimum number of these steps to the engaged TCR. Biochemical and imaging experiments support these findings. Our results also reveal the discriminatory role of early negative feedback and necessary amplification conferred by late positive feedback.
Collapse
|
4
|
Abstract
The maintenance of organismal homeostasis requires partitioning and transport of biochemical molecules between organ systems, their composite cells, and subcellular organelles. Although transcriptional programming undeniably defines the functional state of cells and tissues, underlying biochemical networks are intricately intertwined with transcriptional, translational, and post-translational regulation. Studies of the metabolic regulation of immunity have elegantly illustrated this phenomenon. The cells of the immune system interface with a diverse set of environmental conditions. Circulating immune cells perfuse peripheral organs in the blood and lymph, patrolling for pathogen invasion. Resident immune cells remain in tissues and play more newly appreciated roles in tissue homeostasis and immunity. Each of these cell populations interacts with unique and dynamic tissue environments, which vary greatly in biochemical composition. Furthermore, the effector response of immune cells to a diverse set of activating cues requires unique cellular adaptations to supply the requisite biochemical landscape. In this review, we examine the role of spatial partitioning of metabolic processes in immune function. We focus on studies of lymphocyte metabolism, with reference to the greater immunometabolism literature when appropriate to illustrate this concept.
Collapse
Affiliation(s)
- Justin A Shyer
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Will Bailis
- Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Recent insights of T cell receptor-mediated signaling pathways for T cell activation and development. Exp Mol Med 2020; 52:750-761. [PMID: 32439954 PMCID: PMC7272404 DOI: 10.1038/s12276-020-0435-8] [Citation(s) in RCA: 218] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/26/2020] [Accepted: 04/08/2020] [Indexed: 12/18/2022] Open
Abstract
T cell activation requires extracellular stimulatory signals that are mainly mediated by T cell receptor (TCR) complexes. The TCR recognizes antigens on major histocompatibility complex molecules with the cooperation of CD4 or CD8 coreceptors. After recognition, TCR-induced signaling cascades that propagate signals via various molecules and second messengers are induced. Consequently, many features of T cell-mediated immune responses are determined by these intracellular signaling cascades. Furthermore, differences in the magnitude of TCR signaling direct T cells toward distinct effector linages. Therefore, stringent regulation of T cell activation is crucial for T cell homeostasis and proper immune responses. Dysregulation of TCR signaling can result in anergy or autoimmunity. In this review, we summarize current knowledge on the pathways that govern how the TCR complex transmits signals into cells and the roles of effector molecules that are involved in these pathways.
Collapse
|
6
|
Du B, Zhang L, Sun Y, Zhang G, Yao J, Jiang M, Pan L, Sun C. Phillygenin exhibits anti-inflammatory activity through modulating multiple cellular behaviors of mouse lymphocytes. Immunopharmacol Immunotoxicol 2019; 41:76-85. [PMID: 30721636 DOI: 10.1080/08923973.2018.1547742] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Context: Phillygenin (PHI) is an intestinal metabolite of phillyrin from the genus Forsythia. Although the regulatory activity of Forsythia on immune system has been investigated, the effect of PHI on activated lymphocytes is poorly understood. Objective: This study was aimed to discuss the possible anti-inflammation potential of PHI on mitogen-activated stimulated lymphocytes in vitro. Methods: Mice spleen lymphocytes were incubated with PHI for 4 h, and then stimulated with concanavalin A (Con A) or phorbol 12-myristate 13-acetate/ionomycin (PMA + Ion). Cell viability was assayed by cell counting kit-8 (CCK-8). The expression of CD69 and CD25, proliferation, cell cycle, intracellular Ca2+ concentration, apoptosis, mitochondrial inner membrane potential (ΔΨm), mitochondrial permeability transition (MPT), interleukin-2 (IL-2), interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α) were analyzed by flow cytometry. The expression of cyclin B1, cyclin D1, Cyclin E, and the phosphorylation of c-jun N-terminal kinase (JNK), extracellular signal-regulated kinase 1/2 (Erk1/2) and p38 were assayed by western blotting. Results: The results showed that PHI inhibited the proliferation of Con A-activated lymphocytes and induced a G0/G1 phase arrest by suppressing cyclin D1 and cyclin E. Meanwhile, PHI antagonized Con A-induced T cells activation through blocking intracellular Ca2+ overload and suppressing the phosphorylation of JNK and Erk1/2. Both Con A and PMA + Ion-induced secretion of IL-2, IFN-γ, and TNF-α were attenuated by PHI. PHI enhanced Con A-induced lymphocytes apoptosis through decreasing ΔΨm and increasing MPT. Conclusion: These results suggest that PHI exhibits its anti-inflammatory activity through modulating multiple cellular behaviors, leading to the suppression of the adaptive immune response.
Collapse
Affiliation(s)
- Bingyuan Du
- a State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine , Linyi , PR China.,b Linyi Key Laboratory for Immunopharmacology and Immunotoxicology of Natural Medicine , Linyi , PR China.,c Center for New Drug Pharmacology , Lunan Pharmaceutical Group Corporation , Linyi , PR China
| | - Li Zhang
- a State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine , Linyi , PR China
| | - Ying Sun
- a State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine , Linyi , PR China
| | - Guimin Zhang
- a State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine , Linyi , PR China.,b Linyi Key Laboratory for Immunopharmacology and Immunotoxicology of Natural Medicine , Linyi , PR China
| | - Jingchun Yao
- a State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine , Linyi , PR China.,b Linyi Key Laboratory for Immunopharmacology and Immunotoxicology of Natural Medicine , Linyi , PR China.,c Center for New Drug Pharmacology , Lunan Pharmaceutical Group Corporation , Linyi , PR China
| | - Mingmin Jiang
- a State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine , Linyi , PR China.,b Linyi Key Laboratory for Immunopharmacology and Immunotoxicology of Natural Medicine , Linyi , PR China.,c Center for New Drug Pharmacology , Lunan Pharmaceutical Group Corporation , Linyi , PR China
| | - Lihong Pan
- a State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine , Linyi , PR China.,b Linyi Key Laboratory for Immunopharmacology and Immunotoxicology of Natural Medicine , Linyi , PR China.,c Center for New Drug Pharmacology , Lunan Pharmaceutical Group Corporation , Linyi , PR China
| | - Chenghong Sun
- a State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine , Linyi , PR China.,b Linyi Key Laboratory for Immunopharmacology and Immunotoxicology of Natural Medicine , Linyi , PR China.,c Center for New Drug Pharmacology , Lunan Pharmaceutical Group Corporation , Linyi , PR China
| |
Collapse
|
7
|
Felce JH, Sezgin E, Wane M, Brouwer H, Dustin ML, Eggeling C, Davis SJ. CD45 exclusion- and cross-linking-based receptor signaling together broaden FcεRI reactivity. Sci Signal 2018; 11:11/561/eaat0756. [PMID: 30563863 DOI: 10.1126/scisignal.aat0756] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
For many years, the high-affinity receptor for immunoglobulin E (IgE) FcεRI, which is expressed by mast cells and basophils, has been widely held to be the exemplar of cross-linking (that is, aggregation dependent) signaling receptors. We found, however, that FcεRI signaling could occur in the presence or absence of receptor cross-linking. Using both cell and cell-free systems, we showed that FcεRI signaling was stimulated by surface-associated monovalent ligands through the passive, size-dependent exclusion of the receptor-type tyrosine phosphatase CD45 from plasma membrane regions of FcεRI-ligand engagement. Similarly to the T cell receptor, FcεRI signaling could also be initiated in a ligand-independent manner. These data suggest that a simple mechanism of CD45 exclusion-based receptor triggering could function together with cross-linking-based FcεRI signaling, broadening mast cell and basophil reactivity by enabling these cells to respond to both multivalent and surface-presented monovalent antigens. These findings also strengthen the case that a size-dependent, phosphatase exclusion-based receptor triggering mechanism might serve generally to facilitate signaling by noncatalytic immune receptors.
Collapse
Affiliation(s)
- James H Felce
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.,Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK.,Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Erdinc Sezgin
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Madina Wane
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.,Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Heather Brouwer
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.,Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK.
| | - Christian Eggeling
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| | - Simon J Davis
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK. .,Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
8
|
Gaffer GG, Elgawish RA, Abdelrazek HMA, Ebaid HM, Tag HM. Dietary soy isoflavones during pregnancy suppressed the immune function in male offspring albino rats. Toxicol Rep 2018; 5:296-301. [PMID: 29854598 PMCID: PMC5978017 DOI: 10.1016/j.toxrep.2018.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 12/13/2022] Open
Abstract
Less attention has been paid to the immune effects of phytoestrogens during pregnancy on the first generation. Soy isoflavones fed to pregnant rats could modulate the immune response of the male offspring. Isoflavones reduced spleen and thymus weights in rats born to dams fed dietary soy. Soy isoflavones possibly mediated its effect through reduction of IFN-γ that interacts with the IL-12 production pathway.
Phytoestrogens have an impact on both animals and humans due to use of legumes in animal diets as well as the increase of vegetarian diets in some human populations. Phytoestrogens thought to have varieties of adverse effects, among which immune system was involved. The present study aimed to investigate the effect of prenatal exposure to dietary soy isoflavones on some immunological parameters in male albino rat offspring. The pregnant rats were divided to three groups (12/group). Control group (free soy isoflavones), low soy isoflavones group (6.5%) and high soy isoflavones group (26%). The male offspring cell-mediated immune response was determined using phytohemagglutinin (PHA) injection and the intumesce index which was calculated on postnatal day 50 (PND 50). At PND 50, blood samples were collected for interleukin 12 (IL-12), interferon γ (IFN-γ) and tumor necrosis factor α (TNF-α) determination. Spleen, thymus, and PHA injected footpads were fixed for histopathology. Intumesce index, IL-12, IFN-γ, spleen and thymus relative weights were significantly (P < 0.05) decreased in offspring born to dams fed low and high dietary soy isoflavones. In contrary, TNF-α was significantly (P < 0.05) increased in offspring born to dams fed high dietary soy isoflavones. Spleen of rats born to dams fed high dose of dietary soy isoflavones showed coagulative necrosis in white pulp. In conclusion, male offspring born to dams fed different levels of soy isoflavones showed marked immunosuppression after PHA stimulation. This effect was mediated through the reduced IFN-γ that interacts with the IL-12 production pathway.
Collapse
Affiliation(s)
- Ghada Gamal Gaffer
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Rania Abdelrahman Elgawish
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Heba M A Abdelrazek
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Hala M Ebaid
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Hend M Tag
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia, Egypt.,University of Jeddah Branch of Khulais Governorate - Girls Section, Saudi Arabia
| |
Collapse
|
9
|
Sun C, Jiang M, Zhang L, Yang J, Zhang G, Du B, Ren Y, Li X, Yao J. Cycloastragenol mediates activation and proliferation suppression in concanavalin A-induced mouse lymphocyte pan-activation model. Immunopharmacol Immunotoxicol 2017; 39:131-139. [DOI: 10.1080/08923973.2017.1300170] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Chenghong Sun
- Linyi Key Laboratory for Immunopharmacology and Immunotoxicology of Natural Medicine, Lunan Pharmaceutical Group Corporation, Linyi, China
- State Key Laboratory of Generic Pharmaceutical Technology for Chinese Medicine, Lunan Pharmaceutical Group Corporation, Linyi, China
- Center for New Drug Pharmacology, Lunan Pharmaceutical Group Corporation, Linyi, PR China
| | - Mingmin Jiang
- Linyi Key Laboratory for Immunopharmacology and Immunotoxicology of Natural Medicine, Lunan Pharmaceutical Group Corporation, Linyi, China
- State Key Laboratory of Generic Pharmaceutical Technology for Chinese Medicine, Lunan Pharmaceutical Group Corporation, Linyi, China
- Center for New Drug Pharmacology, Lunan Pharmaceutical Group Corporation, Linyi, PR China
| | - Li Zhang
- State Key Laboratory of Generic Pharmaceutical Technology for Chinese Medicine, Lunan Pharmaceutical Group Corporation, Linyi, China
| | - Jian Yang
- Linyi Key Laboratory for Immunopharmacology and Immunotoxicology of Natural Medicine, Lunan Pharmaceutical Group Corporation, Linyi, China
- State Key Laboratory of Generic Pharmaceutical Technology for Chinese Medicine, Lunan Pharmaceutical Group Corporation, Linyi, China
- Center for New Drug Pharmacology, Lunan Pharmaceutical Group Corporation, Linyi, PR China
| | - Guimin Zhang
- State Key Laboratory of Generic Pharmaceutical Technology for Chinese Medicine, Lunan Pharmaceutical Group Corporation, Linyi, China
| | - Bingyuan Du
- Linyi Key Laboratory for Immunopharmacology and Immunotoxicology of Natural Medicine, Lunan Pharmaceutical Group Corporation, Linyi, China
- State Key Laboratory of Generic Pharmaceutical Technology for Chinese Medicine, Lunan Pharmaceutical Group Corporation, Linyi, China
- Center for New Drug Pharmacology, Lunan Pharmaceutical Group Corporation, Linyi, PR China
| | - Yushan Ren
- Linyi Key Laboratory for Immunopharmacology and Immunotoxicology of Natural Medicine, Lunan Pharmaceutical Group Corporation, Linyi, China
- State Key Laboratory of Generic Pharmaceutical Technology for Chinese Medicine, Lunan Pharmaceutical Group Corporation, Linyi, China
- Center for New Drug Pharmacology, Lunan Pharmaceutical Group Corporation, Linyi, PR China
| | - Xin Li
- Linyi Key Laboratory for Immunopharmacology and Immunotoxicology of Natural Medicine, Lunan Pharmaceutical Group Corporation, Linyi, China
- State Key Laboratory of Generic Pharmaceutical Technology for Chinese Medicine, Lunan Pharmaceutical Group Corporation, Linyi, China
- Center for New Drug Pharmacology, Lunan Pharmaceutical Group Corporation, Linyi, PR China
| | - Jingchun Yao
- Linyi Key Laboratory for Immunopharmacology and Immunotoxicology of Natural Medicine, Lunan Pharmaceutical Group Corporation, Linyi, China
- State Key Laboratory of Generic Pharmaceutical Technology for Chinese Medicine, Lunan Pharmaceutical Group Corporation, Linyi, China
- Center for New Drug Pharmacology, Lunan Pharmaceutical Group Corporation, Linyi, PR China
| |
Collapse
|
10
|
Pavic K, Duan G, Köhn M. VHR/DUSP3 phosphatase: structure, function and regulation. FEBS J 2015; 282:1871-90. [PMID: 25757426 DOI: 10.1111/febs.13263] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/16/2015] [Accepted: 03/09/2015] [Indexed: 01/13/2023]
Abstract
Vaccinia H1-related (VHR) phosphatase, also known as dual-specificity phosphatase (DUSP) 3, is a small member of the DUSP (also called DSP) family of phosphatases. VHR has a preference for phospho-tyrosine substrates, and has important roles in cellular signaling ranging from cell-cycle regulation and the DNA damage response to MAPK signaling, platelet activation and angiogenesis. VHR/DUSP3 has been implicated in several human cancers, where its tumor-suppressing and -promoting properties have been described. We give a detailed overview of VHR/DUSP3 phosphatase and compare it with its most closely related phosphatases DUSP13B, DUSP26 and DUSP27.
Collapse
Affiliation(s)
- Karolina Pavic
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Guangyou Duan
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Maja Köhn
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| |
Collapse
|
11
|
Irving B, Weiss A. A Clue to Antigen Receptor Tails. THE JOURNAL OF IMMUNOLOGY 2014; 192:4013-4. [DOI: 10.4049/jimmunol.1400660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Abstract
Phosphoinositides (PIs) make up only a small fraction of cellular phospholipids, yet they control almost all aspects of a cell's life and death. These lipids gained tremendous research interest as plasma membrane signaling molecules when discovered in the 1970s and 1980s. Research in the last 15 years has added a wide range of biological processes regulated by PIs, turning these lipids into one of the most universal signaling entities in eukaryotic cells. PIs control organelle biology by regulating vesicular trafficking, but they also modulate lipid distribution and metabolism via their close relationship with lipid transfer proteins. PIs regulate ion channels, pumps, and transporters and control both endocytic and exocytic processes. The nuclear phosphoinositides have grown from being an epiphenomenon to a research area of its own. As expected from such pleiotropic regulators, derangements of phosphoinositide metabolism are responsible for a number of human diseases ranging from rare genetic disorders to the most common ones such as cancer, obesity, and diabetes. Moreover, it is increasingly evident that a number of infectious agents hijack the PI regulatory systems of host cells for their intracellular movements, replication, and assembly. As a result, PI converting enzymes began to be noticed by pharmaceutical companies as potential therapeutic targets. This review is an attempt to give an overview of this enormous research field focusing on major developments in diverse areas of basic science linked to cellular physiology and disease.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
13
|
Abstract
Reactive oxygen intermediates (ROI) generated in response to receptor stimulation play an important role in cellular responses. However, the effect of increased H(2)O(2) on an antigen-specific CD8(+) T cell response was unknown. Following T cell receptor (TCR) stimulation, the expression and oxidation of peroxiredoxin II (PrdxII), a critical antioxidant enzyme, increased in CD8(+) T cells. Deletion of PrdxII increased ROI, S phase entry, division, and death during in vitro division. During primary acute viral and bacterial infection, the number of effector CD8(+) T cells in PrdxII-deficient mice was increased, while the number of memory cells were similar to those of the wild-type cells. Adoptive transfer of P14 TCR transgenic cells demonstrated that the increased expansion of effector cells was T cell autonomous. After rechallenge, effector CD8(+) T cells in mutant animals were more skewed to memory phenotype than cells from wild-type mice, resulting in a larger secondary memory CD8(+) T cell pool. During chronic viral infection, increased antigen-specific CD8(+) T cells accumulated in the spleens of PrdxII mutant mice, causing mortality. These results demonstrate that PrdxII controls effector CD8(+) T cell expansion, secondary memory generation, and immunopathology.
Collapse
|
14
|
Anel A, Aguiló JI, Catalán E, Garaude J, Rathore MG, Pardo J, Villalba M. Protein Kinase C-θ (PKC-θ) in Natural Killer Cell Function and Anti-Tumor Immunity. Front Immunol 2012; 3:187. [PMID: 22783260 PMCID: PMC3389606 DOI: 10.3389/fimmu.2012.00187] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 06/15/2012] [Indexed: 12/24/2022] Open
Abstract
The protein kinase C-θ (PKCθ), which is essential for T cell function and survival, is also required for efficient anti-tumor immune surveillance. Natural killer (NK) cells, which express PKCθ, play a prominent role in this process, mainly by elimination of tumor cells with reduced or absent major histocompatibility complex class-I (MHC-I) expression. This justifies the increased interest of the use of activated NK cells in anti-tumor immunotherapy in the clinic. The in vivo development of MHC-I-deficient tumors is much favored in PKCθ−/− mice compared with wild-type mice. Recent data offer some clues on the mechanism that could explain the important role of PKCθ in NK cell-mediated anti-tumor immune surveillance: some studies show that PKCθ is implicated in signal transduction and anti-tumoral activity of NK cells elicited by interleukin (IL)-12 or IL-15, while others show that it is implicated in NK cell functional activation mediated by certain killer-activating receptors. Alternatively, the possibility that PKCθ is involved in NK cell degranulation is discussed, since recent data indicate that it is implicated in microtubule-organizing center polarization to the immune synapse in CD4+ T cells. The implication of PKC isoforms in degranulation has been more extensively studied in cytotoxic T lymphocyte, and these studies will be also summarized.
Collapse
Affiliation(s)
- Alberto Anel
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza Zaragoza, Spain
| | | | | | | | | | | | | |
Collapse
|
15
|
Ye Y, Zhang Y, Lu X, Huang X, Zeng X, Lai X, Zeng Y. The anti-inflammatory effect of the SOCC blocker SK&F 96365 on mouse lymphocytes after stimulation by Con A or PMA/ionomycin. Immunobiology 2011; 216:1044-53. [DOI: 10.1016/j.imbio.2011.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Revised: 03/03/2011] [Accepted: 03/05/2011] [Indexed: 11/24/2022]
|
16
|
Connelly H, Means JC. Immunomodulatory Effects of Dietary Exposure to Selected Polycyclic Aromatic Hydrocarbons in the Bluegill (Lepomis macrochirus). Int J Toxicol 2010; 29:532-45. [DOI: 10.1177/1091581810377518] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAH) have been demonstrated to affect immune system modulation. The freshwater species of fish, Lepomis macrochirus (bluegill), was employed to investigate the effects of a 14-day dietary exposure to PAH including 2-aminoanthracene (2-AA), 2-methylnaphthalene (2-MN), and 9,10-dimethylanthracene (9,10-DMA) and a mixture of these 3 compounds at a total dose of 3.1 ± 0.01 mg on lymphocyte proliferation stimulated with 3 mitogens (concanavalin A [Con A], phorbol ester, and calcium ionophore). 2-Aminoanthracene was mitogenic itself and with added mitogens. 2-Methylnaphthalene induced some stimulatory and some inhibitory effects upon cell proliferation by Con A. 9,10-DMA and the mixture each suppressed cell proliferation. The mixture was highly suppressive to lymphocytes. Intracellular baseline calcium levels were reduced, possibly as a step prior to cell death. All PAH compounds tested were immunomodulatory to bluegill lymphocytes. Bluegill were demonstrated to have utility as a biomarker species for investigation of immunotoxicity.
Collapse
Affiliation(s)
- Helen Connelly
- Department of Physiology, Pharmacology and Toxicology, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Jay C. Means
- Department of Physiology, Pharmacology and Toxicology, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
- Department of Chemistry & Biochemistry, Southern Illinois University, Carbondale, IL, USA
| |
Collapse
|
17
|
Pouliot P, Bergeron S, Marette A, Olivier M. The role of protein tyrosine phosphatases in the regulation of allergic asthma: implication of TC-PTP and PTP-1B in the modulation of disease development. Immunology 2010; 128:534-42. [PMID: 19930043 DOI: 10.1111/j.1365-2567.2009.03139.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Protein tyrosine phosphorylation is an important early event in the signal transduction of numerous cell receptors involved in the immune response. The implication of protein tyrosine kinases in allergic asthma is well recognized, but the role of protein tyrosine phosphatases (PTPs) remains poorly understood. However, we recently reported that global inhibition of PTPs during either the allergen-sensitization phase or the allergen-challenge phase reduced the development of asthma and that this correlated with an increased T helper 1 (Th1) response in both lung and spleen tissues. Therefore, in this study we investigated individual roles of PTPs involved in regulating the immune response. We observed that genetic deficiency for PTP-1B resulted in increased recruitment of lung inflammatory cells, while protein tyrosine phosphatase-phosphatase and tensin homologue deleted (PTP-PEST)-deficient mice exhibited a phenotype similar to that of wild-type mice. Importantly, we found that a heterozygous mutation of T cell PTP (TC-PTP) dramatically abrogates immunoglobulin E production and reduces the recruitment of inflammatory cells to the lung, conferring an important role for TC-PTP in the development of allergic asthma. As opposed to other studies on Src homology phosphatase-1 (SHP-1) deficiency, specific acute SHP-1 inhibition during allergen challenge did not affect disease outcome. Collectively, our results underscore the importance of PTPs in the development of allergic asthma.
Collapse
Affiliation(s)
- Philippe Pouliot
- Department of Microbiology and Immunology, McGill University, Montréal, QC
| | | | | | | |
Collapse
|
18
|
The right team at the right time to go for a home run: tyrosine kinase activation by the TCR. Nat Immunol 2010; 11:101-4. [PMID: 20084063 DOI: 10.1038/ni0210-101] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The TCR signals via cytoplasmic tyrosine kinases. Art Weiss recounts discoveries that led to early understanding of these events.
Collapse
|
19
|
Patented natural avocado sugars modulate the HBD-2 expression in human keratinocytes through the involvement of protein kinase C and protein tyrosine kinases. Arch Dermatol Res 2009; 302:201-9. [PMID: 19760202 DOI: 10.1007/s00403-009-0991-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 07/30/2009] [Accepted: 08/07/2009] [Indexed: 12/20/2022]
Abstract
Skin keratinocytes constitute a protective mechanical barrier against invading microorganisms. Stimulated keratinocytes produce endogenous peptides such as the beta-defensins that have direct antimicrobial activity against a broad spectrum of pathogens, including most bacteria, certain fungi and enveloped viruses. In particular, human beta-defensin 2 (HBD-2) is virtually absent in normal skin and its expression in human keratinocytes requires stimulation by cytokines or bacteria. AV119, a patented avocado sugar, triggers the up-regulation of HBD-2, but the signalling mechanisms involved in this up-regulation in stimulated keratinocytes are not fully understood. In the present study, we examined the intracellular signalling pathways and nuclear responses in skin keratinocytes that contribute to HBD-2 gene expression upon stimulation with AV119. Our data provide information on signalling pathways in which the activation of protein tyrosine kinases (PTKs) and protein kinase C (PKC) takes place and leads to AP-1 and HBD-2 gene activation.
Collapse
|
20
|
Pouliot P, Camateros P, Radzioch D, Lambrecht BN, Olivier M. Protein tyrosine phosphatases regulate asthma development in a murine asthma model. THE JOURNAL OF IMMUNOLOGY 2009; 182:1334-40. [PMID: 19155479 DOI: 10.4049/jimmunol.182.3.1334] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Allergic asthma is a chronic inflammatory disease characterized by Th2-type inflammation. Although the cellular interactions are now well studied, the intracellular signaling involved in asthma development is still a developing field. Protein tyrosine kinases are one focus of such research and their inhibition shows improvement of asthmatic features. Interestingly, very little attention was given to protein tyrosine phosphatases (PTPs), the counterparts to protein tyrosine kinases, in the development of asthma. Previous studies from our laboratory showed that pharmacological inhibition of PTPs induced a transient Th1 response in the spleen. Therefore, we hypothesized that modulation of PTPs could influence asthma development. To assess PTP functions, we used the PTP inhibitor bis-peroxovanadium bpV(phen) in a murine model of asthma during either allergen sensitization or challenge. Inhibition of PTPs during allergen sensitization resulted in the reduction of key features of allergic asthma: serum IgE levels, lung tissue inflammation, eosinophilia, and airway hyperresponsiveness. Of utmost interest, PTP inhibition at allergen challenge resulted in a very similar improvement of asthmatic features. Of further importance, we observed that bpV(phen) treatment modulated cytokine expression in the spleen and, more specifically, favored Th1 cytokines while inhibiting Th2 cytokines. Collectively, we show for the first time that intact activity of PTPs is required for a complete induction of asthma in a mouse model. This clearly suggests that PTPs have a pivotal regulatory role in the development of asthmatic diseases, which opens the possibility of new therapeutic avenues.
Collapse
Affiliation(s)
- Philippe Pouliot
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
21
|
Hematopoietic protein tyrosine phosphatase mediates beta2-adrenergic receptor-induced regulation of p38 mitogen-activated protein kinase in B lymphocytes. Mol Cell Biol 2008; 29:675-86. [PMID: 19047375 DOI: 10.1128/mcb.01466-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stimulation of the beta(2)-adrenergic receptor (beta(2)AR) on a CD40L/interleukin-4-activated B lymphocyte increases the level of immunoglobulin E (IgE) in a protein kinase A (PKA)- and p38 mitogen-activated protein kinase (MAPK)-dependent manner. However, the mechanism by which beta(2)AR stimulation mediates the increase in the level of p38 MAPK activation has remained unclear. Here we show that the beta(2)AR-induced increase in p38 MAPK activation occurred via a hematopoietic protein tyrosine phosphatase (HePTP)-mediated cross talk between PKA and p38 MAPK. beta(2)AR agonists, cAMP-elevating agents, and PKA inhibitors were used to show that beta(2)AR stimulation resulted in a PKA-dependent increase in p38 MAPK phosphorylation. Pharmacological agents and gene-deficient mice revealed that p38 MAPK phosphorylation was regulated by the G-stimulatory (Gs)/cAMP/PKA pathway independently of the G-inhibitory or beta-arrestin-2 pathways. Coimmunoprecipitation and Western blot analysis showed that HePTP was phosphorylated in a PKA-dependent manner, which inactivated HePTP and allowed for increased free p38 MAPK to be phosphorylated by the MAPK cascade that was activated by CD40L. HePTP short hairpin RNA confirmed that HePTP played a role in regulating the level of p38 MAPK phosphorylation in a B cell. Thus, beta(2)AR stimulation on a B cell phosphorylates and inactivates HePTP in a Gs/cAMP/PKA-dependent manner to release bound p38 MAPK, making more available for phosphorylation and subsequent IgE regulation.
Collapse
|
22
|
Burkhardt AL, Bolen JB. Assessment of the effects of tyrosine protein kinase inhibitors. CURRENT PROTOCOLS IN IMMUNOLOGY 2008; Chapter 11:Unit 11.5. [PMID: 18432706 DOI: 10.1002/0471142735.im1105s07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The tyrosine protein kinases are enzymes that are important in cellular signal transduction. Therefore, inhibition of TPKs provides an important means of investigating and potentially controlling many signaling pathways. The first basic protocol in this unit describes an assay of the inhibitory effects of TPK inhibitors in vitro on a specific TPK that has been immune-precipitated from cell lysates. An assay of the effects of several TPK inhibitors on TPKs in vivo in activated cells is also provided. Although the example used here is a nonreceptor TPK, these protocols can be used to assay the effects of inhibitors on receptor TPKs as well.
Collapse
Affiliation(s)
- A L Burkhardt
- Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, New Jersey, USA
| | | |
Collapse
|
23
|
Michalek RD, Nelson KJ, Holbrook BC, Yi JS, Stridiron D, Daniel LW, Fetrow JS, King SB, Poole LB, Grayson JM. The requirement of reversible cysteine sulfenic acid formation for T cell activation and function. THE JOURNAL OF IMMUNOLOGY 2007; 179:6456-67. [PMID: 17982034 DOI: 10.4049/jimmunol.179.10.6456] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Reactive oxygen intermediates (ROI) generated in response to receptor stimulation play an important role in mediating cellular responses. We have examined the importance of reversible cysteine sulfenic acid formation in naive CD8(+) T cell activation and proliferation. We observed that, within minutes of T cell activation, naive CD8(+) T cells increased ROI levels in a manner dependent upon Ag concentration. Increased ROI resulted in elevated levels of cysteine sulfenic acid in the total proteome. Analysis of specific proteins revealed that the protein tyrosine phosphatases SHP-1 and SHP-2, as well as actin, underwent increased sulfenic acid modification following stimulation. To examine the contribution of reversible cysteine sulfenic acid formation to T cell activation, increasing concentrations of 5,5-dimethyl-1,3-cyclohexanedione (dimedone), which covalently binds to cysteine sulfenic acid, were added to cultures. Subsequent experiments demonstrated that the reversible formation of cysteine sulfenic acid was critical for ERK1/2 phosphorylation, calcium flux, cell growth, and proliferation of naive CD8(+) and CD4(+) T cells. We also found that TNF-alpha production by effector and memory CD8(+) T cells was more sensitive to the inhibition of reversible cysteine sulfenic acid formation than IFN-gamma. Together, these results demonstrate that reversible cysteine sulfenic acid formation is an important regulatory mechanism by which CD8(+) T cells are able to modulate signaling, proliferation, and function.
Collapse
Affiliation(s)
- Ryan D Michalek
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
STUDY DESIGN Human metastatic chordoma cells were isolated, and initial in vitro characterization was performed. Biochemical and physiologic changes were observed in response to pH, oxygen, and glucose. OBJECTIVE The extracellular microenvironment directly affects metastatic chordoma cell phenotype in vitro. SUMMARY OF BACKGROUND DATA Chordomas are primary bone tumors that usually occur in the spine or skull. Chordomas arise from embryonic notochordal remnants along the axial skeleton, most commonly the sacrum, followed by the base of the skull and the mobile spine. Due to a high degree of resistance to radiation and chemotherapy, chordomas eventually cause death by direct growth or by metastasizing to other organs. METHODS Extracellular pH, oxygen, and glucose levels in the culture medium were controlled, and cell response was assessed using MTT staining, SDS-PAGE, Western blotting, tandem mass spectrometry, TUNEL, immunofluorescence, and flow cytometry. RESULTS In this study, we present a new chordoma cell line established from metastatic tissue and novel data characterizing some aspects of chordoma cell phenotype in different conditions in vitro. Chordoma biologic markers were expressed in the new cell line. Alkaline pH dramatically increased intracellular protein tyrosine phosphorylation, metabolic activity, and albumin accumulation in the cells, while acidic pH caused apoptosis. CONCLUSION The level of proliferation, apoptosis, and tyrosine phosphorylation, as well as the overall protein expression profile, strongly depended on extracellular media pH and oxygen/glucose levels. Chordoma's preferred extracellular microenvironment in vitro was rather alkaline, with an optimum at pH 8.5, and apoptotic changes were induced at acidic pH. We found that bovine serum albumin was accumulated by chordoma cells from the incubation media, and this accumulation depended on extracellular pH, with the highest accumulation at alkaline pH.
Collapse
|
25
|
Cantrell DA, Graves JD, Izquierdo M, Lucas S, Downward J. T lymphocyte activation signals. CIBA FOUNDATION SYMPOSIUM 2007; 164:208-18; discussion 218-22. [PMID: 1395932 DOI: 10.1002/9780470514207.ch13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Activation of T lymphocytes results in immediate biochemical changes including increases in intracellular calcium levels, activation of protein kinase C (PKC) and changes in tyrosine phosphorylation. In T cells recent studies have indicated that activation of the guanine nucleotide-binding proteins p21ras is mediated by PKC, which suggests that the p21ras proteins may regulate intracellular signalling events downstream of PKC. The p21ras proteins can be activated in T cells by signals generated by triggering of the T cell antigen receptor (TCR), the CD2 antigen and the interleukin 2 receptor. Experiments using a PKC pseudosubstrate inhibitor indicate that PKC does not mediate TCR-induced activation of p21ras. These results imply that an alternative signal transduction pathway not involving PKC can regulate the activity of p21ras proteins in T cells.
Collapse
Affiliation(s)
- D A Cantrell
- Lymphocyte Activation Laboratory, Imperial Cancer Research Fund, London, UK
| | | | | | | | | |
Collapse
|
26
|
Abstract
The discovery that a single amino acid substitution in the PTPN22 protein tyrosine phosphatase can predispose to so many autoimmune diseases (see chapters 2 and 3), even when present in a single copy, raises many questions regarding the broader significance of this observation. Is there something unique about PTPN22 or are genetic variants of other protein tyrosine phosphatases likely also associated with autoimmune disease? If so, will polymorphisms in other phosphatases be found in the same spectrum of diseases? Are protein tyrosine phosphatases like PTPN22 good drug targets for the treatment of human autoimmunity? In this review, I offer some basis for thinking about these questions.
Collapse
Affiliation(s)
- Tomas Mustelin
- Program on Inflammatory Disease Research Infectious and Inflammatory Disease Center, The Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
27
|
Gelkop S, Gish GD, Babichev Y, Pawson T, Isakov N. T cell activation-induced CrkII binding to the Zap70 protein tyrosine kinase is mediated by Lck-dependent phosphorylation of Zap70 tyrosine 315. THE JOURNAL OF IMMUNOLOGY 2006; 175:8123-32. [PMID: 16339550 DOI: 10.4049/jimmunol.175.12.8123] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Zap70 protein tyrosine kinase controls TCR-linked signal transduction pathways and is critical for T cell development and responsiveness. Following engagement of TCR, the Zap70 undergoes phosphorylation on multiple tyrosine residues that are implicated in the regulation of its catalytic activity and interaction with signaling effector molecules downstream of the TCR. We have shown previously that the CT10 regulator of kinase II (CrkII) adapter protein interacts with tyrosine-phosphorylated Zap70 in TCR-engaged T cells, and now extend these studies to show that Tyr315 in the Zap70 interdomain B region is the site of interaction with CrkII. A point mutation of Tyr315 (Y315F) eliminated the CrkII-Zap70 interaction capacity. Phosphorylation of Tyr315 and Zap70 association with CrkII were both dependent upon the Lck protein tyrosine kinase. Previous studies demonstrated the Tyr315 is the Vav-Src homology 2 (SH2) binding site, and that replacement of Tyr315 by Phe impaired the function of Zap70 in TCR signaling. However, fluorescence polarization-based binding studies revealed that the CrkII-SH2 and the Vav-SH2 bind a phosphorylated Tyr315-Zap70-derived peptide with affinities of a similar order of magnitude (Kd of 2.5 and 1.02 microM, respectively). The results suggest therefore that the biological functions attributed to the association of Zap70 with Vav following T cell activation may equally reflect the association of Zap70 with CrkII, and further support a regulatory role for CrkII in the TCR-linked signal transduction pathway.
Collapse
Affiliation(s)
- Sigal Gelkop
- Department of Microbiology and Immunology, Faculty of Health Sciences, and the Cancer Research Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | | | | | | | | |
Collapse
|
28
|
Crippen TL. The selective inhibition of nitric oxide production in the avian macrophage cell line HD11. Vet Immunol Immunopathol 2005; 109:127-37. [PMID: 16214221 DOI: 10.1016/j.vetimm.2005.08.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 07/28/2005] [Accepted: 08/01/2005] [Indexed: 11/20/2022]
Abstract
The production of reactive nitrogen, nitric oxide (NO), has previously been demonstrated to be a major mechanism by which the innate immune system defends against microbial invasion. The induction of many antimicrobial mechanisms is regulated by numerous components during the transduction of the signal from the cell surface to the cell nucleus where response genes are upregulated. Toll-like cell surface receptor activation often leads to sequential modulation of protein tyrosine kinases (PTK), mitogen activated protein kinases (MAPK), degradation of I kappa B (IkappaB) regulatory molecules which, in turn, release the nuclear factor-kappa B (NF-kappaB) family proteins for translocation into the nucleus and subsequent gene transcription. The purpose of this study was to investigate components of the upstream signal transduction pathway induced by bacterial and viral-like stimulation of NO for antimicrobial defense by the transformed chicken macrophage cell line, HD11. We quantified the production of nitrite by chicken macrophages after exposure to selective pharmacological inhibitors of specific signal transduction components prior to stimulation by polyinosinic polycytidylic acid (poly I:C), formalin-fixed Enterococcus gallinarum (EG) or formalin-fixed Klebsiella pneumoniae (KP). We found that NO production induced by dsRNA or bacteria was reduced in a dose dependent manner by specific inhibitors of PTK, p38 MAPK, IkappaB, and NF-kappaB. Inhibition efficacy varied dependent on stimulation by bacterial or viral-like ligands. In general, NO production induced by bacterial stimulation was most effectively reduced by inhibition of p38 MAPK and least effectively reduced by inhibition of IkappaB. NF-kappaB and IkappaB inhibition affected NO production induced by dsRNA more than that induced by bacterial stimulation.
Collapse
Affiliation(s)
- Tawni L Crippen
- Southern Plains Area Research Center, Agricultural Research Service, United States Department of Agriculture, 2881 FandB Road, College Station, TX 77845, USA.
| |
Collapse
|
29
|
Selvaraj V, Bunick D, Finnigan-Bunick C, Johnson RW, Wang H, Liu L, Cooke PS. Gene Expression Profiling of 17β-Estradiol and Genistein Effects on Mouse Thymus. Toxicol Sci 2005; 87:97-112. [PMID: 15947025 DOI: 10.1093/toxsci/kfi219] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Estrogen regulates thymic development and involution and modulates immune function. Despite its critical role in thymus, as well as in autoimmune disorders, the mechanism by which estrogen affects the thymus is not well understood. We previously reported that the estrogenic soy isoflavone genistein, as well as 17beta-estradiol (E2), could induce thymic involution, but genistein effects were only partially mediated through estrogen receptors. To provide insights into mechanisms of estrogenic effects in the thymus, we investigated thymic gene expression changes induced by E2 (125 ng/day) and genistein (1500 ppm in feed) in weanling mice using high-density DNA arrays. We identified several E2-responsive genes involved in thymic development and thymocyte signaling during selection and maturation. Functional characterization indicated effects on genes involved in transcription, apoptosis, and the cell cycle. This study also identified changes in several E2-regulated transcripts essential to maintain immune self-tolerance. E2 upregulated more genes than genistein, while genistein downregulated more genes than E2. Though each treatment regulated several genes not altered by the other, there was considerable overlap in the genes regulated by E2 and genistein. Changes in transcription factors and cell cycle factors were consistent with decreases in cell proliferation induced by both genistein and E2. As indicated by the regulation of non-E2-responsive genes, genistein also induced unique effects through non-estrogenic mechanisms. The specific downregulation of the CD4 coreceptor transcript by genistein was consistent with the decline of CD4+ thymocytes in genistein-treated mice in our previous study. This is the first study identifying E2 and genistein target genes in the thymus. These findings provide new mechanistic insights toward explaining estrogen action on thymocyte development, selection, and maturation, as well as the effects of genistein on prenatal and neonatal thymic development and function.
Collapse
Affiliation(s)
- Vimal Selvaraj
- Department of Veterinary Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Rahmouni S, Vang T, Alonso A, Williams S, van Stipdonk M, Soncini C, Moutschen M, Schoenberger SP, Mustelin T. Removal of C-terminal SRC kinase from the immune synapse by a new binding protein. Mol Cell Biol 2005; 25:2227-41. [PMID: 15743820 PMCID: PMC1061611 DOI: 10.1128/mcb.25.6.2227-2241.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Csk tyrosine kinase negatively regulates the Src family kinases Lck and Fyn in T cells. Engagement of the T-cell antigen receptor results in a removal of Csk from the lipid raft-associated transmembrane protein PAG/Cbp. Instead, Csk becomes associated with an approximately 72-kDa tyrosine-phosphorylated protein, which we identify here as G3BP, a phosphoprotein reported to bind the SH3 domain of Ras GTPase-activating protein. G3BP reduced the ability of Csk to phosphorylate Lck at Y505 by decreasing the amount of Csk in lipid rafts. As a consequence, G3BP augmented T-cell activation as measured by interleukin-2 gene activation. Conversely, elimination of endogenous G3BP by RNA interference increased Lck Y505 phosphorylation and reduced TCR signaling. In antigen-specific T cells, endogenous G3BP moved into a intracellular location adjacent to the immune synapse, but deeper inside the cell, upon antigen recognition. Csk colocalization with G3BP occurred in this "parasynaptic" location. We conclude that G3BP is a new player in T-cell-antigen receptor signaling and acts to reduce the amount of Csk in the immune synapse.
Collapse
Affiliation(s)
- Souad Rahmouni
- Program of Inflammation, Infectious and Inflammatory Disease Center, and Program of Signal Transduction, Cancer Center, The Burnham Institute, 10901 North Torrey Pines Rd., La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Mustelin T, Vang T, Bottini N. Protein tyrosine phosphatases and the immune response. Nat Rev Immunol 2005; 5:43-57. [PMID: 15630428 DOI: 10.1038/nri1530] [Citation(s) in RCA: 263] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Reversible tyrosine phosphorylation of proteins is a key regulatory mechanism for numerous important aspects of eukaryotic physiology and is catalysed by kinases and phosphatases. Together, cells of the immune system express at least half of the 107 protein tyrosine phosphatase (PTP) genes in the human genome, most of which encode multidomain proteins that contain protein- and phospholipid-interaction domains. Here, we discuss the diverse but specific, and important, roles that PTPs have in immune cells, focusing mainly on T and B cells, and we highlight recent evidence that even subtle alterations in PTPs can cause immune dysfunction and human disease.
Collapse
Affiliation(s)
- Tomas Mustelin
- Program of Inflammation, Inflammatory and Infectious Disease Center, and Program of Signal Transduction, Cancer Center, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
32
|
Boufidou F, Nikolaou C, Alevizos B, Liappas IA, Christodoulou GN. Cytokine production in bipolar affective disorder patients under lithium treatment. J Affect Disord 2004; 82:309-13. [PMID: 15488263 DOI: 10.1016/j.jad.2004.01.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2003] [Revised: 01/16/2004] [Accepted: 01/20/2004] [Indexed: 11/19/2022]
Abstract
BACKGROUND Our knowledge concerning immune functioning in bipolar affective disorder (BAD) is limited, while lithium's immunomodulatory effects seem multiple and conflicting. Our aim was to evaluate cytokine production and lithium's effect on it in BAD patients, using ELISPOT technique as a sensitive tool. METHODS Cytokine (IL-2, IL-6, IL-10 and IFN-gamma) production from isolated peripheral blood lymphocytes (PBLs) was evaluated (ELISPOT technique) in 40 euthymic BAD patients under chronic lithium treatment, in 20 healthy volunteers, and in 10 never medicated BAD patients before and after the introduction of lithium therapy. In all cases, cytokine plasma levels were also measured using ELISA. RESULTS BAD patients under chronic lithium treatment had significantly lower numbers of IL-2, IL-6, IL-10 and IFN-gamma secreting cells compared to healthy volunteers. The number of cytokine secreting cells decreased in never medicated patients after 3 months of lithium treatment. In vitro stimulation of PBLs with lithium did not affect the number of cytokine secreting cells either in the patients or in the healthy volunteers. CONCLUSIONS The significantly lower number of PBLs producing cytokines (IL-2, IL-6, IL-10 and IFN-gamma) in euthymic BAD patients under chronic lithium treatment result from the long-term (over 3 months) lithium administration. In vitro stimulation of PBLs with lithium did not change the number of cytokine producing cells. Our findings may be useful in elucidating possible downregulatory effects of lithium in humans.
Collapse
Affiliation(s)
- Fotini Boufidou
- Department of Psychiatry, Eginition Hospital, Medical School, National University of Athens, 72-74 Vasilissis Sophias Avenue, Athens 115 28, Greece.
| | | | | | | | | |
Collapse
|
33
|
Deuse T, Schrepfer S, Schäfer H, Koch-Nolte F, Schwedhelm E, Böger RH, Reichenspurner H. FK778 Attenuates Lymphocyte-Endothelium Interaction After Cardiac Transplantation: In Vivo and In Vitro Studies. Transplantation 2004; 78:71-7. [PMID: 15257041 DOI: 10.1097/01.tp.0000128629.53843.14] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The malononitrilamide FK778 is a novel derivate of leflunomide and interacts with T- and B-cell function by inhibiting de novo pyrimidine synthesis. We investigated the effects of FK778 upon acute cardiac allograft rejection and upon adhesion molecule upregulation in experimental transplantation and by using in vitro cell culture. METHODS Heterotopic, abdominal cardiac transplantations were performed in the Brown Norway (BN) to Lewis (Lew) rat model. The study groups received daily low- or high-dose FK778 immunosuppression. FK778 plasma levels were quantified by HPLC. Grafts were harvested on the fifth postoperative day for histologic and immunohistologic examinations using computerized morphometry. Purified BN aortic endothelial cell cultures were pretreated with low- or high-dose FK778 according to FK778 plasma levels and were stimulated with tumor necrosis factor (TNF)-alpha. Adhesion molecule expression was quantified by immunofluorescence, FACS analysis, and Western blotting. Lymphocyte-endothelium adhesion assays were performed using purified Lew lymphocytes and radiolabeled TNF-alpha was used for receptor binding assays. RESULTS FK778 treatment dose-dependently reduced graft mononuclear infiltration of CD4(+), CD8(+), and ED1(+) cells, but only high-dose FK778 treatment significantly reduced early upregulation of ICAM-1 and VCAM-1 in vivo. FK778 also dose-dependently reduced TNF-alpha-stimulated endothelial adhesion molecule upregulation in vitro, whereas the effect on VCAM-1 was more dominant. We did not find evidence that FK778 interferes with surface receptor binding of TNF-alpha. Lymphocyte adhesion to endothelial cell monolayers was significantly attenuated by FK778. CONCLUSION Besides its inhibitory effect on pyrimidine synthesis, FK778 directly reduces endothelial adhesion molecule upregulation and attenuates lymphocyte-endothelium interaction, which is a critical step in graft rejection.
Collapse
Affiliation(s)
- Tobias Deuse
- Department of Cardiovascular Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Abraham RT, Weiss A. Jurkat T cells and development of the T-cell receptor signalling paradigm. Nat Rev Immunol 2004; 4:301-8. [PMID: 15057788 DOI: 10.1038/nri1330] [Citation(s) in RCA: 405] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Robert T Abraham
- Program in Signal Transduction Research at The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | |
Collapse
|
35
|
Wong WSF, Leong KP. Tyrosine kinase inhibitors: a new approach for asthma. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1697:53-69. [PMID: 15023350 DOI: 10.1016/j.bbapap.2003.11.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Accepted: 11/12/2003] [Indexed: 01/21/2023]
Abstract
The pathogenesis of allergic asthma involves the interplay of inflammatory cells and airway-resident cells, and of their secreted mediators including cytokines, chemokines, growth factors and inflammatory mediators. Receptor tyrosine kinases are important for the pathogenesis of airway remodeling. Activation of epidermal growth factor (EGF) receptor kinase and platelet-derived growth factor (PDGF) receptor kinase leads to hyperplasia of airway smooth muscle cells, epithelial cells and goblet cells. Stimulation of non-receptor tyrosine kinases (e.g. Lyn, Lck, Syk, ZAP-70, Fyn, Btk, Itk) is the earliest detectable signaling response upon antigen-induced immunoreceptor activation in inflammatory cells. Cytokine receptor dimerization upon ligand stimulation induces activation of Janus tyrosine kinases (JAKs), leading to recruitment and phosphorylation of signal transducer and activator of transcription (STAT) for selective gene expression regulation. Activation of chemokine receptors can trigger JAK-STAT pathway, Lck, Fyn, Lyn, Fgr, and Syk/Zap-70 to induce chemotaxis of inflammatory cells. Inhibitors of tyrosine kinases have been shown in vitro to block growth factor-induced hyperplasia of airway-resident cells; antigen-induced inflammatory cell activation and cytokine synthesis; cytokine-mediated pro-inflammatory gene expression in inflammatory and airway cells; and chemokine-induced chemotaxis of inflammatory cells. Recently, anti-inflammatory effects of tyrosine kinase inhibitors (e.g. genistein, tyrphostin AG213, piceatannol, tyrphostin AG490, WHI-P97, WHI-P131, Syk antisense) in animal models of allergic asthma have been reported. Therefore, development of inhibitors of tyrosine kinases can be a very attractive strategy for the treatment of asthma.
Collapse
Affiliation(s)
- W S Fred Wong
- Department of Pharmacology, Faculty of Medicine, National University of Singapore, MD2 18 Medical Drive, Singapore 117597, Singapore.
| | | |
Collapse
|
36
|
Mustelin T, Taskén K. Positive and negative regulation of T-cell activation through kinases and phosphatases. Biochem J 2003; 371:15-27. [PMID: 12485116 PMCID: PMC1223257 DOI: 10.1042/bj20021637] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2002] [Revised: 12/12/2002] [Accepted: 12/16/2002] [Indexed: 11/17/2022]
Abstract
The sequence of events in T-cell antigen receptor (TCR) signalling leading to T-cell activation involves regulation of a number of protein tyrosine kinases (PTKs) and the phosphorylation status of many of their substrates. Proximal signalling pathways involve PTKs of the Src, Syk, Csk and Tec families, adapter proteins and effector enzymes in a highly organized tyrosine-phosphorylation cascade. In intact cells, tyrosine phosphorylation is rapidly reversible and generally of a very low stoichiometry even under induced conditions due to the fact that the enzymes removing phosphate from tyrosine-phosphorylated substrates, the protein tyrosine phosphatases (PTPases), have a capacity that is several orders of magnitude higher than that of the PTKs. It follows that a relatively minor change in the PTK/PTPase balance can have a major impact on net tyrosine phosphorylation and thereby on activation and proliferation of T-cells. This review focuses on the involvement of PTKs and PTPases in positive and negative regulation of T-cell activation, the emerging theme of reciprocal regulation of each type of enzyme by the other, as well as regulation of phosphotyrosine turnover by Ser/Thr phosphorylation and regulation of localization of signal components.
Collapse
Affiliation(s)
- Tomas Mustelin
- Program of Signal Transduction, Cancer Center, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
37
|
Abstract
The last decade has seen an exponentially increasing interest in the molecular mechanisms of signal transduction. In T cells, much of the focus has been on protein tyrosine kinase (PTK)-mediated signaling from the T cell receptor (TCR) and cytokine receptors, while the study of protein tyrosine phosphatases (PTPases) has lagged behind. However, recent discoveries have revealed that several PTPases play important roles in many different aspects of T cell physiology. We predict that the phosphatases will become a 'hot topic' in the field within the next few years. This review summarizes the current understanding of the regulation and biology of PTPases in T lymphocyte activation.
Collapse
Affiliation(s)
- Tomas Mustelin
- Program of Signal Transduction, Cancer Research Center, The Burnham Institute, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
38
|
Duan W, Kuo IC, Selvarajan S, Chua KY, Bay BH, Wong WSF. Antiinflammatory effects of genistein, a tyrosine kinase inhibitor, on a guinea pig model of asthma. Am J Respir Crit Care Med 2003; 167:185-92. [PMID: 12406820 DOI: 10.1164/rccm.200205-420oc] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Protein tyrosine kinase signaling cascade plays a pivotal role in the activation of inflammatory cells. The purpose of this study was to investigate the effects of genistein, a broad-spectrum protein tyrosine kinase inhibitor, on airway inflammation in an in vivo guinea pig model of asthma. Guinea pigs were actively sensitized by intraperitoneal injections of ovalbumin. Aerosolized ovalbumin induced acute bronchoconstriction in conscious animals in a dose-dependent manner. Genistein (15 mg/kg given intraperitoneally) markedly inhibited ovalbumin-induced, but not histamine- and methacholine-induced, acute bronchoconstriction. In addition, genistein significantly reduced ovalbumin-induced increases in total cell counts and eosinophils recovered in bronchoalveolar lavage fluid, airway eosinophilia, and eosinophil peroxidase activity in cell-free bronchoalveolar lavage fluid and markedly attenuated ovalbumin-induced airway hyperresponsiveness to inhaled methacholine. Immunoblot analysis of lung lysates isolated from genistein-pretreated animals showed that epidermal growth factor-induced tyrosine phosphorylation in lung tissues was inhibited by genistein. These results implicate that inhibition of tyrosine kinase signaling cascade may have therapeutic potential for allergic airway inflammation.
Collapse
Affiliation(s)
- Wei Duan
- Department of Pharmacology, Faculty of Medicine, National University of Singapore, Republic of Singapore
| | | | | | | | | | | |
Collapse
|
39
|
Alonso A, Rahmouni S, Williams S, van Stipdonk M, Jaroszewski L, Godzik A, Abraham RT, Schoenberger SP, Mustelin T. Tyrosine phosphorylation of VHR phosphatase by ZAP-70. Nat Immunol 2003; 4:44-8. [PMID: 12447358 DOI: 10.1038/ni856] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2002] [Accepted: 10/01/2002] [Indexed: 11/09/2022]
Abstract
The ZAP-70 tyrosine kinase is a key component of the signaling machinery for the T cell antigen receptor (TCR). Whereas recruitment and activation of ZAP-70 are relatively well understood, the proteins phosphorylated by ZAP-70 are incompletely known. We report here that VHR, a Vaccinia virus VH1-related dual-specific protein phosphatase that inactivates the mitogen-activated kinases Erk2 and Jnk, is phosphorylated at Y138 by ZAP-70. Tyr138 phosphorylation was required for VHR to inhibit the Erk2-Elk-1 pathway and, conversely, the VHR(Y138F) mutant augmented TCR-induced Erk2 kinase and activation of the gene encoding interleukin 2. These results suggest that VHR is a target for ZAP-70 and tempers activation of the Erk2 pathway in a ZAP-70-controlled manner.
Collapse
Affiliation(s)
- Andres Alonso
- Program of Signal Transduction, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Harriague J, Bismuth G. Imaging antigen-induced PI3K activation in T cells. Nat Immunol 2002; 3:1090-6. [PMID: 12389041 DOI: 10.1038/ni847] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2002] [Accepted: 08/27/2002] [Indexed: 01/04/2023]
Abstract
Activation of phosphoinositide 3-kinase (PI3K) at the immunological synapse between a T cell and an antigen-presenting cell (APC) has not been demonstrated. Using fluorescent-specific probes, we show here that the formation of an immunological synapse led to sustained production of 3'-phosphoinositides in the T cell, whereby phosphatidylinositol-3,4,5-trisphosphate (PIP3) but not phosphatidylinositol-3,4-bisphosphate was localized to the cell membrane. The accumulation of PIP3 after T cell activation preceded the increase in intracellular calcium. Neither the formation of conjugates between T cells and APCs nor signaling events such as phosphotyrosine accumulation and calcium increase changed substantially when PI3K was inhibited, and only a limited reduction in synthesis of interleukin 2 occurred. In T cell-APC conjugates, PIP3 accumulated at the T cell-APC synapse as well as in the rest of the T cell plasma membrane, which indicated unusual regulation of PI3K activity during antigen presentation.
Collapse
Affiliation(s)
- Julie Harriague
- Département de Biologie Cellulaire, Institut Cochin, INSERM U567, CNRS UMR 7627, Université René Descartes, 22 rue Méchain, 75014 Paris, France
| | | |
Collapse
|
41
|
Koike K, Kogawa K, Takayama T, Yoshizaki N, Muramatsu H, Nakamura K, Sakamaki S, Niitsu Y. Enhanced expression of type IV collagen-binding protein (p29) in Fyn-transfected murine fibrosarcoma cells. Jpn J Cancer Res 2002; 93:1090-9. [PMID: 12417038 PMCID: PMC5926876 DOI: 10.1111/j.1349-7006.2002.tb01210.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We investigated the mechanism of the enhancement of metastatic potential induced by transfection of the fyn gene, a member of the src family. We employed two murine fyn cDNA-transfected clones, ML-SN1 and ML-SN2, which were previously established from an ML-01 low-metastatic clone of Meth A sarcoma of BALB / c mice and were proven to have higher metastatic ability than ML-01 and the mock-transfected clone ML-MT-neo (Takayama et al., 1993). Our present investigation revealed that the two transfectants showed higher metastatic ability and higher rates of adherence to type IV collagen than ML-MT-neo. However, no difference was found in in vitro or in vivo growth rates, attachment to laminin or endothelial cells or cell motility through a reconstituted basement membrane. Analysis of surface membrane proteins labeled with (125)I on SDS-PAGE showed that a 29 kD band specifically bound to type IV collagen-coupled beads was more intense in ML-SN2 than in ML-MT-neo. Genistein, a protein tyrosine kinase inhibitor, dramatically reduced protein tyrosine kinase (PTK) activity of ML-SN2 in a dose-dependent fashion, corresponding to the reduction of adhesiveness to type IV collagen. The expression of the type IV collagen-binding protein (p29) of ML-SN2 was also reduced significantly by genistein treatment. These results suggested that the fyn product in Meth A cells augments the expression of a type IV collagen-binding protein through elevation of the PTK activity of the membrane fraction and thus facilitates the metastasis of Meth A.
Collapse
Affiliation(s)
- Kazuhiko Koike
- The Fourth Department of Internal Medicine, Sapporo Medical University School of Medicine, South-1 West-16, Chuo-ku, Sapporo 060-8543, Japan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Ras plays an important role in T cell signal transduction through multiple pathways. Here, we demonstrate that, upon stimulation, increasing Ras activity partially substitutes for calcium-mediated signals leading to IL-2 induction. The increase of Ras activity renders Jurkat cells the resistant to cyclosporin A (CsA) through increasing calcineurin activity. Coincidentally, the inducible binding of NIL-2 to a negative-regulatory element in the IL-2 promoter becomes less sensitive to CsA in the cells with increasing Ras activity. The dose of CsA required for inhibition of IL-2 induction in the cells with increased Ras activity remains similar to the concentration of CsA needed for the suppression of NFAT activation in control cells. The results suggest that Ras regulates calcium/calcineurin signalling during T cell activation and the existence of new immune-related target(s) for CsA action at the posttranscriptional level.
Collapse
Affiliation(s)
- Peihong Ma
- Cancer Research Center, R908, Boston University School of Medicine, 80 E. Concord Street, Boston, MA 02118, USA
| | | | | | | |
Collapse
|
43
|
Bottini N, Stefanini L, Williams S, Alonso A, Jascur T, Abraham RT, Couture C, Mustelin T. Activation of ZAP-70 through specific dephosphorylation at the inhibitory Tyr-292 by the low molecular weight phosphotyrosine phosphatase (LMPTP). J Biol Chem 2002; 277:24220-4. [PMID: 11976341 DOI: 10.1074/jbc.m202885200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ZAP-70 protein-tyrosine kinase plays a central role in signaling from the T cell antigen receptor. Recruitment and activation of ZAP-70 are transient and are terminated by phosphorylation of negative regulatory tyrosine residues and dephosphorylation of positively acting sites. We report that the low molecular weight protein-tyrosine phosphatase (LMPTP) specifically dephosphorylates the negative regulatory Tyr-292 of ZAP-70, thereby counteracting inactivation of ZAP-70. Expression of low levels of LMPTP resulted in increased ZAP-70 phosphorylation, presumably at the activating Tyr-493 and other sites, increased kinase activity, and augmented downstream signaling to the mitogen-activated protein kinase pathway. The ZAP-70 Y292F mutant was not affected by LMPTP. Our results indicate that LMPTP, like CD45, dephosphorylates a negative regulatory tyrosine site in a protein-tyrosine kinase and thereby strengthens T cell receptor signaling.
Collapse
Affiliation(s)
- Nunzio Bottini
- Program of Signal Transduction, La Jolla Cancer Research Center, The Burnham Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Kanazawa H, Ohsawa K, Sasaki Y, Kohsaka S, Imai Y. Macrophage/microglia-specific protein Iba1 enhances membrane ruffling and Rac activation via phospholipase C-gamma -dependent pathway. J Biol Chem 2002; 277:20026-32. [PMID: 11916959 DOI: 10.1074/jbc.m109218200] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Iba1 is a macrophage/microglia-specific calcium-binding protein that is involved in RacGTPase-dependent membrane ruffling and phagocytosis. In this study, we introduced Iba1 into Swiss 3T3 fibroblasts and demonstrated the enhancement of platelet-derived growth factor (PDGF)-induced membrane ruffling and chemotaxis. Wortmannin treatment did not completely suppressed this enhanced membrane ruffling in Iba1-expressing cells, whereas it did in Iba1-nonexpressing cells, suggesting that the enhancement is mediated through a phosphatidylinositol 3-kinase (PI3K)-independent signaling pathway. Porcine aorta endothelial cells transfected with expression constructs of Iba1 and PDGF receptor add-back mutants were used to analyze the signaling pathway responsible for the Iba1-induced enhancement of membrane ruffling. In the absence of Iba1 expression, PDGF did not induced membrane ruffling in cells expressing the Tyr-1021 receptor mutant, which is capable of activating phospholipase C-gamma (PLC-gamma) but not PI3K. In contrast, in the presence of Iba1 expression, membrane ruffling was formed in cells expressing the Tyr-1021 mutant. In addition, Rac was shown to be activated during membrane ruffling in cells expressing Iba1 and the Tyr-1021 mutant. Furthermore, dominant negative forms of PLC-gamma completely suppressed PDGF-induced Iba1-dependent membrane ruffling and Rac activation. These results indicate the existence of a novel signaling pathway where PLC-gamma activates Rac in a manner dependent on Iba1.
Collapse
Affiliation(s)
- Hiroko Kanazawa
- Department of Neurochemistry, National Institute of Neuroscience, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan
| | | | | | | | | |
Collapse
|
45
|
Yellayi S, Naaz A, Szewczykowski MA, Sato T, Woods JA, Chang J, Segre M, Allred CD, Helferich WG, Cooke PS. The phytoestrogen genistein induces thymic and immune changes: a human health concern? Proc Natl Acad Sci U S A 2002; 99:7616-21. [PMID: 12032332 PMCID: PMC124301 DOI: 10.1073/pnas.102650199] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2001] [Indexed: 11/18/2022] Open
Abstract
Use of soy-based infant formulas and soy/isoflavone supplements has aroused concern because of potential estrogenic effects of the soy isoflavones genistein and daidzein. Here we show that s.c. genistein injections in ovariectomized adult mice produced dose-responsive decreases in thymic weight of up to 80%. Genistein's thymic effects occurred through both estrogen receptor (ER) and non-ER-mediated mechanisms, as the genistein effects on thymus were only partially blocked by the ER antagonist ICI 182,780. Genistein decreased thymocyte numbers up to 86% and doubled apoptosis, indicating that the mechanism of the genistein effect on loss of thymocytes is caused in part by increased apoptosis. Genistein injection caused decreases in relative percentages of thymic CD4(+)CD8(-) and double-positive CD4(+)CD8(+) thymocytes, providing evidence that genistein may affect early thymocyte maturation and the maturation of the CD4(+)CD8(-) helper T cell lineage. Decreases in the relative percentages of CD4(+)CD8(-) thymocytes were accompanied by decreases in relative percentages of splenic CD4(+)CD8(-) cells and a systemic lymphocytopenia. In addition, genistein produced suppression of humoral immunity. Genistein injected at 8 mg/kg per day produced serum genistein levels comparable to those reported in soy-fed human infants, and this dose caused significant thymic and immune changes in mice. Critically, dietary genistein at concentrations that produced serum genistein levels substantially less than those in soy-fed infants produced marked thymic atrophy. These results raise the possibility that serum genistein concentrations found in soy-fed infants may be capable of producing thymic and immune abnormalities, as suggested by previous reports of immune impairments in soy-fed human infants.
Collapse
Affiliation(s)
- Srikanth Yellayi
- Department of Veterinary Biosciences, University of Illinois, Urbana, IL 61802, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Yablonski D, Weiss A. Mechanisms of signaling by the hematopoietic-specific adaptor proteins, SLP-76 and LAT and their B cell counterpart, BLNK/SLP-65. Adv Immunol 2002; 79:93-128. [PMID: 11680012 DOI: 10.1016/s0065-2776(01)79003-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Adaptor proteins lack catalytic activity and contain only protein-protein interaction domains. They have been shown to interact with an ever-growing number of signaling proteins and to play essential roles in many signaling pathways. SLP-76 and LAT are cell-type-specific adaptor proteins expressed in T cells, NK cells, platelets, and mast cells. In these cell types, SLP-76 and LAT are required for signaling by immunoreceptor tyrosine-based activation motif(ITAM)-containing receptors, including the T cell receptor (TCR), the pre-TCR, the high-affinity Fc epsilon receptor, and the platelet GPVI collagen receptor. In B cells, an analogous adaptor, BLNK/SLP-65, is required for signaling by the ITAM-containing B cell receptor. This review summarizes recent research on SLP-76, LAT, and BLNK. A major challenge in understanding adaptor protein function has been to sort out the many interactions mediated by adaptor proteins and to define the mechanisms by which adaptors mediate critical signaling events. In the case of LAT, SLP-76, and BLNK, the availability of tractable genetic systems, deficient in expression of each of these adaptor proteins, has facilitated in-depth investigation of their signaling functions and mechanisms of action. The picture that has emerged is one in which multiple adaptor proteins cooperate to bring about the formation of a large signaling complex, localized to specialized lipid microdomains within the cell membrane and known as GEMs. Adaptors not only recruit signaling proteins, but also play an active role in regulating the conformation and activation of many of the proteins recruited to the complex. In particular, recent research has shed light on the mechanisms by which multiple adaptor proteins cooperate to bring about the recruitment and activation of phospholipase C gamma in response to the activation of ITAM-containing receptors.
Collapse
Affiliation(s)
- D Yablonski
- Department of Pharmacology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Bat Galim, Haifa 31096, Israel
| | | |
Collapse
|
47
|
Shen R, Ouyang YB, Qu CK, Alonso A, Sperzel L, Mustelin T, Kaplan MH, Feng GS. Grap negatively regulates T-cell receptor-elicited lymphocyte proliferation and interleukin-2 induction. Mol Cell Biol 2002; 22:3230-6. [PMID: 11971956 PMCID: PMC133801 DOI: 10.1128/mcb.22.10.3230-3236.2002] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Grb-2-related adaptor protein (Grap) is a Grb2-like SH3-SH2-SH3 adaptor protein with expression restricted to lymphoid tissues. Grap(-/-) lymphocytes isolated from targeted Grap-deficient mice exhibited enhanced proliferation, interleukin-2 production, and c-fos induction in response to mitogenic T-cell receptor (TCR) stimulation, compared to wild-type cells. Ectopic expression of Grap led to a suppression of Elk-1-directed transcription induced by the Ras/Erk pathway, without having effects on gene expression mediated by Jnk and p38 mitogen-activated protein kinases. Together, these data suggest that Grap, unlike Grb2, acts as a negative regulator of TCR-stimulated intracellular signaling by downregulating signal relay through the Ras/Erk pathway.
Collapse
Affiliation(s)
- Randy Shen
- Program in Signal Transduction Research, The Burnham Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Watanabe D, Hashimoto S, Ishiai M, Matsushita M, Baba Y, Kishimoto T, Kurosaki T, Tsukada S. Four tyrosine residues in phospholipase C-gamma 2, identified as Btk-dependent phosphorylation sites, are required for B cell antigen receptor-coupled calcium signaling. J Biol Chem 2001; 276:38595-601. [PMID: 11507089 DOI: 10.1074/jbc.m103675200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of phospholipase C-gamma2 (PLCgamma2) is the critical step in B cell antigen receptor (BCR)-coupled calcium signaling. Although genetic dissection experiments on B cells have demonstrated that Bruton's tyrosine kinase (Btk) and Syk are required for activating PLCgamma2, the exact activation mechanism of PLCgamma2 by these kinases has not been established. We identify the tyrosine residues 753, 759, 1197, and 1217 in rat PLCgamma2 as Btk-dependent phosphorylation sites by using an in vitro kinase assay. To evaluate the role of these tyrosine residues in phosphorylation-dependent activation of PLCgamma2, PLCgamma2-deficient DT40 cells were reconstituted with a series of mutant PLCgamma2s in which the phenylalanine was substituted for tyrosine. Substitution of all four tyrosine residues almost completely eliminated the BCR-induced PLCgamma2 phosphorylation, indicating that these residues include the major phosphorylation sites upon BCR engagement. Cells expressing PLCgamma2 with a single substitution exhibited some extent of reduction in calcium mobilization, whereas those expressing quadruple mutant PLCgamma2 showed greatly reduced calcium response. These findings indicate that the phosphorylations of the tyrosine residues 753, 759, 1197, and 1217, which have been identified as Btk-dependent phosphorylation sites in vitro, coordinately contribute to BCR-induced activation of PLCgamma2.
Collapse
Affiliation(s)
- D Watanabe
- Osaka University Medical School, Department of Molecular Medicine, 2-2 Yamada-oka, Suita City, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Nakamura H, Zarycki J, Sullivan JL, Jung JU. Abnormal T cell receptor signal transduction of CD4 Th cells in X-linked lymphoproliferative syndrome. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:2657-65. [PMID: 11509608 DOI: 10.4049/jimmunol.167.5.2657] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The molecular basis of X-linked lymphoproliferative (XLP) disease has been attributed to mutations in the signaling lymphocytic activation molecule-associated protein (SAP), an src homology 2 domain-containing intracellular signaling molecule known to interact with the lymphocyte-activating surface receptors signaling lymphocytic activation molecule and 2B4. To investigate the effect of SAP defects on TCR signal transduction, herpesvirus saimiri-immortalized CD4 Th cells from XLP patients and normal healthy individuals were examined for their response to TCR stimulation. CD4 T cells of XLP patients displayed elevated levels of tyrosine phosphorylation compared with CD4 T cells from healthy individuals. In addition, downstream serine/threonine kinases are constitutively active in CD4 T cells of XLP patients. In contrast, TCR-mediated activation of Akt, c-Jun-NH(2)-terminal kinases, and extracellular signal-regulated kinases in XLP CD4 T cells was transient and rapidly diminished when compared with that in control CD4 T cells. Consequently, XLP CD4 T cells exhibited severe defects in up-regulation of IL-2 and IFN-gamma cytokine production upon TCR stimulation and in MLRs. Finally, SAP specifically interacted with a 75-kDa tyrosine-phosphorylated protein upon TCR stimulation. These results demonstrate that CD4 T cells from XLP patients exhibit aberrant TCR signal transduction and that the defect in SAP function is likely responsible for this phenotype.
Collapse
Affiliation(s)
- H Nakamura
- Department of Microbiology and Molecular Genetics, New England Regional Primate Research Center, Harvard Medical School, Southborough, MA 01772, USA
| | | | | | | |
Collapse
|
50
|
Abstract
BACKGROUND Studies suggest that lithium may have profound immunomodulatory effects in animal models as well as in humans. METHODS In this study, whole blood cultures from normal control subjects were established for 5 days and the effects of lithium on cytokine production were investigated. Because many of lithium's actions have been postulated to be modulated through phosphoinositide (PI), protein kinase C (PKC) and cyclic adenosine monophosphate (c-AMP) signaling pathways, the effects of myo-inositol and prostaglandin E(2), alone or in combination with lithium, were also investigated. RESULTS We found that lithium caused an increase in interleukin-4 and interleukin-10 levels, traditionally classified as T-helper lymphocyte type-2 cytokines, and a decrease in interleukin-2 and interferon-gamma levels, traditionally classified as T-helper lymphocyte type-1 (TH-1) cytokines. This shift cannot be fully explained by lithium's actions on the PI, PKC, or c-AMP messenger systems. CONCLUSIONS Monocytes exposed to lithium in the presence of a mitogen for 5 days produced a shift toward the production of TH-2 cytokines and away from the production of TH-1 cytokines. The study suggests that lithium may have complex time-dependent effects on immune function.
Collapse
Affiliation(s)
- M H Rapaport
- Psychopharmacology Research Program, Department of Psychiatry, University of California, San Diego, California 92037, USA
| | | |
Collapse
|