1
|
Kuo A, Hla T. Regulation of cellular and systemic sphingolipid homeostasis. Nat Rev Mol Cell Biol 2024; 25:802-821. [PMID: 38890457 DOI: 10.1038/s41580-024-00742-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 06/20/2024]
Abstract
One hundred and fifty years ago, Johann Thudichum described sphingolipids as unusual "Sphinx-like" lipids from the brain. Today, we know that thousands of sphingolipid molecules mediate many essential functions in embryonic development and normal physiology. In addition, sphingolipid metabolism and signalling pathways are dysregulated in a wide range of pathologies, and therapeutic agents that target sphingolipids are now used to treat several human diseases. However, our understanding of sphingolipid regulation at cellular and organismal levels and their functions in developmental, physiological and pathological settings is rudimentary. In this Review, we discuss recent advances in sphingolipid pathways in different organelles, how secreted sphingolipid mediators modulate physiology and disease, progress in sphingolipid-targeted therapeutic and diagnostic research, and the trans-cellular sphingolipid metabolic networks between microbiota and mammals. Advances in sphingolipid biology have led to a deeper understanding of mammalian physiology and may lead to progress in the management of many diseases.
Collapse
Affiliation(s)
- Andrew Kuo
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Wilkerson JL, Tatum SM, Holland WL, Summers SA. Ceramides are fuel gauges on the drive to cardiometabolic disease. Physiol Rev 2024; 104:1061-1119. [PMID: 38300524 PMCID: PMC11381030 DOI: 10.1152/physrev.00008.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/02/2024] Open
Abstract
Ceramides are signals of fatty acid excess that accumulate when a cell's energetic needs have been met and its nutrient storage has reached capacity. As these sphingolipids accrue, they alter the metabolism and survival of cells throughout the body including in the heart, liver, blood vessels, skeletal muscle, brain, and kidney. These ceramide actions elicit the tissue dysfunction that underlies cardiometabolic diseases such as diabetes, coronary artery disease, metabolic-associated steatohepatitis, and heart failure. Here, we review the biosynthesis and degradation pathways that maintain ceramide levels in normal physiology and discuss how the loss of ceramide homeostasis drives cardiometabolic pathologies. We highlight signaling nodes that sense small changes in ceramides and in turn reprogram cellular metabolism and stimulate apoptosis. Finally, we evaluate the emerging therapeutic utility of these unique lipids as biomarkers that forecast disease risk and as targets of ceramide-lowering interventions that ameliorate disease.
Collapse
Affiliation(s)
- Joseph L Wilkerson
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Sean M Tatum
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - William L Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
3
|
Agrawal B, Boulos S, Khatib S, Feuermann Y, Panov J, Kaphzan H. Molecular Insights into Transcranial Direct Current Stimulation Effects: Metabolomics and Transcriptomics Analyses. Cells 2024; 13:205. [PMID: 38334596 PMCID: PMC10854682 DOI: 10.3390/cells13030205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
INTRODUCTION Transcranial direct current stimulation (tDCS) is an evolving non-invasive neurostimulation technique. Despite multiple studies, its underlying molecular mechanisms are still unclear. Several previous human studies of the effect of tDCS suggest that it generates metabolic effects. The induction of metabolic effects by tDCS could provide an explanation for how it generates its long-term beneficial clinical outcome. AIM Given these hints of tDCS metabolic effects, we aimed to delineate the metabolic pathways involved in its mode of action. METHODS To accomplish this, we utilized a broad analytical approach of co-analyzing metabolomics and transcriptomic data generated from anodal tDCS in rat models. Since no metabolomic dataset was available, we performed a tDCS experiment of bilateral anodal stimulation of 200 µA for 20 min and for 5 consecutive days, followed by harvesting the brain tissue below the stimulating electrode and generating a metabolomics dataset using LC-MS/MS. The analysis of the transcriptomic dataset was based on a publicly available dataset. RESULTS Our analyses revealed that tDCS alters the metabolic profile of brain tissue, affecting bioenergetic-related pathways, such as glycolysis and mitochondrial functioning. In addition, we found changes in calcium-related signaling. CONCLUSIONS We conclude that tDCS affects metabolism by modulating energy production-related processes. Given our findings concerning calcium-related signaling, we suggest that the immediate effects of tDCS on calcium dynamics drive modifications in distinct metabolic pathways. A thorough understanding of the underlying molecular mechanisms of tDCS has the potential to revolutionize its applicability, enabling the generation of personalized medicine in the field of neurostimulation and thus contributing to its optimization.
Collapse
Affiliation(s)
- Bhanumita Agrawal
- Sagol Department of Neurobiology, University of Haifa, Haifa 3103301, Israel
| | - Soad Boulos
- Sagol Department of Neurobiology, University of Haifa, Haifa 3103301, Israel
| | - Soliman Khatib
- Department of Biotechnology, Tel-Hai College, Upper Galilee 1220800, Israel
| | - Yonatan Feuermann
- Sagol Department of Neurobiology, University of Haifa, Haifa 3103301, Israel
| | - Julia Panov
- Sagol Department of Neurobiology, University of Haifa, Haifa 3103301, Israel
- Tauber Bioinformatics Research Center, University of Haifa, Haifa 3103301, Israel
| | - Hanoch Kaphzan
- Sagol Department of Neurobiology, University of Haifa, Haifa 3103301, Israel
- Tauber Bioinformatics Research Center, University of Haifa, Haifa 3103301, Israel
| |
Collapse
|
4
|
Masuda-Kuroki K, Alimohammadi S, Di Nardo A. The Role of Sphingolipids and Sphingosine-1-phosphate-Sphingosine-1-phosphate-receptor Signaling in Psoriasis. Cells 2023; 12:2352. [PMID: 37830566 PMCID: PMC10571972 DOI: 10.3390/cells12192352] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
Psoriasis is a long-lasting skin condition characterized by redness and thick silver scales on the skin's surface. It involves various skin cells, including keratinocytes, dendritic cells, T lymphocytes, and neutrophils. The treatments for psoriasis range from topical to systemic therapies, but they only alleviate the symptoms and do not provide a fundamental cure. Moreover, systemic treatments have the disadvantage of suppressing the entire body's immune system. Therefore, a new treatment strategy with minimal impact on the immune system is required. Recent studies have shown that sphingolipid metabolites, particularly ceramide and sphingosine-1-phosphate (S1P), play a significant role in psoriasis. Specific S1P-S1P-receptor (S1PR) signaling pathways have been identified as crucial to psoriasis inflammation. Based on these findings, S1PR modulators have been investigated and have been found to improve psoriasis inflammation. This review will discuss the metabolic pathways of sphingolipids, the individual functions of these metabolites, and their potential as a new therapeutic approach to psoriasis.
Collapse
Affiliation(s)
| | | | - Anna Di Nardo
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (K.M.-K.); (S.A.)
| |
Collapse
|
5
|
Jiang ZJ, Gong LW. The SphK1/S1P Axis Regulates Synaptic Vesicle Endocytosis via TRPC5 Channels. J Neurosci 2023; 43:3807-3824. [PMID: 37185099 PMCID: PMC10217994 DOI: 10.1523/jneurosci.1494-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Sphingosine-1-phosphate (S1P), a bioactive sphingolipid concentrated in the brain, is essential for normal brain functions, such as learning and memory and feeding behaviors. Sphingosine kinase 1 (SphK1), the primary kinase responsible for S1P production in the brain, is abundant within presynaptic terminals, indicating a potential role of the SphK1/S1P axis in presynaptic physiology. Altered S1P levels have been highlighted in many neurologic diseases with endocytic malfunctions. However, it remains unknown whether the SphK1/S1P axis may regulate synaptic vesicle endocytosis in neurons. The present study evaluates potential functions of the SphK1/S1P axis in synaptic vesicle endocytosis by determining effects of a dominant negative catalytically inactive SphK1. Our data for the first time identify a critical role of the SphK1/S1P axis in endocytosis in both neuroendocrine chromaffin cells and neurons from mice of both sexes. Furthermore, our Ca2+ imaging data indicate that the SphK1/S1P axis may be important for presynaptic Ca2+ increases during prolonged stimulations by regulating the Ca2+ permeable TRPC5 channels, which per se regulate synaptic vesicle endocytosis. Collectively, our data point out a critical role of the regulation of TRPC5 by the SphK1/S1P axis in synaptic vesicle endocytosis.SIGNIFICANCE STATEMENT Sphingosine kinase 1 (SphK1), the primary kinase responsible for brain sphingosine-1-phosphate (S1P) production, is abundant within presynaptic terminals. Altered SphK1/S1P metabolisms has been highlighted in many neurologic disorders with defective synaptic vesicle endocytosis. However, whether the SphK1/S1P axis may regulate synaptic vesicle endocytosis is unknown. Here, we identify that the SphK1/S1P axis regulates the kinetics of synaptic vesicle endocytosis in neurons, in addition to controlling fission-pore duration during single vesicle endocytosis in neuroendocrine chromaffin cells. The regulation of the SphK1/S1P axis in synaptic vesicle endocytosis is specific since it has a distinguished signaling pathway, which involves regulation of Ca2+ influx via TRPC5 channels. This discovery may provide novel mechanistic implications for the SphK1/S1P axis in brain functions under physiological and pathologic conditions.
Collapse
Affiliation(s)
- Zhong-Jiao Jiang
- Department of Biological Sciences, University of Illinois Chicago, Chicago, Illinois 60607
| | - Liang-Wei Gong
- Department of Biological Sciences, University of Illinois Chicago, Chicago, Illinois 60607
| |
Collapse
|
6
|
Leal AF, Suarez DA, Echeverri-Peña OY, Albarracín SL, Alméciga-Díaz CJ, Espejo-Mojica ÁJ. Sphingolipids and their role in health and disease in the central nervous system. Adv Biol Regul 2022; 85:100900. [PMID: 35870382 DOI: 10.1016/j.jbior.2022.100900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/21/2022] [Accepted: 07/11/2022] [Indexed: 12/22/2022]
Abstract
Sphingolipids (SLs) are lipids derived from sphingosine, and their metabolism involves a broad and complex network of reactions. Although SLs are widely distributed in the body, it is well known that they are present in high concentrations within the central nervous system (CNS). Under physiological conditions, their abundance and distribution in the CNS depend on brain development and cell type. Consequently, SLs metabolism impairment may have a significant impact on the normal CNS function, and has been associated with several disorders, including sphingolipidoses, Parkinson's, and Alzheimer's. This review summarizes the main SLs characteristics and current knowledge about synthesis, catabolism, regulatory pathways, and their role in physiological and pathological scenarios in the CNS.
Collapse
Affiliation(s)
- Andrés Felipe Leal
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C, Colombia
| | - Diego A Suarez
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C, Colombia
| | - Olga Yaneth Echeverri-Peña
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C, Colombia
| | - Sonia Luz Albarracín
- Nutrition and Biochemistry Department, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C, Colombia
| | - Carlos Javier Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C, Colombia.
| | - Ángela Johana Espejo-Mojica
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C, Colombia.
| |
Collapse
|
7
|
Matsui T. Calcium wave propagation during cell extrusion. Curr Opin Cell Biol 2022; 76:102083. [PMID: 35487153 DOI: 10.1016/j.ceb.2022.102083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/25/2022] [Accepted: 03/29/2022] [Indexed: 12/24/2022]
Abstract
Oncogenically transformed or apoptotic cells are removed from epithelial sheets by cell-cell communication between the transformed/apoptotic cells (extruding cells) and the nearest neighboring cells. Cell extrusion is driven by actomyosin contraction and lamellipodial crawling of the nearest neighboring cells. Recent studies have found that distal cell communication also plays a role in cell extrusion. Specifically, distal cells located 3-16 cells away from the extruding cell are coordinated by calcium waves and collectively migrate toward the extruding cell to initiate cell extrusion. Here, I describe how calcium waves are generated and contribute to the extrusion of cells in mammals and zebrafish.
Collapse
Affiliation(s)
- Takaaki Matsui
- Division of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
8
|
Zhang R, Wang Q, Yang J. Potential of sphingosine-1-phosphate in preventing SARS-CoV-2 infection by stabilizing and protecting endothelial cells: Narrative review. Medicine (Baltimore) 2022; 101:e29164. [PMID: 35475801 PMCID: PMC9276324 DOI: 10.1097/md.0000000000029164] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/07/2022] [Indexed: 02/05/2023] Open
Abstract
Coronavirus disease 2019, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread worldwide, resulting in over 250 million infections and >5 million deaths. Most antiviral drugs and vaccines have shown limited efficacy against SARS-CoV-2. Clinical data revealed that except for the large number of self-healing mild cases, moderate and severe cases mostly survived after supportive treatment but not specific drug administration or vaccination. The endothelial system is the first physiological barrier, and its structural stability is of critical importance in conferring disease resistance. Membrane lipid components, particularly sphingosine-1-phosphate (S1P), play a central role in stabilizing the cell membrane.Here, we used "Boolean Operators" such as AND, OR, and NOT, to search for relevant research articles in PubMed, then reviewed the potential of S1P in inhibiting SARS-CoV-2 infection by stabilizing the endothelial system, this is the major aim of this review work.Reportedly, vasculitis and systemic inflammatory vascular diseases are caused by endothelial damage resulting from SARS-CoV-2 infection. S1P, S1P receptor (SIPR), and signaling were involved in the process of SARS-CoV-2 infection, and S1P potentially regulated the function of EC barrier, in turn, inhibited the SARS-CoV-2 to infect the endothelial cells, and ultimately has the promising therapeutic value to coronavirus disease 2019.Taken together, we conclude that maintaining or administering a high level of S1P will preserve the integrity of the EC structure and function, in turn, lowering the risk of SARS-CoV-2 infection and reducing complications and mortality.
Collapse
Affiliation(s)
- Rongzhi Zhang
- Department of Anesthesiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Qiang Wang
- Gansu Medical College, Pingliang, Gansu, China
| | - Jianshe Yang
- Department of Anesthesiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Gansu Medical College, Pingliang, Gansu, China
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Pei G, Zyla J, He L, Moura‐Alves P, Steinle H, Saikali P, Lozza L, Nieuwenhuizen N, Weiner J, Mollenkopf H, Ellwanger K, Arnold C, Duan M, Dagil Y, Pashenkov M, Boneca IG, Kufer TA, Dorhoi A, Kaufmann SHE. Cellular stress promotes NOD1/2-dependent inflammation via the endogenous metabolite sphingosine-1-phosphate. EMBO J 2021; 40:e106272. [PMID: 33942347 PMCID: PMC8246065 DOI: 10.15252/embj.2020106272] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022] Open
Abstract
Cellular stress has been associated with inflammation, yet precise underlying mechanisms remain elusive. In this study, various unrelated stress inducers were employed to screen for sensors linking altered cellular homeostasis and inflammation. We identified the intracellular pattern recognition receptors NOD1/2, which sense bacterial peptidoglycans, as general stress sensors detecting perturbations of cellular homeostasis. NOD1/2 activation upon such perturbations required generation of the endogenous metabolite sphingosine-1-phosphate (S1P). Unlike peptidoglycan sensing via the leucine-rich repeats domain, cytosolic S1P directly bound to the nucleotide binding domains of NOD1/2, triggering NF-κB activation and inflammatory responses. In sum, we unveiled a hitherto unknown role of NOD1/2 in surveillance of cellular homeostasis through sensing of the cytosolic metabolite S1P. We propose S1P, an endogenous metabolite, as a novel NOD1/2 activator and NOD1/2 as molecular hubs integrating bacterial and metabolic cues.
Collapse
Affiliation(s)
- Gang Pei
- Department of ImmunologyMax Planck Institute for Infection BiologyBerlinGermany
- Present address:
Institute of ImmunologyFriedrich‐Loeffler‐InstitutGreifswald‐Insel RiemsGermany
| | - Joanna Zyla
- Department of ImmunologyMax Planck Institute for Infection BiologyBerlinGermany
- Department of Data Science and EngineeringSilesian University of TechnologyGliwicePoland
| | - Lichun He
- State Key Laboratory of Magnetic Resonance and Atomic Molecular PhysicsKey Laboratory of Magnetic Resonance in Biological SystemsNational Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and TechnologyChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Pedro Moura‐Alves
- Department of ImmunologyMax Planck Institute for Infection BiologyBerlinGermany
- Nuffield Department of MedicineLudwig Institute for Cancer ResearchUniversity of OxfordOxfordUK
| | - Heidrun Steinle
- Department of ImmunologyInstitute of Nutritional MedicineUniversity of HohenheimStuttgartGermany
| | - Philippe Saikali
- Department of ImmunologyMax Planck Institute for Infection BiologyBerlinGermany
| | - Laura Lozza
- Department of ImmunologyMax Planck Institute for Infection BiologyBerlinGermany
| | | | - January Weiner
- Department of ImmunologyMax Planck Institute for Infection BiologyBerlinGermany
| | | | - Kornelia Ellwanger
- Department of ImmunologyInstitute of Nutritional MedicineUniversity of HohenheimStuttgartGermany
| | - Christine Arnold
- Department of ImmunologyInstitute of Nutritional MedicineUniversity of HohenheimStuttgartGermany
| | - Mojie Duan
- State Key Laboratory of Magnetic Resonance and Atomic Molecular PhysicsKey Laboratory of Magnetic Resonance in Biological SystemsNational Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and TechnologyChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yulia Dagil
- Institute of Immunology of the Federal Medical‐Biological Agency of RussiaMoscowRussia
| | - Mikhail Pashenkov
- Institute of Immunology of the Federal Medical‐Biological Agency of RussiaMoscowRussia
| | - Ivo Gomperts Boneca
- Institut PasteurDepartment of Microbiology, Biology and Genetics of the Bacterial Cell WallParisFrance
- CNRS UMR2001Integrative and Molecular MicrobiologyParisFrance
- INSERMÉquipe AVENIRParisFrance
| | - Thomas A Kufer
- Department of ImmunologyInstitute of Nutritional MedicineUniversity of HohenheimStuttgartGermany
| | - Anca Dorhoi
- Institute of ImmunologyFriedrich‐Loeffler‐InstitutGreifswald‐Insel RiemsGermany
- Faculty of Mathematics and Natural SciencesUniversity of GreifswaldGreifswaldGermany
| | - Stefan HE Kaufmann
- Department of ImmunologyMax Planck Institute for Infection BiologyBerlinGermany
- Hagler Institute for Advanced Study at Texas A&M UniversityCollege StationTXUSA
| |
Collapse
|
10
|
Lemos FO, Bultynck G, Parys JB. A comprehensive overview of the complex world of the endo- and sarcoplasmic reticulum Ca 2+-leak channels. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119020. [PMID: 33798602 DOI: 10.1016/j.bbamcr.2021.119020] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 12/11/2022]
Abstract
Inside cells, the endoplasmic reticulum (ER) forms the largest Ca2+ store. Ca2+ is actively pumped by the SERCA pumps in the ER, where intraluminal Ca2+-binding proteins enable the accumulation of large amount of Ca2+. IP3 receptors and the ryanodine receptors mediate the release of Ca2+ in a controlled way, thereby evoking complex spatio-temporal signals in the cell. The steady state Ca2+ concentration in the ER of about 500 μM results from the balance between SERCA-mediated Ca2+ uptake and the passive leakage of Ca2+. The passive Ca2+ leak from the ER is often ignored, but can play an important physiological role, depending on the cellular context. Moreover, excessive Ca2+ leakage significantly lowers the amount of Ca2+ stored in the ER compared to normal conditions, thereby limiting the possibility to evoke Ca2+ signals and/or causing ER stress, leading to pathological consequences. The so-called Ca2+-leak channels responsible for Ca2+ leakage from the ER are however still not well understood, despite over 20 different proteins have been proposed to contribute to it. This review has the aim to critically evaluate the available evidence about the various channels potentially involved and to draw conclusions about their relative importance.
Collapse
Affiliation(s)
- Fernanda O Lemos
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, B-3000 Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, B-3000 Leuven, Belgium
| | - Jan B Parys
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, B-3000 Leuven, Belgium.
| |
Collapse
|
11
|
Permissive Modulation of Sphingosine-1-Phosphate-Enhanced Intracellular Calcium on BK Ca Channel of Chromaffin Cells. Int J Mol Sci 2021; 22:ijms22042175. [PMID: 33671654 PMCID: PMC7926978 DOI: 10.3390/ijms22042175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 12/18/2022] Open
Abstract
Sphingosine-1-phosphate (S1P), is a signaling sphingolipid which acts as a bioactive lipid mediator. We assessed whether S1P had multiplex effects in regulating the large-conductance Ca2+-activated K+ channel (BKCa) in catecholamine-secreting chromaffin cells. Using multiple patch-clamp modes, Ca2+ imaging, and computational modeling, we evaluated the effects of S1P on the Ca2+-activated K+ currents (IK(Ca)) in bovine adrenal chromaffin cells and in a pheochromocytoma cell line (PC12). In outside-out patches, the open probability of BKCa channel was reduced with a mean-closed time increment, but without a conductance change in response to a low-concentration S1P (1 µM). The intracellular Ca2+ concentration (Cai) was elevated in response to a high-dose (10 µM) but not low-dose of S1P. The single-channel activity of BKCa was also enhanced by S1P (10 µM) in the cell-attached recording of chromaffin cells. In the whole-cell voltage-clamp, a low-dose S1P (1 µM) suppressed IK(Ca), whereas a high-dose S1P (10 µM) produced a biphasic response in the amplitude of IK(Ca), i.e., an initial decrease followed by a sustained increase. The S1P-induced IK(Ca) enhancement was abolished by BAPTA. Current-clamp studies showed that S1P (1 µM) increased the action potential (AP) firing. Simulation data revealed that the decreased BKCa conductance leads to increased AP firings in a modeling chromaffin cell. Over a similar dosage range, S1P (1 µM) inhibited IK(Ca) and the permissive role of S1P on the BKCa activity was also effectively observed in the PC12 cell system. The S1P-mediated IK(Ca) stimulation may result from the elevated Cai, whereas the inhibition of BKCa activity by S1P appears to be direct. By the differentiated tailoring BKCa channel function, S1P can modulate stimulus-secretion coupling in chromaffin cells.
Collapse
|
12
|
Drexler Y, Molina J, Mitrofanova A, Fornoni A, Merscher S. Sphingosine-1-Phosphate Metabolism and Signaling in Kidney Diseases. J Am Soc Nephrol 2021; 32:9-31. [PMID: 33376112 PMCID: PMC7894665 DOI: 10.1681/asn.2020050697] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In the past few decades, sphingolipids and sphingolipid metabolites have gained attention because of their essential role in the pathogenesis and progression of kidney diseases. Studies in models of experimental and clinical nephropathies have described accumulation of sphingolipids and sphingolipid metabolites, and it has become clear that the intracellular sphingolipid composition of renal cells is an important determinant of renal function. Proper function of the glomerular filtration barrier depends heavily on the integrity of lipid rafts, which include sphingolipids as key components. In addition to contributing to the structural integrity of membranes, sphingolipid metabolites, such as sphingosine-1-phosphate (S1P), play important roles as second messengers regulating biologic processes, such as cell growth, differentiation, migration, and apoptosis. This review will focus on the role of S1P in renal cells and how aberrant extracellular and intracellular S1P signaling contributes to the pathogenesis and progression of kidney diseases.
Collapse
Affiliation(s)
- Yelena Drexler
- Katz Family Division of Nephrology and Hypertension/Peggy and Harold Katz Family Drug Discovery Center, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | | | | | | | | |
Collapse
|
13
|
Ouyang J, Shu Z, Chen S, Xiang H, Lu H. The role of sphingosine 1-phosphate and its receptors in cardiovascular diseases. J Cell Mol Med 2020; 24:10290-10301. [PMID: 32803879 PMCID: PMC7521328 DOI: 10.1111/jcmm.15744] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/12/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023] Open
Abstract
There are many different types of cardiovascular diseases, which impose a huge economic burden due to their extremely high mortality rates, so it is necessary to explore the underlying mechanisms to achieve better supportive and curative care outcomes. Sphingosine 1‐phosphate (S1P) is a bioactive lipid mediator with paracrine and autocrine activities that acts through its cell surface S1P receptors (S1PRs) and intracellular signals. In the circulatory system, S1P is indispensable for both normal and disease conditions; however, there are very different views on its diverse roles, and its specific relevance to cardiovascular pathogenesis remains elusive. Here, we review the synthesis, release and functions of S1P, specifically detail the roles of S1P and S1PRs in some common cardiovascular diseases, and then address several controversial points, finally, we focus on the development of S1P‐based therapeutic approaches in cardiovascular diseases, such as the selective S1PR1 modulator amiselimod (MT‐1303) and the non‐selective S1PR1 and S1PR3 agonist fingolimod, which may provide valuable insights into potential therapeutic strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Jie Ouyang
- Center for Experimental Medical Research, the Third Xiangya Hospital of Central South University, Changsha, China.,Department of Cardiology, the Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhihao Shu
- Department of Cardiology, the Third Xiangya Hospital of Central South University, Changsha, China
| | - Shuhua Chen
- Department of Biochemistry, School of Life Sciences of Central South University, Changsha, China
| | - Hong Xiang
- Center for Experimental Medical Research, the Third Xiangya Hospital of Central South University, Changsha, China
| | - Hongwei Lu
- Center for Experimental Medical Research, the Third Xiangya Hospital of Central South University, Changsha, China.,Department of Cardiology, the Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
14
|
Syed SN, Weigert A, Brüne B. Sphingosine Kinases are Involved in Macrophage NLRP3 Inflammasome Transcriptional Induction. Int J Mol Sci 2020; 21:ijms21134733. [PMID: 32630814 PMCID: PMC7370080 DOI: 10.3390/ijms21134733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/20/2022] Open
Abstract
Recent studies suggested an important contribution of sphingosine-1-phospate (S1P) signaling via its specific receptors (S1PRs) in the production of pro-inflammatory mediators such as Interleukin (IL)-1β in cancer and inflammation. In an inflammation-driven cancer setting, we previously reported that myeloid S1PR1 signaling induces IL-1β production by enhancing NLRP3 (NOD-, LRR- and Pyrin Domain-Containing Protein 3) inflammasome activity. However, the autocrine role of S1P and enzymes acting on the S1P rheostat in myeloid cells are unknown. Using human and mouse macrophages with pharmacological or genetic intervention we explored the relative contribution of sphingosine kinases (SPHKs) in NLRP3 inflammasome activity regulation. We noticed redundancy in SPHK1 and SPHK2 activities towards macrophage NLRP3 inflammasome transcriptional induction and IL-1β secretion. However, pharmacological blockade of both kinases in unison completely abrogated NLRP3 inflammasome induction and IL-1β secretion. Interestingly, human and mouse macrophages demonstrate varied responses towards SPHKs inhibition and IL-1β secretion. Clinical datasets of renal cell carcinoma and psoriasis patients showed a positive correlation between enzymes affecting the S1P rheostat with NLRP3 inflammasome components expression, which corroborates our finding. Our data provide a better understanding on the role of SPHKs and de novo synthesized S1P in macrophage NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Shahzad Nawaz Syed
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (S.N.S.); (A.W.)
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (S.N.S.); (A.W.)
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (S.N.S.); (A.W.)
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology, 60596 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany
- Correspondence: ; Tel.: +49-69-6301-7424
| |
Collapse
|
15
|
Cartier A, Hla T. Sphingosine 1-phosphate: Lipid signaling in pathology and therapy. Science 2020; 366:366/6463/eaar5551. [PMID: 31624181 DOI: 10.1126/science.aar5551] [Citation(s) in RCA: 341] [Impact Index Per Article: 85.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 07/30/2019] [Indexed: 12/13/2022]
Abstract
Sphingosine 1-phosphate (S1P), a metabolic product of cell membrane sphingolipids, is bound to extracellular chaperones, is enriched in circulatory fluids, and binds to G protein-coupled S1P receptors (S1PRs) to regulate embryonic development, postnatal organ function, and disease. S1PRs regulate essential processes such as adaptive immune cell trafficking, vascular development, and homeostasis. Moreover, S1PR signaling is a driver of multiple diseases. The past decade has witnessed an exponential growth in this field, in part because of multidisciplinary research focused on this lipid mediator and the application of S1PR-targeted drugs in clinical medicine. This has revealed fundamental principles of lysophospholipid mediator signaling that not only clarify the complex and wide ranging actions of S1P but also guide the development of therapeutics and translational directions in immunological, cardiovascular, neurological, inflammatory, and fibrotic diseases.
Collapse
Affiliation(s)
- Andreane Cartier
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Schneider G. S1P Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1223:129-153. [PMID: 32030688 DOI: 10.1007/978-3-030-35582-1_7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sphingosine-1-phosphate (S1P), together with other phosphosphingolipids, has been found to regulate complex cellular function in the tumor microenvironment (TME) where it acts as a signaling molecule that participates in cell-cell communication. S1P, through intracellular and extracellular signaling, was found to promote tumor growth, angiogenesis, chemoresistance, and metastasis; it also regulates anticancer immune response, modulates inflammation, and promotes angiogenesis. Interestingly, cancer cells are capable of releasing S1P and thus modifying the behavior of the TME components in a way that contributes to tumor growth and progression. Therefore, S1P is considered an important therapeutic target, and several anticancer therapies targeting S1P signaling are being developed and tested in clinics.
Collapse
Affiliation(s)
- Gabriela Schneider
- James Graham Brown Cancer Center, Division of Medical Oncology & Hematology, Department of Medicine, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
17
|
Jiang ZJ, Delaney TL, Zanin MP, Haberberger RV, Pitson SM, Huang J, Alford S, Cologna SM, Keating DJ, Gong LW. Extracellular and intracellular sphingosine-1-phosphate distinctly regulates exocytosis in chromaffin cells. J Neurochem 2019; 149:729-746. [PMID: 30963576 DOI: 10.1111/jnc.14703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/28/2018] [Accepted: 03/27/2019] [Indexed: 01/18/2023]
Abstract
Sphingosine-1-phosphate (S1P) is an essential bioactive sphingosine lipid involved in many neurological disorders. Sphingosine kinase 1 (SphK1), a key enzyme for S1P production, is concentrated in presynaptic terminals. However, the role of S1P/SphK1 signaling in exocytosis remains elusive. By detecting catecholamine release from single vesicles in chromaffin cells, we show that a dominant negative SphK1 (SphK1DN ) reduces the number of amperometric spikes and increases the duration of foot, which reflects release through a fusion pore, implying critical roles for S1P in regulating the rate of exocytosis and fusion pore expansion. Similar phenotypes were observed in chromaffin cells obtained from SphK1 knockout mice compared to those from wild-type mice. In addition, extracellular S1P treatment increased the number of amperometric spikes, and this increase, in turn, was inhibited by a selective S1P3 receptor blocker, suggesting extracellular S1P may regulate the rate of exocytosis via activation of S1P3. Furthermore, intracellular S1P application induced a decrease in foot duration of amperometric spikes in control cells, indicating intracellular S1P may regulate fusion pore expansion during exocytosis. Taken together, our study represents the first demonstration that S1P regulates exocytosis through distinct mechanisms: extracellular S1P may modulate the rate of exocytosis via activation of S1P receptors while intracellular S1P may directly control fusion pore expansion during exocytosis. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Zhong-Jiao Jiang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Taylor L Delaney
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Mark P Zanin
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Rainer V Haberberger
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Jian Huang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Simon Alford
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Damien J Keating
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - Liang-Wei Gong
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
18
|
Pulli I, Asghar MY, Kemppainen K, Törnquist K. Sphingolipid-mediated calcium signaling and its pathological effects. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1668-1677. [DOI: 10.1016/j.bbamcr.2018.04.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/17/2018] [Accepted: 04/23/2018] [Indexed: 12/15/2022]
|
19
|
Marciniak A, Camp SM, Garcia JGN, Polt R. An update on sphingosine-1-phosphate receptor 1 modulators. Bioorg Med Chem Lett 2018; 28:3585-3591. [PMID: 30409535 DOI: 10.1016/j.bmcl.2018.10.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/22/2018] [Accepted: 10/25/2018] [Indexed: 12/14/2022]
Abstract
Sphingolipids represent an essential class of lipids found in all eukaryotes, and strongly influence cellular signal transduction. Autoimmune diseases like asthma and multiple sclerosis (MS) are mediated by the sphingosine-1-phosphate receptor 1 (S1P1) to express a variety of symptoms and disease patterns. Inspired by its natural substrate, an array of artificial sphingolipid derivatives has been developed to target this specific G protein-coupled receptor (GPCR) in an attempt to suppress autoimmune disorders. FTY720, also known as fingolimod, is the first oral disease-modifying therapy for MS on the market. In pursuit of improved stability, bioavailability, and efficiency, structural analogues of this initial prodrug have emerged over time. This review covers a brief introduction to the sphingolipid metabolism, the mechanism of action on S1P1, and an updated overview of synthetic sphingosine S1P1 agonists.
Collapse
Affiliation(s)
- Alexander Marciniak
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ 85721, United States.
| | - Sara M Camp
- Department of Medicine, The University of Arizona, Tucson, AZ 85724, United States.
| | - Joe G N Garcia
- Department of Medicine, The University of Arizona, Tucson, AZ 85724, United States.
| | - Robin Polt
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ 85721, United States.
| |
Collapse
|
20
|
Cannavo A, Liccardo D, Komici K, Corbi G, de Lucia C, Femminella GD, Elia A, Bencivenga L, Ferrara N, Koch WJ, Paolocci N, Rengo G. Sphingosine Kinases and Sphingosine 1-Phosphate Receptors: Signaling and Actions in the Cardiovascular System. Front Pharmacol 2017; 8:556. [PMID: 28878674 PMCID: PMC5572949 DOI: 10.3389/fphar.2017.00556] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/07/2017] [Indexed: 12/20/2022] Open
Abstract
The sphingosine kinases 1 and 2 (SphK1 and 2) catalyze the phosphorylation of the lipid, sphingosine, generating the signal transmitter, sphingosine 1-phosphate (S1P). The activation of such kinases and the subsequent S1P generation and secretion in the blood serum of mammals represent a major checkpoint in many cellular signaling cascades. In fact, activating the SphK/S1P system is critical for cell motility and proliferation, cytoskeletal organization, cell growth, survival, and response to stress. In the cardiovascular system, the physiological effects of S1P intervene through the binding and activation of a family of five highly selective G protein-coupled receptors, called S1PR1-5. Importantly, SphK/S1P signal is present on both vascular and myocardial cells. S1P is a well-recognized survival factor in many tissues. Therefore, it is not surprising that the last two decades have seen a flourishing of interest and investigative efforts directed to obtain additional mechanistic insights into the signaling, as well as the biological activity of this phospholipid, and of its receptors, especially in the cardiovascular system. Here, we will provide an up-to-date account on the structure and function of sphingosine kinases, discussing the generation, release, and function of S1P. Keeping the bull's eye on the cardiovascular system, we will review the structure and signaling cascades and biological actions emanating from the stimulation of different S1P receptors. We will end this article with a summary of the most recent, experimental and clinical observations targeting S1PRs and SphKs as possible new therapeutic avenues for cardiovascular disorders, such as heart failure.
Collapse
Affiliation(s)
- Alessandro Cannavo
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, PhiladelphiaPA, United States.,Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
| | - Daniela Liccardo
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, PhiladelphiaPA, United States.,Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
| | - Klara Komici
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
| | - Graziamaria Corbi
- Department of Medicine and Health Science, University of MoliseCampobasso, Italy
| | - Claudio de Lucia
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, PhiladelphiaPA, United States
| | | | - Andrea Elia
- Istituti Clinici Scientifici Maugeri SpA Società Benefit, Telese Terme Institute (BN)Telese, Italy
| | - Leonardo Bencivenga
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
| | - Nicola Ferrara
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy.,Istituti Clinici Scientifici Maugeri SpA Società Benefit, Telese Terme Institute (BN)Telese, Italy
| | - Walter J Koch
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, PhiladelphiaPA, United States
| | - Nazareno Paolocci
- Division of Cardiology, Johns Hopkins University Medical Institutions, BaltimoreMD, United States.,Department of Experimental Medicine, University of PerugiaPerugia, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy.,Istituti Clinici Scientifici Maugeri SpA Società Benefit, Telese Terme Institute (BN)Telese, Italy
| |
Collapse
|
21
|
S1P Provokes Tumor Lymphangiogenesis via Macrophage-Derived Mediators Such as IL-1 β or Lipocalin-2. Mediators Inflamm 2017; 2017:7510496. [PMID: 28804221 PMCID: PMC5539930 DOI: 10.1155/2017/7510496] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/15/2017] [Indexed: 12/17/2022] Open
Abstract
A pleiotropic signaling lipid, sphingosine-1-phosphate (S1P), has been implicated in various pathophysiological processes supporting tumor growth and metastasis. However, there are only a few descriptive studies suggesting a role of S1P in tumor lymphangiogenesis, which is critical for tumor growth and dissemination. Corroborating own data, the literature suggests that apoptotic tumor cell-derived S1P alters the phenotype of tumor-associated macrophages (TAMs) to gain protumor functions. However, mechanistically, the role of TAM-induced lymphangiogenesis has only been poorly described, mostly linked to the production of lymphangiogenic factors such as vascular endothelial growth factor C (VEGF-C) and VEGF-D, or transdifferentiation into lymphatic endothelial cells. Recent findings highlight a rather underappreciated role of S1P in tumor lymphangiogenesis, referring to the production of interleukin-1β (IL-1β) and lipocalin-2 (LCN2) by a tumor-promoting macrophage phenotype. In this review, we aim to provide to the readers with the current understanding of the molecular mechanism how apoptotic cell-derived S1P triggers TAMs to promote lymphangiogenesis.
Collapse
|
22
|
Cannavo A, Liccardo D, Komici K, Corbi G, de Lucia C, Femminella GD, Elia A, Bencivenga L, Ferrara N, Koch WJ, Paolocci N, Rengo G. Sphingosine Kinases and Sphingosine 1-Phosphate Receptors: Signaling and Actions in the Cardiovascular System. Front Pharmacol 2017. [PMID: 28878674 DOI: 10.3389/fphar.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023] Open
Abstract
The sphingosine kinases 1 and 2 (SphK1 and 2) catalyze the phosphorylation of the lipid, sphingosine, generating the signal transmitter, sphingosine 1-phosphate (S1P). The activation of such kinases and the subsequent S1P generation and secretion in the blood serum of mammals represent a major checkpoint in many cellular signaling cascades. In fact, activating the SphK/S1P system is critical for cell motility and proliferation, cytoskeletal organization, cell growth, survival, and response to stress. In the cardiovascular system, the physiological effects of S1P intervene through the binding and activation of a family of five highly selective G protein-coupled receptors, called S1PR1-5. Importantly, SphK/S1P signal is present on both vascular and myocardial cells. S1P is a well-recognized survival factor in many tissues. Therefore, it is not surprising that the last two decades have seen a flourishing of interest and investigative efforts directed to obtain additional mechanistic insights into the signaling, as well as the biological activity of this phospholipid, and of its receptors, especially in the cardiovascular system. Here, we will provide an up-to-date account on the structure and function of sphingosine kinases, discussing the generation, release, and function of S1P. Keeping the bull's eye on the cardiovascular system, we will review the structure and signaling cascades and biological actions emanating from the stimulation of different S1P receptors. We will end this article with a summary of the most recent, experimental and clinical observations targeting S1PRs and SphKs as possible new therapeutic avenues for cardiovascular disorders, such as heart failure.
Collapse
Affiliation(s)
- Alessandro Cannavo
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, PhiladelphiaPA, United States
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
| | - Daniela Liccardo
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, PhiladelphiaPA, United States
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
| | - Klara Komici
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
| | - Graziamaria Corbi
- Department of Medicine and Health Science, University of MoliseCampobasso, Italy
| | - Claudio de Lucia
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, PhiladelphiaPA, United States
| | | | - Andrea Elia
- Istituti Clinici Scientifici Maugeri SpA Società Benefit, Telese Terme Institute (BN)Telese, Italy
| | - Leonardo Bencivenga
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
| | - Nicola Ferrara
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
- Istituti Clinici Scientifici Maugeri SpA Società Benefit, Telese Terme Institute (BN)Telese, Italy
| | - Walter J Koch
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, PhiladelphiaPA, United States
| | - Nazareno Paolocci
- Division of Cardiology, Johns Hopkins University Medical Institutions, BaltimoreMD, United States
- Department of Experimental Medicine, University of PerugiaPerugia, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
- Istituti Clinici Scientifici Maugeri SpA Società Benefit, Telese Terme Institute (BN)Telese, Italy
| |
Collapse
|
23
|
1-Deoxysphingolipid-induced neurotoxicity involves N-methyl-d-aspartate receptor signaling. Neuropharmacology 2016; 110:211-222. [DOI: 10.1016/j.neuropharm.2016.03.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 03/11/2016] [Accepted: 03/22/2016] [Indexed: 11/17/2022]
|
24
|
Custódio R, McLean CJ, Scott AE, Lowther J, Kennedy A, Clarke DJ, Campopiano DJ, Sarkar-Tyson M, Brown AR. Characterization of secreted sphingosine-1-phosphate lyases required for virulence and intracellular survival of Burkholderia pseudomallei. Mol Microbiol 2016; 102:1004-1019. [PMID: 27632710 DOI: 10.1111/mmi.13531] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2016] [Indexed: 01/09/2023]
Abstract
Sphingosine-1-phosphate (S1P), a bioactive sphingolipid metabolite, plays a critical role in the orchestration of immune responses. S1P levels within the mammalian host are tightly regulated, in part through the activity of S1P lyase (S1PL) which catalyses its irreversible degradation. Herein, we describe the identification and characterization of secreted S1PL orthologues encoded by the facultative intracellular bacteria Burkholderia pseudomallei and Burkholderia thailandensis. These bacterial orthologues exhibited S1PL enzymatic activity, functionally complemented an S1PL-deficient yeast strain and conferred resistance to the antimicrobial sphingolipid D-erythro-sphingosine. We report that secretion of these bacterial S1PLs is pH-dependent, and is observed during intracellular infection. S1PL-deficient mutants displayed impaired intracellular replication in murine macrophages (associated with an inability to evade the maturing phagosome) and were significantly attenuated in murine and larval infection models. Furthermore, treatment of Burkholderia-infected macrophages with either S1P or a selective agonist of S1P receptor 1 enhanced bacterial colocalisation with LAMP-1 and reduced their intracellular survival. In summary, our studies confirm bacterial-encoded S1PL as a critical virulence determinant of B. pseudomallei and B. thailandensis, further highlighting the pivotal role of S1P in host-pathogen interactions. In addition, our data suggest that S1P pathway modulators have potential for the treatment of intracellular infection.
Collapse
Affiliation(s)
- Rafael Custódio
- Biosciences, College of Life and Environmental Sciences, University of Exeter, UK
| | | | - Andrew E Scott
- Microbiology, Defence Science and Technology Laboratory, Porton Down, UK
| | | | | | | | | | - Mitali Sarkar-Tyson
- Microbiology, Defence Science and Technology Laboratory, Porton Down, UK.,Marshall Centre for Infectious Diseases and Training, School of Pathology and Laboratory Medicine, University of Western Australia, WA 6009, Australia
| | - Alan R Brown
- Biosciences, College of Life and Environmental Sciences, University of Exeter, UK
| |
Collapse
|
25
|
Xu Y, Xiao YJ, Baudhuin LM, Schwartz BM. The Role and Clinical Applications of Bioactive Lysolipids in Ovarian Cancer. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/107155760100800101] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yan Xu
- Department of Cancer Biology Lerner Research Institute and the Department of Gynecology and Obstetrics Cleveland Clinic Foundation; Department of Chemistry, Cleveland State University, Cleveland, Ohio; Department of Cancer Biology, Cleveland Clinic Foundation, 9500 Euclid Ave., Cleveland, OH 44195
| | | | | | - Benjamin M. Schwartz
- Department of Cancer Biology Lerner Research Institute and the Department of Gynecology and Obstetrics Cleveland Clinic Foundation; Department of Chemistry, Cleveland State University, Cleveland, Ohio
| |
Collapse
|
26
|
Li N, Zhang F. Implication of sphingosin-1-phosphate in cardiovascular regulation. Front Biosci (Landmark Ed) 2016; 21:1296-313. [PMID: 27100508 DOI: 10.2741/4458] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite generated by phosphorylation of sphingosine catalyzed by sphingosine kinase. S1P acts mainly through its high affinity G-protein-coupled receptors and participates in the regulation of multiple systems, including cardiovascular system. It has been shown that S1P signaling is involved in the regulation of cardiac chronotropy and inotropy and contributes to cardioprotection as well as cardiac remodeling; S1P signaling regulates vascular function, such as vascular tone and endothelial barrier, and possesses an anti-atherosclerotic effect; S1P signaling is also implicated in the regulation of blood pressure. Therefore, manipulation of S1P signaling may offer novel therapeutic approaches to cardiovascular diseases. As several S1P receptor modulators and sphingosine kinase inhibitors have been approved or under clinical trials for the treatment of other diseases, it may expedite the test and implementation of these S1P-based drugs in cardiovascular diseases.
Collapse
Affiliation(s)
- Ningjun Li
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia, USA,
| | - Fan Zhang
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
27
|
Zhou K, Blom T. Trafficking and Functions of Bioactive Sphingolipids: Lessons from Cells and Model Membranes. Lipid Insights 2015; 8:11-20. [PMID: 26715852 PMCID: PMC4685176 DOI: 10.4137/lpi.s31615] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/08/2015] [Accepted: 11/10/2015] [Indexed: 12/15/2022] Open
Abstract
Ceramide and sphingosine and their phosphorylated counterparts are recognized as "bioactive sphingolipids" and modulate membrane integrity, the activity of enzymes, or act as ligands of G protein-coupled receptors. The subcellular distribution of the bioactive sphingolipids is central to their function as the same lipid can mediate diametrically opposite effects depending on its location. To ensure that these lipids are present in the right amount and in the appropriate organelles, cells employ selective lipid transport and compartmentalize sphingolipid-metabolizing enzymes to characteristic subcellular sites. Our knowledge of key mechanisms involved in sphingolipid signaling and trafficking has increased substantially in the past decades-thanks to advances in biochemical and cell biological methods. In this review, we focus on the bioactive sphingolipids and discuss how the combination of studies in cells and in model membranes have contributed to our understanding of how they behave and function in living organisms.
Collapse
Affiliation(s)
- Kecheng Zhou
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tomas Blom
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
28
|
A reflection of the lasting contributions from Dr. Robert Bittman to sterol trafficking, sphingolipid and phospholipid research. Prog Lipid Res 2015; 61:19-29. [PMID: 26584871 DOI: 10.1016/j.plipres.2015.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/21/2015] [Accepted: 10/28/2015] [Indexed: 10/22/2022]
Abstract
With the passing of Dr. Robert Bittman from pancreatic cancer on the 1st October 2014, the lipid research field lost one of the most influential and significant personalities. Robert Bittman's genius was in chemical design and his contribution to the lipid research field was truly immense. The reagents and chemicals he designed and synthesised allowed interrogation of the role of lipids in constituting complex biophysical membranes, sterol transfer and in cellular communication networks. Here we provide a review of these works which serve as a lasting memory to his life.
Collapse
|
29
|
Jiménez-Rojo N, Sot J, Viguera AR, Collado MI, Torrecillas A, Gómez-Fernández JC, Goñi FM, Alonso A. Membrane permeabilization induced by sphingosine: effect of negatively charged lipids. Biophys J 2015; 106:2577-84. [PMID: 24940775 DOI: 10.1016/j.bpj.2014.04.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/14/2014] [Accepted: 04/23/2014] [Indexed: 10/25/2022] Open
Abstract
Sphingosine [(2S, 3R, 4E)-2-amino-4-octadecen-1, 3-diol] is the most common sphingoid long chain base in sphingolipids. It is the precursor of important cell signaling molecules, such as ceramides. In the last decade it has been shown to act itself as a potent metabolic signaling molecule, by activating a number of protein kinases. Moreover, sphingosine has been found to permeabilize phospholipid bilayers, giving rise to vesicle leakage. The present contribution intends to analyze the mechanism by which this bioactive lipid induces vesicle contents release, and the effect of negatively charged bilayers in the release process. Fluorescence lifetime measurements and confocal fluorescence microscopy have been applied to observe the mechanism of sphingosine efflux from large and giant unilamellar vesicles; a graded-release efflux has been detected. Additionally, stopped-flow measurements have shown that the rate of vesicle permeabilization increases with sphingosine concentration. Because at the physiological pH sphingosine has a net positive charge, its interaction with negatively charged phospholipids (e.g., bilayers containing phosphatidic acid together with sphingomyelins, phosphatidylethanolamine, and cholesterol) gives rise to a release of vesicular contents, faster than with electrically neutral bilayers. Furthermore, phosphorous 31-NMR and x-ray data show the capacity of sphingosine to facilitate the formation of nonbilayer (cubic phase) intermediates in negatively charged membranes. The data might explain the pathogenesis of Niemann-Pick type C1 disease.
Collapse
Affiliation(s)
- Noemi Jiménez-Rojo
- Unidad de Biofísica (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain
| | - Jesús Sot
- Unidad de Biofísica (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain
| | - Ana R Viguera
- Unidad de Biofísica (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain
| | - M Isabel Collado
- Servicio General de Resonancia Magnética Nuclear, Universidad del País Vasco, Bilbao, Spain
| | - Alejandro Torrecillas
- Sección de Biología Molecular, Servicio de Apoyo a la Investigación, Universidad de Murcia
| | - J C Gómez-Fernández
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Universidad de Murcia, Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - Félix M Goñi
- Unidad de Biofísica (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain
| | - Alicia Alonso
- Unidad de Biofísica (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain.
| |
Collapse
|
30
|
Zhang T, Yan T, Du J, Wang S, Yang H. Apigenin attenuates heart injury in lipopolysaccharide-induced endotoxemic model by suppressing sphingosine kinase 1/sphingosine 1-phosphate signaling pathway. Chem Biol Interact 2014; 233:46-55. [PMID: 25557508 DOI: 10.1016/j.cbi.2014.12.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 12/07/2014] [Accepted: 12/14/2014] [Indexed: 11/17/2022]
Abstract
Sepsis is a cluster of heterogeneous syndromes associated with progressive endotoxemic developments, ultimately leading to damage of multiple organs, including the heart. This study is to investigate the effects of apigenin on heart injury in lipopolysaccharide-induced endotoxemic rat model. Normal Wistar rats were randomly divided into four groups: control group, LPS group (15 mg/kg), LPS plus apigenin groups with different apigenin doses (50 mg/kg, 100 mg/kg). Serum levels of creatine kinase (CK), lactate dehydrogenase (LDH), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β) were measured after the rats were sacrificed. SphK1/S1P signaling pathway proteins, cleaved caspase-3, cleaved caspase-9, Bax and Bcl-2 in heart were measured by Western blot. In vitro, we evaluated the protective effect of apigenin on rat embryonic heart-derived myogenic cell line H9c2 induced by LPS. Apigenin decreased serum levels of CK-MB, LDH, TNF-α, IL-6, IL-1β. SphK1/S1P signaling pathway proteins, cleaved caspase-3, cleaved caspase-9, Bax in heart were found inhibited and Bcl-2 increased in the apigenin groups in vivo. In addition, apigenin inhibited intracellular calcium, the MAPK pathway and SphK1/S1P signaling pathway in vitro. Apigenin exerts pronounced cardioprotection in rats subjected to LPS likely through suppressing myocardial apoptosis and inflammation by inhibiting the SphK1/S1P signaling pathway.
Collapse
Affiliation(s)
- Tianzhu Zhang
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Tianhua Yan
- China Pharmaceutical University, Nanjing 210009, China.
| | - Juan Du
- School of Life Science, Peking University, Beijing 100871, China
| | - Shumin Wang
- Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Huilin Yang
- School of Life Science, Peking University, Beijing 100871, China
| |
Collapse
|
31
|
Abstract
The main function of the lymphatic system is to control and maintain fluid homeostasis, lipid transport, and immune cell trafficking. In recent years, the pathological roles of lymphangiogenesis, the generation of new lymphatic vessels from preexisting ones, in inflammatory diseases and cancer progression are beginning to be elucidated. Sphingosine-1-phosphate (S1P), a bioactive lipid, mediates multiple cellular events, such as cell proliferation, differentiation, and trafficking, and is now known as an important mediator of inflammation and cancer. In this review, we will discuss recent findings showing the emerging role of S1P in lymphangiogenesis, in inflammation, and in cancer.
Collapse
|
32
|
Kamiya T, Nagaoka T, Omae T, Yoshioka T, Ono S, Tanano I, Yoshida A. Role of Ca2+-dependent and Ca2+-sensitive mechanisms in sphingosine 1-phosphate-induced constriction of isolated porcine retinal arterioles in vitro. Exp Eye Res 2014; 121:94-101. [DOI: 10.1016/j.exer.2014.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 01/07/2014] [Accepted: 01/14/2014] [Indexed: 01/15/2023]
|
33
|
de la Garza-Rodea AS, Baldwin DM, Oskouian B, Place RF, Bandhuvula P, Kumar A, Saba JD. Sphingosine phosphate lyase regulates myogenic differentiation via S1P receptor-mediated effects on myogenic microRNA expression. FASEB J 2013; 28:506-19. [PMID: 24158395 DOI: 10.1096/fj.13-233155] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
S1P lyase (SPL) catalyzes the irreversible degradation of sphingosine-1-phosphate (S1P), a bioactive lipid whose signaling activities regulate muscle differentiation, homeostasis, and satellite cell (SC) activation. By regulating S1P levels, SPL also controls SC recruitment and muscle regeneration, representing a potential therapeutic target for muscular dystrophy. We found that SPL is induced during myoblast differentiation. To investigate SPL's role in myogenesis at the cellular level, we generated and characterized a murine myoblast SPL-knockdown (SPL-KD) cell line lacking SPL. SPL-KD cells accumulated intracellular and extracellular S1P and failed to form myotubes under conditions that normally stimulate myogenic differentiation. Under differentiation conditions, SPL-KD cells also demonstrated delayed induction of 3 myogenic microRNAs (miRNAs), miR-1, miR-206, and miR-486. SPL-KD cells successfully differentiated when treated with an S1P1 agonist, S1P2 antagonist, and combination treatments, which also increased myogenic miRNA levels. SPL-KD cells transfected with mimics for miR-1 or miR-206 also overcame the differentiation block. Thus, we show for the first time that the S1P/SPL/S1P-receptor axis regulates the expression of a number of miRNAs, thereby contributing to myogenic differentiation.
Collapse
Affiliation(s)
- Anabel S de la Garza-Rodea
- 1Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Gandy KAO, Obeid LM. Regulation of the sphingosine kinase/sphingosine 1-phosphate pathway. Handb Exp Pharmacol 2013:275-303. [PMID: 23563662 DOI: 10.1007/978-3-7091-1511-4_14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Sphingolipids have emerged as pleiotropic signaling molecules with roles in numerous cellular and biological functions. Defining the regulatory mechanisms governing sphingolipid metabolism is crucial in order to develop a complete understanding of the biological functions of sphingolipid metabolites. The sphingosine kinase/ sphingosine 1-phosphate pathway was originally thought to function in the irreversible breakdown of sphingoid bases; however, in the last few decades it has materialized as an extremely important signaling pathway involved in a plethora of cellular events contributing to both normal and pathophysiological events. Recognition of the SK/S1P pathway as a second messaging system has aided in the identification of many mechanisms of its regulation; however, a cohesive, global understanding of the regulatory mechanisms controlling the SK/S1P pathway is lacking. In this chapter, the role of the SK/S1P pathway as a second messenger is discussed, and its role in mediating TNF-α- and EGF-induced biologies is examined. This work provides a comprehensive look into the roles and regulation of the sphingosine kinase/ sphingosine 1-phosphate pathway and highlights the potential of the pathway as a therapeutic target.
Collapse
Affiliation(s)
- K Alexa Orr Gandy
- The Department of Molecular and Cellular Biology and Pathobiology, The Medical University of South Carolina, Charleston, SC 29425, USA
| | | |
Collapse
|
35
|
Hla T, Dannenberg AJ. Sphingolipid signaling in metabolic disorders. Cell Metab 2012; 16:420-34. [PMID: 22982021 PMCID: PMC3466368 DOI: 10.1016/j.cmet.2012.06.017] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 05/29/2012] [Accepted: 06/20/2012] [Indexed: 01/01/2023]
Abstract
Sphingolipids, ubiquitous membrane lipids in eukaryotes, carry out a myriad of critical cellular functions. The past two decades have seen significant advances in sphingolipid research, and in 2010 a first sphingolipid receptor modulator was employed as a human therapeutic. Furthermore, cellular signaling mechanisms regulated by sphingolipids are being recognized as critical players in metabolic diseases. This review focuses on recent advances in cellular and physiological mechanisms of sphingolipid regulation and how sphingolipid signaling influences metabolic diseases. Progress in this area may contribute to new understanding and therapeutic options in complex diseases such as atherosclerosis, diabetes, metabolic syndromes, and cancer.
Collapse
Affiliation(s)
- Timothy Hla
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA.
| | | |
Collapse
|
36
|
Loh KC, Baldwin D, Saba JD. Sphingolipid signaling and hematopoietic malignancies: to the rheostat and beyond. Anticancer Agents Med Chem 2012; 11:782-93. [PMID: 21707493 DOI: 10.2174/187152011797655159] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 05/06/2011] [Accepted: 05/09/2011] [Indexed: 12/20/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive lipid with diverse functions including the promotion of cell survival, proliferation and migration, as well as the regulation of angiogenesis, inflammation, immunity, vascular permeability and nuclear mechanisms that control gene transcription. S1P is derived from metabolism of ceramide, which itself has diverse and generally growth-inhibitory effects through its impact on downstream targets involved in regulation of apoptosis, senescence and cell cycle progression. Regulation of ceramide, S1P and the biochemical steps that modulate the balance and interconversion of these two lipids are major determinants of cell fate, a concept referred to as the "sphingolipid rheostat." There is abundant evidence that the sphingolipid rheostat plays a role in the origination, progression and drug resistance patterns of hematopoietic malignancies. The pathway has also been exploited to circumvent the problem of chemotherapy resistance in leukemia and lymphoma. Given the broad effects of sphingolipids, targeting multiple steps in the metabolic pathway may provide possible therapeutic avenues. However, new observations have revealed that sphingolipid signaling effects are more complex than previously recognized, requiring a revision of the sphingolipid rheostat model. Here, we summarize recent insights regarding the sphingolipid metabolic pathway and its role in hematopoietic malignancies.
Collapse
Affiliation(s)
- Kenneth C Loh
- Children's Hospital Oakland Research Institute, Center for Cancer Research, CA 94609, USA
| | | | | |
Collapse
|
37
|
Lysophosphatidylinositol signalling: New wine from an old bottle. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:694-705. [DOI: 10.1016/j.bbalip.2012.01.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 12/02/2011] [Accepted: 01/03/2012] [Indexed: 01/29/2023]
|
38
|
Liu W, Lan T, Xie X, Huang K, Peng J, Huang J, Shen X, Liu P, Huang H. S1P2 receptor mediates sphingosine-1-phosphate-induced fibronectin expression via MAPK signaling pathway in mesangial cells under high glucose condition. Exp Cell Res 2012; 318:936-43. [PMID: 22406263 DOI: 10.1016/j.yexcr.2012.02.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 02/20/2012] [Accepted: 02/22/2012] [Indexed: 10/28/2022]
Abstract
Accumulation of extracellular matrix including fibronectin in mesangium is one of the major pathologic characteristics in diabetic nephropathy. In the current study, we explored role of sphingosine-1-phosphate (S1P) receptor in fibronectin expression and underlying molecular mechanism. Among five S1P receptors the mRNA level of S1P2 receptor was the most abundant in kidney of diabetic rats and mesangial cells under high glucose condition. S1P augmentation of fibronectin was significantly inhibited by S1P2 receptor antagonist JTE-013 and S1P2-siRNA. S1P-stimulated fibronectin expression was remarkably blocked by ERK1/2 inhibitor PD98059 and p38MAPK inhibitor SB203580. Phospho-ERK1/2 and phospho-p38MAPK level induced by S1P were markedly abrogated by JTE-013 and S1P2-siRNA. In conclusion, S1P2 receptor was significantly up-regulated under diabetic condition. S1P2 receptor mediated fibronectin expression through the activation of S1P-S1P2-MAPK (ERK1/2 and p38MAPK) axis in mesangial cells under high glucose condition, suggesting that it might be a potential therapeutic target for diabetic nephropathy treatment.
Collapse
Affiliation(s)
- Weihua Liu
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Akamatsu Y. Reminiscence of our research on membrane phospholipids in mammalian cells by using the novel technology. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2012; 88:536-53. [PMID: 23229749 PMCID: PMC3552046 DOI: 10.2183/pjab.88.536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 10/02/2012] [Indexed: 06/01/2023]
Abstract
By using "our devised up-to-the-second technique" over 30 years ago, we succeeded in the first isolation in the world of the three different kinds of mammalian cell mutants defective in the biosynthesis on each of phosphatidylserine (PS), cardiolipin (CL) and sphingomyelin (SM) from the parental CHO cells. As the results, we found that during the biosyntheses of PS and SM, the biosynthetic precursor or the final lipids are transported from their synthesized intracellular organelles to the plasma membranes via the other intracellular organelles. We further clarified the presence of the reversed routes for PS and SM from the plasma membranes to their synthesized organelles too. Our first epoch-making finding is not only the cycling inter-conversion reactions between PS and PE catalyzed by PSS-II and PSD but also their simultaneous transferring between MAM and Mit (found by O. Kuge). Our second finding is "the ceramide-trafficking protein (CERT)" working as the specific transfer protein of ceramide from the ER to the Golgi apparatus, during the SM biosynthesis (by K. Hanada). As for their new biological roles, we clarified possible contribution of PS and/or PE to the fusion process between viral envelope and endosomal membrane, releasing the genetic information of the virus to the host cytoplasm. CL is contributing to the functional NADH-ubiquinone reductase activity by keeping the right structure of Coenzyme Q9 for its functioning. SM and cholesterol form the microdomain within the plasma membrane, so-called "the raft structure" where the GPI-anchored proteins are specifically located for their functioning.
Collapse
Affiliation(s)
- Yuzuru Akamatsu
- National Institute of Infectious Diseases of Japan, Tokyo, Japan.
| |
Collapse
|
40
|
Liebisch G, Scherer M. Quantification of bioactive sphingo- and glycerophospholipid species by electrospray ionization tandem mass spectrometry in blood. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 883-884:141-6. [PMID: 22100558 DOI: 10.1016/j.jchromb.2011.10.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 10/25/2011] [Accepted: 10/28/2011] [Indexed: 11/24/2022]
Abstract
Bioactive glycerophospho- and sphingolipids species are involved in the regulation of numerous biological processes and implicated in the pathophysiology of various diseases. Here we review electrospray ionization tandem mass spectrometric (ESI-MS/MS) methods for the analysis of these bioactive lipid species in blood including lysophosphatidic acid (LPA), lysophosphatidylcholine (LPC), bis(monoacylglycero)phosphate (BMP), ceramide (Cer), sphingosine-1-phosphate (S1P) and sphingosylphosphorylcholine (SPC). Beside direct tandem mass spectrometric and liquid chromatography coupled approaches, we present an overview of concentrations of these bioactive lipids in plasma. The analytical strategies are discussed together with aspects of sample preparation, quantification and sample stability.
Collapse
Affiliation(s)
- Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany.
| | | |
Collapse
|
41
|
Lépine S, Allegood JC, Edmonds Y, Milstien S, Spiegel S. Autophagy induced by deficiency of sphingosine-1-phosphate phosphohydrolase 1 is switched to apoptosis by calpain-mediated autophagy-related gene 5 (Atg5) cleavage. J Biol Chem 2011; 286:44380-90. [PMID: 22052905 DOI: 10.1074/jbc.m111.257519] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) and ceramide have been implicated in both autophagy and apoptosis. However, the roles of these sphingolipid metabolites in the links between these two processes are not completely understood. Depletion of S1P phosphohydrolase-1 (SPP1), which degrades intracellular S1P, induces the unfolded protein response and endoplasmic reticulum stress-induced autophagy (Lépine, S., Allegood, J. C., Park, M., Dent, P., Milstien, S., and Spiegel, S. (2011) Cell Death Differ. 18, 350-361). Surprisingly, however, treatment with doxorubicin, which by itself also induced autophagy, markedly reduced the extent of autophagy mediated by depletion of SPP1. Concomitantly, doxorubicin-induced apoptosis was greatly enhanced by down-regulation of SPP1. Autophagy and apoptosis seemed to be sequentially linked because inhibiting autophagy with 3-methyladenine also markedly attenuated apoptosis. Moreover, silencing Atg5 or the three sensors of the unfolded protein response, IRE1α, ATF6, and PKR-like eIF2α kinase (PERK), significantly decreased both autophagy and apoptosis. Doxorubicin stimulated calpain activity and Atg5 cleavage, which were significantly enhanced in SPP1-depleted cells. Inhibition or depletion of calpain not only suppressed Atg5 cleavage, it also markedly decreased the robust apoptosis induced by doxorubicin in SPP1-deficient cells. Importantly, doxorubicin also increased de novo synthesis of the pro-apoptotic sphingolipid metabolite ceramide. Elevation of ceramide in turn stimulated calpain; conversely, inhibiting ceramide formation suppressed Atg5 cleavage and apoptosis. Hence, doxorubicin switches protective autophagy in SPP1-depleted cells to apoptosis by calpain-mediated Atg5 cleavage.
Collapse
Affiliation(s)
- Sandrine Lépine
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, USA
| | | | | | | | | |
Collapse
|
42
|
Sphingosine-1-phosphate signaling and its role in disease. Trends Cell Biol 2011; 22:50-60. [PMID: 22001186 DOI: 10.1016/j.tcb.2011.09.003] [Citation(s) in RCA: 784] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 09/08/2011] [Accepted: 09/09/2011] [Indexed: 02/07/2023]
Abstract
The bioactive sphingolipid metabolite sphingosine-1-phosphate (S1P) is now recognized as a critical regulator of many physiological and pathophysiological processes, including cancer, atherosclerosis, diabetes and osteoporosis. S1P is produced in cells by two sphingosine kinase isoenzymes, SphK1 and SphK2. Many cells secrete S1P, which can then act in an autocrine or paracrine manner. Most of the known actions of S1P are mediated by a family of five specific G protein-coupled receptors. More recently, it was shown that S1P also has important intracellular targets involved in inflammation, cancer and Alzheimer's disease. This suggests that S1P actions are much more complex than previously thought, with important ramifications for development of therapeutics. This review highlights recent advances in our understanding of the mechanisms of action of S1P and its roles in disease.
Collapse
|
43
|
Siow D, Wattenberg B. The compartmentalization and translocation of the sphingosine kinases: mechanisms and functions in cell signaling and sphingolipid metabolism. Crit Rev Biochem Mol Biol 2011; 46:365-75. [PMID: 21864225 DOI: 10.3109/10409238.2011.580097] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Members of the sphingosine kinase (SK) family of lipid signaling enzymes, comprising SK1 and SK2 in humans, are receiving considerable attention for their roles in a number of physiological and pathophysiological processes. The SKs are considered signaling enzymes based on their production of the potent lipid second messenger sphingosine-1-phosphate, which is the ligand for a family of five G-protein-linked receptors. Both SK1 and SK2 are intracellular enzymes and do not possess obvious membrane anchor domains within their primary sequences. The native substrates (sphingosine and dihydrosphingosine) are lipids, as are the corresponding products, and therefore would have a propensity to be membrane associated, suggesting that specific membrane localization of the SKs could affect both access to substrate and localized production of product. Here, we consider the emerging picture of the SKs as enzymes localized to specific intracellular sites, sometimes by agonist-dependent translocation, the mechanism targeting these enzymes to those sites, and the functional consequence of that localization. Not only is the signaling output of the SKs affected by subcellular localization, but the role of these enzymes as metabolic regulators of sphingolipid metabolism may be impacted as well.
Collapse
Affiliation(s)
- Deanna Siow
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | | |
Collapse
|
44
|
Schröder M, Richter C, Juan MHS, Maltusch K, Giegold O, Quintini G, Pfeilschifter JM, Huwiler A, Radeke HH. The sphingosine kinase 1 and S1P1 axis specifically counteracts LPS-induced IL-12p70 production in immune cells of the spleen. Mol Immunol 2011; 48:1139-48. [DOI: 10.1016/j.molimm.2011.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 02/14/2011] [Accepted: 02/17/2011] [Indexed: 01/29/2023]
|
45
|
Targeted analysis of sphingoid precursors in human biofluids by solid-phase extraction with in situ derivatization prior to μ-LC-LIF determination. Anal Bioanal Chem 2011; 400:757-65. [DOI: 10.1007/s00216-011-4821-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 02/19/2011] [Indexed: 11/26/2022]
|
46
|
Huang YL, Huang WP, Lee H. Roles of sphingosine 1-phosphate on tumorigenesis. World J Biol Chem 2011; 2:25-34. [PMID: 21537487 PMCID: PMC3083992 DOI: 10.4331/wjbc.v2.i2.25] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 02/10/2011] [Accepted: 02/16/2011] [Indexed: 02/05/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid with a variety of biological activities. It is generated from the conversion of ceramide to sphingosine by ceramidase and the subsequent conversion of sphingosine to S1P, which is catalyzed by sphingosine kinases. Through increasing its intracellular levels by sphingolipid metabolism and binding to its cell surface receptors, S1P regulates several physiological and pathological processes, including cell proliferation, migration, angiogenesis and autophagy. These processes are responsible for tumor growth, metastasis and invasion and promote tumor survival. Since ceramide and S1P have distinct functions in regulating in cell fate decision, the balance between the ceramide/sphingosine/S1P rheostat becomes a potent therapeutic target for cancer cells. Herein, we summarize our current understanding of S1P signaling on tumorigenesis and its potential as a target for cancer therapy.
Collapse
Affiliation(s)
- Yuan-Li Huang
- Yuan-Li Huang, Department of Biotechnology, College of Health Science, Asia University, Taichung 41354, Taiwan, China
| | | | | |
Collapse
|
47
|
Kovacs E, Xu L, Pasek DA, Liliom K, Meissner G. Regulation of ryanodine receptors by sphingosylphosphorylcholine: involvement of both calmodulin-dependent and -independent mechanisms. Biochem Biophys Res Commun 2010; 401:281-6. [PMID: 20851108 DOI: 10.1016/j.bbrc.2010.09.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 09/11/2010] [Indexed: 11/18/2022]
Abstract
Sphingosylphosphorylcholine (SPC), a lipid mediator with putative second messenger functions, has been reported to regulate ryanodine receptors (RyRs), Ca2+ channels of the sarco/endoplasmic reticulum. RyRs are also regulated by the ubiquitous Ca2+ sensor calmodulin (CaM), and we have previously shown that SPC disrupts the complex of CaM and the peptide corresponding to the CaM-binding domain of the skeletal muscle Ca2+ release channel (RyR1). Here we report that SPC also displaces Ca2+-bound CaM from the intact RyR1, which we hypothesized might lead to channel activation by relieving the negative feedback Ca2+CaM exerts on the channel. We could not demonstrate such channel activation as we have found that SPC has a direct, CaM-independent inhibitory effect on channel activity, confirmed by both single channel measurements and [3H]ryanodine binding assays. In the presence of Ca2+CaM, however, the addition of SPC did not reduce [3H]ryanodine binding, which we could explain by assuming that the direct inhibitory action of the sphingolipid was negated by the simultaneous displacement of inhibitory Ca2+CaM. Additional experiments revealed that RyRs are unlikely to be responsible for SPC-elicited Ca2+ release from brain microsomes, and that SPC does not exert detergent-like effects on sarcoplasmic reticulum vesicles. We conclude that regulation of RyRs by SPC involves both CaM-dependent and -independent mechanisms, thus, the sphingolipid might play a physiological role in RyR regulation, but channel activation previously attributed to SPC is unlikely.
Collapse
Affiliation(s)
- Erika Kovacs
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Karolina ut 29, H-1113 Budapest, Hungary.
| | | | | | | | | |
Collapse
|
48
|
Rosa JM, Gandía L, García AG. Permissive role of sphingosine on calcium-dependent endocytosis in chromaffin cells. Pflugers Arch 2010; 460:901-14. [PMID: 20640579 DOI: 10.1007/s00424-010-0861-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 06/22/2010] [Indexed: 01/09/2023]
Abstract
Sphingosine has been shown to modulate neurotransmitter release. Because membrane fusion and fission involve lipid metabolism, we asked here whether sphingosine had a role in regulating endocytosis. To explore this hypothesis, we monitored changes of membrane capacitance (Cm) to study the effects of intracellular sphingosine on membrane retrieval after chromaffin cell stimulation with depolarising pulses (DPs). We found that: (1) sphingosine dialysis through the patch-clamp pipette (SpD) using the whole-cell configuration of the patch-clamp technique (WCC) favours the appearance of a pronounced endocytotic response; (2) SpD-elicited endocytosis was Ca(2+)-dependent but Ba(2+) did not substitute Ca(2+); (3) under WCC, such endocytotic response disappeared with repetitive DPs; (4) in cells preincubated with sphingomyelinase to augment endogenous sphingosine synthesis, and then voltage-clamped under the perforated-patch configuration of the patch-clamp technique (PPC), endocytosis decayed little with repeated stimulation; (5) sphingosine-1-phosphate (S1P), a metabolite of sphingosine, had a meagre effect on endocytosis; and (6) neither dynamin inhibitor dynasore nor calmodulin blocker calmidazolium affected the sphingosine elicited endocytosis. We believe this is the first report showing that sphingosine plays a permissive role in activating Ca(2+)-dependent endocytosis during cell depolarisation. This effect requires high subplasmalemmal cytosolic Ca(2+) concentrations and a cytosolic factor(s) that is dialysed with the pipette solution. Independence of dynamin and calmodulin suggests that sphingosine-dependent endocytosis could be a novel, more direct pathway for vesicle recycling under mild depolarisation stimuli.
Collapse
Affiliation(s)
- Juliana M Rosa
- Instituto Teófilo Hernando Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo, 4, 28029, Madrid, Spain
| | | | | |
Collapse
|
49
|
Leong WI, Saba JD. S1P metabolism in cancer and other pathological conditions. Biochimie 2010; 92:716-23. [PMID: 20167244 DOI: 10.1016/j.biochi.2010.02.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 02/12/2010] [Indexed: 12/28/2022]
Abstract
Nearly two decades ago, the sphingolipid metabolite sphingosine 1-phosphate was discovered to function as a lipid mediator and regulator of cell proliferation. Since that time, sphingosine 1-phosphate has been shown to mediate a diverse array of fundamental biological processes including cell proliferation, migration, invasion, angiogenesis, vascular maturation and lymphocyte trafficking. Sphingosine 1-phosphate acts primarily via signaling through five ubiquitously expressed G protein-coupled receptors. Intracellular sphingosine 1-phosphate molecules are transported extracellularly and gain access to cognate receptors for autocrine and paracrine signaling and for signaling at distant sites reached through blood and lymphatic circulation systems. Intracellular pools of sphingosine 1-phosphate available for signaling are tightly regulated primarily by three enzymes: sphinosine kinase, S1P lyase and S1P phosphatase. Alterations in sphingosine 1-phosphate as well as the enzymes involved in its synthesis and catabolism have been observed in many types of malignancy. These enzymes are being evaluated for their role in mediating cancer formation and progression, as well as their potential to serve as targets of anti-cancer therapeutics. In this review, the impact of sphingosine 1-phosphate, its cognate receptors, and the enzymes of sphingosine 1-phosphate metabolism on cell survival, apoptosis, autophagy, cellular transformation, invasion, angiogenesis and hypoxia in relation to cancer biology and treatment are discussed.
Collapse
Affiliation(s)
- Weng In Leong
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King, Jr. Way, Oakland, CA 94609, USA
| | | |
Collapse
|
50
|
Kovacs E, Tóth J, Vértessy BG, Liliom K. Dissociation of calmodulin-target peptide complexes by the lipid mediator sphingosylphosphorylcholine: implications in calcium signaling. J Biol Chem 2009; 285:1799-808. [PMID: 19910470 DOI: 10.1074/jbc.m109.053116] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously we have identified the lipid mediator sphingosylphosphorylcholine (SPC) as the first potentially endogenous inhibitor of the ubiquitous Ca2+ sensor calmodulin (CaM) (Kovacs, E., and Liliom, K. (2008) Biochem. J. 410, 427-437). Here we give mechanistic insight into CaM inhibition by SPC, based on fluorescence stopped-flow studies with the model CaM-binding domain melittin. We demonstrate that both the peptide and SPC micelles bind to CaM in a rapid and reversible manner with comparable affinities. Furthermore, we present kinetic evidence that both species compete for the same target site on CaM, and thus SPC can be considered as a competitive inhibitor of CaM-target peptide interactions. We also show that SPC disrupts the complex of CaM and the CaM-binding domain of ryanodine receptor type 1, inositol 1,4,5-trisphosphate receptor type 1, and the plasma membrane Ca2+ pump. By interfering with these interactions, thus inhibiting the negative feedback that CaM has on Ca2+ signaling, we hypothesize that SPC could lead to Ca2+ mobilization in vivo. Hence, we suggest that the action of the sphingolipid on CaM might explain the previously recognized phenomenon that SPC liberates Ca2+ from intracellular stores. Moreover, we demonstrate that unlike traditional synthetic CaM inhibitors, SPC disrupts the complex between not only the Ca2+-saturated but also the apo form of the protein and the target peptide, suggesting a completely novel regulation for target proteins that constitutively bind CaM, such as ryanodine receptors.
Collapse
Affiliation(s)
- Erika Kovacs
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest H-1113, Hungary.
| | | | | | | |
Collapse
|