1
|
Chen Y, Bian S, Zhang J, Luan Y, Yin B, Dai W, Wang H, Chen X, Dong Y, Cai Y, Dong R, Yu L, Shu M. HSV-1-induced N6-methyladenosine reprogramming via ICP0-mediated suppression of METTL14 potentiates oncolytic activity in glioma. Cell Rep 2024; 43:114756. [PMID: 39325621 DOI: 10.1016/j.celrep.2024.114756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 07/01/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
Upon infection with herpes simplex virus 1 (HSV-1), the virus deploys multiple strategies to evade the host's innate immune response. However, the mechanisms governing this phenomenon remain elusive. Here, we find that HSV-1 leads to a decrease in overall m6A levels by selectively reducing METTL14 protein during early infection in glioma cells. Specifically, the HSV-1-encoded immediate-early protein ICP0 interacts with METTL14 within ND10 bodies and serves as an E3 ubiquitin protein ligase, targeting and ubiquitinating METTL14 at the lysine 156 and 162 sites. Subsequently, METTL14 undergoes proteasomal degradation. Furthermore, METTL14 stabilizes ISG15 mRNA mediated by IGF2BP3 to promote antiviral effects. Notably, METTL14 suppression significantly enhances the anti-tumor effect of oncolytic HSV-1 (oHSV-1) in mice bearing glioma xenografts. Collectively, these findings establish that ICP0-guided m6A modification controls the antiviral immune response and suggest that targeting METTL14/ISG15 represents a potential strategy to enhance the oncolytic activity of oHSV-1 in glioma treatment.
Collapse
Affiliation(s)
- Yuling Chen
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shasha Bian
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/ Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jiamei Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/ Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuxuan Luan
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Bowen Yin
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/ Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Weiwei Dai
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/ Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hanlin Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xi Chen
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yan Dong
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/ Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yiheng Cai
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/ Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ruitao Dong
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/ Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Liubing Yu
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/ Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Minfeng Shu
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/ Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pharmacy, Jinshan Hospital, Fudan University, Shanghai 201508, China.
| |
Collapse
|
2
|
Totsch SK, Ishizuka AS, Kang KD, Gary SE, Rocco A, Fan AE, Zhou L, Valdes PA, Lee S, Li J, Peruzzotti-Jametti L, Blitz S, Garliss CM, Johnston JM, Markert JM, Lynn GM, Bernstock JD, Friedman GK. Combination Immunotherapy with Vaccine and Oncolytic HSV Virotherapy Is Time Dependent. Mol Cancer Ther 2024; 23:1273-1281. [PMID: 38710101 PMCID: PMC11374504 DOI: 10.1158/1535-7163.mct-23-0873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/06/2024] [Accepted: 04/18/2024] [Indexed: 05/08/2024]
Abstract
Oncolytic virotherapy or immunovirotherapy is a strategy that utilizes viruses to selectively infect and kill tumor cells while also stimulating an immune response against the tumor. Early clinical trials in both pediatric and adult patients using oncolytic herpes simplex viruses (oHSV) have demonstrated safety and promising efficacy; however, combinatorial strategies designed to enhance oncolysis while also promoting durable T-cell responses for sustaining disease remission are likely required. We hypothesized that combining the direct tumor cell killing and innate immune stimulation by oHSV with a vaccine that promotes T cell-mediated immunity may lead to more durable tumor regression. To this end, we investigated the preclinical efficacy and potential synergy of combining oHSV with a self-assembling nanoparticle vaccine codelivering peptide antigens and Toll-like receptor 7 and 8 agonists (referred to as SNAPvax),which induces robust tumor-specific T-cell immunity. We then assessed how timing of the treatments (i.e., vaccine before or after oHSV) impacts T-cell responses, viral replication, and preclinical efficacy. The sequence of treatments was critical, as survival was significantly enhanced when the SNAPvax vaccine was given prior to oHSV. Increased clinical efficacy was associated with reduced tumor volume and increases in virus replication and tumor antigen-specific CD8+ T cells. These findings substantiate the criticality of combination immunotherapy timing and provide preclinical support for combining SNAPvax with oHSV as a promising treatment approach for both pediatric and adult tumors.
Collapse
Affiliation(s)
- Stacie K Totsch
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Andrew S Ishizuka
- Barinthus Biotherapeutics, Inc., Germantown, Maryland
- Boston Children's Hospital, Boston, Massachusetts
| | - Kyung-Don Kang
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, Alabama
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sam E Gary
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, Alabama
- Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, Alabama
| | - Abbey Rocco
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Aaron E Fan
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, Alabama
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Li Zhou
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pablo A Valdes
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, Texas
| | - SeungHo Lee
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Jason Li
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Luca Peruzzotti-Jametti
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Sarah Blitz
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - James M Johnston
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - James M Markert
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Joshua D Bernstock
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Gregory K Friedman
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, Alabama
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
3
|
Li G, Wang S, Ma J, Liu S. Genetic susceptibility association between viral infection and colorectal cancer risk: a two-sample Mendelian randomization analysis. Infect Agent Cancer 2024; 19:37. [PMID: 39123209 PMCID: PMC11316422 DOI: 10.1186/s13027-024-00602-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND The genetic susceptibility association between viral infection and the risk of colorectal cancer (CRC) has not been established. METHODS We conducted two-sample Mendelian randomization (MR) analysis using genome-wide association study (GWAS) data. In addition to traditional MR methods, we employed several other approaches, including cML, ConMix, MR-RAPS, and dIVW, to comprehensively assess causal effects. Sensitivity analyses were also performed to ensure the robustness of the results. RESULTS After sensitivity analysis, presence of SNPs linked to increased susceptibility to cold sores infection was found to decrease the risk of CRC (OR: 0.73, 95% CI: 0.57-0.93, P = 0.01). In subgroup analysis, presence of SNPs linked to increased susceptibility to viral hepatitis (OR: 0.89, 95% CI: 0.81-0.98, P = 0.02) and infectious mononucleosis (OR: 0.91, 95% CI: 0.84-0.98, P = 0.02) were associated with a decreased risk of colon cancer, while measles virus (OR: 1.41, 95% CI: 1.07-1.85, P = 0.01) was associated with an increased risk of colon cancer. Presence of SNPs linked to increased susceptibility to herpes zoster (OR: 1.26, 95% CI: 1.05-1.52, P = 0.01) was associated with an increased risk of rectal cancer, while infectious mononucleosis (OR: 0.809, 95% CI: 0.80-0.98, P = 0.02) was associated with a decreased risk. CONCLUSION The study provides the first evidence of the genetic susceptibility associations between different viral infections and CRC, enhancing our understanding of the etiology of CRC.
Collapse
Affiliation(s)
- Gen Li
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Siyu Wang
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Jianli Ma
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Shanshan Liu
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China.
| |
Collapse
|
4
|
Pino-Belmar C, Aguilar R, Valenzuela-Nieto GE, Cavieres VA, Cerda-Troncoso C, Navarrete VC, Salazar P, Burgos PV, Otth C, Bustamante HA. An Intrinsic Host Defense against HSV-1 Relies on the Activation of Xenophagy with the Active Clearance of Autophagic Receptors. Cells 2024; 13:1256. [PMID: 39120287 PMCID: PMC11311385 DOI: 10.3390/cells13151256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 08/10/2024] Open
Abstract
Autophagy engulfs cellular components in double-membrane-bound autophagosomes for clearance and recycling after fusion with lysosomes. Thus, autophagy is a key process for maintaining proteostasis and a powerful cell-intrinsic host defense mechanism, protecting cells against pathogens by targeting them through a specific form of selective autophagy known as xenophagy. In this context, ubiquitination acts as a signal of recognition of the cargoes for autophagic receptors, which direct them towards autophagosomes for subsequent breakdown. Nevertheless, autophagy can carry out a dual role since numerous viruses including members of the Orthoherpesviridae family can either inhibit or exploit autophagy for its own benefit and to replicate within host cells. There is growing evidence that Herpes simplex virus type 1 (HSV-1), a highly prevalent human pathogen that infects epidermal keratinocytes and sensitive neurons, is capable of negatively modulating autophagy. Since the effects of HSV-1 infection on autophagic receptors have been poorly explored, this study aims to understand the consequences of HSV-1 productive infection on the levels of the major autophagic receptors involved in xenophagy, key proteins in the recruitment of intracellular pathogens into autophagosomes. We found that productive HSV-1 infection in human neuroglioma cells and keratinocytes causes a reduction in the total levels of Ub conjugates and decreases protein levels of autophagic receptors, including SQSTM1/p62, OPTN1, NBR1, and NDP52, a phenotype that is also accompanied by reduced levels of LC3-I and LC3-II, which interact directly with autophagic receptors. Mechanistically, we show these phenotypes are the result of xenophagy activation in the early stages of productive HSV-1 infection to limit virus replication, thereby reducing progeny HSV-1 yield. Additionally, we found that the removal of the tegument HSV-1 protein US11, a recognized viral factor that counteracts autophagy in host cells, enhances the clearance of autophagic receptors, with a significant reduction in the progeny HSV-1 yield. Moreover, the removal of US11 increases the ubiquitination of SQSTM1/p62, indicating that US11 slows down the autophagy turnover of autophagy receptors. Overall, our findings suggest that xenophagy is a potent host defense against HSV-1 replication and reveals the role of the autophagic receptors in the delivery of HSV-1 to clearance via xenophagy.
Collapse
Affiliation(s)
- Camila Pino-Belmar
- Instituto de Microbiología Clínica, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5110566, Chile; (C.P.-B.); (R.A.); (V.C.N.); (P.S.)
| | - Rayén Aguilar
- Instituto de Microbiología Clínica, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5110566, Chile; (C.P.-B.); (R.A.); (V.C.N.); (P.S.)
| | - Guillermo E. Valenzuela-Nieto
- Instituto de Medicina, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5110566, Chile;
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Viviana A. Cavieres
- Organelle Phagy Lab, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile; (V.A.C.); (C.C.-T.); (P.V.B.)
- Departamento de Ciencias Biológicas y Químicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile
| | - Cristóbal Cerda-Troncoso
- Organelle Phagy Lab, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile; (V.A.C.); (C.C.-T.); (P.V.B.)
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago 7750000, Chile
| | - Valentina C. Navarrete
- Instituto de Microbiología Clínica, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5110566, Chile; (C.P.-B.); (R.A.); (V.C.N.); (P.S.)
| | - Paula Salazar
- Instituto de Microbiología Clínica, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5110566, Chile; (C.P.-B.); (R.A.); (V.C.N.); (P.S.)
| | - Patricia V. Burgos
- Organelle Phagy Lab, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile; (V.A.C.); (C.C.-T.); (P.V.B.)
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago 7750000, Chile
| | - Carola Otth
- Instituto de Microbiología Clínica, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5110566, Chile; (C.P.-B.); (R.A.); (V.C.N.); (P.S.)
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Hianara A. Bustamante
- Instituto de Microbiología Clínica, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5110566, Chile; (C.P.-B.); (R.A.); (V.C.N.); (P.S.)
| |
Collapse
|
5
|
Wang L, Zhou X, Chen X, Liu Y, Huang Y, Cheng Y, Ren P, Zhao J, Zhou GG. Enhanced therapeutic efficacy for glioblastoma immunotherapy with an oncolytic herpes simplex virus armed with anti-PD-1 antibody and IL-12. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200799. [PMID: 38681801 PMCID: PMC11053222 DOI: 10.1016/j.omton.2024.200799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/18/2023] [Accepted: 04/03/2024] [Indexed: 05/01/2024]
Abstract
Glioblastoma is the most common and aggressive malignant brain tumor and has limited treatment options. Hence, innovative approaches are urgently needed. Oncolytic virus therapy is emerging as a promising modality for cancer treatment due to its tumor-specific targeting and immune-stimulatory properties. In this study, we developed a new generation of oncolytic herpes simplex virus C5252 by deletion of a 15-kb internal repeat region and both copies of γ34.5 genes. Additionally, C5252 was armed with anti-programmed cell death protein 1 antibody and interleukin-12 to enhance its therapeutic efficacy for glioblastoma immune-virotherapy. In vitro and in vivo experiments demonstrate that C5252 has a remarkable safety profile and potent anti-tumor activity against glioblastoma. Mechanistic studies demonstrated that C5252 specifically induces cell apoptosis by caspase-3/7 activation via downregulating ciliary neurotrophic factor receptor α. Furthermore, the enhanced anti-tumor therapeutic efficacy of C5252 in a subcutaneous glioblastoma model and an orthotopic glioblastoma model was confirmed. Moreover, syngeneic mouse models showed that the murine surrogate of C5252 has superior anti-tumor activity compared to the unarmed backbone virus, with enhanced immune activation. Taken together, our findings support C5252 as a promising therapeutic option for glioblastoma treatment, positioning it as a highly promising candidate for clinical translation.
Collapse
Affiliation(s)
- Lei Wang
- Research Center for Reproduction and Health Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China
- Shenzhen International Institute for Biomedical Research, 1301 Guan-Guang Road, Building 1-B, Silver Star Hi-tech Industrial Park, Longhua District, Shenzhen 518110, China
| | - Xusha Zhou
- ImmVira Co., Ltd., Shenzhen 518110, China
| | | | | | - Yue Huang
- ImmVira Co., Ltd., Shenzhen 518110, China
| | - Yuan Cheng
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Peigen Ren
- Research Center for Reproduction and Health Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China
| | - Jing Zhao
- Shenzhen International Institute for Biomedical Research, 1301 Guan-Guang Road, Building 1-B, Silver Star Hi-tech Industrial Park, Longhua District, Shenzhen 518110, China
| | - Grace Guoying Zhou
- Shenzhen International Institute for Biomedical Research, 1301 Guan-Guang Road, Building 1-B, Silver Star Hi-tech Industrial Park, Longhua District, Shenzhen 518110, China
| |
Collapse
|
6
|
Kim Y, Saini U, Kim D, Hernandez-Aguirre I, Hedberg J, Martin A, Mo X, Cripe TP, Markert J, Cassady KA, Dhital R. Enhanced IL-12 transgene expression improves oncolytic viroimmunotherapy. Front Immunol 2024; 15:1375413. [PMID: 38895115 PMCID: PMC11184146 DOI: 10.3389/fimmu.2024.1375413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas with unacceptably low cure rates occurring often in patients with neurofibromatosis 1 defects. To investigate oncolytic Herpes Simplex Virus (oHSV) as an immunotherapeutic approach, we compared viral replication, functional activity, and immune response between unarmed and interleukin 12 (IL-12)-armed oncolytic viruses in virus-permissive (B109) and -resistant (67C-4) murine MPNSTs. Methods This study compared two attenuated IL-12-oHSVs with γ134.5 gene deletions (Δγ134.5) and the same transgene expression cassette. The primary difference in the IL-12-oHSVs was in their ability to counter the translational arrest response in infected cells. Unlike M002 (Δγ134.5, mIL-12), C002 (Δγ134.5, mIL-12, IRS1) expresses an HCMV IRS1 gene and evades dsRNA activated translational arrest in infected cells. Results and discussion Our results show that oHSV replication and gene expression results in vitro were not predictive of oHSV direct oncolytic activity in vivo. Tumors that supported viral replication in cell culture studies resisted viral replication by both oHSVs and restricted M002 transgene expression in vivo. Furthermore, two IL-12-oHSVs with equivalent transcriptional activity differed in IL-12 protein production in vivo, and the differences in IL-12 protein levels were reflected in immune infiltrate activity changes as well as tumor growth suppression differences between the IL-12-oHSVs. C002-treated tumors exhibited sustained IL-12 production with improved dendritic cells, monocyte-macrophage activity (MHCII, CD80/CD86 upregulation) and a polyfunctional Th1-cell response in the tumor infiltrates. Conclusion These results suggest that transgene protein production differences between oHSVs in vivo, in addition to replication differences, can impact OV-therapeutic activity.
Collapse
Affiliation(s)
- Yeaseul Kim
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Uksha Saini
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Doyeon Kim
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Ilse Hernandez-Aguirre
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH, United States
- College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Jack Hedberg
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH, United States
- College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Alexia Martin
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH, United States
- College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Xiaokui Mo
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Timothy P. Cripe
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| | - James Markert
- Department of Neurosurgery, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kevin A. Cassady
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Ravi Dhital
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| |
Collapse
|
7
|
Lu J, Long Y, Sun J, Gong L. Towards a comprehensive view of the herpes B virus. Front Immunol 2023; 14:1281384. [PMID: 38035092 PMCID: PMC10687423 DOI: 10.3389/fimmu.2023.1281384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Herpes B virus is a biosafety level 4 pathogen and widespread in its natural host species, macaques. Although most infected monkeys show asymptomatic or mild symptoms, human infections with this virus can cause serious neurological symptoms or fatal encephalomyelitis with a high mortality rate. Herpes B virus can be latent in the sensory ganglia of monkeys and humans, often leading to missed diagnoses. Furthermore, the herpes B virus has extensive antigen crossover with HSV, SA8, and HVP-2, causing false-positive results frequently. Timely diagnosis, along with methods with sensitivity and specificity, are urgent for research on the herpes B virus. The lack of a clear understanding of the host invasion and life cycle of the herpes B virus has led to slow progress in the development of effective vaccines and drugs. This review discusses the research progress and problems of the epidemiology of herpes B virus, detection methods and therapy, hoping to inspire further investigation into important factors associated with transmission of herpes B virus in macaques and humans, and arouse the development of effective vaccines or drugs, to promote the establishment of specific pathogen-free (SPF) monkeys and protect humans to effectively avoid herpes B virus infection.
Collapse
Affiliation(s)
- Jiangling Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Yiru Long
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianhua Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Likun Gong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| |
Collapse
|
8
|
Hu M, Liao X, Tao Y, Chen Y. Advances in oncolytic herpes simplex virus and adenovirus therapy for recurrent glioma. Front Immunol 2023; 14:1285113. [PMID: 38022620 PMCID: PMC10652401 DOI: 10.3389/fimmu.2023.1285113] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Recurrent glioma treatment is challenging due to molecular heterogeneity and treatment resistance commonly observed in these tumors. Researchers are actively pursuing new therapeutic strategies. Oncolytic viruses have emerged as a promising option. Oncolytic viruses selectively replicate within tumor cells, destroying them and stimulating the immune system for an enhanced anticancer response. Among Oncolytic viruses investigated for recurrent gliomas, oncolytic herpes simplex virus and oncolytic adenovirus show notable potential. Genetic modifications play a crucial role in optimizing their therapeutic efficacy. Different generations of replicative conditioned oncolytic human adenovirus and oncolytic HSV have been developed, incorporating specific modifications to enhance tumor selectivity, replication efficiency, and immune activation. This review article summarizes these genetic modifications, offering insights into the underlying mechanisms of Oncolytic viruses' therapy. It also aims to identify strategies for further enhancing the therapeutic benefits of Oncolytic viruses. However, it is important to acknowledge that additional research and clinical trials are necessary to establish the safety, efficacy, and optimal utilization of Oncolytic viruses in treating recurrent glioblastoma.
Collapse
Affiliation(s)
- Mingming Hu
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - XuLiang Liao
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Tao
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yaohui Chen
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Waisner H, Lasnier S, Suma SM, Kalamvoki M. Effects on exocytosis by two HSV-1 mutants unable to block autophagy. J Virol 2023; 97:e0075723. [PMID: 37712703 PMCID: PMC10617559 DOI: 10.1128/jvi.00757-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/28/2023] [Indexed: 09/16/2023] Open
Abstract
IMPORTANCE Pathogens often hijack extracellular vesicle (EV) biogenesis pathways for assembly, egress, and cell-to-cell spread. Herpes simplex virus 1 (HSV-1) infection stimulated EV biogenesis through a CD63 tetraspanin biogenesis pathway and these EVs activated antiviral responses in recipient cells restricting the infection. HSV-1 inhibits autophagy to evade the host, and increased CD63 exocytosis could be a coping mechanism, as CD63 is involved in both cargo delivery to lysosomes during autophagy and exocytosis. We analyzed exocytosis after infection with two HSV-1 mutants, a ΔICP34.5 and a ΔICP0, that could not inhibit autophagy. Unlike HSV-1(F), neither of these viruses stimulated increased EV biogenesis through the CD63 pathway. ΔICP34.5 stimulated production of microvesicles and apoptotic bodies that were CD63-negative, while ΔICP0 displayed an overall reduced production of EVs. These EVs activated innate immunity gene expression in recipient cells. Given the potential use of these mutants for therapeutic purposes, the immunomodulatory properties of EVs associated with them may be beneficial.
Collapse
Affiliation(s)
- Hope Waisner
- Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Sarah Lasnier
- Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Sreenath Muraleedharan Suma
- Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Maria Kalamvoki
- Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
10
|
Olivet MM, Brown MC, Reitman ZJ, Ashley DM, Grant GA, Yang Y, Markert JM. Clinical Applications of Immunotherapy for Recurrent Glioblastoma in Adults. Cancers (Basel) 2023; 15:3901. [PMID: 37568717 PMCID: PMC10416859 DOI: 10.3390/cancers15153901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Glioblastoma (GBM) is the most common malignant primary brain tumor in adults. Despite standard therapies, including resection and chemoradiation, recurrence is virtually inevitable. Current treatment for recurrent glioblastoma (rGBM) is rapidly evolving, and emerging therapies aimed at targeting primary GBM are often first tested in rGBM to demonstrate safety and feasibility, which, in recent years, has primarily been in the form of immunotherapy. The purpose of this review is to highlight progress in clinical trials of immunotherapy for rGBM, including immune checkpoint blockade, oncolytic virotherapy, chimeric antigen receptor (CAR) T-cell therapy, cancer vaccine and immunotoxins. Three independent reviewers covered literature, published between the years 2000 and 2022, in various online databases. In general, the efficacy of immunotherapy in rGBM remains uncertain, and is limited to subsets/small cohorts of patients, despite demonstrating feasibility in early-stage clinical trials. However, considerable progress has been made in understanding the mechanisms that may preclude rGBM patients from responding to immunotherapy, as well as in developing new approaches/combination strategies that may inspire optimism for the utility of immunotherapy in this devastating disease. Continued trials are necessary to further assess the best therapeutic avenues and ascertain which treatments might benefit each patient individually.
Collapse
Affiliation(s)
- Meagan Mandabach Olivet
- Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Michael C. Brown
- Department of Neurosurgery, Duke University, Durham, NC 27710, USA; (M.C.B.); (D.M.A.); (G.A.G.)
| | - Zachary J. Reitman
- Department of Radiation Oncology, Duke University, Durham, NC 27710, USA;
| | - David M. Ashley
- Department of Neurosurgery, Duke University, Durham, NC 27710, USA; (M.C.B.); (D.M.A.); (G.A.G.)
| | - Gerald A. Grant
- Department of Neurosurgery, Duke University, Durham, NC 27710, USA; (M.C.B.); (D.M.A.); (G.A.G.)
| | - Yuanfan Yang
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - James M. Markert
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| |
Collapse
|
11
|
Webb MJ, Sener U, Vile RG. Current Status and Challenges of Oncolytic Virotherapy for the Treatment of Glioblastoma. Pharmaceuticals (Basel) 2023; 16:793. [PMID: 37375742 PMCID: PMC10301268 DOI: 10.3390/ph16060793] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Despite decades of research and numerous clinical trials, the prognosis of patients diagnosed with glioblastoma (GBM) remains dire with median observed survival at 8 months. There is a critical need for novel treatments for GBM, which is the most common malignant primary brain tumor. Major advances in cancer therapeutics such as immune checkpoint inhibitors and chimeric antigen receptor (CAR) T-cell therapy have not yet led to improved outcomes for GBM. Conventional therapy of surgery followed by chemoradiation with or without tumor treating fields remains the standard of care. One of the many approaches to GBM therapy currently being explored is viral therapies. These typically work by selectively lysing target neoplastic cells, called oncolysis, or by the targeted delivery of a therapeutic transgene via a viral vector. In this review, we discuss the underlying mechanisms of action and describe both recent and current human clinical trials using these viruses with an emphasis on promising viral therapeutics that may ultimately break the field's current stagnant paradigm.
Collapse
Affiliation(s)
- Mason J. Webb
- Department of Hematology, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
- Department of Medical Oncology, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA;
| | - Ugur Sener
- Department of Medical Oncology, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA;
- Department of Neurology, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Richard G. Vile
- Department of Molecular Medicine, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA;
| |
Collapse
|
12
|
Xiao H, Hu H, Guo Y, Li J, Wen L, Zeng WB, Wang M, Luo MH, Hu Z. Construction and characterization of a synthesized herpes simplex virus H129-Syn-G2. Virol Sin 2023:S1995-820X(23)00026-3. [PMID: 36940800 DOI: 10.1016/j.virs.2023.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/15/2023] [Indexed: 03/23/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) causes lifelong infections worldwide, and currently there is no efficient cure or vaccine. HSV-1-derived tools, such as neuronal circuit tracers and oncolytic viruses, have been used extensively; however, further genetic engineering of HSV-1 is hindered by its complex genome structure. In the present study, we designed and constructed a synthetic platform for HSV-1 based on H129-G4. The complete genome was constructed from 10 fragments through 3 rounds of synthesis using transformation-associated recombination (TAR) in yeast, and was named H129-Syn-G2. The H129-Syn-G2 genome contained two copies of the gfp gene and was transfected into cells to rescue the virus. According to growth curve assay and electron microscopy results, the synthetic viruses exhibited more optimized growth properties and similar morphogenesis compared to the parental virus. This synthetic platform will facilitate further manipulation of the HSV-1 genome for the development of neuronal circuit tracers, oncolytic viruses, and vaccines.
Collapse
Affiliation(s)
- Han Xiao
- State Key laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Science, Wuhan, 430071, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Hengrui Hu
- State Key laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Science, Wuhan, 430071, China
| | - Yijia Guo
- State Key laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Science, Wuhan, 430071, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiang Li
- State Key laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Science, Wuhan, 430071, China
| | - Le Wen
- State Key laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Science, Wuhan, 430071, China
| | - Wen-Bo Zeng
- State Key laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Science, Wuhan, 430071, China.
| | - Manli Wang
- State Key laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Science, Wuhan, 430071, China; University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Min-Hua Luo
- State Key laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Science, Wuhan, 430071, China; University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhihong Hu
- State Key laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Science, Wuhan, 430071, China.
| |
Collapse
|
13
|
Kuchitsu Y, Mukai K, Uematsu R, Takaada Y, Shinojima A, Shindo R, Shoji T, Hamano S, Ogawa E, Sato R, Miyake K, Kato A, Kawaguchi Y, Nishitani-Isa M, Izawa K, Nishikomori R, Yasumi T, Suzuki T, Dohmae N, Uemura T, Barber GN, Arai H, Waguri S, Taguchi T. STING signalling is terminated through ESCRT-dependent microautophagy of vesicles originating from recycling endosomes. Nat Cell Biol 2023; 25:453-466. [PMID: 36918692 PMCID: PMC10014584 DOI: 10.1038/s41556-023-01098-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/27/2023] [Indexed: 03/16/2023]
Abstract
Stimulator of interferon genes (STING) is essential for the type I interferon response against a variety of DNA pathogens. Upon emergence of cytosolic DNA, STING translocates from the endoplasmic reticulum to the Golgi where STING activates the downstream kinase TBK1, then to lysosome through recycling endosomes (REs) for its degradation. Although the molecular machinery of STING activation is extensively studied and defined, the one underlying STING degradation and inactivation has not yet been fully elucidated. Here we show that STING is degraded by the endosomal sorting complexes required for transport (ESCRT)-driven microautophagy. Airyscan super-resolution microscopy and correlative light/electron microscopy suggest that STING-positive vesicles of an RE origin are directly encapsulated into Lamp1-positive compartments. Screening of mammalian Vps genes, the yeast homologues of which regulate Golgi-to-vacuole transport, shows that ESCRT proteins are essential for the STING encapsulation into Lamp1-positive compartments. Knockdown of Tsg101 and Vps4, components of ESCRT, results in the accumulation of STING vesicles in the cytosol, leading to the sustained type I interferon response. Knockdown of Tsg101 in human primary T cells leads to an increase the expression of interferon-stimulated genes. STING undergoes K63-linked ubiquitination at lysine 288 during its transit through the Golgi/REs, and this ubiquitination is required for STING degradation. Our results reveal a molecular mechanism that prevents hyperactivation of innate immune signalling, which operates at REs.
Collapse
Affiliation(s)
- Yoshihiko Kuchitsu
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Kojiro Mukai
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Rei Uematsu
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Yuki Takaada
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Ayumi Shinojima
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Ruri Shindo
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Tsumugi Shoji
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Shiori Hamano
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Emari Ogawa
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Ryota Sato
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kensuke Miyake
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Akihisa Kato
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasushi Kawaguchi
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | - Kazushi Izawa
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryuta Nishikomori
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| | - Takahiro Yasumi
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Takefumi Uemura
- Department of Anatomy and Histology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Glen N Barber
- Department of Cell Biology and Sylvester Comprehensive Cancer Center, University of Miami School of Medicine, Miami, FL, USA
| | - Hiroyuki Arai
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Satoshi Waguri
- Department of Anatomy and Histology, Fukushima Medical University School of Medicine, Fukushima, Japan.
| | - Tomohiko Taguchi
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
14
|
Persistent inflammation and neuronal loss in the mouse brain induced by a modified form of attenuated herpes simplex virus type I. Virol Sin 2023; 38:108-118. [PMID: 36436797 PMCID: PMC10006190 DOI: 10.1016/j.virs.2022.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Herpes simplex virus-1 (HSV-1) is a widespread neurotropic virus that can reach the brain and cause a rare but acute herpes simplex encephalitis (HSE) with a high mortality rate. Most patients present with changes in neurological and behavioral status, and survivors suffer long-term neurological sequelae. To date, the pathogenesis leading to brain damage is still not well understood. HSV-1 induced encephalitis in the central nervous system (CNS) in animals are usually very diffuse and progressing rapidly, and mostly fatal, making the analysis difficult. Here, we established a mouse model of HSE via intracerebral inoculation of modified version of neural-attenuated strains of HSV-1 (deletion of ICP34.5 and inserting a strong promoter into the latency-associated transcript region), in which the LMR-αΔpA strain initiated moderate productive infection, leading to strong host immune and inflammatory response characterized by persistent microglia activation. This viral replication activity and prolonged inflammatory response activated signaling pathways in neuronal damage, amyloidosis, Alzheimer's disease, and neurodegeneration, eventually leading to neuronal loss and behavioral changes characterized by hypokinesia. Our study reveals detailed pathogenic processes and persistent inflammatory responses in the CNS and provides a controlled, mild and non-lethal HSE model for studying long-term neuronal injury and increased risk of neurodegenerative diseases due to HSV-1 infection.
Collapse
|
15
|
Krawczyk E, Kangas C, He B. HSV Replication: Triggering and Repressing STING Functionality. Viruses 2023; 15:226. [PMID: 36680267 PMCID: PMC9864509 DOI: 10.3390/v15010226] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Herpes simplex virus (HSV) has persisted within human populations due to its ability to establish both lytic and latent infection. Given this, human hosts have evolved numerous immune responses to protect against HSV infection. Critical in this defense against HSV, the host protein stimulator of interferon genes (STING) functions as a mediator of the antiviral response by inducing interferon (IFN) as well as IFN-stimulated genes. Emerging evidence suggests that during HSV infection, dsDNA derived from either the virus or the host itself ultimately activates STING signaling. While a complex regulatory circuit is in operation, HSV has evolved several mechanisms to neutralize the STING-mediated antiviral response. Within this review, we highlight recent progress involving HSV interactions with the STING pathway, with a focus on how STING influences HSV replication and pathogenesis.
Collapse
Affiliation(s)
| | | | - Bin He
- Department of Microbiology and Immunology, College of Medicine, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
16
|
Jaggi U, Matundan HH, Lee DH, Ghiasi H. Blocking Autophagy in M1 Macrophages Enhances Virus Replication and Eye Disease in Ocularly Infected Transgenic Mice. J Virol 2022; 96:e0140122. [PMID: 36286481 PMCID: PMC9645210 DOI: 10.1128/jvi.01401-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/03/2022] [Indexed: 11/20/2022] Open
Abstract
Macrophages are one of the first innate immune infiltrates in the cornea of mice following ocular infection with herpes simplex virus 1 (HSV-1). Using gamma interferon (IFN-γ) and interleukin-4 (IL-4) injections to polarize macrophages into M1 and M2, respectively, and in M1 and M2 conditional knockout mice, we have shown that M1 macrophages play an important role in suppressing both virus replication in the eye and eye disease in HSV-1-infected mice. Autophagy is also important in controlling HSV infection and integrity of infected cells. To determine if blocking autophagy in M1 and M2 macrophages affects HSV-1 infectivity and eye disease, we generated two transgenic mouse strains expressing the HSV-1 γ34.5 autophagy gene under the M1 promoter (M1-γ34.5) or the M2 promoter (M2-γ34.5). We found that blocking autophagy in M1 macrophages increased both virus replication in the eyes and eye disease in comparison to blocking autophagy in M2 macrophages or wild-type (WT) control mice, but blocked autophagy did not affect latency-reactivation. However, blocking autophagy affected fertility in both M1 and M2 transgenic mice. Analysis of 62 autophagy genes and 32 cytokines/chemokines from infected bone marrow-derived macrophages from M1-γ34.5, M2-γ34.5, and WT mice suggested that upregulation of autophagy-blocking genes (i.e., Hif1a, Mtmr14, mTOR, Mtmr3, Stk11, and ULK2) and the inflammatory tumor necrosis factor alpha (TNF-α) gene in M1-γ34.5 transgenic mice correlated with increased pathogenicity, while upregulation of proautophagy genes (Nrbf2 and Rb1cc1) in M2-γ34.5 macrophages correlated with reduced pathogenicity. The in vivo and in vitro responses of M1-γ34.5 and M2-γ34.5 transgenic mice to HSV-1 infection were independent of the presence of the γ34.5 gene in wild-type HSV-1. Our results suggest that M1 macrophages, but not M2 macrophages, play an important role in autophagy relative to primary virus replication in the eye and eye disease in infected mice. IMPORTANCE Autophagy plays a critical role in clearing, disassembling, and recycling damaged cells, thus limiting inflammation. The HSV-1 γ34.5 gene is involved in neurovirulence and immune evasion by blocking autophagy in infected cells. We found that blocking autophagy in M1 macrophages enhances HSV-1 virus replication in the eye and eye disease in ocularly infected transgenic mice. Our results also show the suppressive effects of γ34.5 on immune responses to infection, suggesting the importance of intact autophagy in M1 but not M2 macrophages in controlling primary infection and eye disease.
Collapse
Affiliation(s)
- Ujjaldeep Jaggi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, USA
| | - Harry H. Matundan
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, USA
| | - Dhong Hyun Lee
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, USA
| | - Homayon Ghiasi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, USA
| |
Collapse
|
17
|
Interplay between Autophagy and Herpes Simplex Virus Type 1: ICP34.5, One of the Main Actors. Int J Mol Sci 2022; 23:ijms232113643. [DOI: 10.3390/ijms232113643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/21/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a neurotropic virus that occasionally may spread to the central nervous system (CNS), being the most common cause of sporadic encephalitis. One of the main neurovirulence factors of HSV-1 is the protein ICP34.5, which although it initially seems to be relevant only in neuronal infections, it can also promote viral replication in non-neuronal cells. New ICP34.5 functions have been discovered during recent years, and some of them have been questioned. This review describes the mechanisms of ICP34.5 to control cellular antiviral responses and debates its most controversial functions. One of the most discussed roles of ICP34.5 is autophagy inhibition. Although autophagy is considered a defense mechanism against viral infections, current evidence suggests that this antiviral function is only one side of the coin. Different types of autophagic pathways interact with HSV-1 impairing or enhancing the infection, and both the virus and the host cell modulate these pathways to tip the scales in its favor. In this review, we summarize the recent progress on the interplay between autophagy and HSV-1, focusing on the intricate role of ICP34.5 in the modulation of this pathway to fight the battle against cellular defenses.
Collapse
|
18
|
Scanlan H, Coffman Z, Bettencourt J, Shipley T, Bramblett DE. Herpes simplex virus 1 as an oncolytic viral therapy for refractory cancers. Front Oncol 2022; 12:940019. [PMID: 35965554 PMCID: PMC9364694 DOI: 10.3389/fonc.2022.940019] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/27/2022] [Indexed: 11/25/2022] Open
Abstract
The need for efficacious and non-toxic cancer therapies is paramount. Oncolytic viruses (OVs) are showing great promise and are introducing new possibilities in cancer treatment with their ability to selectively infect tumor cells and trigger antitumor immune responses. Herpes Simplex Virus 1 (HSV-1) is a commonly selected OV candidate due to its large genome, relative safety profile, and ability to infect a variety of cell types. Talimogene laherparevec (T-VEC) is an HSV-1-derived OV variant and the first and only OV therapy currently approved for clinical use by the United States Food and Drug Administration (FDA). This review provides a concise description of HSV-1 as an OV candidate and the genomic organization of T-VEC. Furthermore, this review focuses on the advantages and limitations in the use of T-VEC compared to other HSV-1 OV variants currently in clinical trials. In addition, approaches for future directions of HSV-1 OVs as cancer therapy is discussed.
Collapse
Affiliation(s)
- Hayle Scanlan
- Rowan School of Medicine, RowanSOM-Jefferson Health-Virtua Our Lady of Lourdes Hospital, Stratford, NJ, United States
| | - Zachary Coffman
- Monroe Clinic Rural Family Medicine Program, The University of Illinois College of Medicine Rockford, Monroe, WI, United States
| | - Jeffrey Bettencourt
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Timothy Shipley
- Department of Biomedical Sciences, A.T. Still University School of Osteopathic Medicine in Arizona, Mesa, AZ, United States
| | - Debra E. Bramblett
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
- *Correspondence: Debra E. Bramblett,
| |
Collapse
|
19
|
Gong L, Ou X, Hu L, Zhong J, Li J, Deng S, Li B, Pan L, Wang L, Hong X, Luo W, Zeng Q, Zan J, Peng T, Cai M, Li M. The Molecular Mechanism of Herpes Simplex Virus 1 UL31 in Antagonizing the Activity of IFN-β. Microbiol Spectr 2022; 10:e0188321. [PMID: 35196784 PMCID: PMC8865407 DOI: 10.1128/spectrum.01883-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/11/2022] [Indexed: 11/20/2022] Open
Abstract
Virus infection triggers intricate signal cascade reactions to activate the host innate immunity, which leads to the production of type I interferon (IFN-I). Herpes simplex virus 1 (HSV-1), a human-restricted pathogen, is capable of encoding over 80 viral proteins, and several of them are involved in immune evasion to resist the host antiviral response through the IFN-I signaling pathway. Here, we determined that HSV-1 UL31, which is associated with nuclear matrix and is essential for the formation of viral nuclear egress complex, could inhibit retinoic acid-inducible gene I (RIG-I)-like receptor pathway-mediated interferon beta (IFN-β)-luciferase (Luc) and (PRDIII-I)4-Luc (an expression plasmid of IFN-β positive regulatory elements III and I) promoter activation, as well as the mRNA transcription of IFN-β and downstream interferon-stimulated genes (ISGs), such as ISG15, ISG54, ISG56, etc., to promote viral infection. UL31 was shown to restrain IFN-β activation at the interferon regulatory factor 3 (IRF3)/IRF7 level. Mechanically, UL31 was demonstrated to interact with TANK binding kinase 1 (TBK1), inducible IκB kinase (IKKi), and IRF3 to impede the formation of the IKKi-IRF3 complex but not the formation of the IRF7-related complex. UL31 could constrain the dimerization and nuclear translocation of IRF3. Although UL31 was associated with the CREB binding protein (CBP)/p300 coactivators, it could not efficiently hamper the formation of the CBP/p300-IRF3 complex. In addition, UL31 could facilitate the degradation of IKKi and IRF3 by mediating their K48-linked polyubiquitination. Taken together, these results illustrated that UL31 was able to suppress IFN-β activity by inhibiting the activation of IKKi and IRF3, which may contribute to the knowledge of a new immune evasion mechanism during HSV-1 infection. IMPORTANCE The innate immune system is the first line of host defense against the invasion of pathogens. Among its mechanisms, IFN-I is an essential cytokine in the antiviral response, which can help the host eliminate a virus. HSV-1 is a double-stranded DNA virus that can cause herpes and establish a lifelong latent infection, due to its possession of multiple mechanisms to escape host innate immunity. In this study, we illustrate for the first time that the HSV-1-encoded UL31 protein has a negative regulatory effect on IFN-β production by blocking the dimerization and nuclear translocation of IRF3, as well as promoting the K48-linked polyubiquitination and degradation of both IKKi and IRF3. This study may be helpful for fully understanding the pathogenesis of HSV-1.
Collapse
Affiliation(s)
- Lan Gong
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaowen Ou
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Li Hu
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiayi Zhong
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jingjing Li
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
- Jinming Yu Academician Workstation of Oncology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Shenyu Deng
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bolin Li
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lingxia Pan
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Liding Wang
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xuejun Hong
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenqi Luo
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qiyuan Zeng
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jie Zan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Tao Peng
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Mingsheng Cai
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Meili Li
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
20
|
Manipulation of RNA polymerase III by Herpes Simplex Virus-1. Nat Commun 2022; 13:623. [PMID: 35110532 PMCID: PMC8810925 DOI: 10.1038/s41467-022-28144-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/03/2022] [Indexed: 12/13/2022] Open
Abstract
RNA polymerase III (Pol III) transcribes noncoding RNA, including transfer RNA (tRNA), and is commonly targeted during cancer and viral infection. We find that Herpes Simplex Virus-1 (HSV-1) stimulates tRNA expression 10-fold. Perturbation of host tRNA synthesis requires nuclear viral entry, but not synthesis of specific viral transcripts. tRNA with a specific codon bias were not targeted—rather increased transcription was observed from euchromatic, actively transcribed loci. tRNA upregulation is linked to unique crosstalk between the Pol II and III transcriptional machinery. While viral infection results in depletion of Pol II on host mRNA promoters, we find that Pol II binding to tRNA loci increases. Finally, we report Pol III and associated factors bind the viral genome, which suggests a previously unrecognized role in HSV-1 gene expression. These findings provide insight into mechanisms by which HSV-1 alters the host nuclear environment, shifting key processes in favor of the pathogen. RNA Polymerase III (Pol III) transcribes non-coding RNA, including tRNAs. Applying different RNA-Seq techniques, Dremel et al. provide the Pol III transcriptional landscape of Herpes simplex virus 1 (HSV-1) infected cells. Infection leads to an increase in tRNA expression from host euchromatin and Pol II re-localization to tRNA loci. They also find that Pol III – associated factors bind to the viral genome.
Collapse
|
21
|
Liu X, Acharya D, Krawczyk E, Kangas C, Gack MU, He B. Herpesvirus-mediated stabilization of ICP0 expression neutralizes restriction by TRIM23. Proc Natl Acad Sci U S A 2021; 118:e2113060118. [PMID: 34903664 PMCID: PMC8713807 DOI: 10.1073/pnas.2113060118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/08/2021] [Indexed: 11/18/2022] Open
Abstract
Herpes simplex virus (HSV) infection relies on immediate early proteins that initiate viral replication. Among them, ICP0 is known, for many years, to facilitate the onset of viral gene expression and reactivation from latency. However, how ICP0 itself is regulated remains elusive. Through genetic analyses, we identify that the viral γ134.5 protein, an HSV virulence factor, interacts with and prevents ICP0 from proteasomal degradation. Furthermore, we show that the host E3 ligase TRIM23, recently shown to restrict the replication of HSV-1 (and certain other viruses) by inducing autophagy, triggers the proteasomal degradation of ICP0 via K11- and K48-linked ubiquitination. Functional analyses reveal that the γ134.5 protein binds to and inactivates TRIM23 through blockade of K27-linked TRIM23 autoubiquitination. Deletion of γ134.5 or ICP0 in a recombinant HSV-1 impairs viral replication, whereas ablation of TRIM23 markedly rescues viral growth. Herein, we show that TRIM23, apart from its role in autophagy-mediated HSV-1 restriction, down-regulates ICP0, whereas viral γ134.5 functions to disable TRIM23. Together, these results demonstrate that posttranslational regulation of ICP0 by virus and host factors determines the outcome of HSV-1 infection.
Collapse
Affiliation(s)
- Xing Liu
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612
| | - Dhiraj Acharya
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987
| | - Eric Krawczyk
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612
| | - Chase Kangas
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612
| | - Michaela U Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987
| | - Bin He
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612;
| |
Collapse
|
22
|
The Oncolytic Caprine Herpesvirus 1 (CpHV-1) Induces Apoptosis and Synergizes with Cisplatin in Mesothelioma Cell Lines: A New Potential Virotherapy Approach. Viruses 2021; 13:v13122458. [PMID: 34960727 PMCID: PMC8703924 DOI: 10.3390/v13122458] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/12/2021] [Accepted: 12/03/2021] [Indexed: 12/17/2022] Open
Abstract
Malignant mesothelioma (MM) is an aggressive asbestos-related cancer, against which no curative modalities exist. Oncolytic virotherapy is a promising therapeutic approach, for which MM is an ideal candidate; indeed, the pleural location provides direct access for the intra-tumoral injection of oncolytic viruses (OVs). Some non-human OVs offer advantages over human OVs, including the non-pathogenicity in humans and the absence of pre-existing immunity. We previously showed that caprine herpesvirus 1 (CpHV-1), a non-pathogenic virus for humans, can kill different human cancer cell lines. Here, we assessed CpHV-1 effects on MM (NCI-H28, MSTO, NCI-H2052) and non-tumor mesothelial (MET-5A) cells. We found that CpHV-1 reduced cell viability and clonogenic potential in all MM cell lines without affecting non-tumor cells, in which, indeed, we did not detect intracellular viral DNA after treatment. In particular, CpHV-1 induced MM cell apoptosis and accumulation in G0/G1 or S cell cycle phases. Moreover, CpHV-1 strongly synergized with cisplatin, the drug currently used in MM chemotherapy, and this agent combination did not affect normal mesothelial cells. Although further studies are required to elucidate the mechanisms underlying the selective CpHV-1 action on MM cells, our data suggest that the CpHV-1-cisplatin combination could be a feasible strategy against MM.
Collapse
|
23
|
Abstract
Two of the most prevalent human viruses worldwide, herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2, respectively), cause a variety of diseases, including cold sores, genital herpes, herpes stromal keratitis, meningitis and encephalitis. The intrinsic, innate and adaptive immune responses are key to control HSV, and the virus has developed mechanisms to evade them. The immune response can also contribute to pathogenesis, as observed in stromal keratitis and encephalitis. The fact that certain individuals are more prone than others to suffer severe disease upon HSV infection can be partially explained by the existence of genetic polymorphisms in humans. Like all herpesviruses, HSV has two replication cycles: lytic and latent. During lytic replication HSV produces infectious viral particles to infect other cells and organisms, while during latency there is limited gene expression and lack of infectious virus particles. HSV establishes latency in neurons and can cause disease both during primary infection and upon reactivation. The mechanisms leading to latency and reactivation and which are the viral and host factors controlling these processes are not completely understood. Here we review the HSV life cycle, the interaction of HSV with the immune system and three of the best-studied pathologies: Herpes stromal keratitis, herpes simplex encephalitis and genital herpes. We also discuss the potential association between HSV-1 infection and Alzheimer's disease.
Collapse
Affiliation(s)
- Shuyong Zhu
- Institute of Virology, Hannover Medical School, Cluster of Excellence RESIST (Exc 2155), Hannover Medical School, Hannover, Germany
| | - Abel Viejo-Borbolla
- Institute of Virology, Hannover Medical School, Cluster of Excellence RESIST (Exc 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
24
|
Zeng J, Li X, Sander M, Zhang H, Yan G, Lin Y. Oncolytic Viro-Immunotherapy: An Emerging Option in the Treatment of Gliomas. Front Immunol 2021; 12:721830. [PMID: 34675919 PMCID: PMC8524046 DOI: 10.3389/fimmu.2021.721830] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/16/2021] [Indexed: 01/17/2023] Open
Abstract
The prognosis of malignant gliomas remains poor, with median survival fewer than 20 months and a 5-year survival rate merely 5%. Their primary location in the central nervous system (CNS) and its immunosuppressive environment with little T cell infiltration has rendered cancer therapies mostly ineffective, and breakthrough therapies such as immune checkpoint inhibitors (ICIs) have shown limited benefit. However, tumor immunotherapy is developing rapidly and can help overcome these obstacles. But for now, malignant gliomas remain fatal with short survival and limited therapeutic options. Oncolytic virotherapy (OVT) is a unique antitumor immunotherapy wherein viruses selectively or preferentially kill tumor cells, replicate and spread through tumors while inducing antitumor immune responses. OVTs can also recondition the tumor microenvironment and improve the efficacy of other immunotherapies by escalating the infiltration of immune cells into tumors. Some OVTs can penetrate the blood-brain barrier (BBB) and possess tropism for the CNS, enabling intravenous delivery. Despite the therapeutic potential displayed by oncolytic viruses (OVs), optimizing OVT has proved challenging in clinical development, and marketing approvals for OVTs have been rare. In June 2021 however, as a genetically engineered OV based on herpes simplex virus-1 (G47Δ), teserpaturev got conditional and time-limited approval for the treatment of malignant gliomas in Japan. In this review, we summarize the current state of OVT, the synergistic effect of OVT in combination with other immunotherapies as well as the hurdles to successful clinical use. We also provide some suggestions to overcome the challenges in treating of gliomas.
Collapse
Affiliation(s)
- Jiayi Zeng
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiangxue Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Max Sander
- Department of International Cooperation, Guangzhou Virotech Pharmaceutical Co., Ltd., Guangzhou, China
| | - Haipeng Zhang
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Guangmei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yuan Lin
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
25
|
Vannini A, Parenti F, Bressanin D, Barboni C, Zaghini A, Campadelli-Fiume G, Gianni T. Towards a Precision Medicine Approach and In Situ Vaccination against Prostate Cancer by PSMA-Retargeted oHSV. Viruses 2021; 13:v13102085. [PMID: 34696515 PMCID: PMC8541339 DOI: 10.3390/v13102085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 11/28/2022] Open
Abstract
Prostate specific membrane antigen (PSMA) is a specific high frequency cell surface marker of prostate cancers. Theranostic approaches targeting PSMA show no major adverse effects and rule out off-tumor toxicity. A PSMA-retargeted oHSV (R-405) was generated which both infected and was cytotoxic exclusively for PSMA-positive cells, including human prostate cancer LNCaP and 22Rv1 cells, and spared PSMA-negative cells. R-405 in vivo efficacy against LLC1-PSMA and Renca-PSMA tumors consisted of inhibiting primary tumor growth, establishing long-term T immune response, immune heating of the microenvironment, de-repression of the anti-tumor immune phenotype, and sensitization to checkpoint blockade. The in situ vaccination protected from distant challenge tumors, both PSMA-positive and PSMA-negative, implying that it was addressed also to LLC1 tumor antigens. PSMA-retargeted oHSVs are a precision medicine tool worth being additionally investigated in the immunotherapeutic and in situ vaccination landscape against prostate cancers.
Collapse
Affiliation(s)
- Andrea Vannini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (A.V.); (F.P.); (D.B.)
| | - Federico Parenti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (A.V.); (F.P.); (D.B.)
| | - Daniela Bressanin
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (A.V.); (F.P.); (D.B.)
| | - Catia Barboni
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy; (C.B.); (A.Z.)
| | - Anna Zaghini
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy; (C.B.); (A.Z.)
| | - Gabriella Campadelli-Fiume
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (A.V.); (F.P.); (D.B.)
- Correspondence: (G.C.-F.); (T.G.); Tel.: +39-0512094733 (G.C.-F.); +39-0512094750 (T.G.)
| | - Tatiana Gianni
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (A.V.); (F.P.); (D.B.)
- Correspondence: (G.C.-F.); (T.G.); Tel.: +39-0512094733 (G.C.-F.); +39-0512094750 (T.G.)
| |
Collapse
|
26
|
Jackson JW, Hall BL, Marzulli M, Shah VK, Bailey L, Chiocca EA, Goins WF, Kohanbash G, Cohen JB, Glorioso JC. Treatment of glioblastoma with current oHSV variants reveals differences in efficacy and immune cell recruitment. Mol Ther Oncolytics 2021; 22:444-453. [PMID: 34553031 PMCID: PMC8430372 DOI: 10.1016/j.omto.2021.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/17/2021] [Indexed: 11/22/2022] Open
Abstract
Oncolytic herpes simplex viruses (oHSVs) have demonstrated efficient lytic replication in human glioblastoma tumors using immunodeficient mouse models, but early-phase clinical trials have reported few complete responses. Potential reasons for the lack of efficacy are limited vector potency and the suppressive glioma tumor microenvironment (TME). Here we compare the oncolytic activity of two HSV-1 vectors, a KOS-strain derivative KG4:T124 and an F-strain derivative rQNestin34.5v.1, in the CT2A and GL261N4 murine syngeneic glioma models. rQNestin34.5v1 generally demonstrated a greater in vivo viral burden compared to KG4:T124. However, both vectors were rapidly cleared from CT2A tumors, while virus remained ensconced in GL261N4 tumors. Immunological evaluation revealed that the two vectors induced similar changes in immune cell recruitment to either tumor type at 2 days after infection. However, at 7 days after infection, the CT2A microenvironment displayed the phenotype of an untreated tumor, while GL261N4 tumors exhibited macrophage and CD4+/CD8+ T cell accumulation. Furthermore, the CT2A model was completely resistant to virus therapy, while in the GL261N4 model rQNestin34.5v1 treatment resulted in enhanced macrophage recruitment, impaired tumor progression, and long-term survival of a few animals. We conclude that prolonged intratumoral viral presence correlates with immune cell recruitment, and both are needed to enhance anti-tumor immunity.
Collapse
Affiliation(s)
- Joseph W. Jackson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15219, USA
| | - Bonnie L. Hall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15219, USA
| | - Marco Marzulli
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15219, USA
| | - Vrusha K. Shah
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15219, USA
| | - Lisa Bailey
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15219, USA
| | - E. Antonio Chiocca
- Harvey W. Cushing Neuro-oncology Laboratories (HCNL), Department of Neurosurgery, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - William F. Goins
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15219, USA
| | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Justus B. Cohen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15219, USA
| | - Joseph C. Glorioso
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15219, USA
| |
Collapse
|
27
|
Suzuki T, Uchida H, Shibata T, Sasaki Y, Ikeda H, Hamada-Uematsu M, Hamasaki R, Okuda K, Yanagi S, Tahara H. Potent anti-tumor effects of receptor-retargeted syncytial oncolytic herpes simplex virus. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:265-276. [PMID: 34553018 PMCID: PMC8426171 DOI: 10.1016/j.omto.2021.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/12/2021] [Indexed: 11/27/2022]
Abstract
Most oncolytic virotherapy has thus far employed viruses deficient in genes essential for replication in normal cells but not in cancer cells. Intra-tumoral injection of such viruses has resulted in clinically significant anti-tumor effects on the lesions in the vicinity of the injection sites but not on distant visceral metastases. To overcome this limitation, we have developed a receptor-retargeted oncolytic herpes simplex virus employing a single-chain antibody for targeting tumor-associated antigens (RR-oHSV) and its modified version with additional mutations conferring syncytium formation (RRsyn-oHSV). We previously showed that RRsyn-oHSV exhibits preserved antigen specificity and an ∼20-fold higher tumoricidal potency in vitro relative to RR-oHSV. Here, we investigated the in vivo anti-tumor effects of RRsyn-oHSV using human cancer xenografts in immunodeficient mice. With only a single intra-tumoral injection of RRsyn-oHSV at very low doses, all treated tumors regressed completely. Furthermore, intra-venous administration of RRsyn-oHSV resulted in robust anti-tumor effects even against large tumors. We found that these potent anti-tumor effects of RRsyn-oHSV may be associated with the formation of long-lasting tumor cell syncytia not containing non-cancerous cells that appear to trigger death of the syncytia. These results strongly suggest that cancer patients with distant metastases could be effectively treated with our RRsyn-oHSV.
Collapse
Affiliation(s)
- Takuma Suzuki
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Hiroaki Uchida
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Tomoko Shibata
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yasuhiko Sasaki
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Hitomi Ikeda
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Mika Hamada-Uematsu
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Ryota Hamasaki
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Ono Pharmaceutical Co., Ltd., Osaka, Japan
| | - Kosaku Okuda
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Ono Pharmaceutical Co., Ltd., Osaka, Japan
| | - Shigeru Yanagi
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Hideaki Tahara
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Department of Cancer Drug Discovery and Development, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|
28
|
Haghighi-Najafabadi N, Roohvand F, Shams Nosrati MS, Teimoori-Toolabi L, Azadmanesh K. Oncolytic herpes simplex virus type-1 expressing IL-12 efficiently replicates and kills human colorectal cancer cells. Microb Pathog 2021; 160:105164. [PMID: 34478858 DOI: 10.1016/j.micpath.2021.105164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 12/28/2022]
Abstract
An increasing attitude towards oncolytic viruses (OVs) is witnessed following T-VEC's approval. In this study, we aimed to delete ICP47 and insert IL-12 in the ICP34.5 deleted HSV-1 backbone to improve the oncolytic properties and provide an immune-stimulatory effect respectively. The wild-type and recombinant viruses infected both cancerous, SW480 and HCT116, and non-cancerous, HUVEC, cell lines. Green-red Δ47/Δ34.5 was constructed by replacing ICP47 with GFP. Both ICP34.5 copies were replaced by hIL12. Cytotoxicity and growth kinetics of Δ47/Δ34.5/IL12 and Δ47/Δ34.5 were comparable to the wild virus in the cancerous cells. Δ47/Δ34.5/IL12 was able to produce IL12 in the infected cell lines. INF-γ production and PBMC proliferation were observed in the PBMCs treated with the lysate of Δ47/Δ34.5/IL12 infected cells. These results demonstrated that Δ47/Δ34.5/IL12 was competent in taking advantage of the cytotoxic effect of HSV-1 plus immune-stimulatory characteristics of IL-12.
Collapse
Affiliation(s)
- Nasrin Haghighi-Najafabadi
- Virology Department, Pasteur Institute of Iran, Iran; Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Iran
| | | | | | - Ladan Teimoori-Toolabi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Iran.
| | | |
Collapse
|
29
|
Genotype of Immunologically Hot or Cold Tumors Determines the Antitumor Immune Response and Efficacy by Fully Virulent Retargeted oHSV. Viruses 2021; 13:v13091747. [PMID: 34578328 PMCID: PMC8473155 DOI: 10.3390/v13091747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/19/2021] [Accepted: 08/27/2021] [Indexed: 01/23/2023] Open
Abstract
We report on the efficacy of the non-attenuated HER2-retargeted oHSV named R-337 against the immunologically hot CT26-HER2 tumor, and an insight into the basis of the immune protection. Preliminarily, we conducted an RNA immune profiling and immune cell content characterization of CT26-HER2 tumor in comparison to the immunologically cold LLC1-HER2 tumor. CT26-HER2 tumor was implanted into HER2-transgenic BALB/c mice. Hallmarks of R-337 effects were the protection from primary tumor, long-term adaptive vaccination directed to both HER2 and CT26-wt cell neoantigens. The latter effect differentiated R-337 from OncoVEXGM-CSF. As to the basis of the immune protection, R-337 orchestrated several changes to the tumor immune profile, which cumulatively reversed the immunosuppression typical of this tumor (graphical abstract). Thus, Ido1 (inhibitor of T cell anticancer immunity) levels and T regulatory cell infiltration were decreased; Cd40 and Cd27 co-immunostimulatory markers were increased; the IFNγ cascade was activated. Of note was the dampening of IFN-I response, which we attribute to the fact that R-337 is fully equipped with genes that contrast the host innate response. The IFN-I shut-down likely favored viral replication and the expression of the mIL-12 payload, which, in turn, boosted the antitumor response. The results call for a characterization of tumor immune markers to employ oncolytic herpesviruses more precisely.
Collapse
|
30
|
Jahan N, Ghouse SM, Martuza RL, Rabkin SD. In Situ Cancer Vaccination and Immunovirotherapy Using Oncolytic HSV. Viruses 2021; 13:v13091740. [PMID: 34578321 PMCID: PMC8473045 DOI: 10.3390/v13091740] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022] Open
Abstract
Herpes simplex virus (HSV) can be genetically altered to acquire oncolytic properties so that oncolytic HSV (oHSV) preferentially replicates in and kills cancer cells, while sparing normal cells, and inducing anti-tumor immune responses. Over the last three decades, a better understanding of HSV genes and functions, and improved genetic-engineering techniques led to the development of oHSV as a novel immunovirotherapy. The concept of in situ cancer vaccination (ISCV) was first introduced when oHSV was found to induce a specific systemic anti-tumor immune response with an abscopal effect on non-injected tumors, in the process of directly killing tumor cells. Thus, the use of oHSV for tumor vaccination in situ is antigen-agnostic. The research and development of oHSVs have moved rapidly, with the field of oncolytic viruses invigorated by the FDA/EMA approval of oHSV talimogene laherparepvec in 2015 for the treatment of advanced melanoma. Immunovirotherapy can be enhanced by arming oHSV with immunomodulatory transgenes and/or using them in combination with other chemotherapeutic and immunotherapeutic agents. This review offers an overview of the development of oHSV as an agent for ISCV against solid tumors, describing the multitude of different oHSVs and their efficacy in immunocompetent mouse models and in clinical trials.
Collapse
Affiliation(s)
- Nusrat Jahan
- Molecular Neurosurgery Laboratory and Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (N.J.); (S.M.G.); (R.L.M.)
| | - Shanawaz M. Ghouse
- Molecular Neurosurgery Laboratory and Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (N.J.); (S.M.G.); (R.L.M.)
| | - Robert L. Martuza
- Molecular Neurosurgery Laboratory and Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (N.J.); (S.M.G.); (R.L.M.)
| | - Samuel D. Rabkin
- Department of Neurosurgery, Massachusetts General Hospital, 185 Cambridge St., CPZN-3800, Boston, MA 02114, USA
- Correspondence:
| |
Collapse
|
31
|
Krenn V, Bosone C, Burkard TR, Spanier J, Kalinke U, Calistri A, Salata C, Rilo Christoff R, Pestana Garcez P, Mirazimi A, Knoblich JA. Organoid modeling of Zika and herpes simplex virus 1 infections reveals virus-specific responses leading to microcephaly. Cell Stem Cell 2021; 28:1362-1379.e7. [PMID: 33838105 PMCID: PMC7611471 DOI: 10.1016/j.stem.2021.03.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 12/07/2020] [Accepted: 03/04/2021] [Indexed: 02/07/2023]
Abstract
Viral infection in early pregnancy is a major cause of microcephaly. However, how distinct viruses impair human brain development remains poorly understood. Here we use human brain organoids to study the mechanisms underlying microcephaly caused by Zika virus (ZIKV) and herpes simplex virus (HSV-1). We find that both viruses efficiently replicate in brain organoids and attenuate their growth by causing cell death. However, transcriptional profiling reveals that ZIKV and HSV-1 elicit distinct cellular responses and that HSV-1 uniquely impairs neuroepithelial identity. Furthermore, we demonstrate that, although both viruses fail to potently induce the type I interferon system, the organoid defects caused by their infection can be rescued by distinct type I interferons. These phenotypes are not seen in 2D cultures, highlighting the superiority of brain organoids in modeling viral infections. These results uncover virus-specific mechanisms and complex cellular immune defenses associated with virus-induced microcephaly.
Collapse
Affiliation(s)
- Veronica Krenn
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna 1030, Austria
| | - Camilla Bosone
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna 1030, Austria
| | - Thomas R Burkard
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna 1030, Austria
| | - Julia Spanier
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Helmholtz Centre for Infection Research, Braunschweig, and the Hanover Medical School, Hanover 30625, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Helmholtz Centre for Infection Research, Braunschweig, and the Hanover Medical School, Hanover 30625, Germany; Cluster of Excellence - Resolving Infection Susceptibility (RESIST), Hanover Medical School, Hanover 30625, Germany
| | - Arianna Calistri
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
| | - Cristiano Salata
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
| | - Raissa Rilo Christoff
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Patricia Pestana Garcez
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Ali Mirazimi
- Department of Laboratory Medicine (LABMED), Karolinska Institute, Stockholm 17177, Sweden; National Veterinary Institute, Uppsala 75189, Sweden
| | - Jürgen A Knoblich
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna 1030, Austria; Medical University of Vienna, Vienna 1030, Austria.
| |
Collapse
|
32
|
Oncolytic HSV: Underpinnings of Tumor Susceptibility. Viruses 2021; 13:v13071408. [PMID: 34372614 PMCID: PMC8310378 DOI: 10.3390/v13071408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/03/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Oncolytic herpes simplex virus (oHSV) is a therapeutic modality that has seen substantial success for the treatment of cancer, though much remains to be improved. Commonly attenuated through the deletion or alteration of the γ134.5 neurovirulence gene, the basis for the success of oHSV relies in part on the malignant silencing of cellular pathways critical for limiting these viruses in healthy host tissue. However, only recently have the molecular mechanisms underlying the success of these treatments begun to emerge. Further clarification of these mechanisms can strengthen rational design approaches to develop the next generation of oHSV. Herein, we review our current understanding of the molecular basis for tumor susceptibility to γ134.5-attenuated oHSV, with particular focus on the malignant suppression of nucleic acid sensing, along with strategies meant to improve the clinical efficacy of these therapeutic viruses.
Collapse
|
33
|
The Effect of Herpes Simplex Virus-Type-1 (HSV-1) Oncolytic Immunotherapy on the Tumor Microenvironment. Viruses 2021; 13:v13071200. [PMID: 34206677 PMCID: PMC8310320 DOI: 10.3390/v13071200] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022] Open
Abstract
The development of cancer causes disruption of anti-tumor immunity required for surveillance and elimination of tumor cells. Immunotherapeutic strategies aim for the restoration or establishment of these anti-tumor immune responses. Cancer immunotherapies include immune checkpoint inhibitors (ICIs), adoptive cellular therapy (ACT), cancer vaccines, and oncolytic virotherapy (OVT). The clinical success of some of these immunotherapeutic modalities, including herpes simplex virus type-1 derived OVT, resulted in Food and Drug Administration (FDA) approval for use in treatment of human cancers. However, a significant proportion of patients do not respond or benefit equally from these immunotherapies. The creation of an immunosuppressive tumor microenvironment (TME) represents an important barrier preventing success of many immunotherapeutic approaches. Mechanisms of immunosuppression in the TME are a major area of current research. In this review, we discuss how oncolytic HSV affects the tumor microenvironment to promote anti-tumor immune responses. Where possible we focus on oncolytic HSV strains for which clinical data is available, and discuss how these viruses alter the vasculature, extracellular matrix and immune responses in the tumor microenvironment.
Collapse
|
34
|
Lin W, Zhao Y, Zhong L. Current strategies of virotherapy in clinical trials for cancer treatment. J Med Virol 2021; 93:4668-4692. [PMID: 33738818 DOI: 10.1002/jmv.26947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/12/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022]
Abstract
As a novel immune-active agent for cancer treatment, viruses have the ability of infecting and replicating in tumor cells. The safety and efficacy of viruses has been tested and confirmed in preclinical and clinical trials. In the last decade, virotherapy has been adopted as a monotherapy or combined therapy with immunotherapy, chemotherapy, or radiotherapy, showing promising outcomes against cancer. In this review, the current strategies of viruses used in clinical trials are classified and described. Besides this, the challenge and future prospects of virotherapy in the management for cancer patients are discussed in this review.
Collapse
Affiliation(s)
- Weijian Lin
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Yongxiang Zhao
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Liping Zhong
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| |
Collapse
|
35
|
Liu X, Ma Y, Voss K, van Gent M, Chan YK, Gack MU, Gale M, He B. The herpesvirus accessory protein γ134.5 facilitates viral replication by disabling mitochondrial translocation of RIG-I. PLoS Pathog 2021; 17:e1009446. [PMID: 33770145 PMCID: PMC7996975 DOI: 10.1371/journal.ppat.1009446] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
RIG-I and MDA5 are cytoplasmic RNA sensors that mediate cell intrinsic immunity against viral pathogens. While it has been well-established that RIG-I and MDA5 recognize RNA viruses, their interactive network with DNA viruses, including herpes simplex virus 1 (HSV-1), remains less clear. Using a combination of RNA-deep sequencing and genetic studies, we show that the γ134.5 gene product, a virus-encoded virulence factor, enables HSV growth by neutralization of RIG-I dependent restriction. When expressed in mammalian cells, HSV-1 γ134.5 targets RIG-I, which cripples cytosolic RNA sensing and subsequently suppresses antiviral gene expression. Rather than inhibition of RIG-I K63-linked ubiquitination, the γ134.5 protein precludes the assembly of RIG-I and cellular chaperone 14-3-3ε into an active complex for mitochondrial translocation. The γ134.5-mediated inhibition of RIG-I-14-3-3ε binding abrogates the access of RIG-I to mitochondrial antiviral-signaling protein (MAVS) and activation of interferon regulatory factor 3. As such, unlike wild type virus HSV-1, a recombinant HSV-1 in which γ134.5 is deleted elicits efficient cytokine induction and replicates poorly, while genetic ablation of RIG-I expression, but not of MDA5 expression, rescues viral growth. Collectively, these findings suggest that viral suppression of cytosolic RNA sensing is a key determinant in the evolutionary arms race of a large DNA virus and its host.
Collapse
Affiliation(s)
- Xing Liu
- Department of Microbiology and Immunology University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Yijie Ma
- Department of Microbiology and Immunology University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Kathleen Voss
- Center for Innate Immunity and Immune Disease, Department Immunology, University of Washington, Seattle, Washington, United States of America
| | - Michiel van Gent
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, United States of America
- Department of Microbiology, The University of Chicago, Illinois, United States of America
| | - Ying Kai Chan
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
| | - Michaela U. Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, United States of America
- Department of Microbiology, The University of Chicago, Illinois, United States of America
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department Immunology, University of Washington, Seattle, Washington, United States of America
| | - Bin He
- Department of Microbiology and Immunology University of Illinois College of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
36
|
Nguyen HM, Saha D. The Current State of Oncolytic Herpes Simplex Virus for Glioblastoma Treatment. Oncolytic Virother 2021; 10:1-27. [PMID: 33659221 PMCID: PMC7917312 DOI: 10.2147/ov.s268426] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is a lethal primary malignant brain tumor with no current effective treatments. The recent emergence of immuno-virotherapy and FDA approval of T-VEC have generated a great expectation towards oncolytic herpes simplex viruses (oHSVs) as a promising treatment option for GBM. Since the generation and testing of the first genetically engineered oHSV in glioma in the early 1990s, oHSV-based therapies have shown a long way of great progress in terms of anti-GBM efficacy and safety, both preclinically and clinically. Here, we revisit the literature to understand the recent advancement of oHSV in the treatment of GBM. In addition, we discuss current obstacles to oHSV-based therapies and possible strategies to overcome these pitfalls.
Collapse
Affiliation(s)
- Hong-My Nguyen
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, School of Pharmacy, Abilene, TX, 79601, USA
| | - Dipongkor Saha
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, School of Pharmacy, Abilene, TX, 79601, USA
| |
Collapse
|
37
|
Moaven O, W Mangieri C, A Stauffer J, Anastasiadis PZ, Borad MJ. Evolving Role of Oncolytic Virotherapy: Challenges and Prospects in Clinical Practice. JCO Precis Oncol 2021; 5:PO.20.00395. [PMID: 34250386 DOI: 10.1200/po.20.00395] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/04/2021] [Accepted: 01/27/2021] [Indexed: 12/23/2022] Open
Abstract
Selective oncotropism and cytolytic activity against tumors have made certain viruses subject to investigation as novel treatment modalities. However, monotherapy with oncolytic viruses (OVs) has shown limited success and modest clinical benefit. The capacity to genetically engineer OVs makes them a desirable platform to design complementary treatment modalities to overcome the existing treatment options' shortcomings. In recent years, our knowledge of interactions of the tumors with the immune system has expanded profoundly. There is a growing body of literature supporting immunomodulatory roles for OVs. The concept of bioengineering these platforms to induce the desired immune response and complement the current immunotherapeutic modalities to make immune-resistant tumors responsive to immunotherapy is under investigation in preclinical and early clinical trials. This review provides an overview of attempts to optimize oncolytic virotherapy as essential components of the multimodality anticancer therapeutic approach and discusses the challenges in translation to clinical practice.
Collapse
Affiliation(s)
- Omeed Moaven
- Section of Surgical Oncology, Department of Surgery, Mayo Clinic Florida, Jacksonville, FL
| | - Christopher W Mangieri
- Section of Surgical Oncology, Department of Surgery, Wake Forest University, Winston-Salem, NC
| | - John A Stauffer
- Section of Surgical Oncology, Department of Surgery, Mayo Clinic Florida, Jacksonville, FL
| | | | - Mitesh J Borad
- Division of Medical Oncology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ
| |
Collapse
|
38
|
Duarte LF, Altamirano-Lagos MJ, Tabares-Guevara JH, Opazo MC, Díaz M, Navarrete R, Muza C, Vallejos OP, Riedel CA, Bueno SM, Kalergis AM, González PA. Asymptomatic Herpes Simplex Virus Type 1 Infection Causes an Earlier Onset and More Severe Experimental Autoimmune Encephalomyelitis. Front Immunol 2021; 12:635257. [PMID: 33679788 PMCID: PMC7928309 DOI: 10.3389/fimmu.2021.635257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is an increasingly prevalent progressive autoimmune and debilitating chronic disease that involves the detrimental recognition of central nervous system (CNS) antigens by the immune system. Although significant progress has been made in the last decades on the biology of MS and the identification of novel therapies to treat its symptoms, the etiology of this disease remains unknown. However, recent studies have suggested that viral infections may contribute to disease onset. Interestingly, a potential association between herpes simplex virus type 1 (HSV-1) infection and MS has been reported, yet a direct relationship among both has not been conclusively demonstrated. Experimental autoimmune encephalomyelitis (EAE) recapitulates several aspects of MS in humans and is widely used to study this disease. Here, we evaluated the effect of asymptomatic brain infection by HSV-1 on the onset and severity of EAE in C57BL/6 mice. We also evaluated the effect of infection with an HSV-1-mutant that is attenuated in neurovirulence and does not cause encephalitis. Importantly, we observed more severe EAE in mice previously infected either, with the wild-type (WT) or the mutant HSV-1, as compared to uninfected control mice. Also, earlier EAE onset was seen after WT virus inoculation. These findings support the notion that a previous exposure to HSV-1 can accelerate and enhance EAE, which suggests a potential contribution of asymptomatic HSV-1 to the onset and severity of MS.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Asymptomatic Diseases
- Blood-Brain Barrier/metabolism
- Blood-Brain Barrier/virology
- Capillary Permeability
- Cytokines/metabolism
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/virology
- Female
- Herpes Simplex/genetics
- Herpes Simplex/immunology
- Herpes Simplex/metabolism
- Herpes Simplex/virology
- Herpesvirus 1, Human/immunology
- Herpesvirus 1, Human/pathogenicity
- Inflammation Mediators/metabolism
- Mice, Inbred C57BL
- Mutation
- Severity of Illness Index
- Time Factors
- Virulence
- Mice
Collapse
Affiliation(s)
- Luisa F. Duarte
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María J. Altamirano-Lagos
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge H. Tabares-Guevara
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ma. Cecilia Opazo
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Máximo Díaz
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Romina Navarrete
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina Muza
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Omar P. Vallejos
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
39
|
Vannini A, Leoni V, Sanapo M, Gianni T, Giordani G, Gatta V, Barboni C, Zaghini A, Campadelli-Fiume G. Immunotherapeutic Efficacy of Retargeted oHSVs Designed for Propagation in an Ad Hoc Cell Line. Cancers (Basel) 2021; 13:E266. [PMID: 33445744 PMCID: PMC7828196 DOI: 10.3390/cancers13020266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
Our laboratory has pursued the generation of cancer-specific oncolytic herpes simplex viruses (oHSVs) which ensure high efficacy while maintaining a high safety profile. Their blueprint included retargeting to a Tumor-Associated Antigen, e.g., HER2, coupled to detargeting from natural receptors to avoid off-target and off-tumor infections and preservation of the full complement of unmodified viral genes. These oHSVs are "fully virulent in their target cancer cells". The 3rd generation retargeted oHSVs carry two distinct retargeting moieties, which enable infection of a producer cell line and of the target cancer cells, respectively. They can be propagated in an ad hoc Vero cell derivative at about tenfold higher yields than 1st generation recombinants, and more effectively replicate in human cancer cell lines. The R-335 and R-337 prototypes were armed with murine IL-12. Intratumorally-administered R-337 conferred almost complete protection from LLC-1-HER2 primary tumors, unleashed the tumor microenvironment immunosuppression, synergized with the checkpoint blockade and conferred long-term vaccination against distant challenge tumors. In summary, the problem intrinsic to the propagation of retargeted oHSVs-which strictly require cells positive for targeted receptors-was solved in 3rd generation viruses. They are effective as immunotherapeutic agents against primary tumors and as antigen-agnostic vaccines.
Collapse
Affiliation(s)
- Andrea Vannini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.L.); (M.S.); (T.G.); (V.G.)
| | - Valerio Leoni
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.L.); (M.S.); (T.G.); (V.G.)
| | - Mara Sanapo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.L.); (M.S.); (T.G.); (V.G.)
| | - Tatiana Gianni
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.L.); (M.S.); (T.G.); (V.G.)
| | - Giorgia Giordani
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Valentina Gatta
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.L.); (M.S.); (T.G.); (V.G.)
| | - Catia Barboni
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy; (C.B.); (A.Z.)
| | - Anna Zaghini
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy; (C.B.); (A.Z.)
| | - Gabriella Campadelli-Fiume
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.L.); (M.S.); (T.G.); (V.G.)
| |
Collapse
|
40
|
Turkington CJR, Varadan AC, Grenier SF, Grasis JA. The Viral Janus: Viruses as Aetiological Agents and Treatment Options in Colorectal Cancer. Front Cell Infect Microbiol 2021; 10:601573. [PMID: 33489934 PMCID: PMC7817644 DOI: 10.3389/fcimb.2020.601573] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/23/2020] [Indexed: 12/24/2022] Open
Abstract
In recent years, our understanding of the importance of microorganisms on and within our bodies has been revolutionized by the ability to characterize entire microbial communities. No more so is this true than in cases of disease. Community studies have revealed strong associations between microbial populations and disease states where such concomitance was previously absent from aetiology: including in cancers. The study of viruses, in particular, has benefited from the development of new community profiling techniques and we are now realising that their prominence within our physiology is nearly as broad as the diversity of the organisms themselves. Here, we examine the relationship between viruses and colorectal cancer (CRC), the leading cause of gastrointestinal cancer-related death worldwide. In CRC, viruses have been suggested to be involved in oncogenesis both directly, through infection of our cells, and indirectly, through modulating the composition of bacterial communities. Interestingly though, these characteristics have also led to their examination from another perspective—as options for treatment. Advances in our understanding of molecular and viral biology have caused many to look at viruses as potential modular biotherapeutics, where deleterious characteristics can be tamed and desirable characteristics exploited. In this article, we will explore both of these perspectives, covering how viral infections and involvement in microbiome dynamics may contribute to CRC, and examine ways in which viruses themselves could be harnessed to treat the very condition their contemporaries may have had a hand in creating.
Collapse
Affiliation(s)
| | - Ambarish C Varadan
- School of Natural Sciences, University of California Merced, Merced, CA, United States
| | - Shea F Grenier
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Juris A Grasis
- School of Natural Sciences, University of California Merced, Merced, CA, United States
| |
Collapse
|
41
|
Dogrammatzis C, Waisner H, Kalamvoki M. "Non-Essential" Proteins of HSV-1 with Essential Roles In Vivo: A Comprehensive Review. Viruses 2020; 13:E17. [PMID: 33374862 PMCID: PMC7824580 DOI: 10.3390/v13010017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Viruses encode for structural proteins that participate in virion formation and include capsid and envelope proteins. In addition, viruses encode for an array of non-structural accessory proteins important for replication, spread, and immune evasion in the host and are often linked to virus pathogenesis. Most virus accessory proteins are non-essential for growth in cell culture because of the simplicity of the infection barriers or because they have roles only during a state of the infection that does not exist in cell cultures (i.e., tissue-specific functions), or finally because host factors in cell culture can complement their absence. For these reasons, the study of most nonessential viral factors is more complex and requires development of suitable cell culture systems and in vivo models. Approximately half of the proteins encoded by the herpes simplex virus 1 (HSV-1) genome have been classified as non-essential. These proteins have essential roles in vivo in counteracting antiviral responses, facilitating the spread of the virus from the sites of initial infection to the peripheral nervous system, where it establishes lifelong reservoirs, virus pathogenesis, and other regulatory roles during infection. Understanding the functions of the non-essential proteins of herpesviruses is important to understand mechanisms of viral pathogenesis but also to harness properties of these viruses for therapeutic purposes. Here, we have provided a comprehensive summary of the functions of HSV-1 non-essential proteins.
Collapse
Affiliation(s)
| | | | - Maria Kalamvoki
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.D.); (H.W.)
| |
Collapse
|
42
|
Menotti L, Avitabile E. Herpes Simplex Virus Oncolytic Immunovirotherapy: The Blossoming Branch of Multimodal Therapy. Int J Mol Sci 2020; 21:ijms21218310. [PMID: 33167582 PMCID: PMC7664223 DOI: 10.3390/ijms21218310] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
Oncolytic viruses are smart therapeutics against cancer due to their potential to replicate and produce the needed therapeutic dose in the tumor, and to their ability to self-exhaust upon tumor clearance. Oncolytic virotherapy strategies based on the herpes simplex virus are reaching their thirties, and a wide variety of approaches has been envisioned and tested in many different models, and on a range of tumor targets. This huge effort has culminated in the primacy of an oncolytic HSV (oHSV) being the first oncolytic virus to be approved by the FDA and EMA for clinical use, for the treatment of advanced melanoma. The path has just been opened; many more cancer types with poor prognosis await effective and innovative therapies, and oHSVs could provide a promising solution, especially as combination therapies and immunovirotherapies. In this review, we analyze the most recent advances in this field, and try to envision the future ahead of oHSVs.
Collapse
|
43
|
Oncolytic Viruses as a Platform for the Treatment of Malignant Brain Tumors. Int J Mol Sci 2020; 21:ijms21207449. [PMID: 33050329 PMCID: PMC7589928 DOI: 10.3390/ijms21207449] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022] Open
Abstract
Malignant brain tumors remain incurable diseases. Although much effort has been devoted to improving patient outcome, multiple factors such as the high tumor heterogeneity, the strong tumor-induced immunosuppressive microenvironment, and the low mutational burden make the treatment of these tumors especially challenging. Thus, novel therapeutic strategies are urgent. Oncolytic viruses (OVs) are biotherapeutics that have been selected or engineered to infect and selectively kill cancer cells. Increasingly, preclinical and clinical studies demonstrate the ability of OVs to recruit T cells and induce durable immune responses against both virus and tumor, transforming a “cold” tumor microenvironment into a “hot” environment. Besides promising clinical results as a monotherapy, OVs can be powerfully combined with other cancer therapies, helping to overcome critical barriers through the creation of synergistic effects in the fight against brain cancer. Although many questions remain to be answered to fully exploit the therapeutic potential of OVs, oncolytic virotherapy will clearly be part of future treatments for patients with malignant brain tumors.
Collapse
|
44
|
Bernstock JD, Bag AK, Fiveash J, Kachurak K, Elsayed G, Chagoya G, Gessler F, Valdes PA, Madan-Swain A, Whitley R, Markert JM, Gillespie GY, Johnston JM, Friedman GK. Design and Rationale for First-in-Human Phase 1 Immunovirotherapy Clinical Trial of Oncolytic HSV G207 to Treat Malignant Pediatric Cerebellar Brain Tumors. Hum Gene Ther 2020; 31:1132-1139. [PMID: 32657154 DOI: 10.1089/hum.2020.101] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Brain tumors represent the most common pediatric solid neoplasms and leading cause of childhood cancer-related morbidity and mortality. Although most adult brain tumors are supratentorial and arise in the cerebrum, the majority of pediatric brain tumors are infratentorial and arise in the posterior fossa, specifically the cerebellum. Outcomes from malignant cerebellar tumors are unacceptable despite aggressive treatments (surgery, radiation, and/or chemotherapy) that are harmful to the developing brain. Novel treatments/approaches such as oncolytic virotherapy are urgently needed. Preclinical and prior clinical studies suggest that genetically engineered oncolytic herpes simplex virus (HSV-1) G207 can safely target cerebellar malignancies and has potential to induce an antitumor immune response at local and distant sites of disease, including spinal metastases and leptomeningeal disease. Herein, we outline the rationale, design, and significance of a first-in-human immunotherapy Phase 1 clinical trial targeting recurrent cerebellar malignancies with HSV G207 combined with a single low-dose of radiation (5 Gy), designed to enhance virus replication and innate and adaptive immune responses. We discuss the unique challenges of inoculating virus through intratumoral catheters into cerebellar tumors. The trial utilizes a single arm open-label traditional 3 + 3 design with four dose cohorts. The primary objective is to assess safety and tolerability of G207 with radiation in recurrent/progressive malignant pediatric cerebellar tumors. After biopsy to prove recurrence/progression, one to four intratumoral catheters will be placed followed by a controlled-rate infusion of G207 for 6 h followed by the removal of catheters at the bedside. Radiation will be given within 24 h of virus inoculation. Patients will be monitored closely for toxicity and virus shedding. Efficacy will be assessed by measuring radiographic response, performance score, progression-free and overall survival, and quality of life. The data obtained will be invaluable in our efforts to produce more effective and less toxic therapies for children with high-grade brain tumors.
Collapse
Affiliation(s)
- Joshua D Bernstock
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard University, Boston, Massachusetts, USA
| | - Asim K Bag
- Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - John Fiveash
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kara Kachurak
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Galal Elsayed
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Gustavo Chagoya
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Florian Gessler
- Department for Neurosurgery, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Pablo A Valdes
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard University, Boston, Massachusetts, USA
| | - Avi Madan-Swain
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Richard Whitley
- Division of Pediatric Infectious Disease, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - James M Markert
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - G Yancey Gillespie
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - James M Johnston
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Gregory K Friedman
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
45
|
The Mutation of the Genes Related to Neurovirulence in HSV-2 Produces an Attenuated Phenotype in Mice. Viruses 2020; 12:v12070770. [PMID: 32708847 PMCID: PMC7412103 DOI: 10.3390/v12070770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/24/2022] Open
Abstract
HSV-2 (Herpes simplex virus type 2) is a critical viral agent that mainly causes genital herpes and life-long latent infection in the dorsal root ganglia. Gene modification via CRISPR/Cas9 Clustered regularly interspaced short palindromic repeat sequences/CRISPR associated 9) was used here to construct HSV-2 mutant strains through the deletion of fragments of the RL1 (Repeat Long element 1) and/or LAT (Latency-associated Transcript) genes. The HSV-2 mutant strains LAT-HSV-2 and RL1-LAT-HSV-2 present different biological properties. The proliferation of RL1-LAT-HSV-2 in nerve cells was decreased significantly, and the plaques induced by RL1-LAT-HSV-2 in Vero cells were smaller than those induced by LAT-HSV-2 mutant and wild-type strains. The observation of mice infected with these two mutants compared to mice infected with the wild-type strain indicated that the mutant RL1-LAT-HSV-2 has an attenuated phenotype with reduced pathogenicity during both acute and latent infections and induces a stronger specific immune response than the wild-type strain, whereas the attenuation effect was not found in mice infected with the LAT-HSV-2 mutant containing the LAT gene deletion. However, the simultaneous mutation of both the RL1 and LAT genes did not completely restrict viral proliferation in nerve cells, indicating that multiple HSV genes are involved in viral replication in the neural system. This work suggests that the HSV-2 genes RL1 and/or LAT might be involved in the virulence mechanisms in mouse infections.
Collapse
|
46
|
Manivanh R, Mehrbach J, Charron AJ, Grassetti A, Cerón S, Taylor SA, Cabrera JR, Gerber S, Leib DA. Herpes Simplex Virus 1 ICP34.5 Alters Mitochondrial Dynamics in Neurons. J Virol 2020; 94:e01784-19. [PMID: 32376626 PMCID: PMC7343198 DOI: 10.1128/jvi.01784-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/30/2020] [Indexed: 12/17/2022] Open
Abstract
Expression of viral genes and activation of innate antiviral responses during infection result in an increase in reactive oxygen species (ROS) and toxic by-products of energy metabolism which can lead to cell death. The mitochondrion and its associated proteins are crucial regulators of these responses and related pathways such as autophagy and apoptosis. Through a mass spectrometry approach, we have shown that the herpes simplex virus 1 (HSV-1) neurovirulence- and autophagy-modulating protein ICP34.5 interacts with numerous mitochondrion-associated factors. Specifically, we showed that amino acids 68 to 87 of ICP34.5, the domain that binds beclin1 and controls neurovirulence, are necessary for interactions with PGAM5, KEAP1, and other regulators of the antioxidant response, mitochondrial trafficking, and programmed cell death. We further show that while this domain interacts with multiple cellular stress response factors, it does not alter apoptosis or antioxidant gene expression. That said, the attenuated replication of a recombinant virus lacking residues 68 to 87 (termed Δ68-87) in primary human fibroblasts was restored by addition of ferric nitrate. Furthermore, in primary mouse neurons, the perinuclear localization of mitochondria that follows infection with HSV-1 was notably absent following Δ68-87 infection. Through this 20-amino-acid domain, ICP34.5 significantly reduces mitochondrial motility in axons of neurons. We propose the hypothesis that ICP34.5 promotes perinuclear mitochondrial localization by modulating transport of mitochondria through interaction with PGAM5. These data expand upon previous observations of altered mitochondrial dynamics following alphaherpesvirus infections and identify a key determinant of this activity during HSV-1 infections.IMPORTANCE Herpes simplex virus persists lifelong in neurons and can reactivate to cause recurrent lesions in mucosal tissues. A key determinant of virulence is the viral protein ICP34.5, of which residues 68 to 87 significantly contribute to neurovirulence through an unknown mechanism. Our report provides evidence that residues 68 to 87 of ICP34.5 are required for binding mitochondrion-associated factors. These interactions alter mitochondrial dynamics in neurons, thereby facilitating viral replication and pathogenesis.
Collapse
Affiliation(s)
- Richard Manivanh
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Jesse Mehrbach
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Audra J Charron
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Andrew Grassetti
- Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Stacey Cerón
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Sean A Taylor
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Jorge Rubén Cabrera
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Scott Gerber
- Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - David A Leib
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| |
Collapse
|
47
|
Chiocca EA, Nakashima H, Kasai K, Fernandez SA, Oglesbee M. Preclinical Toxicology of rQNestin34.5v.2: An Oncolytic Herpes Virus with Transcriptional Regulation of the ICP34.5 Neurovirulence Gene. Mol Ther Methods Clin Dev 2020; 17:871-893. [PMID: 32373649 PMCID: PMC7195500 DOI: 10.1016/j.omtm.2020.03.028] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/25/2020] [Indexed: 12/24/2022]
Abstract
rQNestin34.5v.2 is an oncolytic herpes simplex virus 1 (oHSV) that retains expression of the neurovirulent ICP34.5 gene under glioma-selective transcriptional regulation. To prepare an investigational new drug (IND) application, we performed toxicology and efficacy studies of rQNestin34.5v.2 in mice in the presence or absence of the immunomodulating drug cyclophosphamide (CPA). ICP34.5 allows HSV1 to survive interferon and improves viral replication by dephosphorylation of the eIF-2α translation factor. rQNestin34.5v.2 dephosphorylated eIF-2α in human glioma cells, but not in human normal cells, resulting in significantly higher cytotoxicity and viral replication in the former compared to the latter. In vivo toxicity of rQNestin34.5v.2 was compared with that of wild-type F strain in immunocompetent BALB/c mice and athymic mice by multiple routes of administration in the presence or absence of CPA. A likely no observed adverse effect level (NOAEL) dose for intracranial rQNestin34.5v.2 was estimated, justifying a phase 1 clinical trial in recurrent glioma patients (ClinicalTrials.gov: NCT03152318), after successful submission of an IND.
Collapse
Affiliation(s)
- E. Antonio Chiocca
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Hiroshi Nakashima
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Kazue Kasai
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Soledad A. Fernandez
- Department of Biomedical Informatics, Ohio State University, Columbus, OH 43210, USA
| | - Michael Oglesbee
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
48
|
Mody PH, Pathak S, Hanson LK, Spencer JV. Herpes Simplex Virus: A Versatile Tool for Insights Into Evolution, Gene Delivery, and Tumor Immunotherapy. Virology (Auckl) 2020; 11:1178122X20913274. [PMID: 34093008 PMCID: PMC8142529 DOI: 10.1177/1178122x20913274] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 02/19/2020] [Indexed: 12/20/2022] Open
Abstract
Herpesviruses are prevalent throughout the animal kingdom, and they have coexisted and coevolved along with their host species for millions of years. Herpesviruses carry a large (120-230 kb) double-stranded DNA genome surrounded by a protein capsid, a tegument layer consisting of viral and host proteins, and a lipid bilayer envelope with surface glycoproteins. A key characteristic of these viruses is their ability to enter a latent state following primary infection, allowing them to evade the host's immune system and persist permanently. Herpesviruses can reactivate from their dormant state, usually during times of stress or when the host's immune responses are impaired. While herpesviruses can cause complications with severe disease in immune-compromised people, most of the population experiences few ill effects from herpesvirus infections. Indeed, herpes simplex virus 1 (HSV-1) in particular has several features that make it an attractive tool for therapeutic gene delivery. Herpes simplex virus 1 targets and infects specific cell types, such as epithelial cells and neurons. The HSV-1 genome can also accommodate large insertions of up to 14 kb. The HSV-1-based vectors have already achieved success for the oncolytic treatment of melanoma. In addition to serving as a vehicle for therapeutic gene delivery and targeted cell lysis, comparative genomics of herpesviruses HSV-1 and 2 has revealed valuable information about the evolutionary history of both viruses and their hosts. This review focuses on the adaptability of HSV-1 as an instrument for gene delivery and an evolutionary marker. Overall, HSV-1 shows great promise as a tool for treating human disease and studying human migration patterns, disease outbreaks, and evolution.
Collapse
Affiliation(s)
- Prapti H Mody
- Department of Biology, Texas Woman’s University, Denton, TX, USA
| | - Sushila Pathak
- Department of Biology, Texas Woman’s University, Denton, TX, USA
| | - Laura K Hanson
- Department of Biology, Texas Woman’s University, Denton, TX, USA
| | - Juliet V Spencer
- Department of Biology, Texas Woman’s University, Denton, TX, USA
| |
Collapse
|
49
|
Herbein G, Nehme Z. Tumor Control by Cytomegalovirus: A Door Open for Oncolytic Virotherapy? MOLECULAR THERAPY-ONCOLYTICS 2020; 17:1-8. [PMID: 32300639 PMCID: PMC7150429 DOI: 10.1016/j.omto.2020.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Belonging to the herpesviridae family, human cytomegalovirus (HCMV) is a well-known ubiquitous pathogen that establishes a lifelong infection in humans. Recently, a beneficial tumor-cytoreductive role of CMV infection has been defined in human and animal models. Described as a potential anti-tumoral activity, HCMV modulates the tumor microenvironment mainly by inducing cell death through apoptosis and prompting a robust stimulatory effect on the immune cells infiltrating the tumor tissue. However, major current limitations embrace transient protective effect and a viral dissemination potential in immunosuppressed hosts. The latter could be counteracted through direct viral intratumoral delivery, use of non-human strains, or even defective CMV vectors to ascertain transformed cells-selective tropism. This potential oncolytic activity could be complemented by tackling further platforms, namely combination with immune checkpoint inhibitors or epigenetic therapy, as well as the use of second-generation chimeric oncovirus, for instance HCMV/HSV-1 oncolytic virus. Overall, preliminary data support the use of CMV in viral oncolytic therapy as a viable option, establishing thus a potential new modality, where further assessment through extensive basic research armed by molecular biotechnology is compulsory.
Collapse
Affiliation(s)
- Georges Herbein
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté, University of Bourgogne Franche-Comté, 25030 Besançon, France.,Department of Virology, CHRU Besancon, 25030 Besançon, France
| | - Zeina Nehme
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté, University of Bourgogne Franche-Comté, 25030 Besançon, France.,Université Libanaise 1003, Beirut, Lebanon
| |
Collapse
|
50
|
Hensel N, Raker V, Förthmann B, Detering NT, Kubinski S, Buch A, Katzilieris-Petras G, Spanier J, Gudi V, Wagenknecht S, Kopfnagel V, Werfel TA, Stangel M, Beineke A, Kalinke U, Paludan SR, Sodeik B, Claus P. HSV-1 triggers paracrine fibroblast growth factor response from cortical brain cells via immediate-early protein ICP0. J Neuroinflammation 2019; 16:248. [PMID: 31791351 PMCID: PMC6889453 DOI: 10.1186/s12974-019-1647-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/19/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Herpes simplex virus-1 (HSV-1) infections of the central nervous system (CNS) can result in HSV-1 encephalitis (HSE) which is characterized by severe brain damage and long-term disabilities. Different cell types including neurons and astrocytes become infected in the course of an HSE which leads to an activation of glial cells. Activated glial cells change their neurotrophic factor profile and modulate inflammation and repair. The superfamily of fibroblast growth factors (FGFs) is one of the largest family of neurotrophic factors comprising 22 ligands. FGFs induce pro-survival signaling in neurons and an anti-inflammatory answer in glial cells thereby providing a coordinated tissue response which favors repair over inflammation. Here, we hypothesize that FGF expression is altered in HSV-1-infected CNS cells. METHOD We employed primary murine cortical cultures comprising a mixed cell population of astrocytes, neurons, microglia, and oligodendrocytes. Astrocyte reactivity was morphometrically monitored by an automated image analysis algorithm as well as by analyses of A1/A2 marker expression. Altered FGF expression was detected by quantitative real-time PCR and its paracrine FGF activity. In addition, HSV-1 mutants were employed to characterize viral factors important for FGF responses of infected host cells. RESULTS Astrocytes in HSV-1-infected cortical cultures were transiently activated and became hypertrophic and expressed both A1- and A2-markers. Consistently, a number of FGFs were transiently upregulated inducing paracrine neurotrophic signaling in neighboring cells. Most prominently, FGF-4, FGF-8, FGF-9, and FGF-15 became upregulated in a switch-on like mechanism. This effect was specific for CNS cells and for a fully functional HSV-1. Moreover, the viral protein ICP0 critically mediated the FGF switch-on mechanism. CONCLUSIONS HSV-1 uses the viral protein ICP0 for the induction of FGF-expression in CNS cells. Thus, we propose that HSV-1 triggers FGF activity in the CNS for a modulation of tissue response upon infection.
Collapse
Affiliation(s)
- Niko Hensel
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany
- Niedersachsen-Research Network on Neuroinfectiology (N-RENNT), Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Verena Raker
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany
- Niedersachsen-Research Network on Neuroinfectiology (N-RENNT), Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Benjamin Förthmann
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany
- Niedersachsen-Research Network on Neuroinfectiology (N-RENNT), Hannover, Germany
| | - Nora Tula Detering
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany
- Niedersachsen-Research Network on Neuroinfectiology (N-RENNT), Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Sabrina Kubinski
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany
- Niedersachsen-Research Network on Neuroinfectiology (N-RENNT), Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Anna Buch
- Niedersachsen-Research Network on Neuroinfectiology (N-RENNT), Hannover, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Hannover-Braunschweig, Germany
| | | | - Julia Spanier
- Niedersachsen-Research Network on Neuroinfectiology (N-RENNT), Hannover, Germany
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Viktoria Gudi
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Sylvia Wagenknecht
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hanover, Germany
| | - Verena Kopfnagel
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hanover, Germany
| | - Thomas Andreas Werfel
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hanover, Germany
| | - Martin Stangel
- Niedersachsen-Research Network on Neuroinfectiology (N-RENNT), Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Andreas Beineke
- Center for Systems Neuroscience (ZSN), Hannover, Germany
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ulrich Kalinke
- Niedersachsen-Research Network on Neuroinfectiology (N-RENNT), Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Søren Riis Paludan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Beate Sodeik
- Niedersachsen-Research Network on Neuroinfectiology (N-RENNT), Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Hannover-Braunschweig, Germany
| | - Peter Claus
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany
- Niedersachsen-Research Network on Neuroinfectiology (N-RENNT), Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| |
Collapse
|