1
|
Pellequer JL. Perspectives Toward an Integrative Structural Biology Pipeline With Atomic Force Microscopy Topographic Images. J Mol Recognit 2024; 37:e3102. [PMID: 39329418 DOI: 10.1002/jmr.3102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024]
Abstract
After the recent double revolutions in structural biology, which include the use of direct detectors for cryo-electron microscopy resulting in a significant improvement in the expected resolution of large macromolecule structures, and the advent of AlphaFold which allows for near-accurate prediction of any protein structures, the field of structural biology is now pursuing more ambitious targets, including several MDa assemblies. But complex target systems cannot be tackled using a single biophysical technique. The field of integrative structural biology has emerged as a global solution. The aim is to integrate data from multiple complementary techniques to produce a final three-dimensional model that cannot be obtained from any single technique. The absence of atomic force microscopy data from integrative structural biology platforms is not necessarily due to its nm resolution, as opposed to Å resolution for x-ray crystallography, nuclear magnetic resonance, or electron microscopy. Rather a significant issue was that the AFM topographic data lacked interpretability. Fortunately, with the introduction of the AFM-Assembly pipeline and other similar tools, it is now possible to integrate AFM topographic data into integrative modeling platforms. The advantages of single molecule techniques, such as AFM, include the ability to confirm experimentally any assembled molecular models or to produce alternative conformations that mimic the inherent flexibility of large proteins or complexes. The review begins with a brief overview of the historical developments of AFM data in structural biology, followed by an examination of the strengths and limitations of AFM imaging, which have hindered its integration into modern modeling platforms. This review discusses the correction and improvement of AFM topographic images, as well as the principles behind the AFM-Assembly pipeline. It also presents and discusses a series of challenges that need to be addressed in order to improve the incorporation of AFM data into integrative modeling platform.
Collapse
Affiliation(s)
- Jean-Luc Pellequer
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| |
Collapse
|
2
|
Centner CS, Belott CJ, Patel RK, Menze MA, Yaddanapudi K, Kopechek JA. Biomodulatory Effects of Molecular Delivery in Human T Cells Using 3D-Printed Acoustofluidic Devices. ULTRASOUND IN MEDICINE & BIOLOGY 2024:S0301-5629(24)00256-4. [PMID: 39107206 DOI: 10.1016/j.ultrasmedbio.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/28/2024] [Accepted: 06/21/2024] [Indexed: 08/09/2024]
Abstract
OBJECTIVE Cell-based therapies have shown significant promise for treating many diseases, including cancer. Current cell therapy manufacturing processes primarily utilize viral transduction to insert genomic material into cells, which has limitations, including variable transduction efficiency and extended processing times. Non-viral transfection techniques are also limited by high variability or reduced molecular delivery efficiency. Novel 3D-printed acoustofluidic devices are in development to address these challenges by delivering biomolecules into cells within seconds via sonoporation. METHODS In this study, we assessed biological parameters that influence the ultrasound-mediated delivery of fluorescent molecules (i.e., calcein and 150 kDa FITC-Dextran) to human T cells using flow cytometry and confocal imaging. RESULTS Low cell plating densities (100,000 cells/mL) enhanced molecular delivery compared to higher cell plating densities (p < 0.001), even though cells were resuspended at equal concentrations for acoustofluidic processing. Additionally, cells in the S phase of the cell cycle had enhanced intracellular delivery compared to cells in the G2/M phase (p < 0.001) and G0/G1 phase (p < 0.01), while also maintaining higher viability compared to G0/G1 phase (p < 0.001). Furthermore, the calcium chelator (EGTA) decreased overall molecular delivery levels. Confocal imaging indicated that the actin cytoskeleton had important implications on plasma membrane recovery dynamics after sonoporation. In addition, confocal imaging indicates that acoustofluidic treatment can permeabilize the nuclear membrane, which could enable rapid intranuclear delivery of nucleic acids. CONCLUSIONS The results of this study demonstrate that a 3D-printed acoustofluidic device can enhance molecular delivery to human T cells, which may enable improved techniques for non-viral processing of cell therapies.
Collapse
Affiliation(s)
- Connor S Centner
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
| | - Clinton J Belott
- Department of Biology, University of Louisville, Louisville, KY, USA
| | - Riyakumari K Patel
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
| | - Michael A Menze
- Department of Biology, University of Louisville, Louisville, KY, USA
| | | | - Jonathan A Kopechek
- Department of Bioengineering, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
3
|
Noh C, Kang Y, Heo S, Kim T, Kim H, Chang J, Sundharbaabu PR, Shim S, Lim K, Lee JH, Jo K. Scanning Electron Microscopy Imaging of Large DNA Molecules Using a Metal-Free Electro-Stain Composed of DNA-Binding Proteins and Synthetic Polymers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309702. [PMID: 38704672 PMCID: PMC11267313 DOI: 10.1002/advs.202309702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/19/2024] [Indexed: 05/06/2024]
Abstract
This paper presents the first scanning electron microscopy (SEM)-based DNA imaging in biological samples. This novel approach incorporates a metal-free electro-stain reagent, formulated by combining DNA-binding proteins and synthetic polymers to enhance the visibility of 2-nm-thick DNA under SEM. Notably, DNA molecules stain with proteins and polymers appear as dark lines under SEM. The resulting DNA images exhibit a thickness of 15.0±4.0 nm. As SEM is the primary platform, it integrates seamlessly with various chemically functionalized large surfaces with the aid of microfluidic devices. The approach allows high-resolution imaging of various DNA structures including linear, circular, single-stranded DNA and RNA, originating from nuclear and mitochondrial genomes. Furthermore, quantum dots are successfully visualized as bright labels that are sequence-specifically incorporated into DNA molecules, which highlights the potential for SEM-based optical DNA mapping. In conclusion, DNA imaging using SEM with the novel electro-stain offers electron microscopic resolution with the ease of optical microscopy.
Collapse
Affiliation(s)
- Chanyoung Noh
- Department of ChemistrySogang UniversitySeoul04107South Korea
| | - Yoonjung Kang
- Department of ChemistrySogang UniversitySeoul04107South Korea
| | - Sujung Heo
- Department of ChemistrySogang UniversitySeoul04107South Korea
| | - Taesoo Kim
- Department of ChemistrySogang UniversitySeoul04107South Korea
| | - Hayeon Kim
- Department of ChemistrySogang UniversitySeoul04107South Korea
| | - Junhyuck Chang
- School of Advanced Materials Science and EngineeringDepartment of MetaBioHealth Sungkyunkwan University (SKKU)Suwon16419South Korea
| | - Priyannth Ramasami Sundharbaabu
- School of Advanced Materials Science and EngineeringDepartment of MetaBioHealth Sungkyunkwan University (SKKU)Suwon16419South Korea
| | - Sanghee Shim
- Department of ChemistryKorea UniversitySeoul02841South Korea
| | - Kwang‐il Lim
- Department of Chemical and Biological EngineeringSookmyung Women's UniversitySeoul04312South Korea
| | - Jung Heon Lee
- School of Advanced Materials Science and EngineeringDepartment of MetaBioHealth Sungkyunkwan University (SKKU)Suwon16419South Korea
| | - Kyubong Jo
- Department of ChemistrySogang UniversitySeoul04107South Korea
| |
Collapse
|
4
|
Abdelhady H, Aleanizy F, Alqahtani F, Bukhari A, Soliman S, Sau S, Iyer A. Visualizing the 4D Impact of Gold Nanoparticles on DNA. Int J Mol Sci 2023; 25:542. [PMID: 38203711 PMCID: PMC10778996 DOI: 10.3390/ijms25010542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
The genotoxicity of AuNPs has sparked a scientific debate, with one perspective attributing it to direct DNA damage and another to oxidative damage through reactive oxygen species (ROS) activation. This controversy poses challenges for the widespread use of AuNPs in biomedical applications. To address this debate, we employed four-dimensional atomic force microscopy (4DAFM) to examine the ability of AuNPs to damage DNA in vitro in the absence of ROS. To further examine whether the size and chemical coupling of these AuNPs are properties that control their toxicity, we exposed individual DNA molecules to three different types of AuNPs: small (average diameter = 10 nm), large (average diameter = 22 nm), and large conjugated (average diameter = 39 nm) AuNPs. We found that all types of AuNPs caused rapid (within minutes) and direct damage to the DNA molecules without the involvement of ROS. This research holds significant promise for advancing nanomedicines in diverse areas like viral therapy (including COVID-19), cancer treatment, and biosensor development for detecting DNA damage or mutations by resolving the ongoing debate regarding the genotoxicity mechanism. Moreover, it actively contributes to the continuous endeavors aimed at fully harnessing the capabilities of AuNPs across diverse biomedical fields, promising transformative healthcare solutions.
Collapse
Affiliation(s)
- Hosam Abdelhady
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
| | - Fadilah Aleanizy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fulwah Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah Bukhari
- College of Medicine, Taibah University, Medina 41477, Saudi Arabia
| | - Sahar Soliman
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
| | - Samaresh Sau
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy & Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Arun Iyer
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy & Health Sciences, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
5
|
Fukuda S, Ando T. Technical advances in high-speed atomic force microscopy. Biophys Rev 2023; 15:2045-2058. [PMID: 38192344 PMCID: PMC10771405 DOI: 10.1007/s12551-023-01171-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/19/2023] [Indexed: 01/10/2024] Open
Abstract
It has been 30 years since the outset of developing high-speed atomic force microscopy (HS-AFM), and 15 years have passed since its establishment in 2008. This advanced microscopy is capable of directly visualizing individual biological macromolecules in dynamic action and has been widely used to answer important questions that are inaccessible by other approaches. The number of publications on the bioapplications of HS-AFM has rapidly increased in recent years and has already exceeded 350. Although less visible than these biological studies, efforts have been made for further technical developments aimed at enhancing the fundamental performance of HS-AFM, such as imaging speed, low sample disturbance, and scan size, as well as expanding its functionalities, such as correlative microscopy, temperature control, buffer exchange, and sample manipulations. These techniques can expand the range of HS-AFM applications. After summarizing the key technologies underlying HS-AFM, this article focuses on recent technical advances and discusses next-generation HS-AFM.
Collapse
Affiliation(s)
- Shingo Fukuda
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192 Japan
| | - Toshio Ando
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192 Japan
| |
Collapse
|
6
|
Ibrahim M, Wenzel C, Lallemang M, Balzer BN, Schwierz N. Adsorbing DNA to Mica by Cations: Influence of Valency and Ion Type. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15553-15562. [PMID: 37877163 DOI: 10.1021/acs.langmuir.3c01835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Ion-mediated attraction between DNA and mica plays a crucial role in biotechnological applications and molecular imaging. Here, we combine molecular dynamics simulations and single-molecule atomic force microscopy experiments to characterize the detachment forces of single-stranded DNA at mica surfaces mediated by the metal cations Li+, Na+, K+, Cs+, Mg2+, and Ca2+. Ion-specific adsorption at the mica/water interface compensates (Li+ and Na+) or overcompensates (K+, Cs+, Mg2+, and Ca2+) the bare negative surface charge of mica. In addition, direct and water-mediated contacts are formed between the ions, the phosphate oxygens of DNA, and mica. The different contact types give rise to low- and high-force pathways and a broad distribution of detachment forces. Weakly hydrated ions, such as Cs+ and water-mediated contacts, lead to low detachment forces and high mobility of the DNA on the surface. Direct ion-DNA or ion-surface contacts lead to significantly higher forces. The comprehensive view gained from our combined approach allows us to highlight the most promising cations for imaging in physiological conditions: K+, which overcompensates the negative mica charge and induces long-ranged attractions. Mg2+ and Ca2+, which form a few specific and long-lived contacts to bind DNA with high affinity.
Collapse
Affiliation(s)
- Mohd Ibrahim
- Institute of Physics, University of Augsburg, Universitätsstraße 1, 86159 Augsburg, Germany
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Christiane Wenzel
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Max Lallemang
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Bizan N Balzer
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Str. 21, 79104 Freiburg, Germany
| | - Nadine Schwierz
- Institute of Physics, University of Augsburg, Universitätsstraße 1, 86159 Augsburg, Germany
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| |
Collapse
|
7
|
McMillan RB, Bediako H, Devenica LM, Velasquez A, Hardy IP, Ma YE, Roscoe DM, Carter AR. Protamine folds DNA into flowers and loop stacks. Biophys J 2023; 122:4288-4302. [PMID: 37803830 PMCID: PMC10645571 DOI: 10.1016/j.bpj.2023.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023] Open
Abstract
DNA in sperm undergoes an extreme compaction to almost crystalline packing levels. To produce this dense packing, DNA is dramatically reorganized in minutes by protamine proteins. Protamines are positively charged proteins that coat negatively charged DNA and fold it into a series of toroids. The exact mechanism for forming these ∼50-kbp toroids is unknown. Our goal is to study toroid formation by starting at the "bottom" with folding of short lengths of DNA that form loops and working "up" to more folded structures that occur on longer length scales. We previously measured folding of 200-300 bp of DNA into a loop. Here, we look at folding of intermediate DNA lengths (L = 639-3003 bp) that are 2-10 loops long. We observe two folded structures besides loops that we hypothesize are early intermediates in the toroid formation pathway. At low protamine concentrations (∼0.2 μM), we see that the DNA folds into flowers (structures with multiple loops that are positioned so they look like the petals of a flower). Folding at these concentrations condenses the DNA to 25% of its original length, takes seconds, and is made up of many small bending steps. At higher protamine concentrations (≥2 μM), we observe a second folded structure-the loop stack-where loops are stacked vertically one on top of another. These results lead us to propose a two-step process for folding at this length scale: 1) protamine binds to DNA, bending it into loops and flowers, and 2) flowers collapse into loop stacks. These results highlight how protamine uses a bind-and-bend mechanism to rapidly fold DNA, which may be why protamine can fold the entire sperm genome in minutes.
Collapse
Affiliation(s)
- Ryan B McMillan
- Department of Physics, Amherst College, Amherst, Massachusetts
| | - Hilary Bediako
- Department of Physics, Amherst College, Amherst, Massachusetts
| | - Luka M Devenica
- Department of Physics, Amherst College, Amherst, Massachusetts
| | | | - Isabel P Hardy
- Department of Physics, Amherst College, Amherst, Massachusetts
| | - Yuxing E Ma
- Department of Physics, Amherst College, Amherst, Massachusetts
| | - Donna M Roscoe
- Department of Physics, Amherst College, Amherst, Massachusetts
| | - Ashley R Carter
- Department of Physics, Amherst College, Amherst, Massachusetts.
| |
Collapse
|
8
|
Zhang Y, Li X, Gao S, Liao Y, Luo Y, Liu M, Bian Y, Xiong H, Yue Y, He A. Genetic reporter for live tracing fluid flow forces during cell fate segregation in mouse blastocyst development. Cell Stem Cell 2023; 30:1110-1123.e9. [PMID: 37541214 DOI: 10.1016/j.stem.2023.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/02/2023] [Accepted: 07/10/2023] [Indexed: 08/06/2023]
Abstract
Mechanical forces are known to be important in mammalian blastocyst formation; however, due to limited tools, specific force inputs and how they relay to first cell fate control of inner cell mass (ICM) and/or trophectoderm (TE) remain elusive. Combining in toto live imaging and various perturbation experiments, we demonstrate and measure fluid flow forces existing in the mouse blastocyst cavity and identify Klf2(Krüppel-like factor 2) as a fluid force reporter with force-responsive enhancers. Long-term live imaging and lineage reconstructions reveal that blastomeres subject to higher fluid flow forces adopt ICM cell fates. These are reinforced by internal ferrofluid-induced flow force assays. We also utilize ex vivo fluid flow force mimicking and pharmacological perturbations to confirm mechanosensing specificity. Together, we report a genetically encoded reporter for continuously monitoring fluid flow forces and cell fate decisions and provide a live imaging framework to infer force information enriched lineage landscape during development. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Youdong Zhang
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xin Li
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Shu Gao
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yuanhui Liao
- School of Software and Microelectronics, Peking University, Beijing 100871, China
| | - Yingjie Luo
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Min Liu
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yunkun Bian
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Haiqing Xiong
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yanzhu Yue
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Department of Cell Fate and Diseases, Jilin Provincial Key Laboratory of Women's Reproductive Health, the First Hospital of Jilin University, Changchun, Jilin 130061, China.
| | - Aibin He
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
9
|
Dumitru AC, Koehler M. Recent advances in the application of atomic force microscopy to structural biology. J Struct Biol 2023; 215:107963. [PMID: 37044358 DOI: 10.1016/j.jsb.2023.107963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/21/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023]
Abstract
The application of atomic force microscopy (AFM) for (functional) imaging and manipulating biomolecules at all levels of organization has enabled great progress in the structural biology field over the last decades, contributing to the discovery of novel structural entities of biological significance across many disciplines ranging from biochemistry, biomedicine and biophysics to molecular and cell biology, up to food systems and beyond. AFM has the capability to generate high-resolution topographic images spanning from the submolecular to the (sub)cellular range and can probe biochemical and biophysical sample properties in close to native conditions with excellent temporal resolution. Instrumental developments in the past decade enable dynamical structural and conformational studies of single biomolecules and new techniques for structural and chemical modification of the AFM probe have converted the cantilever into a versatile tool to study different biological phenomena, such as the mechanical stability of biomolecular complexes or the force induced dynamic changes of mechanically stressed proteins at the nanoscopic level. To improve the functionality of AFM and approach dynamic processes of complex biological systems ex vivo, AFM is combined with complementary microscopy, nanoscopy and spectroscopy tools. These multimethodological approaches provide unprecedented possibilities of probing physical, chemical and biological properties of complex cellular systems with high spatio-temporal resolution, leading to novel applications that correlate structural results with functional biochemical, biophysical, immunological, or genetic data on the system under study.
Collapse
Affiliation(s)
- Andra C Dumitru
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain.
| | - Melanie Koehler
- Leibniz Institute for Food Systems Biology at the Technical University Munich, Freising, Germany.
| |
Collapse
|
10
|
Franceschi G, Kocán P, Conti A, Brandstetter S, Balajka J, Sokolović I, Valtiner M, Mittendorfer F, Schmid M, Setvín M, Diebold U. Resolving the intrinsic short-range ordering of K + ions on cleaved muscovite mica. Nat Commun 2023; 14:208. [PMID: 36639388 PMCID: PMC9839703 DOI: 10.1038/s41467-023-35872-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
Muscovite mica, KAl2(Si3Al)O10(OH)2, is a common layered phyllosilicate with perfect cleavage planes. The atomically flat surfaces obtained through cleaving lend themselves to scanning probe techniques with atomic resolution and are ideal to model minerals and clays. Despite the importance of the cleaved mica surfaces, several questions remain unresolved. It is established that K+ ions decorate the cleaved surface, but their intrinsic ordering - unaffected by the interaction with the environment - is not known. This work presents clear images of the K+ distribution of cleaved mica obtained with low-temperature non-contact atomic force microscopy (AFM) under ultra-high vacuum (UHV) conditions. The data unveil the presence of short-range ordering, contrasting previous assumptions of random or fully ordered distributions. Density functional theory (DFT) calculations and Monte Carlo simulations show that the substitutional subsurface Al3+ ions have an important role for the surface K+ ion arrangement.
Collapse
Affiliation(s)
- Giada Franceschi
- Institute of Applied Physics, TU Wien, Wiedner Hauptstraβe 8-10/E134, 1040, Vienna, Austria.
| | - Pavel Kocán
- Department of Surface and Plasma Science, Charles University, V Holesovickach 2, 180 00, Prague, Czech Republic
| | - Andrea Conti
- Institute of Applied Physics, TU Wien, Wiedner Hauptstraβe 8-10/E134, 1040, Vienna, Austria
| | - Sebastian Brandstetter
- Institute of Applied Physics, TU Wien, Wiedner Hauptstraβe 8-10/E134, 1040, Vienna, Austria
| | - Jan Balajka
- Institute of Applied Physics, TU Wien, Wiedner Hauptstraβe 8-10/E134, 1040, Vienna, Austria
| | - Igor Sokolović
- Institute of Applied Physics, TU Wien, Wiedner Hauptstraβe 8-10/E134, 1040, Vienna, Austria
| | - Markus Valtiner
- Institute of Applied Physics, TU Wien, Wiedner Hauptstraβe 8-10/E134, 1040, Vienna, Austria
| | - Florian Mittendorfer
- Institute of Applied Physics, TU Wien, Wiedner Hauptstraβe 8-10/E134, 1040, Vienna, Austria
| | - Michael Schmid
- Institute of Applied Physics, TU Wien, Wiedner Hauptstraβe 8-10/E134, 1040, Vienna, Austria
| | - Martin Setvín
- Institute of Applied Physics, TU Wien, Wiedner Hauptstraβe 8-10/E134, 1040, Vienna, Austria
- Department of Surface and Plasma Science, Charles University, V Holesovickach 2, 180 00, Prague, Czech Republic
| | - Ulrike Diebold
- Institute of Applied Physics, TU Wien, Wiedner Hauptstraβe 8-10/E134, 1040, Vienna, Austria
| |
Collapse
|
11
|
Hansma HG. DNA and the origins of life in micaceous clay. Biophys J 2022; 121:4867-4873. [PMID: 36130604 PMCID: PMC9808538 DOI: 10.1016/j.bpj.2022.08.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 01/07/2023] Open
Abstract
Reproducible imaging of DNA by atomic force microscopy was a useful predecessor to Ned Seeman's DNA nanotechnology. Many of the products of DNA nanotechnology were imaged in the atomic force microscope. The mica substrate used in this atomic force microscopy research formed the inspiration for the hypothesis that micaceous clay was a likely habitat for the origins of life. Montmorillonite clay has been a successful substrate for the polymerization of amino acids and nucleotides into peptides and DNA oligomers in research on life's origins. Mica and montmorillonite have the same anionic lattice, with a hexagonal spacing of 0.5 nm. Micas are nonswelling clays, with potassium ions (K+) holding the crystal sheets together, providing a stable environment for the processes and molecular complexes needed for the emergence of living cells. Montmorillonite crystal sheets are held together by smaller sodium ions (Na+), which results in swelling and shrinking during wet-dry cycles, providing a less stable environment. Also, the cells in all types of living systems have high intracellular K+ concentrations, which makes mica a more likely habitat for the origins of life than montmorillonite. Finally, moving mica sheets provides mechanical energy at the split edges of the sheets in mica "books." This mechanical energy of mica sheets, moving open and shut, in response to fluid flow, may have preceded chemical energy at life's origins, powering early prebiotic processes, such as the formation of covalent bonds, the interactions of molecular complexes, and the budding off of protocells before the molecular mechanism of cell division had developed.
Collapse
Affiliation(s)
- Helen Greenwood Hansma
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California.
| |
Collapse
|
12
|
Ichikawa S, Kato S, Fujii Y, Ishikawa K, Numata K, Kodama Y. Organellar Glue: A Molecular Tool to Artificially Control Chloroplast-Chloroplast Interactions. ACS Synth Biol 2022; 11:3190-3197. [PMID: 36178266 PMCID: PMC9594315 DOI: 10.1021/acssynbio.2c00367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Organelles can physically interact to facilitate various cellular processes such as metabolite exchange. Artificially regulating these interactions represents a promising approach for synthetic biology. Here, we artificially controlled chloroplast-chloroplast interactions in living plant cells with our organelle glue (ORGL) technique, which is based on reconstitution of a split fluorescent protein. We simultaneously targeted N-terminal and C-terminal fragments of a fluorescent protein to the chloroplast outer envelope membrane or cytosol, respectively, which induced chloroplast-chloroplast interactions. The cytosolic C-terminal fragment likely functions as a bridge between two N-terminal fragments, thereby bringing the chloroplasts in close proximity to interact. We modulated the frequency of chloroplast-chloroplast interactions by altering the ratio of N- and C-terminal fragments. We conclude that the ORGL technique can successfully control chloroplast-chloroplast interactions in plants, providing a proof of concept for the artificial regulation of organelle interactions in living cells.
Collapse
Affiliation(s)
- Shintaro Ichikawa
- Center
for Bioscience Research and Education, Utsunomiya
University, Tochigi 321-8505, Japan,Graduate
School of Regional Development and Creativity, Utsunomiya University, Tochigi 321-8505, Japan
| | - Shota Kato
- Center
for Bioscience Research and Education, Utsunomiya
University, Tochigi 321-8505, Japan
| | - Yuta Fujii
- Center
for Bioscience Research and Education, Utsunomiya
University, Tochigi 321-8505, Japan
| | - Kazuya Ishikawa
- Center
for Bioscience Research and Education, Utsunomiya
University, Tochigi 321-8505, Japan
| | - Keiji Numata
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan,Biomacromolecules
Research Team, Center for Sustainable Resource
Science, RIKEN, Saitama 351-0198, Japan
| | - Yutaka Kodama
- Center
for Bioscience Research and Education, Utsunomiya
University, Tochigi 321-8505, Japan,Graduate
School of Regional Development and Creativity, Utsunomiya University, Tochigi 321-8505, Japan,Biomacromolecules
Research Team, Center for Sustainable Resource
Science, RIKEN, Saitama 351-0198, Japan,
| |
Collapse
|
13
|
Bae Y, Ha MY, Bang KT, Yang S, Kang SY, Kim J, Sung J, Kang S, Kang D, Lee WB, Choi TL, Park J. Conformation Dynamics of Single Polymer Strands in Solution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202353. [PMID: 35725274 DOI: 10.1002/adma.202202353] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Conformational changes in macromolecules significantly affect their functions and assembly into high-level structures. Despite advances in theoretical and experimental studies, investigations into the intrinsic conformational variations and dynamic motions of single macromolecules remain challenging. Here, liquid-phase transmission electron microscopy enables the real-time tracking of single-chain polymers. Imaging linear polymers, synthetically dendronized with conjugated aromatic groups, in organic solvent confined within graphene liquid cells, directly exhibits chain-resolved conformational dynamics of individual semiflexible polymers. These experimental and theoretical analyses reveal that the dynamic conformational transitions of the single-chain polymer originate from the degree of intrachain interactions. In situ observations also show that such dynamics of the single-chain polymer are significantly affected by environmental factors, including surfaces and interfaces.
Collapse
Affiliation(s)
- Yuna Bae
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Min Young Ha
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ki-Taek Bang
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sanghee Yang
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sung Yun Kang
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Joodeok Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Jongbaek Sung
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Sungsu Kang
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Dohun Kang
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Won Bo Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Tae-Lim Choi
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jungwon Park
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Gyeonggi, 16229, Republic of Korea
| |
Collapse
|
14
|
Tu K, He J, Chen S, Liu C, Cheng J, He E, Li Y, Zhang L, Zhang H, Cheng Z. An alternating conduction-insulation "molecular fence" model from fluorinated metallopolymers. Chem Commun (Camb) 2022; 58:5383-5386. [PMID: 35412535 DOI: 10.1039/d2cc00826b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Introducing fluoroalkyl chains into metallopolymers is a prerequisite to studying the self-organization effect of fluoroalkyl chains and their structure-property relationship. In this work, we present a fluorinated metallopolymer to build an alternating conduction-insulation "molecular fence" model synthesized by the coordination of Ru(II) and a bis-terpyridine-end-capped-phenyl (BTP) ligand modified with fluoroalkyl chains. Taking advantage of scanning tunneling microscopy (STM), a well-aligned periodic linear layered structure is observed clearly, which provides the most direct visualization of the self-organization effect of fluoroalkyl chains for the first time. In addition, combining ultraviolet-visible (UV-vis) absorption spectroscopy and theoretical calculations, we find that fluoroalkyl chains demonstrate a septation effect between two adjacent metallopolymer chains and further restrain the occurrence of interchain charge-transfer transition (ICCT) due to their closed packed structure. This "molecular fence" model can provide a novel route for electron conduction in molecular networks and guide potential applications in the materials science field.
Collapse
Affiliation(s)
- Kai Tu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Jing He
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China.
| | - Shuaijie Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Cheng Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China.
| | - Jiannan Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Enjie He
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China.
| | - Lifen Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Haiming Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China.
| | - Zhenping Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
15
|
Sharafeldin M, Davis JJ. Characterising the biosensing interface. Anal Chim Acta 2022; 1216:339759. [DOI: 10.1016/j.aca.2022.339759] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/08/2022] [Accepted: 03/22/2022] [Indexed: 12/19/2022]
|
16
|
Hansma HG. Potassium at the Origins of Life: Did Biology Emerge from Biotite in Micaceous Clay? Life (Basel) 2022; 12:301. [PMID: 35207588 PMCID: PMC8880093 DOI: 10.3390/life12020301] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 12/15/2022] Open
Abstract
Intracellular potassium concentrations, [K+], are high in all types of living cells, but the origins of this K+ are unknown. The simplest hypothesis is that life emerged in an environment that was high in K+. One such environment is the spaces between the sheets of the clay mineral mica. The best mica for life's origins is the black mica, biotite, because it has a high content of Mg++ and because it has iron in various oxidation states. Life also has many of the characteristics of the environment between mica sheets, giving further support for the possibility that mica was the substrate on and within which life emerged. Here, a scenario for life's origins is presented, in which the necessary processes and components for life arise in niches between mica sheets; vesicle membranes encapsulate these processes and components; the resulting vesicles fuse, forming protocells; and eventually, all of the necessary components and processes are encapsulated within individual cells, some of which survive to seed the early Earth with life. This paper presents three new foci for the hypothesis of life's origins between mica sheets: (1) that potassium is essential for life's origins on Earth; (2) that biotite mica has advantages over muscovite mica; and (3) that micaceous clay is a better environment than isolated mica for life's origins.
Collapse
|
17
|
Ray A, Passiu C, Nasuda M, Ramakrishna SN, Rossi A, Kuzuya A, Spencer ND, Yamakoshi Y. Reactive-Oxygen-Species-Mediated Surface Oxidation of Single-Molecule DNA Origami by an Atomic Force Microscope Tip-Mounted C 60 Photocatalyst. ACS NANO 2021; 15:19256-19265. [PMID: 34817171 DOI: 10.1021/acsnano.1c04953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A tripod molecule incorporating a C60 photocatalyst into a rigid scaffold with disulfide legs was designed and synthesized for the stable and robust attachment of C60 onto an Au-coated atomic force microscope (AFM) tip. The "tripod-C60" was immobilized onto the tip by forming S-Au bonds in the desired orientation and a dispersed manner, rendering it suitable for the oxidation and scission of single molecules on a countersurface, thereby functioning as "molecular shears". A DNA origami with a well-defined structure was chosen as the substrate for the tip-induced oxidation. The gold-coated, C60-functionalized AFM tip was used for both AFM imaging and oxidation of DNA origami upon visible-light irradiation. The localized and temporally controlled oxidative damage of DNA origami was successfully performed at the single-molecule level via singlet-oxygen (1O2) generation from the immobilized C60 on the AFM tip. This oxidative damage to DNA origami can be carried out under ambient conditions in a fluid cell at room temperature, rendering it well-suited for the manipulation of a variety of species on surfaces via a spatially and temporally controlled oxidation reaction triggered by 1O2 locally generated from the immobilized C60 on the AFM tip.
Collapse
Affiliation(s)
- Ankita Ray
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, CH 8093 Zürich, Switzerland
| | - Cristiana Passiu
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, CH 8093 Zürich, Switzerland
| | - Masayuki Nasuda
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, CH 8093 Zürich, Switzerland
| | - Shivaprakash N Ramakrishna
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, CH 8093 Zürich, Switzerland
| | - Antonella Rossi
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, CH 8093 Zürich, Switzerland
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, I-09100 Cagliari, Italy
| | - Akinori Kuzuya
- Department of Chemistry and Materials Engineering, Kansai University, Yamate-cho 3-3-35, Suita, 564-8680 Osaka, Japan
| | - Nicholas D Spencer
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, CH 8093 Zürich, Switzerland
| | - Yoko Yamakoshi
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, CH 8093 Zürich, Switzerland
| |
Collapse
|
18
|
Revealing DNA Structure at Liquid/Solid Interfaces by AFM-Based High-Resolution Imaging and Molecular Spectroscopy. Molecules 2021; 26:molecules26216476. [PMID: 34770895 PMCID: PMC8587808 DOI: 10.3390/molecules26216476] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/24/2022] Open
Abstract
DNA covers the genetic information in all living organisms. Numerous intrinsic and extrinsic factors may influence the local structure of the DNA molecule or compromise its integrity. Detailed understanding of structural modifications of DNA resulting from interactions with other molecules and surrounding environment is of central importance for the future development of medicine and pharmacology. In this paper, we review the recent achievements in research on DNA structure at nanoscale. In particular, we focused on the molecular structure of DNA revealed by high-resolution AFM (Atomic Force Microscopy) imaging at liquid/solid interfaces. Such detailed structural studies were driven by the technical developments made in SPM (Scanning Probe Microscopy) techniques. Therefore, we describe here the working principles of AFM modes allowing high-resolution visualization of DNA structure under native (liquid) environment. While AFM provides well-resolved structure of molecules at nanoscale, it does not reveal the chemical structure and composition of studied samples. The simultaneous information combining the structural and chemical details of studied analyte allows achieve a comprehensive picture of investigated phenomenon. Therefore, we also summarize recent molecular spectroscopy studies, including Tip-Enhanced Raman Spectroscopy (TERS), on the DNA structure and its structural rearrangements.
Collapse
|
19
|
Main KHS, Provan JI, Haynes PJ, Wells G, Hartley JA, Pyne ALB. Atomic force microscopy-A tool for structural and translational DNA research. APL Bioeng 2021; 5:031504. [PMID: 34286171 PMCID: PMC8272649 DOI: 10.1063/5.0054294] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/07/2021] [Indexed: 12/26/2022] Open
Abstract
Atomic force microscopy (AFM) is a powerful imaging technique that allows for structural characterization of single biomolecules with nanoscale resolution. AFM has a unique capability to image biological molecules in their native states under physiological conditions without the need for labeling or averaging. DNA has been extensively imaged with AFM from early single-molecule studies of conformational diversity in plasmids, to recent examinations of intramolecular variation between groove depths within an individual DNA molecule. The ability to image dynamic biological interactions in situ has also allowed for the interaction of various proteins and therapeutic ligands with DNA to be evaluated-providing insights into structural assembly, flexibility, and movement. This review provides an overview of how innovation and optimization in AFM imaging have advanced our understanding of DNA structure, mechanics, and interactions. These include studies of the secondary and tertiary structure of DNA, including how these are affected by its interactions with proteins. The broader role of AFM as a tool in translational cancer research is also explored through its use in imaging DNA with key chemotherapeutic ligands, including those currently employed in clinical practice.
Collapse
Affiliation(s)
| | - James I. Provan
- Institute of Molecular, Cell, and Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | | - Geoffrey Wells
- UCL School of Pharmacy, University College London, London WC1N 1AX, United Kingdom
| | - John A. Hartley
- UCL Cancer Institute, University College London, London WC1E 6DD, United Kingdom
| | | |
Collapse
|
20
|
Fu Y, Wang F, Sheng H, Hu F, Wang Z, Xu M, Bian Y, Jiang X, Tiedje JM. Removal of extracellular antibiotic resistance genes using magnetic biochar/quaternary phosphonium salt in aquatic environments: A mechanistic study. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125048. [PMID: 33429312 DOI: 10.1016/j.jhazmat.2021.125048] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
The proliferation and spread of antibiotic resistance genes (ARGs) is becoming a worldwide crisis. Extracellular DNA encoding ARGs (eARGs) in aquatic environment plays a critical role in the dispersion of antimicrobial resistance genes. Strategies to control the dissemination of eARGs are urgently required for ecological safety and human health. Towards this goal, magnetic biochar/quaternary phosphonium salt (MBQ), was used to investigate the efficiency and removal mechanism for eARGs. Magnetic biochar modified by quaternary phosphonium salt enhanced the adsorption capacity of extracellular DNA to approximately 9 folds, compared to that of the unmodified. DNA adsorption by MBQ was mainly dominated by chemisorption in heterogeneous systems and was promoted in acidic and low-salt environment. The generation of •OH and MBQ colloid jointly cleaved DNA into fragments, facilitating the adsorption of the phosphate backbone of DNA onto MBQ through electrostatic force as well as the conformational transition of DNA. Furthermore, quantification of extracellular DNA after MBQ was applied in water demonstrated that over 92.7% of resistance genes were removed, indicating a significantly reduced risk of propagation of antimicrobial resistance in aquatic environments. These findings have a practical significance in the application of MBQ in mitigating the spread of ARGs in aquatic environment.
Collapse
Affiliation(s)
- Yuhao Fu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hongjie Sheng
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Hu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziquan Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Xu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongrong Bian
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - James M Tiedje
- Center for Microbial Ecology, Department of Plant, Soil and Microbial Sciences, Michigan State University, MI 48824, USA
| |
Collapse
|
21
|
Bian K, Gerber C, Heinrich AJ, Müller DJ, Scheuring S, Jiang Y. Scanning probe microscopy. ACTA ACUST UNITED AC 2021. [DOI: 10.1038/s43586-021-00033-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Miranda A, Gómez-Varela AI, Stylianou A, Hirvonen LM, Sánchez H, De Beule PAA. How did correlative atomic force microscopy and super-resolution microscopy evolve in the quest for unravelling enigmas in biology? NANOSCALE 2021; 13:2082-2099. [PMID: 33346312 DOI: 10.1039/d0nr07203f] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With the invention of the Atomic Force Microscope (AFM) in 1986 and the subsequent developments in liquid imaging and cellular imaging it became possible to study the topography of cellular specimens under nearly physiological conditions with nanometric resolution. The application of AFM to biological research was further expanded with the technological advances in imaging modes where topographical data can be combined with nanomechanical measurements, offering the possibility to retrieve the biophysical properties of tissues, cells, fibrous components and biomolecules. Meanwhile, the quest for breaking the Abbe diffraction limit restricting microscopic resolution led to the development of super-resolution fluorescence microscopy techniques that brought the resolution of the light microscope comparable to the resolution obtained by AFM. The instrumental combination of AFM and optical microscopy techniques has evolved over the last decades from integration of AFM with bright-field and phase-contrast imaging techniques at first to correlative AFM and wide-field fluorescence systems and then further to the combination of AFM and fluorescence based super-resolution microscopy modalities. Motivated by the many developments made over the last decade, we provide here a review on AFM combined with super-resolution fluorescence microscopy techniques and how they can be applied for expanding our understanding of biological processes.
Collapse
Affiliation(s)
- Adelaide Miranda
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, Braga, Portugal.
| | - Ana I Gómez-Varela
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, Braga, Portugal. and Department of Applied Physics, University of Santiago de Compostela, E-15782, Santiago de Compostela, Spain.
| | - Andreas Stylianou
- Cancer Biophysics Laboratory, University of Cyprus, Nicosia, Cyprus and School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Liisa M Hirvonen
- Centre for Microscopy, Characterisation and Analysis (CMCA), The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Humberto Sánchez
- Faculty of Applied Sciences, Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ, Delft, The Netherlands
| | - Pieter A A De Beule
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, Braga, Portugal.
| |
Collapse
|
23
|
Zhou Z, Shen Z, Cheng Z, Zhang G, Li M, Li Y, Zhan S, Crittenden JC. Mechanistic insights for efficient inactivation of antibiotic resistance genes: a synergistic interfacial adsorption and photocatalytic-oxidation process. Sci Bull (Beijing) 2020; 65:2107-2119. [PMID: 36732964 DOI: 10.1016/j.scib.2020.07.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/20/2020] [Accepted: 06/22/2020] [Indexed: 02/04/2023]
Abstract
Advanced oxidation processes (AOPs) have been applied to address multiple environmental concerns including antibiotic resistance genes (ARGs). ARGs have shown an increasing threat to human health, and they are either harbored by antibiotic-resistant bacteria (ARB) or free in the environment. However, the control of ARGs has been substantially limited by their low concentration and the limited knowledge about their interfacial behavior. Herein, a novel AOP catalyst, Ag/TiO2/graphene oxide (GO), combined with a polyvinylidene fluoride (PVDF) ultrafiltration membrane was designed with a synergistic interfacial adsorption and oxidation function to inactivate ARGs with high efficiency in both model solutions and in secondary wastewater effluent, especially when the residue concentration was low. Further analysis showed that the mineralization of bases and phosphodiesters mainly caused the inactivation of ARGs. Moreover, the interfacial adsorption and oxidation processes of ARGs were studied at the molecular level. The results showed that GO was rich in sp2 backbones and functional oxygen groups, which efficiently captured and enriched the ARGs via π-π interactions and hydrogen bonds. Therefore, the photogenerated active oxygen species attack the ARGs by partially overcoming the kinetic problems in this process. The Ag/TiO2/GO catalyst was further combined with a PVDF membrane to test its potential in wastewater treatment applications. This work offers an efficient method and a corresponding material for the inactivation and mineralization of intra/extracellular ARGs. Moreover, the molecular-level understanding of ARG behaviors on a solid-liquid interface will inspire further control strategies of ARGs in the future.
Collapse
Affiliation(s)
- Zhiruo Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhurui Shen
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Zhihui Cheng
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Guan Zhang
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen (HITSZ), Shenzhen 518055, China
| | - Mingmei Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yi Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Sihui Zhan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory for Rare Earth Materials and Applications, Tianjin 300072, China.
| | - John C Crittenden
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
24
|
Mai DJ, Schroeder CM. 100th Anniversary of Macromolecular Science Viewpoint: Single-Molecule Studies of Synthetic Polymers. ACS Macro Lett 2020; 9:1332-1341. [PMID: 35638639 DOI: 10.1021/acsmacrolett.0c00523] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Single polymer studies have revealed unexpected and heterogeneous dynamics among identical or seemingly similar macromolecules. In recent years, direct observation of single polymers has uncovered broad distributions in molecular behavior that play a key role in determining bulk properties. Early single polymer experiments focused primarily on biological macromolecules such as DNA, but recent advances in synthesis, imaging, and force spectroscopy have enabled broad exploration of chemically diverse polymer systems. In this Viewpoint, we discuss the recent study of synthetic polymers using single-molecule methods. In terms of polymer synthesis, direct observation of single chain polymerization has revealed heterogeneity in monomer insertion events at catalytic centers and decoupling of local and global growth kinetics. In terms of single polymer visualization, recent advances in super-resolution imaging, atomic force microscopy (AFM), and liquid-cell transmission electron microscopy (LC-TEM) can resolve structure and dynamics in single synthetic chains. Moreover, single synthetic polymers can be probed in the context of bulk material environments, including hydrogels, nanostructured polymers, and crystalline polymers. In each area, we highlight key challenges and exciting opportunities in using single polymer techniques to enhance our understanding of polymer science. Overall, the expanding versatility of single polymer methods will enable the molecular-scale design and fundamental understanding of a broad range of chemically diverse and functional polymeric materials.
Collapse
Affiliation(s)
- Danielle J. Mai
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Charles M. Schroeder
- Department of Materials Science and Engineering, Department of Chemical and Biomolecular Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
25
|
Wang Y, Ma K, Wang J, Wang Y, Li L, Liu Z, Hu J, Gao M, Wang Z. Effects of alternating electric field on the imaging of DNA double-helix structure by atomic force microscope. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01509-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Korayem AH, Ghasemi P, Korayem MH. The effect of liquid medium on vibration and control of the AFM piezoelectric microcantilever. Microsc Res Tech 2020; 83:1427-1437. [PMID: 32666674 DOI: 10.1002/jemt.23535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/12/2020] [Accepted: 06/09/2020] [Indexed: 11/06/2022]
Abstract
This article investigates the vibration motion and control of the piezoelectric microcantilever (MC) of the atomic force microscope in the amplitude mode in a liquid environment for both free and forced vibrations. The modeled MC includes two electrode layers, a piezoelectric layer, and the geometric discontinuities as a result of these layers and the change in the MC cross section at the probe-MC contact point is modeled. The equations of motion are derived using Hamilton's principle and then discretized with the aid of the finite element method. The system frequency and time response in the free vibration mode when placed in a liquid medium are compared with experimental results. Also, the sample surface topography in the noncontact mode, when passing through the surface roughness, has been modeled as rectangular and wedge-shaped. Furthermore, the control of piezoelectric MC in two cases of near and far from the sample surface is examined. In the case of far from the surface, the system is controlled using the piezoelectric layer installed on the beam, whereas in the case of near the surface, the piezo is turned off due to the existence of nonlinear forces such as Van der Waals and Derjaguin, Muller, and Toporov contact forces and the control is achieved through the base excitation. For system control modeling, the robust fuzzy sliding mode control (FSMC) approach is utilized and the results are compared with those of the simple sliding mode control (SMC) as well as proportional, integral, and derivative control. The presented FSMC approach can remarkably reduce the chattering phenomenon at the SMC input in the liquid medium and accordingly improve the results compared to the other two methods.
Collapse
Affiliation(s)
- Alireza Habibnejad Korayem
- Robotic Research Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Pouya Ghasemi
- Robotic Research Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Moharam Habibnejad Korayem
- Robotic Research Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
27
|
Li Z, Li Y, Zhao Y, Wang H, Zhang Y, Song B, Li X, Lu S, Hao XQ, Hla SW, Tu Y, Li X. Synthesis of Metallopolymers and Direct Visualization of the Single Polymer Chain. J Am Chem Soc 2020; 142:6196-6205. [PMID: 32150680 PMCID: PMC7375330 DOI: 10.1021/jacs.0c00110] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During the past few decades, the study of the single polymer chain has attracted considerable attention with the goal of exploring the structure-property relationship of polymers. It still, however, remains challenging due to the variability and low atomic resolution of the amorphous single polymer chain. Here, we demonstrated a new strategy to visualize the single metallopolymer chain with a hexameric or trimeric supramolecule as a repeat unit, in which Ru(II) with strong coordination and Fe(II) with weak coordination were combined together in a stepwise manner. With the help of ultrahigh-vacuum, low-temperature scanning tunneling microscopy (UHV-LT-STM) and scanning tunneling spectroscopy (STS), we were able to directly visualize both Ru(II) and Fe(II), which act as staining reagents on the repeat units, thus providing detailed structural information for the single polymer chain. As such, the direct visualization of the single random polymer chain is realized to enhance the characterization of polymers at the single-molecule level.
Collapse
Affiliation(s)
- Zhikai Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Yiming Li
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Yiming Zhao
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Heng Wang
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Yuan Zhang
- Nanoscience and Technology Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Physics, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Bo Song
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Xiaohong Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shuai Lu
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xin-Qi Hao
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Saw-Wai Hla
- Nanoscience and Technology Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Yingfeng Tu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
28
|
Paudyal S, Sharma SK, da Silva RL, Mintz KJ, Liyanage PY, Al-Youbi AO, Bashammakh AS, El-Shahawi MS, Leblanc RM. Tyrosinase enzyme Langmuir monolayer: Surface chemistry and spectroscopic study. J Colloid Interface Sci 2020; 564:254-263. [DOI: 10.1016/j.jcis.2019.12.118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/25/2019] [Accepted: 12/26/2019] [Indexed: 02/08/2023]
|
29
|
Krzeminski P, Feys E, Anglès d'Auriac M, Wennberg AC, Umar M, Schwermer CU, Uhl W. Combined membrane filtration and 265 nm UV irradiation for effective removal of cell free antibiotic resistance genes from feed water and concentrate. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117676] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
Ungai-Salánki R, Peter B, Gerecsei T, Orgovan N, Horvath R, Szabó B. A practical review on the measurement tools for cellular adhesion force. Adv Colloid Interface Sci 2019; 269:309-333. [PMID: 31128462 DOI: 10.1016/j.cis.2019.05.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/05/2019] [Accepted: 05/06/2019] [Indexed: 01/03/2023]
Abstract
Cell-cell and cell-matrix adhesions are fundamental in all multicellular organisms. They play a key role in cellular growth, differentiation, pattern formation and migration. Cell-cell adhesion is substantial in the immune response, pathogen-host interactions, and tumor development. The success of tissue engineering and stem cell implantations strongly depends on the fine control of live cell adhesion on the surface of natural or biomimetic scaffolds. Therefore, the quantitative and precise measurement of the adhesion strength of living cells is critical, not only in basic research but in modern technologies, too. Several techniques have been developed or are under development to quantify cell adhesion. All of them have their pros and cons, which has to be carefully considered before the experiments and interpretation of the recorded data. Current review provides a guide to choose the appropriate technique to answer a specific biological question or to complete a biomedical test by measuring cell adhesion.
Collapse
|
31
|
Heenan PR, Perkins TT. Imaging DNA Equilibrated onto Mica in Liquid Using Biochemically Relevant Deposition Conditions. ACS NANO 2019; 13:4220-4229. [PMID: 30938988 DOI: 10.1021/acsnano.8b09234] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
For over 25 years, imaging of DNA by atomic force microscopy has been intensely pursued. Ideally, such images are then used to probe the physical properties of DNA and characterize protein-DNA interactions. The atomic flatness of mica makes it the preferred substrate for high signal-to-noise ratio (SNR) imaging, but the negative charge of mica and DNA hinders deposition. Traditional methods for imaging DNA and protein-DNA complexes in liquid have drawbacks: DNA conformations with an anomalous persistence length ( p), low SNR, and/or ionic deposition conditions detrimental to preserving protein-DNA interactions. Here, we developed a process to bind DNA to mica in a buffer containing both MgCl2 and KCl that resulted in high SNR images of equilibrated DNA in liquid. Achieving an equilibrated 2D configuration ( i. e., p = 50 nm) not only implied a minimally perturbative binding process but also improved data quality and quantity because the DNA's configuration was more extended. In comparison to a purely NiCl2-based protocol, we showed that an 8-fold larger fraction (90%) of 680-nm-long DNA molecules could be quantified. High-resolution images of select equilibrated molecules revealed the right-handed structure of DNA with a helical pitch of 3.5 nm. Deposition and imaging of DNA was achieved over a wide range of monovalent and divalent ionic conditions, including a buffer containing 50 mM KCl and 3 mM MgCl2. Finally, we imaged two protein-DNA complexes using this protocol: a restriction enzyme bound to DNA and a small three-nucleosome array. We expect such deposition of protein-DNA complexes at biochemically relevant ionic conditions will facilitate biophysical insights derived from imaging diverse protein-DNA complexes.
Collapse
Affiliation(s)
- Patrick R Heenan
- JILA, National Institute of Standards and Technology and University of Colorado , Boulder , Colorado 80309 , United States
- Department of Physics , University of Colorado , Boulder , Colorado 80309 , United States
| | - Thomas T Perkins
- JILA, National Institute of Standards and Technology and University of Colorado , Boulder , Colorado 80309 , United States
- Department of Molecular, Cellular, and Developmental Biology , University of Colorado , Boulder , Colorado 80309 , United States
| |
Collapse
|
32
|
Terasaki K, Yokoyama T. Structural Modification of DNA Studied by Scanning Tunneling Microscopy. J Phys Chem B 2019; 123:1780-1783. [PMID: 30721062 DOI: 10.1021/acs.jpcb.8b12100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In addition to the well-known double-helix structure of deoxyribonucleic acid (DNA), theoretical simulations have predicted structural variants, such as cross and T-shaped formations. The direct visualization of individual DNA molecules by scanning probe microscopy should be able to identify these structures. In this study, we examine various structures of DNA deposited on Au(111) by using an electrospray method and analyzing with a low-temperature scanning tunneling microscope. We could identify in detail several interesting structures. In particular, we found that double-stranded DNAs are partially unraveled into single-stranded DNAs and we confirmed the presence of T-shaped DNA structures.
Collapse
Affiliation(s)
- Kohei Terasaki
- Department of Nanoscience and Technology , Yokohama City University , 22-2 Seto 236-0027 , Japan
| | - Takashi Yokoyama
- Department of Nanoscience and Technology , Yokohama City University , 22-2 Seto 236-0027 , Japan
| |
Collapse
|
33
|
Thamm S, Slesiona N, Dathe A, Csáki A, Fritzsche W. AFM-Based Probing of the Flexibility and Surface Attachment of Immobilized DNA Origami. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15093-15098. [PMID: 30252490 DOI: 10.1021/acs.langmuir.8b02362] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The flexible and precise immobilization of self-organizing DNA nanostructures represents a key step in the integration of DNA-based material for potential electronic or sensor applications. However, the involved processes have still not been well studied and are not yet fully understood. Thus, we investigated the potential for the mechanical manipulation of DNA origami by atomic force microscopy (AFM) in order to study the interaction between intramolecular flexibility and surface-attachment forces. AFM is particularly suitable for nanoscale manipulation. Previous studies showed the potential for pushing, bending, and cutting double-stranded DNA (dsDNA) with an AFM tip. Understanding the involved parameters may enable control over different processes such as nanointegration, precise cutting, and stretching of preassembled DNA origami. We demonstrate the defined manipulation and flexibility of DNA origami immobilized on mica in the nanometer range: controlled cutting, folding, and stretching as a function of the magnesium concentration.
Collapse
Affiliation(s)
- Sophie Thamm
- Leibniz-Institute of Photonic Technology , 07745 Jena , Germany
| | - Nicole Slesiona
- Leibniz-Institute of Photonic Technology , 07745 Jena , Germany
| | - André Dathe
- Leibniz-Institute of Photonic Technology , 07745 Jena , Germany
- Jena University Hospital, Friedrich-Schiller-University , 07745 Jena , Germany
| | - Andrea Csáki
- Leibniz-Institute of Photonic Technology , 07745 Jena , Germany
| | | |
Collapse
|
34
|
Pleshakova TO, Bukharina NS, Archakov AI, Ivanov YD. Atomic Force Microscopy for Protein Detection and Their Physicoсhemical Characterization. Int J Mol Sci 2018; 19:E1142. [PMID: 29642632 PMCID: PMC5979402 DOI: 10.3390/ijms19041142] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/30/2018] [Accepted: 04/05/2018] [Indexed: 11/18/2022] Open
Abstract
This review is focused on the atomic force microscopy (AFM) capabilities to study the properties of protein biomolecules and to detect the proteins in solution. The possibilities of application of a wide range of measuring techniques and modes for visualization of proteins, determination of their stoichiometric characteristics and physicochemical properties, are analyzed. Particular attention is paid to the use of AFM as a molecular detector for detection of proteins in solutions at low concentrations, and also for determination of functional properties of single biomolecules, including the activity of individual molecules of enzymes. Prospects for the development of AFM in combination with other methods for studying biomacromolecules are discussed.
Collapse
Affiliation(s)
| | - Natalia S Bukharina
- Institute of Biomedical Chemistry, 10, Pogodinskaya St., 119121 Moscow, Russia.
| | | | - Yuri D Ivanov
- Institute of Biomedical Chemistry, 10, Pogodinskaya St., 119121 Moscow, Russia.
| |
Collapse
|
35
|
Frederickx W, Rocha S, Fujita Y, Kennes K, De Keersmaecker H, De Feyter S, Uji-I H, Vanderlinden W. Orthogonal Probing of Single-Molecule Heterogeneity by Correlative Fluorescence and Force Microscopy. ACS NANO 2018; 12:168-177. [PMID: 29257876 DOI: 10.1021/acsnano.7b05405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Correlative imaging by fluorescence and force microscopy is an emerging technology to acquire orthogonal information at the nanoscale. Whereas atomic force microscopy excels at resolving the envelope structure of nanoscale specimens, fluorescence microscopy can detect specific molecular labels, which enables the unambiguous recognition of molecules in a complex assembly. Whereas correlative imaging at the micrometer scale has been established, it remains challenging to push the technology to the single-molecule level. Here, we used an integrated setup to systematically evaluate the factors that influence the quality of correlative fluorescence and force microscopy. Optimized data processing to ensure accurate drift correction and high localization precision results in image registration accuracies of ∼25 nm on organic fluorophores, which represents a 2-fold improvement over the state of the art in correlative fluorescence and force microscopy. Furthermore, we could extend the Atto532 fluorophore bleaching time ∼2-fold, by chemical modification of the supporting mica surface. In turn, this enables probing the composition of macromolecular complexes by stepwise photobleaching with high confidence. We demonstrate the performance of our method by resolving the stoichiometry of molecular subpopulations in a heterogeneous EcoRV-DNA nucleoprotein ensemble.
Collapse
Affiliation(s)
- Wout Frederickx
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven-University of Leuven , Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Susana Rocha
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven-University of Leuven , Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Yasuhiko Fujita
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven-University of Leuven , Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Koen Kennes
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven-University of Leuven , Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Herlinde De Keersmaecker
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven-University of Leuven , Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Steven De Feyter
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven-University of Leuven , Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Hiroshi Uji-I
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven-University of Leuven , Celestijnenlaan 200F, B-3001, Leuven, Belgium
- Research Institute for Electronic Science, Nanomaterials and Nanoscopy, Hokkaido University , Kita 10 Nishi 20, North Ward, Sapporo 001-0020, Japan
| | - Willem Vanderlinden
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven-University of Leuven , Celestijnenlaan 200F, B-3001, Leuven, Belgium
- Department of Physics, Nanosystems Initiative Munich, and Center for NanoScience, LMU Munich , Amalienstrasse 54, 80799 Munich, Germany
| |
Collapse
|
36
|
Delguste M, Koehler M, Alsteens D. Probing Single Virus Binding Sites on Living Mammalian Cells Using AFM. Methods Mol Biol 2018; 1814:483-514. [PMID: 29956251 DOI: 10.1007/978-1-4939-8591-3_29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In the last years, atomic force microscopy (AFM)-based approaches have evolved into a powerful multiparametric tool that allows biological samples ranging from single receptors to membranes and tissues to be probed. Force-distance curve-based AFM (FD-based AFM) nowadays enables to image living cells at high resolution and simultaneously localize and characterize specific ligand-receptor binding events. In this chapter, we present how FD-based AFM permits to investigate virus binding to living mammalian cells and quantify the kinetic and thermodynamic parameters that describe the free-energy landscape of the single virus-receptor-mediated binding. Using a model virus, we probed the specific interaction with cells expressing its cognate receptor and measured the affinity of the interaction. Furthermore, we observed that the virus rapidly established specific multivalent interactions and found that each bond formed in sequence strengthens the attachment of the virus to the cell.
Collapse
Affiliation(s)
- Martin Delguste
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Melanie Koehler
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
| |
Collapse
|
37
|
Zuttion F, Redondo-Morata L, Marchesi A, Casuso I. High-Resolution and High-Speed Atomic Force Microscope Imaging. Methods Mol Biol 2018; 1814:181-200. [PMID: 29956233 DOI: 10.1007/978-1-4939-8591-3_11] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The advent of high-speed atomic force microscopy (HS-AFM) over the recent years has opened up new horizons for the study of structure, function and dynamics of biological molecules. HS-AFM is capable of 1000 times faster imaging than conventional AFM. This circumstance uniquely enables the observation of the dynamics of all the molecules present in the imaging area. Over the last 10 years, the HS-AFM has gone from a prototype-state technology that only a few labs in the world had access to (including ours) to an established commercialized technology that is present in tens of labs around the world. In this protocol chapter we share with the readers our practical know-how on high resolution HS-AFM imaging.
Collapse
Affiliation(s)
- Francesca Zuttion
- LAI, Aix-Marseille Université, INSERM UMR_S 1067, CNRS UMR 7333, 13009, Marseille, France
| | - Lorena Redondo-Morata
- Inserm U1019, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
| | - Arin Marchesi
- LAI, Aix-Marseille Université, INSERM UMR_S 1067, CNRS UMR 7333, 13009, Marseille, France
| | - Ignacio Casuso
- LAI, Aix-Marseille Université, INSERM UMR_S 1067, CNRS UMR 7333, 13009, Marseille, France.
| |
Collapse
|
38
|
Braet F, Taatjes DJ. Foreword to the special issue on applications of atomic force microscopy in cell biology. Semin Cell Dev Biol 2017; 73:1-3. [PMID: 28673678 DOI: 10.1016/j.semcdb.2017.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 10/19/2022]
Affiliation(s)
- Filip Braet
- School of Medical Sciences (Discipline of Anatomy and Histology) - The Bosch Institute, The University of Sydney, NSW 2006, Australia; Australian Centre for Microscopy & Microanalysis, The University of Sydney, NSW 2006, Australia; Charles Perkins Centre (Cellular Imaging Facility), The University of Sydney, NSW 2006, Australia.
| | - Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA; Microscopy Imaging Center, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA.
| |
Collapse
|
39
|
Dufrêne YF, Ando T, Garcia R, Alsteens D, Martinez-Martin D, Engel A, Gerber C, Müller DJ. Imaging modes of atomic force microscopy for application in molecular and cell biology. NATURE NANOTECHNOLOGY 2017; 12:295-307. [PMID: 28383040 DOI: 10.1038/nnano.2017.45] [Citation(s) in RCA: 494] [Impact Index Per Article: 70.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 02/23/2017] [Indexed: 05/22/2023]
Abstract
Atomic force microscopy (AFM) is a powerful, multifunctional imaging platform that allows biological samples, from single molecules to living cells, to be visualized and manipulated. Soon after the instrument was invented, it was recognized that in order to maximize the opportunities of AFM imaging in biology, various technological developments would be required to address certain limitations of the method. This has led to the creation of a range of new imaging modes, which continue to push the capabilities of the technique today. Here, we review the basic principles, advantages and limitations of the most common AFM bioimaging modes, including the popular contact and dynamic modes, as well as recently developed modes such as multiparametric, molecular recognition, multifrequency and high-speed imaging. For each of these modes, we discuss recent experiments that highlight their unique capabilities.
Collapse
Affiliation(s)
- Yves F Dufrêne
- Institute of Life Sciences and Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Université catholique de Louvain, Croix du Sud 4-5, bte L7.07.06., B-1348 Louvain-la-Neuve, Belgium
| | - Toshio Ando
- Department of Physics, Kanazawa University, Kanazawa 920-1192, Japan
| | - Ricardo Garcia
- Instituto de Ciencia de Materiales de Madrid, CSIC, Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - David Alsteens
- Institute of Life Sciences and Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Université catholique de Louvain, Croix du Sud 4-5, bte L7.07.06., B-1348 Louvain-la-Neuve, Belgium
| | - David Martinez-Martin
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Mattenstrasse 28, 4056 Basel, Switzerland
| | - Andreas Engel
- Department of BioNanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Christoph Gerber
- Swiss Nanoscience Institute, University of Basel, Klingelbergstrasse 80, 4057 Basel, Switzerland
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Mattenstrasse 28, 4056 Basel, Switzerland
| |
Collapse
|
40
|
Rimer JD, Kolbach-Mandel AM, Ward MD, Wesson JA. The role of macromolecules in the formation of kidney stones. Urolithiasis 2016; 45:57-74. [PMID: 27913854 DOI: 10.1007/s00240-016-0948-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 11/22/2016] [Indexed: 10/20/2022]
Abstract
The formation of crystal aggregates, one of the critical processes in kidney stone pathogenesis, involves interactions between crystals (predominantly calcium oxalate monohydrate, COM) and urinary constituents (e.g., proteins), which serve as an adhesive "glue" between crystals in stones. To develop a better understanding of the protein-crystal interactions that lead to crystal aggregation, we have measured the effect of model proteins on bulk COM crystal properties as well as their adsorption on crystal surfaces using three synthetic polyanions: poly(aspartic acid) (polyD), poly(glutamic acid) (polyE), and poly(acrylic acid) (polyAA). These anionic macromolecules reduced the amount of COM crystal aggregation in bulk solution to an extent similar to that observed for mixture of proteins from normal urine, with little difference between the polymers. In contrast, the polymers exhibited differences in measures of COM crystal growth. Polycations such as poly(arginine) (polyR) and poly(lysine) (polyK) reduced aggregation weakly and exerted negligible effects on crystal growth. All polyions were found to associate with COM crystal surfaces, as evidenced by changes in the zeta potential of COM crystals in electrophoretic mobility measurements. On the other hand, COM aggregation and possibly growth can be promoted by many binary mixtures of polycations and polyanions, which appeared to be mediated by polymer aggregate formation rather than loss of crystal charge stabilization. Similarly, crystal aggregation promotion behavior can be driven by forming aggregates of weakly charged polyanions, like Tamm-Horsfall protein, suggesting that polymer (protein) aggregation may play a critical role in stone formation. Sensitivity of polyanion-COM crystal surface interactions to the chemical composition of polymer side groups were demonstrated by large differences in crystal aggregation behavior between polyD and polyE, which correlated with atomic force microscopy (AFM) measurements of growth inhibition on various COM surfaces and chemical force microscopy (CFM) measurements of unbinding forces between COM crystal surfaces and AFM tips decorated with either carboxylate or amidinium moieties (mimicking polyanion and polyR side chains, respectively). The lack of strong interaction for polyE at the COM (100) surface compared to polyD appeared to be the critical difference. Finally, the simultaneous presence of polyanions and polycations appeared to alter the ability of polycations to mediate unbinding forces in CFM and promote crystal growth. In summary, polyanions strongly associated with COM surfaces and influenced crystallization, while polycations did not, though important differences were observed based on the physicochemical properties of polyanions. Observations suggest that COM aggregation with both polyanion-polycation mixtures and weakly charged polyanions is promoted by polymer aggregate formation, which plays a critical role in bridging crystal surfaces.
Collapse
Affiliation(s)
- Jeffrey D Rimer
- Department of Chemical and Biomolecular Engineering, University of Houston, 4726 Calhoun Rd, Houston, TX, 77204-4004, USA
| | - Ann M Kolbach-Mandel
- Department of Medicine/Nephrology Division, The Medical College of Wisconsin, 9200 West Wisconsin Avenue, Milwaukee, WI, 53226, USA
| | - Michael D Ward
- Department of Chemistry and the Molecular Design Institute, New York University, 100 Washington Square East, New York, NY, 10003-6688, USA
| | - Jeffrey A Wesson
- Department of Medicine/Nephrology Division, Department of Veterans Affairs Medical Center, The Medical College of Wisconsin, 5000 West National Avenue, Milwaukee, WI, 53295, USA.
| |
Collapse
|
41
|
Costa L, Andriatis A, Brennich M, Teulon JM, Chen SWW, Pellequer JL, Round A. Combined small angle X-ray solution scattering with atomic force microscopy for characterizing radiation damage on biological macromolecules. BMC STRUCTURAL BIOLOGY 2016; 16:18. [PMID: 27788689 PMCID: PMC5081678 DOI: 10.1186/s12900-016-0068-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/06/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Synchrotron radiation facilities are pillars of modern structural biology. Small-Angle X-ray scattering performed at synchrotron sources is often used to characterize the shape of biological macromolecules. A major challenge with high-energy X-ray beam on such macromolecules is the perturbation of sample due to radiation damage. RESULTS By employing atomic force microscopy, another common technique to determine the shape of biological macromolecules when deposited on flat substrates, we present a protocol to evaluate and characterize consequences of radiation damage. It requires the acquisition of images of irradiated samples at the single molecule level in a timely manner while using minimal amounts of protein. The protocol has been tested on two different molecular systems: a large globular tetremeric enzyme (β-Amylase) and a rod-shape plant virus (tobacco mosaic virus). Radiation damage on the globular enzyme leads to an apparent increase in molecular sizes whereas the effect on the long virus is a breakage into smaller pieces resulting in a decrease of the average long-axis radius. CONCLUSIONS These results show that radiation damage can appear in different forms and strongly support the need to check the effect of radiation damage at synchrotron sources using the presented protocol.
Collapse
Affiliation(s)
- Luca Costa
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, Grenoble, 38000 France
- Present Address: CBS, Centre de Biochimie Structurale, CNRS UMR 5048-INSERM UMR 1054, 29, Rue de Navacelles, Montpellier, 34090 France
| | - Alexander Andriatis
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, Grenoble, 38000 France
- MIT, 77 Massachusetts Ave., Cambridge, 02139 MA USA
| | - Martha Brennich
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, Grenoble, 38000 France
| | - Jean-Marie Teulon
- Univ. Grenoble Alpes, 71 Avenue des Martyrs, Grenoble, 38044 France
- CNRS, IBS, 71 Avenue des Martyrs, Grenoble, 38044 France
- CEA, IBS, 71 Avenue des Martyrs, Grenoble, France
| | - Shu-wen W. Chen
- Univ. Grenoble Alpes, 71 Avenue des Martyrs, Grenoble, 38044 France
- CNRS, IBS, 71 Avenue des Martyrs, Grenoble, 38044 France
- CEA, IBS, 71 Avenue des Martyrs, Grenoble, France
| | - Jean-Luc Pellequer
- Univ. Grenoble Alpes, 71 Avenue des Martyrs, Grenoble, 38044 France
- CNRS, IBS, 71 Avenue des Martyrs, Grenoble, 38044 France
- CEA, IBS, 71 Avenue des Martyrs, Grenoble, France
| | - Adam Round
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, Grenoble, 38000 France
- Unit for Virus Host-Cell Interactions, Univ. Grenoble Alpes-EMBL-CNRS, 71 Avenue des Martyrs, Grenoble, 38000 France
- Faculty of Natural Sciences, Keele University, Keele, Staffordshire UK
- Present Address: European XFEL GmbH, Holzkoppel 4, Schenefeld, 22869 Germany
| |
Collapse
|
42
|
Pang D, Chasovskikh S, Rodgers JE, Dritschilo A. Short DNA Fragments Are a Hallmark of Heavy Charged-Particle Irradiation and May Underlie Their Greater Therapeutic Efficacy. Front Oncol 2016; 6:130. [PMID: 27376024 PMCID: PMC4901041 DOI: 10.3389/fonc.2016.00130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/16/2016] [Indexed: 11/13/2022] Open
Abstract
Growing interest in proton and heavy ion therapy has reinvigorated research into the fundamental biological mechanisms underlying the therapeutic efficacy of charged-particle radiation. To improve our understanding of the greater biological effectiveness of high-LET radiations, we have investigated DNA double-strand breaks (DSBs) following exposure of plasmid DNA to low-LET Co-60 gamma photon and electron irradiation and to high-LET Beryllium and Argon ions with atomic force microscopy. The sizes of DNA fragments following radiation exposure were individually measured to construct fragment size distributions from which the DSB per DNA molecule and DSB spatial distributions were derived. We report that heavy charged particles induce a significantly larger proportion of short DNA fragments in irradiated DNA molecules, reflecting densely and clustered damage patterns of high-LET energy depositions. We attribute the enhanced short DNA fragmentation following high-LET radiations as an important determinant of the observed, enhanced biological effectiveness of high-LET irradiations.
Collapse
Affiliation(s)
- Dalong Pang
- Radiation Medicine, Georgetown University Medical Center , Washington, DC , USA
| | - Sergey Chasovskikh
- Radiation Medicine, Georgetown University Medical Center , Washington, DC , USA
| | - James E Rodgers
- Radiation Oncology, Medstar Franklin Square Medical Center , Rosedale, MD , USA
| | - Anatoly Dritschilo
- Radiation Medicine, Georgetown University Medical Center , Washington, DC , USA
| |
Collapse
|
43
|
Hayashida T, Umemura K. Atomic Force Microscopy of DNA-wrapped Single-walled Carbon Nanotubes in Aqueous Solution. Colloids Surf B Biointerfaces 2016; 143:526-531. [PMID: 27045980 DOI: 10.1016/j.colsurfb.2016.03.068] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 03/11/2016] [Accepted: 03/23/2016] [Indexed: 01/08/2023]
Abstract
We evaluated hybrids of DNA and single-walled carbon nanotubes (SWNTs) in aqueous solution and in air using atomic force microscopy (AFM). Although intensive AFM observations of these hybrids were previously carried out for samples in air, this is the first report on AFM observations of these hybrids in solution. As expected, diameters of DNA-SWNT hybrids dramatically increased in tris(hydroxymethyl)aminomethane-ethylenediaminetetraacetic acid (TE) buffer solution. The data suggest that DNA molecules maintain their structures even on the SWNT surfaces. Furthermore, we simultaneously observed single DNA-SWNT hybrids using three different AFM modes in air and in the TE buffer solution. Height value of the hybrids was largest in the solution, and lowest for the mode that repulsive force is expected in air. For the bare SWNT molecules, height differences among the three AFM modes were much lower than those of the DNA-SWNT hybrids. DNA molecules adsorbed on SWNT surfaces flexibly changed their morphology as well as DNA molecules on flat surfaces such as mica. This is hopeful results for biological applications of DNA-SWNT hybrids. In addition, our results revealed the importance of the single-molecule approach to evaluate DNA structures on SWNT surfaces.
Collapse
Affiliation(s)
- Takuya Hayashida
- Biophysics Section, Department of Physics, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Kazuo Umemura
- Biophysics Section, Department of Physics, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| |
Collapse
|
44
|
Eidelshtein G, Kotlyar A, Hashemi M, Gurevich L. Aligned deposition and electrical measurements on single DNA molecules. NANOTECHNOLOGY 2015; 26:475102. [PMID: 26538384 DOI: 10.1088/0957-4484/26/47/475102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A reliable method of deposition of aligned individual dsDNA molecules on mica, silicon, and micro/nanofabricated circuits is presented. Complexes of biotinylated double stranded poly(dG)-poly(dC) DNA with avidin were prepared and deposited on mica and silicon surfaces in the absence of Mg(2+) ions. Due to its positive charge, the avidin attached to one end of the DNA anchors the complex to negatively charged substrates. Subsequent drying with a directional gas flow yields DNA molecules perfectly aligned on the surface. In the avidin-DNA complex only the avidin moiety is strongly and irreversibly bound to the surface, while the DNA counterpart interacts with the substrates much more weakly and can be lifted from the surface and realigned in any direction. Using this technique, avidin-DNA complexes were deposited across platinum electrodes on a silicon substrate. Electrical measurements on the deposited DNA molecules revealed linear IV-characteristics and exponential dependence on relative humidity.
Collapse
Affiliation(s)
- Gennady Eidelshtein
- Department of Biochemistry and Molecular Biology, George S Wise Faculty of Life Sciences and The Center of Nanoscience and Nanotechnology, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
45
|
Nahavandi A, Korayem MH. Analyzing the Effect of Capillary Force on Vibrational Performance of the Cantilever of an Atomic Force Microscope in Tapping Mode with Double Piezoelectric Layers in an Air Environment. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2015; 21:1195-1206. [PMID: 26324257 DOI: 10.1017/s1431927615014889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The aim of this paper is to determine the effects of forces exerted on the cantilever probe tip of an atomic force microscope (AFM). These forces vary according to the separation distance between the probe tip and the surface of the sample being examined. Hence, at a distance away from the surface (farther than d(on)), these forces have an attractive nature and are of Van der Waals type, and when the probe tip is situated in the range of a₀≤ d(ts) ≤ d(on), the capillary force is added to the Van der Waals force. At a distance of d(ts) ≤ a₀, the Van der Waals and capillary forces remain constant at intermolecular distances, and the contact repulsive force repels the probe tip from the surface of sample. The capillary force emerges due to the contact of thin water films with a thickness of h(c) which have accumulated on the sample and probe. Under environmental conditions a layer of water or hydrocarbon often forms between the probe tip and sample. The capillary meniscus can grow until the rate of evaporation equals the rate of condensation. For each of the above forces, different models are presented. The smoothness or roughness of the surfaces and the geometry of the cantilever tip have a significant effect on the modeling of forces applied on the probe tip. Van der Waals and the repulsive forces are considered to be the same in all the simulations, and only the capillary force is altered in order to evaluate the role of this force in the AFM-based modeling. Therefore, in view of the remarkable advantages of the piezoelectric microcantilever and also the extensive applications of the tapping mode, we investigate vibrational motion of the piezoelectric microcantilever in the tapping mode. The cantilever mentioned is entirely covered by two piezoelectric layers that carry out both the actuation of the probe tip and the measuringof its position.
Collapse
Affiliation(s)
- Amir Nahavandi
- Department of Mechanical and Aerospace Engineering,Science and Research Branch,Islamic Azad University,1477893855 Tehran,Iran
| | - Moharam Habibnejad Korayem
- Department of Mechanical and Aerospace Engineering,Science and Research Branch,Islamic Azad University,1477893855 Tehran,Iran
| |
Collapse
|
46
|
Kumaki J. Observation of polymer chain structures in two-dimensional films by atomic force microscopy. Polym J 2015. [DOI: 10.1038/pj.2015.67] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
Kang F, Hu X, Liu J, Gao Y. Noncovalent Binding of Polycyclic Aromatic Hydrocarbons with Genetic Bases Reducing the in Vitro Lateral Transfer of Antibiotic Resistant Genes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:10340-10348. [PMID: 26262891 DOI: 10.1021/acs.est.5b02293] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In current studies of noncovalent interactions of polycyclic aromatic hydrocarbons (PAHs) with genetic units, the impact of such interactions on gene transfer has not been explored. In this study, we examined the association of some widely occurring PAHs (phenanthrene, pyrene, benzo[g,h,i]perylene, and other congeners) with antibiotic resistant plasmids (pUC19). Small molecular PAHs (e.g., phenanthrene) bind effectively with plasmids to form a loosely clew-like plasmid-PAH complex (16.5-49.5 nm), resulting in reduced transformation of ampicillin resistance gene (Ampr). The in vitro transcription analysis demonstrated that reduced transformation of Ampr in plasmids results from the PAH-inhibited Ampr transcription to RNA. Fluorescence microtitration coupled with Fourier transform infrared spectroscopy (FTIR) and theoretical interaction models showed that adenine in plasmid has a stronger capacity to sequester small Phen and Pyre molecules via a π-π attraction. Changes in Gibbs free energy (ΔG) suggest that the CT-PAH model reliably depicts the plasmid-PAH interaction through a noncovalently physical sorption mechanism. Considering the wide occurrence of PAHs and antibiotic resistant genes (ARGs) in the environment, our findings suggest that small-sized PAHs can well affect the behavior of ARGs via above-described noncovalent interactions.
Collapse
Affiliation(s)
- Fuxing Kang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University , Nanjing, Jiangsu 210095, China
| | - Xiaojie Hu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University , Nanjing, Jiangsu 210095, China
| | - Juan Liu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University , Nanjing, Jiangsu 210095, China
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University , Nanjing, Jiangsu 210095, China
| |
Collapse
|
48
|
Tian J, Tu C, Liang Y, Zhou J, Ye X. Study of laser uncaging induced morphological alteration of rat cortical neurites using atomic force microscopy. J Neurosci Methods 2015; 253:151-60. [PMID: 26149288 DOI: 10.1016/j.jneumeth.2015.06.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 06/18/2015] [Accepted: 06/26/2015] [Indexed: 11/28/2022]
Abstract
Activity-dependent structural remodeling is an important aspect of neuronal plasticity. In the previous researches, neuronal structure variations resulting from external interventions were detected by the imaging instruments such as the fluorescence microscopy, the scanning/transmission electron microscopy (SEM/TEM) and the laser confocal microscopy. In this article, a new platform which combined the photochemical stimulation with atomic force microscopy (AFM) was set up to detect the activity-dependent structural remodeling. In the experiments, the cortical neurites on the glass coverslips were stimulated by locally uncaged glutamate under the ultraviolet (UV) laser pulses, and a calcium-related structural collapse of neurites (about 250 nm height decrease) was observed by an AFM. This was the first attempt to combine the laser uncaging with AFM in living cell researches. With the advantages of highly localized stimulation (<5 μm), super resolution imaging (<3.8 nm), and convenient platform building, this system was suitable for the quantitative observation of the neuron mechanical property variations and morphological alterations modified by neural activities under different photochemical stimulations, which would be helpful for studying physiological and pathological mechanisms of structural and functional changes induced by the biomolecule acting.
Collapse
Affiliation(s)
- Jian Tian
- Biosensor National Special Laboratory, Key Laboratory of BME of the Ministry of Education, Zhejiang University, Hangzhou 310027, PR China; Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Chunlong Tu
- Biosensor National Special Laboratory, Key Laboratory of BME of the Ministry of Education, Zhejiang University, Hangzhou 310027, PR China; Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Yitao Liang
- Biosensor National Special Laboratory, Key Laboratory of BME of the Ministry of Education, Zhejiang University, Hangzhou 310027, PR China; Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Jian Zhou
- Biosensor National Special Laboratory, Key Laboratory of BME of the Ministry of Education, Zhejiang University, Hangzhou 310027, PR China; Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Xuesong Ye
- Biosensor National Special Laboratory, Key Laboratory of BME of the Ministry of Education, Zhejiang University, Hangzhou 310027, PR China; Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China.
| |
Collapse
|
49
|
Gimeno A, Ares P, Horcas I, Gil A, Gómez-Rodríguez JM, Colchero J, Gómez-Herrero J. ‘Flatten plus’: a recent implementation in WSxM for biological research: Fig. 1. Bioinformatics 2015; 31:2918-20. [DOI: 10.1093/bioinformatics/btv278] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/24/2015] [Indexed: 11/12/2022] Open
|
50
|
Cervantes NAG, Gutiérrez-Medina B. Robust deposition of lambda DNA on mica for imaging by AFM in air. SCANNING 2014; 36:561-569. [PMID: 25195672 DOI: 10.1002/sca.21155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/15/2014] [Indexed: 06/03/2023]
Abstract
Long DNA molecules remain difficult to image by atomic force microscopy (AFM) because of their tendency to entanglement and spontaneous formation of networks. We present a comparison of two different DNA deposition methods operating at room temperature and humidity conditions, aimed at reproducible imaging of isolated and relaxed λ DNA conformations by AFM in air. We first demonstrate that a standard deposition procedure, consisting in adsorption of DNA in the presence of divalent cations followed by washing and air-drying steps, yields a coexistence of different types of λ DNA networks with a only a few isolated DNA chains. In contrast, deposition using a spin-coating-based technique results in reproducible coverage of a significant fraction of the substrate area by isolated and relaxed λ DNA molecules, with the added benefit of a reduction in the effect of a residual layer that normally embeds DNA strands and leads to an apparent DNA height closer to the expected value. Furthermore, we show that deposition by spin-coating is also well-suited to visualize DNA-protein complexes. These results indicate that spin-coating is a simple, powerful alternative for reproducible sample preparation for AFM imaging.
Collapse
|