1
|
Mao J, Liu H, Li Y, Gao M, Zhang Y, Song Y, Zhang M, Xu G, Zhou W, Yu L, Cui X, Deng D. Mild-Condition Conversion of Methane to Acetic Acid over MoS 2-Confined Rh-Fe Sites. J Am Chem Soc 2025; 147:14530-14540. [PMID: 40232189 DOI: 10.1021/jacs.5c01515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
The oriented conversion of CH4 to CH3COOH at low temperature, even room temperature, is both scientifically significant and industrially applicable for CH4 utilization, yet it is extremely challenging due to the difficulties associated with efficient CH4 activation and controllable C-C coupling. In this study, we for the first time achieve the room-temperature conversion of CH4 to CH3COOH using molecular O2 and CO over MoS2-confined Rh-Fe sites, which delivers an unprecedented CH3COOH selectivity of 90.3% and a productivity of 26.2 μmol gcat.-1 h-1 at 25 °C. Furthermore, the productivity of CH3COOH can be enhanced to 105.6 μmol gcat.-1 h-1 at 80 °C, while maintaining a high selectivity of 95.6%. Comprehensive experimental and theoretical investigation reveal the critical role of Rh-Fe synergy in the selective formation of CH3COOH. The confined Fe sites in MoS2 enable the activation of O2 to generate highly reactive Fe═O center for CH4 dissociation to CH3 species at room temperature, which then readily couple with adsorbed CO on adjacent Rh sites to form the key CH3CO intermediate for CH3COOH production. The unique structure of Rh-Fe sites offers synergistic catalytic properties that effectively balance C-H activation and C-C coupling, successfully addressing the trade-off between activity and selectivity in the carbonylation of CH4 to CH3COOH under mild conditions.
Collapse
Affiliation(s)
- Jun Mao
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Huan Liu
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yanan Li
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Meng Gao
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunlong Zhang
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yao Song
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Mo Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Guilan Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wu Zhou
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Yu
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoju Cui
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dehui Deng
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Gabrienko AA, Kolganov AA, Yashnik SA, Kriventsov VV, Stepanov AG. Methane to Methanol Transformation on Cu 2+/H-ZSM-5 Zeolite. Characterization of Copper State and Mechanism of the Reaction. Chemistry 2025; 31:e202403167. [PMID: 39780481 DOI: 10.1002/chem.202403167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/06/2024] [Accepted: 01/08/2025] [Indexed: 01/11/2025]
Abstract
Cu-modified zeolites provide methane conversion to methanol with high selectivity under mild conditions. The activity of different Cu-sites for methane transformation is still under discussion. Herein, ZSM-5 zeolite has been loaded with Cu2+ cations (1.4 wt % Cu) as characterized by UV-vis DRS, EPR, EXAFS, and 1H MAS NMR. It is inferred that Cu2+ cations, attached to the cation-exchange Al-O--Si sites of the zeolite framework, can exist in the form of either isolated or paired Cu2+ sites. The transformation of methane to methanol on Cu2+/H-ZSM-5 has been verified by the observation of the methoxy species formation with 13C MAS NMR and FTIR spectroscopy. The related mechanisms have been analyzed by DFT calculations. The calculations show that the paired Cu2+ sites enable heterolytic C-H bond dissociation via the "alkyl" pathway resulting in methylcopper species, which however are not detected experimentally due to further rapid transformation to surface methoxy species through methyl radical formation and recombination with Si-O-Al site. Based on the obtained data, it has been concluded that methane transformation to methanol on paired Cu2+ sites, having no extra-framework oxygen ligand, is possible in Cu-modified zeolites. The pathways of Cu2+ cations regeneration with O2 and H2O have been experimentally explored.
Collapse
Affiliation(s)
- Anton A Gabrienko
- Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Prospekt Akademika Lavrentieva 5, Novosibirsk, 630090, Russia
- current address: Inorganic Systems Engineering (ISE), Department of Chemical Engineering, Delft University of Technology, 2629 HZ, Delft, The Netherlands
| | - Alexander A Kolganov
- Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Prospekt Akademika Lavrentieva 5, Novosibirsk, 630090, Russia
- current address: Inorganic Systems Engineering (ISE), Department of Chemical Engineering, Delft University of Technology, 2629 HZ, Delft, The Netherlands
| | - Svetlana A Yashnik
- Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Prospekt Akademika Lavrentieva 5, Novosibirsk, 630090, Russia
- current address: Inorganic Systems Engineering (ISE), Department of Chemical Engineering, Delft University of Technology, 2629 HZ, Delft, The Netherlands
| | - Vladimir V Kriventsov
- Synchrotron Radiation Facility SKIF, Boreskov Institute of Catalysis, Kol'tsovo, 630559, Russia
| | - Alexander G Stepanov
- Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Prospekt Akademika Lavrentieva 5, Novosibirsk, 630090, Russia
- current address: Inorganic Systems Engineering (ISE), Department of Chemical Engineering, Delft University of Technology, 2629 HZ, Delft, The Netherlands
| |
Collapse
|
3
|
Rajeev A, Mohammed TP, George A, Sankaralingam M. Direct Methane to Methanol Conversion: An Overview of Non-Syn Gas Catalytic Strategies. CHEM REC 2025; 25:e202400186. [PMID: 39817884 PMCID: PMC11811604 DOI: 10.1002/tcr.202400186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/25/2024] [Indexed: 01/18/2025]
Abstract
Direct methane to methanol conversion is a dream reaction in industrial chemistry, which takes inspiration from the biological methanol production catalysed by methane monooxygenase enzymes (MMOs). Over the years, extensive studies have been conducted on this topic by bioengineering the MMOs, and tailoring methods to isolate the MMOs in the active form. Similarly, remarkable achievements have been noted in other methane activation strategies such as the use of heterogeneous catalysts or molecular catalysts. In this review, we outline the methane metabolism performed by methanotrophs and detail the latest advancements in the active site structures and catalytic mechanisms of both types of MMOs. Also, recent progress in the bioinspired approaches using various heterogeneous catalysts, especially first-row transition metal zeolites and the mechanistic insights are discussed. In addition, studies using molecular complexes such as "Periana catalyst" for methane to methanol conversion through methyl ester formation in the presence of strong acids are also detailed. Compared to the progress noted in the metal zeolites-mediated methane activation field, the utilisation of molecular catalysts or MMOs for this application is still in its nascent phase and further research is required to overcome the limitations of these methods effectively.
Collapse
Affiliation(s)
- Anjana Rajeev
- Bioinspired & Biomimetic Inorganic Chemistry LaboratoryDepartment of ChemistryNational Institute of Technology CalicutKozhikode, Kerala673601India
| | - Thasnim P Mohammed
- Bioinspired & Biomimetic Inorganic Chemistry LaboratoryDepartment of ChemistryNational Institute of Technology CalicutKozhikode, Kerala673601India
| | - Akhila George
- Bioinspired & Biomimetic Inorganic Chemistry LaboratoryDepartment of ChemistryNational Institute of Technology CalicutKozhikode, Kerala673601India
| | - Muniyandi Sankaralingam
- Bioinspired & Biomimetic Inorganic Chemistry LaboratoryDepartment of ChemistryNational Institute of Technology CalicutKozhikode, Kerala673601India
| |
Collapse
|
4
|
Martínez-Laguna J, Altarejos J, Fuentes MÁ, Sciortino G, Maseras F, Carreras J, Caballero A, Pérez PJ. Alkanes C 1-C 6 C-H Bond Activation via a Barrierless Potential Energy Path: Trifluoromethyl Carbenes Enhance Primary C-H Bond Functionalization. J Am Chem Soc 2024; 146:34014-34022. [PMID: 39586110 PMCID: PMC11638901 DOI: 10.1021/jacs.4c13065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/01/2024] [Accepted: 11/01/2024] [Indexed: 11/27/2024]
Abstract
In this mixed computational and experimental study, we report a catalytic system for alkane C1-C6 functionalization in which the responsible step for C-H bond activation shows no barrier in the potential energy path. DFT modeling of three silver-based catalysts and four diazo compounds led to the conclusion that the TpFAg═C(H)CF3 (TpF = fluorinated trispyrazolylborate ligand) carbene intermediates interact with methane without a barrier in the potential energy surface, a prediction validated by experimentation using N2═C(H)CF3 as the carbene source. The array of alkanes from propane to n-hexane led to the preferential functionalization of the primary sites with unprecedented values of selectivity for an acceptor diazo compound. The lack of those barriers implies that selectivity can no longer be controlled by differences in the energy barriers. Molecular dynamics calculations (with propane as the model alkane) are consistent with the preferential functionalization of the primary sites due to a higher concentration of such C-H bonds in the vicinity of the carbenic carbon atom.
Collapse
Affiliation(s)
- Jonathan Martínez-Laguna
- Departamento
de Química and Laboratorio de Catálisis Homogénea,
Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química
Sostenible, Universidad de Huelva, Huelva 21007, Spain
| | - Julia Altarejos
- Departamento
de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés
M. del Río” (IQAR), Universidad de Alcalá, Alcalá de Henares, Madrid 28805, Spain
| | - M. Ángeles Fuentes
- Departamento
de Química and Laboratorio de Catálisis Homogénea,
Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química
Sostenible, Universidad de Huelva, Huelva 21007, Spain
| | - Giuseppe Sciortino
- The
Barcelona Institute of Science and Technology, Institute of Chemical Research of Catalonia (ICIQ-CERCA), Avgda.
Països Catalans, 16, Tarragona 43007, Spain
- Departament
de Química, Universitat Autònoma
de Barcelona, Bellaterra 08193, Spain
| | - Feliu Maseras
- The
Barcelona Institute of Science and Technology, Institute of Chemical Research of Catalonia (ICIQ-CERCA), Avgda.
Països Catalans, 16, Tarragona 43007, Spain
- Departament
de Química, Universitat Autònoma
de Barcelona, Bellaterra 08193, Spain
| | - Javier Carreras
- Departamento
de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés
M. del Río” (IQAR), Universidad de Alcalá, Alcalá de Henares, Madrid 28805, Spain
| | - Ana Caballero
- Departamento
de Química and Laboratorio de Catálisis Homogénea,
Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química
Sostenible, Universidad de Huelva, Huelva 21007, Spain
| | - Pedro J. Pérez
- Departamento
de Química and Laboratorio de Catálisis Homogénea,
Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química
Sostenible, Universidad de Huelva, Huelva 21007, Spain
| |
Collapse
|
5
|
Lin H, Yin H, Wu B, Li H, Zeng J. Shifting ceria's function from inhibitor to promotor by oxygen vacancies. Sci Bull (Beijing) 2024; 69:2978-2982. [PMID: 39174399 DOI: 10.1016/j.scib.2024.07.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/15/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024]
Affiliation(s)
- Hongfei Lin
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Haibin Yin
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Bo Wu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Hongliang Li
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Jie Zeng
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230026, China; Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China; School of Chemistry & Chemical Engineering, Anhui University of Technology, Ma'anshan 243002, China.
| |
Collapse
|
6
|
Sahu M, Ganguly M, Sharma P. Role of silver nanoparticles and silver nanoclusters for the detection and removal of Hg(ii). RSC Adv 2024; 14:22374-22392. [PMID: 39010928 PMCID: PMC11247438 DOI: 10.1039/d4ra04182h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024] Open
Abstract
Silver metal, being a 3d transition metal in group 11 in the periodic table, is widely used in material science for its distinguished plasmonic properties. Nanoparticles (NPs) and nanoclusters (NCs) are widely used in sensing applications having a surface plasmon band and emissive properties, respectively. Mercury is one of the detrimental toxins and threats to various ecosystems. The distinction between nanoparticles and nanoclusters, the utility and toxicity of heavy metal mercury, fluorometric and colorimetric approaches to the recognition of mercury ions with NPs and NCs, the mechanism of detection, spot detection, and natural water sample analyses were illustrated in detail in this review article. Moreover, the sensing platform and analyte (Hg2+) fate were described for substantiating the mechanism. It was observed that NCs are mostly utilized for fluorometric approaches, while NPs are mostly employed for colorimetric approaches. Fluorometric detection is mainly quenching-based. However, sensing with enhancement was found in a few reports. Adulteration of other metals with silver particles often modifies the sensing platform.
Collapse
Affiliation(s)
- Mamta Sahu
- Department of Chemistry, Manipal University Jaipur Dehmi Kalan Jaipur 303007 Rajasthan India
| | - Mainak Ganguly
- Department of Chemistry, Manipal University Jaipur Dehmi Kalan Jaipur 303007 Rajasthan India
| | - Priyanka Sharma
- Department of Chemistry, Manipal University Jaipur Dehmi Kalan Jaipur 303007 Rajasthan India
| |
Collapse
|
7
|
Song Y, Yang X, Liu H, Liang S, Cai Y, Yang W, Zhu K, Yu L, Cui X, Deng D. High-Pressure Electro-Fenton Driving CH 4 Conversion by O 2 at Room Temperature. J Am Chem Soc 2024; 146:5834-5842. [PMID: 38277793 DOI: 10.1021/jacs.3c10825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Electrochemical conversion of CH4 to easily transportable and value-added liquid fuels is highly attractive for energy-efficient CH4 utilization, but it is challenging due to the low reactivity and solubility of CH4 in the electrolyte. Herein, we report a high-pressure electro-Fenton (HPEF) strategy to establish a hetero-homogeneous process for the electrocatalytic conversion of CH4 by O2 at room temperature. In combination with elevation of reactant pressure to accelerate reaction kinetics, it delivers an unprecedented HCOOH productivity of 11.5 mmol h-1 gFe-1 with 220 times enhancement compared to that under ambient pressure. Remarkably, an HCOOH Faradic efficiency of 81.4% can be achieved with an ultralow cathodic overpotential of 0.38 V. The elevated pressure not only promotes the electrocatalytic reduction of O2 to H2O2 but also increases the reaction collision probability between CH4 and •OH, which is in situ generated from the Fe2+-facilitated decomposition of H2O2.
Collapse
Affiliation(s)
- Yao Song
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Yang
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Huan Liu
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Suxia Liang
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Yafeng Cai
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Wenqiang Yang
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Kaixin Zhu
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Liang Yu
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoju Cui
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Dehui Deng
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Cao Y, Huang Z, Han C, Zhou Y. Product Peroxidation Inhibition in Methane Photooxidation into Methanol. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306891. [PMID: 38234232 DOI: 10.1002/advs.202306891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/30/2023] [Indexed: 01/19/2024]
Abstract
Methane photooxidation into methanol offers a practical approach for the generation of high-value chemicals and the efficient storage of solar energy. However, the propensity for C─H bonds in the desired products to cleave more easily than those in methane molecules results in a continuous dehydrogenation process, inevitably leading to methanol peroxidation. Consequently, inhibiting methanol peroxidation is perceived as one of the most formidable challenges in the field of direct conversion of methane to methanol. This review offers a thorough overview of the typical mechanisms involved radical mechanism and active site mechanism and the regulatory methods employed to inhibit product peroxidation in methane photooxidation. Additionally, several perspectives on the future research direction of this crucial field are proposed.
Collapse
Affiliation(s)
- Yuehan Cao
- National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Zeai Huang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Chunqiu Han
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Ying Zhou
- National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| |
Collapse
|
9
|
Im J, Cheong SH, Dang HT, Kim NK, Hwang S, Lee KB, Kim K, Lee H, Lee U. Economically viable co-production of methanol and sulfuric acid via direct methane oxidation. Commun Chem 2023; 6:282. [PMID: 38123721 PMCID: PMC10733281 DOI: 10.1038/s42004-023-01080-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
The direct oxidation of methane to methanol has been spotlighted research for decades, but has never been commercialized. This study introduces cost-effective process for co-producing methanol and sulfuric acid through a direct oxidation of methane. In the initial phase, methane oxidation forms methyl bisulfate (CH3OSO3H), then transformed into methyl trifluoroacetate (CF3CO2CH3) via esterification, and hydrolyzed into methanol. This approach eliminates the need for energy-intensive separation of methyl bisulfate from sulfuric acid by replacing the former with methyl trifluoroacetate. Through the superstructure optimization, our sequential process reduces the levelized cost of methanol to nearly two-fold reduction from the current market price. Importantly, this process demonstrates adaptability to smaller gas fields, assuring its economical operation across a broad range of gas fields. The broader application of this process could substantially mitigate global warming by utilizing methane, leading to a significantly more sustainable and economically beneficial methanol industry.
Collapse
Affiliation(s)
- Jaehyung Im
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), 02792, Seoul, Republic of Korea
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Seok-Hyeon Cheong
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), 02792, Seoul, Republic of Korea
- Division of Energy & Environmental Technology, KIST School, University of Science and Technology, 02792, Seoul, Republic of Korea
| | - Huyen Tran Dang
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), 02792, Seoul, Republic of Korea
- Division of Energy & Environmental Technology, KIST School, University of Science and Technology, 02792, Seoul, Republic of Korea
| | - Nak-Kyoon Kim
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Sungwon Hwang
- Department of Chemical Engineering, Inha University, Incheon, Republic of Korea
| | - Ki Bong Lee
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Kyeongsu Kim
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), 02792, Seoul, Republic of Korea.
| | - Hyunjoo Lee
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), 02792, Seoul, Republic of Korea.
- Division of Energy & Environmental Technology, KIST School, University of Science and Technology, 02792, Seoul, Republic of Korea.
| | - Ung Lee
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), 02792, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Vitillo JG, Choudhary M, Simons MC, Gagliardi L, Bhan A. Mechanism of Benzene Hydroxylation on Tri-Iron Oxo-Centered Cluster-Based Metal-Organic Frameworks. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:23246-23257. [PMID: 38090139 PMCID: PMC10711795 DOI: 10.1021/acs.jpcc.3c06423] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 05/02/2025]
Abstract
High-valent Fe(IV)-oxo species derived upon reactions of N2O with Fe(II) centers-embedded in the framework of tri-iron oxo-centered-based metal-organic frameworks (MOFs)- selectively affect the conversion of benzene-to-phenol via electrophilic addition to arene C-H bonds akin to oxygen transfer mechanisms in the P450 enzyme. The Fe(II) species identified by Mössbauer spectroscopy can be titrated in situ by the addition of NO to completely suppress benzene oxidation, verifying the relevance of Fe(II) centers. Observed inverse kinetic isotope effects in benzene hydroxylation preclude the involvement of H atom transfer steps from benzene to the Fe(IV)-oxo species and instead suggest that the electrophilic iron-oxo group adds to an sp2 carbon of benzene, resulting in a change in the hybridization from sp2-to-sp3. These mechanistic postulates are affirmed in Kohn-Sham density functional calculations, which predict lower barriers for additive mechanisms for arene oxidation than H atom abstraction steps. The calculations show that the reaction proceeds on the pentadectet spin surface and that a non-innocent ligand participates in the transfer of the H atom. Following precedent literature which demonstrates that these Fe(IV)-oxo species react with C-H bonds in alkanes via hydrogen atom abstraction to form alcohols, it appears that iron(IV)-oxo species in MOFs exhibit duality in their reactions with inert hydrocarbon substrates akin to enzymes-if the C-H bonds are in saturated aliphatic hydrocarbons, then activation occurs via hydrogen abstraction, while if the C-H bonds are aromatic, then activation occurs by addition rearrangement.
Collapse
Affiliation(s)
- Jenny G. Vitillo
- Department
of Science and High Technology and INSTM, Università Degli Studi Dell’Insubria, Via Valleggio 9, Como I-22100, Italy
| | - Madhuresh Choudhary
- Department
of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue S.E., Minneapolis, Minnesota 55455, United States
| | - Matthew C. Simons
- Department
of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue S.E., Minneapolis, Minnesota 55455, United States
| | - Laura Gagliardi
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Aditya Bhan
- Department
of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue S.E., Minneapolis, Minnesota 55455, United States
| |
Collapse
|
11
|
Kim J, Kim JH, Oh C, Yun H, Lee E, Oh HS, Park JH, Hwang YJ. Electro-assisted methane oxidation to formic acid via in-situ cathodically generated H 2O 2 under ambient conditions. Nat Commun 2023; 14:4704. [PMID: 37543676 PMCID: PMC10404228 DOI: 10.1038/s41467-023-40415-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 07/26/2023] [Indexed: 08/07/2023] Open
Abstract
Direct partial oxidation of methane to liquid oxygenates has been regarded as a potential route to valorize methane. However, CH4 activation usually requires a high temperature and pressure, which lowers the feasibility of the reaction. Here, we propose an electro-assisted approach for the partial oxidation of methane, using in-situ cathodically generated reactive oxygen species, at ambient temperature and pressure. Upon using acid-treated carbon as the electrocatalyst, the electro-assisted system enables the partial oxidation of methane in an acidic electrolyte to produce oxygenated liquid products. We also demonstrate a high production rate of oxygenates (18.9 μmol h-1) with selective HCOOH production. Mechanistic analysis reveals that reactive oxygen species such as ∙OH and ∙OOH radicals are produced and activate CH4 and CH3OH. In addition, unstable CH3OOH generated from methane partial oxidation can be additionally reduced to CH3OH on the cathode, and so-produced CH3OH is further oxidized to HCOOH, allowing selective methane partial oxidation.
Collapse
Affiliation(s)
- Jiwon Kim
- Department of Chemical and Biomolecular Engineering, Yonsei-KIST Convergence Research Institute, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
- Clean Energy Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seoul, 02792, Republic of Korea
| | - Jae Hyung Kim
- Clean Fuel Research Laboratory, Korea Institute of Energy Research, Daejeon, 34129, Republic of Korea
| | - Cheoulwoo Oh
- Department of Chemical and Biomolecular Engineering, Yonsei-KIST Convergence Research Institute, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
- Clean Energy Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seoul, 02792, Republic of Korea
| | - Hyewon Yun
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Eunchong Lee
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyung-Suk Oh
- Clean Energy Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seoul, 02792, Republic of Korea
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jong Hyeok Park
- Department of Chemical and Biomolecular Engineering, Yonsei-KIST Convergence Research Institute, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea.
| | - Yun Jeong Hwang
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea.
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea.
| |
Collapse
|
12
|
Meng B, Liu L, Shen X, Fan W, Li S. Pyridine N-Oxide-Promoted Cobalt-Catalyzed Dioxygen-Mediated Methane Oxidation. J Org Chem 2023. [PMID: 37486801 DOI: 10.1021/acs.joc.3c00770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The partial oxidation of methane with O2 is significant due to its potential of providing abundant chemical feedstock. Only a few examples realized this type of reaction in homogeneous solvent systems, most of which are in low efficiency. Herein, we present a pyridine N-oxide-promoted cobalt-catalyzed O2-mediated methane oxidation to produce methylene bis(trifluoroacetate) with productivity over 500 molester molmetal-1 h-1.
Collapse
Affiliation(s)
- Bingyin Meng
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Luyao Liu
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiaotong Shen
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Wu Fan
- Key Laboratory of Tobacco Flavor Basic Research, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Suhua Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
13
|
Dummer N, Willock DJ, He Q, Howard MJ, Lewis RJ, Qi G, Taylor SH, Xu J, Bethell D, Kiely CJ, Hutchings GJ. Methane Oxidation to Methanol. Chem Rev 2023; 123:6359-6411. [PMID: 36459432 PMCID: PMC10176486 DOI: 10.1021/acs.chemrev.2c00439] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Indexed: 12/04/2022]
Abstract
The direct transformation of methane to methanol remains a significant challenge for operation at a larger scale. Central to this challenge is the low reactivity of methane at conditions that can facilitate product recovery. This review discusses the issue through examination of several promising routes to methanol and an evaluation of performance targets that are required to develop the process at scale. We explore the methods currently used, the emergence of active heterogeneous catalysts and their design and reaction mechanisms and provide a critical perspective on future operation. Initial experiments are discussed where identification of gas phase radical chemistry limited further development by this approach. Subsequently, a new class of catalytic materials based on natural systems such as iron or copper containing zeolites were explored at milder conditions. The key issues of these technologies are low methane conversion and often significant overoxidation of products. Despite this, interest remains high in this reaction and the wider appeal of an effective route to key products from C-H activation, particularly with the need to transition to net carbon zero with new routes from renewable methane sources is exciting.
Collapse
Affiliation(s)
- Nicholas
F. Dummer
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, CardiffCF10 3AT, United
Kingdom
| | - David J. Willock
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, CardiffCF10 3AT, United
Kingdom
| | - Qian He
- Department
of Materials Science and Engineering, National
University of Singapore, Singapore117575, Singapore
| | - Mark J. Howard
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, CardiffCF10 3AT, United
Kingdom
| | - Richard J. Lewis
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, CardiffCF10 3AT, United
Kingdom
| | - Guodong Qi
- National
Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic
Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology,
Chinese Academy of Sciences, Wuhan430071, P. R. China
- University
of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Stuart H. Taylor
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, CardiffCF10 3AT, United
Kingdom
| | - Jun Xu
- National
Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic
Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology,
Chinese Academy of Sciences, Wuhan430071, P. R. China
- University
of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Don Bethell
- Department
of Chemistry, University of Liverpool, Crown Street, LiverpoolL69 7ZD, United
Kingdom
| | - Christopher J. Kiely
- Department
of Materials Science and Engineering, Lehigh
University, 5 East Packer
Avenue, Bethlehem, Pennsylvania18015, United States
| | - Graham J. Hutchings
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, CardiffCF10 3AT, United
Kingdom
| |
Collapse
|
14
|
Zhang S, Li B, Chen Y, Zhu M, Pedersen JA, Gu B, Wang Z, Li H, Liu J, Zhou XQ, Hao YY, Jiang H, Liu F, Liu YR, Yin H. Methylmercury Degradation by Trivalent Manganese. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5988-5998. [PMID: 36995950 DOI: 10.1021/acs.est.3c00532] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Methylmercury (MeHg) is a potent neurotoxin and has great adverse health impacts on humans. Organisms and sunlight-mediated demethylation are well-known detoxification pathways of MeHg, yet whether abiotic environmental components contribute to MeHg degradation remains poorly known. Here, we report that MeHg can be degraded by trivalent manganese (Mn(III)), a naturally occurring and widespread oxidant. We found that 28 ± 4% MeHg could be degraded by Mn(III) located on synthesized Mn dioxide (MnO2-x) surfaces during the reaction of 0.91 μg·L-1 MeHg and 5 g·L-1 mineral at an initial pH of 6.0 for 12 h in 10 mM NaNO3 at 25 °C. The presence of low-molecular-weight organic acids (e.g., oxalate and citrate) substantially enhances MeHg degradation by MnO2-x via the formation of soluble Mn(III)-ligand complexes, leading to the cleavage of the carbon-Hg bond. MeHg can also be degraded by reactions with Mn(III)-pyrophosphate complexes, with apparent degradation rate constants comparable to those by biotic and photolytic degradation. Thiol ligands (cysteine and glutathione) show negligible effects on MeHg demethylation by Mn(III). This research demonstrates potential roles of Mn(III) in degrading MeHg in natural environments, which may be further explored for remediating heavily polluted soils and engineered systems containing MeHg.
Collapse
Affiliation(s)
- Shuang Zhang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, P.R. China
- Department of Criminal Science and Technology, Henan Police College, Zhengzhou 450046, P.R. China
| | - Baohui Li
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yi Chen
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Mengqiang Zhu
- Department of Ecosystem Science and Management, University of Wyoming, 1000 E. University Ave., Laramie, Wyoming 82071, United States
| | - Joel A Pedersen
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Zimeng Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P.R. China
| | - Hui Li
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jinling Liu
- School of Earth Sciences, China University of Geosciences, Wuhan 430074, P.R. China
| | - Xin-Quan Zhou
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yun-Yun Hao
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Hong Jiang
- College of Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Fan Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yu-Rong Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Hui Yin
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, P.R. China
| |
Collapse
|
15
|
Ji Y, Blankenship AN, van Bokhoven JA. Heterogeneous Mn-Based Catalysts for the Aerobic Conversion of Methane-to-Methyl Trifluoroacetate. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Affiliation(s)
- Yinjie Ji
- Institute for Chemistry and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| | - Andrea N. Blankenship
- Institute for Chemistry and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| | - Jeroen A. van Bokhoven
- Institute for Chemistry and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland
| |
Collapse
|
16
|
Wang C, Li X, Ren Y, Jiao H, Wang FR, Tang J. Synergy of Ag and AgBr in a Pressurized Flow Reactor for Selective Photocatalytic Oxidative Coupling of Methane. ACS Catal 2023; 13:3768-3774. [PMID: 36970465 PMCID: PMC10028603 DOI: 10.1021/acscatal.2c06093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/05/2023] [Indexed: 03/06/2023]
Abstract
Oxidation of methane into valuable chemicals, such as C2+ molecules, has been long sought after but the dilemma between high yield and high selectivity of desired products remains. Herein, methane is upgraded through the photocatalytic oxidative coupling of methane (OCM) over a ternary Ag-AgBr/TiO2 catalyst in a pressurized flow reactor. The ethane yield of 35.4 μmol/h with a high C2+ selectivity of 79% has been obtained under 6 bar pressure. These are much better than most of the previous benchmark performance in photocatalytic OCM processes. These results are attributed to the synergy between Ag and AgBr, where Ag serves as an electron acceptor and promotes the charge transfer and AgBr forms a heterostructure with TiO2 not only to facilitate charge separation but also to avoid the overoxidation process. This work thus demonstrates an efficient strategy for photocatalytic methane conversion by both the rational design of the catalyst for the high selectivity and reactor engineering for the high conversion.
Collapse
Affiliation(s)
- Chao Wang
- Department of Chemical Engineering, University College London, London WC1E 7JE, U.K
| | - Xiyi Li
- Department of Chemical Engineering, University College London, London WC1E 7JE, U.K
| | - Yifei Ren
- Department of Chemical Engineering, University College London, London WC1E 7JE, U.K
| | - Haimiao Jiao
- Department of Chemical Engineering, University College London, London WC1E 7JE, U.K
| | - Feng Ryan Wang
- Department of Chemical Engineering, University College London, London WC1E 7JE, U.K
| | - Junwang Tang
- Department of Chemical Engineering, University College London, London WC1E 7JE, U.K
- Industrial Catalysis Center, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
17
|
Ru single-atom catalyst anchored on sulfated zirconia for direct methane conversion to methanol. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64191-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
18
|
Lazaridou A, Smith LR, Pattisson S, Dummer NF, Smit JJ, Johnston P, Hutchings GJ. Recognizing the best catalyst for a reaction. Nat Rev Chem 2023; 7:287-295. [PMID: 37117418 DOI: 10.1038/s41570-023-00470-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2023] [Indexed: 02/25/2023]
Abstract
Heterogeneous catalysis is immensely important, providing access to materials essential for the well-being of society, and improved catalysts are continuously required. New catalysts are frequently tested under different conditions making it difficult to determine the best catalyst. Here we describe a general approach to identify the best catalyst using a data set based on all reactions under kinetic control to calculate a set of key performance indicators (KPIs). These KPIs are normalized to take into account the variation in reaction conditions. Plots of the normalized KPIs are then used to demonstrate the best catalyst using two case studies: (i) acetylene hydrochlorination, a reaction of current interest for vinyl chloride manufacture, and (ii) the selective oxidation of methane to methanol using O2 in water, a reaction that has attracted very recent attention in the academic literature.
Collapse
|
19
|
Liu L, Fan W, Li S. NaCl-Promoted Cobalt-Catalyzed Dioxygen-Mediated Methane Oxidation to Methylene Bis(trifluoroacetate) with a Dramatic Salt Effect. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Luyao Liu
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Wu Fan
- Key Laboratory of Tobacco Flavor Basic Research, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Suhua Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
20
|
Xu JX, Yuan Y, Wu XF. Ethylene as a synthon in carbonylative synthesis. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Liu Y, Wang R, Russell CK, Jia P, Yao Y, Huang W, Radosz M, Gasem KA, Adidharma H, Fan M. Mechanisms for direct methane conversion to oxygenates at low temperature. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Recent Insights into Cu-Based Catalytic Sites for the Direct Conversion of Methane to Methanol. Molecules 2022; 27:molecules27217146. [DOI: 10.3390/molecules27217146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
Direct conversion of methane to methanol is an effective and practical process to improve the efficiency of natural gas utilization. Copper (Cu)-based catalysts have attracted great research attention, due to their unique ability to selectively catalyze the partial oxidation of methane to methanol at relatively low temperatures. In recent decades, many different catalysts have been studied to achieve a high conversion of methane to methanol, including the Cu-based enzymes, Cu-zeolites, Cu-MOFs (metal-organic frameworks) and Cu-oxides. In this mini review, we will detail the obtained evidence on the exact state of the active Cu sites on these various catalysts, which have arisen from the most recently developed techniques and the results of DFT calculations. We aim to establish the structure–performance relationship in terms of the properties of these materials and their catalytic functionalities, and also discuss the unresolved questions in the direct conversion of methane to methanol reactions. Finally, we hope to offer some suggestions and strategies for guiding the practical applications regarding the catalyst design and engineering for a high methanol yield in the methane oxidation reaction.
Collapse
|
23
|
Antil N, Chauhan M, Akhtar N, Newar R, Begum W, Malik J, Manna K. Metal–Organic Framework-Encaged Monomeric Cobalt(III) Hydroperoxides Enable Chemoselective Methane Oxidation to Methanol. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Neha Antil
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Manav Chauhan
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Naved Akhtar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Rajashree Newar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Wahida Begum
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Jaideep Malik
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Kuntal Manna
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
24
|
Methane Oxidation to Methyl Trifluoroacetate by Simple Anionic Palladium Catalyst: Comprehensive understanding of K2S2O8-based Methane Oxidation in CF3CO2H. J Catal 2022. [DOI: 10.1016/j.jcat.2022.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Kumar P, Al-Attas TA, Hu J, Kibria MG. Single Atom Catalysts for Selective Methane Oxidation to Oxygenates. ACS NANO 2022; 16:8557-8618. [PMID: 35638813 DOI: 10.1021/acsnano.2c02464] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Direct conversion of methane (CH4) to C1-2 liquid oxygenates is a captivating approach to lock carbons in transportable value-added chemicals, while reducing global warming. Existing approaches utilizing the transformation of CH4 to liquid fuel via tandemized steam methane reforming and the Fischer-Tropsch synthesis are energy and capital intensive. Chemocatalytic partial oxidation of methane remains challenging due to the negligible electron affinity, poor C-H bond polarizability, and high activation energy barrier. Transition-metal and stoichiometric catalysts utilizing harsh oxidants and reaction conditions perform poorly with randomized product distribution. Paradoxically, the catalysts which are active enough to break C-H also promote overoxidation, resulting in CO2 generation and reduced carbon balance. Developing catalysts which can break C-H bonds of methane to selectively make useful chemicals at mild conditions is vital to commercialization. Single atom catalysts (SACs) with specifically coordinated metal centers on active support have displayed intrigued reactivity and selectivity for methane oxidation. SACs can significantly reduce the activation energy due to induced electrostatic polarization of the C-H bond to facilitate the accelerated reaction rate at the low reaction temperature. The distinct metal-support interaction can stabilize the intermediate and prevent the overoxidation of the reaction products. The present review accounts for recent progress in the field of SACs for the selective oxidation of CH4 to C1-2 oxygenates. The chemical nature of catalytic sites, effects of metal-support interaction, and stabilization of intermediate species on catalysts to minimize overoxidation are thoroughly discussed with a forward-looking perspective to improve the catalytic performance.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Tareq A Al-Attas
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
26
|
Coutard N, Musgrave CB, Moon J, Liebov NS, Nielsen RM, Goldberg JM, Li M, Jia X, Lee S, Dickie DA, Schinski WL, Wu Z, Groves JT, Goddard WA, Gunnoe TB. Manganese Catalyzed Partial Oxidation of Light Alkanes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Nathan Coutard
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Charles B. Musgrave
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Jisue Moon
- Chemical Science Division, Oak Ridge National Lab, Oak Ridge, Tennessee 37831, United States
| | - Nichole S. Liebov
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Robert M. Nielsen
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Jonathan M. Goldberg
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Meijun Li
- Chemical Science Division, Oak Ridge National Lab, Oak Ridge, Tennessee 37831, United States
| | - Xiaofan Jia
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Sungsik Lee
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Diane A. Dickie
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | | | - Zili Wu
- Chemical Science Division, Oak Ridge National Lab, Oak Ridge, Tennessee 37831, United States
| | - John T. Groves
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - William A. Goddard
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - T. Brent Gunnoe
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
27
|
Methane oxidation by green oxidant to methanol over zeolite-based catalysts. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Abstract
Methane is an abundant resource and its direct conversion into value-added chemicals has been an attractive subject for its efficient utilization. This method can be more efficient than the present energy-intensive indirect conversion of methane via syngas, a mixture of CO and H2. Among the various approaches for direct methane conversion, the selective oxidation of methane into methane oxygenates (e.g., methanol and formaldehyde) is particularly promising because it can proceed at low temperatures. Nevertheless, due to low product yields this method is challenging. Compared with the liquid-phase partial oxidation of methane, which frequently demands for strong oxidizing agents in protic solvents, gas-phase selective methane oxidation has some merits, such as the possibility of using oxygen as an oxidant and the ease of scale-up owing to the use of heterogeneous catalysts. Herein, we summarize recent advances in the gas-phase partial oxidation of methane into methane oxygenates, focusing mainly on its conversion into formaldehyde and methanol.
Collapse
|
29
|
Xiang D, Lin SC, Deng J, Chen HM, Liu C. Bisulfate as a redox-active ligand in vanadium-based electrocatalysis for CH 4 functionalization. Chem Commun (Camb) 2022; 58:2524-2527. [PMID: 35098285 DOI: 10.1039/d1cc06596c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The roles of unforgiving H2SO4 solvent in CH4 activation with molecular catalysts have not been experimentally well-illustrated despite computational predictions. Here, we provide experimental evidence that metal-bound bisulfate ligand introduced by H2SO4 solvent is redox-active in vanadium-based electrocatalytic CH4 activation discovered recently. Replacing one of the two terminal bisulfate ligands with redox-inert dihydrogen phosphate in the pre-catalyst vanadium (V)-oxo dimer completely quenches its activity towards CH4, which may inspire environmentally benign catalysis with minimal use of H2SO4.
Collapse
Affiliation(s)
- Danlei Xiang
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, USA.
| | - Sheng-Chih Lin
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | - Jiao Deng
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, USA.
| | - Hao Ming Chen
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | - Chong Liu
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, USA. .,California NanoSystems Institute, University of California Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
30
|
Britschgi J, Bilke M, Schuhmann W, Schüth F. Indirect Electrooxidation of Methane to Methyl Bisulfate on a Boron‐Doped Diamond Electrode. ChemElectroChem 2022. [DOI: 10.1002/celc.202101253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Joel Britschgi
- Department of Heterogeneous Catalysis Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim Germany
| | - Marius Bilke
- Department of Heterogeneous Catalysis Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry – Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstr. 150 D-44780 Bochum Germany
| | - Ferdi Schüth
- Department of Heterogeneous Catalysis Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim Germany
| |
Collapse
|
31
|
Kumar A, Daw P, Milstein D. Homogeneous Catalysis for Sustainable Energy: Hydrogen and Methanol Economies, Fuels from Biomass, and Related Topics. Chem Rev 2022; 122:385-441. [PMID: 34727501 PMCID: PMC8759071 DOI: 10.1021/acs.chemrev.1c00412] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Indexed: 02/08/2023]
Abstract
As the world pledges to significantly cut carbon emissions, the demand for sustainable and clean energy has now become more important than ever. This includes both production and storage of energy carriers, a majority of which involve catalytic reactions. This article reviews recent developments of homogeneous catalysts in emerging applications of sustainable energy. The most important focus has been on hydrogen storage as several efficient homogeneous catalysts have been reported recently for (de)hydrogenative transformations promising to the hydrogen economy. Another direction that has been extensively covered in this review is that of the methanol economy. Homogeneous catalysts investigated for the production of methanol from CO2, CO, and HCOOH have been discussed in detail. Moreover, catalytic processes for the production of conventional fuels (higher alkanes such as diesel, wax) from biomass or lower alkanes have also been discussed. A section has also been dedicated to the production of ethylene glycol from CO and H2 using homogeneous catalysts. Well-defined transition metal complexes, in particular, pincer complexes, have been discussed in more detail due to their high activity and well-studied mechanisms.
Collapse
Affiliation(s)
- Amit Kumar
- School
of Chemistry, University of St. Andrews, North Haugh, Fife, U.K., KY16 9ST
| | - Prosenjit Daw
- Department
of Chemical Sciences, Indian Institute of
Science Education and Research Berhampur, Govt. ITI (transit Campus), Berhampur 760010, India
| | - David Milstein
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
32
|
|
33
|
Sun S, Dummer NF, Bere T, Barnes AJ, Shaw G, Douthwaite M, Pattisson S, Lewis RJ, Richards N, Morgan DJ, Hutchings GJ. Selective oxidation of methane to methanol and methyl hydroperoxide over palladium modified MoO 3 photocatalyst under ambient conditions. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00240j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In situ generated H2O2 from water on Pd–MoO3 catalyst can oxide methane into methanol and methyl hydroperoxide with high selectivity under simulated solar light irradiation.
Collapse
Affiliation(s)
- Songmei Sun
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
- Donghua University, College of Environmental Science and Engineering, Shanghai 201620, P.R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China
| | - Nicholas F. Dummer
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Takudzwa Bere
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Alexandra J. Barnes
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Greg Shaw
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Mark Douthwaite
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Samuel Pattisson
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Richard J. Lewis
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Nia Richards
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - David J. Morgan
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Graham J. Hutchings
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| |
Collapse
|
34
|
Coutard N, Goldberg JM, Valle HU, Cao Y, Jia X, Jeffrey PD, Gunnoe TB, Groves JT. Aerobic Partial Oxidation of Alkanes Using Photodriven Iron Catalysis. Inorg Chem 2021; 61:759-766. [PMID: 34962799 DOI: 10.1021/acs.inorgchem.1c03086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photodriven oxidations of alkanes in trifluoroacetic acid using commercial and synthesized Fe(III) sources as catalyst precursors and dioxygen (O2) as the terminal oxidant are reported. The reactions produce alkyl esters and occur at ambient temperature in the presence of air, and catalytic turnover is observed for the oxidation of methane in a pure O2 atmosphere. Under optimized conditions, approximately 17% conversion of methane to methyl trifluoroacetate at more than 50% selectivity is observed. It is demonstrated that methyl trifluoroacetate is stable under catalytic conditions, and thus overoxidized products are not formed through secondary oxidation of methyl trifluoroacetate.
Collapse
Affiliation(s)
- Nathan Coutard
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Jonathan M Goldberg
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Henry U Valle
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Yuan Cao
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Xiaofan Jia
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Philip D Jeffrey
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| | - T Brent Gunnoe
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - John T Groves
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
35
|
Tang Y, Li Y, Feng Tao F. Activation and catalytic transformation of methane under mild conditions. Chem Soc Rev 2021; 51:376-423. [PMID: 34904592 DOI: 10.1039/d1cs00783a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the last few decades, worldwide scientists have been motivated by the promising production of chemicals from the widely existing methane (CH4) under mild conditions for both chemical synthesis with low energy consumption and climate remediation. To achieve this goal, a whole library of catalytic chemistries of transforming CH4 to various products under mild conditions is required to be developed. Worldwide scientists have made significant efforts to reach this goal. These significant efforts have demonstrated the feasibility of oxidation of CH4 to value-added intermediate compounds including but not limited to CH3OH, HCHO, HCOOH, and CH3COOH under mild conditions. The fundamental understanding of these chemical and catalytic transformations of CH4 under mild conditions have been achieved to some extent, although currently neither a catalyst nor a catalytic process can be used for chemical production under mild conditions at a large scale. In the academic community, over ten different reactions have been developed for converting CH4 to different types of oxygenates under mild conditions in terms of a relatively low activation or catalysis temperature. However, there is still a lack of a molecular-level understanding of the activation and catalysis processes performed in extremely complex reaction environments under mild conditions. This article reviewed the fundamental understanding of these activation and catalysis achieved so far. Different oxidative activations of CH4 or catalytic transformations toward chemical production under mild conditions were reviewed in parallel, by which the trend of developing catalysts for a specific reaction was identified and insights into the design of these catalysts were gained. As a whole, this review focused on discussing profound insights gained through endeavors of scientists in this field. It aimed to present a relatively complete picture for the activation and catalytic transformations of CH4 to chemicals under mild conditions. Finally, suggestions of potential explorations for the production of chemicals from CH4 under mild conditions were made. The facing challenges to achieve high yield of ideal products were highlighted and possible solutions to tackle them were briefly proposed.
Collapse
Affiliation(s)
- Yu Tang
- Institute of Molecular Catalysis and In situ/operando Studies, College of Chemistry, Fuzhou University, Fujian, 350000, China.
| | - Yuting Li
- Department of Chemical and Petroleum Engineering, University of Kansas, KS 66045, USA.
| | - Franklin Feng Tao
- Department of Chemical and Petroleum Engineering, University of Kansas, KS 66045, USA.
| |
Collapse
|
36
|
Deng J, Lin S, Fuller JT, Zandkarimi B, Chen HM, Alexandrova AN, Liu C. Electrocatalytic Methane Functionalization with d
0
Early Transition Metals Under Ambient Conditions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jiao Deng
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| | - Sheng‐Chih Lin
- Department of Chemistry National (Taiwan) University Taipei 10617 Taiwan
| | - Jack T. Fuller
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| | - Borna Zandkarimi
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| | - Hao Ming Chen
- Department of Chemistry National (Taiwan) University Taipei 10617 Taiwan
| | - Anastassia N. Alexandrova
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
- California NanoSystems Institute Los Angeles CA 90095 USA
| | - Chong Liu
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| |
Collapse
|
37
|
Deng J, Lin SC, Fuller JT, Zandkarimi B, Chen HM, Alexandrova AN, Liu C. Electrocatalytic Methane Functionalization with d 0 Early Transition Metals Under Ambient Conditions. Angew Chem Int Ed Engl 2021; 60:26630-26638. [PMID: 34606678 DOI: 10.1002/anie.202107720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Indexed: 11/09/2022]
Abstract
The undesirable loss of methane (CH4 ) at remote locations welcomes approaches that ambiently functionalize CH4 on-site without intense infrastructure investment. Recently, we found that electrochemical oxidation of vanadium(V)-oxo with bisulfate ligand leads to CH4 activation at ambient conditions. The key question is whether such an observation is a one-off coincidence or a general strategy for electrocatalyst design. Here, a general scheme of electrocatalytic CH4 activation with d0 early transition metals is established. The pre-catalysts' molecular structure, electrocatalytic kinetics, and mechanism were detailed for titanium (IV), vanadium (V), and chromium (VI) species as model systems. After a turnover-limiting one-electron electrochemical oxidation, the yielded ligand-centered cation radicals activate CH4 with low activation energy and high selectivity. The reactivities are universal among early transition metals from Period 4 to 6, and the reactivities trend for different early transition metals correlate with their d orbital energies across periodic table. Our results offer new chemical insights towards developing advanced ambient electrocatalysts of natural gas.
Collapse
Affiliation(s)
- Jiao Deng
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Sheng-Chih Lin
- Department of Chemistry, National (Taiwan) University, Taipei, 10617, Taiwan
| | - Jack T Fuller
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Borna Zandkarimi
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Hao Ming Chen
- Department of Chemistry, National (Taiwan) University, Taipei, 10617, Taiwan
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.,California NanoSystems Institute, Los Angeles, CA, 90095, USA
| | - Chong Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
38
|
Chen SS, Koppaka A, Periana RA, Ess DH. Theory and Experiment Demonstrate that Sb(V)-Promoted Methane C-H Activation and Functionalization Outcompete Superacid Protonolysis in Sulfuric Acid. J Am Chem Soc 2021; 143:18242-18250. [PMID: 34665603 DOI: 10.1021/jacs.1c08170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Sb(V) in strong Brønsted acid solvents is traditionally assumed to react with light alkanes through superacid protonolysis, which results in carbocation intermediates, H2, and carbon oligomerization. In contrast to this general assumption, our density functional theory (DFT) calculations revealed an accessible barrier for C-H activation between methane and Sb(V) in sulfuric acid that could potentially outcompete superacid protonolysis. This prompted us to experimentally examine this reaction in sulfuric acid with oleum, which has never been reported because of presumed superacid reactivity. Reaction of methane at 180 °C for 3 h resulted in very high yields of methyl bisulfate without significant overoxidation. Our DFT calculations show that a C-H activation and Sb-Me bond functionalization mechanism to give methyl bisulfate outcompetes methane protonolysis and many other possible reaction mechanisms, such as electron transfer, proton-coupled electron transfer, and hydride abstraction. Our DFT calculations also explain experimental hydrogen-deuterium exchange studies and the absence of methane carbo-functionalization/oligomerization products. Overall, this work demonstrates that in very strong Brønsted acid solvent, Sb(V) can induce innersphere reaction mechanisms akin to transition metals and outcompete superacid reactivity.
Collapse
Affiliation(s)
- Shu-Sen Chen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Anjaneyulu Koppaka
- The Scripps Energy and Materials Center, Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Roy A Periana
- The Scripps Energy and Materials Center, Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Daniel H Ess
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
39
|
|
40
|
|
41
|
Xiang D, Iñiguez JA, Deng J, Guan X, Martinez A, Liu C. Ag
II
‐Mediated Electrocatalytic Ambient CH
4
Functionalization Inspired by HSAB Theory. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Danlei Xiang
- Department of Chemistry and Biochemistry University of California Los Angeles Los Angeles CA 90095 USA
| | - Jesus A. Iñiguez
- Department of Chemistry and Biochemistry University of California Los Angeles Los Angeles CA 90095 USA
| | - Jiao Deng
- Department of Chemistry and Biochemistry University of California Los Angeles Los Angeles CA 90095 USA
| | - Xun Guan
- Department of Chemistry and Biochemistry University of California Los Angeles Los Angeles CA 90095 USA
| | - Antonio Martinez
- Department of Chemistry and Biochemistry University of California Los Angeles Los Angeles CA 90095 USA
| | - Chong Liu
- Department of Chemistry and Biochemistry University of California Los Angeles Los Angeles CA 90095 USA
- California NanoSystems Institute University of California Los Angeles Los Angeles CA 90095 USA
| |
Collapse
|
42
|
Blankenship AN, Ravi M, Newton MA, van Bokhoven JA. Heterogeneously Catalyzed Aerobic Oxidation of Methane to a Methyl Derivative. Angew Chem Int Ed Engl 2021; 60:18138-18143. [PMID: 34076327 PMCID: PMC8456920 DOI: 10.1002/anie.202104153] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/17/2021] [Indexed: 11/23/2022]
Abstract
A promising strategy to break through the selectivity‐conversion limit of direct methane conversion to achieve high yields is the protection of methanol via esterification to a more stable methyl ester. We present an aerobic methane‐to‐methyl‐ester approach that utilizes a highly dispersed, cobalt‐containing solid catalyst, along with significantly more favorable reaction conditions compared to existing homogeneously‐catalyzed approaches (e.g. diluted acid, O2 oxidant, moderate temperature and pressure). The trifluoroacetic acid medium is diluted (<25 wt %) with an inert fluorous co‐solvent that can be recovered after the separation of the methyl trifluoroacetate via liquid–liquid extraction at ambient conditions. Silica‐supported cobalt catalysts are highly active in this system, with competitive yields and turnovers in comparison to known aerobic transition metal‐based catalytic systems.
Collapse
Affiliation(s)
- Andrea N Blankenship
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Manoj Ravi
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Mark A Newton
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Jeroen A van Bokhoven
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland.,Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, 5232, Villigen, Switzerland
| |
Collapse
|
43
|
Xiang D, Iñiguez JA, Deng J, Guan X, Martinez A, Liu C. Ag II -Mediated Electrocatalytic Ambient CH 4 Functionalization Inspired by HSAB Theory. Angew Chem Int Ed Engl 2021; 60:18152-18161. [PMID: 34107154 DOI: 10.1002/anie.202104217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/25/2021] [Indexed: 11/07/2022]
Abstract
Although most class (b) transition metals have been studied in regard to CH4 activation, divalent silver (AgII ), possibly owing to its reactive nature, is the only class (b) high-valent transition metal center that is not yet reported to exhibit reactivities towards CH4 activation. We now report that electrochemically generated AgII metalloradical readily functionalizes CH4 into methyl bisulfate (CH3 OSO3 H) at ambient conditions in 98 % H2 SO4 . Mechanistic investigation experimentally unveils a low activation energy of 13.1 kcal mol-1 , a high pseudo-first-order rate constant of CH4 activation up to 2.8×103 h-1 at room temperature and a CH4 pressure of 85 psi, and two competing reaction pathways preferable towards CH4 activation over solvent oxidation. Reaction kinetic data suggest a Faradaic efficiency exceeding 99 % beyond 180 psi CH4 at room temperature for potential chemical production from widely distributed natural gas resources with minimal infrastructure reliance.
Collapse
Affiliation(s)
- Danlei Xiang
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Jesus A Iñiguez
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Jiao Deng
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Xun Guan
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Antonio Martinez
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Chong Liu
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA.,California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
44
|
Blankenship AN, Ravi M, Newton MA, Bokhoven JA. Heterogeneously Catalyzed Aerobic Oxidation of Methane to a Methyl Derivative. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Andrea N. Blankenship
- Institute for Chemical and Bioengineering ETH Zurich Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| | - Manoj Ravi
- Institute for Chemical and Bioengineering ETH Zurich Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| | - Mark A. Newton
- Institute for Chemical and Bioengineering ETH Zurich Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| | - Jeroen A. Bokhoven
- Institute for Chemical and Bioengineering ETH Zurich Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
- Laboratory for Catalysis and Sustainable Chemistry Paul Scherrer Institute 5232 Villigen Switzerland
| |
Collapse
|
45
|
Sushkevich VL, Artsiusheuski M, Klose D, Jeschke G, Bokhoven JA. Identification of Kinetic and Spectroscopic Signatures of Copper Sites for Direct Oxidation of Methane to Methanol. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Vitaly L. Sushkevich
- Laboratory for Catalysis and Sustainable Chemistry Paul Scherrer Institut 5232 Villigen PSI Switzerland
| | - Mikalai Artsiusheuski
- Laboratory for Catalysis and Sustainable Chemistry Paul Scherrer Institut 5232 Villigen PSI Switzerland
- Institute for Chemistry and Bioengineering ETH Zurich Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| | - Daniel Klose
- Laboratory of Physical Chemistry ETH Zurich Vladimir-Prelog-Weg 2 8093 Zurich Switzerland
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry ETH Zurich Vladimir-Prelog-Weg 2 8093 Zurich Switzerland
| | - Jeroen A. Bokhoven
- Laboratory for Catalysis and Sustainable Chemistry Paul Scherrer Institut 5232 Villigen PSI Switzerland
- Institute for Chemistry and Bioengineering ETH Zurich Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| |
Collapse
|
46
|
Sushkevich VL, Artsiusheuski M, Klose D, Jeschke G, van Bokhoven JA. Identification of Kinetic and Spectroscopic Signatures of Copper Sites for Direct Oxidation of Methane to Methanol. Angew Chem Int Ed Engl 2021; 60:15944-15953. [PMID: 33905160 DOI: 10.1002/anie.202101628] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/16/2021] [Indexed: 11/09/2022]
Abstract
Copper-exchanged zeolites of different topologies possess high activity in the direct conversion of methane to methanol via the chemical looping approach. Despite a large number of studies, identification of the active sites, and especially their intrinsic kinetic characteristics remain incomplete and ambiguous. In the present work, we collate the kinetic behavior of different copper species with their spectroscopic identities and track the evolution of various copper motifs during the reaction. Using time-resolved UV/Vis and in situ EPR, XAS, and FTIR spectroscopies, two types of copper monomers were identified, one of which is active in the reaction with methane, in addition to a copper dimeric species with the mono-μ-oxo structure. Kinetic measurements showed that the reaction rate of the copper monomers is somewhat slower than that of the dicopper mono-μ-oxo species, while the activation energy is two times lower.
Collapse
Affiliation(s)
- Vitaly L Sushkevich
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland
| | - Mikalai Artsiusheuski
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland.,Institute for Chemistry and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Daniel Klose
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Jeroen A van Bokhoven
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland.,Institute for Chemistry and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| |
Collapse
|
47
|
Zhang J, Hu Z, Liu T, Wang Z, Guo J, Yuan Z, Zheng M. Feasibility of methane bioconversion to methanol by acid-tolerant ammonia-oxidizing bacteria. WATER RESEARCH 2021; 197:117077. [PMID: 33812128 DOI: 10.1016/j.watres.2021.117077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/08/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Bioconversion of biogas to value-added liquids has received increasing attention over the years. However, many biological processes are restricted under acidic conditions owing to the excessive carbon dioxide (CO2, 30-40% v/v) in biogas. Here, using an enriched culture dominated by acid-tolerant ammonia-oxidizing bacteria (AOB) 'Candidatus Nitrosoglobus', this study examined the feasibility of producing methanol from methane in the CO2-acidified environment (i.e. pH of 5.0). Within the tested dissolved methane range (0.1-0.9 mM), methane oxidation by the acid-tolerant AOB culture followed first-order kinetics, with the same rate constant (i.e. 0.43 (L/(g VSS‧h)) between pH 7.0 and 5.0. The acidic methane oxidation showed robustness against high dissolved concentrations of CO2 (up to 4.06 mM) and hydrogen sulfide (H2S up to 0.11 mM), which led to a high methanol yield of about 30-40%. As such, the raw biogas containing toxic CO2 and H2S can directly serve for methanol production by this acid-tolerant AOB culture, economizing a conventionally costly biogas upgradation process. Afterwards, two batch reactors fed with methane and oxygen intermittently both obtained a final concentration of 1.5 mM CH3OH (equal to 72 mg chemical oxygen demand/L) in the liquid, suggesting it is a useful carbon source to enhance denitrification in wastewater treatment systems. In addition, ammonia availability was identified to be critical for a higher rate of this AOB-mediated methanol production. Overall, our results for the first time demonstrated the capability of a novel acid-tolerant AOB culture to oxidize methane, and also illustrated the technical feasibility to utilize raw biogas for methanol production at acidic conditions.
Collapse
Affiliation(s)
- Junji Zhang
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Zhetai Hu
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Tao Liu
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Zhiyao Wang
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Min Zheng
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
48
|
Gu S, Chen J, Musgrave CB, Gehman ZM, Habgood LG, Jia X, Dickie DA, Goddard WA, Gunnoe TB. Functionalization of Rh III–Me Bonds: Use of “Capping Arene” Ligands to Facilitate Me–X Reductive Elimination. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Shunyan Gu
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Junqi Chen
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Charles B. Musgrave
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Zoë M. Gehman
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Laurel G. Habgood
- Department of Chemistry, Rollins College, Winter Park, Florida 32789, United States
| | - Xiaofan Jia
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Diane A. Dickie
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - William A. Goddard
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - T. Brent Gunnoe
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
49
|
Abstract
Direct oxidation of methane to methanol (DOMTM) is attractive for the increasing industrial demand of feedstock. In this review, the latest advances in heterogeneous catalysis and plasma catalysis for DOMTM are summarized, with the aim to pinpoint the differences between both, and to provide some insights into their reaction mechanisms, as well as the implications for future development of highly selective catalysts for DOMTM.
Collapse
|
50
|
Serra-Maia R, Michel FM, Douglas TA, Kang Y, Stach EA. Mechanism and Kinetics of Methane Oxidation to Methanol Catalyzed by AuPd Nanocatalysts at Low Temperature. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rui Serra-Maia
- Department of Materials Sciences Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - F. Marc Michel
- Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Temple A. Douglas
- Pathology and Laboratory Science, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yijin Kang
- Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208, United States
| | - Eric A. Stach
- Department of Materials Sciences Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|