1
|
Cheng K, Cheng L, Jiang X, Wang Z, Pan J, Fang N, Zhang Z, Qu S, Lyu W. Effect of CNT Oxidation on the Processing and Properties of Superacid-Spun CNT Fibers. Chem Asian J 2024; 19:e202400327. [PMID: 38987921 DOI: 10.1002/asia.202400327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/19/2024] [Accepted: 07/09/2024] [Indexed: 07/12/2024]
Abstract
Spinning fibers from carbon nanotube (CNT)/superacid dispersions has emerged as a promising strategy for industrial-scale production of high-performance CNT fibers (CNTFs). The oxygen content and types of functional groups on CNT surfaces significantly influence dispersion, assembly processes, and fiber properties. In this study, Tuball-SWCNTs were purified and oxidized at varying levels. The dispersion behavior of CNTs with different oxidation levels in chlorosulfonic acid was systematically observed, and the mechanical properties of fibers spun from these dispersions were compared. By adjusting the dispersion concentration, highly oriented CNTFs were produced with a specific strength of 1.03 N/tex, a tensile strength of 1.59 GPa, and an electrical conductivity of 3.58 MS/m. Further investigations indicated that oxygen-containing functional groups decrease the coagulation rate, increasing the maximum draw ratio during spinning and improving CNT alignment in the fibers. Molecular dynamics simulations demonstrated that these functional groups (-OH, -COOH) enhance load transfer between CNTs through hydrogen bonding. This specific strength is the highest achieved using Tuball-SWCNTs for superacid-spun fibers, surpassing previous works due to the oxidation-controlled coagulation rate, enhanced fiber orientation, and improved load transfer via hydrogen bonding. This study provides insights for designing and optimizing high-performance CNTFs.
Collapse
Affiliation(s)
- Kang Cheng
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Innovation Center for Advanced Nanocomposites (ICAN), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Lingzhi Cheng
- Innovation Center for Advanced Nanocomposites (ICAN), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Xinrong Jiang
- Innovation Center for Advanced Nanocomposites (ICAN), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Zeyuan Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Innovation Center for Advanced Nanocomposites (ICAN), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Jingyi Pan
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Innovation Center for Advanced Nanocomposites (ICAN), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Na Fang
- Innovation Center for Advanced Nanocomposites (ICAN), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Ziyi Zhang
- Innovation Center for Advanced Nanocomposites (ICAN), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Shuxuan Qu
- Innovation Center for Advanced Nanocomposites (ICAN), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Weibang Lyu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Innovation Center for Advanced Nanocomposites (ICAN), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- Division of Nanomaterials, Jiangxi Key Lab of Carbonene Materials, Jiangxi Institute of Nanotechnology, Nanchang, 330200, China
| |
Collapse
|
2
|
Terasaki S, Kotani Y, Katsuno R, Matsuno T, Fukunaga TM, Ikemoto K, Isobe H. Exfoliatable Layered 2D Honeycomb Crystals of Host-guest Complexes Networked by CH-π Hydrogen Bonds. Angew Chem Int Ed Engl 2024; 63:e202406502. [PMID: 38797709 DOI: 10.1002/anie.202406502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Studies of graphene show that robust chemical bonds such as covalent bonds with trigonal-planar atoms afford layered atomic 2D crystals possessing unique properties. Although layered molecular crystals are of interest to diversify elements and structures of 2D materials, the structural diversity of molecules as well as weak intermolecular interactions inevitably makes the design to be one-off and individual. We herein report a versatile method to assemble layered molecular crystals. By developing a D3-symmetry host at vertices to form a honeycomb layer, a diverse range of layered 2D host-guest crystals were obtained. Substituents on the host, elements/structures of the guest, the stereochemistry of the host and types of intercalants were diversified, which should allow for 6×32×3×2 combinations for structural diversification.
Collapse
Affiliation(s)
- Seiya Terasaki
- Department of Chemistry, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuki Kotani
- Department of Chemistry, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ryosuke Katsuno
- Department of Chemistry, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Taisuke Matsuno
- Department of Chemistry, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Toshiya M Fukunaga
- Department of Chemistry, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Koki Ikemoto
- Department of Chemistry, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroyuki Isobe
- Department of Chemistry, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
3
|
Bartoli M, Cardano F, Piatti E, Lettieri S, Fin A, Tagliaferro A. Interface properties of nanostructured carbon-coated biological implants: an overview. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1041-1053. [PMID: 39161465 PMCID: PMC11331541 DOI: 10.3762/bjnano.15.85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
The interfaces between medical implants and living tissues are of great complexity because of the simultaneous occurrence of a wide variety of phenomena. The engineering of implant surfaces represents a crucial challenge in material science, but the further improvement of implant properties remains a critical task. It can be achieved through several processes. Among them, the production of specialized coatings based on carbon-based materials stands very promising. The use of carbon coatings allows one to simultaneously fine-tune tribological, mechanical, and chemical properties. Here, we review applications of nanostructured carbon coatings (nanodiamonds, carbon nanotubes, and graphene-related materials) for the improvement of the overall properties of medical implants. We are focusing on biological interactions, improved corrosion resistance, and overall mechanical properties, trying to provide a complete overview within the field.
Collapse
Affiliation(s)
- Mattia Bartoli
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno, 60, 10144, Torino, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, 50121, Firenze, Italy
| | - Francesca Cardano
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno, 60, 10144, Torino, Italy
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125 Torino, Italy
| | - Erik Piatti
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129, Torino, Italy
| | - Stefania Lettieri
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno, 60, 10144, Torino, Italy
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129, Torino, Italy
| | - Andrea Fin
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno, 60, 10144, Torino, Italy
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125 Torino, Italy
| | - Alberto Tagliaferro
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, 50121, Firenze, Italy
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129, Torino, Italy
| |
Collapse
|
4
|
Krasley A, Li E, Galeana JM, Bulumulla C, Beyene AG, Demirer GS. Carbon Nanomaterial Fluorescent Probes and Their Biological Applications. Chem Rev 2024; 124:3085-3185. [PMID: 38478064 PMCID: PMC10979413 DOI: 10.1021/acs.chemrev.3c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Fluorescent carbon nanomaterials have broadly useful chemical and photophysical attributes that are conducive to applications in biology. In this review, we focus on materials whose photophysics allow for the use of these materials in biomedical and environmental applications, with emphasis on imaging, biosensing, and cargo delivery. The review focuses primarily on graphitic carbon nanomaterials including graphene and its derivatives, carbon nanotubes, as well as carbon dots and carbon nanohoops. Recent advances in and future prospects of these fields are discussed at depth, and where appropriate, references to reviews pertaining to older literature are provided.
Collapse
Affiliation(s)
- Andrew
T. Krasley
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Eugene Li
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Jesus M. Galeana
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Chandima Bulumulla
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Abraham G. Beyene
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Gozde S. Demirer
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
5
|
Liu Q, Feng N, Zou Y, Fan C, Wang J. Exploring the impact of stress on the electronic structure and optical properties of graphdiyne nanoribbons for advanced optoelectronic applications. Sci Rep 2024; 14:6051. [PMID: 38480809 PMCID: PMC10937923 DOI: 10.1038/s41598-024-56380-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024] Open
Abstract
Graphdiyne (GDY), a two-dimensional carbon material with sp- and sp2-hybridization, is recognized for its unique electronic properties and well-dispersed porosity. Its versatility has led to its use in a variety of applications. The precise control of this material's properties is paramount for its effective utilization in nano-optical devices. One effective method of regulation, which circumvents the need for additional disturbances, involves the application of external stress. This technique provides a direct means of eliciting changes in the electronic characteristics of the material. For instance, when subjected to uniaxial stress, electron transfer occurs at the triple bond. This results in an armchair-edged graphdiyne nanoribbon (A(3)-GDYNR) with a planar width of 2.07 nm, which exhibits a subtle plasmon effect at 500 nm. Conversely, a zigzag-edged graphdiyne nanoribbon (Z(3)-GDYNR) with a planar width of 2.86 nm demonstrates a pronounced plasmon effect within the 250-1200 nm range. This finding suggests that the zigzag nanoribbon surpasses the armchair nanoribbon in terms of its plasmon effect. First principles calculations and ab initio molecular dynamics further confirmed that under applied stress Z(3)-GDYNR exhibits less deformation than A(3)-GDYNR, indicating superior stability. This work provides the necessary theoretical basis for understanding graphene nanoribbons (GDYNRs).
Collapse
Affiliation(s)
- Qiaohan Liu
- College of Science, Liaoning Petrochemical University, Fushun, 113001, China
| | - Naixing Feng
- Key Laboratory of Intelligent Computing and Signal Processing, and School of Electronic and Information Engineering, Anhui University, Hefei, 230601, China
| | - Yi Zou
- College of Science, Liaoning Petrochemical University, Fushun, 113001, China.
| | - Chuanqiang Fan
- College of Science, Liaoning Petrochemical University, Fushun, 113001, China.
| | - Jingang Wang
- College of Science, Liaoning Petrochemical University, Fushun, 113001, China.
| |
Collapse
|
6
|
Yamanaka A, Jono R, Tejima S, Fujita JI. Molecular dynamics simulation of carbon nanotube growth under a tensile strain. Sci Rep 2024; 14:5625. [PMID: 38454043 PMCID: PMC10920857 DOI: 10.1038/s41598-024-56244-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024] Open
Abstract
We performed molecular dynamics simulations of carbon nanotube (CNT) to elucidate the growth process in the floating catalyst chemical vapor deposition method (FCCVD). FCCVD has two features: a nanometer-sized cementite (Fe3 C) particle whose melting point is depressed because of the larger surface-to-volume ratio and tensile strain between the growing CNT and the catalyst. The simulations, including these effects, demonstrated that the number of 6-membered rings of the (6,4) chiral CNT constantly increased at a speed of 1 mm / s at 1273 K , whereas those of the armchair and zigzag CNTs were stopped in the simulations and only reached half of the numbers for chiral CNT. Both the temperature and CNT chirality significantly affected CNT growth under tensile strain.
Collapse
Affiliation(s)
- Ayaka Yamanaka
- Research Organization for Information Science and Technology, 7F, Sumitomo-Hamamatsucho Building, 1-18-16, Hamamatsucho, Minato-ku, Tokyo, 105-0013, Japan.
| | - Ryota Jono
- Research Organization for Information Science and Technology, 7F, Sumitomo-Hamamatsucho Building, 1-18-16, Hamamatsucho, Minato-ku, Tokyo, 105-0013, Japan
| | - Syogo Tejima
- Research Organization for Information Science and Technology, 7F, Sumitomo-Hamamatsucho Building, 1-18-16, Hamamatsucho, Minato-ku, Tokyo, 105-0013, Japan
| | - Jun-Ichi Fujita
- Graduate School of Pure and Applied Science, University of Tsukuba, 1-1-1 Ten-nodai, Tsukuba, Ibaraki, 305-8573, Japan
| |
Collapse
|
7
|
Saito R, Hung NT, Yang T, Huang J, Liu HL, Gulo DP, Han S, Tong L. Deep-Ultraviolet and Helicity-Dependent Raman Spectroscopy for Carbon Nanotubes and 2D Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2308558. [PMID: 38412418 DOI: 10.1002/smll.202308558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/10/2024] [Indexed: 02/29/2024]
Abstract
Recent progress of Raman spectroscopy on carbon nanotubes and 2D materials is reviewed as a topical review. The Raman tensor with complex values is related to the chiral 1D/2D materials without mirror symmetry for the mirror in the propagating direction of light, such as chiral carbon nanotube and black phosphorus. The phenomenon of complex Raman tensor is observed by the asymmetric polar plot of helicity-dependent Raman spectroscopy using incident circularly-polarized lights. First-principles calculations of resonant Raman spectra directly give the complex Raman tensor that explains helicity-dependent Raman spectra and laser-energy-dependent relative intensities of Raman spectra. In deep-ultraviolet (DUV) Raman spectroscopy with 266 nm laser, since the energy of the photon is large compared with the energy gap, the first-order and double resonant Raman processes occur in general k points in the Brillouin zone. First-principles calculation is necessary to understand the DUV Raman spectra and the origin of double-resonance Raman spectra. Asymmetric line shapes appear for the G band of graphene for 266 nm laser and in-plane Raman mode of WS2 for 532 nm laser, while these spectra show symmetric line shapes for other laser excitation. The interference effect on the asymmetric line shape is discussed by fitting the spectra to the Breit-Wigner-Fano line shapes.
Collapse
Affiliation(s)
- Riichiro Saito
- Department of Physics, National Taiwan Normal University, Taipei, 11677, Taiwan
- Department of Physics, and Tohoku University, Sendai, 980-8578, Japan
| | - Nguyen Tuan Hung
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Teng Yang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| | - Jianqi Huang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| | - Hsiang-Lin Liu
- Department of Physics, National Taiwan Normal University, Taipei, 11677, Taiwan
| | | | - Shiyi Han
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Lianming Tong
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
8
|
Yazdani S, Mozaffarian M, Pazuki G, Hadidi N, Villate-Beitia I, Zárate J, Puras G, Pedraz JL. Carbon-Based Nanostructures as Emerging Materials for Gene Delivery Applications. Pharmaceutics 2024; 16:288. [PMID: 38399344 PMCID: PMC10891563 DOI: 10.3390/pharmaceutics16020288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/03/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Gene therapeutics are promising for treating diseases at the genetic level, with some already validated for clinical use. Recently, nanostructures have emerged for the targeted delivery of genetic material. Nanomaterials, exhibiting advantageous properties such as a high surface-to-volume ratio, biocompatibility, facile functionalization, substantial loading capacity, and tunable physicochemical characteristics, are recognized as non-viral vectors in gene therapy applications. Despite progress, current non-viral vectors exhibit notably low gene delivery efficiency. Progress in nanotechnology is essential to overcome extracellular and intracellular barriers in gene delivery. Specific nanostructures such as carbon nanotubes (CNTs), carbon quantum dots (CQDs), nanodiamonds (NDs), and similar carbon-based structures can accommodate diverse genetic materials such as plasmid DNA (pDNA), messenger RNA (mRNA), small interference RNA (siRNA), micro RNA (miRNA), and antisense oligonucleotides (AONs). To address challenges such as high toxicity and low transfection efficiency, advancements in the features of carbon-based nanostructures (CBNs) are imperative. This overview delves into three types of CBNs employed as vectors in drug/gene delivery systems, encompassing their synthesis methods, properties, and biomedical applications. Ultimately, we present insights into the opportunities and challenges within the captivating realm of gene delivery using CBNs.
Collapse
Affiliation(s)
- Sara Yazdani
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran P.O. Box 15875-4413, Iran; (S.Y.); (G.P.)
- NanoBioCel Research Group, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.V.-B.); (J.Z.); (G.P.)
| | - Mehrdad Mozaffarian
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran P.O. Box 15875-4413, Iran; (S.Y.); (G.P.)
| | - Gholamreza Pazuki
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran P.O. Box 15875-4413, Iran; (S.Y.); (G.P.)
| | - Naghmeh Hadidi
- Department of Clinical Research and EM Microscope, Pasteur Institute of Iran (PII), Tehran P.O. Box 131694-3551, Iran;
| | - Ilia Villate-Beitia
- NanoBioCel Research Group, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.V.-B.); (J.Z.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Calle José Achotegui s/n, 01009 Vitoria-Gasteiz, Spain
| | - Jon Zárate
- NanoBioCel Research Group, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.V.-B.); (J.Z.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Calle José Achotegui s/n, 01009 Vitoria-Gasteiz, Spain
| | - Gustavo Puras
- NanoBioCel Research Group, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.V.-B.); (J.Z.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Calle José Achotegui s/n, 01009 Vitoria-Gasteiz, Spain
| | - Jose Luis Pedraz
- NanoBioCel Research Group, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.V.-B.); (J.Z.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Calle José Achotegui s/n, 01009 Vitoria-Gasteiz, Spain
| |
Collapse
|
9
|
Liu Q, Wang X, Yu J, Wang J. Graphyne and graphdiyne nanoribbons: from their structures and properties to potential applications. Phys Chem Chem Phys 2024; 26:1541-1563. [PMID: 38165768 DOI: 10.1039/d3cp04393b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Graphyne (GY) and graphdiyne (GDY) have properties including unique sp- and sp2-hybrid carbon atomic structures, natural non-zero band gaps, and highly conjugated π electrons. GY and GDY have good application prospects in many fields, including catalysis, solar cells, sensors, and modulators. Under the influence of the boundary effect and quantum size effect, quasi-one-dimensional graphyne nanoribbons (GYNRs) and graphdiyne nanoribbons (GDYNRs) show novel physical properties. The various structures available give GYNRs and GDYNRs greater band structure and electronic properties, and their excellent physical and chemical properties differ from those of two-dimensional GY and GDY. However, the development of GYNRs and GDYNRs still faces problems, including issues with accurate synthesis, advanced structural characterization, the structure-performance correlation of materials, and potential applications. In this review, the structures and physical properties of quasi-one-dimensional GYNRs and GDYNRs are reviewed, their advantages and disadvantages are summarized, and their potential applications are highlighted. This review provides a meaningful basis and research foundation for the design and development of high-performance materials and devices based on GYNRs and GDYNRs in the field of energy.
Collapse
Affiliation(s)
- Qiaohan Liu
- College of Science, Liaoning Petrochemical University, Fushun 113001, P. R. China.
| | - Xiaorong Wang
- School of petrochemical engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Jing Yu
- College of Science, Liaoning Petrochemical University, Fushun 113001, P. R. China.
| | - Jingang Wang
- College of Science, Liaoning Petrochemical University, Fushun 113001, P. R. China.
| |
Collapse
|
10
|
Sasaki K, Yamamoto K, Narahara M, Takabe Y, Chae S, Panomsuwan G, Ishizaki T. Solution-Plasma Synthesis and Characterization of Transition Metals and N-Containing Carbon-Carbon Nanotube Composites. MATERIALS (BASEL, SWITZERLAND) 2024; 17:320. [PMID: 38255488 PMCID: PMC10817228 DOI: 10.3390/ma17020320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
Lithium-air batteries (LABs) have a theoretically high energy density. However, LABs have some issues, such as low energy efficiency, short life cycle, and high overpotential in charge-discharge cycles. To solve these issues electrocatalytic materials were developed for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), which significantly affect battery performance. In this study, we aimed to synthesize electrocatalytic N-doped carbon-based composite materials with solution plasma (SP) using Co or Ni as electrodes from organic solvents containing cup-stacked carbon nanotubes (CSCNTs), iron (II) phthalocyanine (FePc), and N-nethyl-2-pyrrolidinone (NMP). The synthesized N-doped carbon-based composite materials were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). TEM observation and XPS measurements revealed that the synthesized carbon materials contained elemental N, Fe, and electrode-derived Co or Ni, leading to the successful synthesis of N-doped carbon-based composite materials. The electrocatalytic activity for ORR of the synthesized carbon-based composite materials was also evaluated using electrochemical measurements. The electrochemical measurements demonstrated that the electrocatalytic performance for ORR of N-doped carbon-based composite material including Fe and Co showed superiority to that of N-doped carbon-based composite material including Fe and Ni. The difference in the electrocatalytic performance for ORR is discussed regarding the difference in the specific surface area and the presence ratio of chemical bonding species.
Collapse
Affiliation(s)
- Kodai Sasaki
- Materials Science and Engineering, Graduate School of Engineering and Science, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan; (K.S.); (K.Y.); (M.N.); (Y.T.)
| | - Kaiki Yamamoto
- Materials Science and Engineering, Graduate School of Engineering and Science, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan; (K.S.); (K.Y.); (M.N.); (Y.T.)
| | - Masaki Narahara
- Materials Science and Engineering, Graduate School of Engineering and Science, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan; (K.S.); (K.Y.); (M.N.); (Y.T.)
| | - Yushi Takabe
- Materials Science and Engineering, Graduate School of Engineering and Science, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan; (K.S.); (K.Y.); (M.N.); (Y.T.)
| | - Sangwoo Chae
- SIT Research Laboratories, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan;
| | - Gasidit Panomsuwan
- Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand;
| | - Takahiro Ishizaki
- Department of Materials Science and Engineering, College of Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan
| |
Collapse
|
11
|
Gupta B, Sharma PK, Malviya R. Carbon Nanotubes for Targeted Therapy: Safety, Efficacy, Feasibility and Regulatory Aspects. Curr Pharm Des 2024; 30:81-99. [PMID: 38185892 DOI: 10.2174/0113816128282085231226065407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024]
Abstract
It is crucial that novel and efficient drug delivery techniques be created in order to improve the pharmacological profiles of a wide variety of classes of medicinal compounds. Carbon nanotubes (CNTs) have recently come to the forefront as an innovative and very effective technique for transporting and translocating medicinal compounds. CNTs were suggested and aggressively researched as multifunctional novel transporters designed for targeted pharmaceutical distribution and used in diagnosis. CNTs can act as vectors for direct administration of pharmaceuticals, particularly chemotherapeutic medications. Multi-walled CNTs make up the great majority of CNT transporters, and these CNTs were used in techniques to target cancerous cells. It is possible to employ Carbon nanotubes (CNTs) to transport bioactive peptides, proteins, nucleic acids, and medicines by functionalizing them with these substances. Due to their low toxicity and absence of immunogenicity, carbon nanotubes are not immunogenic. Ammonium-functionalized carbon nanotubes are also attractive vectors for gene-encoding nucleic acids. CNTs that have been coupled with antigenic peptides have the potential to be developed into a novel and efficient approach for the use of synthetic vaccines. CNTs bring up an enormous number of new avenues for future medicine development depending on targets within cells, which have until now been difficult to access. This review focuses on the numerous applications of various CNT types used as medicine transport systems and on the utilization of CNTs for therapeutical purposes.
Collapse
Affiliation(s)
- Babita Gupta
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Pramod Kumar Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
12
|
Yang Y, Hong L, Bellaiche L, Xiang H. Toward Ultimate Memory with Single-Molecule Multiferroics. J Am Chem Soc 2023; 145:25357-25364. [PMID: 37948323 DOI: 10.1021/jacs.3c09294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The demand for high-density storage is urgent in the current era of data explosion. Recently, several single-molecule (-atom) magnets and ferroelectrics have been reported to be promising candidates for high-density storage. As another promising candidate, single-molecule multiferroics are not only small in size but also possess ferroelectric and magnetic orderings, which can sometimes be strongly coupled and used as data storage to realize the combination of electric writing and magnetic reading. However, they have been rarely proposed and have never been experimentally reported. Here, by building Hamiltonian models, we propose a new model of single-molecule multiferroics in which electric dipoles and magnetic moments are parallel and can rotate with the rotation of the single molecule. Furthermore, by performing spin-lattice dynamics simulations, we reveal the conditions (e.g., large enough single-ion anisotropy and an appropriate electric field) under which the new single-molecule multiferroic can arise. Based on this model, as well as first-principles calculations, a realistic example of Co(NH3)4N@SWCNT is constructed and numerically confirmed to demonstrate the feasibility of the new single-molecule multiferroic model. Our work not only sheds light on the discovery of single-molecule multiferroics but also provides a new guideline to design multifunctional materials for ultimate memory devices.
Collapse
Affiliation(s)
- Yali Yang
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
- Key Laboratory of Computational Physical Sciences (Ministry of Education), State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China
- Shanghai Qi Zhi Institute, Shanghai 200030, China
| | - Liangliang Hong
- Key Laboratory of Computational Physical Sciences (Ministry of Education), State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China
- Shanghai Qi Zhi Institute, Shanghai 200030, China
| | - Laurent Bellaiche
- Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Hongjun Xiang
- Key Laboratory of Computational Physical Sciences (Ministry of Education), State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China
- Shanghai Qi Zhi Institute, Shanghai 200030, China
| |
Collapse
|
13
|
Zhao X, Onodera C, Muraoka M. Rapid production of silver nanofibers using a self-reducing solution. NANOTECHNOLOGY 2023; 34:505603. [PMID: 37725956 DOI: 10.1088/1361-6528/acfb14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/18/2023] [Indexed: 09/21/2023]
Abstract
Silver nanofibers (Ag NFs) have gained considerable attention because of their high transmittance resulting from the size effect, excellent electrical conductivity, and mechanical properties. However, synthesizing high-quality Ag NFs remains a challenge. This paper reports a novel self-reducing solution that contains platinum nanoparticles for the rapid production of Ag NFs. The method involves generating the precursor NFs and heating them in air, which reduces silver nitrate to Ag NFs within a few minutes. The as-prepared solution is characterized by its simple preparation, cost-effectiveness, and broad applicability. Additionally, the use of high-pressure airflow to directly spin the solution and a complete self-reduction system that does not depend on external conditions broadens the application prospects of the as-developed solution. Furthermore, we provide insights into the self-reduction mechanism and guidance on the preparation of self-reducing solutions.
Collapse
Affiliation(s)
- Xu Zhao
- Department of Systems Design Engineering, Akita University, Akita 010-8502, Japan
| | - Chiho Onodera
- Department of Systems Design Engineering, Akita University, Akita 010-8502, Japan
| | - Mikio Muraoka
- Department of Systems Design Engineering, Akita University, Akita 010-8502, Japan
| |
Collapse
|
14
|
Elsori D, Rashid G, Khan NA, Sachdeva P, Jindal R, Kayenat F, Sachdeva B, Kamal MA, Babker AM, Fahmy SA. Nanotube breakthroughs: unveiling the potential of carbon nanotubes as a dual therapeutic arsenal for Alzheimer's disease and brain tumors. Front Oncol 2023; 13:1265347. [PMID: 37799472 PMCID: PMC10548133 DOI: 10.3389/fonc.2023.1265347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 08/23/2023] [Indexed: 10/07/2023] Open
Abstract
Alzheimer's disease (AD) and brain tumors are debilitating neurological conditions that pose significant challenges in current medical practices. Existing treatment options for AD primarily focus on symptom management, and brain tumors often require aggressive therapeutic approaches. Novel disease-modifying strategies and therapeutic agents are urgently needed to address the underlying causes of AD pathogenesis and improve brain tumor management. In recent years, nanoparticles (NPs) have shown promise as valuable tools in diagnosing and managing various brain disorders, including AD. Among these, carbon nanotubes (CNTs) have garnered attention for their unique properties and biomedical potential. Their ability to cross the blood-brain barrier (BBB) with ease opens up new possibilities for targeted drug delivery and neuroprotection. This literature review aims to explore the versatile nature of CNTs, which can be functionalized with various biomolecules or substances due to their sp2 hybridization. This adaptability enables them to specifically target cells and deliver medications under specific environmental conditions. Moreover, CNTs possess an exceptional capacity to penetrate cell membranes, making them valuable tools in the treatment of AD and brain tumors. By delving into the role of CNTs in biomedicine, this review sheds light on their potential in managing AD, offering a glimpse of hope for effective disease-modifying options. Understanding the mechanisms of CNTs' action and their capabilities in targeting and delivering medication to affected cells will pave the way for innovative therapeutic strategies that can improve the lives of those afflicted with these devastating neurological conditions. The exploration of CNTs as a dual therapeutic arsenal for both brain tumors and Alzheimer's disease holds great promise and may usher in a new era of effective treatment strategies for these challenging conditions.
Collapse
Affiliation(s)
- Deena Elsori
- Faculty of Resillience, Deans Office Rabdan Academy, Abu Dhabi, United Arab Emirates
| | - Gowhar Rashid
- Amity Medical School, Amity University Gurgaon, Haryana, India
| | - Nihad Ashraf Khan
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| | - Punya Sachdeva
- Department of Neuropyschology and Neurosciences, Amity University, Noida, UP, India
| | - Riya Jindal
- Department of Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Falak Kayenat
- Department of Biotechnology, Jamia Hamdard University, New Delhi, India
| | - Bhuvi Sachdeva
- Department of Physics and Astrophysics, Bhagini Nivedita College, University of Delhi, New Delhi, India
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Asaad Ma Babker
- Department of Medical Laboratory Sciences, Gulf Medical University, Ajman, United Arab Emirates
| | - Sherif Ashraf Fahmy
- Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
| |
Collapse
|
15
|
Xiao K, Zhang P, Hu D, Huang C, Wu X. Micron-Thick Interlocked Carbon Nanotube Films with Excellent Impact Resistance via Micro-Ballistic Impact. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302403. [PMID: 37211706 DOI: 10.1002/smll.202302403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/01/2023] [Indexed: 05/23/2023]
Abstract
The highest specific energy absorption (SEA) of interlocked micron-thickness carbon nanotube (IMCNT) films subjected to micro-ballistic impact is reported in this paper. The SEA of the IMCNT films ranges from 0.8 to 1.6 MJ kg-1 , the greatest value for micron-thickness films to date. The multiple deformation-induced dissipation channels at the nanoscale involving disorder-to-order transition, frictional sliding, and entanglement of CNT fibrils contribute to the ultra-high SEA of the IMCNT. Furthermore, an anomalous thickness dependency of the SEA is observed, that is, the SEA increases with increasing thickness, which should be ascribed to the exponential growth in nano-interface that further boosts the energy dissipation efficiency as the film thickness increases. The results indicate that the developed IMCNT overcomes the size-dependent impact resistance of traditional materials and demonstrates great potential as a bulletproof material for high-performance flexible armor.
Collapse
Affiliation(s)
- Kailu Xiao
- Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Pengfei Zhang
- Key Laboratory of Multifunctional and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Dongmei Hu
- Key Laboratory of Multifunctional and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Chenguang Huang
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Xianqian Wu
- Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
16
|
Won D, Bang J, Choi SH, Pyun KR, Jeong S, Lee Y, Ko SH. Transparent Electronics for Wearable Electronics Application. Chem Rev 2023; 123:9982-10078. [PMID: 37542724 PMCID: PMC10452793 DOI: 10.1021/acs.chemrev.3c00139] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Indexed: 08/07/2023]
Abstract
Recent advancements in wearable electronics offer seamless integration with the human body for extracting various biophysical and biochemical information for real-time health monitoring, clinical diagnostics, and augmented reality. Enormous efforts have been dedicated to imparting stretchability/flexibility and softness to electronic devices through materials science and structural modifications that enable stable and comfortable integration of these devices with the curvilinear and soft human body. However, the optical properties of these devices are still in the early stages of consideration. By incorporating transparency, visual information from interfacing biological systems can be preserved and utilized for comprehensive clinical diagnosis with image analysis techniques. Additionally, transparency provides optical imperceptibility, alleviating reluctance to wear the device on exposed skin. This review discusses the recent advancement of transparent wearable electronics in a comprehensive way that includes materials, processing, devices, and applications. Materials for transparent wearable electronics are discussed regarding their characteristics, synthesis, and engineering strategies for property enhancements. We also examine bridging techniques for stable integration with the soft human body. Building blocks for wearable electronic systems, including sensors, energy devices, actuators, and displays, are discussed with their mechanisms and performances. Lastly, we summarize the potential applications and conclude with the remaining challenges and prospects.
Collapse
Affiliation(s)
- Daeyeon Won
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Junhyuk Bang
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Seok Hwan Choi
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Kyung Rok Pyun
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Seongmin Jeong
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Youngseok Lee
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Seung Hwan Ko
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
- Institute
of Engineering Research/Institute of Advanced Machinery and Design
(SNU-IAMD), Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
17
|
Banszerus L, Möller S, Hecker K, Icking E, Watanabe K, Taniguchi T, Hassler F, Volk C, Stampfer C. Particle-hole symmetry protects spin-valley blockade in graphene quantum dots. Nature 2023:10.1038/s41586-023-05953-5. [PMID: 37138084 DOI: 10.1038/s41586-023-05953-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/14/2023] [Indexed: 05/05/2023]
Abstract
Particle-hole symmetry plays an important role in the characterization of topological phases in solid-state systems1. It is found, for example, in free-fermion systems at half filling and it is closely related to the notion of antiparticles in relativistic field theories2. In the low-energy limit, graphene is a prime example of a gapless particle-hole symmetric system described by an effective Dirac equation3,4 in which topological phases can be understood by studying ways to open a gap by preserving (or breaking) symmetries5,6. An important example is the intrinsic Kane-Mele spin-orbit gap of graphene, which leads to a lifting of the spin-valley degeneracy and renders graphene a topological insulator in a quantum spin Hall phase7 while preserving particle-hole symmetry. Here we show that bilayer graphene allows the realization of electron-hole double quantum dots that exhibit near-perfect particle-hole symmetry, in which transport occurs via the creation and annihilation of single electron-hole pairs with opposite quantum numbers. Moreover, we show that particle-hole symmetric spin and valley textures lead to a protected single-particle spin-valley blockade. The latter will allow robust spin-to-charge and valley-to-charge conversion, which are essential for the operation of spin and valley qubits.
Collapse
Affiliation(s)
- L Banszerus
- JARA-FIT and 2nd Institute of Physics A, RWTH Aachen University, Aachen, Germany
- Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, Jülich, Germany
| | - S Möller
- JARA-FIT and 2nd Institute of Physics A, RWTH Aachen University, Aachen, Germany
- Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, Jülich, Germany
| | - K Hecker
- JARA-FIT and 2nd Institute of Physics A, RWTH Aachen University, Aachen, Germany
- Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, Jülich, Germany
| | - E Icking
- JARA-FIT and 2nd Institute of Physics A, RWTH Aachen University, Aachen, Germany
- Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, Jülich, Germany
| | - K Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - T Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - F Hassler
- JARA-Institute for Quantum Information, RWTH Aachen University, Aachen, Germany
| | - C Volk
- JARA-FIT and 2nd Institute of Physics A, RWTH Aachen University, Aachen, Germany
- Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, Jülich, Germany
| | - C Stampfer
- JARA-FIT and 2nd Institute of Physics A, RWTH Aachen University, Aachen, Germany.
- Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
18
|
Nagata Y, Kukobat R, Furuse A, Otsuka H, Hayashi T, Kaneko K. Designed Production of Atomic-Scale Nanowindows in Single-Walled Carbon Nanotubes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5911-5916. [PMID: 37052535 DOI: 10.1021/acs.langmuir.3c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The controlled production of nanowindows in graphene layers is desirable for the development of ultrathin membranes. Herein, we propose a single-atom catalytic oxidation method for introducing nanowindows into the graphene layers of single-walled carbon nanotubes (SWCNTs). Using liquid-phase adsorption, copper(II) 2,3,9,10,16,17,23,24-octakis(octyloxy)-29H,31H-phthalocyanine (CuPc) was adsorbed on SWCNT bundles at a surface coverage of 0.9. Subsequently, narrow nanowindows with a number density of 0.13 nm-2 were produced by oxidation above 550 K, which is higher than the decomposition temperature of bulk CuPc. In particular, oxidation of the CuPc-adsorbed SWCNTs at 623 K increased the surface area from 280 to 1690 m2 g-1 owing to the efficient production of nanowindows. The nanowindow size was estimated to be similar to the molecular size of N2 based on the pronounced low-pressure adsorption hysteresis in the N2 adsorption isotherm. In addition, the enthalpy change for the nanowindow-formation equilibrium decreased by 4 kJ mol-1 when CuPc was present, further evidencing the catalytic effect of the Cu atoms supplied by the adsorbed CuPc molecules.
Collapse
Affiliation(s)
- Yuki Nagata
- Department of Science and Technology, Interdisciplinary Graduate School of Science and Technology, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
- Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
- Kotobuki Co., Ltd., Kitakyushu City, Fukuoka 802-8540, Japan
| | - Radovan Kukobat
- Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
- Department of Chemical Engineering and Technology, Faculty of Technology, University of Banja Luka, V. S. Stepanovica 73, Banja Luka 78000, Bosnia and Herzegovina
| | - Ayumi Furuse
- Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Hayato Otsuka
- Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Takuya Hayashi
- Department of Science and Technology, Interdisciplinary Graduate School of Science and Technology, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Katsumi Kaneko
- Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| |
Collapse
|
19
|
Abdulhameed A, Halim MM, Halin IA. Dielectrophoretic alignment of carbon nanotubes: theory, applications, and future. NANOTECHNOLOGY 2023; 34:242001. [PMID: 36921341 DOI: 10.1088/1361-6528/acc46c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Carbon nanotubes (CNTs) are nominated to be the successor of several semiconductors and metals due to their unique physical and chemical properties. It has been concerning that the anisotropic and low controllability of CNTs impedes their adoption in commercial applications. Dielectrophoresis (DEP) is known as the electrokinetics motion of polarizable nanoparticles under the influence of nonuniform electric fields. The uniqueness of this phenomenon allows DEP to be employed as a novel method to align, assemble, separate, and manipulate CNTs suspended in liquid mediums. This article begins with a brief overview of CNT structure and production, with the emphasize on their electrical properties and response to electric fields. The DEP phenomenon as a CNT alignment method is demonstrated and graphically discussed, along with its theory, procedure, and parameters. We also discussed the side forces that arise in DEP systems and how they negatively or positively affect the CNT alignment. The article concludes with a brief review of CNT-based devices fabricated using DEP, as well as the method's limitations and future prospects.
Collapse
Affiliation(s)
| | - Mohd Mahadi Halim
- School of Physics, Universiti Sains Malaysia, 11800 USM Penang, Malaysia
| | - Izhal Abdul Halin
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, 43400, Malaysia
| |
Collapse
|
20
|
Bartoli M, Piatti E, Tagliaferro A. A Short Review on Nanostructured Carbon Containing Biopolymer Derived Composites for Tissue Engineering Applications. Polymers (Basel) 2023; 15:1567. [PMID: 36987346 PMCID: PMC10056897 DOI: 10.3390/polym15061567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/16/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
The development of new scaffolds and materials for tissue engineering is a wide and open realm of material science. Among solutions, the use of biopolymers represents a particularly interesting area of study due to their great chemical complexity that enables creation of specific molecular architectures. However, biopolymers do not exhibit the properties required for direct application in tissue repair-such as mechanical and electrical properties-but they do show very attractive chemical functionalities which are difficult to produce through in vitro synthesis. The combination of biopolymers with nanostructured carbon fillers could represent a robust solution to enhance composite properties, producing composites with new and unique features, particularly relating to electronic conduction. In this paper, we provide a review of the field of carbonaceous nanostructure-containing biopolymer composites, limiting our investigation to tissue-engineering applications, and providing a complete overview of the recent and most outstanding achievements.
Collapse
Affiliation(s)
- Mattia Bartoli
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno 60, 10144 Turin, Italy;
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, 50121 Florence, Italy
| | - Erik Piatti
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy;
| | - Alberto Tagliaferro
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, 50121 Florence, Italy
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy;
- Faculty of Science, Ontario Tech University, 2000 Simcoe Street North, Oshawa, ON L1G 0C5, Canada
| |
Collapse
|
21
|
Zhao D, Liu J, Zhou Y, Zhang L, Zhong Y, Yang Y, Zhao B, Yang M, Wang Y. Penetrating the Blood-Brain Barrier for Targeted Treatment of Neurotoxicant Poisoning by Nanosustained-Released 2-PAM@VB1-MIL-101-NH 2(Fe). ACS APPLIED MATERIALS & INTERFACES 2023; 15:12631-12642. [PMID: 36867458 DOI: 10.1021/acsami.2c18929] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
It is very important to establish a sustained-release pralidoxime chloride (2-PAM) drug system with brain targeting function for the treatment of neurotoxicant poisoning. Herein, Vitamin B1 (VB1), also known as thiamine, which can specifically bind to the thiamine transporter on the surface of the blood-brain barrier, was incorporated onto the surface of MIL-101-NH2(Fe) nanoparticles with a size of ∼100 nm. Pralidoxime chloride was further loaded within the interior of the above resulted composite by soaking, and a resulting composite drug (denoted as 2-PAM@VB1-MIL-101-NH2(Fe)) with a loading capacity of 14.8% (wt) was obtained. The results showed that the drug release rate of the composite drug was increased in PBS solution with the increase of pH (2-7.4) and a maximum drug release rate of 77.5% at pH 4. Experiments on the treatment of poisoning by gavage with the nerve agent sarin in mice combined with atropine revealed that sustained release of 2-PAM from the composite drug was achieved for more than 72 h. Sustained and stable reactivation of poisoned acetylcholinesterase (AChE) was observed with an enzyme reactivation rate of 42.7% in the ocular blood samples at 72 h. By using both zebrafish brain and mouse brain as models, we found that the composite drug could effectively cross the blood-brain barrier and restore the AChE activity in the brain of poisoned mice. The composite drug is expected to be a stable therapeutic drug with brain targeting and prolonged drug release properties for nerve agent intoxication in the middle and late stages of treatment.
Collapse
Affiliation(s)
- Dianfa Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Jie Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Yunshan Zhou
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Lijuan Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yuxu Zhong
- Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Yang Yang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Baoquan Zhao
- Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Mengru Yang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yong'an Wang
- Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| |
Collapse
|
22
|
Dong Q, Bai W, Zhang T, Chu D, Qu Q, Zhang D, Geng L, He Y. On-line intermittent growth of carbon nanotubes in a self-made tapered fluidized bed reactor at different inlet distances. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
23
|
Effects of Diamond Nanoparticles Immobilisation on the Surface of Yeast Cells: A Phenomenological Study. FERMENTATION 2023. [DOI: 10.3390/fermentation9020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
An interesting development of biotechnology has linked microbial cell immobilisation with nanoparticles. The main task of our research was to reveal the possible influences of differently electrically charged diamond nanoparticles upon physiological characteristics of the yeast Saccharomyces cerevisiae. It was revealed that the adverse impact of these nanoparticles can manifest not only against prokaryotes, but also against eukaryotic yeast cells. However, the obtained results also indicate that it is possible to reduce and, most likely, completely eliminate the dangerous effects of nanoparticles to cells by using special physical approaches. Comparison of non-arylated and arylated nanoparticles showed that in terms of changes in the physiological activity of cells, which are important to biotechnology and biomedicine, the selection of certain nanoparticles (non-arylated or arylated) may be necessary in each specific case, depending on the purpose of their use.
Collapse
|
24
|
da Costa Siqueira JT, Reis AC, Lopes JML, Ladeira LO, Viccini LF, de Mello Brandão H, Munk M, de Sousa SM. Chromosomal aberrations and changes in the methylation patterns of Lactuca sativa L. (Asteraceae) exposed to carbon nanotubes. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-023-01325-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
25
|
Radhakrishnan S, Vishnu SNS, Ahmed SI, Thiruvengadathan R. Effects of Channel Length Scaling on the Electrical Characteristics of Multilayer MoS 2 Field Effect Transistor. MICROMACHINES 2023; 14:275. [PMID: 36837975 PMCID: PMC9963916 DOI: 10.3390/mi14020275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/05/2023] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
With the rapid miniaturization of integrated chips in recent decades, aggressive geometric scaling of transistor dimensions to nanometric scales has become imperative. Recent works have reported the usefulness of 2D transition metal dichalcogenides (TMDs) like MoS2 in MOSFET fabrication due to their enhanced active surface area, thin body, and non-zero bandgap. However, a systematic study on the effects of geometric scaling down to sub-10-nm nodes on the performance of MoS2 MOSFETs is lacking. Here, the authors present an extensive study on the performance of MoS2 FETs when geometrically scaled down to the sub-10 nm range. Transport properties are modelled using drift-diffusion equations in the classical regime and self-consistent Schrödinger-Poisson solution using NEGF formulation in the quantum regime. By employing the device modeling tool COMSOL for the classical regime, drain current vs. gate voltage (ID vs. VGS) plots were simulated. On the other hand, NEGF formulation for quantum regions is performed using MATLAB, and transfer characteristics are obtained. The effects of scaling device dimensions, such as channel length and contact length, are evaluated based on transfer characteristics by computing performance metrics like drain-induced barrier lowering (DIBL), on-off currents, subthreshold swing, and threshold voltage.
Collapse
Affiliation(s)
- Sreevatsan Radhakrishnan
- SIERS Research Laboratory, Department of Electronics and Communication Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
| | - Suggula Naga Sai Vishnu
- SIERS Research Laboratory, Department of Electronics and Communication Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
| | - Syed Ishtiyaq Ahmed
- SIERS Research Laboratory, Department of Electronics and Communication Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
| | - Rajagopalan Thiruvengadathan
- SIERS Research Laboratory, Department of Electronics and Communication Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
- Mechanical Engineering Program, Department of Engineering and Technology, Southern Utah University, Cedar City, UT 84720, USA
| |
Collapse
|
26
|
Zhang DW, Chia L, Huang Y. Effect of Carboxymethyl Cellulose (CMC) Functionalization on Dispersion, Mechanical, and Corrosion Properties of CNT/Epoxy Nanocomposites. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-023-2928-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
27
|
Zhou X, Cao W. Flexible and Stretchable Carbon-Based Sensors and Actuators for Soft Robots. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:316. [PMID: 36678069 PMCID: PMC9864711 DOI: 10.3390/nano13020316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
In recent years, the emergence of low-dimensional carbon-based materials, such as carbon dots, carbon nanotubes, and graphene, together with the advances in materials science, have greatly enriched the variety of flexible and stretchable electronic devices. Compared with conventional rigid devices, these soft robotic sensors and actuators exhibit remarkable advantages in terms of their biocompatibility, portability, power efficiency, and wearability, thus creating myriad possibilities of novel wearable and implantable tactile sensors, as well as micro-/nano-soft actuation systems. Interestingly, not only are carbon-based materials ideal constituents for photodetectors, gas, thermal, triboelectric sensors due to their geometry and extraordinary sensitivity to various external stimuli, but they also provide significantly more precise manipulation of the actuators than conventional centimeter-scale pneumatic and hydraulic robotic actuators, at a molecular level. In this review, we summarize recent progress on state-of-the-art flexible and stretchable carbon-based sensors and actuators that have creatively added to the development of biomedicine, nanoscience, materials science, as well as soft robotics. In the end, we propose the future potential of carbon-based materials for biomedical and soft robotic applications.
Collapse
Affiliation(s)
- Xinyi Zhou
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wenhan Cao
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Engineering Research Center of Energy Efficient and Custom AI IC, Shanghai 201210, China
| |
Collapse
|
28
|
Vorfolomeeva AA, Stolyarova SG, Asanov IP, Shlyakhova EV, Plyusnin PE, Maksimovskiy EA, Gerasimov EY, Chuvilin AL, Okotrub AV, Bulusheva LG. Single-Walled Carbon Nanotubes with Red Phosphorus in Lithium-Ion Batteries: Effect of Surface and Encapsulated Phosphorus. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:153. [PMID: 36616064 PMCID: PMC9824809 DOI: 10.3390/nano13010153] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/25/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) with their high surface area, electrical conductivity, mechanical strength and elasticity are an ideal component for the development of composite electrode materials for batteries. Red phosphorus has a very high theoretical capacity with respect to lithium, but has poor conductivity and expends considerably as a result of the reaction with lithium ions. In this work, we compare the electrochemical performance of commercial SWCNTs with red phosphorus deposited on the outer surface of nanotubes and/or encapsulated in internal channels of nanotubes in lithium-ion batteries. External phosphorus, condensed from vapors, is easily oxidized upon contact with the environment and only the un-oxidized phosphorus cores participate in electrochemical reactions. The support of the SWCNT network ensures a stable long-term cycling for these phosphorus particles. The tubular space inside the SWCNTs stimulate the formation of chain phosphorus structures. The chains reversibly interact with lithium ions and provide a specific capacity of 1545 mAh·g-1 (calculated on the mass of phosphorus in the sample) at a current density of 0.1 A·g-1. As compared to the sample containing external phosphorus, SWCNTs with encapsulated phosphorus demonstrate higher reaction rates and a slight loss of initial capacity (~7%) on the 1000th cycle at 5 A·g-1.
Collapse
Affiliation(s)
- Anna A. Vorfolomeeva
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Svetlana G. Stolyarova
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Igor P. Asanov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Elena V. Shlyakhova
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Pavel E. Plyusnin
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Evgeny A. Maksimovskiy
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Evgeny Yu. Gerasimov
- Boreskov Institute of Catalysis, SB RAS, 5 Acad. Lavrentiv Ave., 630090 Novosibirsk, Russia
| | - Andrey L. Chuvilin
- CIC NanoGUNE BRTA, Tolosa Hiribidea 76, E-20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation of Science, Maria Diaz de Haro 3, E-48013 Bilbao, Spain
| | - Alexander V. Okotrub
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Lyubov G. Bulusheva
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| |
Collapse
|
29
|
Abdelrahman A, Erchiqui F, Nedil M, Mohamed S. Enhancing Fluidic Polymeric Solutions' Physical Properties with Nano Metals and Graphene Additives. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Uncertainties in Electric Circuit Analysis of Anisotropic Electrical Conductivity and Piezoresistivity of Carbon Nanotube Nanocomposites. Polymers (Basel) 2022; 14:polym14224794. [PMID: 36432921 PMCID: PMC9699648 DOI: 10.3390/polym14224794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022] Open
Abstract
Electrical conductivity and piezoresistivity of carbon nanotube (CNT) nanocomposites are analyzed by nodal analysis for aligned and random CNT networks dependent on the intrinsic CNT conductivity and tunneling barrier values. In the literature, these parameters are assigned with significant uncertainty; often, the intrinsic resistivity is neglected. We analyze the variability of homogenized conductivity, its sensitivity to deformation, and the validity of the assumption of zero intrinsic resistivity. A fast algorithm for simulation of a gauge factor is proposed. The modelling shows: (1) the uncertainty of homogenization caused by the uncertainty in CNT electrical properties is higher than the uncertainty, caused by the nanocomposite randomness; (2) for defect-prone nanotubes (intrinsic conductivity ~104 S/m), the influence of tunneling barrier energy on both the homogenized conductivity and gauge factor is weak, but it becomes stronger for CNTs with higher intrinsic conductivity; (3) the assumption of infinite intrinsic conductivity (defect-free nanotubes) has strong influence on the homogenized conductivity.
Collapse
|
31
|
Yin Z, Ding A, Zhang H, Zhang W. The Relevant Approaches for Aligning Carbon Nanotubes. MICROMACHINES 2022; 13:1863. [PMID: 36363883 PMCID: PMC9696039 DOI: 10.3390/mi13111863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Carbon-nanotube (CNT) is a promising material owing to its compelling mechanical, thermal and electrical properties and has been applied in a broad variety of fields such as composite, fiber, film and microelectronic. Although the introductions of CNT have brought huge improvement for many applications, these properties of macrostructures prepared by CNTs still cannot meet those of individual CNT. Disordered alignment of CNTs in the matrix results in degradation of performance and hinders further application. Nowadays, quantities of methods are being researched to realize alignments of CNTs. In this paper, we introduce the application of CNTs and review some typical pathways for vertical and horizontal alignment, including chemical vapor disposition, vertical self-assembly, external force, film assisted, electric field, magnetic field and printing. Besides that, advantages and disadvantages of specific methods are also discussed. We believe that these efforts will contribute to further understanding the nature of aligned CNT and generating more effective ideas to the relevant workers.
Collapse
Affiliation(s)
- Zhifu Yin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130000, China
| | - Ao Ding
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130000, China
| | - Hui Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
| | - Wang Zhang
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130000, China
| |
Collapse
|
32
|
Ultrafast growth of carbon nanotubes using microwave irradiation: characterization and its potential applications. Heliyon 2022; 8:e10943. [PMID: 36276756 PMCID: PMC9582729 DOI: 10.1016/j.heliyon.2022.e10943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/27/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Carbon nanotubes (CNTs) have been studied for more than twenty-five years due to their distinguishing features such as high tensile strength, high elastic module, high surface area, high thermal and electrical conductivity, making them ideal for a variety of applications. Nanotechnology and nanoscience researchers are working to develop CNTs with appropriate properties for possible future applications. New methodologies for their synthesis are clearly needed to be developed and refined. In this research, the authors look at the history and the recent developments of carbon nanotubes synthesis methods for CNTs, such as arc discharge, laser ablation, chemical vapour deposition and microwave irradiation. New immerging methods like microwave irradiation for the growth of CNTs and their composite was extensively reviewed. Low temperature and ultrafast growth of CNT through microwave irradiation technique were examined and discussed. In addition, all the techniques used for the CNTs characterization were also briefly discussed. Special attention was dedicated to the application of CNTs. This review has extensively explored future applications in the biomedical sector, industrial water purifications, CNTs composites, energy and storage devices. Synthesis of carbon nanotubes using different methods. Microwave irradiation techniques are used for the growth of CNTs. Current challenge and future aspects of CNTs growth. Detailed characterization and application of CNTs.
Collapse
|
33
|
Mitin D, Vorobyev A, Pavlov A, Berdnikov Y, Mozharov A, Mikhailovskii V, Ramirez B JA, Krasnikov DV, Kopylova DS, Kirilenko DA, Vinnichenko M, Polozkov R, Nasibulin AG, Mukhin I. Tuning the Optical Properties and Conductivity of Bundles in Networks of Single-Walled Carbon Nanotubes. J Phys Chem Lett 2022; 13:8775-8782. [PMID: 36103372 DOI: 10.1021/acs.jpclett.2c01931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The films of single-walled carbon nanotubes (SWCNTs) are a promising material for flexible transparent electrodes, which performance depends not only on the properties of individual nanotubes but also, foremost, on bundling of individual nanotubes. This work investigates the impact of densification on optical and electronic properties of SWCNT bundles and fabricated films. Our ab initio analysis shows that the optimally densified bundles, consisting of a mixture of quasi-metallic and semiconducting SWCNTs, demonstrate quasi-metallic behavior and can be considered as an effective conducting medium. Our density functional theory calculations indicate the band curving and bandgap narrowing with the reduction of the distance between nanotubes inside bundles. Simulation results are consistent with the observed conductivity improvement and shift of the absorption peaks in SWCNT films densified in isopropyl alcohol. Therefore, not only individual nanotubes but also the bundles should be considered as building blocks for high-performance transparent conductive SWCNT-based films.
Collapse
Affiliation(s)
- Dmitry Mitin
- Saint Petersburg Academic University, Khlopina, 8/3A, St. Petersburg 194021, Russia
- Peter the Great St. Petersburg Polytechnic University, Politekhnicheskaya 29, St. Petersburg 195251, Russia
| | - Alexandr Vorobyev
- Saint Petersburg Academic University, Khlopina, 8/3A, St. Petersburg 194021, Russia
| | - Alexander Pavlov
- Saint Petersburg Academic University, Khlopina, 8/3A, St. Petersburg 194021, Russia
- Peter the Great St. Petersburg Polytechnic University, Politekhnicheskaya 29, St. Petersburg 195251, Russia
| | - Yury Berdnikov
- St. Petersburg State University, Universitetskaya Emb. 13B, 199034 St. Petersburg, Russia
| | - Alexey Mozharov
- St. Petersburg State University, Universitetskaya Emb. 13B, 199034 St. Petersburg, Russia
| | - Vladimir Mikhailovskii
- St. Petersburg State University, Universitetskaya Emb. 13B, 199034 St. Petersburg, Russia
| | - Javier A Ramirez B
- Skolkovo Institute of Science and Technology, Nobel str. 3, Moscow 121205, Russia
| | - Dmitry V Krasnikov
- Skolkovo Institute of Science and Technology, Nobel str. 3, Moscow 121205, Russia
| | - Daria S Kopylova
- Skolkovo Institute of Science and Technology, Nobel str. 3, Moscow 121205, Russia
| | - Demid A Kirilenko
- Ioffe Institute, 26 Politekhnicheskaya, St Petersburg 194021, Russia
| | - Maxim Vinnichenko
- Peter the Great St. Petersburg Polytechnic University, Politekhnicheskaya 29, St. Petersburg 195251, Russia
| | - Roman Polozkov
- Saint Petersburg Academic University, Khlopina, 8/3A, St. Petersburg 194021, Russia
- Peter the Great St. Petersburg Polytechnic University, Politekhnicheskaya 29, St. Petersburg 195251, Russia
- ITMO University, St Petersburg 197101, Russia
| | - Albert G Nasibulin
- Skolkovo Institute of Science and Technology, Nobel str. 3, Moscow 121205, Russia
- Aalto University, P.O. Box 16100, FI-00076 Aalto, Espoo, Finland
| | - Ivan Mukhin
- Saint Petersburg Academic University, Khlopina, 8/3A, St. Petersburg 194021, Russia
- Peter the Great St. Petersburg Polytechnic University, Politekhnicheskaya 29, St. Petersburg 195251, Russia
| |
Collapse
|
34
|
Zeng Z, Wang G, Wolan BF, Wu N, Wang C, Zhao S, Yue S, Li B, He W, Liu J, Lyding JW. Printable Aligned Single-Walled Carbon Nanotube Film with Outstanding Thermal Conductivity and Electromagnetic Interference Shielding Performance. NANO-MICRO LETTERS 2022; 14:179. [PMID: 36048370 PMCID: PMC9437195 DOI: 10.1007/s40820-022-00883-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/16/2022] [Indexed: 05/04/2023]
Abstract
Ultrathin, lightweight, and flexible aligned single-walled carbon nanotube (SWCNT) films are fabricated by a facile, environmentally friendly, and scalable printing methodology. The aligned pattern and outstanding intrinsic properties render "metal-like" thermal conductivity of the SWCNT films, as well as excellent mechanical strength, flexibility, and hydrophobicity. Further, the aligned cellular microstructure promotes the electromagnetic interference (EMI) shielding ability of the SWCNTs, leading to excellent shielding effectiveness (SE) of ~ 39 to 90 dB despite a density of only ~ 0.6 g cm-3 at thicknesses of merely 1.5-24 µm, respectively. An ultrahigh thickness-specific SE of 25 693 dB mm-1 and an unprecedented normalized specific SE of 428 222 dB cm2 g-1 are accomplished by the freestanding SWCNT films, significantly surpassing previously reported shielding materials. In addition to an EMI SE greater than 54 dB in an ultra-broadband frequency range of around 400 GHz, the films demonstrate excellent EMI shielding stability and reliability when subjected to mechanical deformation, chemical (acid/alkali/organic solvent) corrosion, and high-/low-temperature environments. The novel printed SWCNT films offer significant potential for practical applications in the aerospace, defense, precision components, and smart wearable electronics industries.
Collapse
Affiliation(s)
- Zhihui Zeng
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Shandong, Jinan, 250061, People's Republic of China
| | - Gang Wang
- Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Brendan F Wolan
- Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Na Wu
- Department of Chemistry, Swiss Federal Institute of Technology in Zurich (ETH Zürich), 8092, Zurich, Switzerland
| | - Changxian Wang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Shanyu Zhao
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Überland Strasse 129, 8600, Dübendorf, Switzerland
| | - Shengying Yue
- Institute for Advanced Technology, Shandong University, Jinan, 250061, People's Republic of China
| | - Bin Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Shandong, Jinan, 250061, People's Republic of China
| | - Weidong He
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Überland Strasse 129, 8600, Dübendorf, Switzerland
| | - Jiurong Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Shandong, Jinan, 250061, People's Republic of China.
| | - Joseph W Lyding
- Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
35
|
Uz YC, Tanoğlu M. Determination of activation energy for carbon/epoxy prepregs containing carbon nanotubes by differential scanning calorimetry. HIGH PERFORM POLYM 2022. [DOI: 10.1177/09540083221115987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of the present study is the thermal characterization of laboratory-scale carbon fiber/epoxy-based prepregs by incorporating single-wall carbon nanotubes (SWCNTs). Investigation of the cure behavior of a prepreg system is crucial for the characterization and optimization of the fiber reinforced polymeric (FRP) composite. To affect dispersion characteristics, SWCNTs were functionalized by oxidizing their surface with carboxyl (-COOH) group using an acid treatment. The modified resin system contained 0.05, 0.1, and 0.2 wt. % functionalized SWCNTs (F-SWCNTs). Carbon fiber (CF) reinforced prepregs containing various amount of F-SWCNTs were prepared using drum-type winding technique. FTIR was performed to identify new bonding groups formed after the functionalization of SWCNTs. Cure kinetics of prepregs prepared with/without F-SWCNTs were investigated using isoconversional methods.
Collapse
Affiliation(s)
- Yusuf Can Uz
- Department of Mechanical Engineering, İzmir Institute of Technology, Urla, Turkey
| | - Metin Tanoğlu
- Department of Mechanical Engineering, İzmir Institute of Technology, Urla, Turkey
| |
Collapse
|
36
|
Sierra-Trillo MI, Thomann R, Krossing I, Hanselmann R, Mülhaupt R, Thomann Y. Laser Ablation on Isostatic Graphite-A New Way to Create Exfoliated Graphite. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5474. [PMID: 36013620 PMCID: PMC9410218 DOI: 10.3390/ma15165474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
In search of a new way to fabricate graphene-like materials, isostatic graphite targets were ablated using high peak power with a nanosecond-pulsed infrared laser. We conducted dry ablations in an argon atmosphere and liquid-phase ablations in the presence of a liquid medium (water or toluene). After the dry ablation, the SEM images of the target showed carbon in the form of a volcano-like grain structure, which seemed to be the result of liquid carbon ejected from the ablation center. No graphite exfoliation could be achieved using dry ablation. When using liquid phase ablation with water or toluene as a liquid medium, no traces of the formation of liquid carbon were found, but cleaner and deeper craters were observed. In particular, when using toluene as a liquid medium, typical graphite exfoliation was found. We believe that due to the extremely high pressure and high temperature induced by the laser pulses, toluene was able to intercalate into the graphite layers. Between the laser pulses, the intercalated toluene was able to flash evaporate and blow-up the graphite, which resulted in exfoliated graphite. Exfoliated graphite was found on the ablated graphite surface, as well as in the toluene medium. The ablation experiments with toluene undertaken in this study demonstrated an effective method of producing micrometer-sized graphene material. When using water as a liquid medium, no massive graphite exfoliation was observed. This meant that under the used laser conditions, toluene was a better intercalant for graphite exfoliation than water.
Collapse
Affiliation(s)
- Maria Isabel Sierra-Trillo
- Freiburger Materialforschungszentrum, Stefan-Meier-Straße 21, D-79104 Freiburg im Breisgau, Germany
- Institut für Anorganische und Analytische Chemie, Albert Straße 21, D-79104 Freiburg im Breisgau, Germany
| | - Ralf Thomann
- Freiburger Materialforschungszentrum, Stefan-Meier-Straße 21, D-79104 Freiburg im Breisgau, Germany
- Institut für Makromolekulare Chemie, Stefan-Meier-Straße 31, D-79104 Freiburg im Breisgau, Germany
| | - Ingo Krossing
- Freiburger Materialforschungszentrum, Stefan-Meier-Straße 21, D-79104 Freiburg im Breisgau, Germany
- Institut für Anorganische und Analytische Chemie, Albert Straße 21, D-79104 Freiburg im Breisgau, Germany
| | - Ralf Hanselmann
- Institut für Makromolekulare Chemie, Stefan-Meier-Straße 31, D-79104 Freiburg im Breisgau, Germany
| | - Rolf Mülhaupt
- Freiburger Materialforschungszentrum, Stefan-Meier-Straße 21, D-79104 Freiburg im Breisgau, Germany
- Institut für Makromolekulare Chemie, Stefan-Meier-Straße 31, D-79104 Freiburg im Breisgau, Germany
| | - Yi Thomann
- Freiburger Materialforschungszentrum, Stefan-Meier-Straße 21, D-79104 Freiburg im Breisgau, Germany
| |
Collapse
|
37
|
Carbon-Related Materials: Graphene and Carbon Nanotubes in Semiconductor Applications and Design. MICROMACHINES 2022; 13:mi13081257. [PMID: 36014179 PMCID: PMC9412642 DOI: 10.3390/mi13081257] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/05/2022] [Accepted: 07/29/2022] [Indexed: 12/04/2022]
Abstract
As the scaling technology in the silicon-based semiconductor industry is approaching physical limits, it is necessary to search for proper materials to be utilized as alternatives for nanoscale devices and technologies. On the other hand, carbon-related nanomaterials have attracted so much attention from a vast variety of research and industry groups due to the outstanding electrical, optical, mechanical and thermal characteristics. Such materials have been used in a variety of devices in microelectronics. In particular, graphene and carbon nanotubes are extraordinarily favorable substances in the literature. Hence, investigation of carbon-related nanomaterials and nanostructures in different ranges of applications in science, technology and engineering is mandatory. This paper reviews the basics, advantages, drawbacks and investigates the recent progress and advances of such materials in micro and nanoelectronics, optoelectronics and biotechnology.
Collapse
|
38
|
Carbon nanotube as an emerging theranostic tool for oncology. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Kim TH, Nam DH, Kim DH, Leem G, Lee S. Fabrication of Multi-Vacancy-Defect MWCNTs by the Removal of Metal Oxide Nanoparticles. Polymers (Basel) 2022; 14:polym14142942. [PMID: 35890718 PMCID: PMC9319261 DOI: 10.3390/polym14142942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/04/2022] [Accepted: 07/18/2022] [Indexed: 12/10/2022] Open
Abstract
This study aims to increase the specific surface area of multi-walled carbon nanotubes (MWCNTs) by forming and subsequently removing various metal oxide nanoparticles on them. We used facile methods, such as forming the particles without using a vacuum or gas and removing these particles through simple acid treatment. The shapes of the composite structures on which the metal oxide particles were formed and the formation of multi-vacancy-defect MWCNTs were confirmed via transmission electron microscopy and scanning electron microscopy. The crystallinity of the formed metal oxide particles was confirmed using X-ray diffraction analysis. Through specific surface area analysis and Raman spectroscopy, the number of defects formed and the degree and tendency of defect-formation in each metal were determined. In all the cases where the metal oxide particles were removed, the specific surface area increased, and the metal inducing the highest specific surface area was determined.
Collapse
Affiliation(s)
- Tae Hyeong Kim
- Department of Applied Chemistry, Hanyang University ERICA, Ansan 15588, Korea; (T.H.K.); (D.H.N.)
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan 15588, Korea
| | - Dong Hwan Nam
- Department of Applied Chemistry, Hanyang University ERICA, Ansan 15588, Korea; (T.H.K.); (D.H.N.)
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan 15588, Korea
| | - Do-Hyun Kim
- School of Electrical Engineering, Korea University, Seoul 02841, Korea;
| | - Gyu Leem
- Department of Chemistry, State University of New York, College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210, USA;
- The Michael M. Szwarc Polymer Research Institute, 1 Forestry Drive, Syracuse, NY 13210, USA
| | - Seunghyun Lee
- Department of Applied Chemistry, Hanyang University ERICA, Ansan 15588, Korea; (T.H.K.); (D.H.N.)
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan 15588, Korea
- The Michael M. Szwarc Polymer Research Institute, 1 Forestry Drive, Syracuse, NY 13210, USA
- Department of Chemical and Molecular Engineering, Hanyang University ERICA, Ansan 15588, Korea
- Correspondence:
| |
Collapse
|
40
|
Candreva A, Parisi F, Bartucci R, Guzzi R, Di Maio G, Scarpelli F, Aiello I, Godbert N, La Deda M. Synthesis and Characterization of Hyper‐Branched Nanoparticles with Magnetic and Plasmonic Properties. ChemistrySelect 2022. [DOI: 10.1002/slct.202201375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Angela Candreva
- Department of Chemistry and Chemical Technologies University of Calabria 87036 Rende CS Italy
- CNR-NANOTEC Istituto di Nanotecnologia U.O.S Cosenza (CS) 87036 Rende Italy
| | - Francesco Parisi
- Department of Chemistry and Chemical Technologies University of Calabria 87036 Rende CS Italy
| | - Rosa Bartucci
- Department of Chemistry and Chemical Technologies University of Calabria 87036 Rende CS Italy
- Department of Physics Molecular Biophysics Laboratory University of Calabria 87036 Rende CS Italy
| | - Rita Guzzi
- CNR-NANOTEC Istituto di Nanotecnologia U.O.S Cosenza (CS) 87036 Rende Italy
- Department of Physics Molecular Biophysics Laboratory University of Calabria 87036 Rende CS Italy
| | - Giuseppe Di Maio
- Department of Chemistry and Chemical Technologies University of Calabria 87036 Rende CS Italy
| | - Francesca Scarpelli
- Department of Chemistry and Chemical Technologies University of Calabria 87036 Rende CS Italy
| | - Iolinda Aiello
- Department of Chemistry and Chemical Technologies University of Calabria 87036 Rende CS Italy
- CNR-NANOTEC Istituto di Nanotecnologia U.O.S Cosenza (CS) 87036 Rende Italy
| | - Nicolas Godbert
- Department of Chemistry and Chemical Technologies University of Calabria 87036 Rende CS Italy
| | - Massimo La Deda
- Department of Chemistry and Chemical Technologies University of Calabria 87036 Rende CS Italy
- CNR-NANOTEC Istituto di Nanotecnologia U.O.S Cosenza (CS) 87036 Rende Italy
| |
Collapse
|
41
|
An J, Feng Y, Zhao Q, Wang X, Liu J, Li N. Electrosynthesis of H 2O 2 through a two-electron oxygen reduction reaction by carbon based catalysts: From mechanism, catalyst design to electrode fabrication. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2022; 11:100170. [PMID: 36158761 PMCID: PMC9488048 DOI: 10.1016/j.ese.2022.100170] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 06/15/2023]
Abstract
Hydrogen peroxide (H2O2) is an efficient oxidant with multiple uses ranging from chemical synthesis to wastewater treatment. The in-situ H2O2 production via a two-electron oxygen reduction reaction (ORR) will bring H2O2 beyond its current applications. The development of carbon materials offers the hope for obtaining inexpensive and high-performance alternatives to substitute noble-metal catalysts in order to provide a full and comprehensive picture of the current state of the art treatments and inspire new research in this area. Herein, the most up-to-date findings in theoretical predictions, synthetic methodologies, and experimental investigations of carbon-based catalysts are systematically summarized. Various electrode fabrication and modification methods were also introduced and compared, along with our original research on the air-breathing cathode and three-phase interface theory inside a porous electrode. In addition, our current understanding of the challenges, future directions, and suggestions on the carbon-based catalyst designs and electrode fabrication are highlighted.
Collapse
Affiliation(s)
- Jingkun An
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Yujie Feng
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin, 150090, China
| | - Qian Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Jia Liu
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Nan Li
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| |
Collapse
|
42
|
Difference in Gas-Sensing behavior of Multi-walled carbon Nanotube-Paper-Based gas sensor to polar and non-Polar organic solvents. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Safdar M, Kim W, Park S, Gwon Y, Kim YO, Kim J. Engineering plants with carbon nanotubes: a sustainable agriculture approach. J Nanobiotechnology 2022; 20:275. [PMID: 35701848 PMCID: PMC9195285 DOI: 10.1186/s12951-022-01483-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/25/2022] [Indexed: 01/12/2023] Open
Abstract
Sustainable agriculture is an important conception to meet the growing food demand of the global population. The increased need for adequate and safe food, as well as the ongoing ecological destruction associated with conventional agriculture practices are key global challenges. Nanomaterials are being developed in the agriculture sector to improve the growth and protection of crops. Among the various engineered nanomaterials, carbon nanotubes (CNTs) are one of the most promising carbon-based nanomaterials owing to their attractive physiochemical properties such as small size, high surface area, and superior mechanical and thermal strength, offering better opportunities for agriculture sector applications. This review provides basic information about CNTs, including their history; classification; and electrical, thermal, and mechanical properties, with a focus on their applications in the agriculture field. Furthermore, the mechanisms of the uptake and translocation of CNTs in plants and their defense mechanisms against environmental stresses are discussed. Finally, the major shortcomings, threats, and challenges of CNTs are assessed to provide a broad and clear view of the potential and future directions for CNT-based agriculture applications to achieve the goal of sustainability.
Collapse
Affiliation(s)
- Mahpara Safdar
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.,Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.,Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Woochan Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.,Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.,Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sunho Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.,Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.,Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yonghyun Gwon
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.,Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.,Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yeon-Ok Kim
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea. .,Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea. .,Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
44
|
A Methodical Review on Carbon-Based Nanomaterials in Energy-Related Applications. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/4438286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Carbon nanomaterials are endowed with novel and magnificent optical, electrical, chemical, mechanical, and thermal properties, with a promising prospect in different advanced applications such as electronics, batteries, capacitors, wastewater treatment, membranes, heterogeneous catalysis, and medical sciences. However, macroscopic synthesis of carbon materials for industrial use has been a great challenge. Furthermore, structural nonhomogeneity and indefinite fabrication have hindered vigorous and consistent implementation of these materials in extensive technologies. Nevertheless, they offer exotic physics, and as a result, they have continued to attract great interest from the scientific community in an effort aimed to optimize their properties through innovative synthesis techniques, ensuring macroscopic production and discovering new applications. Hence, this study endeavours to provide a conscious review of these materials via the comprehensive discussion of the various allotropes of carbon (fullerenes, carbon nanotubes, and graphene), synthesis techniques (arc discharge, laser ablation, and chemical vapor deposition), and their applications in energy-related fields (batteries, capacitors, photocells, hydrogen storage, sensors, etc.) and their impending prospects.
Collapse
|
45
|
Zhang D, Huang Y. Dispersion characterizations and adhesion properties of epoxy composites reinforced by carboxymethyl cellulose surface treated carbon nanotubes. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Mansouri M, Rezagholipour Dizaji H, Saeidi MR, Mirzaheydari A, Vaezzadeh M. Interplay Between Competition Pinch Effect and Repulsion Force in Carbon Nanotubes. INTERNATIONAL JOURNAL OF NANOSCIENCE 2022. [DOI: 10.1142/s0219581x22500053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
47
|
Obermair M, Hettler S, Dries M, Hugenschmidt M, Spiecker R, Gerthsen D. Carbon-film-based Zernike phase plates with smooth thickness gradient for phase-contrast transmission electron microscopy with reduced fringing artifacts. J Microsc 2022; 287:45-58. [PMID: 35438194 DOI: 10.1111/jmi.13108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/30/2022] [Accepted: 04/13/2022] [Indexed: 12/01/2022]
Abstract
Phase plates (PPs) in transmission electron microscopy (TEM) improve the contrast of weakly scattering objects under in-focus imaging conditions. A well-established PP type is the Zernike (Z)PP, which consists of a thin amorphous carbon (aC) film with a micro-scaled hole in the center. The mean inner potential of the aC film is exploited to shift the phase of the scattered electrons while the unscattered electrons in the zero-order beam propagate through the hole and remain unaffected. However, the abrupt thickness increase at the hole edge induces an abrupt change of the phase-shift distribution and leads to fringing, i.e., intensity oscillations around imaged objects, in TEM images. In this work, we have used focused-ion-beam milling to fabricate ZPPs with abrupt and graded thickness profiles around the center hole. Depending on the thickness gradient and inner hole radius, graded-ZPP-TEM images of an aC/vacuum interface and bundles of carbon nanotubes (CNTs) show strongly reduced fringing. Image simulations were performed with ZPP-phase-shift distributions derived from measured thickness profiles of graded ZPPs, which show good agreement with the experimental images. Fringing artifacts, i.e. intensity oscillations around imaged objects, are strongly reduced for Zernike phase plates with a graded thickness profile around the center hole. Focused-ion-beam milling is used to fabricate graded Zernike phase plates with specific inner hole radius and thickness gradients. The phase-shift distribution is obtained from measured thickness profiles around the center hole. Image simulations based on experimentally measured thickness/phase-shift distributions show good agreement with experimental Zernike phase-plate TEM images. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- M Obermair
- Laboratorium für Elektronenmikroskopie (LEM), Karlsruher Institut für Technologie (KIT), Engesserstraße 7, Karlsruhe, 76131, Germany
| | - S Hettler
- Laboratorium für Elektronenmikroskopie (LEM), Karlsruher Institut für Technologie (KIT), Engesserstraße 7, Karlsruhe, 76131, Germany.,Laboratorio de Microscopías Avanzadas (LMA), Universidad de Zaragoza, C/ Mariano Esquillor s/n, Zaragoza, 50018, Spain
| | - M Dries
- Laboratorium für Elektronenmikroskopie (LEM), Karlsruher Institut für Technologie (KIT), Engesserstraße 7, Karlsruhe, 76131, Germany
| | - M Hugenschmidt
- Laboratorium für Elektronenmikroskopie (LEM), Karlsruher Institut für Technologie (KIT), Engesserstraße 7, Karlsruhe, 76131, Germany.,3DMM2O - Cluster of Excellence (EXC-2082/1 - 390761711), Karlsruhe Institute of Technology (KIT) Karlsruhe, Germany
| | - R Spiecker
- Laboratorium für Elektronenmikroskopie (LEM), Karlsruher Institut für Technologie (KIT), Engesserstraße 7, Karlsruhe, 76131, Germany.,Laboratory for Applications of Synchrotron Radiation (LAS), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, Karlsruhe, 76131, Germany
| | - D Gerthsen
- Laboratorium für Elektronenmikroskopie (LEM), Karlsruher Institut für Technologie (KIT), Engesserstraße 7, Karlsruhe, 76131, Germany.,3DMM2O - Cluster of Excellence (EXC-2082/1 - 390761711), Karlsruhe Institute of Technology (KIT) Karlsruhe, Germany
| |
Collapse
|
48
|
Kumar N, Chamoli P, Misra M, Manoj MK, Sharma A. Advanced metal and carbon nanostructures for medical, drug delivery and bio-imaging applications. NANOSCALE 2022; 14:3987-4017. [PMID: 35244647 DOI: 10.1039/d1nr07643d] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Nanoparticles (NPs) offer great promise for biomedical, environmental, and clinical applications due to their several unique properties as compared to their bulk counterparts. In this review article, we overview various types of metal NPs and magnetic nanoparticles (MNPs) in monolithic form as well as embedded into polymer matrices for specific drug delivery and bio-imaging fields. The second part of this review covers important carbon nanostructures that have gained tremendous attention recently in such medical applications due to their ease of fabrication, excellent biocompatibility, and biodegradability at both cellular and molecular levels for phototherapy, radio-therapeutics, gene-delivery, and biotherapeutics. Furthermore, various applications and challenges involved in the use of NPs as biomaterials are also discussed following the future perspectives of the use of NPs in biomedicine. This review aims to contribute to the applications of different NPs in medicine and healthcare that may open up new avenues to encourage wider research opportunities across various disciplines.
Collapse
Affiliation(s)
- Neeraj Kumar
- Department of Metallurgical Engineering, SOE, O.P. Jindal University, Raigarh 496109, India
- Department of Metallurgical and Materials Engineering, NIT Raipur, Raipur, 492010, India
| | - Pankaj Chamoli
- School of Basic & Applied Sciences, Department of Physics, Shri Guru Ram Rai University, Dehradun-248001, Uttarakhand, India
| | - Mrinmoy Misra
- Department of Mechatronics, School of Automobile, Mechanical and Mechatronics, Manipal University Jaipur, 303007 Rajasthan, India
| | - M K Manoj
- Department of Metallurgical and Materials Engineering, NIT Raipur, Raipur, 492010, India
| | - Ashutosh Sharma
- Department of Materials Science and Engineering, Ajou University, Suwon-16499, South Korea.
| |
Collapse
|
49
|
Shikata R, Suzuki H, Hayashi Y, Hasegawa T, Shigeeda Y, Inoue H, Yajima W, Kametaka J, Maetani M, Tanaka Y, Nishikawa T, Maeda S, Hayashi Y, Hada M. Enhancement of the mechanical and thermal transport properties of carbon nanotube yarns by boundary structure modulation. NANOTECHNOLOGY 2022; 33:235707. [PMID: 35196260 DOI: 10.1088/1361-6528/ac57d5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Carbon nanotubes (CNTs) exhibit extremely high nanoscopic thermal/electrical transport and mechanical properties. However, the macroscopic properties of assembled CNTs are significantly lower than those of CNTs because of the boundary structure between the CNTs. Therefore, it is crucial to understand the relationship between the nanoscopic boundary structure in CNTs and the macroscopic properties of the assembled CNTs. Previous studies have shown that the nanoscopic phonon transport and macroscopic thermal transport in CNTs are improved by Joule annealing because of the improved boundary Van-der-Waals interactions between CNTs via the graphitization of amorphous carbon. In this study, we investigate the mechanical strength and thermal/electrical transport properties of CNT yarns with and without Joule annealing at various temperatures, analyzing the phenomena occurring at the boundaries of CNTs. The obtained experimental and theoretical results connect the nanoscopic boundary interaction of CNTs in CNT yarns and the macroscopic mechanical and transport properties of CNT yarns.
Collapse
Affiliation(s)
- Ryo Shikata
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
| | - Hiroo Suzuki
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Yuta Hayashi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Taisuke Hasegawa
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
- Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science, Tsukuba, Japan
| | - Yuho Shigeeda
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Hirotaka Inoue
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Wataru Yajima
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
| | - Jun Kametaka
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Mitsuaki Maetani
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Yuichiro Tanaka
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Takeshi Nishikawa
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Satoshi Maeda
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
- Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science, Tsukuba, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Yasuhiko Hayashi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Masaki Hada
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
50
|
Kayang KW, Banna AH, Volkov AN. Chirality-Dependent Mechanical Properties of Bundles and Thin Films Composed of Covalently Cross-Linked Carbon Nanotubes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1977-1994. [PMID: 35104409 DOI: 10.1021/acs.langmuir.1c02632] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The effect of nanotube chirality on the mechanical properties of materials composed of single-walled carbon nanotubes (CNTs) is poorly understood since the interfacial load transfer in such materials is strongly dependent on the intertube interaction and structure of the nanotube network. Here, a combined atomistic-mesoscopic study is performed to reveal the effect of CNT diameter on the deformation mechanisms and mechanical properties of CNT bundles and low-density CNT films with covalent cross-links (CLs). First, the pullout of the central nanotube from bundles composed of seven (5,5), (10,10), (20,20), (17,0), and (26,0) CNTs is studied in molecular dynamics simulations based on the ReaxFF force field. The simulations show that the shear modulus and strength increase with decreasing CNT diameter. The results of atomistic simulations are used to parametrize a mesoscopic model of CLs and to perform mesoscopic simulations of in-plane tension and compression of thin films composed of thousands of cross-linked CNTs. The mechanical properties of CNT films are found to be strongly dependent on CNT diameter. The film modulus increases as the CNT diameter increases, while the tensile strength decreases. The in-plane compression is characterized by collective bending of whole films and order-of-magnitude smaller compressive strengths. The films composed of (5,5) CNTs exhibit the ability for large-strain compression without irreversible changes in the material structure. The stretching rigidity of individual nanotubes and volumetric CL density are identified as the key factors that dominate the effect of CNT chirality on the mechanical properties of CNT films. The film modulus is affected by both CL density and stretching rigidity of CNTs, while the tensile strength is dominated by CL density. The obtained results suggest that the on-demand optimization of the mechanical properties of CNT films can be performed by tuning the nanotube chirality distribution.
Collapse
Affiliation(s)
- Kevin W Kayang
- Department of Mechanical Engineering, University of Alabama, Seventh Avenue, Tuscaloosa, Alabama 35487, United States
| | - Abu Horaira Banna
- Department of Mechanical Engineering, University of Alabama, Seventh Avenue, Tuscaloosa, Alabama 35487, United States
| | - Alexey N Volkov
- Department of Mechanical Engineering, University of Alabama, Seventh Avenue, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|