1
|
Truong LD, Trostel J, Roncal C, Cara-Fuentes G, Miyazaki M, Miyazaki-Anzai S, Andres-Hernando A, Sasai F, Lanaspa M, Johnson RJ, Garcia GE. Production of Acetylcholine by Podocytes and its Protection from Kidney Injury in GN. J Am Soc Nephrol 2025; 36:205-218. [PMID: 39302734 PMCID: PMC11801748 DOI: 10.1681/asn.0000000000000492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 09/02/2024] [Indexed: 09/22/2024] Open
Abstract
Key Points Our study demonstrated the sole enzyme responsible for acetylcholine production, choline acetyltransferase, was expressed in podocytes. Acetylcholine decreased glomerular injury in GN by reducing inflammation and protecting endothelium. Choline acetyltransferase/acetylcholine production was induced in podocytes with drugs already available. Background One of the most important factors modulating endothelial health is acetylcholine; and while it is associated as a cholinergic neurotransmitter, it is also expressed by non-neuronal cells. However, its role in the kidney, which does not receive cholinergic innervation, remains unknown. Methods To determine whether acetylcholine is produced in the kidney, we used choline acetyltransferase (ChAT) (BAC)–enhanced green fluorescent protein (ChAT mice) transgenic mice in which enhanced green fluorescent protein is expressed under the control of the endogenous ChAT transcriptional regulatory elements. We then investigated the role of acetylcholine in kidney disease by inducing antiglomerular basement membrane GN (anti-GBM GN) in ChAT transgenic mice. Results We demonstrate ChAT, the sole enzyme responsible for acetylcholine production, was expressed in glomerular podocytes and produced acetylcholine. We also show during anti-GBM GN in ChAT transgenic mice, ChAT expression was induced in the glomeruli, mainly in podocytes, and protects mice from kidney injury with marked reduction of glomerular proliferation/fibrinoid necrosis (by 71%), crescent formation (by 98%), and tubular injury (by 78%). By contrast, specific knockout of podocyte ChAT worsened the severity of the disease. The mechanism of protection included reduction of inflammation, attenuation of angiogenic factors reduction, and increase of endothelial nitric oxide synthase expression. In vitro and in vivo studies demonstrated available drugs such as cholinesterase inhibitors and ChAT inducers increased the expression of podocyte-ChAT and acetylcholine production. Conclusions These findings suggest de novo synthesis of acetylcholine by podocytes protected against inflammation and glomerular endothelium damage in anti-GBM GN. Podcast This article contains a podcast at https://dts.podtrac.com/redirect.mp3/www.asn-online.org/media/podcast/JASN/2024_12_05_ASN0000000000000492.mp3
Collapse
Affiliation(s)
- Luan D. Truong
- Department of Pathology, Baylor College of Medicine, The Houston Methodist Hospital, Houston, Texas
| | - Jessica Trostel
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Carlos Roncal
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Gabriel Cara-Fuentes
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Makoto Miyazaki
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Shinobu Miyazaki-Anzai
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Ana Andres-Hernando
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Fumihiko Sasai
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Miguel Lanaspa
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Richard J. Johnson
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Gabriela E. Garcia
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
2
|
Medica S, Denton M, Diggins NL, Kramer-Hansen O, Crawford LB, Mayo AT, Perez WD, Daily MA, Parkins CJ, Slind LE, Pung LJ, Weber WC, Jaeger HK, Streblow ZJ, Sulgey G, Kreklywich CN, Alexander T, Rosenkilde MM, Caposio P, Hancock MH, Streblow DN. Third intracellular loop of HCMV US28 is necessary for signaling and viral reactivation. J Virol 2025; 99:e0180124. [PMID: 39655954 PMCID: PMC11784217 DOI: 10.1128/jvi.01801-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 11/13/2024] [Indexed: 02/01/2025] Open
Abstract
The human cytomegalovirus (HCMV) encoded chemokine receptor US28 plays a critical role in viral pathogenesis, mediating several processes such as cellular migration, differentiation, transformation, and viral latency and reactivation. Despite significant research examining the signal transduction pathways utilized by US28, the precise mechanism by which US28 activates these pathways remains unclear. We performed a mutational analysis of US28 to identify signaling domains that are critical for functional activities. Our results indicate that specific residues within the third intracellular loop (ICL3) of US28 are major determinants of G-protein coupling and downstream signaling activity. Alanine substitutions at positions S218, K223, and R225 attenuated US28-mediated activation of MAPK and RhoA signal transduction pathways. Furthermore, we show that mutations at positions S218, K223, or R225 result in impaired coupling to multiple Gα isoforms. However, these substitutions did not affect US28 plasma membrane localization or the receptor internalization rate. Utilizing CD34+ HPC models, we demonstrate that attenuation of US28 signaling via mutation of residues within the ICL3 region results in an inability of the virus to efficiently reactivate from latency. These results were recapitulated in vivo, utilizing a humanized mouse model of HCMV infection. Together, our results provide new insights into the mechanism by which US28 manipulates host signaling networks to mediate viral latency and reactivation. The results reported here will guide the development of targeted therapies to prevent HCMV-associated disease.IMPORTANCEHuman cytomegalovirus (HCMV) is a β-herpesvirus that infects between 44% and 100% of the world population. Primary infection is typically asymptomatic and results in the establishment of latent infection within CD34+hematopoietic progenitor cells (HPCs). However, reactivation from latent infection remains a significant cause of morbidity and mortality in immunocompromised individuals. The viral chemokine receptor US28 influences various cellular processes crucial for viral latency and reactivation, yet the precise mechanism by which US28 functions remains unclear. Through mutational analysis, we identified key residues within the third intracellular loop (ICL3) of US28 that govern G-protein coupling, downstream signaling, and viral reactivation in vitro and in vivo. These findings offer novel insights into how US28 manipulates host signaling networks to regulate HCMV latency and reactivation and expand our understanding of HCMV pathogenesis.
Collapse
Affiliation(s)
- Samuel Medica
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | - Michael Denton
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Nicole L. Diggins
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Olivia Kramer-Hansen
- Department of Biomedical Sciences Molecular Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Lindsey B. Crawford
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Adam T. Mayo
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Wilma D. Perez
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Michael A. Daily
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Christopher J. Parkins
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Luke E. Slind
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Lydia J. Pung
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Whitney C. Weber
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | - Hannah K. Jaeger
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Zachary J. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Gauthami Sulgey
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Craig N. Kreklywich
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Timothy Alexander
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Mette M. Rosenkilde
- Department of Biomedical Sciences Molecular Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Patrizia Caposio
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Meaghan H. Hancock
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Daniel N. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, USA
| |
Collapse
|
3
|
Tsutsumi N, Kildedal DF, Hansen OK, Kong Q, Schols D, Van Loy T, Rosenkilde MM. Insight into structural properties of viral G protein-coupled receptors and their role in the viral infection: IUPHAR Review 41. Br J Pharmacol 2025; 182:26-51. [PMID: 39443818 DOI: 10.1111/bph.17379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/27/2024] [Accepted: 09/14/2024] [Indexed: 10/25/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are pivotal in cellular signalling and drug targeting. Herpesviruses encode GPCRs (vGPCRs) to manipulate cellular signalling, thereby regulating various aspects of the virus life cycle, such as viral spreading and immune evasion. vGPCRs mimic host chemokine receptors, often with broader signalling and high constitutive activity. This review focuses on the recent advancements in structural knowledge about vGPCRs, with an emphasis on molecular mechanisms of action and ligand binding. The structures of US27 and US28 from human cytomegalovirus (HCMV) are compared to their closest human homologue, CX3CR1. Contrasting US27 and US28, the homotrimeric UL78 structure (HCMV) reveals more distance to chemokine receptors. Open reading frame 74 (ORF74; Kaposi's sarcoma-associated herpesvirus) is compared to CXCRs, whereas BILF1 (Epstein-Barr virus) is discussed as a putative lipid receptor. Furthermore, the roles of vGPCRs in latency and lytic replication, reactivation, dissemination and immune evasion are reviewed, together with their potential as drug targets for virus infections and virus-related diseases.
Collapse
Affiliation(s)
- Naotaka Tsutsumi
- TMDU Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Dagmar Fæster Kildedal
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Synklino ApS, Copenhagen, Denmark
| | - Olivia Kramer Hansen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Qianqian Kong
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Tom Van Loy
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
4
|
Trotta AM, Mazzarella V, Roggia M, D'Aniello A, Del Bene A, Vetrei C, Di Maiolo G, Campagna E, Natale B, Rea G, Santagata S, D'Alterio C, Cutolo R, Mottola S, Merlino F, Benedetti R, Altucci L, Messere A, Cosconati S, Tomassi S, Scala S, Di Maro S. Comprehensive structural investigation of a potent and selective CXCR4 antagonist via crosslink modification. Eur J Med Chem 2024; 279:116911. [PMID: 39348763 DOI: 10.1016/j.ejmech.2024.116911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/02/2024]
Abstract
Macrocyclization presents a valuable strategy for enhancing the pharmacokinetic and pharmacodynamic profiles of short bioactive peptides. The exploration of various macrocyclic characteristics, such as crosslinking tethers, ring size, and orientation, is generally conducted during the early stages of development. Herein, starting from a potent and selective C-X-C chemokine receptor 4 (CXCR4) cyclic heptapeptide antagonist mimicking the N-terminal region of CXCL12, we demonstrated that the disulfide bridge could be successfully replaced with a side-chain to side-chain lactam bond, which is commonly not enlisted among the conventional disulfide mimetics. An extensive investigation was carried out to explore the chemical space of the resulting peptides, including macrocyclization width, stereochemical configuration, and lactam orientation, all of which were correlated with biochemical activity. We identified a novel heptapeptide that fully replicates the pharmacological profile of the parent peptide on CXCR4, including its potency, selectivity, and antagonistic activity, while demonstrating enhanced stability in a reductive environment. At this stage, computational studies were instructed to shed light on how the lactam cyclization features influenced the overall structure of 21 and, in turn, its ability to interact with the receptor. We envisage that these findings can give new momentum to the use of lactam cyclization as a disulfide bond mimetic and contribute to the enhancement of the repertoire for peptide-based drug development, thereby paving the way for novel avenues in therapeutic innovation.
Collapse
Affiliation(s)
- Anna Maria Trotta
- Microenvironment Molecular Targets, Istituto Nazionale per lo Studio e la Cura dei Tumori-IRCCS-Fondazione "G. Pascale", 80131, Naples, Italy
| | - Vincenzo Mazzarella
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Via A. Vivaldi, 43, 81100, Caserta, Italy
| | - Michele Roggia
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Via A. Vivaldi, 43, 81100, Caserta, Italy
| | - Antonia D'Aniello
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Via A. Vivaldi, 43, 81100, Caserta, Italy
| | - Alessandra Del Bene
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Via A. Vivaldi, 43, 81100, Caserta, Italy
| | - Cinzia Vetrei
- Microenvironment Molecular Targets, Istituto Nazionale per lo Studio e la Cura dei Tumori-IRCCS-Fondazione "G. Pascale", 80131, Naples, Italy
| | - Gaetana Di Maiolo
- Microenvironment Molecular Targets, Istituto Nazionale per lo Studio e la Cura dei Tumori-IRCCS-Fondazione "G. Pascale", 80131, Naples, Italy
| | - Erica Campagna
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Via A. Vivaldi, 43, 81100, Caserta, Italy
| | - Benito Natale
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Via A. Vivaldi, 43, 81100, Caserta, Italy
| | - Giuseppina Rea
- Microenvironment Molecular Targets, Istituto Nazionale per lo Studio e la Cura dei Tumori-IRCCS-Fondazione "G. Pascale", 80131, Naples, Italy
| | - Sara Santagata
- Microenvironment Molecular Targets, Istituto Nazionale per lo Studio e la Cura dei Tumori-IRCCS-Fondazione "G. Pascale", 80131, Naples, Italy
| | - Crescenzo D'Alterio
- Microenvironment Molecular Targets, Istituto Nazionale per lo Studio e la Cura dei Tumori-IRCCS-Fondazione "G. Pascale", 80131, Naples, Italy
| | - Roberto Cutolo
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Via A. Vivaldi, 43, 81100, Caserta, Italy
| | - Salvatore Mottola
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Via A. Vivaldi, 43, 81100, Caserta, Italy
| | - Francesco Merlino
- Department of Pharmacy, University of Naples "Federico II", 80131, Naples, Italy
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania ''Luigi Vanvitelli'', Vico L. De Crecchio 7, 80138, Naples, Italy; Program of Medical Epigenetics, Vanvitelli Hospital, Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania ''Luigi Vanvitelli'', Vico L. De Crecchio 7, 80138, Naples, Italy; Program of Medical Epigenetics, Vanvitelli Hospital, Naples, Italy; Institute of Endocrinology and Oncology "Gaetano Salvatore" (IEOS), 80131, Naples, Italy; Biogem Institute of Molecular and Genetic Biology, 83031, Ariano Irpino, Italy
| | - Anna Messere
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Via A. Vivaldi, 43, 81100, Caserta, Italy
| | - Sandro Cosconati
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Via A. Vivaldi, 43, 81100, Caserta, Italy
| | - Stefano Tomassi
- Department of Life Science, Health, and Health Professions, LINK Campus University, Via del Casale di San Pio V, 44, 00165, Rome, Italy.
| | - Stefania Scala
- Microenvironment Molecular Targets, Istituto Nazionale per lo Studio e la Cura dei Tumori-IRCCS-Fondazione "G. Pascale", 80131, Naples, Italy.
| | - Salvatore Di Maro
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Via A. Vivaldi, 43, 81100, Caserta, Italy.
| |
Collapse
|
5
|
Liu Y, Liu A, Li X, Liao Q, Zhang W, Zhu L, Ye RD. Cryo-EM structure of monomeric CXCL12-bound CXCR4 in the active state. Cell Rep 2024; 43:114578. [PMID: 39093700 DOI: 10.1016/j.celrep.2024.114578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/17/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024] Open
Abstract
CXCR4 binding of its endogenous agonist CXCL12 leads to diverse functions, including bone marrow retention of hematopoietic progenitors and cancer metastasis. However, the structure of the CXCL12-bound CXCR4 remains unresolved despite available structures of CXCR4 in complex with antagonists. Here, we present the cryoelectron microscopy (cryo-EM) structure of the CXCL12-CXCR4-Gi complex at an overall resolution of 2.65 Å. CXCL12 forms a 1:1 stoichiometry complex with CXCR4, following the two-site model. The first 8 amino acids of mature CXCL12 are crucial for CXCR4 activation by forming polar interactions with minor sub-pocket residues in the transmembrane binding pocket. The 3.2-Å distance between V3 of CXCL12 and the "toggle switch" W6.48 marks the deepest insertion among all chemokine-receptor pairs, leading to conformational changes of CXCR4 for G protein activation. These results, combined with functional assays and computational analysis, provide the structural basis for CXCR4 activation by CXCL12.
Collapse
Affiliation(s)
- Yezhou Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Aijun Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China; Dongguan Songshan Lake Central Hospital, Dongguan Third People's Hospital, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan, Guangdong 523326, China
| | - Xinyu Li
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Qiwen Liao
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Weijia Zhang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Lizhe Zhu
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| | - Richard D Ye
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China; The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Guangdong 518048, China.
| |
Collapse
|
6
|
Spahn MA, Luyten K, Van Loy T, Sathekge M, Deroose CM, Koole M, Schols D, Vanduffel W, De Vos K, Annaert P, Bormans G, Cleeren F. Second generation Al 18F-labeled D-amino acid peptide for CXCR4 targeted molecular imaging. Nucl Med Biol 2024; 132-133:108906. [PMID: 38518400 DOI: 10.1016/j.nucmedbio.2024.108906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/11/2024] [Accepted: 03/17/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND The C-X-C chemokine receptor type 4 (CXCR4) is overexpressed in many cancers, e.g. multiple myeloma and acute leukemia, yet solely [68Ga]PentixaFor is used for clinical PET imaging. The aim of this study was to develop and assess a second generation Al18F-labeled D-amino acid peptide based on the viral macrophage inflammatory protein II for CXCR4 targeted molecular imaging. METHODS We designed a library of monomer and multimer constructs and evaluated their binding affinity for human and mouse CXCR4. Based on these results, we selected the best vector molecule for development of an Al18F-labeled ligand, [18F]AlF-NOTA-2xDV1(c11sc12s), which was further evaluated in a cell-based binding assay to assess its binding properties and specificity for CXCR4. Next, pharmacokinetics and tumor uptake of [18F]AlF-NOTA-2xDV1(c11sc12s) were evaluated in naïve mice and mice with xenografts derived from U87.CXCR4 cells. Finally, we performed an imaging study in a non-human primate to assess the in vivo distribution of this novel radioligand in a species closely related to humans. RESULTS The lead ligand AlF-NOTA-2xDV1(c11sc12s) showed six-fold higher affinity for human CXCR4 compared to Ga-Pentixafor. The corresponding radiotracer was obtained in a good radiochemical yield of 40.1 ± 13.5 % (n = 4) and apparent molar activity of 20.4 ± 3.3 MBq/nmol (n = 4) after optimization. In U87.CD4.CXCR4 cell binding assays, the total bound fraction of [18F]AlF-NOTA-(2×)DV1(c11sc12s) was 32.4 ± 1.8 %. This fraction could be reduced by 82.5 % in the presence of 75 μM AMD3100. In naïve mice, [18F]AlF-NOTA-2xDV1(c11sc12s) accumulated in organs expressing mouse CXCR4, e.g. the liver (SUVmean (mean standardized uptake value) 75 min p.i. 11.7 ± 0.6), which was blockable by co-injecting AMD3100 (5 mg/kg). In U87.CXCR4 xenografted tumor mice, the tumor uptake of [18F]AlF-NOTA-2xDV1(c11sc12s) remained low (SUVmean 0.5 ± 0.1), but was reduced by co-administration of AMD3100. Surprisingly, [18F]AlF-NOTA-2xDV1(c11sc12s) exhibited a similar biodistribution in a non-human primate as in mice indicating off-target binding of [18F]AlF-NOTA-2xDV1(c11sc12s) in liver tissue. We confirmed that [18F]AlF-NOTA-2xDV1(c11sc12s) is taken up by hepatocytes using in vitro studies and that the uptake can be blocked with AMD3100 and rifampicin, a potent organic anion-transporting-polypeptide (OATP)1B1 and OATP1B3 inhibitor. CONCLUSION The second generation D-peptide AlF-NOTA-2xDV1(c11sc12s) showed high affinity for human CXCR4 and the corresponding radiotracer was produced in good radiochemical yields. However, [18F]AlF-NOTA-2xDV1(c11sc12s) is not specific for CXCR4 and is also a substrate for OATP1B1 and/or OATP1B3, known to mediate hepatic uptake. Therefore, D-amino acid peptides, based on the viral macrophage inflammatory protein II, are not the prefered vector molecule for the development of CXCR4 targeting molecular imaging tools.
Collapse
Affiliation(s)
- Muriel Aline Spahn
- Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Kaat Luyten
- Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Tom Van Loy
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Mike Sathekge
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, South Africa
| | - Christophe M Deroose
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Dominique Schols
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Wim Vanduffel
- Laboratory for Neuro- and Psychophysiology, KU Leuven Medical School, Leuven, Belgium
| | - Kristof De Vos
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Guy Bormans
- Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Frederik Cleeren
- Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
7
|
Meng Q, Zhu R, Mao Y, Zhu S, Wu Y, Huang L, Ciechanover A, An J, Xu Y, Huang Z. Biological and mutational analyses of CXCR4-antagonist interactions and design of new antagonistic analogs. Biosci Rep 2023; 43:BSR20230981. [PMID: 38131305 PMCID: PMC10987480 DOI: 10.1042/bsr20230981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/05/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
The chemokine receptor CXCR4 has become an attractive therapeutic target for HIV-1 infection, hematopoietic stem cell mobilization, and cancer metastasis. A wide variety of synthetic antagonists of CXCR4 have been developed and studied for a growing list of clinical applications. To compare the biological effects of different antagonists on CXCR4 functions and their common and/or distinctive molecular interactions with the receptor, we conducted head-to-head comparative cell-based biological and mutational analyses of the interactions with CXCR4 of eleven reported antagonists, including HC4319, DV3, DV1, DV1 dimer, V1, vMIP-II, CVX15, LY2510924, IT1t, AMD3100, and AMD11070 that were representative of different structural classes of D-peptides, L-peptide, natural chemokine, cyclic peptides, and small molecules. The results were rationalized by molecular modeling of CXCR4-antagonist interactions from which the common as well as different receptor binding sites of these antagonists were derived, revealing a number of important residues such as W94, D97, H113, D171, D262, and E288, mostly of negative charge. To further examine this finding, we designed and synthesized new antagonistic analogs by adding positively charged residues Arg to a D-peptide template to enhance the postulated charge-charge interactions. The newly designed analogs displayed significantly increased binding to CXCR4, which supports the notion that negatively charged residues of CXCR4 can engage in interactions with moieties of positive charge of the antagonistic ligands. The results from these mutational, modeling and new analog design studies shed new insight into the molecular mechanisms of different types of antagonists in recognizing CXCR4 and guide the development of new therapeutic agents.
Collapse
Affiliation(s)
- Qian Meng
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ruohan Zhu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yujia Mao
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Siyu Zhu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yi Wu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lina S.M. Huang
- Division of Infectious Diseases and Global Public Heath, Department of Medicine, School of Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, U.S.A
| | - Aaron Ciechanover
- The Rapport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, Chinese University of Hong Kong, Shenzhen 518172, China
| | - Jing An
- Division of Infectious Diseases and Global Public Heath, Department of Medicine, School of Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, U.S.A
| | - Yan Xu
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, Chinese University of Hong Kong, Shenzhen 518172, China
| | - Ziwei Huang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- Division of Infectious Diseases and Global Public Heath, Department of Medicine, School of Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, U.S.A
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
8
|
Discovery of Bis-Imidazoline Derivatives as New CXCR4 Ligands. Molecules 2023; 28:molecules28031156. [PMID: 36770826 PMCID: PMC9920567 DOI: 10.3390/molecules28031156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
The chemokine receptor CXCR4 and its ligand CXCL12 regulate leukocyte trafficking, homeostasis and functions and are potential therapeutic targets in many diseases such as HIV-1 infection and cancers. Here, we identified new CXCR4 ligands in the CERMN chemical library using a FRET-based high-throughput screening assay. These are bis-imidazoline compounds comprising two imidazole rings linked by an alkyl chain. The molecules displace CXCL12 binding with submicromolar potencies, similarly to AMD3100, the only marketed CXCR4 ligand. They also inhibit anti-CXCR4 mAb 12G5 binding, CXCL12-mediated chemotaxis and HIV-1 infection. Further studies with newly synthesized derivatives pointed out to a role of alkyl chain length on the bis-imidazoline properties, with molecules with an even number of carbons equal to 8, 10 or 12 being the most potent. Interestingly, these differ in the functions of CXCR4 that they influence. Site-directed mutagenesis and molecular docking predict that the alkyl chain folds in such a way that the two imidazole groups become lodged in the transmembrane binding cavity of CXCR4. Results also suggest that the alkyl chain length influences how the imidazole rings positions in the cavity. These results may provide a basis for the design of new CXCR4 antagonists targeting specific functions of the receptor.
Collapse
|
9
|
HIV-1 gp120-CXCR4 recognition probed with synthetic nanomolar affinity D-peptides containing fragments of gp120 V3 loop. Eur J Med Chem 2022; 244:114797. [PMID: 36270088 PMCID: PMC10150781 DOI: 10.1016/j.ejmech.2022.114797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 11/22/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) recognizes one of its principal coreceptors, the CXC chemokine receptor 4 (CXCR4) on the host cell via the third variable loop (V3 loop) of HIV-1 envelope glycoprotein gp120 during the viral entry process. Here, we investigated the stereochemical mechanism of the molecular recognition of HIV-1 gp120 V3 loop with coreceptor CXCR4 by using peptide probes containing important fragments of the V3 loop. The tip and base/stem fragments of the V3 loop critical for V3 loop function were linked individually with the fragment derived from another CXCR4's chemokine ligand, vMIP-II to generate nanomolar affinity peptide probes of the interactions of CXCR4-V3 loop fragments. When the amino acid residues of the V3 loop fragments in these combinational peptides were changed from L-to D-configurations, the resulting peptides remarkably retained or had even enhanced recognition by CXCR4 as shown by competitive ligand-receptor binding. The ability of these peptides, regardless of the different l- or d-amino acids used, in binding CXCR4 and antagonizing CXCR4 functions was demonstrated by their blockade of calcium influx, cell migration, and CXCR4 internalization triggered by the activation of CXCR4 signaling by its endogenous ligand SDF-1α. The structural mechanisms of CXCR4 interactions with these peptides were examined with site-directed mutagenesis and molecular modeling. These results indicate that CXCR4's interface with key segments of HIV-1 gp120 V3 loop is flexible in terms of stereospecificity of ligand-receptor interaction which may have implication on understanding the viral entry mechanism and how the virus evades immune detection with V3 loop mutations and retains effective recognition of the host cell's coreceptor.
Collapse
|
10
|
Yan Y, Su J, Zhang Z. The CXCL12/CXCR4/ACKR3 Response Axis in Chronic Neurodegenerative Disorders of the Central Nervous System: Therapeutic Target and Biomarker. Cell Mol Neurobiol 2022; 42:2147-2156. [PMID: 34117967 PMCID: PMC11421623 DOI: 10.1007/s10571-021-01115-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/02/2021] [Indexed: 12/20/2022]
Abstract
There has been an increase in the incidence of chronic neurodegenerative disorders of the central nervous system, including Alzheimer's and Parkinson's diseases, over the recent years mostly due to the rise in the number of elderly individuals. In addition, various neurodegenerative disorders are related to imbalances in the CXCL12/CXCR4/ACKR3 response axis. Notably, the CXC Chemokine Ligand 12 (CXCL12) is essential for the development of the central nervous system. Moreover, the expression and distribution of CXCL12 and its receptors are associated with the aggravation or alleviation of symptoms of neurodegenerative disorders. Therefore, the current review sought to highlight the specific functions of CXCL12 and its receptors in various neurodegenerative disorders, in order to provide new insights for future research.
Collapse
Affiliation(s)
- Yudie Yan
- Department of Ultrasound, First Affiliated Hospital of China Medical University, Liaoning Province, Shenyang City, 110001, People's Republic of China
| | - Jingtong Su
- Jinzhou Medical University, Liaoning Province, Jinzhou City, People's Republic of China
| | - Zhen Zhang
- Department of Ultrasound, First Affiliated Hospital of China Medical University, Liaoning Province, Shenyang City, 110001, People's Republic of China.
| |
Collapse
|
11
|
Rosenkilde MM, Tsutsumi N, Knerr JM, Kildedal DF, Garcia KC. Viral G Protein-Coupled Receptors Encoded by β- and γ-Herpesviruses. Annu Rev Virol 2022; 9:329-351. [PMID: 35671566 PMCID: PMC9584139 DOI: 10.1146/annurev-virology-100220-113942] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Herpesviruses are ancient large DNA viruses that have exploited gene capture as part of their strategy to escape immune surveillance, promote virus spreading, or reprogram host cells to benefit their survival. Most acquired genes are transmembrane proteins and cytokines, such as viral G protein-coupled receptors (vGPCRs), chemokines, and chemokine-binding proteins. This review focuses on the vGPCRs encoded by the human β- and γ-herpesviruses. These include receptors from human cytomegalovirus, which encodes four vGPCRs: US27, US28, UL33, and UL78; human herpesvirus 6 and 7 with two receptors: U12 and U51; Epstein-Barr virus with one: BILF1; and Kaposi's sarcoma-associated herpesvirus with one: open reading frame 74. We discuss ligand binding, signaling, and structures of the vGPCRs in light of robust differences from endogenous receptors. Finally, we briefly discuss the therapeutic targeting of vGPCRs as future treatment of acute and chronic herpesvirus infections. Expected final online publication date for the Annual Review of Virology, Volume 9 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Mette M Rosenkilde
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark;
| | - Naotaka Tsutsumi
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Julius M Knerr
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark;
| | | | - K Christopher Garcia
- Departments of Molecular and Cellular Physiology, and Structural Biology, and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA;
| |
Collapse
|
12
|
Berg C, Wedemeyer MJ, Melynis M, Schlimgen RR, Hansen LH, Våbenø J, Peterson FC, Volkman BF, Rosenkilde MM, Lüttichau HR. The non-ELR CXC chemokine encoded by human cytomegalovirus UL146 genotype 5 contains a C-terminal β-hairpin and induces neutrophil migration as a selective CXCR2 agonist. PLoS Pathog 2022; 18:e1010355. [PMID: 35271688 PMCID: PMC8939814 DOI: 10.1371/journal.ppat.1010355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 03/22/2022] [Accepted: 02/09/2022] [Indexed: 11/19/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a major pathogen in immunocompromised patients. The UL146 gene exists as 14 diverse genotypes among clinical isolates, which encode 14 different CXC chemokines. One genotype (vCXCL1GT1) is a known agonist for CXCR1 and CXCR2, while two others (vCXCL1GT5 and vCXCL1GT6) lack the ELR motif considered crucial for CXCR1 and CXCR2 binding, thus suggesting another receptor targeting profile. To determine the receptor target for vCXCL1GT5, the chemokine was probed in a G protein signaling assay on all 18 classical human chemokine receptors, where CXCR2 was the only receptor being activated. In addition, vCXCL1GT5 recruited β-arrestin in a BRET-based assay and induced migration in a chemotaxis assay through CXCR2, but not CXCR1. In contrast, vCXCL1GT1 stimulated G protein signaling, recruited β-arrestin and induced migration through both CXCR1 and CXCR2. Both vCXCL1GT1 and vCXCL1GT5 induced equally potent and efficacious migration of neutrophils, and ELR vCXCL1GT4 and non-ELR vCXCL1GT6 activated only CXCR2. In contrast to most human chemokines, the 14 UL146 genotypes have remarkably long C-termini. Comparative modeling using Rosetta showed that each genotype could adopt the classic chemokine core structure, and predicted that the extended C-terminal tail of several genotypes (including vCXCL1GT1, vCXCL1GT4, vCXCL1GT5, and vCXCL1GT6) forms a novel β-hairpin not found in human chemokines. Secondary NMR shift and TALOS+ analysis of vCXCL1GT1 supported the existence of two stable β-strands. C-terminal deletion of vCXCL1GT1 resulted in a non-functional protein and in a shift to solvent exposure for tryptophan residues likely due to destabilization of the chemokine fold. The results demonstrate that non-ELR chemokines can activate CXCR2 and suggest that the UL146 chemokines have unique C-terminal structures that stabilize the chemokine fold. Increased knowledge of the structure and interaction partners of the chemokine variants encoded by UL146 is key to understanding why circulating HCMV strains sustain 14 stable genotypes. Human cytomegalovirus (HCMV) is a prevalent herpesvirus infecting an estimated 60% of the human population worldwide. It is commonly transmitted during early childhood and leads to life-long latency, where viral reactivation can cause severe complications in case of host immune suppression. Furthermore, HCMV is the leading cause of congenital infections. Circulating HCMV strains exhibit great genetic diversity unusual for DNA viruses. One of its most diverse genes is UL146, which encodes a chemokine that facilitates viral dissemination by exploiting the human immune system through mimicry of key immunity components. In this study, we investigate how the diversity of UL146 affects its signaling and structural properties to understand why its genetic diversity is maintained across human populations. We find that certain genotypes that lack key structural domains present in the human homologs nonetheless exert similar functions in the virus-host relationship. Furthermore, many of the UL146 genotypes contain novel structural elements critical for correct protein folding and with the potential to provide HCMV with additional immune modulatory and evasive features. Together, our data highlight a considerable degree of host-adaptation by HCMV and propose novel structural interactions with implications for the virus-host interplay.
Collapse
Affiliation(s)
- Christian Berg
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
- Unit for Infectious Diseases, Department of Medicine, Herlev-Gentofte Hospital, University of Copenhagen, Herlev, Denmark
| | - Michael J. Wedemeyer
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Motiejus Melynis
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Roman R. Schlimgen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Lasse H. Hansen
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Jon Våbenø
- Helgeland Hospital Trust, Sandnessjøen, Norway
| | - Francis C. Peterson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Brian F. Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Mette M. Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (MMR); (HRL)
| | - Hans R. Lüttichau
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
- Unit for Infectious Diseases, Department of Medicine, Herlev-Gentofte Hospital, University of Copenhagen, Herlev, Denmark
- * E-mail: (MMR); (HRL)
| |
Collapse
|
13
|
Stark LE, Guan W, Colvin ME, LiWang PJ. The binding and specificity of chemokine binding proteins, through the lens of experiment and computation. Biomed J 2021; 45:439-453. [PMID: 34311129 PMCID: PMC9421921 DOI: 10.1016/j.bj.2021.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/26/2022] Open
Abstract
Chemokines are small proteins that are critical for immune function, being primarily responsible for the activation and chemotaxis of leukocytes. As such, many viruses, as well as parasitic arthropods, have evolved systems to counteract chemokine function in order to maintain virulence, such as binding chemokines, mimicking chemokines, or producing analogs of transmembrane chemokine receptors that strongly bind their targets. The focus of this review is the large group of chemokine binding proteins (CBP) with an emphasis on those produced by mammalian viruses. Because many chemokines mediate inflammation, these CBP could possibly be used pharmaceutically as anti-inflammatory agents. In this review, we summarize the structural properties of a diverse set of CBP and describe in detail the chemokine binding properties of the poxvirus-encoded CBP called vCCI (viral CC Chemokine Inhibitor). Finally, we describe the current and emerging capabilities of combining computational simulation, structural analysis, and biochemical/biophysical experimentation to understand, and possibly re-engineer, protein–protein interactions.
Collapse
Affiliation(s)
- Lauren E Stark
- Quantitative and Systems Biology Graduate Group, University of California, 5200 N. Lake Rd., Merced, CA 95343
| | - Wenyan Guan
- Materials and Biomaterials Science and Engineering, University of California, 5200 N. Lake Rd., Merced, CA 95343
| | - Michael E Colvin
- Quantitative and Systems Biology Graduate Group, University of California, 5200 N. Lake Rd., Merced, CA 95343; Department of Chemistry and Biochemistry, University of California, 5200 N. Lake Rd., Merced, CA 95343
| | - Patricia J LiWang
- Quantitative and Systems Biology Graduate Group, University of California, 5200 N. Lake Rd., Merced, CA 95343; Materials and Biomaterials Science and Engineering, University of California, 5200 N. Lake Rd., Merced, CA 95343; Department of Molecular and Cell Biology, University of California, 5200 N. Lake Rd., Merced, CA 95343.
| |
Collapse
|
14
|
Cano-Garrido O, Álamo P, Sánchez-García L, Falgàs A, Sánchez-Chardi A, Serna N, Parladé E, Unzueta U, Roldán M, Voltà-Durán E, Casanova I, Villaverde A, Mangues R, Vázquez E. Biparatopic Protein Nanoparticles for the Precision Therapy of CXCR4 + Cancers. Cancers (Basel) 2021; 13:2929. [PMID: 34208189 PMCID: PMC8230831 DOI: 10.3390/cancers13122929] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 01/05/2023] Open
Abstract
The accumulated molecular knowledge about human cancer enables the identification of multiple cell surface markers as highly specific therapeutic targets. A proper tumor targeting could significantly avoid drug exposure of healthy cells, minimizing side effects, but it is also expected to increase the therapeutic index. Specifically, colorectal cancer has a particularly poor prognosis in late stages, being drug targeting an appropriate strategy to substantially improve the therapeutic efficacy. In this study, we have explored the potential of the human albumin-derived peptide, EPI-X4, as a suitable ligand to target colorectal cancer via the cell surface protein CXCR4, a chemokine receptor overexpressed in cancer stem cells. To explore the potential use of this ligand, self-assembling protein nanoparticles have been generated displaying an engineered EPI-X4 version, which conferred a modest CXCR4 targeting and fast and high level of cell apoptosis in tumor CXCR4+ cells, in vitro and in vivo. In addition, when EPI-X4-based building blocks are combined with biologically inert polypeptides containing the CXCR4 ligand T22, the resulting biparatopic nanoparticles show a dramatically improved biodistribution in mouse models of CXCR4+ human cancer, faster cell internalization and enhanced target cell death when compared to the version based on a single ligand. The generation of biparatopic materials opens exciting possibilities in oncotherapies based on high precision drug delivery based on the receptor CXCR4.
Collapse
Affiliation(s)
- Olivia Cano-Garrido
- Nanoligent SL, Edifici EUREKA, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Patricia Álamo
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Instituto de Investigación Biomédica Sant Pau (IIB Sant Pau), Sant Antoni Ma Claret 167, 08025 Barcelona, Spain
- Instituto de Investigación Contra la Leucemia Josep Carreras, 08025 Barcelona, Spain
| | - Laura Sánchez-García
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Aïda Falgàs
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Instituto de Investigación Biomédica Sant Pau (IIB Sant Pau), Sant Antoni Ma Claret 167, 08025 Barcelona, Spain
- Instituto de Investigación Contra la Leucemia Josep Carreras, 08025 Barcelona, Spain
| | - Alejandro Sánchez-Chardi
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
- Servei de Microscòpia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Naroa Serna
- Nanoligent SL, Edifici EUREKA, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Eloi Parladé
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Ugutz Unzueta
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Instituto de Investigación Biomédica Sant Pau (IIB Sant Pau), Sant Antoni Ma Claret 167, 08025 Barcelona, Spain
- Instituto de Investigación Contra la Leucemia Josep Carreras, 08025 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Mònica Roldán
- Unitat de Microscòpia Confocal i Imatge Cel·lular, Servei de Medicina Genètica i Molecular, Institut Pediàtric de Malalties Rares (IPER), Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Eric Voltà-Durán
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Isolda Casanova
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Instituto de Investigación Biomédica Sant Pau (IIB Sant Pau), Sant Antoni Ma Claret 167, 08025 Barcelona, Spain
- Instituto de Investigación Contra la Leucemia Josep Carreras, 08025 Barcelona, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Ramón Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Instituto de Investigación Biomédica Sant Pau (IIB Sant Pau), Sant Antoni Ma Claret 167, 08025 Barcelona, Spain
- Instituto de Investigación Contra la Leucemia Josep Carreras, 08025 Barcelona, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
15
|
De Groof TWM, Elder EG, Siderius M, Heukers R, Sinclair JH, Smit MJ. Viral G Protein-Coupled Receptors: Attractive Targets for Herpesvirus-Associated Diseases. Pharmacol Rev 2021; 73:828-846. [PMID: 33692148 DOI: 10.1124/pharmrev.120.000186] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Herpesviruses are ubiquitous pathogens that establish lifelong, latent infections in their host. Spontaneous reactivation of herpesviruses is often asymptomatic or clinically manageable in healthy individuals, but reactivation events in immunocompromised or immunosuppressed individuals can lead to severe morbidity and mortality. Moreover, herpesvirus infections have been associated with multiple proliferative cardiovascular and post-transplant diseases. Herpesviruses encode viral G protein-coupled receptors (vGPCRs) that alter the host cell by hijacking cellular pathways and play important roles in the viral life cycle and these different disease settings. In this review, we discuss the pharmacological and signaling properties of these vGPCRs, their role in the viral life cycle, and their contribution in different diseases. Because of their prominent role, vGPCRs have emerged as promising drug targets, and the potential of vGPCR-targeting therapeutics is being explored. Overall, these vGPCRs can be considered as attractive targets moving forward in the development of antiviral, cancer, and/or cardiovascular disease treatments. SIGNIFICANCE STATEMENT: In the last decade, herpesvirus-encoded G protein-coupled receptors (GPCRs) have emerged as interesting drug targets with the growing understanding of their critical role in the viral life cycle and in different disease settings. This review presents the pharmacological properties of these viral receptors, their role in the viral life cycle and different diseases, and the emergence of therapeutics targeting viral GPCRs.
Collapse
Affiliation(s)
- Timo W M De Groof
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium (T.W.M.D.G.); Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (E.G.E., J.H.S.); Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.S., R.H., M.J.S.); and QVQ Holding B.V., Utrecht, The Netherlands (R.H.)
| | - Elizabeth G Elder
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium (T.W.M.D.G.); Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (E.G.E., J.H.S.); Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.S., R.H., M.J.S.); and QVQ Holding B.V., Utrecht, The Netherlands (R.H.)
| | - Marco Siderius
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium (T.W.M.D.G.); Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (E.G.E., J.H.S.); Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.S., R.H., M.J.S.); and QVQ Holding B.V., Utrecht, The Netherlands (R.H.)
| | - Raimond Heukers
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium (T.W.M.D.G.); Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (E.G.E., J.H.S.); Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.S., R.H., M.J.S.); and QVQ Holding B.V., Utrecht, The Netherlands (R.H.)
| | - John H Sinclair
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium (T.W.M.D.G.); Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (E.G.E., J.H.S.); Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.S., R.H., M.J.S.); and QVQ Holding B.V., Utrecht, The Netherlands (R.H.)
| | - Martine J Smit
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium (T.W.M.D.G.); Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (E.G.E., J.H.S.); Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.S., R.H., M.J.S.); and QVQ Holding B.V., Utrecht, The Netherlands (R.H.)
| |
Collapse
|
16
|
Kline JM, Heusinkveld LE, Taranto E, Martin CB, Tomasi AG, Hsu IJ, Cho K, Khillan JS, Murphy PM, Pontejo SM. Structural and functional analysis of Ccr1l1, a Rodentia-restricted eosinophil-selective chemokine receptor homologue. J Biol Chem 2021; 296:100373. [PMID: 33548230 PMCID: PMC7949164 DOI: 10.1016/j.jbc.2021.100373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 11/25/2022] Open
Abstract
Mouse Ccr1l1 (Ccr1-like 1) encodes an orphan G-protein-coupled receptor (GPCR) with the highest homology to the inflammatory and highly promiscuous chemokine receptors Ccr1 and Ccr3 (70 and 50% amino acid identity, respectively). Ccr1l1 was first cloned in 1995, yet current knowledge of this putative chemokine receptor is limited to its gene organization and chromosomal localization. Here we report that Ccr1l1 is a Rodentia-specific gene selectively expressed in eosinophils. However, eosinophil phenotypes, development, and responsiveness to chemokines were all normal in naïve Ccr1l1 knockout mice. We demonstrate for the first time that recombinant Ccr1l1 is expressed on the plasma membrane of transfected cells and contains an extracellular N terminus and an intracellular C terminus, consistent with GPCR topology. Using receptor internalization, β-arrestin recruitment, calcium flux, and chemotaxis assays, we excluded all 37 available mouse chemokines, including Ccr1 ligands, and two viral chemokines as Ccr1l1 ligands, and demonstrated that mouse Ccr1, but not Ccr1l1, exhibits constitutive signaling activity. However, sequence analysis and structural modeling revealed that Ccr1l1 is well equipped to act as a classical signaling GPCR, with N-terminal sulfotyrosines as the only signaling and chemokine-binding determinant absent in Ccr1l1. Hereof, we show that a sulfatable N-terminal Ccr1 Y18 residue is essential for chemotaxis and calcium responses induced by Ccl3 and Ccl9/10, but substituting the corresponding Ccr1l1 F19 residue with tyrosine failed to confer responsiveness to Ccr1 ligands. Although Ccr1l1 remains an extreme outlier in the chemokine receptor family, our study supports that it might respond to unidentified mouse chemokine ligands in eosinophil-driven immune responses.
Collapse
Affiliation(s)
- Jaclyn M Kline
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lauren E Heusinkveld
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Eleanor Taranto
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Clare B Martin
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Alessandra G Tomasi
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Isabel J Hsu
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kyoungin Cho
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jaspal S Khillan
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Philip M Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sergio M Pontejo
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
17
|
Baba O, Huang LH, Elvington A, Szpakowska M, Sultan D, Heo GS, Zhang X, Luehmann H, Detering L, Chevigné A, Liu Y, Randolph GJ. CXCR4-Binding Positron Emission Tomography Tracers Link Monocyte Recruitment and Endothelial Injury in Murine Atherosclerosis. Arterioscler Thromb Vasc Biol 2021; 41:822-836. [PMID: 33327748 PMCID: PMC8105279 DOI: 10.1161/atvbaha.120.315053] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE vMIP-II (viral macrophage inflammatory protein 2)/vCCL2 (viral chemotactic cytokine ligand 2) binds to multiple chemokine receptors, and vMIP-II-based positron emission tomography tracer (64Cu-DOTA-vMIP-II: vMIP-II tracer) accumulates at atherosclerotic lesions in mice. Given that it would be expected to react with multiple chemokine receptors on monocytes and macrophages, we wondered if its accumulation in atherosclerosis lesion-bearing mice might correlate with overall macrophage burden or, alternatively, the pace of monocyte recruitment. Approach and Results: We employed a mouse model of atherosclerosis regression involving adenoassociated virus 8 vector encoding murine Apoe (AAV-mApoE) treatment of Apoe-/- mice where the pace of monocyte recruitment slows before macrophage burden subsequently declines. Accumulation of 64Cu-DOTA-vMIP-II at Apoe-/- plaque sites was strong but declined with AAV-mApoE-induced decline in monocyte recruitment, before macrophage burden reduced. Monocyte depletion indicated that monocytes and macrophages themselves were not the only target of the 64Cu-DOTA-vMIP-II tracer. Using fluorescence-tagged vMIP-II tracer, competitive receptor blocking with CXCR4 antagonists, endothelial-specific Cre-mediated deletion of CXCR4, CXCR4-specific tracer 64Cu-DOTA-FC131, and CXCR4 staining during disease progression and regression, we show endothelial cell expression of CXCR4 is a key target of 64Cu-DOTA-vMIP-II imaging. Expression of CXCR4 was low in nonplaque areas but strongly detected on endothelium of progressing plaques, especially on proliferating endothelium, where vascular permeability was increased and monocyte recruitment was the strongest. CONCLUSIONS Endothelial injury status of plaques is marked by CXCR4 expression and this injury correlates with the tendency of such plaques to recruit monocytes. Furthermore, our findings suggest positron emission tomography tracers that mark CXCR4 can be used translationally to monitor the state of plaque injury and monocyte recruitment.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/diagnostic imaging
- Aorta, Thoracic/immunology
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Atherosclerosis/diagnostic imaging
- Atherosclerosis/immunology
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Biomarkers/metabolism
- Cell Line
- Chemokines/administration & dosage
- Chemokines/pharmacokinetics
- Disease Models, Animal
- Endothelial Cells/immunology
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Endothelium, Vascular/diagnostic imaging
- Endothelium, Vascular/immunology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Injections, Intravenous
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Knockout, ApoE
- Molecular Imaging
- Monocytes/immunology
- Monocytes/metabolism
- Monocytes/pathology
- Organometallic Compounds/administration & dosage
- Organometallic Compounds/pharmacokinetics
- Plaque, Atherosclerotic
- Positron-Emission Tomography
- Predictive Value of Tests
- Radiopharmaceuticals/administration & dosage
- Radiopharmaceuticals/pharmacokinetics
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
- Mice
Collapse
Affiliation(s)
- Osamu Baba
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis
| | - Li-Hao Huang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis
| | - Andrew Elvington
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis
| | - Martyna Szpakowska
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Deborah Sultan
- Department of Radiology, Washington University School of Medicine, St. Louis
| | - Gyu Seong Heo
- Department of Radiology, Washington University School of Medicine, St. Louis
| | - Xiaohui Zhang
- Department of Radiology, Washington University School of Medicine, St. Louis
| | - Hannah Luehmann
- Department of Radiology, Washington University School of Medicine, St. Louis
| | - Lisa Detering
- Department of Radiology, Washington University School of Medicine, St. Louis
| | - Andy Chevigné
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Yongjian Liu
- Department of Radiology, Washington University School of Medicine, St. Louis
| | - Gwendalyn J. Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis
| |
Collapse
|
18
|
Choi YB, Cousins E, Nicholas J. Novel Functions and Virus-Host Interactions Implicated in Pathogenesis and Replication of Human Herpesvirus 8. Recent Results Cancer Res 2021; 217:245-301. [PMID: 33200369 DOI: 10.1007/978-3-030-57362-1_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human herpesvirus 8 (HHV-8) is classified as a γ2-herpesvirus and is related to Epstein-Barr virus (EBV), a γ1-herpesvirus. One important aspect of the γ-herpesviruses is their association with neoplasia, either naturally or in animal model systems. HHV-8 is associated with B-cell-derived primary effusion lymphoma (PEL) and multicentric Castleman's disease (MCD), endothelial-derived Kaposi's sarcoma (KS), and KSHV inflammatory cytokine syndrome (KICS). EBV is also associated with a number of B-cell malignancies, such as Burkitt's lymphoma, Hodgkin's lymphoma, and posttransplant lymphoproliferative disease, in addition to epithelial nasopharyngeal and gastric carcinomas. Despite the similarities between these viruses and their associated malignancies, the particular protein functions and activities involved in key aspects of virus biology and neoplastic transformation appear to be quite distinct. Indeed, HHV-8 specifies a number of proteins for which counterparts had not previously been identified in EBV, other herpesviruses, or even viruses in general, and these proteins are believed to play vital functions in virus biology and to be involved centrally in viral pathogenesis. Additionally, a set of microRNAs encoded by HHV-8 appears to modulate the expression of multiple host proteins to provide conditions conductive to virus persistence within the host and possibly contributing to HHV-8-induced neoplasia. Here, we review the molecular biology underlying these novel virus-host interactions and their potential roles in both virus biology and virus-associated disease.
Collapse
Affiliation(s)
- Young Bong Choi
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans Street, Baltimore, MD, 21287, USA.
| | - Emily Cousins
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans Street, Baltimore, MD, 21287, USA
| | - John Nicholas
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans Street, Baltimore, MD, 21287, USA
| |
Collapse
|
19
|
Cells of the Innate and Adaptive Immune Systems in Kaposi's Sarcoma. J Immunol Res 2020; 2020:8852221. [PMID: 33294468 PMCID: PMC7700054 DOI: 10.1155/2020/8852221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/29/2020] [Accepted: 11/06/2020] [Indexed: 01/16/2023] Open
Abstract
Kaposi's sarcoma (KS) is an angioproliferative malignancy whose associated etiologic agent is the Kaposi's sarcoma-associated herpesvirus (KSHV). KS is the most prevalent malignancy among HIV-infected individuals globally and is considered an AIDS-defining malignancy. The different forms of KS including HIV-associated KS, iatrogenic (immunosuppression-related) KS, and classical KS in elderly males suggest that immune cell dysregulation is among the key components in promoting KS development in KSHV-infected individuals. It is therefore expected that different cell types of the immune system likely play distinct roles in promoting or inhibiting KS development. This narrative review is focused on discussing cells of the innate and adaptive immune systems in KSHV infection and KS pathogenesis, including how these cells can be useful in the control of KSHV infection and treatment of KS.
Collapse
|
20
|
Chemical mutagenesis of a GPCR ligand: Detoxifying "inflammo-attraction" to direct therapeutic stem cell migration. Proc Natl Acad Sci U S A 2020; 117:31177-31188. [PMID: 33219123 PMCID: PMC7733796 DOI: 10.1073/pnas.1911444117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
While inflammatory chemokines, constitutively produced by pathologic regions, are pivotal for attracting reparative stem cells, one would certainly not want to further “inflame” a diseased brain by instilling such molecules. Exploiting the fact that receptors for such cytokines (G protein-coupled receptors [GPCR]) possess two “pockets”—one for binding, the other for signaling—we created a synthetic GPCR-agonist that maximizes interaction with the former and narrows that with the latter. Homing is robust with no inflammation. The peptide successfully directed the integration of human induced pluripotent stem cell derivatives (known to have muted migration) in a model of a prototypical neurodegenerative condition, ameliorating symptomatology. A transplanted stem cell’s engagement with a pathologic niche is the first step in its restoring homeostasis to that site. Inflammatory chemokines are constitutively produced in such a niche; their binding to receptors on the stem cell helps direct that cell’s “pathotropism.” Neural stem cells (NSCs), which express CXCR4, migrate to sites of CNS injury or degeneration in part because astrocytes and vasculature produce the inflammatory chemokine CXCL12. Binding of CXCL12 to CXCR4 (a G protein-coupled receptor, GPCR) triggers repair processes within the NSC. Although a tool directing NSCs to where needed has been long-sought, one would not inject this chemokine in vivo because undesirable inflammation also follows CXCL12–CXCR4 coupling. Alternatively, we chemically “mutated” CXCL12, creating a CXCR4 agonist that contained a strong pure binding motif linked to a signaling motif devoid of sequences responsible for synthetic functions. This synthetic dual-moity CXCR4 agonist not only elicited more extensive and persistent human NSC migration and distribution than did native CXCL 12, but induced no host inflammation (or other adverse effects); rather, there was predominantly reparative gene expression. When co-administered with transplanted human induced pluripotent stem cell-derived hNSCs in a mouse model of a prototypical neurodegenerative disease, the agonist enhanced migration, dissemination, and integration of donor-derived cells into the diseased cerebral cortex (including as electrophysiologically-active cortical neurons) where their secreted cross-corrective enzyme mediated a therapeutic impact unachieved by cells alone. Such a “designer” cytokine receptor-agonist peptide illustrates that treatments can be controlled and optimized by exploiting fundamental stem cell properties (e.g., “inflammo-attraction”).
Collapse
|
21
|
Alomari N, Totonchy J. Cytokine-Targeted Therapeutics for KSHV-Associated Disease. Viruses 2020; 12:E1097. [PMID: 32998419 PMCID: PMC7600567 DOI: 10.3390/v12101097] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) also known as human herpesvirus 8 (HHV-8), is linked to several human malignancies including Kaposi sarcoma (KS), primary effusion lymphoma (PEL), multicentric Castleman's disease (MCD) and recently KSHV inflammatory cytokine syndrome (KICS). As with other diseases that have a significant inflammatory component, current therapy for KSHV-associated disease is associated with significant off-target effects. However, recent advances in our understanding of the pathogenesis of KSHV have produced new insight into the use of cytokines as potential therapeutic targets. Better understanding of the role of cytokines during KSHV infection and tumorigenesis may lead to new preventive or therapeutic strategies to limit KSHV spread and improve clinical outcomes. The cytokines that appear to be promising candidates as KSHV antiviral therapies include interleukins 6, 10, and 12 as well as interferons and tumor necrosis factor-family cytokines. This review explores our current understanding of the roles that cytokines play in promoting KSHV infection and tumorigenesis, and summarizes the current use of cytokines as therapeutic targets in KSHV-associated diseases.
Collapse
Affiliation(s)
| | - Jennifer Totonchy
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA;
| |
Collapse
|
22
|
Identification of a novel signaling complex containing host chemokine receptor CXCR4, Interleukin-10 receptor, and human cytomegalovirus US27. Virology 2020; 548:49-58. [PMID: 32838946 DOI: 10.1016/j.virol.2020.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/27/2020] [Accepted: 06/10/2020] [Indexed: 11/21/2022]
Abstract
Human cytomegalovirus (HCMV) is a widespread herpesvirus that establishes latency in myeloid cells and persists by manipulating immune signaling. Chemokine receptor CXCR4 and its ligand CXCL12 regulate movement of myeloid progenitors into bone marrow and out into peripheral tissues. HCMV amplifies CXCL12-CXCR4 signaling through viral chemokine receptor US27 and cmvIL-10, a viral cytokine that binds the cellular IL-10 receptor (IL-10R), but precisely how these viral proteins influence CXCR4 is unknown. We used the proximity ligation assay (PLA) to examine association of CXCR4, IL-10R, and US27 in both transfected and HCMV-infected cells. CXCR4 and IL-10R colocalized to discrete clusters, and treatment with CXCL12 and cmvIL-10 dramatically increased receptor clustering and calcium flux. US27 was associated with CXCR4 and IL-10R in PLA clusters and further enhanced cluster formation and calcium signaling. These results indicate that CXCR4, IL-10R, and US27 form a novel virus-host signaling complex that enhances CXCL12 signaling during HCMV infection.
Collapse
|
23
|
Yaron JR, Zhang L, Guo Q, Burgin M, Schutz LN, Awo E, Wise L, Krause KL, Ildefonso CJ, Kwiecien JM, Juby M, Rahman MM, Chen H, Moyer RW, Alcami A, McFadden G, Lucas AR. Deriving Immune Modulating Drugs from Viruses-A New Class of Biologics. J Clin Med 2020; 9:E972. [PMID: 32244484 PMCID: PMC7230489 DOI: 10.3390/jcm9040972] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
Viruses are widely used as a platform for the production of therapeutics. Vaccines containing live, dead and components of viruses, gene therapy vectors and oncolytic viruses are key examples of clinically-approved therapeutic uses for viruses. Despite this, the use of virus-derived proteins as natural sources for immune modulators remains in the early stages of development. Viruses have evolved complex, highly effective approaches for immune evasion. Originally developed for protection against host immune responses, viral immune-modulating proteins are extraordinarily potent, often functioning at picomolar concentrations. These complex viral intracellular parasites have "performed the R&D", developing highly effective immune evasive strategies over millions of years. These proteins provide a new and natural source for immune-modulating therapeutics, similar in many ways to penicillin being developed from mold or streptokinase from bacteria. Virus-derived serine proteinase inhibitors (serpins), chemokine modulating proteins, complement control, inflammasome inhibition, growth factors (e.g., viral vascular endothelial growth factor) and cytokine mimics (e.g., viral interleukin 10) and/or inhibitors (e.g., tumor necrosis factor) have now been identified that target central immunological response pathways. We review here current development of virus-derived immune-modulating biologics with efficacy demonstrated in pre-clinical or clinical studies, focusing on pox and herpesviruses-derived immune-modulating therapeutics.
Collapse
Affiliation(s)
- Jordan R. Yaron
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (J.R.Y.); (L.Z.); (Q.G.); (M.B.); (L.N.S.); (E.A.); (M.J.)
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA (G.M.)
| | - Liqiang Zhang
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (J.R.Y.); (L.Z.); (Q.G.); (M.B.); (L.N.S.); (E.A.); (M.J.)
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA (G.M.)
| | - Qiuyun Guo
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (J.R.Y.); (L.Z.); (Q.G.); (M.B.); (L.N.S.); (E.A.); (M.J.)
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Michelle Burgin
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (J.R.Y.); (L.Z.); (Q.G.); (M.B.); (L.N.S.); (E.A.); (M.J.)
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA (G.M.)
| | - Lauren N. Schutz
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (J.R.Y.); (L.Z.); (Q.G.); (M.B.); (L.N.S.); (E.A.); (M.J.)
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA (G.M.)
| | - Enkidia Awo
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (J.R.Y.); (L.Z.); (Q.G.); (M.B.); (L.N.S.); (E.A.); (M.J.)
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA (G.M.)
| | - Lyn Wise
- University of Otago, Dunedin 9054, New Zealand; (L.W.); (K.L.K.)
| | - Kurt L. Krause
- University of Otago, Dunedin 9054, New Zealand; (L.W.); (K.L.K.)
| | | | - Jacek M. Kwiecien
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S4L8, Canada
| | - Michael Juby
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (J.R.Y.); (L.Z.); (Q.G.); (M.B.); (L.N.S.); (E.A.); (M.J.)
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA (G.M.)
| | - Masmudur M. Rahman
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA (G.M.)
| | - Hao Chen
- The Department of Tumor Surgery, Second Hospital of Lanzhou University, Lanzhou 730030, China;
| | - Richard W. Moyer
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA;
| | - Antonio Alcami
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Cantoblanco, 28049 Madrid, Spain;
| | - Grant McFadden
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA (G.M.)
| | - Alexandra R. Lucas
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (J.R.Y.); (L.Z.); (Q.G.); (M.B.); (L.N.S.); (E.A.); (M.J.)
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA (G.M.)
- St Joseph Hospital, Dignity Health, Creighton University, Phoenix, AZ 85013, USA
| |
Collapse
|
24
|
Heo GS, Sultan D, Liu Y. Current and novel radiopharmaceuticals for imaging cardiovascular inflammation. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2020; 64:4-20. [PMID: 32077667 DOI: 10.23736/s1824-4785.20.03230-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cardiovascular disease (CVD) remains the leading cause of death worldwide despite advances in diagnostic technologies and treatment strategies. The underlying cause of most CVD is atherosclerosis, a chronic disease driven by inflammatory reactions. Atherosclerotic plaque rupture could cause arterial occlusion leading to ischemic tissue injuries such as myocardial infarction (MI) and stroke. Clinically, most imaging modalities are based on anatomy and provide limited information about the on-going molecular activities affecting the vulnerability of atherosclerotic lesion for risk stratification of patients. Thus, the ability to differentiate stable plaques from those that are vulnerable is an unmet clinical need. Of various imaging techniques, the radionuclide-based molecular imaging modalities including positron emission tomography and single-photon emission computerized tomography provide superior ability to noninvasively visualize molecular activities in vivo and may serve as a useful tool in tackling this challenge. Moreover, the well-established translational pathway of radiopharmaceuticals may also facilitate the translation of discoveries from benchtop to clinical investigation in contrast to other imaging modalities to fulfill the goal of precision medicine. The relationship between inflammation occurring within the plaque and its proneness to rupture has been well documented. Therefore, an active effort has been significantly devoted to develop radiopharmaceuticals specifically to measure CVD inflammatory status, and potentially elucidate those plaques which are prone to rupture. In the following review, molecular imaging of inflammatory biomarkers will be briefly discussed.
Collapse
Affiliation(s)
- Gyu S Heo
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA
| | - Deborah Sultan
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA
| | - Yongjian Liu
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA -
| |
Collapse
|
25
|
Adlere I, Caspar B, Arimont M, Dekkers S, Visser K, Stuijt J, de Graaf C, Stocks M, Kellam B, Briddon S, Wijtmans M, de Esch I, Hill S, Leurs R. Modulators of CXCR4 and CXCR7/ACKR3 Function. Mol Pharmacol 2019; 96:737-752. [PMID: 31548340 DOI: 10.1124/mol.119.117663] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/14/2019] [Indexed: 02/14/2025] Open
Abstract
The two G protein-coupled receptors (GPCRs) C-X-C chemokine receptor type 4 (CXCR4) and atypical chemokine receptor 3 (ACKR3) are part of the class A chemokine GPCR family and represent important drug targets for human immunodeficiency virus (HIV) infection, cancer, and inflammation diseases. CXCR4 is one of only three chemokine receptors with a US Food and Drug Administration approved therapeutic agent, the small-molecule modulator AMD3100. In this review, known modulators of the two receptors are discussed in detail. Initially, the structural relationship between receptors and ligands is reviewed on the basis of common structural motifs and available crystal structures. To date, no atypical chemokine receptor has been crystallized, which makes ligand design and predictions for these receptors more difficult. Next, the selectivity, receptor activation, and the resulting ligand-induced signaling output of chemokines and other peptide ligands are reviewed. Binding of pepducins, a class of lipid-peptides whose basis is the internal loop of a GPCR, to CXCR4 is also discussed. Finally, small-molecule modulators of CXCR4 and ACKR3 are reviewed. These modulators have led to the development of radio- and fluorescently labeled tool compounds, enabling the visualization of ligand binding and receptor characterization both in vitro and in vivo. SIGNIFICANCE STATEMENT: To investigate the pharmacological modulation of CXCR4 and ACKR3, significant effort has been focused on the discovery and development of a range of ligands, including small-molecule modulators, pepducins, and synthetic peptides. Imaging tools, such as fluorescent probes, also play a pivotal role in the field of drug discovery. This review aims to provide an overview of the aforementioned modulators that facilitate the study of CXCR4 and ACKR3 receptors.
Collapse
Affiliation(s)
- Ilze Adlere
- Griffin Discoveries BV, Amsterdam, The Netherlands (I.A., I.E., R.L.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences (B.C., S.B., S.H.) and School of Pharmacy (S.D., M.S., B.K.), University of Nottingham, Nottingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom (B.C., S.D., B.K., S.B., S.H.); Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.A., K.V., J.S., C.G., M.W., I.E., R.L.); and Sosei Heptares, Cambridge, United Kingdom (C.G.)
| | - Birgit Caspar
- Griffin Discoveries BV, Amsterdam, The Netherlands (I.A., I.E., R.L.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences (B.C., S.B., S.H.) and School of Pharmacy (S.D., M.S., B.K.), University of Nottingham, Nottingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom (B.C., S.D., B.K., S.B., S.H.); Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.A., K.V., J.S., C.G., M.W., I.E., R.L.); and Sosei Heptares, Cambridge, United Kingdom (C.G.)
| | - Marta Arimont
- Griffin Discoveries BV, Amsterdam, The Netherlands (I.A., I.E., R.L.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences (B.C., S.B., S.H.) and School of Pharmacy (S.D., M.S., B.K.), University of Nottingham, Nottingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom (B.C., S.D., B.K., S.B., S.H.); Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.A., K.V., J.S., C.G., M.W., I.E., R.L.); and Sosei Heptares, Cambridge, United Kingdom (C.G.)
| | - Sebastian Dekkers
- Griffin Discoveries BV, Amsterdam, The Netherlands (I.A., I.E., R.L.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences (B.C., S.B., S.H.) and School of Pharmacy (S.D., M.S., B.K.), University of Nottingham, Nottingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom (B.C., S.D., B.K., S.B., S.H.); Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.A., K.V., J.S., C.G., M.W., I.E., R.L.); and Sosei Heptares, Cambridge, United Kingdom (C.G.)
| | - Kirsten Visser
- Griffin Discoveries BV, Amsterdam, The Netherlands (I.A., I.E., R.L.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences (B.C., S.B., S.H.) and School of Pharmacy (S.D., M.S., B.K.), University of Nottingham, Nottingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom (B.C., S.D., B.K., S.B., S.H.); Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.A., K.V., J.S., C.G., M.W., I.E., R.L.); and Sosei Heptares, Cambridge, United Kingdom (C.G.)
| | - Jeffrey Stuijt
- Griffin Discoveries BV, Amsterdam, The Netherlands (I.A., I.E., R.L.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences (B.C., S.B., S.H.) and School of Pharmacy (S.D., M.S., B.K.), University of Nottingham, Nottingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom (B.C., S.D., B.K., S.B., S.H.); Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.A., K.V., J.S., C.G., M.W., I.E., R.L.); and Sosei Heptares, Cambridge, United Kingdom (C.G.)
| | - Chris de Graaf
- Griffin Discoveries BV, Amsterdam, The Netherlands (I.A., I.E., R.L.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences (B.C., S.B., S.H.) and School of Pharmacy (S.D., M.S., B.K.), University of Nottingham, Nottingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom (B.C., S.D., B.K., S.B., S.H.); Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.A., K.V., J.S., C.G., M.W., I.E., R.L.); and Sosei Heptares, Cambridge, United Kingdom (C.G.)
| | - Michael Stocks
- Griffin Discoveries BV, Amsterdam, The Netherlands (I.A., I.E., R.L.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences (B.C., S.B., S.H.) and School of Pharmacy (S.D., M.S., B.K.), University of Nottingham, Nottingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom (B.C., S.D., B.K., S.B., S.H.); Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.A., K.V., J.S., C.G., M.W., I.E., R.L.); and Sosei Heptares, Cambridge, United Kingdom (C.G.)
| | - Barrie Kellam
- Griffin Discoveries BV, Amsterdam, The Netherlands (I.A., I.E., R.L.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences (B.C., S.B., S.H.) and School of Pharmacy (S.D., M.S., B.K.), University of Nottingham, Nottingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom (B.C., S.D., B.K., S.B., S.H.); Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.A., K.V., J.S., C.G., M.W., I.E., R.L.); and Sosei Heptares, Cambridge, United Kingdom (C.G.)
| | - Stephen Briddon
- Griffin Discoveries BV, Amsterdam, The Netherlands (I.A., I.E., R.L.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences (B.C., S.B., S.H.) and School of Pharmacy (S.D., M.S., B.K.), University of Nottingham, Nottingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom (B.C., S.D., B.K., S.B., S.H.); Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.A., K.V., J.S., C.G., M.W., I.E., R.L.); and Sosei Heptares, Cambridge, United Kingdom (C.G.)
| | - Maikel Wijtmans
- Griffin Discoveries BV, Amsterdam, The Netherlands (I.A., I.E., R.L.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences (B.C., S.B., S.H.) and School of Pharmacy (S.D., M.S., B.K.), University of Nottingham, Nottingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom (B.C., S.D., B.K., S.B., S.H.); Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.A., K.V., J.S., C.G., M.W., I.E., R.L.); and Sosei Heptares, Cambridge, United Kingdom (C.G.)
| | - Iwan de Esch
- Griffin Discoveries BV, Amsterdam, The Netherlands (I.A., I.E., R.L.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences (B.C., S.B., S.H.) and School of Pharmacy (S.D., M.S., B.K.), University of Nottingham, Nottingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom (B.C., S.D., B.K., S.B., S.H.); Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.A., K.V., J.S., C.G., M.W., I.E., R.L.); and Sosei Heptares, Cambridge, United Kingdom (C.G.)
| | - Stephen Hill
- Griffin Discoveries BV, Amsterdam, The Netherlands (I.A., I.E., R.L.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences (B.C., S.B., S.H.) and School of Pharmacy (S.D., M.S., B.K.), University of Nottingham, Nottingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom (B.C., S.D., B.K., S.B., S.H.); Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.A., K.V., J.S., C.G., M.W., I.E., R.L.); and Sosei Heptares, Cambridge, United Kingdom (C.G.)
| | - Rob Leurs
- Griffin Discoveries BV, Amsterdam, The Netherlands (I.A., I.E., R.L.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences (B.C., S.B., S.H.) and School of Pharmacy (S.D., M.S., B.K.), University of Nottingham, Nottingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom (B.C., S.D., B.K., S.B., S.H.); Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.A., K.V., J.S., C.G., M.W., I.E., R.L.); and Sosei Heptares, Cambridge, United Kingdom (C.G.)
| |
Collapse
|
26
|
Quinn KE, Mackie DI, Caron KM. Emerging roles of atypical chemokine receptor 3 (ACKR3) in normal development and physiology. Cytokine 2019; 109:17-23. [PMID: 29903572 DOI: 10.1016/j.cyto.2018.02.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 01/16/2023]
Abstract
The discovery that atypical chemokine receptors (ACKRs) can initiate alternative signaling pathways rather than classical G-protein coupled receptor (GPCR) signaling has changed the paradigm of chemokine receptors and their roles in modulating chemotactic responses. The ACKR family has grown over the years, with discovery of new functions and roles in a variety of pathophysiological conditions. However, the extent to which these receptors regulate normal physiology is still continuously expanding. In particular, atypical chemokine receptor 3 (ACKR3) has proven to be an important receptor in mediating normal biological functions, including cardiac development and migration of cortical neurons. In this review, we illustrate the versatile and intriguing role of ACKR3 in physiology.
Collapse
Affiliation(s)
- K E Quinn
- Department of Cell Biology and Physiology, 111 MasonFarm Rd., 6312B MBRB CB# 7545, The University of North Carolina, Chapel Hill, NC 27599-7545, USA
| | - D I Mackie
- Department of Cell Biology and Physiology, 111 MasonFarm Rd., 6312B MBRB CB# 7545, The University of North Carolina, Chapel Hill, NC 27599-7545, USA
| | - K M Caron
- Department of Cell Biology and Physiology, 111 MasonFarm Rd., 6312B MBRB CB# 7545, The University of North Carolina, Chapel Hill, NC 27599-7545, USA.
| |
Collapse
|
27
|
Huang Q, Kahn CR, Altindis E. Viral Hormones: Expanding Dimensions in Endocrinology. Endocrinology 2019; 160:2165-2179. [PMID: 31310273 PMCID: PMC6736053 DOI: 10.1210/en.2019-00271] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/10/2019] [Indexed: 02/07/2023]
Abstract
Viruses have developed different mechanisms to manipulate their hosts, including the process of viral mimicry in which viruses express important host proteins. Until recently, examples of viral mimicry were limited to mimics of growth factors and immunomodulatory proteins. Using a comprehensive bioinformatics approach, we have shown that viruses possess the DNA/RNA with potential to encode 16 different peptides with high sequence similarity to human peptide hormones and metabolically important regulatory proteins. We have characterized one of these families, the viral insulin/IGF-1-like peptides (VILPs), which we identified in four members of the Iridoviridae family. VILPs can bind to human insulin and IGF-1 receptors and stimulate classic postreceptor signaling pathways. Moreover, VILPs can stimulate glucose uptake in vitro and in vivo and stimulate DNA synthesis. DNA sequences of some VILP-carrying viruses have been identified in the human enteric virome. In addition to VILPs, sequences with homology to 15 other peptide hormones or cytokines can be identified in viral DNA/RNA sequences, some with a very high identity to hormones. Recent data by others has identified a peptide that resembles and mimics α-melanocyte-stimulating hormone's anti-inflammatory effects in in vitro and in vivo models. Taken together, these studies reveal novel mechanisms of viral and bacterial pathogenesis in which the microbe can directly target or mimic the host endocrine system. These findings also introduce the concept of a system of microbial hormones that provides new insights into the evolution of peptide hormones, as well as potential new roles of microbial hormones in health and disease.
Collapse
Affiliation(s)
- Qian Huang
- Boston College Biology Department, Chestnut Hill, Massachusetts
| | - C Ronald Kahn
- Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Emrah Altindis
- Boston College Biology Department, Chestnut Hill, Massachusetts
- Correspondence: Emrah Altindis, PhD, Boston College Biology Department, Higgins Hall 515, 140 Commonwealth Avenue, Chestnut Hill, Massachusetts 02467. E-mail:
| |
Collapse
|
28
|
Guo CJ, He J, He JG. The immune evasion strategies of fish viruses. FISH & SHELLFISH IMMUNOLOGY 2019; 86:772-784. [PMID: 30543936 DOI: 10.1016/j.fsi.2018.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/07/2018] [Accepted: 12/09/2018] [Indexed: 06/09/2023]
Abstract
Viral infection of a host rapidly triggers intracellular signaling events that induce interferon production and a cellular antiviral state. Viral diseases are important concerns in fish aquaculture. The major mechanisms of the fish antiviral immune response are suggested to be similar to those of mammals, although the specific details of the process require further studies. Throughout the process of pathogen-host coevolution, fish viruses have developed a battery of distinct strategies to overcome the biochemical and immunological defenses of the host. Such strategies include signaling interference, effector modulation, and manipulation of host apoptosis. This review provide an overview of the different mechanisms that fish viruses use to evade host immune responses. The basic mechanisms of immune evasion of fish virus are discussed, and some examples are provided to illustrate particular points.
Collapse
Affiliation(s)
- C J Guo
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering / State Key Laboratory for Biocontrol, School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - J He
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering / State Key Laboratory for Biocontrol, School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - J G He
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering / State Key Laboratory for Biocontrol, School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China.
| |
Collapse
|
29
|
Abstract
Kaposi sarcoma (KS) gained public attention as an AIDS-defining malignancy; its appearance on the skin was a highly stigmatizing sign of HIV infection during the height of the AIDS epidemic. The widespread introduction of effective antiretrovirals to control HIV by restoring immunocompetence reduced the prevalence of AIDS-related KS, although KS does occur in individuals with well-controlled HIV infection. KS also presents in individuals without HIV infection in older men (classic KS), in sub-Saharan Africa (endemic KS) and in transplant recipients (iatrogenic KS). The aetiologic agent of KS is KS herpesvirus (KSHV; also known as human herpesvirus-8), and viral proteins can induce KS-associated cellular changes that enable the virus to evade the host immune system and allow the infected cell to survive and proliferate despite viral infection. Currently, most cases of KS occur in sub-Saharan Africa, where KSHV infection is prevalent owing to transmission by saliva in childhood compounded by the ongoing AIDS epidemic. Treatment for early AIDS-related KS in previously untreated patients should start with the control of HIV with antiretrovirals, which frequently results in KS regression. In advanced-stage KS, chemotherapy with pegylated liposomal doxorubicin or paclitaxel is the most common treatment, although it is seldom curative. In sub-Saharan Africa, KS continues to have a poor prognosis. Newer treatments for KS based on the mechanisms of its pathogenesis are being explored.
Collapse
Affiliation(s)
- Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Blossom Damania
- Department of Microbiology and Immunology, Lineberger Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | | | - Jeffrey Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Mark Bower
- National Centre for HIV Malignancy, Chelsea & Westminster Hospital, London, UK
| | - Denise Whitby
- Leidos Biomedical Research, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| |
Collapse
|
30
|
Janssens R, Struyf S, Proost P. Pathological roles of the homeostatic chemokine CXCL12. Cytokine Growth Factor Rev 2018; 44:51-68. [PMID: 30396776 DOI: 10.1016/j.cytogfr.2018.10.004] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 12/12/2022]
Abstract
CXCL12 is a CXC chemokine that traditionally has been classified as a homeostatic chemokine. It contributes to physiological processes such as embryogenesis, hematopoiesis and angiogenesis. In contrast to these homeostatic functions, increased expression of CXCL12 in general, or of a specific CXCL12 splicing variant has been demonstrated in various pathologies. In addition to this increased or differential transcription of CXCL12, also upregulation of its receptors CXC chemokine receptor 4 (CXCR4) and atypical chemokine receptor 3 (ACKR3) contributes to the onset or progression of diseases. Moreover, posttranslational modification of CXCL12 during disease progression, through interaction with locally produced molecules or enzymes, also affects CXCL12 activity, adding further complexity. As CXCL12, CXCR4 and ACKR3 are broadly expressed, the number of pathologies wherein CXCL12 is involved is growing. In this review, the role of the CXCL12/CXCR4/ACKR3 axis will be discussed for the most prevalent pathologies. Administration of CXCL12-neutralizing antibodies or small-molecule antagonists of CXCR4 or ACKR3 delays disease onset or prevents disease progression in cancer, viral infections, inflammatory bowel diseases, rheumatoid arthritis and osteoarthritis, asthma and acute lung injury, amyotrophic lateral sclerosis and WHIM syndrome. On the other hand, CXCL12 has protective properties in Alzheimer's disease and multiple sclerosis, has a beneficial role in wound healing and has crucial homeostatic properties in general.
Collapse
Affiliation(s)
- Rik Janssens
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium
| | - Sofie Struyf
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium
| | - Paul Proost
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium.
| |
Collapse
|
31
|
Pontejo SM, Murphy PM, Pease JE. Chemokine Subversion by Human Herpesviruses. J Innate Immun 2018; 10:465-478. [PMID: 30165356 DOI: 10.1159/000492161] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/11/2018] [Indexed: 12/30/2022] Open
Abstract
Viruses use diverse molecular mechanisms to exploit and evade the immune response. Herpesviruses, in particular, encode functional chemokine and chemokine receptor homologs pirated from the host, as well as secreted chemokine-binding proteins with unique structures. Multiple functions have been described for herpesvirus chemokine components, including attraction of target cells, blockade of leukocyte migration, and modulation of gene expression and cell entry by the virus. Here we review current concepts about how human herpesvirus chemokines, chemokine receptors, and chemokine-binding proteins may be used to shape a proviral state in the host.
Collapse
Affiliation(s)
- Sergio M Pontejo
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Philip M Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - James E Pease
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United
| |
Collapse
|
32
|
Zhu Y, Yang S, Wang J, Mao Y, Xu Y, An J, Huang Z. LC-MS/MS assay for the determination of a novel D-peptide antagonist of CXCR4 in rat plasma and its application to a preclinical pharmacokinetic study. J Pharm Biomed Anal 2018; 161:159-167. [PMID: 30165332 DOI: 10.1016/j.jpba.2018.08.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 11/25/2022]
Abstract
DV1 is a potent and selective D-peptide antagonist of CXCR4 and being developed as a novel drug candidate molecule. For preclinical pharmacokinetic study of DV1, we established an efficient and reliable liquid chromatography coupled to tandem mass spectrometric (LC-MS/MS) method for the assay of DV1 in rat plasma. Plasma samples were acidified by formic acid and then their protein content precipitated by acetonitrile. Sample separation was processed with a C18 column (4.6 mm × 100 mm, 5 μm) and washed by a water-acetonitrile gradient mobile phase containing 0.1% (v/v) formic acid at a flow rate of 0.4 mL/min. The mass spectrometer was operated in the multiple reaction monitoring mode and positive electrospray ionization. The assay had a good linearity over the range of 10-10000 ng/mL (r>0.998) for DV1. The adsorption of the peptide was diminished by organic additives during the quantitative procedure. The intra- and inter-day precision was 1.9-9.8% and the accuracy was 91.2-110.0%. No significant variation was observed under the optimized conditions. The recovery was above 52% with low matrix effects. The method was successfully applied to a pharmacokinetic study of DV1 after subcutaneous injection at dose of 10 mg/kg in rats. The half-life and AUCinf of DV1 were calculated as 8.7 h and 35,553 ng/mL·h, respectively. It is the first report on the quantitative analysis and pharmacokinetic characterization of a D-peptide targeted CXCR4, which should be useful for further preclinical studies and development of this and other peptide therapeutics.
Collapse
Affiliation(s)
- Yinsong Zhu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Shu Yang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Juan Wang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yujia Mao
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yan Xu
- School of Life Sciences, Tsinghua University, Beijing, China.
| | - Jing An
- Department of Medicine, University of California at San Diego, La Jolla, CA, USA.
| | - Ziwei Huang
- School of Life Sciences, Tsinghua University, Beijing, China; Department of Medicine, University of California at San Diego, La Jolla, CA, USA.
| |
Collapse
|
33
|
Peripheral Tissue Chemokines: Homeostatic Control of Immune Surveillance T Cells. Trends Immunol 2018; 39:734-747. [PMID: 30001872 DOI: 10.1016/j.it.2018.06.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/18/2018] [Accepted: 06/12/2018] [Indexed: 12/15/2022]
Abstract
Cellular immunity is governed by a complex network of migratory cues that enable appropriate immune cell responses in a timely and spatially controlled fashion. This review focuses on the chemokines and their receptors regulating the steady-state localisation of immune cells within healthy peripheral tissues. Steady-state immune cell traffic is not well understood but is thought to involve constitutive (homeostatic) chemokines. The recent discovery of tissue-resident memory T cells (TRM cells) illustrates our need for understanding how chemokines control immune cell mobilisation and/or retention. These studies will be critical to unravel novel pathways for preserving tissue function (aging) and preventing tissue disease (vaccination).
Collapse
|
34
|
Mao Y, Meng Q, Song P, Zhu S, Xu Y, Snyder EY, An J, Huang Z. Novel Bivalent and D-Peptide Ligands of CXCR4 Mobilize Hematopoietic Progenitor Cells to the Blood in C3H/HeJ Mice. Cell Transplant 2018; 27:1249-1255. [PMID: 29991278 PMCID: PMC6434473 DOI: 10.1177/0963689718784957] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The interaction of SDF-1α (also known as CXCL12) with the CXCR4 receptor plays a critical role in the retention of hematopoietic stem cells (HSCs) in bone marrow. The viral macrophage inflammatory protein-II (vMIP-II), a human herpesvirus-8 (HHV-8)-encoded viral chemokine, can bind the CXCR4 receptor and inhibit endogenous ligand-induced calcium responses and cell migration. Previously, we used the bivalent ligand approach to link synthetically two unnatural D-amino acid peptides derived from the N-terminus of vMIP-II (DV1 and DV3, respectively) to generate a dimeric peptide, DV1-K-(DV3) (also named HC4319), which shows very high affinity for CXCR4. Here, we studied the biological effects of this dimeric peptide, HC4319, and its monomeric counterpart, DV1, on SDF-1α-induced signaling in CXCR4- or CXCR7-transfected Chinese hamster ovary cells and mobilization of hematopoietic progenitor cells (HPCs) in C3H/HeJ mice using an HPC assay. HC4319 and DV1 inhibited significantly the phosphorylation of Akt and Erk, known to be downstream signaling events of CXCR4. This in vivo study in C3H/HeJ mice showed that HC4319 and DV-1 strongly induced rapid mobilization of granulocyte-macrophage colony-forming units (CFUs), erythrocyte burst-forming units, and granulocyte-erythrocyte-monocyte-megakaryocyte CFUs from the bone marrow to the blood. These results provide the first reported experimental evidence that bivalent and D-amino acid peptides derived from the N-terminus of vMIP-II are potent mobilizers of HPCs in C3H/HeJ mice and support the further development of such agents for clinical application.
Collapse
Affiliation(s)
- Yujia Mao
- 1 School of Life Sciences, Tsinghua University, Beijing, China
| | - Qian Meng
- 1 School of Life Sciences, Tsinghua University, Beijing, China
| | - Panpan Song
- 1 School of Life Sciences, Tsinghua University, Beijing, China
| | - Siyu Zhu
- 1 School of Life Sciences, Tsinghua University, Beijing, China
| | - Yan Xu
- 1 School of Life Sciences, Tsinghua University, Beijing, China.,2 Nobel Institute of Biomedicine, Zhuhai, Guangdong, China
| | - Evan Y Snyder
- 3 Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Jing An
- 2 Nobel Institute of Biomedicine, Zhuhai, Guangdong, China.,4 Division of Infectious Diseases, Department of Medicine, School of Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Ziwei Huang
- 1 School of Life Sciences, Tsinghua University, Beijing, China.,4 Division of Infectious Diseases, Department of Medicine, School of Medicine, University of California at San Diego, La Jolla, CA, USA
| |
Collapse
|
35
|
Szpakowska M, Meyrath M, Reynders N, Counson M, Hanson J, Steyaert J, Chevigné A. Mutational analysis of the extracellular disulphide bridges of the atypical chemokine receptor ACKR3/CXCR7 uncovers multiple binding and activation modes for its chemokine and endogenous non-chemokine agonists. Biochem Pharmacol 2018. [DOI: 10.1016/j.bcp.2018.03.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
36
|
Wang C, Chen W, Shen J. CXCR7 Targeting and Its Major Disease Relevance. Front Pharmacol 2018; 9:641. [PMID: 29977203 PMCID: PMC6021539 DOI: 10.3389/fphar.2018.00641] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/29/2018] [Indexed: 12/25/2022] Open
Abstract
Chemokine receptors are the target of small peptide chemokines. They play various important roles in physiological and pathological processes. CXCR7, later renamed ACKR3, is a non-classical seven transmembrane-spanning receptor whose function as a signaling or non-signaling scavenger/decoy receptor is currently under debate. Even for cell signaling mechanisms, there has been inconsistency on whether CXCR7 couples to G-proteins or β-arrestins. Several reasons may contribute to this uncertainty or controversy. In one hand, it has been neglected that CXCR7 has more than five natural ligands and unfortunately, most of the prior research only studied SDF-1 (CXCL12) and/or I-TAC (CXCL11); on the other hand, there are mounting evidence supporting ligand and tissue bias for receptor signaling, but limited such information is available for CXCR7. In this review we focus on summarizing the endogenous and exogenous ligands of CXCR7, the main diseases related to CXCR7 and the biased signaling events happening on CXCR7. These three aspects of CXCR7 pharmacologic properties may explain why the contradicting opinions of whether CXCR7 is a signaling or non-signaling receptor exist. Further, potential new direction and perspective for the study of CXCR7 biology and pharmacology are highlighted.
Collapse
Affiliation(s)
- Chuan Wang
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | - Weilin Chen
- Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Jianzhong Shen
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| |
Collapse
|
37
|
Miles TF, Spiess K, Jude KM, Tsutsumi N, Burg JS, Ingram JR, Waghray D, Hjorto GM, Larsen O, Ploegh HL, Rosenkilde MM, Garcia KC. Viral GPCR US28 can signal in response to chemokine agonists of nearly unlimited structural degeneracy. eLife 2018; 7:35850. [PMID: 29882741 PMCID: PMC5993540 DOI: 10.7554/elife.35850] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/17/2018] [Indexed: 01/17/2023] Open
Abstract
Human cytomegalovirus has hijacked and evolved a human G-protein-coupled receptor into US28, which functions as a promiscuous chemokine 'sink’ to facilitate evasion of host immune responses. To probe the molecular basis of US28’s unique ligand cross-reactivity, we deep-sequenced CX3CL1 chemokine libraries selected on ‘molecular casts’ of the US28 active-state and find that US28 can engage thousands of distinct chemokine sequences, many of which elicit diverse signaling outcomes. The structure of a G-protein-biased CX3CL1-variant in complex with US28 revealed an entirely unique chemokine amino terminal peptide conformation and remodeled constellation of receptor-ligand interactions. Receptor signaling, however, is remarkably robust to mutational disruption of these interactions. Thus, US28 accommodates and functionally discriminates amongst highly degenerate chemokine sequences by sensing the steric bulk of the ligands, which distort both receptor extracellular loops and the walls of the ligand binding pocket to varying degrees, rather than requiring sequence-specific bonding chemistries for recognition and signaling.
Collapse
Affiliation(s)
- Timothy F Miles
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States.,Department of Structural Biology, Stanford University School of Medicine, Stanford, United States
| | - Katja Spiess
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Science, University of Copenhagen, Denmark, Europe
| | - Kevin M Jude
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States.,Department of Structural Biology, Stanford University School of Medicine, Stanford, United States
| | - Naotaka Tsutsumi
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States.,Department of Structural Biology, Stanford University School of Medicine, Stanford, United States
| | - John S Burg
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States.,Department of Structural Biology, Stanford University School of Medicine, Stanford, United States
| | - Jessica R Ingram
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, United States
| | - Deepa Waghray
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States.,Department of Structural Biology, Stanford University School of Medicine, Stanford, United States
| | - Gertrud M Hjorto
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Science, University of Copenhagen, Denmark, Europe
| | - Olav Larsen
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Science, University of Copenhagen, Denmark, Europe
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, United States
| | - Mette M Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Science, University of Copenhagen, Denmark, Europe
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States.,Department of Structural Biology, Stanford University School of Medicine, Stanford, United States.,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
38
|
Mariggiò G, Koch S, Schulz TF. Kaposi sarcoma herpesvirus pathogenesis. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0275. [PMID: 28893942 PMCID: PMC5597742 DOI: 10.1098/rstb.2016.0275] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2017] [Indexed: 12/15/2022] Open
Abstract
Kaposi sarcoma herpesvirus (KSHV), taxonomical name human gammaherpesvirus 8, is a phylogenetically old human virus that co-evolved with human populations, but is now only common (seroprevalence greater than 10%) in sub-Saharan Africa, around the Mediterranean Sea, parts of South America and in a few ethnic communities. KSHV causes three human malignancies, Kaposi sarcoma, primary effusion lymphoma, and many cases of the plasmablastic form of multicentric Castleman's disease (MCD) as well as occasional cases of plasmablastic lymphoma arising from MCD; it has also been linked to rare cases of bone marrow failure and hepatitis. As it has colonized humans physiologically for many thousand years, cofactors are needed to allow it to unfold its pathogenic potential. In most cases, these include immune defects of genetic, iatrogenic or infectious origin, and inflammation appears to play an important role in disease development. Our much improved understanding of its life cycle and its role in pathogenesis should now allow us to develop new therapeutic strategies directed against key viral proteins or intracellular pathways that are crucial for virus replication or persistence. Likewise, its limited (for a herpesvirus) distribution and transmission should offer an opportunity for the development and use of a vaccine to prevent transmission. This article is part of the themed issue ‘Human oncogenic viruses’.
Collapse
Affiliation(s)
- Giuseppe Mariggiò
- Institute of Virology, Hannover Medical School, Carl Neuberg Strasse 1, 30625 Hannover, Germany.,German Centre for Infection Research, Hannover-Braunschweig site, Hannover, Germany
| | - Sandra Koch
- Institute of Virology, Hannover Medical School, Carl Neuberg Strasse 1, 30625 Hannover, Germany.,German Centre for Infection Research, Hannover-Braunschweig site, Hannover, Germany
| | - Thomas F Schulz
- Institute of Virology, Hannover Medical School, Carl Neuberg Strasse 1, 30625 Hannover, Germany .,German Centre for Infection Research, Hannover-Braunschweig site, Hannover, Germany
| |
Collapse
|
39
|
Szpakowska M, Nevins AM, Meyrath M, Rhainds D, D'huys T, Guité-Vinet F, Dupuis N, Gauthier PA, Counson M, Kleist A, St-Onge G, Hanson J, Schols D, Volkman BF, Heveker N, Chevigné A. Different contributions of chemokine N-terminal features attest to a different ligand binding mode and a bias towards activation of ACKR3/CXCR7 compared with CXCR4 and CXCR3. Br J Pharmacol 2018; 175:1419-1438. [PMID: 29272550 DOI: 10.1111/bph.14132] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 11/21/2017] [Accepted: 12/07/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Chemokines and their receptors form an intricate interaction and signalling network that plays critical roles in various physiological and pathological cellular processes. The high promiscuity and apparent redundancy of this network makes probing individual chemokine/receptor interactions and functional effects, as well as targeting individual receptor axes for therapeutic applications, challenging. Despite poor sequence identity, the N-terminal regions of chemokines, which play a key role in their activity and selectivity, contain several conserved features. Thus far little is known regarding the molecular basis of their interactions with typical and atypical chemokine receptors or the conservation of their contributions across chemokine-receptor pairs. EXPERIMENTAL APPROACH We used a broad panel of chemokine variants and modified peptides derived from the N-terminal region of chemokines CXCL12, CXCL11 and vCCL2, to compare the contributions of various features to binding and activation of their shared receptors, the two typical, canonical G protein-signalling receptors, CXCR4 and CXCR3, as well as the atypical scavenger receptor CXCR7/ACKR3, which shows exclusively arrestin-dependent activity. KEY RESULTS We provide molecular insights into the plasticity of the ligand-binding pockets of these receptors, their chemokine binding modes and their activation mechanisms. Although the chemokine N-terminal region is a critical determinant, neither the most proximal residues nor the N-loop are essential for binding and activation of ACKR3, as distinct from binding and activation of CXCR4 and CXCR3. CONCLUSION AND IMPLICATIONS These results suggest a different interaction mechanism between this atypical receptor and its ligands and illustrate its strong propensity to activation.
Collapse
Affiliation(s)
- Martyna Szpakowska
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Amanda M Nevins
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Max Meyrath
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - David Rhainds
- Research Centre, Saint-Justine Hospital, University of Montreal, Montréal, QC, Canada.,Department of Biochemistry, University of Montreal, Montréal, QC, Canada
| | - Thomas D'huys
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - François Guité-Vinet
- Research Centre, Saint-Justine Hospital, University of Montreal, Montréal, QC, Canada.,Department of Biochemistry, University of Montreal, Montréal, QC, Canada
| | - Nadine Dupuis
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Pierre-Arnaud Gauthier
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Manuel Counson
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Andrew Kleist
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Geneviève St-Onge
- Research Centre, Saint-Justine Hospital, University of Montreal, Montréal, QC, Canada
| | - Julien Hanson
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Nikolaus Heveker
- Research Centre, Saint-Justine Hospital, University of Montreal, Montréal, QC, Canada.,Department of Biochemistry, University of Montreal, Montréal, QC, Canada
| | - Andy Chevigné
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| |
Collapse
|
40
|
Fievez V, Szpakowska M, Mosbah A, Arumugam K, Mathu J, Counson M, Beaupain N, Seguin-Devaux C, Deroo S, Baudy-Floc'h M, Chevigné A. Development of Mimokines, chemokine N terminus-based CXCR4 inhibitors optimized by phage display and rational design. J Leukoc Biol 2018; 104:343-357. [PMID: 29570832 DOI: 10.1002/jlb.3ma0118-007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 01/25/2018] [Indexed: 12/13/2022] Open
Abstract
The chemokine receptor CXCR4 (C-X-C chemokine receptor type 4 also known as fusin or CD184 (cluster of differentiation 184)) is implicated in various biological and pathological processes of the hematopoietic and immune systems. CXCR4 is also one of the major coreceptors for HIV-1 entry into target cells and is overexpressed in many cancers, supporting cell survival, proliferation, and migration. CXCR4 is thus an extremely relevant drug target. Among the different strategies to block CXCR4, chemokine-derived peptide inhibitors hold great therapeutic potential. In this study, we used the N-terminus of vCCL2/vMIPII, a viral CXCR4 antagonist chemokine, as a scaffold motif to engineer and select CXCR4 peptide inhibitors, called Mimokines, which imitate the chemokine-binding mode but display an enhanced receptor affinity, antiviral properties, and receptor selectivity. We first engineered a Mimokine phage displayed library based on the first 21 residues of vCCL2, in which cysteine 11 and 12 were fully randomized and screened it against purified CXCR4 stabilized in liposomes. We identified Mimokines displaying up to 4-fold higher affinity for CXCR4 when compared to the reference peptide and fully protected MT-4 cells against HIV-1 infection. These selected Mimokines were then subjected to dimerization, D-amino acid, and aza-β3-amino acid substitution to further enhance their potency and selectivity. Optimized Mimokines exhibited up to 120-fold enhanced CXCR4 binding (range of 20 nM) and more than 200-fold improved antiviral properties (≤ 1 μM) compared to the parental Mimokines. Interestingly, these optimized Mimokines also showed up to 25-fold weaker affinity for ACKR3/CXCR7 and may therefore serve as lead compounds for further development of more selective CXCR4 peptide inhibitors and probes.
Collapse
Affiliation(s)
- Virginie Fievez
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), House of BioHealth, 4354 Esch-sur-Alzette, Luxembourg
| | - Martyna Szpakowska
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), House of BioHealth, 4354 Esch-sur-Alzette, Luxembourg
| | - Amor Mosbah
- Université de Rennes 1, UMR CNRS 6226, 35042 Rennes, France
| | - Karthik Arumugam
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), House of BioHealth, 4354 Esch-sur-Alzette, Luxembourg
| | - Julie Mathu
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), House of BioHealth, 4354 Esch-sur-Alzette, Luxembourg
| | - Manuel Counson
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), House of BioHealth, 4354 Esch-sur-Alzette, Luxembourg
| | - Nadia Beaupain
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), House of BioHealth, 4354 Esch-sur-Alzette, Luxembourg
| | - Carole Seguin-Devaux
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), House of BioHealth, 4354 Esch-sur-Alzette, Luxembourg
| | - Sabrina Deroo
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), House of BioHealth, 4354 Esch-sur-Alzette, Luxembourg
| | | | - Andy Chevigné
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), House of BioHealth, 4354 Esch-sur-Alzette, Luxembourg
| |
Collapse
|
41
|
Murphy PM, Heusinkveld L. Multisystem multitasking by CXCL12 and its receptors CXCR4 and ACKR3. Cytokine 2018; 109:2-10. [PMID: 29398278 DOI: 10.1016/j.cyto.2017.12.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 12/20/2022]
Abstract
Chemokines are named and best known for their chemotactic cytokine activity in the hematopoietic system; however, their importance extends far beyond leukocytes, cell movement and immunoregulation. CXCL12, the most protean of chemokines, regulates development in multiple systems, including the hematopoietic, cardiovascular and nervous systems, and regulates diverse cell functions, including differentiation, distribution, activation, immune synapse formation, effector function, proliferation and survival in the immune system alone. The broad importance of CXCL12 is revealed by the complex lethal developmental phenotypes in mice lacking either Cxcl12 or either one of its two known 7-transmembrane domain receptors Cxcr4 and Ackr3, as well as by gain-of-function mutations in human CXCR4, which cause WHIM syndrome, a multisystem and combined immunodeficiency disease and the only Mendelian condition caused by a chemokine system mutation. In addition, wild type CXCR4 is important in the pathogenesis of HIV/AIDS and cancer. Thus, CXCL12 and its receptors CXCR4 and ACKR3 provide extraordinary examples of multisystem multitasking in the chemokine system in both health and disease.
Collapse
Affiliation(s)
- Philip M Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Lauren Heusinkveld
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
42
|
Teplyakov A, Obmolova G, Gilliland GL. Structural insights into chemokine CCL17 recognition by antibody M116. Biochem Biophys Rep 2017; 13:27-31. [PMID: 29264403 PMCID: PMC5726885 DOI: 10.1016/j.bbrep.2017.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 12/21/2022] Open
Abstract
The homeostatic chemokine CCL17, also known as thymus and activation regulated chemokine (TARC), has been associated with various diseases such as asthma, idiopathic pulmonary fibrosis, atopic dermatitis and ulcerative colitis. Neutralization of CCL17 by antibody treatment ameliorates the impact of disease by blocking influx of T cells. Monoclonal antibody M116 derived from a combinatorial library shows potency in neutralizing CCL17-induced signaling. To gain insight into the structural determinants of antigen recognition, the crystal structure of M116 Fab was determined in complex with CCL17 and in the unbound form. Comparison of the structures revealed an unusual induced-fit mechanism of antigen recognition that involves cis-trans isomerization in two CDRs. The structure of the CCL17-M116 complex revealed the antibody binding epitope, which does not overlap with the putative receptor epitope, suggesting that the current model of chemokine-receptor interactions, as observed in the CXCR4-vMIP-II system, may not be universal.
Collapse
Key Words
- Antibody
- CCL17
- CDR, complementarity determining region
- Cis-trans isomerization
- Crystal structure
- DTT, dithiothreitol
- EDTA, ethylenediaminetetraacetic acid
- Epitope
- HEPES, 4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid
- Neutralization
- PDB, Protein Data Bank
- PEG, polyethylene glycol
- RMSD, root-mean-square deviation
- VH, variable domain of the heavy chain
- VL, variable domain of the light chain
- mAb, monoclonal antibody
Collapse
Affiliation(s)
- Alexey Teplyakov
- Janssen Research and Development, LLC, Spring House, PA 19477, USA
| | - Galina Obmolova
- Janssen Research and Development, LLC, Spring House, PA 19477, USA
| | - Gary L Gilliland
- Janssen Research and Development, LLC, Spring House, PA 19477, USA
| |
Collapse
|
43
|
Pontejo SM, Murphy PM. Chemokines encoded by herpesviruses. J Leukoc Biol 2017; 102:1199-1217. [PMID: 28848041 DOI: 10.1189/jlb.4ru0417-145rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/15/2022] Open
Abstract
Viruses use diverse strategies to elude the immune system, including copying and repurposing host cytokine and cytokine receptor genes. For herpesviruses, the chemokine system of chemotactic cytokines and receptors is a common source of copied genes. Here, we review the current state of knowledge about herpesvirus-encoded chemokines and discuss their possible roles in viral pathogenesis, as well as their clinical potential as novel anti-inflammatory agents or targets for new antiviral strategies.
Collapse
Affiliation(s)
- Sergio M Pontejo
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Philip M Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
44
|
Nguyen AF, Kuo NW, Showalter LJ, Ramos R, Dupureur CM, Colvin ME, LiWang PJ. Biophysical and Computational Studies of the vCCI:vMIP-II Complex. Int J Mol Sci 2017; 18:ijms18081778. [PMID: 28813018 PMCID: PMC5578167 DOI: 10.3390/ijms18081778] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 11/16/2022] Open
Abstract
Certain viruses have the ability to subvert the mammalian immune response, including interference in the chemokine system. Poxviruses produce the chemokine binding protein vCCI (viral CC chemokine inhibitor; also called 35K), which tightly binds to CC chemokines. To facilitate the study of vCCI, we first provide a protocol to produce folded vCCI from Escherichia coli (E. coli.) It is shown here that vCCI binds with unusually high affinity to viral Macrophage Inflammatory Protein-II (vMIP-II), a chemokine analog produced by the virus, human herpesvirus 8 (HHV-8). Fluorescence anisotropy was used to investigate the vCCI:vMIP-II complex and shows that vCCI binds to vMIP-II with a higher affinity than most other chemokines, having a Kd of 0.06 ± 0.006 nM. Nuclear magnetic resonance (NMR) chemical shift perturbation experiments indicate that key amino acids used for binding in the complex are similar to those found in previous work. Molecular dynamics were then used to compare the vCCI:vMIP-II complex with the known vCCI:Macrophage Inflammatory Protein-1β/CC-Chemokine Ligand 4 (MIP-1β/CCL4) complex. The simulations show key interactions, such as those between E143 and D75 in vCCI/35K and R18 in vMIP-II. Further, in a comparison of 1 μs molecular dynamics (MD) trajectories, vMIP-II shows more overall surface binding to vCCI than does the chemokine MIP-1β. vMIP-II maintains unique contacts at its N-terminus to vCCI that are not made by MIP-1β, and vMIP-II also makes more contacts with the vCCI flexible acidic loop (located between the second and third beta strands) than does MIP-1β. These studies provide evidence for the basis of the tight vCCI:vMIP-II interaction while elucidating the vCCI:MIP-1β interaction, and allow insight into the structure of proteins that are capable of broadly subverting the mammalian immune system.
Collapse
Affiliation(s)
- Anna F Nguyen
- Departments of Molecular Cell Biology and Chemistry and Chemical Biology, and the Health Sciences Research Institute, University of California Merced 5200 North Lake Rd, Merced, CA 953402, USA.
| | - Nai-Wei Kuo
- Departments of Molecular Cell Biology and Chemistry and Chemical Biology, and the Health Sciences Research Institute, University of California Merced 5200 North Lake Rd, Merced, CA 953402, USA.
| | - Laura J Showalter
- Departments of Molecular Cell Biology and Chemistry and Chemical Biology, and the Health Sciences Research Institute, University of California Merced 5200 North Lake Rd, Merced, CA 953402, USA.
| | - Ricardo Ramos
- Departments of Molecular Cell Biology and Chemistry and Chemical Biology, and the Health Sciences Research Institute, University of California Merced 5200 North Lake Rd, Merced, CA 953402, USA.
| | - Cynthia M Dupureur
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St. Louis, MO 63121, USA.
| | - Michael E Colvin
- Departments of Molecular Cell Biology and Chemistry and Chemical Biology, and the Health Sciences Research Institute, University of California Merced 5200 North Lake Rd, Merced, CA 953402, USA.
| | - Patricia J LiWang
- Departments of Molecular Cell Biology and Chemistry and Chemical Biology, and the Health Sciences Research Institute, University of California Merced 5200 North Lake Rd, Merced, CA 953402, USA.
| |
Collapse
|
45
|
Henning JD, Karamchandani JM, Bonachea LA, Bunker CH, Patrick AL, Jenkins FJ. Elevated Serum PSA is Associated With Human Herpesvirus 8 Infection and Increased Circulating Cytokine Levels in Men From Tobago. Prostate 2017; 77:617-624. [PMID: 28117495 PMCID: PMC5354972 DOI: 10.1002/pros.23308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 12/28/2016] [Indexed: 11/08/2022]
Abstract
BACKGROUND Serum-prostate specific antigen (PSA) levels have been used for many years as a biomarker for prostate cancer. This usage is under scrutiny due to the fact that elevated PSA levels can be caused by other conditions such as benign prostatic hyperplasia and infections of or injury to the prostate. As a result, the identification of specific pathogens capable of increasing serum levels of PSA is important. A potential candidate responsible for elevated PSA is human herpesvirus 8 (HHV-8). We have reported previously that HHV-8 is capable of infecting and establishing a latent infection in the prostate. In this current study we test the hypothesis that HHV-8 infection is associated with elevated PSA levels. Circulating cytokine levels between men with elevated PSA and controls are also compared. METHODS HHV-8 serostatus was determined among men with elevated serum PSA (≥4 ng/ml; n = 168, no prostate cancer on biopsy) and age-matched controls (PSA <4 ng/ml; n = 234), Circulating cytokine levels were determined among a subset of each group (116 with elevated PSA and 85 controls). RESULTS Men with an elevated serum PSA were significantly more likely to be HHV-8 seropositive (42.9%) than the age-matched cancer-free men (22.2%; OR 2.51; 95%CI 1.48-4.29, P = 00001). Comparison of circulating cytokine levels between men with elevated serum PSA and controls indicated that elevated serum PSA is associated with a pro-inflammatory response with a mixed Th1/Th2 response while HHV-8 infection was associated with significantly higher levels of IL12p70, IL-10, and IL-13 indicating a Th2 immune response. CONCLUSIONS We found a significant association between HHV-8 infection and increased levels of serum PSA. In an age of patient-centered medicine, men with an elevated serum PSA should be considered for HHV-8 serology testing to determine if HHV-8 is responsible for the elevated PSA. Prostate 77: 617-624, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jill D. Henning
- Department of Biology, University of Pittsburgh Johnstown, Johnstown, PA
| | | | - Luis A. Bonachea
- Department of Biology, University of Pittsburgh Johnstown, Johnstown, PA
| | | | - Alan L. Patrick
- Tobago Health Studies Office, Scarborough, Tobago, Trinidad and Tobago, West Indies
| | - Frank J. Jenkins
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
- Correspondence: Dr. Frank J. Jenkins, Department of Pathology, University of Pittsburgh Cancer Institute, G.17, Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA 15213, , Office:412-623-3233, Fax: 412-623-1119
| |
Collapse
|
46
|
Ziarek JJ, Kleist AB, London N, Raveh B, Montpas N, Bonneterre J, St-Onge G, DiCosmo-Ponticello CJ, Koplinski CA, Roy I, Stephens B, Thelen S, Veldkamp CT, Coffman FD, Cohen MC, Dwinell MB, Thelen M, Peterson FC, Heveker N, Volkman BF. Structural basis for chemokine recognition by a G protein-coupled receptor and implications for receptor activation. Sci Signal 2017; 10:10/471/eaah5756. [PMID: 28325822 DOI: 10.1126/scisignal.aah5756] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chemokines orchestrate cell migration for development, immune surveillance, and disease by binding to cell surface heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs). The array of interactions between the nearly 50 chemokines and their 20 GPCR targets generates an extensive signaling network to which promiscuity and biased agonism add further complexity. The receptor CXCR4 recognizes both monomeric and dimeric forms of the chemokine CXCL12, which is a distinct example of ligand bias in the chemokine family. We demonstrated that a constitutively monomeric CXCL12 variant reproduced the G protein-dependent and β-arrestin-dependent responses that are associated with normal CXCR4 signaling and lead to cell migration. In addition, monomeric CXCL12 made specific contacts with CXCR4 that are not present in the structure of the receptor in complex with a dimeric form of CXCL12, a biased agonist that stimulates only G protein-dependent signaling. We produced an experimentally validated model of an agonist-bound chemokine receptor that merged a nuclear magnetic resonance-based structure of monomeric CXCL12 bound to the amino terminus of CXCR4 with a crystal structure of the transmembrane domains of CXCR4. The large CXCL12:CXCR4 protein-protein interface revealed by this structure identified previously uncharacterized functional interactions that fall outside of the classical "two-site model" for chemokine-receptor recognition. Our model suggests a mechanistic hypothesis for how interactions on the extracellular face of the receptor may stimulate the conformational changes required for chemokine receptor-mediated signal transduction.
Collapse
Affiliation(s)
- Joshua J Ziarek
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Andrew B Kleist
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Nir London
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Barak Raveh
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nicolas Montpas
- Centre de Recherche, Centre Hospitalier Universitaire Sainte-Justine, Montréal, Quebec H3T 1C5, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Julien Bonneterre
- Centre de Recherche, Centre Hospitalier Universitaire Sainte-Justine, Montréal, Quebec H3T 1C5, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Geneviève St-Onge
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | | | - Chad A Koplinski
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ishan Roy
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Bryan Stephens
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 93093, USA
| | - Sylvia Thelen
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Via Vela 6, Bellinzona CH-6500, Switzerland
| | | | - Frederick D Coffman
- Department of Pathology and Laboratory Medicine and Center for Biophysical Pathology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Marion C Cohen
- Rutgers Graduate School of Biomedical Sciences, Newark, NJ 07101, USA
| | - Michael B Dwinell
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Marcus Thelen
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Via Vela 6, Bellinzona CH-6500, Switzerland
| | - Francis C Peterson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Nikolaus Heveker
- Centre de Recherche, Centre Hospitalier Universitaire Sainte-Justine, Montréal, Quebec H3T 1C5, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
47
|
Yang Q, Wu H, Wang H, Li Y, Zhang L, Zhu L, Wang W, Zhou J, Fu Y, Chen S, Wu Q, Chen C, Zhou C. N-terminal polypeptide derived from vMIP-II exerts its antitumor activity by inhibiting the CXCR4 pathway in human glioma. Int J Oncol 2017; 50:1160-1174. [PMID: 28350074 PMCID: PMC5363877 DOI: 10.3892/ijo.2017.3906] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 02/28/2017] [Indexed: 11/06/2022] Open
Abstract
Emerging evidence demonstrates that the stromal derived factor-1 (SDF-1α)/CXCR4 axis is associated with tumor aggressiveness and metastasis, including glioma, the most common brain cancer. In the present study, we demonstrated that a novel designed peptide NT21MP of viral macrophage inflammatory protein II, targeting CXCR4 inhibits SDF-1α-induced activation in glioma. The effects of NT21MP on CXCR4 expression, cell survival and migration were assessed on the human glioma cell line U251 and SHG-44 exposed to SDF-1α, by western blotting, MTT assay, flow cytometry and transwell migration assay. Our results illustrated that NT21MP inhibited SDF-1α induced proliferation, migration and invasion by upregulated pro-apoptotic genes (Bak1 and caspase-3) and downregulated Bcl-2/Bax as well as cell cycle regulators (cyclin D1 and CDK4) to arrest cell cycle in G0/G1 phase and promote apoptosis. By RT-qPCR and immunofluorescence we found that CXCR4 was highly expressed in SHG-44 cells. Our results from wound healing and transwell invasion assays indicated silencing of CXCR4 significantly inhibited the SDF-1α‑induced migration and invasion; similarly, flow cytometry showed that treatment with si-CXCR4 affected cell cycle and induced cell apoptosis in SHG-44. However, these effects were significantly weakened by NT21MP. In conclusion, the present study indicates that NT21MP plays a regulatory role in the SDF-1α/CXCR4 axis and further manages the invasion, migration, apoptosis and cell cycle of glioma cells. Thus, NT21MP might represent a novel therapeutic approach against glioma.
Collapse
Affiliation(s)
- Qingling Yang
- Hefei National Laboratory for Physical Sciences at Microscale and the Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Haihua Wu
- Clinical Testing and Diagnose Experimental Center of Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Haifeng Wang
- Clinical Testing and Diagnose Experimental Center of Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Yu Li
- Clinical Testing and Diagnose Experimental Center of Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Lingyu Zhang
- Clinical Testing and Diagnose Experimental Center of Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Lihua Zhu
- Clinical Testing and Diagnose Experimental Center of Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Wenrui Wang
- Department of Biotechnology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Jihong Zhou
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Yingxiao Fu
- Department of Bioscience, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Sulian Chen
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Qiong Wu
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Changjie Chen
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Congzhao Zhou
- Hefei National Laboratory for Physical Sciences at Microscale and the Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| |
Collapse
|
48
|
Stone MJ, Hayward JA, Huang C, E Huma Z, Sanchez J. Mechanisms of Regulation of the Chemokine-Receptor Network. Int J Mol Sci 2017; 18:E342. [PMID: 28178200 PMCID: PMC5343877 DOI: 10.3390/ijms18020342] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/18/2017] [Accepted: 01/26/2017] [Indexed: 12/18/2022] Open
Abstract
The interactions of chemokines with their G protein-coupled receptors promote the migration of leukocytes during normal immune function and as a key aspect of the inflammatory response to tissue injury or infection. This review summarizes the major cellular and biochemical mechanisms by which the interactions of chemokines with chemokine receptors are regulated, including: selective and competitive binding interactions; genetic polymorphisms; mRNA splice variation; variation of expression, degradation and localization; down-regulation by atypical (decoy) receptors; interactions with cell-surface glycosaminoglycans; post-translational modifications; oligomerization; alternative signaling responses; and binding to natural or pharmacological inhibitors.
Collapse
Affiliation(s)
- Martin J Stone
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| | - Jenni A Hayward
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| | - Cheng Huang
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| | - Zil E Huma
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| | - Julie Sanchez
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
49
|
Crow MS, Lum KK, Sheng X, Song B, Cristea IM. Diverse mechanisms evolved by DNA viruses to inhibit early host defenses. Crit Rev Biochem Mol Biol 2016; 51:452-481. [PMID: 27650455 PMCID: PMC5285405 DOI: 10.1080/10409238.2016.1226250] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In mammalian cells, early defenses against infection by pathogens are mounted through a complex network of signaling pathways shepherded by immune-modulatory pattern-recognition receptors. As obligate parasites, the survival of viruses is dependent on the evolutionary acquisition of mechanisms that tactfully dismantle and subvert the cellular intrinsic and innate immune responses. Here, we review the diverse mechanisms by which viruses that accommodate DNA genomes are able to circumvent activation of cellular immunity. We start by discussing viral manipulation of host defense protein levels by either transcriptional regulation or protein degradation. We next review viral strategies used to repurpose or inhibit these cellular immune factors by molecular hijacking or by regulating their post-translational modification status. Additionally, we explore the infection-induced temporal modulation of apoptosis to facilitate viral replication and spread. Lastly, the co-evolution of viruses with their hosts is highlighted by the acquisition of elegant mechanisms for suppressing host defenses via viral mimicry of host factors. In closing, we present a perspective on how characterizing these viral evasion tactics both broadens the understanding of virus-host interactions and reveals essential functions of the immune system at the molecular level. This knowledge is critical in understanding the sources of viral pathogenesis, as well as for the design of antiviral therapeutics and autoimmunity treatments.
Collapse
Affiliation(s)
- Marni S. Crow
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544
| | - Krystal K. Lum
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544
| | - Xinlei Sheng
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544
| | - Bokai Song
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544
| |
Collapse
|
50
|
Dittmer DP, Damania B. Kaposi sarcoma-associated herpesvirus: immunobiology, oncogenesis, and therapy. J Clin Invest 2016; 126:3165-75. [PMID: 27584730 DOI: 10.1172/jci84418] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8, is the etiologic agent underlying Kaposi sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. This human gammaherpesvirus was discovered in 1994 by Drs. Yuan Chang and Patrick Moore. Today, there are over five thousand publications on KSHV and its associated malignancies. In this article, we review recent and ongoing developments in the KSHV field, including molecular mechanisms of KSHV pathogenesis, clinical aspects of KSHV-associated diseases, and current treatments for cancers associated with this virus.
Collapse
|