1
|
Wang P, Li J, Ji M, Pan J, Cao Y, Kong Y, Zhu L, Li J, Li B, Chang L, Zhang Z. Vitamin D receptor attenuates carbon tetrachloride-induced liver fibrosis via downregulation of YAP. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135480. [PMID: 39146589 DOI: 10.1016/j.jhazmat.2024.135480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
Liver fibrosis is characterized by the excessive accumulation of extracellular matrix proteins, which can lead to cirrhosis and liver cancer. Metabolic dysfunction-associated steatosis liver diseases are common causes of liver fibrosis, sharing a similar pathogenesis with carbon tetrachloride (CCl₄) exposure. This process involves the activation of hepatic stellate cells (HSCs) into myofibroblasts. However, the detailed mechanism and effective treatment strategies require further investigation. In this study, we uncovered a negative correlation between VDR expression and YAP within HSCs. Subsequently, we demonstrated that VDR exerted a downregulatory influence on YAP transcriptional activity in HSCs. Intriguingly, activation VDR effectively inhibited the culture induced activation of primary HSCs by suppressing the transcriptional activity of early YAP. Furthermore, in vivo results manifested that hepatic-specific deletion of YAP/TAZ ameliorates CCl4-induced liver fibrosis, and nullified the antifibrotic efficacy of VDR. Importantly, a YAP inhibitor rescued the exacerbation of liver fibrosis induced by hepatic-specific VDR knockout. Moreover, the combined pharmacological of VDR agonist and YAP inhibitor demonstrated a synergistic effect in diminishing CCl4-induced liver fibrosis, primary HSCs activation and hepatic injury in vivo. These effects were underpinned by their collective ability to inhibit HSC activation through AMPK activation, consequently curbing ATP synthesis and HSCs proliferation. In conclusion, our results not only revealed the inhibition of VDR on YAP-activated liver stellate cells but also identified a synergistic effect of VDR agonist and YAP inhibitor in an AMPKα-dependent manner, providing a practical foundation for integration of multi-targeted drugs in the therapy of CCl4-induced hepatic fibrosis.
Collapse
Affiliation(s)
- Ping Wang
- Department of Occupational and Environmental Health, School of Public Health, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Jie Li
- Department of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Mintao Ji
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity. The Fourth Affiliated Hospital of Soochow University, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Jinjing Pan
- Department of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Yanmei Cao
- Department of Infectious Diseases, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou 215007, China
| | - Yulin Kong
- Department of Infectious Diseases, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou 215007, China
| | - Li Zhu
- Department of Infectious Diseases, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou 215007, China
| | - Jiafu Li
- Department of Occupational and Environmental Health, School of Public Health, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Bingyan Li
- Department of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical College of Soochow University, Suzhou 215123, China.
| | - Lei Chang
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity. The Fourth Affiliated Hospital of Soochow University, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou 215123, China; Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200433, China.
| | - Zengli Zhang
- Department of Occupational and Environmental Health, School of Public Health, Suzhou Medical College of Soochow University, Suzhou 215123, China.
| |
Collapse
|
2
|
Dallavalasa S, Tulimilli SV, Bettada VG, Karnik M, Uthaiah CA, Anantharaju PG, Nataraj SM, Ramashetty R, Sukocheva OA, Tse E, Salimath PV, Madhunapantula SV. Vitamin D in Cancer Prevention and Treatment: A Review of Epidemiological, Preclinical, and Cellular Studies. Cancers (Basel) 2024; 16:3211. [PMID: 39335182 PMCID: PMC11430526 DOI: 10.3390/cancers16183211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Inhibition of human carcinomas has previously been linked to vitamin D due to its effects on cancer cell proliferation, migration, angiogenesis, and apoptosis induction. The anticancer activity of vitamin D has been confirmed by several studies, which have shown that increased cancer incidence is associated with decreased vitamin D and that dietary supplementation of vitamin D slows down the growth of xenografted tumors in mice. Vitamin D inhibits the growth of cancer cells by the induction of apoptosis as well as by arresting the cells at the G0/G1 (or) G2/M phase of the cell cycle. Aim and Key Scientific Concepts of the Review: The purpose of this article is to thoroughly review the existing information and discuss and debate to conclude whether vitamin D could be used as an agent to prevent/treat cancers. The existing empirical data have demonstrated that vitamin D can also work in the absence of vitamin D receptors (VDRs), indicating the presence of multiple mechanisms of action for this sunshine vitamin. Polymorphism in the VDR is known to play a key role in tumor cell metastasis and drug resistance. Although there is evidence that vitamin D has both therapeutic and cancer-preventive properties, numerous uncertainties and concerns regarding its use in cancer treatment still exist. These include (a) increased calcium levels in individuals receiving therapeutic doses of vitamin D to suppress the growth of cancer cells; (b) hyperglycemia induction in certain vitamin D-treated study participants; (c) a dearth of evidence showing preventive or therapeutic benefits of cancer in clinical trials; (d) very weak support from proof-of-principle studies; and (e) the inability of vitamin D alone to treat advanced cancers. Addressing these concerns, more potent and less toxic vitamin D analogs have been created, and these are presently undergoing clinical trial evaluation. To provide key information regarding the functions of vitamin D and VDRs, this review provided details of significant advancements in the functional analysis of vitamin D and its analogs and VDR polymorphisms associated with cancers.
Collapse
Affiliation(s)
- Siva Dallavalasa
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center and ICMR Collaborating Center of Excellence-ICMR-CCoE), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
| | - SubbaRao V Tulimilli
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center and ICMR Collaborating Center of Excellence-ICMR-CCoE), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
| | - Vidya G Bettada
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center and ICMR Collaborating Center of Excellence-ICMR-CCoE), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
| | - Medha Karnik
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center and ICMR Collaborating Center of Excellence-ICMR-CCoE), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
| | - Chinnappa A Uthaiah
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center and ICMR Collaborating Center of Excellence-ICMR-CCoE), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
| | - Preethi G Anantharaju
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center and ICMR Collaborating Center of Excellence-ICMR-CCoE), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
| | - Suma M Nataraj
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center and ICMR Collaborating Center of Excellence-ICMR-CCoE), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
| | - Rajalakshmi Ramashetty
- Department of Physiology, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
| | - Olga A Sukocheva
- Department of Hepatology, Royal Adelaide Hospital, Port Rd., Adelaide, SA 5000, Australia
| | - Edmund Tse
- Department of Hepatology, Royal Adelaide Hospital, Port Rd., Adelaide, SA 5000, Australia
| | - Paramahans V Salimath
- JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
| | - SubbaRao V Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center and ICMR Collaborating Center of Excellence-ICMR-CCoE), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
- Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
| |
Collapse
|
3
|
Zhang L, Li W, Wang X, Yu S, Zhuang R, Zhou Y. A real-world study of active vitamin D as a prognostic marker in patients with sarcoma. Discov Oncol 2024; 15:384. [PMID: 39207640 PMCID: PMC11362410 DOI: 10.1007/s12672-024-01152-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 07/09/2024] [Indexed: 09/04/2024] Open
Abstract
PURPOSE The assessment of sarcoma during clinical practice is primarily based on imaging examination, with no effective biomarkers available. Although it has been established that 1,25(OH)2D3 is abnormally expressed in patients with sarcoma, it remains unclear whether 1,25(OH)2D3 level could be used as an evaluation marker in these patient population. METHODS This real-world study investigated 1,25(OH)2D3 level and its association with clinical features in sarcoma patients. Data on 1,25(OH)2D3, parathyroid hormone, calcium, and calcitonin were collected from 331 patients with sarcoma, while the imaging results and the variation in 1,25(OH)2D3 among 213 patients with sarcoma before and after treatment was further analyzed. RESULTS We found that the serum 1,25(OH)2D3 level was predominantly decreased in patients with sarcoma, with a mean of 45.68 nmol/L. 1,25(OH)2D3 was significantly correlated with the gender and age of sarcoma patients, with more substantial reductions in women and younger patients. Among sarcoma patients, those with progressive disease exhibited a 7.08 nmol/L (-13.73%) decrease in serum 1,25(OH)2D3 levels compared to baseline, while patients with non-progressive disease showed a 1.11 nmol/L (+ 7.0%) increase. CONCLUSION The variation of serum 1,25(OH)2D3 can predict the disease status of patients with sarcoma. Decreased serum 1,25(OH)2D3 levels are indicative of disease progression in sarcoma patients, suggesting its potential for application as a prognostic marker for disease assessment in this patient population.
Collapse
Affiliation(s)
- Lingyun Zhang
- Department of Medical Oncology, Shanghai Geriatric Medical Center, Shanghai, China
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Li
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiao Wang
- Department of Medical Oncology, Shanghai Geriatric Medical Center, Shanghai, China
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shan Yu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Rongyuan Zhuang
- Department of Medical Oncology, Shanghai Geriatric Medical Center, Shanghai, China
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuhong Zhou
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Gupta VK, Sahu L, Sonwal S, Suneetha A, Kim DH, Kim J, Verma HK, Pavitra E, Raju GSR, Bhaskar L, Lee HU, Huh YS. Advances in biomedical applications of vitamin D for VDR targeted management of obesity and cancer. Biomed Pharmacother 2024; 177:117001. [PMID: 38936194 DOI: 10.1016/j.biopha.2024.117001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND 1,25(OH)2D3 is a fat-soluble vitamin, involved in regulating Ca2+ homeostasis in the body. Its storage in adipose tissue depends on the fat content of the body. Obesity is the result of abnormal lipid deposition due to the prolonged positive energy balance and increases the risk of several cancer types. Furthermore, it has been associated with vitamin D deficiency and defined as a low 25(OH)2D3 blood level. In addition, 1,25(OH)2D3 plays vital roles in Ca2+-Pi and glucose metabolism in the adipocytes of obese individuals and regulates the expressions of adipogenesis-associated genes in mature adipocytes. SCOPE AND APPROACH The present contribution focused on the VDR mediated mechanisms interconnecting the obese condition and cancer proliferation due to 1,25(OH)2D3-deficiency in humans. This contribution also summarizes the identification and development of molecular targets for VDR-targeted drug discovery. KEY FINDINGS AND CONCLUSIONS Several studies have revealed that cancer development in a background of 1,25(OH)2D3 deficient obesity involves the VDR gene. Moreover, 1,25(OH)2D3 is also known to influence several cellular processes, including differentiation, proliferation, and adhesion. The multifaceted physiology of obesity has improved our understanding of the cancer therapeutic targets. However, currently available anti-cancer drugs are notorious for their side effects, which have raised safety issues. Thus, there is interest in developing 1,25(OH)2D3-based therapies without any side effects.
Collapse
Affiliation(s)
- Vivek Kumar Gupta
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Lipina Sahu
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495009, India
| | - Sonam Sonwal
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Achanti Suneetha
- Department of Pharmaceutical Analysis, KVSR Siddhartha College of Pharmaceutical Sciences, Vijayawada, Andhra Pradesh 520010, India
| | - Dong Hyeon Kim
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Jigyeong Kim
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Henu Kumar Verma
- Department of Immunopathology, Institute of Lungs Health and Immunity, Comprehensive Pneumology Center, Helmholtz Zentrum, Neuherberg, Munich 85764, Germany
| | - Eluri Pavitra
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea.
| | - Lvks Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495009, India.
| | - Hyun Uk Lee
- Division of Material Analysis and Research, Korea Basic Science Institute, Daejeon 34133, Republic of Korea.
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
5
|
Chen Y, Anderson MT, Payne N, Santori FR, Ivanova NB. Nuclear Receptors and the Hidden Language of the Metabolome. Cells 2024; 13:1284. [PMID: 39120315 PMCID: PMC11311682 DOI: 10.3390/cells13151284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Nuclear hormone receptors (NHRs) are a family of ligand-regulated transcription factors that control key aspects of development and physiology. The regulation of NHRs by ligands derived from metabolism or diet makes them excellent pharmacological targets, and the mechanistic understanding of how NHRs interact with their ligands to regulate downstream gene networks, along with the identification of ligands for orphan NHRs, could enable innovative approaches for cellular engineering, disease modeling and regenerative medicine. We review recent discoveries in the identification of physiologic ligands for NHRs. We propose new models of ligand-receptor co-evolution, the emergence of hormonal function and models of regulation of NHR specificity and activity via one-ligand and two-ligand models as well as feedback loops. Lastly, we discuss limitations on the processes for the identification of physiologic NHR ligands and emerging new methodologies that could be used to identify the natural ligands for the remaining 17 orphan NHRs in the human genome.
Collapse
Affiliation(s)
- Yujie Chen
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; (Y.C.); (M.T.A.); (N.P.)
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Matthew Tom Anderson
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; (Y.C.); (M.T.A.); (N.P.)
| | - Nathaniel Payne
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; (Y.C.); (M.T.A.); (N.P.)
| | - Fabio R. Santori
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; (Y.C.); (M.T.A.); (N.P.)
| | - Natalia B. Ivanova
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; (Y.C.); (M.T.A.); (N.P.)
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
6
|
Marti DT, Nesiu A, Balta C, Olariu TR, Mihu AG, Hermenean A, Oatis DA. Retrospective Analysis of Vitamin D Deficiency in an Adult Population of Arad County, Western Romania (2019-2022). Life (Basel) 2024; 14:274. [PMID: 38398782 PMCID: PMC10890605 DOI: 10.3390/life14020274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/06/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Vitamin D, a steroid hormone synthesized primarily in the skin upon exposure to ultraviolet light, is widely deficient across global populations. This study aimed to fill the data gap in Western Romania by measuring 25-hydroxy-vitamin D levels in a cohort of 7141 from Arad County. It was observed that women, younger adults (18-29 years), and older adults (70-79 years) had notably lower vitamin D levels compared to the average population. Additionally, there was a rise in vitamin D levels over the four-year span of 2018-2022, coinciding with the COVID-19 pandemic. Our research provides fresh data on those most susceptible to vitamin D deficiency and lays the groundwork for educational campaigns on vitamin D supplementation benefits.
Collapse
Affiliation(s)
- Daniela Teodora Marti
- Department of Biology and Life Sciences, Faculty of Medicine, Vasile Goldis Western University of Arad, 310025 Arad, Romania; (D.T.M.); (A.N.); (D.A.O.)
| | - Alexandru Nesiu
- Department of Biology and Life Sciences, Faculty of Medicine, Vasile Goldis Western University of Arad, 310025 Arad, Romania; (D.T.M.); (A.N.); (D.A.O.)
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania;
| | - Cornel Balta
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania;
| | - Tudor Rares Olariu
- Discipline of Parasitology, Department of Infectious Disease, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- Center for Diagnosis and Study of Parasitic Diseases, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Clinical Laboratory, Municipal Clinical Emergency Teaching Hospital, 300041 Timisoara, Romania
| | - Alin Gabriel Mihu
- Department of Biology and Life Sciences, Faculty of Medicine, Vasile Goldis Western University of Arad, 310025 Arad, Romania; (D.T.M.); (A.N.); (D.A.O.)
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania;
- Bioclinica Medical Analysis Laboratory, Dreptatii Street, nr. 23, 310300 Arad, Romania
| | - Anca Hermenean
- Department of Biology and Life Sciences, Faculty of Medicine, Vasile Goldis Western University of Arad, 310025 Arad, Romania; (D.T.M.); (A.N.); (D.A.O.)
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania;
| | - Daniela Adriana Oatis
- Department of Biology and Life Sciences, Faculty of Medicine, Vasile Goldis Western University of Arad, 310025 Arad, Romania; (D.T.M.); (A.N.); (D.A.O.)
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania;
| |
Collapse
|
7
|
Obaid AA, Farrash WF, Mujalli A, Singh SK. A Quest for Potential Role of Vitamin D in Type II Diabetes Mellitus Induced Diabetic Kidney Disease. Curr Pharm Des 2024; 30:2505-2512. [PMID: 38963115 DOI: 10.2174/0113816128296168240614071821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 07/05/2024]
Abstract
Diabetes mellitus is a metabolic disorder characterized by high blood sugar levels. In recent years, T2DM has become a worldwide health issue due to an increase in incidence and prevalence. Diabetic kidney disease (DKD) is one of the devastating consequences of diabetes, especially owing to T2DM and the key clinical manifestation of DKD is weakened renal function and progressive proteinuria. DKD affects approximately 1/3rd of patients with diabetes mellitus, and T2DM is the predominant cause of end-stage kidney disease (ESKD). Several lines of studies have observed the association between vitamin D deficiency and the progression and etiology of type II diabetes mellitus. Emerging experimental evidence has shown that T2DM is associated with various kinds of kidney diseases. Recent evidence has also shown that an alteration in VDR (vitamin D receptor) signaling in podocytes leads to DKD. The present review aims to examine vitamin D metabolism and its correlation with T2DM. Furthermore, we discuss the potential role of vitamin D and VDR in diabetic kidney disease.
Collapse
Affiliation(s)
- Ahmad A Obaid
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Wesam F Farrash
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdulrahman Mujalli
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sandeep Kumar Singh
- Department of Biomedical, Indian Scientific Education and Technology Foundation, Lucknow 221005, India
| |
Collapse
|
8
|
Iwaki M, Kanemoto Y, Sawada T, Nojiri K, Kurokawa T, Tsutsumi R, Nagasawa K, Kato S. Differential gene regulation by a synthetic vitamin D receptor ligand and active vitamin D in human cells. PLoS One 2023; 18:e0295288. [PMID: 38091304 PMCID: PMC10718451 DOI: 10.1371/journal.pone.0295288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Vitamin D (VD) exerts a wide variety of biological functions including calcemic activity. VD nutritional status is closely associated with the onset and development of chronic diseases. To develop a VD analog with the desired VD activity but without calcemic activity, we screened synthetic VDR antagonists. We identified 1α,25-dihydroxyvitamin D3-26-23-lactams (DLAM)-2a-d (DLAM-2s) as nuclear vitamin D receptor (VDR) ligands in a competitive VDR binding assay for 1α,25(OH)2 vitamin D3 (1α,25(OH)2D3), and DLAM-2s showed an antagonistic effect on 1α,25(OH)2 D3-induced cell differentiation in HL60 cells. In a luciferase reporter assay in which human VDR was exogenously expressed in cultured COS-1 cells, DLAM-2s acted as transcriptional antagonists. Consistently, DLAM-2s had an antagonistic effect on the 1α,25(OH)2D3-induced expression of a known VD target gene [Cytochrome P450 24A1 (CYP24A1)], and VDR bound DLAM-2s was recruited to an endogenous VD response element in chromatin in human keratinocytes (HaCaT cells) endogenously expressing VDR. In an ATAC-seq assay, the effects of 1α,25(OH)2 D3 and DLAM-2b on chromatin reorganization were undetectable in HaCaT cells, while the effect of an androgen receptor (AR) antagonist (bicalutamide) was confirmed in prostate cancer cells (LNCaP) expressing endogenous AR. However, whole genome analysis using RNA-seq and ATAC (Assay for Transposase Accessible Chromatin)-seq revealed differential gene expression profiles regulated by DLAM-2b versus 1α,25(OH)2D3. The upregulated and downregulated genes only partially overlapped between cells treated with 1α,25(OH)2D3 and those treated with DLAM-2b. Thus, the present findings illustrate a novel VDR ligand with gene regulatory activity differing from that of 1α,25(OH)2D3.
Collapse
Affiliation(s)
- Miho Iwaki
- Graduate School of Technology, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Yoshiaki Kanemoto
- Graduate School of Life Science and Technology, Iryo Sosei University, Iino, Chuo-dai, Iwaki, Fukushima, Japan
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Fukushima, Japan
| | - Takahiro Sawada
- Graduate School of Life Science and Technology, Iryo Sosei University, Iino, Chuo-dai, Iwaki, Fukushima, Japan
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Fukushima, Japan
| | - Koki Nojiri
- Graduate School of Life Science and Technology, Iryo Sosei University, Iino, Chuo-dai, Iwaki, Fukushima, Japan
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Fukushima, Japan
| | - Tomohiro Kurokawa
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Fukushima, Japan
- School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Rino Tsutsumi
- Graduate School of Technology, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Kazuo Nagasawa
- Graduate School of Technology, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Shigeaki Kato
- Graduate School of Life Science and Technology, Iryo Sosei University, Iino, Chuo-dai, Iwaki, Fukushima, Japan
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Fukushima, Japan
- School of Medicine, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
9
|
Zhang QF, Xiao HM, An N, Zhu QF, Feng YQ. Determination of vitamin D metabolites in various biological samples through an improved chemical derivatization assisted liquid chromatography-tandem mass spectrometry approach. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6009-6014. [PMID: 37927098 DOI: 10.1039/d3ay01769a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Vitamin D (VD) metabolites are involved in a variety of important metabolic processes and physiological effects in organisms. Profiling of VD metabolites favors a deep understanding of the physiological role of VD. However, VD metabolites are difficult to detect due to their high chemical structural rigidity, structural similarity, and low sensitivities under liquid chromatography-tandem mass spectrometry (LC-MS). Herein, we present a chemical derivatization assisted LC-MS/MS strategy for the detection of VDs, in which 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) is employed to derivatize the conjugated diene of VD metabolites and provides sensitizing reporters for MS detection. After PTAD derivatization, the sensitivities of seven VD metabolites increased by 24-276 folds, with the limits of detection ranging from 3 to 20 pg mL-1. Using this method, we achieved a sensitive and accurate quantification of 7 VD metabolites (vitamin D2, vitamin D3, 25-hydroxyvitamin D2, 25-hydroxyvitamin D3, 1,25-dihydroxyvitamin D2, 1,25-dihydroxyvitamin D3, and 1,24,25-trihydroxyvitamin D3) of the VD metabolic pathway in different trace biological samples, including human serum, mouse tissues (namely liver, kidney, lung, and spleen), and cells. We believe that the present method can provide a promising tool for an in-depth analysis of VD metabolism.
Collapse
Affiliation(s)
- Qin-Feng Zhang
- Department of Chemistry, Wuhan University, Wuhan 430072, PR China.
- Hubei Geological Research Laboratory, Wuhan 430034, PR China
| | - Hua-Ming Xiao
- Department of Chemistry, Wuhan University, Wuhan 430072, PR China.
| | - Na An
- Department of Chemistry, Wuhan University, Wuhan 430072, PR China.
| | - Quan-Fei Zhu
- School of Public Health, Wuhan University, Wuhan 430071, PR China.
| | - Yu-Qi Feng
- Department of Chemistry, Wuhan University, Wuhan 430072, PR China.
- School of Public Health, Wuhan University, Wuhan 430071, PR China.
| |
Collapse
|
10
|
Hassanein MM, Huri HZ, Abduelkarem AR, Baig K. Therapeutic Effects of Vitamin D on Vaginal, Sexual, and Urological Functions in Postmenopausal Women. Nutrients 2023; 15:3804. [PMID: 37686835 PMCID: PMC10490181 DOI: 10.3390/nu15173804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Recent years have witnessed the emergence of growing evidence concerning vitamin D's potential role in women's health, specifically in postmenopausal women. This evidence also includes its connection to various genitourinary disorders and symptoms. Numerous clinical studies have observed improvements in vulvovaginal symptoms linked to the genitourinary syndrome of menopause (GSM) with vitamin D supplementation. These studies have reported positive effects on various aspects, such as vaginal pH, dryness, sexual functioning, reduced libido, and decreased urinary tract infections. Many mechanisms underlying these pharmacological effects have since been proposed. Vitamin D receptors (VDRs) have been identified as a major contributor to its effects. It is now well known that VDRs are expressed in the superficial layers of the urogenital organs. Additionally, vitamin D plays a crucial role in supporting immune function and modulating the body's defense mechanisms. However, the characterization of these effects requires more investigation. Reviewing existing evidence regarding vitamin D's impact on postmenopausal women's vaginal, sexual, and urological health is the purpose of this article. As research in this area continues, there is a potential for vitamin D to support women's urogenital and sexual health during the menopausal transition and postmenopausal periods.
Collapse
Affiliation(s)
- Mohammed M. Hassanein
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Hasniza Zaman Huri
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Abduelmula R. Abduelkarem
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, University City Road—University City, Sharjah P.O. Box 27272, United Arab Emirates;
- Research Institute for Medical and Health Sciences, University of Sharjah, University City Road—University City, Sharjah P.O. Box 27272, United Arab Emirates
| | - Kauser Baig
- Department of Obstetrics and Gynecology, University Hospital Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
| |
Collapse
|
11
|
Kotob S, Kelts JL. PRIMA-1 MET Does Not Restore Vitamin D Sensitivity to MDA-MB-231 and MDA-MB-468 Triple-Negative Breast Cancer Cells. ACS OMEGA 2023; 8:30500-30507. [PMID: 37636961 PMCID: PMC10448659 DOI: 10.1021/acsomega.3c03719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/17/2023] [Indexed: 08/29/2023]
Abstract
Vitamin D is a steroid hormone that causes growth suppression in cultured cells. We had previously discovered that the triple-negative breast cancer cell lines MDA-MB-231 and MDA-MB-468 did not have growth suppression with vitamin D, while MCF-7 did. MCF-7 cells are not triple-negative and have wild-type p53. Both MDA-MB-231 and MDA-MB-468 have mutations in p53 and these mutations were a possible explanation for the lack of growth suppression with vitamin D. Our hypothesis was that reactivation of p53 in the triple-negative cell lines would cause them to become sensitive to vitamin D. We chose to use the small molecule PRIMA-1MET to reactivate p53 as it has been previously shown to restore function to the p53 mutants present in MB-231 and MB-468. We then measured the ability of vitamin D and its analogues calcipotriol and EB1089 to suppress growth in the presence of PRIMA-1MET. Here, we show that while PRIMA-1MET can kill the breast cancer cells investigated in this study, it does not restore their sensitivity to vitamin D or its analogues.
Collapse
Affiliation(s)
- Shadi
N. Kotob
- Department of Natural Sciences, University of Michigan-Flint, Flint, Michigan 48502, United States
| | - Jessica L. Kelts
- Department of Natural Sciences, University of Michigan-Flint, Flint, Michigan 48502, United States
| |
Collapse
|
12
|
Kanemoto Y, Iwaki M, Sawada T, Nojiri K, Kurokawa T, Tsutsumi R, Nagasawa K, Kato S. Advances in the Administration of Vitamin D Analogues to Support Bone Health and Treat Chronic Diseases. J Bone Metab 2023; 30:219-229. [PMID: 37718900 PMCID: PMC10509026 DOI: 10.11005/jbm.2023.30.3.219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/16/2023] [Indexed: 09/19/2023] Open
Abstract
Vitamin D (VD) exerts a wide variety of biological actions in addition to its well-known roles in calcium homeostasis. Nutritional VD deficiency induces rachitic abnormalities in growing children and osteomalacia in adults, and it has been proposed to underlie the onset and development of multiple non-communicable chronic diseases. Therefore, the administration of VD or synthetic VD analogues represents a promising therapeutic strategy; indeed, VD and a VD agonist have shown clinical promise in mitigating osteoporosis and symptoms of insufficient calcium intake. However, even though high doses of VD analogues have shown pre-clinical efficacy against several diseases, including cancers, they have not yet had wide-spread clinical success. This difference may be due to limitation of clinical doses in light of the inherent calcemic action of VD. An approach to overcome this problem involves the development of VD analogues with lower calcemic activity, which could be administered in high doses to attenuate the onset and progress of disease. In a similar strategy, selective estrogen receptor modulators have had success as anti-osteoporosis drugs, and they have shown benefit for other estrogen target organs by serving as partial antagonists or agonists of estrogen receptor α. It is thus conceivable to generate synthetic partial antagonists or agonists for the VD receptor (VDR) that would exert beneficial effects on bone and other VD target organs. In this review, we discuss the molecular basis of the development of such synthetic VDR ligands from the viewpoint of roles of VDR in gene regulation.
Collapse
Affiliation(s)
- Yoshiaki Kanemoto
- Graduate School of Life Science and Technology, Iryo Sosei University, Iwaki, Fukushima,
Japan
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Fukushima,
Japan
| | - Miho Iwaki
- Department of Biotechnology and Life Science, Graduate School of Technology, Tokyo University of Agriculture and Technology, Koganei, Tokyo,
Japan
| | - Takahiro Sawada
- Graduate School of Life Science and Technology, Iryo Sosei University, Iwaki, Fukushima,
Japan
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Fukushima,
Japan
| | - Koki Nojiri
- Graduate School of Life Science and Technology, Iryo Sosei University, Iwaki, Fukushima,
Japan
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Fukushima,
Japan
| | - Tomohiro Kurokawa
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Fukushima,
Japan
- School of Medicine, Fukushima Medical University, Fukushima, Fukushima,
Japan
| | - Rino Tsutsumi
- Department of Biotechnology and Life Science, Graduate School of Technology, Tokyo University of Agriculture and Technology, Koganei, Tokyo,
Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science, Graduate School of Technology, Tokyo University of Agriculture and Technology, Koganei, Tokyo,
Japan
| | - Shigeaki Kato
- Graduate School of Life Science and Technology, Iryo Sosei University, Iwaki, Fukushima,
Japan
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Fukushima,
Japan
- School of Medicine, Fukushima Medical University, Fukushima, Fukushima,
Japan
| |
Collapse
|
13
|
Maekawa K, Ishizawa M, Ikawa T, Sajiki H, Matsumoto T, Tokiwa H, Makishima M, Yamada S. Syntheses of 25-Adamantyl-25-alkyl-2-methylidene-1α,25-dihydroxyvitamin D 3 Derivatives with Structure-Function Studies of Antagonistic and Agonistic Active Vitamin D Analogs. Biomolecules 2023; 13:1082. [PMID: 37509118 PMCID: PMC10377034 DOI: 10.3390/biom13071082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
The active form of vitamin D3, 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3], is a major regulator of calcium homeostasis through activation of the vitamin D receptor (VDR). We have previously synthesized vitamin D derivatives with large adamantane (AD) rings at position 24, 25, or 26 of the side chain to study VDR agonist and/or antagonist properties. One of them-ADTK1, with an AD ring and 23,24-triple bond-shows a high VDR affinity and cell-selective VDR activity. In this study, we synthesized novel vitamin D derivatives (ADKM1-6) with an alkyl group substituted at position 25 of ADTK1 to develop more cell-selective VDR ligands. ADKM2, ADKM4, and ADKM6 had VDR transcriptional activity comparable to 1,25(OH)2D3 and ADTK1, although their VDR affinities were weaker. Interestingly, ADKM2 has selective VDR activity in kidney- and skin-derived cells-a unique phenotype that differs from ADTK1. Furthermore, ADKM2, ADKM4, and ADKM6 induced osteoblast differentiation in human dedifferentiated fat cells more effectively than ADTK1. The development of vitamin D derivatives with bulky modifications such as AD at position 24, 25, or 26 of the side chain is useful for increased stability and tissue selectivity in VDR-targeting therapy.
Collapse
Affiliation(s)
- Kazuki Maekawa
- Department of Chemistry, Faculty of Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
| | - Michiyasu Ishizawa
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan
| | - Takashi Ikawa
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University 1-25-4 Daigaku-Nishi, Gifu 501-1196, Japan
| | - Hironao Sajiki
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University 1-25-4 Daigaku-Nishi, Gifu 501-1196, Japan
| | - Taro Matsumoto
- Department of Functional Morphology, Division of Cell Regeneration and Transplantation, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Hiroaki Tokiwa
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University 1-25-4 Daigaku-Nishi, Gifu 501-1196, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan
| | - Sachiko Yamada
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan
| |
Collapse
|
14
|
Seraphin G, Rieger S, Hewison M, Capobianco E, Lisse TS. The impact of vitamin D on cancer: A mini review. J Steroid Biochem Mol Biol 2023; 231:106308. [PMID: 37054849 PMCID: PMC10330295 DOI: 10.1016/j.jsbmb.2023.106308] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/15/2023]
Abstract
In this review, we summarize the most recent advances in vitamin D cancer research to provide molecular clarity, as well as its translational trajectory across the cancer landscape. Vitamin D is well known for its role in regulating mineral homeostasis; however, vitamin D deficiency has also been linked to the development and progression of a number of cancer types. Recent epigenomic, transcriptomic, and proteomic studies have revealed novel vitamin D-mediated biological mechanisms that regulate cancer cell self-renewal, differentiation, proliferation, transformation, and death. Tumor microenvironmental studies have also revealed dynamic relationships between the immune system and vitamin D's anti-neoplastic properties. These findings help to explain the large number of population-based studies that show clinicopathological correlations between circulating vitamin D levels and risk of cancer development and death. The majority of evidence suggests that low circulating vitamin D levels are associated with an increased risk of cancers, whereas supplementation alone or in combination with other chemo/immunotherapeutic drugs may improve clinical outcomes even further. These promising results still necessitate further research and development into novel approaches that target vitamin D signaling and metabolic systems to improve cancer outcomes.
Collapse
Affiliation(s)
- Gerbenn Seraphin
- University of Miami, Department of Biology, Coral Gables, FL, USA
| | - Sandra Rieger
- University of Miami, Department of Biology, Coral Gables, FL, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Martin Hewison
- University of Birmingham, Institute of Metabolism and Systems Research, Birmingham, UK
| | | | - Thomas S Lisse
- University of Miami, Department of Biology, Coral Gables, FL, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA; iCURA LLC, Malvern, PA, USA.
| |
Collapse
|
15
|
Norlin M, Wikvall K. Enzymatic activation in vitamin D signaling - Past, present and future. Arch Biochem Biophys 2023; 742:109639. [PMID: 37196753 DOI: 10.1016/j.abb.2023.109639] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
Vitamin D signaling is important in regulating calcium homeostasis essential for bone health but also displays other functions in cells of several tissues. Disturbed vitamin D signaling is linked to a large number of diseases. The multiple cytochrome P450 (CYP) enzymes catalyzing the different hydroxylations in bioactivation of vitamin D3 are crucial for vitamin D signaling and function. This review is focused on the progress achieved in identification of the bioactivating enzymes and their genes in production of 1α,25-dihydroxyvitamin D3 and other active metabolites. Results obtained on species- and tissue-specific expression, catalytic reactions, substrate specificity, enzyme kinetics, and consequences of gene mutations are evaluated. Matters of incomplete understanding regarding the physiological roles of some vitamin D hydroxylases are critically discussed and the authors will give their view of the importance of each enzyme for vitamin D signaling. Roles of different vitamin D receptors and an alternative bioactivation pathway, leading to 20-hydroxylated vitamin D3 metabolites, are also discussed. Considerable progress has been achieved in knowledge of the vitamin D3 bioactivating enzymes. Nevertheless, several intriguing areas deserve further attention to understand the pleiotropic and diverse activities elicited by vitamin D signaling and the mechanisms of enzymatic activation necessary for vitamin D-induced responses.
Collapse
Affiliation(s)
- Maria Norlin
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
| | - Kjell Wikvall
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
16
|
Capobianco E, McGaughey V, Seraphin G, Heckel J, Rieger S, Lisse TS. Vitamin D inhibits osteosarcoma by reprogramming nonsense-mediated RNA decay and SNAI2-mediated epithelial-to-mesenchymal transition. Front Oncol 2023; 13:1188641. [PMID: 37228489 PMCID: PMC10203545 DOI: 10.3389/fonc.2023.1188641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Osteosarcomas are immune-resistant and metastatic as a result of elevated nonsense-mediated RNA decay (NMD), reactive oxygen species (ROS), and epithelial-to-mesenchymal transition (EMT). Although vitamin D has anti-cancer effects, its effectiveness and mechanism of action against osteosarcomas are poorly understood. In this study, we assessed the impact of vitamin D and its receptor (VDR) on NMD-ROS-EMT signaling in in vitro and in vivo osteosarcoma animal models. Initiation of VDR signaling facilitated the enrichment of EMT pathway genes, after which 1,25(OH)2D, the active vitamin D derivative, inhibited the EMT pathway in osteosarcoma subtypes. The ligand-bound VDR directly downregulated the EMT inducer SNAI2, differentiating highly metastatic from low metastatic subtypes and 1,25(OH)2D sensitivity. Moreover, epigenome-wide motif and putative target gene analysis revealed the VDR's integration with NMD tumorigenic and immunogenic pathways. In an autoregulatory manner, 1,25(OH)2D inhibited NMD machinery genes and upregulated NMD target genes implicated in anti-oncogenic activity, immunorecognition, and cell-to-cell adhesion. Dicer substrate siRNA knockdown of SNAI2 revealed superoxide dismutase 2 (SOD2)-mediated antioxidative responses and 1,25(OH)2D sensitization via non-canonical SOD2 nuclear-to-mitochondrial translocalization leading to overall ROS suppression. In a mouse xenograft metastasis model, the therapeutically relevant vitamin D derivative calcipotriol inhibited osteosarcoma metastasis and tumor growth shown for the first time. Our results uncover novel osteosarcoma-inhibiting mechanisms for vitamin D and calcipotriol that may be translated to human patients.
Collapse
Affiliation(s)
| | - Vanessa McGaughey
- Department of Biology, University of Miami, Coral Gables, FL, United States
| | - Gerbenn Seraphin
- Department of Biology, University of Miami, Coral Gables, FL, United States
| | - John Heckel
- Department of Biology, University of Miami, Coral Gables, FL, United States
| | - Sandra Rieger
- Department of Biology, University of Miami, Coral Gables, FL, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Thomas S. Lisse
- Department of Biology, University of Miami, Coral Gables, FL, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
- iCURA DX, Malvern, PA, United States
| |
Collapse
|
17
|
Capobianco E, McGaughey V, Seraphin G, Heckel J, Rieger S, Lisse TS. Vitamin D inhibits osteosarcoma by reprogramming nonsense-mediated RNA decay and SNAI2-mediated epithelial-to-mesenchymal transition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.04.522778. [PMID: 36711643 PMCID: PMC9882006 DOI: 10.1101/2023.01.04.522778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Osteosarcomas are immune-resistant and metastatic as a result of elevated nonsense-mediated RNA decay (NMD), reactive oxygen species (ROS), and epithelial-to-mesenchymal transition (EMT). Although vitamin D has anti-cancer effects, its effectiveness and mechanism of action against osteosarcomas are poorly understood. In this study, we assessed the impact of vitamin D and its receptor (VDR) on the NMD-ROS-EMT signaling axis in in vitro and in vivo osteosarcoma animal models. Initiation of VDR signaling facilitated the enrichment of EMT pathway genes, after which 1,25(OH) 2 D, the active vitamin D derivative, inhibited the EMT pathway in osteosarcoma subtypes. The ligand-bound VDR directly downregulated the EMT inducer SNAI2 , differentiating highly metastatic from low metastatic subtypes and 1,25(OH) 2 D sensitivity. Moreover, epigenome-wide motif and putative target gene analysis revealed the VDR’s integration with NMD tumorigenic and immunogenic pathways. In an autoregulatory manner, 1,25(OH) 2 D inhibited NMD machinery genes and upregulated NMD target genes implicated in anti-oncogenic activity, immunorecognition, and cell-to-cell adhesion. Dicer substrate siRNA knockdown of SNAI2 revealed superoxide dismutase 2 (SOD2)-mediated antioxidative responses and 1,25(OH) 2 D sensitization via non-canonical SOD2 nuclear-to-mitochondrial translocalization leading to overall ROS suppression. In a mouse xenograft metastasis model, the therapeutically relevant vitamin D derivative calcipotriol inhibited osteosarcoma metastasis and tumor growth shown for the first time. Our results uncover novel osteosarcoma-inhibiting mechanisms for vitamin D and calcipotriol that may be translated to human patients.
Collapse
|
18
|
Rojo-Tolosa S, Pineda-Lancheros LE, Gálvez-Navas JM, Sánchez-Martínez JA, González-Gutiérrez MV, Fernández-Alonso A, Morales-García C, Jiménez-Morales A, Pérez-Ramírez C. Association between Single Nucleotide Polymorphisms Related to Vitamin D Metabolism and the Risk of Developing Asthma. Nutrients 2023; 15:823. [PMID: 36839181 PMCID: PMC9964183 DOI: 10.3390/nu15040823] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Asthma is a chronic non-communicable disease that affects all age groups. The main challenge this condition poses is its heterogeneity. The role of vitamin D in asthma has aroused great interest, correlating low vitamin D levels and polymorphisms in the genes involved in its metabolic pathway with the risk of asthma. The aim of this study was to evaluate the influence of 13 single nucleotide polymorphisms (SNPs) related to the vitamin D metabolism on the susceptibility to asthma. An observational case-control study was performed, including 221 patients with asthma and 442 controls of Caucasian origin from southern Spain. The SNPs CYP24A1 (rs6068816, rs4809957), CYP27B1 (rs10877012, rs4646536, rs703842, rs3782130), GC (rs7041), CYP2R1 (rs10741657) and VDR (ApaI, BsmI, FokI, Cdx2, TaqI) were analyzed by real-time PCR, using TaqMan probes. The logistic regression model adjusted for body mass index revealed that in the genotype model, carriers of the Cdx2 rs11568820-AA genotype were associated with a higher risk of developing asthma (p = 0.005; OR = 2.73; 95% CI = 1.36-5.67; AA vs. GG). This association was maintained in the recessive model (p = 0.004). The haplotype analysis revealed an association between the ACTATGG haplotype and higher risk of asthma for the rs1544410, rs7975232, rs731236, rs4646536, rs703842, rs3782130 and rs10877012 genetic polymorphisms (p = 0.039). The other SNPs showed no effect on risk of developing asthma. The Cdx2 polymorphism was significantly associated with the susceptibility of asthma and could substantially act as a predictive biomarker of the disease.
Collapse
Affiliation(s)
- Susana Rojo-Tolosa
- Respiratory Medicine Department, University Hospital Virgen de las Nieves, 18014 Granada, Spain
| | | | - José María Gálvez-Navas
- Biomedical Research Center, Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Avda. del Conocimiento s/n., 18016 Granada, Spain
- Cancer Registry of Granada, Andalusian School of Public Health, Carretera del Observatorio 4, 18011 Granada, Spain
| | | | | | - Andrea Fernández-Alonso
- Pharmacogenetics Unit, Pharmacy Service, University Hospital Virgen de las Nieves, 18014 Granada, Spain
| | | | - Alberto Jiménez-Morales
- Pharmacogenetics Unit, Pharmacy Service, University Hospital Virgen de las Nieves, 18014 Granada, Spain
| | - Cristina Pérez-Ramírez
- Pharmacogenetics Unit, Pharmacy Service, University Hospital Virgen de las Nieves, 18014 Granada, Spain
- Biomedical Research Center, Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Avda. del Conocimiento s/n., 18016 Granada, Spain
| |
Collapse
|
19
|
Żmijewski MA. Nongenomic Activities of Vitamin D. Nutrients 2022; 14:nu14235104. [PMID: 36501134 PMCID: PMC9737885 DOI: 10.3390/nu14235104] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
Vitamin D shows a variety of pleiotropic activities which cannot be fully explained by the stimulation of classic pathway- and vitamin D receptor (VDR)-dependent transcriptional modulation. Thus, existence of rapid and nongenomic responses to vitamin D was suggested. An active form of vitamin D (calcitriol, 1,25(OH)2D3) is an essential regulator of calcium-phosphate homeostasis, and this process is tightly regulated by VDR genomic activity. However, it seems that early in evolution, the production of secosteroids (vitamin-D-like steroids) and their subsequent photodegradation served as a protective mechanism against ultraviolet radiation and oxidative stress. Consequently, direct cell-protective activities of vitamin D were proven. Furthermore, calcitriol triggers rapid calcium influx through epithelia and its uptake by a variety of cells. Subsequently, protein disulfide-isomerase A3 (PDIA3) was described as a membrane vitamin D receptor responsible for rapid nongenomic responses. Vitamin D was also found to stimulate a release of secondary massagers and modulate several intracellular processes-including cell cycle, proliferation, or immune responses-through wingless (WNT), sonic hedgehog (SSH), STAT1-3, or NF-kappaB pathways. Megalin and its coreceptor, cubilin, facilitate the import of vitamin D complex with vitamin-D-binding protein (DBP), and its involvement in rapid membrane responses was suggested. Vitamin D also directly and indirectly influences mitochondrial function, including fusion-fission, energy production, mitochondrial membrane potential, activity of ion channels, and apoptosis. Although mechanisms of the nongenomic responses to vitamin D are still not fully understood, in this review, their impact on physiology, pathology, and potential clinical applications will be discussed.
Collapse
Affiliation(s)
- Michał A Żmijewski
- Department of Histology, Faculty of Medicine, Medical University of Gdańsk, PL-80211 Gdańsk, Poland
| |
Collapse
|
20
|
Wherry TLT, Stabel JR. Bovine Immunity and Vitamin D 3: An Emerging Association in Johne's Disease. Microorganisms 2022; 10:1865. [PMID: 36144467 PMCID: PMC9500906 DOI: 10.3390/microorganisms10091865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) is an environmentally hardy pathogen of ruminants that plagues the dairy industry. Hallmark clinical symptoms include granulomatous enteritis, watery diarrhea, and significant loss of body condition. Transition from subclinical to clinical infection is a dynamic process led by MAP which resides in host macrophages. Clinical stage disease is accompanied by dysfunctional immune responses and a reduction in circulating vitamin D3. The immunomodulatory role of vitamin D3 in infectious disease has been well established in humans, particularly in Mycobacterium tuberculosis infection. However, significant species differences exist between the immune system of humans and bovines, including effects induced by vitamin D3. This fact highlights the need for continued study of the relationship between vitamin D3 and bovine immunity, especially during different stages of paratuberculosis.
Collapse
Affiliation(s)
- Taylor L. T. Wherry
- Department of Veterinary Pathology, Iowa State University, Ames, IA 50011, USA
- Infectious Bacterial Diseases Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), National Animal Disease Center, Ames, IA 50010, USA
| | - Judith R. Stabel
- Infectious Bacterial Diseases Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), National Animal Disease Center, Ames, IA 50010, USA
| |
Collapse
|
21
|
Megalin and Vitamin D Metabolism—Implications in Non-Renal Tissues and Kidney Disease. Nutrients 2022; 14:nu14183690. [PMID: 36145066 PMCID: PMC9506339 DOI: 10.3390/nu14183690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Megalin is an endocytic receptor abundantly expressed in proximal tubular epithelial cells and other calciotropic extrarenal cells expressing vitamin D metabolizing enzymes, such as bone and parathyroid cells. The receptor functions in the uptake of the vitamin D-binding protein (DBP) complexed to 25 hydroxyvitamin D3 (25(OH)D3), facilitating the intracellular conversion of precursor 25(OH)D3 to the active 1,25 dihydroxyvitamin D3 (1,25(OH)2D3). The significance of renal megalin-mediated reabsorption of 25(OH)D3 and 1,25(OH)2D3 has been well established experimentally, and other studies have demonstrated relevant roles of extrarenal megalin in regulating vitamin D homeostasis in mammary cells, fat, muscle, bone, and mesenchymal stem cells. Parathyroid gland megalin may regulate calcium signaling, suggesting intriguing possibilities for megalin-mediated cross-talk between calcium and vitamin D regulation in the parathyroid; however, parathyroid megalin functionality has not been assessed in the context of vitamin D. Within various models of chronic kidney disease (CKD), megalin expression appears to be downregulated; however, contradictory results have been observed between human and rodent models. This review aims to provide an overview of the current knowledge of megalin function in the context of vitamin D metabolism, with an emphasis on extrarenal megalin, an area that clearly requires further investigation.
Collapse
|
22
|
Effect of Vitamin-D-Enriched Edible Mushrooms on Vitamin D Status, Bone Health and Expression of CYP2R1, CYP27B1 and VDR Gene in Wistar Rats. J Fungi (Basel) 2022; 8:jof8080864. [PMID: 36012852 PMCID: PMC9409838 DOI: 10.3390/jof8080864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/14/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022] Open
Abstract
Vitamin D deficiency is highly prevalent in India and worldwide. Mushrooms are important nutritional foods, and in this context shiitake (Lentinula edodes), button (Agaricus bisporus) and oyster (Pleurotus ostreatus) mushrooms are known for their bioactive properties. The application of ultraviolet (UV) irradiation for the production of substantial amounts of vitamin D2 is well established. Levels of serum 25-hydroxy vitamin D (25-OHD), parathyroid hormone (PTH), calcium, phosphorus and alkaline phosphatase (ALP) were significantly (p < 0.05) improved in vitamin-D-deficient rats after feeding with UVB irradiated mushrooms for 4 weeks. Further, microscopic observations indicate an improvement in the osteoid area and the reduction in trabecular separation of the femur bone. In addition, the level of expression of the vitamin D receptor (VDR) gene and genes metabolizing vitamin D were explored. It was observed that in mushroom-fed and vitamin-D-supplemented groups, there was upregulation of CYP2R1 and VDR, while there was downregulation of CYP27B1 in the liver. Further, CYP2R1 was downregulated, while CYP27B1 and VDR were upregulated in kidney tissue.
Collapse
|
23
|
Sinha SK, Sun L, Didero M, Martins D, Norris KC, Lee JE, Meng YX, Sung JH, Sayre M, Carpio MB, Nicholas SB. Vitamin D3 Repletion Improves Vascular Function, as Measured by Cardiorenal Biomarkers in a High-Risk African American Cohort. Nutrients 2022; 14:3331. [PMID: 36014837 PMCID: PMC9414215 DOI: 10.3390/nu14163331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 11/17/2022] Open
Abstract
Background: 25-hydroxy vitamin D (Vit D)-deficiency is common among patients with chronic kidney disease (CKD) and contributes to cardiovascular disease (CVD). African Americans (AAs) suffer disproportionately from CKD and CVD, and 80% of AAs are Vit D-deficient. The impact of Vit D repletion on cardio-renal biomarkers in AAs is unknown. We examined Vit D repletion on full-length osteopontin (flOPN), c-terminal fibroblast growth factor-23 (FGF-23), and plasminogen activator inhibitor-1 (PAI-1), which are implicated in vascular and kidney pathology. Methods: We performed a randomized, placebo-controlled study of high-risk AAs with Vit D deficiency, treated with 100,000 IU Vit D3 (cholecalciferol; n = 65) or placebo (n = 65) every 4 weeks for 12 weeks. We measured kidney function (CKD-EPI eGFR), protein-to-creatinine ratio, vascular function (pulse wave velocity; PWV), augmentation index, waist circumference, sitting, and 24-h-ambulatory blood pressure (BP), intact parathyroid hormone (iPTH) and serum calcium at baseline and study end, and compared Vit D levels with laboratory variables. We quantified plasma FGF-23, PAI-1, and flOPN by enzyme-linked immunosorbent assay. Multiple regression analyzed the relationship between log flOPN, FGF-23, and PAI-1 with vascular and renal risk factors. Results: Compared to placebo, Vit D3 repletion increased Vit D3 2-fold (p < 0.0001), decreased iPTH by 12% (p < 0.01) and was significantly correlated with PWV (p < 0.009). Log flOPN decreased (p = 0.03), log FGF-23 increased (p = 0.04), but log PAI-1 did not change. Multiple regression indicated association between log flOPN and PWV (p = 0.04) and diastolic BP (p = 0.02), while log FGF-23 was associated with diastolic BP (p = 0.05), and a trend with eGFR (p = 0.06). Conclusion: Vit D3 repletion may reduce flOPN and improve vascular function in high risk AAs with Vit D deficiency.
Collapse
Affiliation(s)
- Satyesh K. Sinha
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Ling Sun
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Michelle Didero
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - David Martins
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Keith C. Norris
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Jae Eun Lee
- Department of Epidemiology and Biostatistics, School of Health, Jackson State University, Jackson, MS 39217, USA
| | - Yuan-Xiang Meng
- Department of Family Medicine, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Jung Hye Sung
- Department of Epidemiology and Biostatistics, School of Health, Jackson State University, Jackson, MS 39217, USA
| | - Michael Sayre
- National Institute of Health, National Institute of Minority Health and Health Disparities, Bethesda, MD 20892, USA
| | - Maria Beatriz Carpio
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Susanne B. Nicholas
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
24
|
Akter R, Afrose A, Sharmin S, Rezwan R, Rahman MR, Neelotpol S. A comprehensive look into the association of vitamin D levels and vitamin D receptor gene polymorphism with obesity in children. Biomed Pharmacother 2022; 153:113285. [PMID: 35728355 DOI: 10.1016/j.biopha.2022.113285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/27/2022] [Accepted: 06/09/2022] [Indexed: 11/02/2022] Open
Abstract
Childhood obesity accounts for several psychosocial and clinical consequences. Psychosocial consequences include lower self-esteem, social isolation, poor academic achievement, peer problems, and depression, whereas clinical consequences are cardiovascular diseases, type 2 diabetes, dyslipidemia, cancer, autoimmune diseases, girls early polycystic ovarian syndrome (PCOS), asthma, bone deformities, etc. A growing number of studies have uncovered the association of childhood obesity and its consequences with vitamin-D (vit-D) deficiency and vitamin-D receptor (VDR) gene polymorphisms such as single nucleotide polymorphisms (SNPs), e.g., TaqI, BsmI, ApaI, FokI, and Cdx2. Considering the impact of vit-D deficiency and VDR gene polymorphisms, identifying associated factors and risk groups linked to lower serum vit-D levels and prevention of obesity-related syndromes in children is of utmost importance. Previously published review articles mainly focused on the association of vit-D deficiency with obesity or other non-communicable diseases in children. The nature of the correlation between vit-D deficiency and VDR gene polymorphisms with obesity in children is yet to be clarified. Therefore, this review attempts to delineate the association of obesity with these two factors by identifying the molecular mechanism of the relationship.
Collapse
Affiliation(s)
- Raushanara Akter
- School of Pharmacy, Brac University, 66 Mohakhali, Dhaka, Bangladesh
| | - Afrina Afrose
- School of Pharmacy, Brac University, 66 Mohakhali, Dhaka, Bangladesh
| | - Shahana Sharmin
- School of Pharmacy, Brac University, 66 Mohakhali, Dhaka, Bangladesh
| | - Rifat Rezwan
- School of Pharmacy, Brac University, 66 Mohakhali, Dhaka, Bangladesh
| | - Md Rashidur Rahman
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | | |
Collapse
|
25
|
Lucas R, Szklenar M, Mihály J, Szegedi A, Töröcsik D, Rühl R. Plasma Levels of Bioactive Vitamin D and A5 Ligands Positively Correlate with Clinical Atopic Dermatitis Markers. Dermatology 2022; 238:1076-1083. [PMID: 35609515 DOI: 10.1159/000524343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 03/27/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Over the past decade, several controversial studies described a relationship between vitamin D and atopic diseases. Low plasma vitamin D levels or even vitamin D deficiency was associated with an increased incidence of atopic disease, postulating that a higher dietary intake of vitamin D may be a beneficial strategy against atopic diseases such as atopic dermatitis (AD). OBJECTIVE Our aim was to determine the relationship between plasma 25-hydroxyvitamin D3 (25(OH)D3) levels, the levels of the ligand of the vitamin D receptor (VDR) heterodimerization partner as well as the retinoid X receptor (RXR) and the active vitamin A5 derivative 9-cis-13,14-dihydroretinoic acid (9CDHRA) and AD severity. METHODS/RESULTS Samples from AD patients (n = 20) and healthy volunteers (n = 20) were assessed. In our study, the frequently measured VDR ligand precursor 25(OH)D3 in addition to the VDR-ligand 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) and 9CDHRA displayed no different levels when compared with the plasma of AD patients and healthy volunteers. When performing further correlation studies focusing on AD patients, plasma 25(OH)D3 levels showed a negative correlation with eosinophils in blood (EOS) and SCORing Atopic Dermatitis (SCORAD) values, while 1,25(OH)2D3 and 9CDHRA levels correlated positively with plasma IgE, EOS, and SCORAD values. CONCLUSION In consequence, the metabolic activation of vitamin D from 25(OH)D3 towards 1,25(OH)2D3 as well as the co-liganding of the RXR by 9CDHRA may be an important signalling mechanism, an important marker for AD development and severity as well as the basis for novel nutritional and pharmaceutical AD treatment options.
Collapse
Affiliation(s)
- Renata Lucas
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | - Johanna Mihály
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Szegedi
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Daniel Töröcsik
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ralph Rühl
- Paprika Bioanalytics BT, Debrecen, Hungary.,Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
26
|
Effect of Calcifediol on Physical Performance and Muscle Strength Parameters: A Systematic Review and Meta-Analysis. Nutrients 2022; 14:nu14091860. [PMID: 35565827 PMCID: PMC9103966 DOI: 10.3390/nu14091860] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
There is general agreement that optimal vitamin D status is necessary for bones, muscles, and general health, particularly in older adults, who are at higher risk of negative consequences of vitamin D deficiency, including sarcopenia; vitamin D supplementation is proposed as a potential intervention to mitigate sarcopenia. Several RCTs have reported that calcifediol (25(OH)D) was more potent than cholecalciferol in increasing plasma 25(OH)D. The present systematic review and meta-analysis aimed to summarize the effects of calcifediol on physical performance and muscle strength. We searched databases from inception to 1 January 2022 for studies investigating calcifediol on physical performance or muscle strength parameters. We calculated the difference between the means of follow-up vs. baseline data using standardized mean differences (SMD) and their 95% confidence intervals (CIs); a random-effect model was considered for all of the analyses. Seven RCTs were included in the meta-analysis. Calcifediol significantly improved gait speed (SMD = 2.500; 95%CI = 1.768−3.223; p < 0.0001); handgrip strength (n = 5446 participants, SMD = 0.532; 95%CI: 0.305−0.758; p < 0.0001; I2 = 20.2%); and leg extension (n = 4318 participants, SMD = 0.641; 95%CI: 0.346 to 0.935; p < 0.0001; I2 = 18.8%;) vs. baseline values. In conclusion, in this systematic review and meta-analysis, we observed that calcifediol may have a positive effect on muscle strength parameters, with less evidence on physical performance. These data further indicate the importance of vitamin D and, in particular, of calcifediol, not only on bone metabolism but also on muscle parameters and sarcopenia.
Collapse
|
27
|
Abstract
Vitamin D has many physiological functions including upregulation of intestinal calcium and phosphate absorption, mobilization of bone resorption, renal reabsorption of calcium as well as actions on a variety of pleiotropic functions. It is believed that many of the hormonal effects of vitamin D involve a 1,25-dihydroxyvitamin D3-vitamin D receptor-mediated transcriptional mechanism involving binding to the cellular chromatin and regulating hundreds of genes in many tissues. This comprehensive historical review provides a unique perspective of the many steps of the discovery of vitamin D and its deficiency disease, rickets, stretching from 1650 until the present. The overview is divided into four distinct historical phases which cover the major developments in the field and in the process highlighting the: (a) first recognition of rickets or vitamin D deficiency; (b) discovery of the nutritional factor, vitamin D and its chemical structure; (c) elucidation of vitamin D metabolites including the hormonal form, 1,25-dihydroxyvitamin D3; (d) delineation of the vitamin D cellular machinery, functions and vitamin D-related diseases which focused on understanding the mechanism of action of vitamin D in its many target cells.
Collapse
Affiliation(s)
- Glenville Jones
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- Correspondence should be addressed to G Jones:
| |
Collapse
|
28
|
Quigley M, Rieger S, Capobianco E, Wang Z, Zhao H, Hewison M, Lisse TS. Vitamin D Modulation of Mitochondrial Oxidative Metabolism and mTOR Enforces Stress Adaptations and Anticancer Responses. JBMR Plus 2022; 6:e10572. [PMID: 35079680 PMCID: PMC8771003 DOI: 10.1002/jbm4.10572] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 01/13/2023] Open
Abstract
The relationship between the active form of vitamin D3 (1,25-dihydroxyvitamin D, 1,25(OH)2D) and reactive oxygen species (ROS), two integral signaling molecules of the cell, is poorly understood. This is striking, given that both factors are involved in cancer cell regulation and metabolism. Mitochondria (mt) dysfunction is one of the main drivers of cancer, producing more mitochondria, higher cellular energy, and ROS that can enhance oxidative stress and stress tolerance responses. To study the effects of 1,25(OH)2D on metabolic and mt dysfunction, we used the vitamin D receptor (VDR)-sensitive MG-63 osteosarcoma cell model. Using biochemical approaches, 1,25(OH)2D decreased mt ROS levels, membrane potential (ΔΨmt), biogenesis, and translation, while enforcing endoplasmic reticulum/mitohormetic stress adaptive responses. Using a mitochondria-focused transcriptomic approach, gene set enrichment and pathway analyses show that 1,25(OH)2D lowered mt fusion/fission and oxidative phosphorylation (OXPHOS). By contrast, mitophagy, ROS defense, and epigenetic gene regulation were enhanced after 1,25(OH)2D treatment, as well as key metabolic enzymes that regulate fluxes of substrates for cellular architecture and a shift toward non-oxidative energy metabolism. ATACseq revealed putative oxi-sensitive and tumor-suppressing transcription factors that may regulate important mt functional genes such as the mTORC1 inhibitor, DDIT4/REDD1. DDIT4/REDD1 was predominantly localized to the outer mt membrane in untreated MG-63 cells yet sequestered in the cytoplasm after 1,25(OH)2D and rotenone treatments, suggesting a level of control by membrane depolarization to facilitate its cytoplasmic mTORC1 inhibitory function. The results show that 1,25(OH)2D activates distinct adaptive metabolic responses involving mitochondria to regain redox balance and control the growth of osteosarcoma cells. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Mikayla Quigley
- Biology DepartmentUniversity of MiamiCoral GablesFLUSA
- Dana Farber Cancer InstituteBostonMAUSA
| | - Sandra Rieger
- Biology DepartmentUniversity of MiamiCoral GablesFLUSA
- Sylvester Comprehensive Cancer Center, Miller School of MedicineUniversity of MiamiMiamiFLUSA
| | - Enrico Capobianco
- Institute for Data Science and ComputingUniversity of MiamiCoral GablesFLUSA
| | - Zheng Wang
- Department of Computer ScienceUniversity of MiamiCoral GablesFLUSA
| | - Hengguang Zhao
- Department of DermatologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Martin Hewison
- Institute of Metabolism and Systems ResearchUniversity of BirminghamBirminghamUK
| | - Thomas S Lisse
- Biology DepartmentUniversity of MiamiCoral GablesFLUSA
- Sylvester Comprehensive Cancer Center, Miller School of MedicineUniversity of MiamiMiamiFLUSA
| |
Collapse
|
29
|
Honda Y, Arima K, Nishimura T, Tomita Y, Mizukami S, Abe Y, Tanaka N, Kojima M, Jeng TP, Goto H, Hasegawa M, Sou Y, Tsujimoto R, Kanagae M, Osaki M, Aoyagi K. Association between vitamin D and bone mineral density in Japanese adults: the Unzen study. Arch Osteoporos 2021; 16:127. [PMID: 34495399 DOI: 10.1007/s11657-021-00984-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/12/2021] [Indexed: 02/03/2023]
Abstract
UNLABELLED We showed an association between serum concentrations of vitamin D and bone health among community-dwelling adults in Japan after adjustment for confounding factors, with 730 participants in a city, with concentrations of 25(OH) vitamin D, and with parameters of quantitative ultrasound. PURPOSE The primary objective of this study was to examine the correlation between serum 25-hydroxyvitamin D (25(OH)D) concentration and bone indicators as measured by quantitative ultrasound in middle-aged and older Japanese adults living in low-latitude seaside areas during summer and autumn. METHODS We conducted a cross-sectional study, the Unzen study, on community-dwelling Japanese adults who participated to periodic health examinations between 2011 and 2013 (during the months of May to November). RESULTS A total of 301 men (mean (SD) age, 67.9 (8.2) years; range, 50-92 years) and 429 women (mean (SD) age, 67.9 (7.7); range, 50-89 years) participated in this study. Serum 25(OH)D levels and quantitative ultrasound parameters (broadband ultrasound (BUA), speed of sound (SOS), and stiffness index of the calcaneus were measured for the participants. We excluded two men and 28 women from the 730 participants because they were on medication for osteoporosis. So, 299 men and 401 women were included in the final data analysis. The prevalence of vitamin D insufficiency (< 30 ng/ml) was very high: 71.9% in men and 95.5% in women. In women, the log(25(OH)D) positively and significantly correlated with SOS (p = 0.011) and stiffness index (p = 0.028) but not with BUA (p = 0.176). In men, the log(25(OH)D) did not correlate with the BUA, SOS, or stiffness index (p = 0.218, 0.420, and 0.262, respectively). CONCLUSIONS Serum 25(OH)D levels were associated with SOS or stiffness index in women but not in men.
Collapse
Affiliation(s)
- Yuzo Honda
- Department of Public Health, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazuhiko Arima
- Department of Public Health, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | - Takayuki Nishimura
- Department of Public Health, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Human Science, Faculty of Design, Kyushu University, Fukuoka, Japan
| | - Yoshihito Tomita
- Department of Public Health, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,School of Rehabilitation, Department of Physical Therapy, Tokyo Professional University of Health Science, Tokyo, Japan
| | - Satoshi Mizukami
- Department of Public Health, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yasuyo Abe
- Department of Public Health, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Natsumi Tanaka
- Department of Public Health, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Michiko Kojima
- Department of Public Health, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tsung-Ping Jeng
- Department of Medical Education, National Taiwan University Hospital, Taipei, Taiwan
| | | | - Maiko Hasegawa
- Medical Policy Division, Nagasaki Prefectural Government, Nagasaki, Japan
| | - Youko Sou
- Ken-Nan Health Care Office, Nagasaki, Japan
| | - Ritsu Tsujimoto
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Mitsuo Kanagae
- Department of Public Health, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Rehabilitation, Nishi-Isahaya Hospital, Isahaya, Japan
| | - Makoto Osaki
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kiyoshi Aoyagi
- Department of Public Health, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
30
|
Yu OB, Webb DA, Di Milo ES, Mutchie TR, Teske KA, Chen T, Lin W, Peluso-Iltis C, Rochel N, Helmstädter M, Merk D, Arnold LA. Biological evaluation and synthesis of calcitroic acid. Bioorg Chem 2021; 116:105310. [PMID: 34482171 DOI: 10.1016/j.bioorg.2021.105310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/26/2022]
Abstract
We describe the synthesis and broad profiling of calcitroic acid (CTA) as vitamin D receptor (VDR) ligand. The x-ray co-crystal structure of the Danio Rerio VDR ligand binding domain in complex with CTA and peptide MED1 confirmed an agonistic conformation of the receptor. CTA adopted a similar conformation as 1,25(OH)2D3 in the binding pocket. A hydrogen bond with His333 and a water molecule were observed in the binding pocket, which was accommodated due to the shorter CTA side chain. In contrast, 1,25(OH)2D3 interacted with His423 and His333 due to its longer side chain. In vitro, the EC50 values of CTA and CTA-ME for VDR-mediated transcription were 2.89 µM and 0.66 µM, respectively, confirming both compounds as VDR agonists. CTA was further evaluated for interaction with fourteen nuclear receptors demonstrating selective activation of VDR. VDR mediated gene regulation by CTA in intestinal cells was observed for the VDR target gene CYP24A1. CTA at 10 µM upregulated CYP24A1 with similar efficacy as 1,25(OH)2D3 at 20 nM and 100-fold stronger compared to lithocholic acid at 10 µM. CTA reduced the transcription of iNOS and IL-1β in interferon γ and lipopolysaccharide stimulated mouse macrophages resulting in a reduction of nitric oxide production and secretion of IL-1β. These observed anti-inflammatory properties of 20 µM CTA were similar to 20 nM 1,25(OH)2D3.
Collapse
Affiliation(s)
- Olivia B Yu
- Department of Chemistry and Biochemistry and Milwaukee Institute for Drug Discovery (MIDD), University of Wisconsin, 3210 N Cramer Street, Milwaukee, WI 53211, USA
| | - Daniel A Webb
- Department of Chemistry and Biochemistry and Milwaukee Institute for Drug Discovery (MIDD), University of Wisconsin, 3210 N Cramer Street, Milwaukee, WI 53211, USA
| | - Elliot S Di Milo
- Department of Chemistry and Biochemistry and Milwaukee Institute for Drug Discovery (MIDD), University of Wisconsin, 3210 N Cramer Street, Milwaukee, WI 53211, USA
| | - Tania R Mutchie
- Department of Chemistry and Biochemistry and Milwaukee Institute for Drug Discovery (MIDD), University of Wisconsin, 3210 N Cramer Street, Milwaukee, WI 53211, USA
| | - Kelly A Teske
- Department of Chemistry and Biochemistry and Milwaukee Institute for Drug Discovery (MIDD), University of Wisconsin, 3210 N Cramer Street, Milwaukee, WI 53211, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, 262 Danny Thomas Place, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Wenwei Lin
- Department of Chemical Biology and Therapeutics, 262 Danny Thomas Place, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Carole Peluso-Iltis
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM, U1258/CNRS, UMR 7104, University of Strasbourg, 67404 Illkirch, France
| | - Natacha Rochel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM, U1258/CNRS, UMR 7104, University of Strasbourg, 67404 Illkirch, France
| | - Moritz Helmstädter
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt, Germany
| | - Leggy A Arnold
- Department of Chemistry and Biochemistry and Milwaukee Institute for Drug Discovery (MIDD), University of Wisconsin, 3210 N Cramer Street, Milwaukee, WI 53211, USA.
| |
Collapse
|
31
|
Oczkowicz M, Szymczyk B, Świątkiewicz M, Furgał-Dzierżuk I, Koseniuk A, Wierzbicka A, Steg A. Analysis of the effect of vitamin D supplementation and sex on Vdr, Cyp2r1 and Cyp27b1 gene expression in Wistar rats' tissues. J Steroid Biochem Mol Biol 2021; 212:105918. [PMID: 34004333 DOI: 10.1016/j.jsbmb.2021.105918] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
Vitamin D supplementation is widely recommended for animals and humans. However, its effects on extra-skeletal disorders have not been well proven. Our research aimed to analyse the effect of supplementation with standard and increased doses of vitamin D on the health status, biochemical and haematological parameters of blood as well as on the level of expression of genes metabolising vitamin D and the Vdr gene in the kidney, liver, fat and brain of rats of different sexes. 36 Wistars rats (18 males and 18 females) divided into three supplementation groups (I-O vitamin D, II- 1000 U / kg of vitamin D, III - 5000 U / Kg of vitamin D) were analysed. Vitamin D supplementation had little effect on growth traits and biochemical blood indices; slight decrease in a heart size was observed in females supplemented with high doses of vitamin D (p = 0.0075), moreover male rats tended to have increased level of triglyceride (TG) (p = 0.0516)). In our study we observed that vitamin D supplementation did not change the expression of Vdr gene in any of analysed tissue. However, we noticed evident downregulation of Cyp27b1 gene by vitamin D supplementation in the liver and kidney in a dose-dependent manner. Additionally, we observed that in the female's liver, Vdr and Cyp2r1 were upregulated, in the female's kidney Vdr was upregulated while Cyp27b1 was downregulated compared to males. Moreover, in the female's brain and fat Cyp27b1 and Cyp2r1 tended to be upregulated compared to males. Our results confirm that Vdr and vitamin D metabolising genes are regulated by sex in the kidney and several extra-renal tissues.
Collapse
Affiliation(s)
- Maria Oczkowicz
- Department of Animal Molecular Biology, National Research Institute of Animal Production, ul. Krakowska 1, 32-083, Balice, Poland.
| | - Beata Szymczyk
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, ul. Krakowska 1, 32-083, Balice, Poland
| | - Małgorzata Świątkiewicz
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, ul. Krakowska 1, 32-083, Balice, Poland
| | - Iwona Furgał-Dzierżuk
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, ul. Krakowska 1, 32-083, Balice, Poland
| | - Anna Koseniuk
- Department of Animal Molecular Biology, National Research Institute of Animal Production, ul. Krakowska 1, 32-083, Balice, Poland
| | - Alicja Wierzbicka
- Department of Animal Molecular Biology, National Research Institute of Animal Production, ul. Krakowska 1, 32-083, Balice, Poland
| | - Anna Steg
- Department of Animal Molecular Biology, National Research Institute of Animal Production, ul. Krakowska 1, 32-083, Balice, Poland
| |
Collapse
|
32
|
Ben-Eltriki M, Hopefl R, Wright JM, Deb S. Association between Vitamin D Status and Risk of Developing Severe COVID-19 Infection: A Meta-Analysis of Observational Studies. J Am Coll Nutr 2021; 41:679-689. [PMID: 34464543 PMCID: PMC8425440 DOI: 10.1080/07315724.2021.1951891] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE The relationship between 25-hydroxyvitamin D3 (25(OH)D), the surrogate marker for vitamin D3, serum concentration and COVID-19 has come to the forefront as a potential pathway to improve COVID-19 outcomes. The current evidence remains unclear on the impact of vitamin D status on the severity and outcomes of COVID-19 infection. To explore possible association between low 25(OH)D levels and risk of developing severe COVID-19 (i.e. need for invasive mechanical ventilation, the length of hospital stay, total deaths). We also aimed to understand the relationship between vitamin D insufficiency and elevated inflammatory and cardiac biomarkers. METHODS We conducted a comprehensive electronic literature search for any original research study published up to March 30, 2021. For the purpose of this review, low vitamin D status was defined as a range of serum total 25(OH)D levels of <10 to <30 ng/ml. Two independent investigators assessed study eligibility, synthesized evidence, analyzed, critically examined, and interpreted herein. RESULTS Twenty-four observational studies containing 3637 participants were included in the meta-analysis. The mean age of the patients was 61.1 years old; 56% were male. Low vitamin D status was statistically associated with higher risk of death (RR, 1.60 (95% CI, 1.10-2.32), higher risk of developing severe COVID-19 pneumonia (RR: 1.50; 95% CI, 1.10-2.05). COVID-19 patients with low vitamin D levels had a greater prevalence of hypertension and cardiovascular diseases, abnormally high serum troponin and peak D-dimer levels, as well as elevated interleukin-6 and C-reactive protein than those with serum 25(OH)D levels ≥30 ng/ml. CONCLUSIONS In this meta-analysis, we found a potential increased risk of developing severe COVID-19 infection among patients with low vitamin D levels. There are plausible biological mechanisms supporting the role of vitamin D in COVID-19 severity. Randomized controlled trials are needed to test for potential beneficial effects of vitamin D in COVID-19 outcomes.
Collapse
Affiliation(s)
- Mohamed Ben-Eltriki
- Cochrane Hypertension Review Group, University of British Columbia, Vancouver, Canada.,Therapeutics Initiative, Department of Anesthesiology, Pharmacology & Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Robert Hopefl
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, Florida, USA
| | - James M Wright
- Cochrane Hypertension Review Group, University of British Columbia, Vancouver, Canada.,Therapeutics Initiative, Department of Anesthesiology, Pharmacology & Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada.,Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Subrata Deb
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, Florida, USA
| |
Collapse
|
33
|
Varghese JE, Balasubramanian B, Velayuthaprabhu S, Thirunavukkarasu V, Rengarajan RL, Murugesh E, Manikandan P, Arun M, Anand AV. Therapeutic effects of vitamin D and cancer: An overview. FOOD FRONTIERS 2021. [DOI: 10.1002/fft2.97] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Jisha Elsa Varghese
- Department of Human Genetics and Molecular Biology Bharathiar University Tamil Nadu India
| | | | | | | | | | - Easwaran Murugesh
- Nutritional Improvement of Crops International Centre for Genetic Engineering and Biotechnology New Delhi India
| | | | - Meyyazhagan Arun
- Department of Life Sciences CHRIST (Deemed to be University) Karnataka India
| | - Arumugam Vijaya Anand
- Department of Human Genetics and Molecular Biology Bharathiar University Tamil Nadu India
| |
Collapse
|
34
|
Huang A, Binmahfouz L, Hancock DP, Anderson PH, Ward DT, Conigrave AD. Calcium-Sensing Receptors Control CYP27B1-Luciferase Expression: Transcriptional and Posttranscriptional Mechanisms. J Endocr Soc 2021; 5:bvab057. [PMID: 34337274 PMCID: PMC8317635 DOI: 10.1210/jendso/bvab057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Indexed: 12/19/2022] Open
Abstract
25-hydroxyvitamin D 1α-hydroxylase (encoded by CYP27B1), which catalyzes the synthesis of 1,25-dihydroxyvitamin D3, is subject to negative or positive modulation by extracellular Ca2+ (Ca2+o) depending on the tissue. However, the Ca2+ sensors and underlying mechanisms are unidentified. We tested whether calcium-sensing receptors (CaSRs) mediate Ca2+o-dependent control of 1α-hydroxylase using HEK-293 cells stably expressing the CaSR (HEK-CaSR cells). In HEK-CaSR cells, but not control HEK-293 cells, cotransfected with reporter genes for CYP27B1-Photinus pyralis (firefly) luciferase and control Renilla luciferase, an increase in Ca2+o from 0.5mM to 3.0mM induced a 2- to 3-fold increase in firefly luciferase activity as well as mRNA and protein levels. Surprisingly, firefly luciferase was specifically suppressed at Ca2+o ≥ 5.0mM, demonstrating biphasic Ca2+o control. Both phases were mediated by CaSRs as revealed by positive and negative modulators. However, Ca2+o induced simple monotonic increases in firefly luciferase and endogenous CYP27B1 mRNA levels, indicating that the inhibitory effect of high Ca2+o was posttranscriptional. Studies with inhibitors and the CaSR C-terminal mutant T888A identified roles for protein kinase C (PKC), phosphorylation of T888, and extracellular regulated protein kinase (ERK)1/2 in high Ca2+o-dependent suppression of firefly luciferase. Blockade of both PKC and ERK1/2 abolished Ca2+o-stimulated firefly luciferase, demonstrating that either PKC or ERK1/2 is sufficient to stimulate the CYP27B1 promoter. A key CCAAT box (−74 bp to −68 bp), which is regulated downstream of PKC and ERK1/2, was required for both basal transcription and Ca2+o-mediated transcriptional upregulation. The CaSR mediates Ca2+o-dependent transcriptional upregulation of 1α-hydroxylase and an additional CaSR-mediated mechanism is identified by which Ca2+o can promote luciferase and possibly 1α-hydroxylase breakdown.
Collapse
Affiliation(s)
- Alice Huang
- School of Life and Environmental Sciences, Charles Perkins Centre (D17), University of Sydney, NSW 2006Australia
| | - Lenah Binmahfouz
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Dale P Hancock
- School of Life and Environmental Sciences, Charles Perkins Centre (D17), University of Sydney, NSW 2006Australia
| | - Paul H Anderson
- Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA, 5001, Australia
| | - Donald T Ward
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Arthur D Conigrave
- School of Life and Environmental Sciences, Charles Perkins Centre (D17), University of Sydney, NSW 2006Australia
| |
Collapse
|
35
|
Al-Ishaq RK, Kubatka P, Brozmanova M, Gazdikova K, Caprnda M, Büsselberg D. Health implication of vitamin D on the cardiovascular and the renal system. Arch Physiol Biochem 2021; 127:195-209. [PMID: 31291127 DOI: 10.1080/13813455.2019.1628064] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Vitamin D regulates the calcium and phosphorus balance in the body. The activated form of vitamin D (1 α,25-dihydroxyvitamin D) binds to vitamin D receptor which regulates genes that control cell proliferation, differentiation and apoptosis. In the cardiovascular system, the vitamin D receptor is present in cardiomyocytes and the arterial wall. A clear correlation between vitamin D level and cardiovascular diseases is established. Vitamin D deficiency affects the renin-angiotensin system leading to ventricular hypertrophy and eventually to stroke. While clinical trials highlighted the positive effects of vitamin D supplements on cardiovascular disease these still need to be confirmed. This review outlines the association between vitamin D and cardiovascular and renal disease summarising the experimental data of selective cardiovascular disorders.
Collapse
Affiliation(s)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University, in Bratislava, Martin, Slovakia
| | - Martina Brozmanova
- Department of Pathophysiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University, in Bratislava, Martin, Slovakia
| | - Katarina Gazdikova
- Department of Nutrition, Faculty of Nursing and Professional Health Studies, Slovak Medical University, Bratislava, Slovak
- Department of General Medicine, Faculty of Medicine, Slovak Medical University, Bratislava, Slovak
| | - Martin Caprnda
- 1st Department of Internal Medicine, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovakia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell College of Medicine, Doha, Qatar
| |
Collapse
|
36
|
Dominguez LJ, Farruggia M, Veronese N, Barbagallo M. Vitamin D Sources, Metabolism, and Deficiency: Available Compounds and Guidelines for Its Treatment. Metabolites 2021; 11:metabo11040255. [PMID: 33924215 PMCID: PMC8074587 DOI: 10.3390/metabo11040255] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
Studies on vitamin/hormone D deficiency have received a vast amount of attention in recent years, particularly concerning recommendations, guidelines, and treatments. Moreover, vitamin D’s role as a hormone has been confirmed in various enzymatic, metabolic, physiological, and pathophysiological processes related to many organs and systems in the human body. This growing interest is mostly due to the evidence that modest-to-severe vitamin D deficiency is widely prevalent around the world. There is broad agreement that optimal vitamin D status is necessary for bones, muscles, and one’s general health, as well as for the efficacy of antiresorptive and anabolic bone-forming treatments. Food supplementation with vitamin D, or the use of vitamin D supplements, are current strategies to improve vitamin D levels and treat deficiency. This article reviews consolidated and emerging concepts about vitamin D/hormone D metabolism, food sources, deficiency, as well as the different vitamin D supplements available, and current recommendations on the proper use of these compounds.
Collapse
|
37
|
Galuška D, Pácal L, Kaňková K. Pathophysiological Implication of Vitamin D in Diabetic Kidney Disease. Kidney Blood Press Res 2021; 46:152-161. [PMID: 33756482 DOI: 10.1159/000514286] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/24/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Vitamin D is a hormone regulating not only calcium and phosphate homeostasis but also, at the same time, exerting many other extraskeletal functions via genomic effects (gene transcription) and probably by non-genomic effects as well. Availability is ensured by dietary intake of its precursors and by de novo production via sunlight. Yet, vitamin D deficiency and insufficiency are very common across the globe and are connected to many pathophysiological states, for example, diabetes mellitus, allergies, autoimmune diseases, pregnancy complications, and recently have also been associated with worse COVID-19 clinical outcomes. SUMMARY In this review, we summarize current knowledge about vitamin D metabolism in general, its role in diabetes mellitus (mainly type 2) and diabetic complications (mainly diabetic kidney disease), and potential therapeutic perspectives including vitamin D signalling as a druggable target. Key Messages: Vitamin D is not only a vitamin but also a hormone involved in many physiological processes. Its insufficiency or deficiency can lead to many pathological states.
Collapse
Affiliation(s)
- David Galuška
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czechia,
| | - Lukáš Pácal
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Kateřina Kaňková
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
38
|
Liu K, Han B, Hou J, Zhang J, Su J, Meng H. Expression of vitamin D 1α-hydroxylase in human gingival fibroblasts in vivo. PeerJ 2021; 9:e10279. [PMID: 33505780 PMCID: PMC7789863 DOI: 10.7717/peerj.10279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/09/2020] [Indexed: 11/20/2022] Open
Abstract
Background Vitamin D 1α-hydroxylase CYP27B1 is the key factor in the vitamin D pathway. Previously, we analyzed the expression of CYP27B1 in human gingival fibroblasts in vitro. In the present study, we analyzed the gingival expression of CYP27B1 in vivo. Methods Forty-two patients with periodontitis Stage IV Grade C and 33 controls were recruited. All patients with periodontitis had unsalvageable teeth and part of the wall of the periodontal pocket was resected and obtained after tooth extraction. All controls needed crown-lengthening surgery, and samples of gingiva resected during surgery were also harvested. All the individuals' gingivae were used for immunohistochemistry and immunofluorescence. In addition, gingivae from seventeen subjects of the diseased group and twelve subjects of the control group were analyzed by real-time PCR. Results Expression of CYP27B1 was detected both in gingival epithelia and in gingival connective tissues, and the expression in connective tissues colocalized with vimentin, indicating that CYP27B1 protein is expressed in gingival fibroblasts. The expression of CYP27B1 mRNA in gingival connective tissues and the CYP27B1 staining scores in gingival fibroblasts in the diseased group were significantly higher than those in the control group. Conclusions Expression of CYP27B1 in human gingival tissues was detected, not only in the fibroblasts of gingival connective tissues, but also in the gingival epithelial cells, and might be positively correlated with periodontal inflammation.
Collapse
Affiliation(s)
- Kaining Liu
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China.,National Clinical Research Center for Oral Diseases, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China.,Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Bing Han
- National Clinical Research Center for Oral Diseases, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China.,Beijing Key Laboratory of Digital Stomatology, Beijing, China.,Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Jianxia Hou
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China.,National Clinical Research Center for Oral Diseases, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China.,Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Jianyun Zhang
- National Clinical Research Center for Oral Diseases, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China.,Beijing Key Laboratory of Digital Stomatology, Beijing, China.,Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Jing Su
- Department of Pathology, Peking University Health Science Center, Beijing, China
| | - Huanxin Meng
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China.,National Clinical Research Center for Oral Diseases, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China.,Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
39
|
Abstract
FGF23 is a phosphotropic hormone produced by the bone. FGF23 works by binding to the FGF receptor-Klotho complex. Klotho is expressed in several limited tissues including the kidney and parathyroid glands. This tissue-restricted expression of Klotho is believed to determine the target organs of FGF23. FGF23 reduces serum phosphate by suppressing the expression of type 2a and 2c sodium-phosphate cotransporters in renal proximal tubules. FGF23 also decreases 1,25-dihydroxyvitamin D levels by regulating the expression of vitamin D-metabolizing enzymes, which results in reduced intestinal phosphate absorption. Excessive actions of FGF23 cause several types of hypophosphatemic rickets/osteomalacia characterized by impaired mineralization of bone matrix. In contrast, deficient actions of FGF23 result in hyperphosphatemic tumoral calcinosis with high 1,25-dihydroxyvitamin D levels. These results indicate that FGF23 is a physiological regulator of phosphate and vitamin D metabolism and indispensable for the maintenance of serum phosphate levels.
Collapse
|
40
|
Hernando N, Pastor-Arroyo EM, Marks J, Schnitzbauer U, Knöpfel T, Bürki M, Bettoni C, Wagner CA. 1,25(OH) 2 vitamin D 3 stimulates active phosphate transport but not paracellular phosphate absorption in mouse intestine. J Physiol 2020; 599:1131-1150. [PMID: 33200827 DOI: 10.1113/jp280345] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022] Open
Abstract
KEY POINTS Intestinal absorption of phosphate proceeds via an active/transcellular route mostly mediated by NaPi-IIb/Slc34a2 and a poorly characterized passive/paracellular pathway. Intestinal phosphate absorption and expression of NaPi-IIb are stimulated by 1,25(OH)2 vitamin D3 but whether NaPi-IIb is the only target under hormonal control remains unknown. We report that administration of 1,25(OH)2 vitamin D3 to wild-type mice resulted in the expected increase in active transport of phosphate in jejunum, without changing paracellular fluxes. Instead, the same treatment failed to alter phosphate transport in intestinal-depleted Slc34a2-deficient mice. In both genotypes, 1,25(OH)2 vitamin D3 induced similar hyperphosphaturic responses and changes in the plasma levels of FGF23 and PTH. While urinary phosphate loss induced by administration of 1,25(OH)2 vitamin D3 did not alter plasma phosphate, further studies should investigate whether chronic administration would lead to phosphate imbalance in mice with reduced active intestinal absorption. ABSTRACT Intestinal absorption of phosphate is stimulated by 1,25(OH)2 vitamin D3. At least two distinct mechanisms underlie phosphate absorption in the gut, an active transcellular transport requiring the Na+ /phosphate cotransporter NaPi-IIb/Slc34a2, and a poorly characterized paracellular passive pathway. 1,25(OH)2 vitamin D3 stimulates NaPi-IIb expression and function, and loss of NaPi-IIb reduces intestinal phosphate absorption. However, it is remains unknown whether NaPi-IIb is the only target for hormonal regulation by 1,25(OH)2 vitamin D3 . Here we compared the effects of intraperitoneal administration of 1,25(OH)2 vitamin D3 (2 days, once per day) in wild-type and intestinal-specific Slc34a2-deficient mice, and analysed trans- vs. paracellular routes of phosphate absorption. We found that treatment stimulated active transport of phosphate only in jejunum of wild-type mice, though NaPi-IIb protein expression was upregulated in jejunum and ileum. In contrast, 1,25(OH)2 vitamin D3 administration had no effect in Slc34a2-deficient mice, suggesting that the hormone specifically regulates NaPi-IIb expression. In both groups, 1,25(OH)2 vitamin D3 elicited the expected increase of plasma fibroblast growth factor 23 (FGF23) and reduction of parathyroid hormone (PTH). Treatment resulted in hyperphosphaturia (and hypercalciuria) in both genotypes, though mice remained normophosphataemic. While increased intestinal absorption and higher FGF23 can trigger the hyperphosphaturic response in wild types, only higher FGF23 can explain the renal response in Slc34a2-deficient mice. Thus, 1,25(OH)2 vitamin D3 stimulates intestinal phosphate absorption by acting on the active transcellular pathway mostly mediated by NaPi-IIb while the paracellular pathway appears not to be affected.
Collapse
Affiliation(s)
- Nati Hernando
- Institute of Physiology, University of Zürich, Zürich, Switzerland
| | | | - Joanne Marks
- University College London, Gower St, London, WC1E 6BT, UK
| | - Udo Schnitzbauer
- Institute of Physiology, University of Zürich, Zürich, Switzerland
| | - Thomas Knöpfel
- Institute of Physiology, University of Zürich, Zürich, Switzerland
| | - Matthias Bürki
- Institute of Physiology, University of Zürich, Zürich, Switzerland
| | - Carla Bettoni
- Institute of Physiology, University of Zürich, Zürich, Switzerland
| | - Carsten A Wagner
- Institute of Physiology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
41
|
Das A, Weigle AT, Arnold WR, Kim JS, Carnevale LN, Huff HC. CYP2J2 Molecular Recognition: A New Axis for Therapeutic Design. Pharmacol Ther 2020; 215:107601. [PMID: 32534953 PMCID: PMC7773148 DOI: 10.1016/j.pharmthera.2020.107601] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/28/2020] [Indexed: 12/11/2022]
Abstract
Cytochrome P450 (CYP) epoxygenases are a special subset of heme-containing CYP enzymes capable of performing the epoxidation of polyunsaturated fatty acids (PUFA) and the metabolism of xenobiotics. This dual functionality positions epoxygenases along a metabolic crossroad. Therefore, structure-function studies are critical for understanding their role in bioactive oxy-lipid synthesis, drug-PUFA interactions, and for designing therapeutics that directly target the epoxygenases. To better exploit CYP epoxygenases as therapeutic targets, there is a need for improved understanding of epoxygenase structure-function. Of the characterized epoxygenases, human CYP2J2 stands out as a potential target because of its role in cardiovascular physiology. In this review, the early research on the discovery and activity of epoxygenases is contextualized to more recent advances in CYP epoxygenase enzymology with respect to PUFA and drug metabolism. Additionally, this review employs CYP2J2 epoxygenase as a model system to highlight both the seminal works and recent advances in epoxygenase enzymology. Herein we cover CYP2J2's interactions with PUFAs and xenobiotics, its tissue-specific physiological roles in diseased states, and its structural features that enable epoxygenase function. Additionally, the enumeration of research on CYP2J2 identifies the future needs for the molecular characterization of CYP2J2 to enable a new axis of therapeutic design.
Collapse
Affiliation(s)
- Aditi Das
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Computational Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Department of Bioengineering, Neuroscience Program, Beckman Institute for Advanced Science and Technology, Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| | - Austin T Weigle
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - William R Arnold
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Justin S Kim
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Lauren N Carnevale
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Hannah C Huff
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
42
|
Bikle D, Christakos S. New aspects of vitamin D metabolism and action - addressing the skin as source and target. Nat Rev Endocrinol 2020; 16:234-252. [PMID: 32029884 DOI: 10.1038/s41574-019-0312-5] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2019] [Indexed: 12/19/2022]
Abstract
Vitamin D has a key role in stimulating calcium absorption from the gut and promoting skeletal health, as well as many other important physiological functions. Vitamin D is produced in the skin. It is subsequently metabolized to its hormonally active form, 1,25-dihydroxyvitamin D (1,25(OH)2D), by the 1-hydroxylase and catabolized by the 24-hydroxylase. In this Review, we pay special attention to the effect of mutations in these enzymes and their clinical manifestations. We then discuss the role of vitamin D binding protein in transporting vitamin D and its metabolites from their source to their targets, the free hormone hypothesis for cell entry and HSP70 for intracellular transport. This is followed by discussion of the vitamin D receptor (VDR) that mediates the cellular actions of 1,25(OH)2D. Cell-specific recruitment of co-regulatory complexes by liganded VDR leads to changes in gene expression that result in distinct physiological actions by 1,25(OH)2D, which are disrupted by mutations in the VDR. We then discuss the epidermis and hair follicle, to provide a non-skeletal example of a tissue that expresses VDR that not only makes vitamin D but also can metabolize it to its hormonally active form. This enables vitamin D to regulate epidermal differentiation and hair follicle cycling and, in so doing, to promote barrier function, wound healing and hair growth, while limiting cancer development.
Collapse
Affiliation(s)
- Daniel Bikle
- Departments of Medicine and Dermatology, University of California San Francisco, San Francisco, CA, USA.
- VA Medical Center, San Francisco, CA, USA.
| | - Sylvia Christakos
- Departments of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
43
|
Lowry MB, Guo C, Zhang Y, Fantacone ML, Logan IE, Campbell Y, Zhang W, Le M, Indra AK, Ganguli-Indra G, Xie J, Gallo RL, Koeffler HP, Gombart AF. A mouse model for vitamin D-induced human cathelicidin antimicrobial peptide gene expression. J Steroid Biochem Mol Biol 2020; 198:105552. [PMID: 31783153 PMCID: PMC7089838 DOI: 10.1016/j.jsbmb.2019.105552] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/12/2019] [Accepted: 11/24/2019] [Indexed: 12/16/2022]
Abstract
In humans and other primates, 1,25(OH)2vitamin D3 regulates the expression of the cathelicidin antimicrobial peptide (CAMP) gene via toll-like receptor (TLR) signaling that activates the vitamin D pathway. Mice and other mammals lack the vitamin D response element (VDRE) in their CAMP promoters. To elucidate the biological importance of this pathway, we generated transgenic mice that carry a genomic DNA fragment encompassing the entire human CAMP gene and crossed them with Camp knockout (KO) mice. We observed expression of the human transgene in various tissues and innate immune cells. However, in mouse CAMP transgenic macrophages, TLR activation in the presence of 25(OH)D3 did not induce expression of either CAMP or CYP27B1 as would normally occur in human macrophages, reinforcing important species differences in the actions of vitamin D. Transgenic mice did show increased resistance to colonization by Salmonella typhimurium in the gut. Furthermore, the human CAMP gene restored wound healing in the skin of Camp KO mice. Topical application of 1,25(OH)2vitamin D3 to the skin of CAMP transgenic mice induced CAMP expression and increased killing of Staphylococcus aureus in a wound infection model. Our model can help elucidate the biological importance of the vitamin D-cathelicidin pathway in both pathogenic and non-pathogenic states.
Collapse
Affiliation(s)
- Malcolm B Lowry
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA; Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Chunxiao Guo
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Yang Zhang
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Nutrition Graduate Program, School of Biological & Population Health Sciences, College of Public Health & Human Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Mary L Fantacone
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Isabelle E Logan
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Yan Campbell
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Weijian Zhang
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Mai Le
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA; Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Arup K Indra
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA; Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA; Knight Cancer Institute, OHSU, Portland, OR 97239, USA; Department of Dermatology, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
| | - Gitali Ganguli-Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA; Knight Cancer Institute, OHSU, Portland, OR 97239, USA
| | - Jingwei Xie
- Department of Surgery, Transplant & Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Richard L Gallo
- Department of Dermatology, University of California San Diego, La Jolla, CA 92093, USA
| | - H Phillip Koeffler
- Division of Hematology/Oncology, Cedars-Sinai Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90048, USA; Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Adrian F Gombart
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
44
|
Bikle DD. Vitamin D: Newer Concepts of Its Metabolism and Function at the Basic and Clinical Level. J Endocr Soc 2020; 4:bvz038. [PMID: 32051922 PMCID: PMC7007804 DOI: 10.1210/jendso/bvz038] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/06/2020] [Indexed: 02/08/2023] Open
Abstract
The interest in vitamin D continues unabated with thousands of publications contributing to a vast and growing literature each year. It is widely recognized that the vitamin D receptor (VDR) and the enzymes that metabolize vitamin D are found in many cells, not just those involved with calcium and phosphate homeostasis. In this mini review I have focused primarily on recent studies that provide new insights into vitamin D metabolism, mechanisms of action, and clinical applications. In particular, I examine how mutations in vitamin D metabolizing enzymes-and new information on their regulation-links vitamin D metabolism into areas such as metabolism and diseases outside that of the musculoskeletal system. New information regarding the mechanisms governing the function of the VDR elucidates how this molecule can be so multifunctional in a cell-specific fashion. Clinically, the difficulty in determining vitamin D sufficiency for all groups is addressed, including a discussion of whether the standard measure of vitamin D sufficiency, total 25OHD (25 hydroxyvitamin) levels, may not be the best measure-at least by itself. Finally, several recent large clinical trials exploring the role of vitamin D supplementation in nonskeletal diseases are briefly reviewed, with an eye toward what questions they answered and what new questions they raised.
Collapse
Affiliation(s)
- Daniel D Bikle
- Department of Medicine and Endocrine Research Unit, Veterans Affairs Medical Center and University of California, San Francisco, California
| |
Collapse
|
45
|
Moghbeli M. Genetic and Molecular Biology of Multiple Sclerosis Among Iranian Patients: An Overview. Cell Mol Neurobiol 2020; 40:65-85. [PMID: 31482432 DOI: 10.1007/s10571-019-00731-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/24/2019] [Indexed: 12/16/2022]
Abstract
Multiple sclerosis (MS) is one if the common types of autoimmune disorders in developed countries. Various environmental and genetic factors are associated with initiation and progression of MS. It is believed that the life style changes can be one of the main environmental risk factors. The environmental factors are widely studied and reported, whereas minority of reports have considered the role of genetic factors in biology of MS. Although Iran is a low-risk country in the case of MS prevalence, it has been shown that there was a dramatically rising trend of MS prevalence among Iranian population during recent decades. Therefore, it is required to assess the probable MS risk factors in Iran. In the present study, we summarized all of the reported genes until now which have been associated with MS susceptibility among Iranian patients. To clarify the probable molecular biology of MS progression, we categorized these reported genes based on their cellular functions. This review paves the way of introducing a specific population-based diagnostic panel of genetic markers among the Iranian population for the first time in the world.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
46
|
Nakhl S, Sleilaty G, Chouery E, Salem N, Chahine R, Farès N. FokI vitamin D receptor gene polymorphism and serum 25-hydroxyvitamin D in patients with cardiovascular risk. Arch Med Sci Atheroscler Dis 2019; 4:e298-e303. [PMID: 32368685 PMCID: PMC7191939 DOI: 10.5114/amsad.2019.91437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/19/2019] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION The biological actions of vitamin D are mediated through vitamin D receptor (VDR). Numerous single-nucleotide polymorphisms (SNPs) in the VDR gene have been identified, and some have been associated with cardiovascular disease (CVD) risk factors. This study aims to evaluate the association of five SNPs in the VDR gene with 25-hydroxyvitamin D (25[OH]D) levels in patients with at least one CVD risk factor. MATERIAL AND METHODS Genomic DNA was sequenced using standard Sanger methods for five VDR SNPs (BsmI rs1544410; ApaI rs7975232; Cdx2 rs11568820; TaqI rs731236; FokI rs2228570) in 50 Mediterranean subjects having hypovitaminosis D with at least one documented CVD risk factor, aged 18 years or more. The collected variables were serum levels of (25[OH]D), HbA1c, fasting plasma glucose, triglycerides, LDL cholesterol, and total cholesterol. RESULTS BsmI, ApaI, and TaqI were moderately to highly intercorrelated. Cdx2 was less frequent than expected. With respect to the number of mutations in FokI, levels of (25 [OH]D) were 11.2 ±5.5 ng/ml in the absence of mutations, 12.6 ±4.7 ng/ml in the presence of one mutation, and 16.5 ± 5.5 ng/ml in the presence of two mutations. CONCLUSIONS FokI polymorphism is more frequent in subjects with cardiovascular risk factors than in the general Caucasian population.
Collapse
Affiliation(s)
- Sahar Nakhl
- Research Laboratory in Physiology and Physiopathology (LRPP), Health Technology Centre, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
- Research Laboratory in Oxidative Stress and Antioxidants, Faculty of Medical Sciences and Doctoral School in Science and Technology, Lebanese University, Beirut, Lebanon
| | - Ghassan Sleilaty
- Faculty of Medicine, Higher Institute of Public Health, Saint Joseph University, Beirut, Lebanon
| | - Eliane Chouery
- Medical Genetics Unit, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Nabiha Salem
- Medical Genetics Unit, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Ramez Chahine
- Research Laboratory in Oxidative Stress and Antioxidants, Faculty of Medical Sciences and Doctoral School in Science and Technology, Lebanese University, Beirut, Lebanon
- Faculty of Public Health, Sagesse University, Beirut, Lebanon
| | - Nassim Farès
- Research Laboratory in Physiology and Physiopathology (LRPP), Health Technology Centre, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| |
Collapse
|
47
|
Bouillon R, Bikle D. Vitamin D Metabolism Revised: Fall of Dogmas. J Bone Miner Res 2019; 34:1985-1992. [PMID: 31589774 PMCID: PMC9000993 DOI: 10.1002/jbmr.3884] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/06/2019] [Accepted: 09/24/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Roger Bouillon
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Dan Bikle
- Medicine and Dermatology, University of California San Francisco and VA Medical Center, San Francisco, CA, USA
| |
Collapse
|
48
|
French D. The (Sun)Light and Dark of 25-Hydroxyvitamin D Testing. J Appl Lab Med 2019; 3:460-473. [DOI: 10.1373/jalm.2017.023051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/22/2018] [Indexed: 01/20/2023]
Abstract
Abstract
Background
Vitamin D is obtained by the body via sunlight on the skin, from the diet, or from supplementation. The primary function of vitamin D is to maintain calcium homeostasis and bone health, but in the past decade, numerous other health benefits have been proposed.
Content
With the increased awareness of the potential benefits of maintaining sufficient concentrations of 25-hydroxyvitamin D, clinicians began ordering this test for their patients much more frequently. The number of available methods increased, but with that came a larger focus on the challenges of measuring 25-hydroxyvitamin D accurately due to binding to vitamin D-binding protein and the presence of other vitamin D metabolites. Further, standardization of these assays became a focus for several organizations so that clinical guidelines can be applicable to every patient regardless of what methodology is used in 25-hydroxyvitamin D measurement.
Summary
Improvements are being made in the specificity, accuracy, and standardization of the measurement of 25-hydroxyvitamin D, and the future of this testing is looking brighter.
Collapse
Affiliation(s)
- Deborah French
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
| |
Collapse
|
49
|
The role of vitamin D in increasing circulating T regulatory cell numbers and modulating T regulatory cell phenotypes in patients with inflammatory disease or in healthy volunteers: A systematic review. PLoS One 2019; 14:e0222313. [PMID: 31550254 PMCID: PMC6759203 DOI: 10.1371/journal.pone.0222313] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 08/28/2019] [Indexed: 12/31/2022] Open
Abstract
Background The evidence for vitamin D and other agents that experimentally modulate T regulatory cells (Tregs) for the treatment of patients with autoimmune or allergic diseases has not been established. Objective We have undertaken a systematic review of randomised controlled trials to assess the efficacy of vitamin D, vitamin A, niacin and short-chain fatty acids in enhancing absolute Treg numbers and phenotypes in patients with inflammatory or autoimmune disease. Methods This systematic review was conducted using a predefined protocol (PROSPERO International prospective register of systematic reviews, ID = CRD42016048648/ CRD42016048646). Randomised controlled trials of patients with inflammatory or autoimmune disease or healthy participants which compared either oral vitamin D or vitamin A or short-chain fatty acids with control or placebo and measured the absolute concentration of proportion of Tregs were eligible for inclusion. Searches of electronic databases (CENTRAL, MEDLINE, EMBASE, CINAHL, PUBMED and Web of Science) identified eight eligible independent trials (seven autoimmune disease trials, one trial of healthy subjects). Data were extracted by two reviewers and the risk of study bias was assessed using Cochrane Collaboration methodology. Results Planned meta-analysis was not possible due to the heterogeneous nature of the studies. Nevertheless, in five trials of autoimmune disorders which measured the proportion of Tregs, a higher proportion was observed in the vitamin D group compared to controls at 12 months in all but one trial. In the trial of healthy subjects, a significant difference was reported, with a higher percentage of Tregs observed in the vitamin D group (at 12 weeks, mean 6.4% (SD 0.8%) (vitamin D) vs 5.5% (1.0%) (placebo). There were no trials to assess the efficacy of vitamin A, niacin and short-chain fatty acids in enhancing absolute Treg numbers. Conclusions Vitamin D supplementation may increase Treg/CD3 ratios in both healthy individuals and patients with autoimmune disorders and may increase Treg function. There remains a need for further suitably powered clinical studies aimed at enhancing Treg numbers and/or function.
Collapse
|
50
|
Jiráčková J, Hyšpler R, Alkanderi S, Pavlíková L, Palicka V, Sayer JA. Novel CYP24A1 Mutation in a Young Male Patient with Nephrolithiasis: Case Report. Kidney Blood Press Res 2019; 44:870-877. [PMID: 31288237 DOI: 10.1159/000500922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/10/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS The CYP24A1 gene encodes the vitamin D 24-hydroxylase enzyme, which hydroxylates active forms of vitamin D into inactive forms. Biallelic mutations in the CYP24A1 gene can lead to elevated levels of active vitamin D metabolites and, consequently, to hypercalcemia, hypercalciuria, nephrocalcinosis, and nephrolithiasis; however, monoallelic mutations have been associated only with milder phenotypes. In the present manuscript, we report the case of a young male patient who presented hypercalcemia and nephrolithiasis, suppressed parathormone, and elevated 1,25 dihydroxy vitamin D levels. METHODS Biochemical analyses were performed on Cobas 8000, F. Hoffmann-La Roche AG, Basel, Switzerland. The proband was initially evaluated for occult malignancies by body imaging, serum electrophoresis, and tumor markers, which did not reveal any pathology. DNA samples of the proband and his sibling were then examined using Sanger sequencing. RESULTS Genetic analysis revealed 2 compound heterozygous CYP24A1 mutations (p.L148P and p.R223*). The novel nonsense CYP24A1 mutation, p.R223*, was also found heterozygously in other family members with a medical history of nephrolithiasis. CONCLUSIONS The identification of this gene mutation causing hypercalcemia, hypercalciuria, and renal stones allows the specific management of endogenous vitamin D production.
Collapse
Affiliation(s)
- Jana Jiráčková
- Institute for Clinical Biochemistry and Diagnostics, Department of Clinical Osteology, University Hospital Hradec Králové, Hradec Králové, Czechia, .,Department of Gerontology and Metabolism, University Hospital Hradec Králové, Hradec Králové, Czechia, .,Faculty of Medicine, Charles University, Hradec Králové, Czechia,
| | - Radomir Hyšpler
- Institute for Clinical Biochemistry and Diagnostics, Department of Clinical Osteology, University Hospital Hradec Králové, Hradec Králové, Czechia.,Faculty of Medicine, Charles University, Hradec Králové, Czechia
| | - Sumaya Alkanderi
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Ladislava Pavlíková
- Institute for Clinical Biochemistry and Diagnostics, Department of Clinical Osteology, University Hospital Hradec Králové, Hradec Králové, Czechia.,Faculty of Medicine, Charles University, Hradec Králové, Czechia
| | - Vladimir Palicka
- Institute for Clinical Biochemistry and Diagnostics, Department of Clinical Osteology, University Hospital Hradec Králové, Hradec Králové, Czechia.,Faculty of Medicine, Charles University, Hradec Králové, Czechia
| | - John A Sayer
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom.,Newcastle upon Tyne NHS Hospitals Foundation Trust, Newcastle, United Kingdom.,NIHR Newcastle Biomedical Research Centre, Newcastle, United Kingdom
| |
Collapse
|