1
|
Soory A, Ratnaparkhi GS. SUMOylation of Jun fine-tunes the Drosophila gut immune response. PLoS Pathog 2022; 18:e1010356. [PMID: 35255103 PMCID: PMC8929699 DOI: 10.1371/journal.ppat.1010356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 03/17/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022] Open
Abstract
Post-translational modification by the small ubiquitin-like modifier, SUMO can modulate the activity of its conjugated proteins in a plethora of cellular contexts. The effect of SUMO conjugation of proteins during an immune response is poorly understood in Drosophila. We have previously identified that the transcription factor Jra, the Drosophila Jun ortholog and a member of the AP-1 complex is one such SUMO target. Here, we find that Jra is a regulator of the Pseudomonas entomophila induced gut immune gene regulatory network, modulating the expression of a few thousand genes, as measured by quantitative RNA sequencing. Decrease in Jra in gut enterocytes is protective, suggesting that reduction of Jra signaling favors the host over the pathogen. In Jra, lysines 29 and 190 are SUMO conjugation targets, with the JraK29R+K190R double mutant being SUMO conjugation resistant (SCR). Interestingly, a JraSCR fly line, generated by CRISPR/Cas9 based genome editing, is more sensitive to infection, with adults showing a weakened host response and increased proliferation of Pseudomonas. Transcriptome analysis of the guts of JraSCR and JraWT flies suggests that lack of SUMOylation of Jra significantly changes core elements of the immune gene regulatory network, which include antimicrobial agents, secreted ligands, feedback regulators, and transcription factors. Mechanistically, SUMOylation attenuates Jra activity, with the TFs, forkhead, anterior open, activating transcription factor 3 and the master immune regulator Relish being important transcriptional targets. Our study implicates Jra as a major immune regulator, with dynamic SUMO conjugation/deconjugation of Jra modulating the kinetics of the gut immune response. The intestine has a resident population of commensal microorganisms against which the immune machinery is tuned to show low or no reactivity. In contrast, when pathogenic microorganisms are ingested, the gut responds by activating signaling cascades that lead to the killing and clearance of the pathogen. In this study, we examine the role played by the well-known transcription factor Jun in regulating the immune response in the Drosophila gut. We find that loss of Jun leads to the change in intensity and kinetics of the gut immune transcriptome. The transcriptional profile indicates a stronger response when Jun activity is reduced. Also, animals infected with Pseudomonas entomophila live longer when Jun signaling is reduced. Further, we find that Jun is post-translationally modified on Lys29 and Lys190 by SUMO. To understand the effect of SUMO-conjugation of Jun, we create by state-of-the-art CRISPR/Cas9 genome editing a Drosophila line where Jun is resistant to SUMOylation. This line is more sensitive to infection, with a weaker host-defense response. Our data suggest that Jun Signaling favors the pathogen by dampening the immune response. SUMO conjugation of Jun reverses the dampening and strengthens the immune response in favor of the host. Dynamic SUMOylation of Jun thus fine-tunes the gut immune response to pathogens.
Collapse
Affiliation(s)
- Amarendranath Soory
- Department of Biology, Indian Institute of Science Education & Research, Pune, india
- * E-mail: (AS); (GR)
| | - Girish S. Ratnaparkhi
- Department of Biology, Indian Institute of Science Education & Research, Pune, india
- * E-mail: (AS); (GR)
| |
Collapse
|
2
|
Belyaeva V, Wachner S, Gyoergy A, Emtenani S, Gridchyn I, Akhmanova M, Linder M, Roblek M, Sibilia M, Siekhaus D. Fos regulates macrophage infiltration against surrounding tissue resistance by a cortical actin-based mechanism in Drosophila. PLoS Biol 2022; 20:e3001494. [PMID: 34990456 PMCID: PMC8735623 DOI: 10.1371/journal.pbio.3001494] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/25/2021] [Indexed: 12/20/2022] Open
Abstract
The infiltration of immune cells into tissues underlies the establishment of tissue-resident macrophages and responses to infections and tumors. Yet the mechanisms immune cells utilize to negotiate tissue barriers in living organisms are not well understood, and a role for cortical actin has not been examined. Here, we find that the tissue invasion of Drosophila macrophages, also known as plasmatocytes or hemocytes, utilizes enhanced cortical F-actin levels stimulated by the Drosophila member of the fos proto oncogene transcription factor family (Dfos, Kayak). RNA sequencing analysis and live imaging show that Dfos enhances F-actin levels around the entire macrophage surface by increasing mRNA levels of the membrane spanning molecular scaffold tetraspanin TM4SF, and the actin cross-linking filamin Cheerio, which are themselves required for invasion. Both the filamin and the tetraspanin enhance the cortical activity of Rho1 and the formin Diaphanous and thus the assembly of cortical actin, which is a critical function since expressing a dominant active form of Diaphanous can rescue the Dfos macrophage invasion defect. In vivo imaging shows that Dfos enhances the efficiency of the initial phases of macrophage tissue entry. Genetic evidence argues that this Dfos-induced program in macrophages counteracts the constraint produced by the tension of surrounding tissues and buffers the properties of the macrophage nucleus from affecting tissue entry. We thus identify strengthening the cortical actin cytoskeleton through Dfos as a key process allowing efficient forward movement of an immune cell into surrounding tissues. The infiltration of immune cells into tissue underlies the establishment of tissue-resident macrophages, and responses to infections and tumors, but how do they overcome tissue barriers? This study shows that macrophages upregulate the proto-oncogene Fos, increasing the density and crosslinking of cortical actin, thereby counteracting the tension of surrounding tissues and protecting the macrophage nucleus.
Collapse
Affiliation(s)
- Vera Belyaeva
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Stephanie Wachner
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Attila Gyoergy
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Shamsi Emtenani
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Igor Gridchyn
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Maria Akhmanova
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Markus Linder
- Institute of Cancer Research, Department of Medicine 1, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Marko Roblek
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Maria Sibilia
- Institute of Cancer Research, Department of Medicine 1, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Daria Siekhaus
- Institute of Science and Technology Austria, Klosterneuburg, Austria
- * E-mail:
| |
Collapse
|
3
|
Tumorigenesis and cell competition in Drosophila in the absence of polyhomeotic function. Proc Natl Acad Sci U S A 2021; 118:2110062118. [PMID: 34702735 DOI: 10.1073/pnas.2110062118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Cell competition is a homeostatic process that eliminates by apoptosis unfit or undesirable cells from animal tissues, including tumor cells that appear during the life of the organism. In Drosophila there is evidence that many types of oncogenic cells are eliminated by cell competition. One exception is cells mutant for polyhomeotic (ph), a member of the Polycomb family of genes; most of the isolated mutant ph clones survive and develop tumorous overgrowths in imaginal discs. To characterize the tumorigenic effect of the lack of ph, we first studied the growth of different regions of the wing disc deficient in ph activity and found that the effect is restricted to the proximal appendage. Moreover, we found that ph-deficient tissue is partially refractory to apoptosis. Second, we analyzed the behavior of clones lacking ph function and found that many suffer cell competition but are not completely eliminated. Unexpectedly, we found that nonmutant cells also undergo cell competition when surrounded by ph-deficient cells, indicating that within the same tissue cell competition may operate in opposite directions. We suggest two reasons for the incompleteness of cell competition in ph mutant cells: 1) These cells are partially refractory to apoptosis, and 2) the loss of ph function alters the identity of imaginal cells and subsequently their cell affinities. It compromises the winner/loser interaction, a prerequisite for cell competition.
Collapse
|
4
|
Zhu ZD, Hu QH, Tong CM, Yang HG, Zheng SC, Feng QL, Deng HM. Transcriptomic analysis reveals the regulation network of BmKrüppel homolog 1 in the oocyte development of Bombyx mori. INSECT SCIENCE 2021; 28:47-62. [PMID: 32283000 DOI: 10.1111/1744-7917.12747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/25/2019] [Accepted: 12/05/2019] [Indexed: 06/11/2023]
Abstract
Krüppel homolog 1 (Kr-h1), a zinc finger transcription factor, is involved in the metamorphosis and adult reproduction of insects. However, the role of Kr-h1 in reproduction of holometabolic insects remains to be elucidated. The regulation network of Kr-h1-associated genes in the reproduction in Bombyx mori was investigated in this study. The higher expression level of BmKr-h1 in the ovaries was detected during the late pupal stage and adults. RNA interference (RNAi)-mediated depletion of BmKr-h1 in the female at day 6 of pupae resulted in abnormal oocytes at 48 h post-double-stranded RNA treatment, which showed less yolk protein deposition and partially transparent chorion. RNA-seq and subsequent differentially expressed transcripts analysis showed that knockdown of BmKr-h1 caused a decrease in the expression of 2882 genes and an increase in the expression of 2565 genes in the oocytes at day 8 of pupae. Totally, 27 genes coding for transcription factors were down-regulated, while six genes coding for other transcription factors were up-regulated. BmKr-h1 bound to the Kr-h1 binding site of the transcription factors AP-1 (activating protein-1) and FOXG1 to increase their messenger RNA transcripts in the BmN cells, respectively. Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses of that positively co-expressed with AP-1 and FOXG1 transcripts showed mainly enrichment in the metabolic-related pathways, the nutrient absorption and the yolk protein absorption processes. These data suggested that BmKr-h1 might directly regulate the metabolic-related pathways, the nutrient absorption and the yolk protein absorption processes or probably through AP-1 and /or FOXG1 to regulate oocyte development.
Collapse
Affiliation(s)
- Zi-Dan Zhu
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qi-Hao Hu
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Chun-Mei Tong
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Hong-Guang Yang
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Si-Chun Zheng
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qi-Li Feng
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Hui-Min Deng
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
5
|
Signaling cross-talk during development: Context-specific networking of Notch, NF-κB and JNK signaling pathways in Drosophila. Cell Signal 2021; 82:109937. [PMID: 33529757 DOI: 10.1016/j.cellsig.2021.109937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 01/08/2023]
Abstract
Multicellular organisms depend on a handful of core signaling pathways that regulate a variety of cell fate choices. Often these relatively simple signals integrate to form a large and complex signaling network to achieve a distinct developmental fate in a context-specific manner. Various pathway-dependent and independent events control the assembly of signaling complexes. Notch pathway is one such conserved signaling mechanism that integrates with other signaling pathways to exhibit a context-dependent pleiotropic output. To understand how Notch signaling provides a spectrum of distinct outputs, it is important to understand various regulatory switches involved in mediating signaling cross-talk of Notch with other pathways. Here, we review our current understanding as to how Notch signal integrates with JNK and NF-κB signaling pathways in Drosophila to regulate various developmental events such as sensory organ precursor formation, innate immunity, dorsal closure, establishment of planar cell polarity as well as during proliferation and tumor progression. We highlight the importance of conserved signaling molecules during these cross-talks and debate further possibilities of novel switches that may be involved in mediating these cross-talk events.
Collapse
|
6
|
Ryan SM, Wildman K, Oceguera-Perez B, Barbee S, Mortimer NT, Vrailas-Mortimer AD. Evolutionarily conserved transcription factors drive the oxidative stress response in Drosophila. J Exp Biol 2020; 223:jeb221622. [PMID: 32532866 PMCID: PMC7391405 DOI: 10.1242/jeb.221622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022]
Abstract
As organisms are constantly exposed to the damaging effects of oxidative stress through both environmental exposure and internal metabolic processes, they have evolved a variety of mechanisms to cope with this stress. One such mechanism is the highly conserved p38 MAPK (p38K) pathway, which is known to be post-translationally activated in response to oxidative stress, resulting in the activation of downstream antioxidant targets. However, little is known about the role of p38K transcriptional regulation in response to oxidative stress. Therefore, we analyzed the p38K gene family across the genus Drosophila to identify conserved regulatory elements. We found that oxidative stress exposure results in increased p38K protein levels in multiple Drosophila species and is associated with increased oxidative stress resistance. We also found that the p38Kb genomic locus includes conserved AP-1 and lola-PT transcription factor consensus binding sites. Accordingly, over-expression of these transcription factors in D. melanogaster is sufficient to induce transcription of p38Kb and enhances resistance to oxidative stress. We further found that the presence of a putative lola-PT binding site in the p38Kb locus of a given species is predictive of the species' survival in response to oxidative stress. Through our comparative genomics approach, we have identified biologically relevant putative transcription factor binding sites that regulate the expression of p38Kb and are associated with resistance to oxidative stress. These findings reveal a novel mode of regulation for p38K genes and suggest that transcription may play as important a role in p38K-mediated stress responses as post-translational modifications.
Collapse
Affiliation(s)
- Sarah M Ryan
- University of Denver, Department of Biological Sciences, Denver, CO 80210, USA
| | - Kaitie Wildman
- Illinois State University, School of Biological Sciences, Normal, IL 61790-4120, USA
| | | | - Scott Barbee
- University of Denver, Department of Biological Sciences, Denver, CO 80210, USA
| | - Nathan T Mortimer
- Illinois State University, School of Biological Sciences, Normal, IL 61790-4120, USA
| | - Alysia D Vrailas-Mortimer
- University of Denver, Department of Biological Sciences, Denver, CO 80210, USA
- Illinois State University, School of Biological Sciences, Normal, IL 61790-4120, USA
| |
Collapse
|
7
|
Moulton MJ, Humphreys GB, Kim A, Letsou A. O-GlcNAcylation Dampens Dpp/BMP Signaling to Ensure Proper Drosophila Embryonic Development. Dev Cell 2020; 53:330-343.e3. [DOI: 10.1016/j.devcel.2020.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/15/2020] [Accepted: 03/31/2020] [Indexed: 01/09/2023]
|
8
|
Chen Y, Ou J, Liu Y, Wu Q, Wen L, Zheng S, Li S, Feng Q, Liu L. Transcriptomic analysis of the testicular fusion in Spodoptera litura. BMC Genomics 2020; 21:171. [PMID: 32075574 PMCID: PMC7029529 DOI: 10.1186/s12864-020-6494-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/14/2020] [Indexed: 01/28/2023] Open
Abstract
Background Lepidoptera is one group of the largest plant-feeding insects and Spodoptera litura (Lepidoptera: Noctuidae) is one of the most serious agricultural pests in Asia countries. An interesting and unique phenomenon for gonad development of Lepidoptera is the testicular fusion. Two separated testes fused into a single one during the larva-to-pupa metamorphosis, which is believed to contribute to sperm production and the prevalence in field. To study the molecular mechanism of the testicular fusion, RNA sequencing (RNA-seq) experiments of the testes from 4-day-old sixth instar larvae (L6D4) (before fusion), 6-day-old sixth instar larvae (L6D6, prepupae) (on fusing) and 4-day-old pupae (P4D) (after fusion) of S. litura were performed. Results RNA-seq data of the testes showed that totally 12,339 transcripts were expressed at L6D4, L6D6 and P4D stages. A large number of differentially expressed genes (DEGs) were up-regulated from L6D4 to L6D6, and then more genes were down-regulated from L6D6 to P4D. The DEGs mainly belongs to the genes related to the 20E signal transduction pathway, transcription factors, chitin metabolism related enzymes, the families of cytoskeleton proteins, extracellular matrix (ECM) components, ECM-related protein, its receptor integrins and ECM-remodeling enzymes. The expression levels of these genes that were up-regulated significantly during the testicular fusion were verified by qRT-PCR. The matrix metalloproteinases (MMPs) were found to be the main enzymes related to the ECM degradation and contribute to the testicular fusion. The testis was not able to fuse if MMPs inhibitor GM6001 was injected into the 5th abdomen region at L6D6 early stage. Conclusions The transcriptome and DEGs analysis of the testes at L6D4, L6D6 and P4D stages provided genes expression information related to the testicular fusion in S. litura. These results indicated that cytoskeleton proteins, ECM-integrin interaction genes and ECM-related proteins were involved in cell migration, adhesion and fusion during the testicular fusion. The ECM degradation enzymes MMPs probably play a critical role in the fusion of testis.
Collapse
Affiliation(s)
- Yaqing Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jun Ou
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yucheng Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Qiong Wu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Liang Wen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Sichun Zheng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Qili Feng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China. .,Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| | - Lin Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China. .,Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
9
|
Quan H, Arsala D, Lynch JA. Transcriptomic and functional analysis of the oosome, a unique form of germ plasm in the wasp Nasonia vitripennis. BMC Biol 2019; 17:78. [PMID: 31601213 PMCID: PMC6785909 DOI: 10.1186/s12915-019-0696-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/30/2019] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The oosome is the germline determinant in the wasp Nasonia vitripennis and is homologous to the polar granules of Drosophila. Despite a common evolutionary origin and developmental role, the oosome is morphologically quite distinct from polar granules. It is a solid sphere that migrates within the cytoplasm before budding out and forming pole cells. RESULTS To gain an understanding of both the molecular basis of oosome development and the conserved essential features of germ plasm, we quantified and compared transcript levels between embryo fragments that contained the oosome and those that did not. The identity of the differentially localized transcripts indicated that Nasonia uses a distinct set of molecules to carry out conserved germ plasm functions. In addition, functional testing of a sample of localized transcripts revealed potentially novel mechanisms of ribonucleoprotein assembly and pole cell cellularization in the wasp. CONCLUSIONS Our results demonstrate that the composition of germ plasm varies significantly within Holometabola, as very few mRNAs share localization to the oosome and polar granules. Some of this variability appears to be related to the unique properties of the oosome relative to the polar granules in Drosophila, and some may be related to differences in pole formation between species. This work will serve as the basis for further investigation into the patterns of germline determinant evolution among insects, the molecular basis of the unique properties of the oosome, and the incorporation of novel components into developmental networks.
Collapse
Affiliation(s)
- Honghu Quan
- Department of Pathology and Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Deanna Arsala
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607 USA
| | - Jeremy A. Lynch
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607 USA
| |
Collapse
|
10
|
Peng JJ, Lin SH, Liu YT, Lin HC, Li TN, Yao CK. A circuit-dependent ROS feedback loop mediates glutamate excitotoxicity to sculpt the Drosophila motor system. eLife 2019; 8:47372. [PMID: 31318331 PMCID: PMC6682402 DOI: 10.7554/elife.47372] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022] Open
Abstract
Overproduction of reactive oxygen species (ROS) is known to mediate glutamate excitotoxicity in neurological diseases. However, how ROS burdens can influence neural circuit integrity remains unclear. Here, we investigate the impact of excitotoxicity induced by depletion of Drosophila Eaat1, an astrocytic glutamate transporter, on locomotor central pattern generator (CPG) activity, neuromuscular junction architecture, and motor function. We show that glutamate excitotoxicity triggers a circuit-dependent ROS feedback loop to sculpt the motor system. Excitotoxicity initially elevates ROS, thereby inactivating cholinergic interneurons and consequently changing CPG output activity to overexcite motor neurons and muscles. Remarkably, tonic motor neuron stimulation boosts muscular ROS, gradually dampening muscle contractility to feedback-enhance ROS accumulation in the CPG circuit and subsequently exacerbate circuit dysfunction. Ultimately, excess premotor excitation of motor neurons promotes ROS-activated stress signaling that alters neuromuscular junction architecture. Collectively, our results reveal that excitotoxicity-induced ROS can perturb motor system integrity through a circuit-dependent mechanism.
Collapse
Affiliation(s)
- Jhan-Jie Peng
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China.,Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Shih-Han Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Yu-Tzu Liu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Hsin-Chieh Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Tsai-Ning Li
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Chi-Kuang Yao
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China.,Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan, Republic of China
| |
Collapse
|
11
|
Banerjee S, Wei X, Xie H. Recursive Motif Analyses Identify Brain Epigenetic Transcription Regulatory Modules. Comput Struct Biotechnol J 2019; 17:507-515. [PMID: 31011409 PMCID: PMC6462766 DOI: 10.1016/j.csbj.2019.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/12/2019] [Accepted: 04/03/2019] [Indexed: 01/26/2023] Open
Abstract
DNA methylation is an epigenetic modification modulating the structure of DNA molecule and the interactions with its binding proteins. Accumulating large-scale methylation data motivates the development of analytic tools to facilitate methylome data mining. One critical phenomenon associated with dynamic DNA methylation is the altered DNA binding affinity of transcription factors, which plays key roles in gene expression regulation. In this study, we conceived an algorithm to predict epigenetic regulatory modules through recursive motif analyses on differentially methylated loci. A two-step procedure was implemented to first group differentially methylated loci into clusters according to their correlations in methylation profiles and then to repeatedly identify the transcription factor binding motifs significantly enriched in each cluster. We applied this tool on methylome datasets generated for mouse brains which have a lack of DNA demethylation enzymes TET1 or TET2. Compared with wild type control, the differentially methylated CpG sites identified in TET1 knockout mouse brains differed significantly from those determined for TET2 knockout. Transcription factors with zinc finger DNA binding domains including Egr1, Zic3, and Zeb1 were predicted to be associated with TET1 mediated brain methylome programming, while Lhx family members with Homeobox domains were predicted to be associated with TET2 function. Interestingly, genomic loci from a co-methylated cluster often host motifs for transcription factors sharing the same DNA binding domains. Altogether, our study provided a systematic approach for epigenetic regulatory module identification and will help throw light on the interplay of DNA methylation and transcription factors.
Collapse
Affiliation(s)
- Sharmi Banerjee
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061, USA.,Biocomplexity Institute of Virginia Tech, Blacksburg, VA 24061, USA
| | - Xiaoran Wei
- Biocomplexity Institute of Virginia Tech, Blacksburg, VA 24061, USA.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA
| | - Hehuang Xie
- Biocomplexity Institute of Virginia Tech, Blacksburg, VA 24061, USA.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA.,School of Neuroscience, Blacksburg, VA 24061, USA
| |
Collapse
|
12
|
Ho TY, Wu WH, Hung SJ, Liu T, Lee YM, Liu YH. Expressional Profiling of Carpet Glia in the Developing Drosophila Eye Reveals Its Molecular Signature of Morphology Regulators. Front Neurosci 2019; 13:244. [PMID: 30983950 PMCID: PMC6449730 DOI: 10.3389/fnins.2019.00244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/01/2019] [Indexed: 12/11/2022] Open
Abstract
Homeostasis in the nervous system requires intricate regulation and is largely accomplished by the blood-brain barrier (BBB). The major gate keeper of the vertebrate BBB is vascular endothelial cells, which form tight junctions (TJs). To gain insight into the development of the BBB, we studied the carpet glia, a subperineurial glial cell type with vertebrate TJ-equivalent septate junctions, in the developing Drosophila eye. The large and flat, sheet-like carpet glia, which extends along the developing eye following neuronal differentiation, serves as an easily accessible experimental system to understand the cell types that exhibit barrier function. We profiled transcribed genes in the carpet glia using targeted DNA adenine methyl-transferase identification, followed by next-generation sequencing (targeted DamID-seq) and found that the majority of genes expressed in the carpet glia function in cellular activities were related to its dynamic morphological changes in the developing eye. To unravel the morphology regulators, we silenced genes selected from the carpet glia transcriptome using RNA interference. The Rho1 gene encoding a GTPase was previously reported as a key regulator of the actin cytoskeleton. The expression of the pathetic (path) gene, encoding a solute carrier transporter in the developing eye, is specific to the carpet glia. The reduced expression of Rho1 severely disrupted the formation of intact carpet glia, and the silencing path impaired the connection between the two carpet glial cells, indicating the pan-cellular and local effects of Rho1 and Path on carpet glial cell morphology, respectively. Our study molecularly characterized a particular subperineurial cell type providing a resource for a further understanding of the cell types comprising the BBB.
Collapse
Affiliation(s)
- Tsung-Ying Ho
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Hang Wu
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Jou Hung
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Tsunglin Liu
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Yuan-Ming Lee
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ya-Hsin Liu
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
13
|
Identifying Genetic Players in Cell Sheet Morphogenesis Using a Drosophila Deficiency Screen for Genes on Chromosome 2R Involved in Dorsal Closure. G3-GENES GENOMES GENETICS 2018; 8:2361-2387. [PMID: 29776969 PMCID: PMC6027880 DOI: 10.1534/g3.118.200233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cell sheet morphogenesis characterizes key developmental transitions and homeostasis, in vertebrates and throughout phylogeny, including gastrulation, neural tube formation and wound healing. Dorsal closure, a process during Drosophila embryogenesis, has emerged as a model for cell sheet morphogenesis. ∼140 genes are currently known to affect dorsal closure and new genes are identified each year. Many of these genes were identified in screens that resulted in arrested development. Dorsal closure is remarkably robust and many questions regarding the molecular mechanisms involved in this complex biological process remain. Thus, it is important to identify all genes that contribute to the kinematics and dynamics of closure. Here, we used a set of large deletions (deficiencies), which collectively remove 98.5% of the genes on the right arm of Drosophila melanogaster’s 2nd chromosome to identify “dorsal closure deficiencies”. Through two crosses, we unambiguously identified embryos homozygous for each deficiency and time-lapse imaged them for the duration of closure. Images were analyzed for defects in cell shapes and tissue movements. Embryos homozygous for 47 deficiencies have notable, diverse defects in closure, demonstrating that a number of discrete processes comprise closure and are susceptible to mutational disruption. Further analysis of these deficiencies will lead to the identification of at least 30 novel “dorsal closure genes”. We expect that many of these novel genes will identify links to pathways and structures already known to coordinate various aspects of closure. We also expect to identify new processes and pathways that contribute to closure.
Collapse
|
14
|
Alfonso-Gonzalez C, Riesgo-Escovar JR. Fos metamorphoses: Lessons from mutants in model organisms. Mech Dev 2018; 154:73-81. [PMID: 29753813 DOI: 10.1016/j.mod.2018.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 05/10/2018] [Indexed: 12/14/2022]
Abstract
The Fos oncogene gene family is evolutionarily conserved throughout Eukarya. Fos proteins characteristically have a leucine zipper and a basic region with a helix-turn-helix motif that binds DNA. In vertebrates, there are several Fos homologs. They can homo- or hetero-dimerize via the leucine zipper domain. Fos homologs coupled with other transcription factors, like Jun oncoproteins, constitute the Activator Protein 1 (AP-1) complex. From its original inception as an oncogene, the subsequent finding that they act as transcription factors binding DNA sequences known as TRE, to the realization that they are activated in many different scenarios, and to loss-of-function analysis, the Fos proteins have traversed a multifarious path in development and physiology. They are instrumental in 'immediate early genes' responses, and activated by a seemingly myriad assemblage of different stimuli. Yet, the majority of these studies were basically gain-of-function studies, since it was thought that Fos genes would be cell lethal. Loss-of-function mutations in vertebrates were recovered later, and were not cell lethal. In fact, c-fos null mutations are viable with developmental defects (osteopetrosis and myeloid lineage abnormalities). It was then hypothesized that vertebrate genomes exhibit partial redundancy, explaining the 'mild' phenotypes, and complicating assessment of complete loss-of-function phenotypes. Due to its promiscuous activation, fos genes (especially c-fos) are now commonly used as markers for cellular responses to stimuli. fos homologs high sequence conservation (including Drosophila) is advantageous as it allows critical assessment of fos genes functions in this genetic model. Drosophila melanogaster contains only one fos homolog, the gene kayak. kayak mutations are lethal, and allow study of all the processes where fos is required. The kayak locus encodes several different isoforms, and is a pleiotropic gene variously required for development involving cell shape changes. In general, fos genes seem to primarily activate programs involved in cellular architectural rearrangements and cell shape changes.
Collapse
Affiliation(s)
- Carlos Alfonso-Gonzalez
- Developmental Neurobiology and Neurophysiology Department, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro c.p.76230, Mexico; Maestría en Bioquímica y Biología Molecular, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - Juan Rafael Riesgo-Escovar
- Developmental Neurobiology and Neurophysiology Department, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro c.p.76230, Mexico.
| |
Collapse
|
15
|
Kushnir T, Mezuman S, Bar-Cohen S, Lange R, Paroush Z, Helman A. Novel interplay between JNK and Egfr signaling in Drosophila dorsal closure. PLoS Genet 2017. [PMID: 28628612 PMCID: PMC5495517 DOI: 10.1371/journal.pgen.1006860] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Dorsal closure (DC) is a developmental process in which two contralateral epithelial sheets migrate to seal a large hole in the dorsal ectoderm of the Drosophila embryo. Two signaling pathways act sequentially to orchestrate this dynamic morphogenetic process. First, c-Jun N-terminal kinase (JNK) signaling activity in the dorsal-most leading edge (LE) cells of the epidermis induces expression of decapentaplegic (dpp). Second, Dpp, a secreted TGF-β homolog, triggers cell shape changes in the adjacent, ventrally located lateral epidermis, that guide the morphogenetic movements and cell migration mandatory for DC. Here we uncover a cell non-autonomous requirement for the Epidermal growth factor receptor (Egfr) pathway in the lateral epidermis for sustained dpp expression in the LE. Specifically, we demonstrate that Egfr pathway activity in the lateral epidermis prevents expression of the gene scarface (scaf), encoding a secreted antagonist of JNK signaling. In embryos with compromised Egfr signaling, upregulated Scaf causes reduction of JNK activity in LE cells, thereby impeding completion of DC. Our results identify a new developmental role for Egfr signaling in regulating epithelial plasticity via crosstalk with the JNK pathway.
Collapse
Affiliation(s)
- Tatyana Kushnir
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Sharon Mezuman
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Shaked Bar-Cohen
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Rotem Lange
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Ze'ev Paroush
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
- * E-mail:
| | - Aharon Helman
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
16
|
Nazario-Yepiz NO, Riesgo-Escovar JR. piragua encodes a zinc finger protein required for development in Drosophila. Mech Dev 2016; 144:171-181. [PMID: 28011160 DOI: 10.1016/j.mod.2016.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 11/07/2016] [Accepted: 12/19/2016] [Indexed: 02/06/2023]
Abstract
We isolated and characterized embryonic lethal mutations in piragua (prg). The prg locus encodes a protein with an amino terminus Zinc Finger-Associated-Domain (ZAD) and nine C2H2 zinc fingers (ZF). prg mRNA and protein expression during embryogenesis is dynamic with widespread maternal contribution, and subsequent expression in epithelial precursors. About a quarter of prg mutant embryos do not develop cuticle, and from those that do a small fraction have cuticular defects. Roughly half of prg mutants die during embryogenesis. prg mutants have an extended phenocritical period encompassing embryogenesis and first instar larval stage, since the other half of prg mutants die as first or second instar larvae. During dorsal closure, time-lapse high-resolution imaging shows defects arising out of sluggishness in closure, resolving at times in failures of closure. prg is expressed in imaginal discs, and is required for imaginal development. prg was identified in imaginal tissue in a cell super competition screen, together with other genes, like flower. We find that flower mutations are also embryonic lethal with a similar phenocritical period and strong embryonic mutant phenotypes (head involution defects, primarily). The two loci interact genetically in the embryo, as they increase embryonic mortality to close to 90% with the same embryonic phenotypes (dorsal closure and head involution defects, plus lack of cuticle). Mutant prg clones generated in developing dorsal thorax and eye imaginal tissue have strong developmental defects (lack of bristles and ommatidial malformations). prg is required in several developmental morphogenetic processes.
Collapse
Affiliation(s)
- Nestor O Nazario-Yepiz
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM, Campus UNAM Juriquilla, Boulevard Juriquilla 3001, Querétaro, Querétaro c.p. 76230, Mexico
| | - Juan R Riesgo-Escovar
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM, Campus UNAM Juriquilla, Boulevard Juriquilla 3001, Querétaro, Querétaro c.p. 76230, Mexico.
| |
Collapse
|
17
|
c-Fos Repression by Piwi Regulates Drosophila Ovarian Germline Formation and Tissue Morphogenesis. PLoS Genet 2016; 12:e1006281. [PMID: 27622269 PMCID: PMC5021354 DOI: 10.1371/journal.pgen.1006281] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/04/2016] [Indexed: 11/19/2022] Open
Abstract
Drosophila melanogaster Piwi functions within the germline stem cells (GSCs) and the somatic niche to regulate GSC self-renewal and differentiation. How Piwi influences GSCs is largely unknown. We uncovered a genetic interaction between Piwi and c-Fos in the somatic niche that influences GSCs. c-Fos is a proto-oncogene that influences many cell and developmental processes. In wild-type ovarian cells, c-Fos is post-transcriptionally repressed by Piwi, which destabilized the c-Fos mRNA by promoting the processing of its 3' untranslated region (UTR) into Piwi-interacting RNAs (piRNAs). The c-Fos 3' UTR was sufficient to trigger Piwi-dependent destabilization of a GFP reporter. Piwi represses c-Fos in the somatic niche to regulate GSC maintenance and differentiation and in the somatic follicle cells to affect somatic cell disorganization, tissue dysmorphogenesis, oocyte maturation arrest, and infertility.
Collapse
|
18
|
acal is a long non-coding RNA in JNK signaling in epithelial shape changes during drosophila dorsal closure. PLoS Genet 2015; 11:e1004927. [PMID: 25710168 PMCID: PMC4339196 DOI: 10.1371/journal.pgen.1004927] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 12/01/2014] [Indexed: 11/19/2022] Open
Abstract
Dorsal closure is an epithelial remodeling process taking place during Drosophila embryogenesis. JNK signaling coordinates dorsal closure. We identify and characterize acal as a novel negative dorsal closure regulator. acal represents a new level of JNK regulation. The acal locus codes for a conserved, long, non-coding, nuclear RNA. Long non-coding RNAs are an abundant and diverse class of gene regulators. Mutations in acal are lethal. acal mRNA expression is dynamic and is processed into a collection of 50 to 120 bp fragments. We show that acal lies downstream of raw, a pioneer protein, helping explain part of raw functions, and interacts genetically with Polycomb. acal functions in trans regulating mRNA expression of two genes involved in JNK signaling and dorsal closure: Connector of kinase to AP1 (Cka) and anterior open (aop). Cka is a conserved scaffold protein that brings together JNK and Jun, and aop is a transcription factor. Misregulation of Cka and aop can account for dorsal closure phenotypes in acal mutants. Changes in cell shape affect many critical cellular and bodily processes, like wound healing and developmental events, and when gone awry, metastatic processes in cancer. Evolutionarily conserved signaling pathways govern regulation of these cellular changes. The Jun-N-terminal kinase pathway regulates cell stretching during wound healing and normal development. An extensively studied developmental process is embryonic dorsal closure in fruit flies, a well-established model for the regulation and manner of this cell shape changes. Here we describe and characterize a processed, long non-coding RNA locus, acal, that adds a new layer of complexity to the Jun-N-terminal kinase signaling, acting as a negative regulator of the pathway. acal modulates the expression of two key genes in the pathway: the scaffold protein Cka, and the transcription factor Aop. Together, they enable the proper level of Jun-N-terminal kinase pathway activation to occur to allow cell stretching and closure.
Collapse
|
19
|
Ballard SL, Miller DL, Ganetzky B. Retrograde neurotrophin signaling through Tollo regulates synaptic growth in Drosophila. ACTA ACUST UNITED AC 2014; 204:1157-72. [PMID: 24662564 PMCID: PMC3971753 DOI: 10.1083/jcb.201308115] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Toll-like receptor Tollo positively regulates growth of the Drosophila larval neuromuscular junction through the JNK pathway after activation by the neurotrophin Spätzle3. Toll-like receptors (TLRs) are best characterized for their roles in mediating dorsoventral patterning and the innate immune response. However, recent studies indicate that TLRs are also involved in regulating neuronal growth and development. Here, we demonstrate that the TLR Tollo positively regulates growth of the Drosophila melanogaster larval neuromuscular junction (NMJ). Tollo mutants exhibited NMJ undergrowth, whereas increased expression of Tollo led to NMJ overgrowth. Tollo expression in the motoneuron was both necessary and sufficient for regulating NMJ growth. Dominant genetic interactions together with altered levels of phosphorylated c-Jun N-terminal kinase (JNK) and puc-lacZ expression revealed that Tollo signals through the JNK pathway at the NMJ. Genetic interactions also revealed that the neurotrophin Spätzle3 (Spz3) is a likely Tollo ligand. Spz3 expression in muscle and proteolytic activation via the Easter protease was necessary and sufficient to promote NMJ growth. These results demonstrate the existence of a novel neurotrophin signaling pathway that is required for synaptic development in Drosophila.
Collapse
Affiliation(s)
- Shannon L Ballard
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53705
| | | | | |
Collapse
|
20
|
Humphreys GB, Jud MC, Monroe KM, Kimball SS, Higley M, Shipley D, Vrablik MC, Bates KL, Letsou A. Mummy, A UDP-N-acetylglucosamine pyrophosphorylase, modulates DPP signaling in the embryonic epidermis of Drosophila. Dev Biol 2013; 381:434-45. [PMID: 23796903 DOI: 10.1016/j.ydbio.2013.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 06/06/2013] [Indexed: 12/29/2022]
Abstract
The evolutionarily conserved JNK/AP-1 (Jun N-terminal kinase/activator protein 1) and BMP (Bone Morphogenetic Protein) signaling cascades are deployed hierarchically to regulate dorsal closure in the fruit fly Drosophila melanogaster. In this developmental context, the JNK/AP-1 signaling cascade transcriptionally activates BMP signaling in leading edge epidermal cells. Here we show that the mummy (mmy) gene product, which is required for dorsal closure, functions as a BMP signaling antagonist. Genetic and biochemical tests of Mmy's role as a BMP-antagonist indicate that its function is independent of AP-1, the transcriptional trigger of BMP signal transduction in leading edge cells. pMAD (phosphorylated Mothers Against Dpp) activity data show the mmy gene product to be a new type of epidermal BMP regulator - one which transforms a BMP ligand from a long- to a short-range signal. mmy codes for the single UDP-N-acetylglucosamine pyrophosphorylase in Drosophila, and its requirement for attenuating epidermal BMP signaling during dorsal closure points to a new role for glycosylation in defining a highly restricted BMP activity field in the fly. These findings add a new dimension to our understanding of mechanisms modulating the BMP signaling gradient.
Collapse
Affiliation(s)
- Gregory B Humphreys
- Department of Human Genetics, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Shen W, Chen X, Cormier O, Cheng DCP, Reed B, Harden N. Modulation of morphogenesis by Egfr during dorsal closure in Drosophila. PLoS One 2013; 8:e60180. [PMID: 23579691 PMCID: PMC3620322 DOI: 10.1371/journal.pone.0060180] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 02/23/2013] [Indexed: 01/12/2023] Open
Abstract
During Drosophila embryogenesis the process of dorsal closure (DC) results in continuity of the embryonic epidermis, and DC is well recognized as a model system for the analysis of epithelial morphogenesis as well as wound healing. During DC the flanking lateral epidermal sheets stretch, align, and fuse along the dorsal midline, thereby sealing a hole in the epidermis occupied by an extra-embryonic tissue known as the amnioserosa (AS). Successful DC requires the regulation of cell shape change via actomyosin contractility in both the epidermis and the AS, and this involves bidirectional communication between these two tissues. We previously demonstrated that transcriptional regulation of myosin from the zipper (zip) locus in both the epidermis and the AS involves the expression of Ack family tyrosine kinases in the AS in conjunction with Dpp secreted from the epidermis. A major function of Ack in other species, however, involves the negative regulation of Egfr. We have, therefore, asked what role Egfr might play in the regulation of DC. Our studies demonstrate that Egfr is required to negatively regulate epidermal expression of dpp during DC. Interestingly, we also find that Egfr signaling in the AS is required to repress zip expression in both the AS and the epidermis, and this may be generally restrictive to the progression of morphogenesis in these tissues. Consistent with this theme of restricting morphogenesis, it has previously been shown that programmed cell death of the AS is essential for proper DC, and we show that Egfr signaling also functions to inhibit or delay AS programmed cell death. Finally, we present evidence that Ack regulates zip expression by promoting the endocytosis of Egfr in the AS. We propose that the general role of Egfr signaling during DC is that of a braking mechanism on the overall progression of DC.
Collapse
Affiliation(s)
- Weiping Shen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Xi Chen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Olga Cormier
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - David Chung-Pei Cheng
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Bruce Reed
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Nicholas Harden
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
22
|
Ríos-Barrera LD, Riesgo-Escovar JR. Regulating cell morphogenesis: The drosophila jun N-terminal kinase pathway. Genesis 2012; 51:147-62. [DOI: 10.1002/dvg.22354] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 10/14/2012] [Accepted: 10/19/2012] [Indexed: 12/15/2022]
Affiliation(s)
- Luis Daniel Ríos-Barrera
- Developmental Neurobioloy and Neurophysiology Department; Instituto de Neurobiología; Universidad Nacional Autónoma de México; Boulevard Juriquilla #3001; Querétaro, Querétaro; México; c.p. 76230
| | - Juan Rafael Riesgo-Escovar
- Developmental Neurobioloy and Neurophysiology Department; Instituto de Neurobiología; Universidad Nacional Autónoma de México; Boulevard Juriquilla #3001; Querétaro, Querétaro; México; c.p. 76230
| |
Collapse
|
23
|
Brock AR, Wang Y, Berger S, Renkawitz-Pohl R, Han VC, Wu Y, Galko MJ. Transcriptional regulation of Profilin during wound closure in Drosophila larvae. J Cell Sci 2012; 125:5667-76. [PMID: 22976306 DOI: 10.1242/jcs.107490] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Injury is an inevitable part of life, making wound healing essential for survival. In postembryonic skin, wound closure requires that epidermal cells recognize the presence of a gap and change their behavior to migrate across it. In Drosophila larvae, wound closure requires two signaling pathways [the Jun N-terminal kinase (JNK) pathway and the Pvr receptor tyrosine kinase signaling pathway] and regulation of the actin cytoskeleton. In this and other systems, it remains unclear how the signaling pathways that initiate wound closure connect to the actin regulators that help execute wound-induced cell migrations. Here, we show that chickadee, which encodes the Drosophila Profilin, a protein important for actin filament recycling and cell migration during development, is required for the physiological process of larval epidermal wound closure. After injury, chickadee is transcriptionally upregulated in cells proximal to the wound. We found that JNK, but not Pvr, mediates the increase in chic transcription through the Jun and Fos transcription factors. Finally, we show that chic-deficient larvae fail to form a robust actin cable along the wound edge and also fail to form normal filopodial and lamellipodial extensions into the wound gap. Our results thus connect a factor that regulates actin monomer recycling to the JNK signaling pathway during wound closure. They also reveal a physiological function for an important developmental regulator of actin and begin to tease out the logic of how the wound repair response is organized.
Collapse
Affiliation(s)
- Amanda R Brock
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Belacortu Y, Paricio N. Drosophila as a model of wound healing and tissue regeneration in vertebrates. Dev Dyn 2011; 240:2379-404. [PMID: 21953647 DOI: 10.1002/dvdy.22753] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2011] [Indexed: 11/11/2022] Open
Abstract
Understanding the molecular basis of wound healing and regeneration in vertebrates is one of the main challenges in biology and medicine. This understanding will lead to medical advances allowing accelerated tissue repair after wounding, rebuilding new tissues/organs and restoring homeostasis. Drosophila has emerged as a valuable model for studying these processes because the genetic networks and cytoskeletal machinery involved in epithelial movements occurring during embryonic dorsal closure, larval imaginal disc fusion/regeneration, and epithelial repair are similar to those acting during wound healing and regeneration in vertebrates. Recent studies have also focused on the use of Drosophila adult stem cells to maintain tissue homeostasis. Here, we review how Drosophila has contributed to our understanding of these processes, primarily through live-imaging and genetic tools that are impractical in mammals. Furthermore, we highlight future research areas where this insect may provide novel insights and potential therapeutic strategies for wound healing and regeneration.
Collapse
Affiliation(s)
- Yaiza Belacortu
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, Burjasot, Spain
| | | |
Collapse
|
25
|
Wang X, Ward RE. Sec61alpha is required for dorsal closure during Drosophila embryogenesis through its regulation of Dpp signaling. Dev Dyn 2010; 239:784-97. [PMID: 20112345 DOI: 10.1002/dvdy.22219] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
During dorsal closure in Drosophila, signaling events in the dorsalmost row of epidermal cells (DME cells) direct the migration of lateral epidermal sheets towards the dorsal midline where they fuse to enclose the embryo. A Jun amino-terminal kinase (JNK) cascade in the DME cells induces the expression of Decapentaplegic (Dpp). Dpp signaling then regulates the cytoskeleton in the DME cells and amnioserosa to affect the cell shape changes necessary to complete dorsal closure. We identified a mutation in Sec61alpha that specifically perturbs dorsal closure. Sec61alpha encodes the main subunit of the translocon complex for co-translational import of proteins into the ER. JNK signaling is normal in Sec61alpha mutant embryos, but Dpp signaling is attenuated and the DME cells fail to maintain an actinomyosin cable as epithelial migration fails. Consistent with this model, dorsal closure is rescued in Sec61alpha mutant embryos by an activated form of the Dpp receptor Thick veins.
Collapse
Affiliation(s)
- Xiaochen Wang
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | | |
Collapse
|
26
|
A targeted UAS-RNAi screen in Drosophila larvae identifies wound closure genes regulating distinct cellular processes. Genetics 2010; 186:943-57. [PMID: 20813879 DOI: 10.1534/genetics.110.121822] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Robust mechanisms for tissue repair are critical for survival of multicellular organisms. Efficient cutaneous wound repair requires the migration of cells at the wound edge and farther back within the epidermal sheet, but the genes that control and coordinate these migrations remain obscure. This is in part because a systematic screening approach for in vivo identification and classification of postembryonic wound closure genes has yet to be developed. Here, we performed a proof-of-principle reporter-based in vivo RNAi screen in the Drosophila melanogaster larval epidermis to identify genes required for normal wound closure. Among the candidate genes tested were kinases and transcriptional mediators of the Jun N-terminal kinase (JNK) signaling pathway shown to be required for epithelial sheet migration during development. Also targeted were genes involved in actin cytoskeletal remodeling. Importantly, RNAi knockdown of both canonical and noncanonical members of the JNK pathway caused open wounds, as did several genes involved in actin cytoskeletal remodeling. Our analysis of JNK pathway components reveals redundancy among the upstream activating kinases and distinct roles for the downstream transcription factors DJun and DFos. Quantitative and qualitative morphological classification of the open wound phenotypes and evaluation of JNK activation suggest that multiple cellular processes are required in the migrating epidermal cells, including functions specific to cells at the wound edge and others specific to cells farther back within the epidermal sheet. Together, our results identify a new set of conserved wound closure genes, determine putative functional roles for these genes within the migrating epidermal sheet, and provide a template for a broader in vivo RNAi screen to discover the full complement of genes required for wound closure during larval epidermal wound healing.
Collapse
|
27
|
Freeman A, Bowers M, Mortimer AV, Timmerman C, Roux S, Ramaswami M, Sanyal S. A new genetic model of activity-induced Ras signaling dependent pre-synaptic plasticity in Drosophila. Brain Res 2010; 1326:15-29. [PMID: 20193670 DOI: 10.1016/j.brainres.2010.02.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 02/17/2010] [Accepted: 02/22/2010] [Indexed: 12/31/2022]
Abstract
Techniques to induce activity-dependent neuronal plasticity in vivo allow the underlying signaling pathways to be studied in their biological context. Here, we demonstrate activity-induced plasticity at neuromuscular synapses of Drosophila double mutant for comatose (an NSF mutant) and Kum (a SERCA mutant), and present an analysis of the underlying signaling pathways. comt; Kum (CK) double mutants exhibit increased locomotor activity under normal culture conditions, concomitant with a larger neuromuscular junction synapse and stably elevated evoked transmitter release. The observed enhancements of synaptic size and transmitter release in CK mutants are completely abrogated by: a) reduced activity of motor neurons; b) attenuation of the Ras/ERK signaling cascade; or c) inhibition of the transcription factors Fos and CREB. All of which restrict synaptic properties to near wild type levels. Together, these results document neural activity-dependent plasticity of motor synapses in CK animals that requires Ras/ERK signaling and normal transcriptional activity of Fos and CREB. Further, novel in vivo reporters of neuronal Ras activation and Fos transcription also confirm increased signaling through a Ras/AP-1 pathway in motor neurons of CK animals, consistent with results from our genetic experiments. Thus, this study: a) provides a robust system in which to study activity-induced synaptic plasticity in vivo; b) establishes a causal link between neural activity, Ras signaling, transcriptional regulation and pre-synaptic plasticity in glutamatergic motor neurons of Drosophila larvae; and c) presents novel, genetically encoded reporters for Ras and AP-1 dependent signaling pathways in Drosophila.
Collapse
Affiliation(s)
- Amanda Freeman
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30022, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Sekyrova P, Bohmann D, Jindra M, Uhlirova M. Interaction between Drosophila bZIP proteins Atf3 and Jun prevents replacement of epithelial cells during metamorphosis. Development 2010; 137:141-50. [PMID: 20023169 DOI: 10.1242/dev.037861] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Epithelial sheet spreading and fusion underlie important developmental processes. Well-characterized examples of such epithelial morphogenetic events have been provided by studies in Drosophila, and include embryonic dorsal closure, formation of the adult thorax and wound healing. All of these processes require the basic region-leucine zipper (bZIP) transcription factors Jun and Fos. Much less is known about morphogenesis of the fly abdomen, which involves replacement of larval epidermal cells (LECs) with adult histoblasts that divide, migrate and finally fuse to form the adult epidermis during metamorphosis. Here, we implicate Drosophila Activating transcription factor 3 (Atf3), the single ortholog of human ATF3 and JDP2 bZIP proteins, in abdominal morphogenesis. During the process of the epithelial cell replacement, transcription of the atf3 gene declines. When this downregulation is experimentally prevented, the affected LECs accumulate cell-adhesion proteins and their extrusion and replacement with histoblasts are blocked. The abnormally adhering LECs consequently obstruct the closure of the adult abdominal epithelium. This closure defect can be either mimicked and further enhanced by knockdown of the small GTPase Rho1 or, conversely, alleviated by stimulating ecdysone steroid hormone signaling. Both Rho and ecdysone pathways have been previously identified as effectors of the LEC replacement. To elicit the gain-of-function effect, Atf3 specifically requires its binding partner Jun. Our data thus identify Atf3 as a new functional partner of Drosophila Jun during development.
Collapse
Affiliation(s)
- Petra Sekyrova
- Biology Center, Czech Academy of Sciences and Department of Molecular Biology, University of South Bohemia, Ceske Budejovice 37005, Czech Republic
| | | | | | | |
Collapse
|
29
|
Dubruille R, Murad A, Rosbash M, Emery P. A constant light-genetic screen identifies KISMET as a regulator of circadian photoresponses. PLoS Genet 2009; 5:e1000787. [PMID: 20041201 PMCID: PMC2789323 DOI: 10.1371/journal.pgen.1000787] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 11/24/2009] [Indexed: 12/28/2022] Open
Abstract
Circadian pacemakers are essential to synchronize animal physiology and behavior with the day∶night cycle. They are self-sustained, but the phase of their oscillations is determined by environmental cues, particularly light intensity and temperature cycles. In Drosophila, light is primarily detected by a dedicated blue-light photoreceptor: CRYPTOCHROME (CRY). Upon light activation, CRY binds to the pacemaker protein TIMELESS (TIM) and triggers its proteasomal degradation, thus resetting the circadian pacemaker. To understand further the CRY input pathway, we conducted a misexpression screen under constant light based on the observation that flies with a disruption in the CRY input pathway remain robustly rhythmic instead of becoming behaviorally arrhythmic. We report the identification of more than 20 potential regulators of CRY-dependent light responses. We demonstrate that one of them, the chromatin-remodeling enzyme KISMET (KIS), is necessary for normal circadian photoresponses, but does not affect the circadian pacemaker. KIS genetically interacts with CRY and functions in PDF-negative circadian neurons, which play an important role in circadian light responses. It also affects daily CRY-dependent TIM oscillations in a peripheral tissue: the eyes. We therefore conclude that KIS is a key transcriptional regulator of genes that function in the CRY signaling cascade, and thus it plays an important role in the synchronization of circadian rhythms with the day∶night cycle. In most organisms, intracellular molecular pacemakers called circadian clocks coordinate metabolic, physiological, and behavioral processes during the course of the day. For example, they determine when animals are active or resting. Circadian clocks are self-sustained oscillators, but their free-running period does not exactly match day length. Thus, they have to be reset by environmental inputs to stay properly phased with the day∶night cycle. The fruit fly Drosophila melanogaster relies primarily on CRYPTOCHROME (CRY)—a cell-autonomous blue-light photoreceptor—to synchronize its circadian clocks with the light∶dark cycle. With a genetic screen, we identified over 20 candidate genes that might regulate CRY function. kismet (kis) is among them: it encodes a chromatin remodeling factor essential for the development of Drosophila. We show that, in adult flies, KIS is expressed and functions in brain neurons that control daily behavioral rhythms. KIS determines how Drosophila circadian behavior responds to light, but not its free-running period. Moreover, manipulating simultaneously kis and cry activity demonstrates that these two genes interact to control molecular and behavioral circadian photoresponses. Our work therefore reveals that KIS regulates CRY signaling and thus determines how circadian clocks respond to light input.
Collapse
Affiliation(s)
- Raphaëlle Dubruille
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Alejandro Murad
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Program in Neuroscience, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Michael Rosbash
- Howard Hughes Medical Institute, National Center for Behavioral Genetics and Department of Biology, Waltham, Massachusetts, United States of America
| | - Patrick Emery
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Program in Neuroscience, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
30
|
Rallis A, Moore C, Ng J. Signal strength and signal duration define two distinct aspects of JNK-regulated axon stability. Dev Biol 2009; 339:65-77. [PMID: 20035736 PMCID: PMC2845820 DOI: 10.1016/j.ydbio.2009.12.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 12/10/2009] [Accepted: 12/11/2009] [Indexed: 11/29/2022]
Abstract
Signaling proteins often control multiple aspects of cell morphogenesis. Yet the mechanisms that govern their pleiotropic behavior are often unclear. Here we show activity levels and timing mechanisms determine distinct aspects of Jun N-terminal kinase (JNK) pathway dependent axonal morphogenesis in Drosophila mushroom body (MB) neurons. In the complete absence of Drosophila JNK (Basket), MB axons fail to stabilize, leading to their subsequent degeneration. However, with a partial loss of Basket (Bsk), or of one of the upstream JNK kinases, Hemipterous or Mkk4, these axons overextend. This suggests that Bsk activity prevents axons from destabilizing, resulting in degeneration and overextension beyond their terminal targets. These distinct phenotypes require different threshold activities involving the convergent action of two distinct JNK kinases. We show that sustained Bsk signals are essential throughout development and act additively but are dispensable at adulthood. We also suggest that graded Bsk inputs are translated into AP-1 transcriptional outputs consisting of Fos and Jun proteins.
Collapse
Affiliation(s)
- Andrew Rallis
- MRC Centre for Developmental Neurobiology, New Hunt's House, Guy's Campus, King's College, London SE1 1UL, UK
| | | | | |
Collapse
|
31
|
Massaro CM, Pielage J, Davis GW. Molecular mechanisms that enhance synapse stability despite persistent disruption of the spectrin/ankyrin/microtubule cytoskeleton. ACTA ACUST UNITED AC 2009; 187:101-17. [PMID: 19805631 PMCID: PMC2762090 DOI: 10.1083/jcb.200903166] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Neuromuscular junctions crippled by a disrupted microtubule cytoskeleton are rescued by stress-induced activation of MAPK-JNK-Fos signaling. Loss of spectrin or ankyrin in the presynaptic motoneuron disrupts the synaptic microtubule cytoskeleton and leads to disassembly of the neuromuscular junction (NMJ). Here, we demonstrate that NMJ disassembly after loss of α-spectrin can be suppressed by expression of a WldS transgene, providing evidence for a Wallerian-type degenerative mechanism. We then identify a second signaling system. Enhanced MAPK-JNK-Fos signaling suppresses NMJ disassembly despite loss of presynaptic α-spectrin or ankyrin2-L. This signaling system is activated after an acute cytoskeletal disruption, suggesting an endogenous role during neurological stress. This signaling system also includes delayed, negative feedback via the JNK phosphatase puckered, which inhibits JNK-Fos to allow NMJ disassembly in the presence of persistent cytoskeletal stress. Finally, the MAPK-JNK pathway is not required for baseline NMJ stabilization during normal NMJ growth. We present a model in which signaling via JNK-Fos functions as a stress response system that is transiently activated after cytoskeletal disruption to enhance NMJ stability, and is then shut off allowing NMJ disassembly during persistent cytoskeletal disruption.
Collapse
Affiliation(s)
- Catherine M Massaro
- Department of Biochemistry and Biophysics, Program in Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | |
Collapse
|
32
|
Solon J, Kaya-Copur A, Colombelli J, Brunner D. Pulsed forces timed by a ratchet-like mechanism drive directed tissue movement during dorsal closure. Cell 2009; 137:1331-42. [PMID: 19563762 DOI: 10.1016/j.cell.2009.03.050] [Citation(s) in RCA: 378] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 02/19/2009] [Accepted: 03/23/2009] [Indexed: 01/03/2023]
Abstract
Dorsal closure is a tissue-modeling process in the developing Drosophila embryo during which an epidermal opening is closed. It begins with the appearance of a supracellular actin cable that surrounds the opening and provides a contractile force. Amnioserosa cells that fill the opening produce an additional critical force pulling on the surrounding epidermal tissue. We show that this force is not gradual but pulsed and occurs long before dorsal closure starts. Quantitative analysis, combined with laser cutting experiments and simulations, reveals that tension-based dynamics and cell coupling control the force pulses. These constitutively pull the surrounding epidermal tissue dorsally, but the displacement is initially transient. It is translated into dorsal-ward movement only with the help of the actin cable, which acts like a ratchet, counteracting ventral-ward epidermis relaxation after force pulses. Our work uncovers a sophisticated mechanism of cooperative force generation between two major forces driving morphogenesis.
Collapse
Affiliation(s)
- Jerome Solon
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | | | | | | |
Collapse
|
33
|
Multiple transcription factor codes activate epidermal wound-response genes in Drosophila. Proc Natl Acad Sci U S A 2009; 106:2224-9. [PMID: 19168633 DOI: 10.1073/pnas.0810219106] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Wounds in Drosophila and mouse embryos induce similar genetic pathways to repair epidermal barriers. However, the transcription factors that transduce wound signals to repair epidermal barriers are largely unknown. We characterize the transcriptional regulatory enhancers of 4 genes-Ddc, ple, msn, and kkv-that are rapidly activated in epidermal cells surrounding wounds in late Drosophila embryos and early larvae. These epidermal wound enhancers all contain evolutionarily conserved sequences matching binding sites for JUN/FOS and GRH transcription factors, but vary widely in trans- and cis-requirements for these inputs and their binding sites. We propose that the combination of GRH and FOS is part of an ancient wound-response pathway still used in vertebrates and invertebrates, but that other mechanisms have evolved that result in similar transcriptional output. A common, but largely untested assumption of bioinformatic analyses of gene regulatory networks is that transcription units activated in the same spatial and temporal patterns will require the same cis-regulatory codes. Our results indicate that this is an overly simplistic view.
Collapse
|
34
|
Overexpression screen in Drosophila identifies neuronal roles of GSK-3 beta/shaggy as a regulator of AP-1-dependent developmental plasticity. Genetics 2008; 180:2057-71. [PMID: 18832361 DOI: 10.1534/genetics.107.085555] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
AP-1, an immediate-early transcription factor comprising heterodimers of the Fos and Jun proteins, has been shown in several animal models, including Drosophila, to control neuronal development and plasticity. In spite of this important role, very little is known about additional proteins that regulate, cooperate with, or are downstream targets of AP-1 in neurons. Here, we outline results from an overexpression/misexpression screen in Drosophila to identify potential regulators of AP-1 function at third instar larval neuromuscular junction (NMJ) synapses. First, we utilize >4000 enhancer and promoter (EP) and EPgy2 lines to screen a large subset of Drosophila genes for their ability to modify an AP-1-dependent eye-growth phenotype. Of 303 initially identified genes, we use a set of selection criteria to arrive at 25 prioritized genes from the resulting collection of putative interactors. Of these, perturbations in 13 genes result in synaptic phenotypes. Finally, we show that one candidate, the GSK-3beta-kinase homolog, shaggy, negatively influences AP-1-dependent synaptic growth, by modulating the Jun-N-terminal kinase pathway, and also regulates presynaptic neurotransmitter release at the larval neuromuscular junction. Other candidates identified in this screen provide a useful starting point to investigate genes that interact with AP-1 in vivo to regulate neuronal development and plasticity.
Collapse
|
35
|
Abstract
High baselines of transcription factor activities represent fundamental obstacles to regulated signaling. Here we show that in Drosophila, quenching of basal activator protein 1 (AP-1) transcription factor activity serves as a prerequisite to its tight spatial and temporal control by the JNK (Jun N-terminal kinase) signaling cascade. Our studies indicate that the novel raw gene product is required to limit AP-1 activity to leading edge epidermal cells during embryonic dorsal closure. In addition, we provide the first evidence that the epidermis has a Basket JNK-independent capacity to activate AP-1 targets and that raw function is required broadly throughout the epidermis to antagonize this activity. Finally, our mechanistic studies of the three dorsal-open group genes [raw, ribbon (rib), and puckered (puc)] indicate that these gene products provide at least two tiers of JNK/AP-1 regulation. In addition to Puckered phosphatase function in leading edge epidermal cells as a negative-feedback regulator of JNK signaling, the three dorsal-open group gene products (Raw, Ribbon, and Puckered) are required more broadly in the dorsolateral epidermis to quench a basal, signaling-independent activity of the AP-1 transcription factor.
Collapse
|
36
|
The gene structure of the Drosophila melanogaster proto-oncogene, kayak, and its nested gene, fos-intronic gene. Gene 2008; 420:76-81. [PMID: 18571877 DOI: 10.1016/j.gene.2008.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 05/02/2008] [Accepted: 05/03/2008] [Indexed: 11/22/2022]
Abstract
We present herein a new model for the structure of the Drosophila kayak gene as well as preliminary data on the functional differences of its various isoforms. kayak is a homolog of the human proto-oncogene, c-fos. kayak has three different starts of transcription, and therefore promoters (P)kay-alpha, (P)kay-beta and (P)kay-gamma. These three promoters lead to four different transcripts: kay-alpha, kay(sro), kay-beta and kay-gamma. (P)kay-alpha produces two different transcripts: kay-alpha and kay(sro) where the other two promoters, (P)kay-beta and (P)kay-gamma, produce a single transcript each. The transcripts kay-alpha, beta and gamma all splice into the mainbody of the kay gene, which codes for the DNA binding domain and leucine zipper; kay(sro) is not spliced. Also, within this region is a nested gene, fos-intronic gene (fig) which is transcribed in the opposite direction. fig codes for a predicted PP2C phosphatase. fig has two different promoters which produce two different transcripts, both in the same reading frame, fig-alpha and beta. This is an unusual gene structure for Drosophila. Only 13% of Drosophila genes have multiple promoters and only 7% have a nested gene. RT-PCR was performed on each transcript to determine the relative amounts of each RNA produced. All spliced kay transcripts appear to have equal abundance. The unspliced kay(sro) transcript has a lower abundance than kay-alpha. Both fig transcripts are also detected in all stages tested. Lethal phase analysis and complementation testing suggest that the three isoforms of kayak may have different functions.
Collapse
|
37
|
Weber U, Pataki C, Mihaly J, Mlodzik M. Combinatorial signaling by the Frizzled/PCP and Egfr pathways during planar cell polarity establishment in the Drosophila eye. Dev Biol 2008; 316:110-23. [PMID: 18291359 DOI: 10.1016/j.ydbio.2008.01.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 01/09/2008] [Accepted: 01/10/2008] [Indexed: 12/23/2022]
Abstract
Frizzled (Fz)/PCP signaling regulates planar, vectorial orientation of cells or groups of cells within whole tissues. Although Fz/PCP signaling has been analyzed in several contexts, little is known about nuclear events acting downstream of Fz/PCP signaling in the R3/R4 cell fate decision in the Drosophila eye or in other contexts. Here we demonstrate a specific requirement for Egfr-signaling and the transcription factors Fos (AP-1), Yan and Pnt in PCP dependent R3/R4 specification. Loss and gain-of-function assays suggest that the transcription factors integrate input from Fz/PCP and Egfr-signaling and that the ETS factors Pnt and Yan cooperate with Fos (and Jun) in the PCP-specific R3/R4 determination. Our data indicate that Fos (either downstream of Fz/PCP signaling or parallel to it) and Yan are required in R3 to specify its fate (Fos) or inhibit R4 fate (Yan) and that Egfr-signaling is required in R4 via Pnt for its fate specification. Taken together with previous work establishing a Notch-dependent Su(H) function in R4, we conclude that Fos, Yan, Pnt, and Su(H) integrate Egfr, Fz, and Notch signaling input in R3 or R4 to establish cell fate and ommatidial polarity.
Collapse
Affiliation(s)
- Ursula Weber
- Department of Developmental and Regenerative Biology, Mt. Sinai School of Medicine, Annenberg Bldg. 18-92, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | |
Collapse
|
38
|
Abstract
Injury to the skin initiates a complex process of events involving inflammation as well as the formation and remodeling of new tissue. These processes result in at least partial reconstitution of the injured skin. However, wounds in adult mammals heal with a scar, which is accompanied by functional and aesthetic impairments. In addition to this problem, a large number of patients, in particular in the aged population, suffer from chronic, nonhealing ulcers. Therefore, there is a strong need to improve the wound healing process. This requires a thorough understanding of the underlying molecular and cellular mechanisms. During the past several years, important regulators of the wound healing process have been identified. In particular, the growth factors and matrix proteins, which orchestrate skin repair, have been characterized in detail. By contrast, much less is known about the transcription factors, which regulate gene expression at the wound site. This review summarizes recent data on the expression of transcription factors in skin wounds and their functions in the repair process.
Collapse
Affiliation(s)
- Matthias Schäfer
- Institute of Cell Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
39
|
Hyun J, Bécam I, Yanicostas C, Bohmann D. Control of G2/M transition by Drosophila Fos. Mol Cell Biol 2006; 26:8293-302. [PMID: 16966382 PMCID: PMC1636763 DOI: 10.1128/mcb.02455-05] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 02/03/2006] [Accepted: 08/29/2006] [Indexed: 12/31/2022] Open
Abstract
The transcription factors of the Fos family have long been associated with the control of cell proliferation, although the molecular and cellular mechanisms that mediate this function are poorly understood. We investigated the contributions of Fos to the cell cycle and cell growth control using Drosophila imaginal discs as a genetically accessible system. The RNA interference-mediated inhibition of Fos in proliferating cells of the wing and eye discs resulted in a specific defect in the G2-to-M-phase transition, while cell growth remained unimpaired, resulting in a marked reduction in organ size. Consistent with the conclusion that Fos is required for mitosis, we identified cyclin B as a direct transcriptional target of Fos in Drosophila melanogaster, with Fos binding to a region upstream of the cyclin B gene in vivo and cyclin B mRNA being specifically reduced under Fos loss-of-function conditions.
Collapse
Affiliation(s)
- Joogyung Hyun
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
40
|
Collins CA, Wairkar YP, Johnson SL, DiAntonio A. Highwire restrains synaptic growth by attenuating a MAP kinase signal. Neuron 2006; 51:57-69. [PMID: 16815332 DOI: 10.1016/j.neuron.2006.05.026] [Citation(s) in RCA: 260] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Revised: 04/25/2006] [Accepted: 05/30/2006] [Indexed: 11/23/2022]
Abstract
Highwire is an extremely large, evolutionarily conserved E3 ubiquitin ligase that negatively regulates synaptic growth at the Drosophila NMJ. Highwire has been proposed to restrain synaptic growth by downregulating a synaptogenic signal. Here we identify such a downstream signaling pathway. A screen for suppressors of the highwire synaptic overgrowth phenotype yielded mutations in wallenda, a MAP kinase kinase kinase (MAPKKK) homologous to vertebrate DLK and LZK. wallenda is both necessary for highwire synaptic overgrowth and sufficient to promote synaptic overgrowth, and synaptic levels of Wallenda protein are controlled by Highwire and ubiquitin hydrolases. highwire synaptic overgrowth requires the MAP kinase JNK and the transcription factor Fos. These results suggest that Highwire controls structural plasticity of the synapse by regulating gene expression through a MAP kinase signaling pathway. In addition to controlling synaptic growth, Highwire promotes synaptic function through a separate pathway that does not require wallenda.
Collapse
Affiliation(s)
- Catherine A Collins
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, Washington University, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
41
|
Polaski S, Whitney L, Barker BW, Stronach B. Genetic analysis of slipper/mixed lineage kinase reveals requirements in multiple Jun-N-terminal kinase-dependent morphogenetic events during Drosophila development. Genetics 2006; 174:719-33. [PMID: 16888342 PMCID: PMC1602089 DOI: 10.1534/genetics.106.056564] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Mixed lineage kinases (MLKs) function as Jun-N-terminal kinase (JNK) kinase kinases to transduce extracellular signals during development and homeostasis in adults. slipper (slpr), which encodes the Drosophila homolog of mammalian MLKs, has previously been implicated in activation of the JNK pathway during embryonic dorsal epidermal closure. To further define the specific functions of SLPR, we analyzed the phenotypic consequences of slpr loss and gain of function throughout development, using a semiviable maternal-effect allele and wild-type or dominant-negative transgenes. From these analyses we confirm that failure of dorsal closure is the null phenotype in slpr germline clones. In addition, there is a functional maternal contribution, which can suffice for embryogenesis in the zygotic null mutant, but rarely suffices for pupal metamorphosis, revealing later functions for slpr as the maternal contribution is depleted. Zygotic null mutants that eclose as adults display an array of morphological defects, many of which are shared by hep mutant animals, deficient in the JNK kinase (JNKK/MKK7) substrate for SLPR, suggesting that the defects observed in slpr mutants primarily reflect loss of hep-dependent JNK activation. Consistent with this, the maternal slpr contribution is sensitive to the dosage of positive and negative JNK pathway regulators, which attenuate or potentiate SLPR-dependent signaling in development. Although SLPR and TAK1, another JNKKK family member, are differentially used in dorsal closure and TNF/Eiger-stimulated apoptosis, respectively, a Tak1 mutant shows dominant genetic interactions with slpr, suggesting potential redundant or combinatorial functions. Finally, we demonstrate that SLPR overexpression can induce ectopic JNK signaling and that the SLPR protein is enriched at the epithelial cell cortex.
Collapse
Affiliation(s)
- Stephanie Polaski
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | |
Collapse
|
42
|
Homsy JG, Jasper H, Peralta XG, Wu H, Kiehart DP, Bohmann D. JNK signaling coordinates integrin and actin functions during Drosophila embryogenesis. Dev Dyn 2006; 235:427-34. [PMID: 16317725 DOI: 10.1002/dvdy.20649] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epithelial movements are key morphogenetic events in animal development. They are driven by multiple mechanisms, including signal-dependent changes in cytoskeletal organization and in cell adhesion. Such processes must be controlled precisely and coordinated to accurately sculpt the three-dimensional form of the developing organism. By observing the Drosophila epidermis during embryonic development using confocal time-lapse microscopy, we have investigated how signaling through the Jun-N-terminal kinase (JNK) pathway governs the tissue sheet movements that result in dorsal closure (DC). We find that JNK controls the polymerization of actin into a cable at the epidermal leading edge as previously suggested, as well as the joining (zipping) of the contralateral epithelial cell sheets. Here, we show that zipping is mediated by regulation of the integrins myospheroid and scab. Our data demonstrate that JNK signaling regulates a set of target genes that cooperate to facilitate epithelial movement and closure.
Collapse
Affiliation(s)
- Jason G Homsy
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | |
Collapse
|
43
|
Lee N, Maurange C, Ringrose L, Paro R. Suppression of Polycomb group proteins by JNK signalling induces transdetermination in Drosophila imaginal discs. Nature 2005; 438:234-7. [PMID: 16281037 DOI: 10.1038/nature04120] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Accepted: 07/27/2005] [Indexed: 01/08/2023]
Abstract
During the regeneration of Drosophila imaginal discs, cellular identities can switch fate in a process known as transdetermination. For leg-to-wing transdetermination, the underlying mechanism involves morphogens such as Wingless that, when activated outside their normal context, induce ectopic expression of the wing-specific selector gene vestigial. Polycomb group (PcG) proteins maintain cellular fates by controlling the expression patterns of homeotic genes and other developmental regulators. Here we report that transdetermination events are coupled to PcG regulation. We show that the frequency of transdetermination is enhanced in PcG mutant flies. Downregulation of PcG function, as monitored by the reactivation of a silent PcG-regulated reporter gene, is observed in transdetermined cells. This downregulation is directly controlled by the Jun amino-terminal kinase (JNK) signalling pathway, which is activated in cells undergoing regeneration. Accordingly, transdetermination frequency is reduced in a JNK mutant background. This regulatory interaction also occurs in mammalian cells, indicating that the role of this signalling cascade in remodelling cellular fates may be conserved.
Collapse
Affiliation(s)
- Nara Lee
- Centre for Molecular Biology Heidelberg (ZMBH), University of Heidelberg, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
44
|
Wilk R, Pickup AT, Hamilton JK, Reed BH, Lipshitz HD. Dose-sensitive autosomal modifiers identify candidate genes for tissue autonomous and tissue nonautonomous regulation by the Drosophila nuclear zinc-finger protein, hindsight. Genetics 2005; 168:281-300. [PMID: 15454543 PMCID: PMC1448082 DOI: 10.1534/genetics.104.031344] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The nuclear zinc-finger protein encoded by the hindsight (hnt) locus regulates several cellular processes in Drosophila epithelia, including the Jun N-terminal kinase (JNK) signaling pathway and actin polymerization. Defects in these molecular pathways may underlie the abnormal cellular interactions, loss of epithelial integrity, and apoptosis that occurs in hnt mutants, in turn causing failure of morphogenetic processes such as germ band retraction and dorsal closure in the embryo. To define the genetic pathways regulated by hnt, 124 deficiencies on the second and third chromosomes and 14 duplications on the second chromosome were assayed for dose-sensitive modification of a temperature-sensitive rough eye phenotype caused by the viable allele, hntpeb; 29 interacting regions were identified. Subsequently, 438 P-element-induced lethal mutations mapping to these regions and 12 candidate genes were tested for genetic interaction, leading to identification of 63 dominant modifier loci. A subset of the identified mutants also dominantly modify hnt308-induced embryonic lethality and thus represent general rather than tissue-specific interactors. General interactors include loci encoding transcription factors, actin-binding proteins, signal transduction proteins, and components of the extracellular matrix. Expression of several interactors was assessed in hnt mutant tissue. Five genes--apontic (apt), Delta (Dl), decapentaplegic (dpp), karst (kst), and puckered (puc)--are regulated tissue autonomously and, thus, may be direct transcriptional targets of HNT. Three of these genes--apt, Dl, and dpp--are also regulated nonautonomously in adjacent non-HNT-expressing tissues. The expression of several additional interactors--viking (vkg), Cg25, and laminin-alpha (LanA)-is affected only in a nonautonomous manner.
Collapse
Affiliation(s)
- Ronit Wilk
- Program in Developmental Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
45
|
Ishimaru S, Ueda R, Hinohara Y, Ohtani M, Hanafusa H. PVR plays a critical role via JNK activation in thorax closure during Drosophila metamorphosis. EMBO J 2004; 23:3984-94. [PMID: 15457211 PMCID: PMC524349 DOI: 10.1038/sj.emboj.7600417] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2004] [Accepted: 08/28/2004] [Indexed: 11/08/2022] Open
Abstract
PVR, the Drosophila homolog of the PDGF/VEGF receptor, has been implicated in border cell migration during oogenesis and hemocyte migration during embryogenesis. It was earlier shown that Mbc, a CDM family protein, and its effector, Rac, transduced the guidance signal from PVR during border cell migration. Here we demonstrate that PVR is also required for the morphogenetic process, thorax closure, during metamorphosis. The results of genetic and biochemical experiments indicate that PVR activates the JNK pathway. We present evidence showing Crk (an adaptor molecule), Mbc, ELMO (a homolog of Caenorhabditis elegans CED-12 and mammalian ELMO), and Rac to be mediators of JNK activation by PVR. In addition, we suppose that not only Rac but also Cdc42 is activated and involved in JNK activation downstream of PVR.
Collapse
Affiliation(s)
- Satoshi Ishimaru
- Laboratory of Molecular Oncology, Osaka Bioscience Institute, Furuedai, Suita, Osaka, Japan.
| | | | | | | | | |
Collapse
|
46
|
Jindra M, Gaziova I, Uhlirova M, Okabe M, Hiromi Y, Hirose S. Coactivator MBF1 preserves the redox-dependent AP-1 activity during oxidative stress in Drosophila. EMBO J 2004; 23:3538-47. [PMID: 15306851 PMCID: PMC516628 DOI: 10.1038/sj.emboj.7600356] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Accepted: 07/16/2004] [Indexed: 11/09/2022] Open
Abstract
Basic leucine zipper proteins Jun and Fos form the dimeric transcription factor AP-1, essential for cell differentiation and immune and antioxidant defenses. AP-1 activity is controlled, in part, by the redox state of critical cysteine residues within the basic regions of Jun and Fos. Mutation of these cysteines contributes to oncogenic potential of Jun and Fos. How cells maintain the redox-dependent AP-1 activity at favorable levels is not known. We show that the conserved coactivator MBF1 is a positive modulator of AP-1. Via a direct interaction with the basic region of Drosophila Jun (D-Jun), MBF1 prevents an oxidative modification (S-cystenyl cystenylation) of the critical cysteine and stimulates AP-1 binding to DNA. Cytoplasmic MBF1 translocates to the nucleus together with a transfected D-Jun protein, suggesting that MBF1 protects nascent D-Jun also in Drosophila cells. mbf1-null mutants live shorter than mbf1+ controls in the presence of hydrogen peroxide (H2O2). An AP-1-dependent epithelial closure becomes sensitive to H2O2 in flies lacking MBF1. We conclude that by preserving the redox-sensitive AP-1 activity, MBF1 provides an advantage during oxidative stress.
Collapse
Affiliation(s)
- Marek Jindra
- Department of Molecular Biology, University of South Bohemia and Institute of Entomology ASCR, Ceske Budejovice, Czech Republic
- Department of Developmental Genetics, National Institute of Genetics, Mishima, Japan
| | - Ivana Gaziova
- Department of Molecular Biology, University of South Bohemia and Institute of Entomology ASCR, Ceske Budejovice, Czech Republic
| | - Mirka Uhlirova
- Department of Molecular Biology, University of South Bohemia and Institute of Entomology ASCR, Ceske Budejovice, Czech Republic
| | - Masataka Okabe
- Department of Developmental Genetics, National Institute of Genetics, Mishima, Japan
| | - Yasushi Hiromi
- Department of Developmental Genetics, National Institute of Genetics, Mishima, Japan
- Department of Genetics, SOKENDAI, Mishima, Japan
| | - Susumu Hirose
- Department of Developmental Genetics, National Institute of Genetics, Mishima, Japan
- Department of Genetics, SOKENDAI, Mishima, Japan
- Department of Developmental Genetics, National Institute of Genetics, 1111, Yata, Mishima, Shizuoka-ken 411-8540, Japan. Tel.: +81 559 816771; Fax: +81 559 816776; E-mail:
| |
Collapse
|
47
|
Galko MJ, Krasnow MA. Cellular and genetic analysis of wound healing in Drosophila larvae. PLoS Biol 2004; 2:E239. [PMID: 15269788 PMCID: PMC479041 DOI: 10.1371/journal.pbio.0020239] [Citation(s) in RCA: 288] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Accepted: 05/26/2004] [Indexed: 12/21/2022] Open
Abstract
To establish a genetic system to study postembryonic wound healing, we characterized epidermal wound healing in Drosophila larvae. Following puncture wounding, larvae begin to bleed but within an hour a plug forms in the wound gap. Over the next couple of hours the outer part of the plug melanizes to form a scab, and epidermal cells surrounding the plug orient toward it and then fuse to form a syncytium. Subsequently, more-peripheral cells orient toward and fuse with the central syncytium. During this time, the Jun N-terminal kinase (JNK) pathway is activated in a gradient emanating out from the wound, and the epidermal cells spread along or through the wound plug to reestablish a continuous epithelium and its basal lamina and apical cuticle lining. Inactivation of the JNK pathway inhibits epidermal spreading and reepithelialization but does not affect scab formation or other wound healing responses. Conversely, mutations that block scab formation, and a scabless wounding procedure, provide evidence that the scab stabilizes the wound site but is not required to initiate other wound responses. However, in the absence of a scab, the JNK pathway is hyperinduced, reepithelialization initiates but is not always completed, and a chronic wound ensues. The results demonstrate that the cellular responses of wound healing are under separate genetic control, and that the responses are coordinated by multiple signals emanating from the wound site, including a negative feedback signal between scab formation and the JNK pathway. Cell biological and molecular parallels to vertebrate wound healing lead us to speculate that wound healing is an ancient response that has diversified during evolution.
Collapse
Affiliation(s)
- Michael J Galko
- 1Howard Hughes Medical Institute and Department of BiochemistryStanford University School of MedicineStanford, CaliforniaUnited States of America
| | - Mark A Krasnow
- 1Howard Hughes Medical Institute and Department of BiochemistryStanford University School of MedicineStanford, CaliforniaUnited States of America
| |
Collapse
|
48
|
Dorman JB, James KE, Fraser SE, Kiehart DP, Berg CA. bullwinkle is required for epithelial morphogenesis during Drosophila oogenesis. Dev Biol 2004; 267:320-41. [PMID: 15013797 DOI: 10.1016/j.ydbio.2003.10.020] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2003] [Revised: 10/04/2003] [Accepted: 10/07/2003] [Indexed: 11/29/2022]
Abstract
Many organs, such as the liver, neural tube, and lung, form by the precise remodeling of flat epithelial sheets into tubes. Here we investigate epithelial tubulogenesis in Drosophila melanogaster by examining the development of the dorsal respiratory appendages of the eggshell. We employ a culture system that permits confocal analysis of stage 10-14 egg chambers. Time-lapse imaging of GFP-Moesin-expressing egg chambers reveals three phases of morphogenesis: tube formation, anterior extension, and paddle maturation. The dorsal-appendage-forming cells, previously thought to represent a single cell fate, consist of two subpopulations, those forming the tube roof and those forming the tube floor. These two cell types exhibit distinct morphological and molecular features. Roof-forming cells constrict apically and express high levels of Broad protein. Floor cells lack Broad, express the rhomboid-lacZ marker, and form the floor by directed cell elongation. We examine the morphogenetic phenotype of the bullwinkle (bwk) mutant and identify defects in both roof and floor formation. Dorsal appendage formation is an excellent system in which cell biological, molecular, and genetic tools facilitate the study of epithelial morphogenesis.
Collapse
Affiliation(s)
- Jennie B Dorman
- Department of Genome Sciences, University of Washington, Seattle, WA 98195-7730, USA
| | | | | | | | | |
Collapse
|
49
|
Poels J, Vanden Broeck J. Insect basic leucine zipper proteins and their role in cyclic AMP-dependent regulation of gene expression. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 241:277-309. [PMID: 15548422 DOI: 10.1016/s0074-7696(04)41005-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The cAMP-protein kinase A (PKA) pathway is an important intracellular signal transduction cascade that can be activated by a large variety of stimuli. Activation or inhibition of this pathway will ultimately affect the transcriptional regulation of various genes through distinct responsive sites. In vertebrates, the best- characterized nuclear targets of PKA are the cyclic AMP response element-binding (CREB) proteins. It is now well established that CREB is not only regulated by PKA, but many other kinases can exert an effect as well. Since CREB-like proteins were also discovered in invertebrates, several studies unraveling their physiological functions in this category of metazoans have been performed. This review will mainly focus on the presence and regulation of CREB proteins in insects. Differences in transcriptional responses to the PKA pathway and other CREB-regulating stimuli between cells, tissues, and even organisms can be partially attributed to the presence of different CREB isoforms. In addition, the regulation of CREB appears to show some important differences between insects and vertebrates. Since CREB is a basic leucine zipper (bZip) protein, other insect members of this important family of transcriptional regulators will be briefly discussed as well.
Collapse
Affiliation(s)
- Jeroen Poels
- Laboratory for Developmental Physiology, Genomics and Proteomics, Catholic University Leuven, B-3000 Leuven, Belgium
| | | |
Collapse
|
50
|
Johnson AN, Bergman CM, Kreitman M, Newfeld SJ. Embryonic enhancers in the dpp disk region regulate a second round of Dpp signaling from the dorsal ectoderm to the mesoderm that represses Zfh-1 expression in a subset of pericardial cells. Dev Biol 2003; 262:137-51. [PMID: 14512024 DOI: 10.1016/s0012-1606(03)00350-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During germ band elongation, widespread decapentaplegic (dpp) expression in the dorsal ectoderm patterns the underlying mesoderm. These Dpp signals specify cardial and pericardial cell fates in the developing heart. At maximum germ band extension, dpp dorsal ectoderm expression becomes restricted to the dorsal-most or leading edge cells (LE). A second round of Dpp signaling then specifies cell shape changes in ectodermal cells leading to dorsal closure. Here we show that a third round of dpp dorsal ectoderm expression initiates during germ band retraction. This round of dpp expression is also restricted to LE cells but Dpp signaling specifies the repression of the transcription factor Zfh-1 in a subset of pericardial cells in the underlying mesoderm. Surprisingly, we found that cis-regulatory sequences that activate the third round of dpp dorsal ectoderm expression are found in the dpp disk region. We also show that the activation of this round of dpp expression is dependent upon prior Dpp signals, the signal transducer Medea, and possibly release from dTCF-mediated repression. Our results demonstrate that a second round of Dpp signaling from the dorsal ectoderm to the mesoderm is required to pattern the developing heart and that this round of dpp expression may be activated by combinatorial interactions between Dpp and Wingless.
Collapse
Affiliation(s)
- A N Johnson
- Department of Biology, Arizona State University, Tempe, AZ 85287-1501, USA
| | | | | | | |
Collapse
|