1
|
Martin KA, Papadoyannis ES, Schiavo JK, Fadaei SS, Issa HA, Song SC, Valencia SO, Temiz NZ, McGinley MJ, McCormick DA, Froemke RC. Vagus nerve stimulation recruits the central cholinergic system to enhance perceptual learning. Nat Neurosci 2024; 27:2152-2166. [PMID: 39284963 DOI: 10.1038/s41593-024-01767-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 08/15/2024] [Indexed: 11/07/2024]
Abstract
Perception can be refined by experience, up to certain limits. It is unclear whether perceptual limits are absolute or could be partially overcome via enhanced neuromodulation and/or plasticity. Recent studies suggest that peripheral nerve stimulation, specifically vagus nerve stimulation (VNS), can alter neural activity and augment experience-dependent plasticity, although little is known about central mechanisms recruited by VNS. Here we developed an auditory discrimination task for mice implanted with a VNS electrode. VNS applied during behavior gradually improved discrimination abilities beyond the level achieved by training alone. Two-photon imaging revealed VNS induced changes to auditory cortical responses and activated cortically projecting cholinergic axons. Anatomical and optogenetic experiments indicated that VNS can enhance task performance through activation of the central cholinergic system. These results highlight the importance of cholinergic modulation for the efficacy of VNS and may contribute to further refinement of VNS methodology for clinical conditions.
Collapse
Affiliation(s)
- Kathleen A Martin
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Department of Otolaryngology, New York University School of Medicine, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Eleni S Papadoyannis
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Department of Otolaryngology, New York University School of Medicine, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Jennifer K Schiavo
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Department of Otolaryngology, New York University School of Medicine, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Saba Shokat Fadaei
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Department of Otolaryngology, New York University School of Medicine, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Habon A Issa
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Department of Otolaryngology, New York University School of Medicine, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Soomin C Song
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Department of Otolaryngology, New York University School of Medicine, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Sofia Orrey Valencia
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Department of Otolaryngology, New York University School of Medicine, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Nesibe Z Temiz
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Matthew J McGinley
- Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | | | - Robert C Froemke
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY, USA.
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA.
- Department of Otolaryngology, New York University School of Medicine, New York, NY, USA.
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA.
- Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
2
|
Gungor Aydin A, Lemenze A, Bieszczad KM. Functional diversities within neurons and astrocytes in the adult rat auditory cortex revealed by single-nucleus RNA sequencing. Sci Rep 2024; 14:25314. [PMID: 39455606 PMCID: PMC11511993 DOI: 10.1038/s41598-024-74732-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
The mammalian cerebral cortex is composed of a rich diversity of cell types. Sensory cortical cells are organized into networks that rely on their functional diversity to ultimately carry out a variety of sophisticated cognitive functions for perception, learning, and memory. The auditory cortex (AC) has been most extensively studied for its experience-dependent effects, including for perceptual learning and associative memory. Here, we used single-nucleus RNA sequencing (snRNA-seq) in the AC of the adult rat to investigate the breadth of transcriptionally diverse cell types that likely support the role of AC in experience-dependent functions. A variety of unique excitatory and inhibitory neuron subtypes were identified that harbor unique transcriptional profiles of genes with putative relevance for the adaptive neuroplasticity of cortical microcircuits. In addition, we report for the first time a diversity of astrocytes in AC that may represent functionally unique subtypes, including those that could integrate experience-dependent adult neuroplasticity at cortical synapses. Together, these results pave the way for building models of how cortical neurons work in concert with astrocytes to fulfill dynamic and experience-dependent cognitive functions.
Collapse
Affiliation(s)
- Aysegul Gungor Aydin
- Department of Psychology-Behavioral and Systems Neuroscience, Rutgers University, 152 Frelinghuysen Road, Piscataway, NJ, 08854, USA.
| | - Alexander Lemenze
- Department of Pathology, Immunology, and Laboratory Medicine, Rutgers University, Newark, NJ, 07103, USA
| | - Kasia M Bieszczad
- Department of Psychology-Behavioral and Systems Neuroscience, Rutgers University, 152 Frelinghuysen Road, Piscataway, NJ, 08854, USA.
- Rutgers Center for Cognitive Science (RuCCS), Rutgers University, Piscataway, NJ, 08854, USA.
- Department of Otolaryngology-Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
3
|
Yaeger CE, Vardalaki D, Zhang Q, Pham TLD, Brown NJ, Ji N, Harnett MT. A dendritic mechanism for balancing synaptic flexibility and stability. Cell Rep 2024; 43:114638. [PMID: 39167486 PMCID: PMC11403626 DOI: 10.1016/j.celrep.2024.114638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/28/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
Biological and artificial neural networks learn by modifying synaptic weights, but it is unclear how these systems retain previous knowledge and also acquire new information. Here, we show that cortical pyramidal neurons can solve this plasticity-versus-stability dilemma by differentially regulating synaptic plasticity at distinct dendritic compartments. Oblique dendrites of adult mouse layer 5 cortical pyramidal neurons selectively receive monosynaptic thalamic input, integrate linearly, and lack burst-timing synaptic potentiation. In contrast, basal dendrites, which do not receive thalamic input, exhibit conventional NMDA receptor (NMDAR)-mediated supralinear integration and synaptic potentiation. Congruently, spiny synapses on oblique branches show decreased structural plasticity in vivo. The selective decline in NMDAR activity and expression at synapses on oblique dendrites is controlled by a critical period of visual experience. Our results demonstrate a biological mechanism for how single neurons can safeguard a set of inputs from ongoing plasticity by altering synaptic properties at distinct dendritic domains.
Collapse
Affiliation(s)
- Courtney E Yaeger
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dimitra Vardalaki
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Qinrong Zhang
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Trang L D Pham
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Norma J Brown
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Na Ji
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Mark T Harnett
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
4
|
Yogesh B, Keller GB. Cholinergic input to mouse visual cortex signals a movement state and acutely enhances layer 5 responsiveness. eLife 2024; 12:RP89986. [PMID: 39057843 PMCID: PMC11281783 DOI: 10.7554/elife.89986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
Acetylcholine is released in visual cortex by axonal projections from the basal forebrain. The signals conveyed by these projections and their computational significance are still unclear. Using two-photon calcium imaging in behaving mice, we show that basal forebrain cholinergic axons in the mouse visual cortex provide a binary locomotion state signal. In these axons, we found no evidence of responses to visual stimuli or visuomotor prediction errors. While optogenetic activation of cholinergic axons in visual cortex in isolation did not drive local neuronal activity, when paired with visuomotor stimuli, it resulted in layer-specific increases of neuronal activity. Responses in layer 5 neurons to both top-down and bottom-up inputs were increased in amplitude and decreased in latency, whereas those in layer 2/3 neurons remained unchanged. Using opto- and chemogenetic manipulations of cholinergic activity, we found acetylcholine to underlie the locomotion-associated decorrelation of activity between neurons in both layer 2/3 and layer 5. Our results suggest that acetylcholine augments the responsiveness of layer 5 neurons to inputs from outside of the local network, possibly enabling faster switching between internal representations during locomotion.
Collapse
Affiliation(s)
- Baba Yogesh
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- Faculty of Natural Sciences, University of BaselBaselSwitzerland
| | - Georg B Keller
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- Faculty of Natural Sciences, University of BaselBaselSwitzerland
| |
Collapse
|
5
|
Vattino LG, MacGregor CP, Liu CJ, Sweeney CG, Takesian AE. Primary auditory thalamus relays directly to cortical layer 1 interneurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603741. [PMID: 39071266 PMCID: PMC11275971 DOI: 10.1101/2024.07.16.603741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Inhibitory interneurons within cortical layer 1 (L1-INs) integrate inputs from diverse brain regions to modulate sensory processing and plasticity, but the sensory inputs that recruit these interneurons have not been identified. Here we used monosynaptic retrograde tracing and whole-cell electrophysiology to characterize the thalamic inputs onto two major subpopulations of L1-INs in the mouse auditory cortex. We find that the vast majority of auditory thalamic inputs to these L1-INs unexpectedly arise from the ventral subdivision of the medial geniculate body (MGBv), the tonotopically-organized primary auditory thalamus. Moreover, these interneurons receive robust functional monosynaptic MGBv inputs that are comparable to those recorded in the L4 excitatory pyramidal neurons. Our findings identify a direct pathway from the primary auditory thalamus to the L1-INs, suggesting that these interneurons are uniquely positioned to integrate thalamic inputs conveying precise sensory information with top-down inputs carrying information about brain states and learned associations.
Collapse
Affiliation(s)
- Lucas G. Vattino
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Cathryn P. MacGregor
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA
- These authors contributed equally to this work
| | - Christine Junhui Liu
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
- Graduate Program in Speech and Hearing and Bioscience and Technologies, Harvard Medical School, Boston, MA, USA
- These authors contributed equally to this work
| | - Carolyn G. Sweeney
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Anne E. Takesian
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
McCutcheon RA, Weber LAE, Nour MM, Cragg SJ, McGuire PM. Psychosis as a disorder of muscarinic signalling: psychopathology and pharmacology. Lancet Psychiatry 2024; 11:554-565. [PMID: 38795721 DOI: 10.1016/s2215-0366(24)00100-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 05/28/2024]
Abstract
Dopaminergic receptor antagonism is a crucial component of all licensed treatments for psychosis, and dopamine dysfunction has been central to pathophysiological models of psychotic symptoms. Some clinical trials, however, indicate that drugs that act through muscarinic receptor agonism can also be effective in treating psychosis, potentially implicating muscarinic abnormalities in the pathophysiology of psychosis. Here, we discuss understanding of the central muscarinic system, and we examine preclinical, behavioural, post-mortem, and neuroimaging evidence for its involvement in psychosis. We then consider how altered muscarinic signalling could contribute to the genesis and maintenance of psychotic symptoms, and we review the clinical evidence for muscarinic agents as treatments. Finally, we discuss future research that could clarify the relationship between the muscarinic system and psychotic symptoms.
Collapse
Affiliation(s)
- Robert A McCutcheon
- Department of Psychiatry, University of Oxford, Oxford, UK; Oxford Health, Oxford Health NHS Foundation Trust, Oxford, UK; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Lilian A E Weber
- Department of Psychiatry, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Matthew M Nour
- Department of Psychiatry, University of Oxford, Oxford, UK; Oxford Health, Oxford Health NHS Foundation Trust, Oxford, UK; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
| | - Stephanie J Cragg
- Department of Physiology, Anatomy and Genetics, Centre for Cellular and Molecular Neurobiology, University of Oxford, UK; Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD, USA
| | - Philip M McGuire
- Department of Psychiatry, University of Oxford, Oxford, UK; Oxford Health, Oxford Health NHS Foundation Trust, Oxford, UK
| |
Collapse
|
7
|
Hegedüs P, Király B, Schlingloff D, Lyakhova V, Velencei A, Szabó Í, Mayer MI, Zelenak Z, Nyiri G, Hangya B. Parvalbumin-expressing basal forebrain neurons mediate learning from negative experience. Nat Commun 2024; 15:4768. [PMID: 38849336 PMCID: PMC11161511 DOI: 10.1038/s41467-024-48755-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/11/2024] [Indexed: 06/09/2024] Open
Abstract
Parvalbumin (PV)-expressing GABAergic neurons of the basal forebrain (BFPVNs) were proposed to serve as a rapid and transient arousal system, yet their exact role in awake behaviors remains unclear. We performed bulk calcium measurements and electrophysiology with optogenetic tagging from the horizontal limb of the diagonal band of Broca (HDB) while male mice were performing an associative learning task. BFPVNs responded with a distinctive, phasic activation to punishment, but showed slower and delayed responses to reward and outcome-predicting stimuli. Optogenetic inhibition during punishment impaired the formation of cue-outcome associations, suggesting a causal role of BFPVNs in associative learning. BFPVNs received strong inputs from the hypothalamus, the septal complex and the median raphe region, while they synapsed on diverse cell types in key limbic structures, where they broadcasted information about aversive stimuli. We propose that the arousing effect of BFPVNs is recruited by aversive stimuli to serve crucial associative learning functions.
Collapse
Affiliation(s)
- Panna Hegedüs
- Lendület Laboratory of Systems Neuroscience, HUN-REN Institute of Experimental Medicine, H-1083, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, H-1085, Budapest, Hungary
| | - Bálint Király
- Lendület Laboratory of Systems Neuroscience, HUN-REN Institute of Experimental Medicine, H-1083, Budapest, Hungary
| | - Dániel Schlingloff
- Lendület Laboratory of Systems Neuroscience, HUN-REN Institute of Experimental Medicine, H-1083, Budapest, Hungary
| | - Victoria Lyakhova
- Lendület Laboratory of Systems Neuroscience, HUN-REN Institute of Experimental Medicine, H-1083, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, H-1085, Budapest, Hungary
| | - Anna Velencei
- Lendület Laboratory of Systems Neuroscience, HUN-REN Institute of Experimental Medicine, H-1083, Budapest, Hungary
| | - Írisz Szabó
- Lendület Laboratory of Systems Neuroscience, HUN-REN Institute of Experimental Medicine, H-1083, Budapest, Hungary
| | - Márton I Mayer
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, H-1083, Budapest, Hungary
| | - Zsofia Zelenak
- Lendület Laboratory of Systems Neuroscience, HUN-REN Institute of Experimental Medicine, H-1083, Budapest, Hungary
| | - Gábor Nyiri
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, H-1083, Budapest, Hungary
| | - Balázs Hangya
- Lendület Laboratory of Systems Neuroscience, HUN-REN Institute of Experimental Medicine, H-1083, Budapest, Hungary.
| |
Collapse
|
8
|
Jedrasiak-Cape I, Rybicki-Kler C, Brooks I, Ghosh M, Brennan EK, Kailasa S, Ekins TG, Rupp A, Ahmed OJ. Cell-type-specific cholinergic control of granular retrosplenial cortex with implications for angular velocity coding across brain states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597341. [PMID: 38895393 PMCID: PMC11185600 DOI: 10.1101/2024.06.04.597341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Cholinergic receptor activation enables the persistent firing of cortical pyramidal neurons, providing a key cellular basis for theories of spatial navigation involving working memory, path integration, and head direction encoding. The granular retrosplenial cortex (RSG) is important for spatially-guided behaviors, but how acetylcholine impacts RSG neurons is unknown. Here, we show that a transcriptomically, morphologically, and biophysically distinct RSG cell-type - the low-rheobase (LR) neuron - has a very distinct expression profile of cholinergic muscarinic receptors compared to all other neighboring excitatory neuronal subtypes. LR neurons do not fire persistently in response to cholinergic agonists, in stark contrast to all other principal neuronal subtypes examined within the RSG and across midline cortex. This lack of persistence allows LR neuron models to rapidly compute angular head velocity (AHV), independent of cholinergic changes seen during navigation. Thus, LR neurons can consistently compute AHV across brain states, highlighting the specialized RSG neural codes supporting navigation.
Collapse
Affiliation(s)
| | - Chloe Rybicki-Kler
- Dept. of Psychology, University of Michigan, Ann Arbor, MI 48109
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109
| | - Isla Brooks
- Dept. of Psychology, University of Michigan, Ann Arbor, MI 48109
| | - Megha Ghosh
- Dept. of Psychology, University of Michigan, Ann Arbor, MI 48109
| | - Ellen K.W. Brennan
- Dept. of Psychology, University of Michigan, Ann Arbor, MI 48109
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109
| | - Sameer Kailasa
- Dept. of Mathematics, University of Michigan, Ann Arbor, MI 48109
| | - Tyler G. Ekins
- Dept. of Psychology, University of Michigan, Ann Arbor, MI 48109
| | - Alan Rupp
- Dept. of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Omar J. Ahmed
- Dept. of Psychology, University of Michigan, Ann Arbor, MI 48109
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
9
|
Nodal FR, Leach ND, Keating P, Dahmen JC, Zhao D, King AJ, Bajo VM. Neural processing in the primary auditory cortex following cholinergic lesions of the basal forebrain in ferrets. Hear Res 2024; 447:109025. [PMID: 38733712 PMCID: PMC11265294 DOI: 10.1016/j.heares.2024.109025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024]
Abstract
Cortical acetylcholine (ACh) release has been linked to various cognitive functions, including perceptual learning. We have previously shown that cortical cholinergic innervation is necessary for accurate sound localization in ferrets, as well as for their ability to adapt with training to altered spatial cues. To explore whether these behavioral deficits are associated with changes in the response properties of cortical neurons, we recorded neural activity in the primary auditory cortex (A1) of anesthetized ferrets in which cholinergic inputs had been reduced by making bilateral injections of the immunotoxin ME20.4-SAP in the nucleus basalis (NB) prior to training the animals. The pattern of spontaneous activity of A1 units recorded in the ferrets with cholinergic lesions (NB ACh-) was similar to that in controls, although the proportion of burst-type units was significantly lower. Depletion of ACh also resulted in more synchronous activity in A1. No changes in thresholds, frequency tuning or in the distribution of characteristic frequencies were found in these animals. When tested with normal acoustic inputs, the spatial sensitivity of A1 neurons in the NB ACh- ferrets and the distribution of their preferred interaural level differences also closely resembled those found in control animals, indicating that these properties had not been altered by sound localization training with one ear occluded. Simulating the animals' previous experience with a virtual earplug in one ear reduced the contralateral preference of A1 units in both groups, but caused azimuth sensitivity to change in slightly different ways, which may reflect the modest adaptation observed in the NB ACh- group. These results show that while ACh is required for behavioral adaptation to altered spatial cues, it is not required for maintenance of the spectral and spatial response properties of A1 neurons.
Collapse
Affiliation(s)
- Fernando R Nodal
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, United Kingdom.
| | | | - Peter Keating
- UCL Ear Institute, 332 Gray's Inn Road, London WC1X 8EE, United Kingdom
| | - Johannes C Dahmen
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, United Kingdom
| | - Dylan Zhao
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, United Kingdom
| | - Andrew J King
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, United Kingdom
| | - Victoria M Bajo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, United Kingdom
| |
Collapse
|
10
|
Wall EM, Woolley SC. Social experiences shape song preference learning independently of developmental exposure to song. Proc Biol Sci 2024; 291:20240358. [PMID: 38835281 DOI: 10.1098/rspb.2024.0358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 04/08/2024] [Indexed: 06/06/2024] Open
Abstract
Communication governs the formation and maintenance of social relationships. The interpretation of communication signals depends not only on the signal's content but also on a receiver's individual experience. Experiences throughout life may interact to affect behavioural plasticity, such that a lack of developmental sensory exposure could constrain adult learning, while salient adult social experiences could remedy developmental deficits. We investigated how experiences impact the formation and direction of female auditory preferences in the zebra finch. Zebra finches form long-lasting pair bonds and females learn preferences for their mate's vocalizations. We found that after 2 weeks of cohabitation with a male, females formed pair bonds and learned to prefer their partner's song regardless of whether they were reared with ('normally reared') or without ('song-naive') developmental exposure to song. In contrast, females that heard but did not physically interact with a male did not prefer his song. In addition, previous work has found that song-naive females do not show species-typical preferences for courtship song. We found that cohabitation with a male ameliorated this difference in preference. Thus, courtship and pair bonding, but not acoustic-only interactions, strongly influence preference learning regardless of rearing experience, and may dynamically drive auditory plasticity for recognition and preference.
Collapse
Affiliation(s)
- Erin M Wall
- Integrated Program in Neuroscience, McGill University, Montreal, Québec H3A 1A1, Canada
- Centre for Research on Brain, Language and Music, McGill University, Montreal, Québec H3G 2A8, Canada
| | - Sarah C Woolley
- Integrated Program in Neuroscience, McGill University, Montreal, Québec H3A 1A1, Canada
- Centre for Research on Brain, Language and Music, McGill University, Montreal, Québec H3G 2A8, Canada
- Department of Biology, McGill University, Montreal, Québec H3A 1B1, Canada
| |
Collapse
|
11
|
Wake N, Shiramatsu TI, Takahashi H. Map plasticity following noise exposure in auditory cortex of rats: implications for disentangling neural correlates of tinnitus and hyperacusis. Front Neurosci 2024; 18:1385942. [PMID: 38881748 PMCID: PMC11176560 DOI: 10.3389/fnins.2024.1385942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024] Open
Abstract
Introduction Both tinnitus and hyperacusis, likely triggered by hearing loss, can be attributed to maladaptive plasticity in auditory perception. However, owing to their co-occurrence, disentangling their neural mechanisms proves difficult. We hypothesized that the neural correlates of tinnitus are associated with neural activities triggered by low-intensity tones, while hyperacusis is linked to responses to moderate- and high-intensity tones. Methods To test these hypotheses, we conducted behavioral and electrophysiological experiments in rats 2 to 8 days after traumatic tone exposure. Results In the behavioral experiments, prepulse and gap inhibition tended to exhibit different frequency characteristics (although not reaching sufficient statistical levels), suggesting that exposure to traumatic tones led to acute symptoms of hyperacusis and tinnitus at different frequency ranges. When examining the auditory cortex at the thalamocortical recipient layer, we observed that tinnitus symptoms correlated with a disorganized tonotopic map, typically characterized by responses to low-intensity tones. Neural correlates of hyperacusis were found in the cortical recruitment function at the multi-unit activity (MUA) level, but not at the local field potential (LFP) level, in response to moderate- and high-intensity tones. This shift from LFP to MUA was associated with a loss of monotonicity, suggesting a crucial role for inhibitory synapses. Discussion Thus, in acute symptoms of traumatic tone exposure, our experiments successfully disentangled the neural correlates of tinnitus and hyperacusis at the thalamocortical recipient layer of the auditory cortex. They also suggested that tinnitus is linked to central noise, whereas hyperacusis is associated with aberrant gain control. Further interactions between animal experiments and clinical studies will offer insights into neural mechanisms, diagnosis and treatments of tinnitus and hyperacusis, specifically in terms of long-term plasticity of chronic symptoms.
Collapse
Affiliation(s)
- Naoki Wake
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Tomoyo I Shiramatsu
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Hirokazu Takahashi
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
Clayton KK, McGill M, Awwad B, Stecyk KS, Kremer C, Skerleva D, Narayanan DP, Zhu J, Hancock KE, Kujawa SG, Kozin ED, Polley DB. Cortical determinants of loudness perception and auditory hypersensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596691. [PMID: 38853938 PMCID: PMC11160727 DOI: 10.1101/2024.05.30.596691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Parvalbumin-expressing inhibitory neurons (PVNs) stabilize cortical network activity, generate gamma rhythms, and regulate experience-dependent plasticity. Here, we observed that activation or inactivation of PVNs functioned like a volume knob in the mouse auditory cortex (ACtx), turning neural and behavioral classification of sound level up or down over a 20dB range. PVN loudness adjustments were "sticky", such that a single bout of 40Hz PVN stimulation sustainably suppressed ACtx sound responsiveness, potentiated feedforward inhibition, and behaviorally desensitized mice to loudness. Sensory sensitivity is a cardinal feature of autism, aging, and peripheral neuropathy, prompting us to ask whether PVN stimulation can persistently desensitize mice with ACtx hyperactivity, PVN hypofunction, and loudness hypersensitivity triggered by cochlear sensorineural damage. We found that a single 16-minute bout of 40Hz PVN stimulation session restored normal loudness perception for one week, showing that perceptual deficits triggered by irreversible peripheral injuries can be reversed through targeted cortical circuit interventions.
Collapse
Affiliation(s)
- Kameron K Clayton
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| | - Matthew McGill
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| | - Bshara Awwad
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| | - Kamryn S Stecyk
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| | - Caroline Kremer
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| | | | - Divya P Narayanan
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| | - Jennifer Zhu
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| | - Kenneth E Hancock
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| | - Sharon G Kujawa
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| | - Elliott D Kozin
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| |
Collapse
|
13
|
Carroll AM, Riley JR, Borland MS, Danaphongse TT, Hays SA, Kilgard MP, Engineer CT. Bursts of vagus nerve stimulation paired with auditory rehabilitation fail to improve speech sound perception in rats with hearing loss. iScience 2024; 27:109527. [PMID: 38585658 PMCID: PMC10995867 DOI: 10.1016/j.isci.2024.109527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/09/2023] [Accepted: 03/15/2024] [Indexed: 04/09/2024] Open
Abstract
Hearing loss can lead to long-lasting effects on the central nervous system, and current therapies, such as auditory training and rehabilitation, show mixed success in improving perception and speech comprehension. Vagus nerve stimulation (VNS) is an adjunctive therapy that can be paired with rehabilitation to facilitate behavioral recovery after neural injury. However, VNS for auditory recovery has not been tested after severe hearing loss or significant damage to peripheral receptors. This study investigated the utility of pairing VNS with passive or active auditory rehabilitation in a rat model of noise-induced hearing loss. Although auditory rehabilitation helped rats improve their frequency discrimination, learn novel speech discrimination tasks, and achieve speech-in-noise performance similar to normal hearing controls, VNS did not enhance recovery of speech sound perception. These results highlight the limitations of VNS as an adjunctive therapy for hearing loss rehabilitation and suggest that optimal benefits from neuromodulation may require restored peripheral signaling.
Collapse
Affiliation(s)
- Alan M. Carroll
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, USA
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080-3021, USA
| | - Jonathan R. Riley
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, USA
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080-3021, USA
| | - Michael S. Borland
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, USA
| | - Tanya T. Danaphongse
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, USA
| | - Seth A. Hays
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, USA
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080-3021, USA
| | - Michael P. Kilgard
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, USA
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080-3021, USA
| | - Crystal T. Engineer
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, USA
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080-3021, USA
| |
Collapse
|
14
|
Noda T, Aschauer DF, Chambers AR, Seiler JPH, Rumpel S. Representational maps in the brain: concepts, approaches, and applications. Front Cell Neurosci 2024; 18:1366200. [PMID: 38584779 PMCID: PMC10995314 DOI: 10.3389/fncel.2024.1366200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/08/2024] [Indexed: 04/09/2024] Open
Abstract
Neural systems have evolved to process sensory stimuli in a way that allows for efficient and adaptive behavior in a complex environment. Recent technological advances enable us to investigate sensory processing in animal models by simultaneously recording the activity of large populations of neurons with single-cell resolution, yielding high-dimensional datasets. In this review, we discuss concepts and approaches for assessing the population-level representation of sensory stimuli in the form of a representational map. In such a map, not only are the identities of stimuli distinctly represented, but their relational similarity is also mapped onto the space of neuronal activity. We highlight example studies in which the structure of representational maps in the brain are estimated from recordings in humans as well as animals and compare their methodological approaches. Finally, we integrate these aspects and provide an outlook for how the concept of representational maps could be applied to various fields in basic and clinical neuroscience.
Collapse
Affiliation(s)
- Takahiro Noda
- Institute of Physiology, Focus Program Translational Neurosciences, University Medical Center, Johannes Gutenberg University-Mainz, Mainz, Germany
| | - Dominik F. Aschauer
- Institute of Physiology, Focus Program Translational Neurosciences, University Medical Center, Johannes Gutenberg University-Mainz, Mainz, Germany
| | - Anna R. Chambers
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
- Eaton Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA, United States
| | - Johannes P.-H. Seiler
- Institute of Physiology, Focus Program Translational Neurosciences, University Medical Center, Johannes Gutenberg University-Mainz, Mainz, Germany
| | - Simon Rumpel
- Institute of Physiology, Focus Program Translational Neurosciences, University Medical Center, Johannes Gutenberg University-Mainz, Mainz, Germany
| |
Collapse
|
15
|
Bayazitov IT, Teubner BJW, Feng F, Wu Z, Li Y, Blundon JA, Zakharenko SS. Sound-evoked adenosine release in cooperation with neuromodulatory circuits permits auditory cortical plasticity and perceptual learning. Cell Rep 2024; 43:113758. [PMID: 38358887 PMCID: PMC10939737 DOI: 10.1016/j.celrep.2024.113758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/21/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
Meaningful auditory memories are formed in adults when acoustic information is delivered to the auditory cortex during heightened states of attention, vigilance, or alertness, as mediated by neuromodulatory circuits. Here, we identify that, in awake mice, acoustic stimulation triggers auditory thalamocortical projections to release adenosine, which prevents cortical plasticity (i.e., selective expansion of neural representation of behaviorally relevant acoustic stimuli) and perceptual learning (i.e., experience-dependent improvement in frequency discrimination ability). This sound-evoked adenosine release (SEAR) becomes reduced within seconds when acoustic stimuli are tightly paired with the activation of neuromodulatory (cholinergic or dopaminergic) circuits or periods of attentive wakefulness. If thalamic adenosine production is enhanced, then SEAR elevates further, the neuromodulatory circuits are unable to sufficiently reduce SEAR, and associative cortical plasticity and perceptual learning are blocked. This suggests that transient low-adenosine periods triggered by neuromodulatory circuits permit associative cortical plasticity and auditory perceptual learning in adults to occur.
Collapse
Affiliation(s)
- Ildar T Bayazitov
- Division of Neural Circuits and Behavior, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brett J W Teubner
- Division of Neural Circuits and Behavior, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Feng Feng
- Division of Neural Circuits and Behavior, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Zhaofa Wu
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Yulong Li
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Jay A Blundon
- Division of Neural Circuits and Behavior, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stanislav S Zakharenko
- Division of Neural Circuits and Behavior, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
16
|
Wang H, Ortega HK, Kelly EB, Indajang J, Feng J, Li Y, Kwan AC. Frontal noradrenergic and cholinergic transients exhibit distinct spatiotemporal dynamics during competitive decision-making. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576893. [PMID: 38328186 PMCID: PMC10849696 DOI: 10.1101/2024.01.23.576893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Norepinephrine (NE) and acetylcholine (ACh) are neuromodulators that are crucial for learning and decision-making. In the cortex, NE and ACh are released at specific sites along neuromodulatory axons, which would constrain their spatiotemporal dynamics at the subcellular scale. However, how the fluctuating patterns of NE and ACh signaling may be linked to behavioral events is unknown. Here, leveraging genetically encoded NE and ACh indicators, we use two-photon microscopy to visualize neuromodulatory signals in the superficial layer of the mouse medial frontal cortex during decision-making. Head-fixed mice engage in a competitive game called matching pennies against a computer opponent. We show that both NE and ACh transients carry information about decision-related variables including choice, outcome, and reinforcer. However, the two neuromodulators differ in their spatiotemporal pattern of task-related activation. Spatially, NE signals are more segregated with choice and outcome encoded at distinct locations, whereas ACh signals can multiplex and reflect different behavioral correlates at the same site. Temporally, task-driven NE transients were more synchronized and peaked earlier than ACh transients. To test functional relevance, using optogenetics we found that evoked elevation of NE, but not ACh, in the medial frontal cortex increases the propensity of the animals to switch and explore alternate options. Taken together, the results reveal distinct spatiotemporal patterns of rapid ACh and NE transients at the subcellular scale during decision-making in mice, which may endow these neuromodulators with different ways to impact neural plasticity to mediate learning and adaptive behavior.
Collapse
Affiliation(s)
- Hongli Wang
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, Connecticut, 06511, USA
| | - Heather K. Ortega
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, Connecticut, 06511, USA
| | - Emma B. Kelly
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, 06511, USA
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Jonathan Indajang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Alex C. Kwan
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, 06511, USA
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, New York, 10065, USA
| |
Collapse
|
17
|
Pérez-González D, Lao-Rodríguez AB, Aedo-Sánchez C, Malmierca MS. Acetylcholine modulates the precision of prediction error in the auditory cortex. eLife 2024; 12:RP91475. [PMID: 38241174 PMCID: PMC10942646 DOI: 10.7554/elife.91475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024] Open
Abstract
A fundamental property of sensory systems is their ability to detect novel stimuli in the ambient environment. The auditory brain contains neurons that decrease their response to repetitive sounds but increase their firing rate to novel or deviant stimuli; the difference between both responses is known as stimulus-specific adaptation or neuronal mismatch (nMM). Here, we tested the effect of microiontophoretic applications of ACh on the neuronal responses in the auditory cortex (AC) of anesthetized rats during an auditory oddball paradigm, including cascade controls. Results indicate that ACh modulates the nMM, affecting prediction error responses but not repetition suppression, and this effect is manifested predominantly in infragranular cortical layers. The differential effect of ACh on responses to standards, relative to deviants (in terms of averages and variances), was consistent with the representational sharpening that accompanies an increase in the precision of prediction errors. These findings suggest that ACh plays an important role in modulating prediction error signaling in the AC and gating the access of these signals to higher cognitive levels.
Collapse
Affiliation(s)
- David Pérez-González
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León, Calle Pintor Fernando GallegoSalamancaSpain
- Institute for Biomedical Research of Salamanca (IBSAL)SalamancaSpain
- Department of Basic Psychology, Psychobiology and Behavioural Science Methodology, Faculty of Psychology, Campus Ciudad Jardín, University of SalamancaSalamancaSpain
| | - Ana Belén Lao-Rodríguez
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León, Calle Pintor Fernando GallegoSalamancaSpain
- Institute for Biomedical Research of Salamanca (IBSAL)SalamancaSpain
| | - Cristian Aedo-Sánchez
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León, Calle Pintor Fernando GallegoSalamancaSpain
- Institute for Biomedical Research of Salamanca (IBSAL)SalamancaSpain
| | - Manuel S Malmierca
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León, Calle Pintor Fernando GallegoSalamancaSpain
- Institute for Biomedical Research of Salamanca (IBSAL)SalamancaSpain
- Department of Biology and Pathology, Faculty of Medicine, Campus Miguel de Unamuno, University of SalamancaSalamancaSpain
| |
Collapse
|
18
|
Cacace AT, Berri B. Blast Overpressures as a Military and Occupational Health Concern. Am J Audiol 2023; 32:779-792. [PMID: 37713532 DOI: 10.1044/2023_aja-23-00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023] Open
Abstract
PURPOSE This tutorial reviews effects of environmental stressors like blast overpressures and other well-known acoustic contaminants (continuous, intermittent, and impulsive noise) on hearing, tinnitus, vestibular, and balance-related functions. Based on the overall outcome of these effects, detailed consideration is given to the health and well-being of individuals. METHOD Because hearing loss and tinnitus are consequential in affecting quality of life, novel neuromodulation paradigms are reviewed for their positive abatement and treatment-related effects. Examples of clinical data, research strategies, and methodological approaches focus on repetitive transcranial magnetic stimulation (rTMS) and electrical stimulation of the vagus nerve paired with tones (VNSt) for their unique contributions to this area. RESULTS Acoustic toxicants transmitted through the atmosphere are noteworthy for their propensity to induce hearing loss and tinnitus. Mounting evidence also indicates that high-level rapid onset changes in atmospheric sound pressure can significantly impact vestibular and balance function. Indeed, the risk of falling secondary to loss of, or damage to, sensory receptor cells in otolith organs (utricle and saccule) is a primary reason for this concern. As part of the complexities involved in VNSt treatment strategies, vocal dysfunction may also manifest. In addition, evaluation of temporospatial gait parameters is worthy of consideration based on their ability to detect and monitor incipient neurological disease, cognitive decline, and mortality. CONCLUSION Highlighting these respective areas underscores the need to enhance information exchange among scientists, clinicians, and caregivers on the benefits and complications of these outcomes.
Collapse
Affiliation(s)
- Anthony T Cacace
- Department of Communication Sciences & Disorders, Wayne State University, Detroit, MI
| | - Batoul Berri
- Department of Communication Sciences & Disorders, Wayne State University, Detroit, MI
- Department of Otolaryngology, University of Michigan, Ann Arbor
| |
Collapse
|
19
|
Grootjans Y, Byczynski G, Vanneste S. The use of non-invasive brain stimulation in auditory perceptual learning: A review. Hear Res 2023; 439:108881. [PMID: 37689034 DOI: 10.1016/j.heares.2023.108881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/08/2023] [Accepted: 08/25/2023] [Indexed: 09/11/2023]
Abstract
Auditory perceptual learning is an experience-dependent form of auditory learning that can improve substantially throughout adulthood with practice. A key mechanism associated with perceptual learning is synaptic plasticity. In the last decades, an increasingly better understanding has formed about the neural mechanisms related to auditory perceptual learning. Research in animal models found an association between the functional organization of the primary auditory cortex and frequency discrimination ability. Several studies observed an increase in the area of representation to be associated with improved frequency discrimination. Non-invasive brain stimulation techniques have been related to the promotion of plasticity. Despite its popularity in other fields, non-invasive brain stimulation has not been used much in auditory perceptual learning. The present review has discussed the application of non-invasive brain stimulation methods in auditory perceptual learning by discussing the mechanisms, current evidence and challenges, and future directions.
Collapse
Affiliation(s)
- Yvette Grootjans
- Lab for Clinical and Integrative Neuroscience, Trinity Institute for Neuroscience, School of Psychology, Trinity College Dublin, Ireland
| | - Gabriel Byczynski
- Lab for Clinical and Integrative Neuroscience, Trinity Institute for Neuroscience, School of Psychology, Trinity College Dublin, Ireland
| | - Sven Vanneste
- Lab for Clinical and Integrative Neuroscience, Trinity Institute for Neuroscience, School of Psychology, Trinity College Dublin, Ireland; Global Brain Health Institute, Institute of Neuroscience, Trinity College Dublin, Ireland.
| |
Collapse
|
20
|
Papageorgiou G, Kasselimis D, Laskaris N, Potagas C. Unraveling the Thread of Aphasia Rehabilitation: A Translational Cognitive Perspective. Biomedicines 2023; 11:2856. [PMID: 37893229 PMCID: PMC10604624 DOI: 10.3390/biomedicines11102856] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Translational neuroscience is a multidisciplinary field that aims to bridge the gap between basic science and clinical practice. Regarding aphasia rehabilitation, there are still several unresolved issues related to the neural mechanisms that optimize language treatment. Although there are studies providing indications toward a translational approach to the remediation of acquired language disorders, the incorporation of fundamental neuroplasticity principles into this field is still in progress. From that aspect, in this narrative review, we discuss some key neuroplasticity principles, which have been elucidated through animal studies and which could eventually be applied in the context of aphasia treatment. This translational approach could be further strengthened by the implementation of intervention strategies that incorporate the idea that language is supported by domain-general mechanisms, which highlights the impact of non-linguistic factors in post-stroke language recovery. Here, we highlight that translational research in aphasia has the potential to advance our knowledge of brain-language relationships. We further argue that advances in this field could lead to improvement in the remediation of acquired language disturbances by remodeling the rationale of aphasia-therapy approaches. Arguably, the complex anatomy and phenomenology of aphasia dictate the need for a multidisciplinary approach with one of its main pillars being translational research.
Collapse
Affiliation(s)
- Georgios Papageorgiou
- Neuropsychology and Language Disorders Unit, 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Dimitrios Kasselimis
- Neuropsychology and Language Disorders Unit, 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
- Department of Psychology, Panteion University of Social and Political Sciences, 17671 Athens, Greece
| | - Nikolaos Laskaris
- Neuropsychology and Language Disorders Unit, 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
- Department of Industrial Design and Production Engineering, School of Engineering, University of West Attica, 12241 Athens, Greece
| | - Constantin Potagas
- Neuropsychology and Language Disorders Unit, 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|
21
|
McHaney JR, Schuerman WL, Leonard MK, Chandrasekaran B. Transcutaneous Auricular Vagus Nerve Stimulation Modulates Performance but Not Pupil Size During Nonnative Speech Category Learning. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2023; 66:3825-3843. [PMID: 37652065 DOI: 10.1044/2023_jslhr-22-00596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
PURPOSE Subthreshold transcutaneous auricular vagus nerve stimulation (taVNS) synchronized with behavioral training can selectively enhance nonnative speech category learning in adults. Prior work has demonstrated that behavioral performance increases when taVNS is paired with easier-to-learn Mandarin tone categories in native English listeners, relative to when taVNS is paired with harder-to-learn Mandarin tone categories or without taVNS. Mechanistically, this temporally precise plasticity has been attributed to noradrenergic modulation. However, prior work did not specifically utilize methodologies that indexed noradrenergic modulation and, therefore, was unable to explicitly test this hypothesis. Our goal for this study was to use pupillometry to gain mechanistic insights into taVNS behavioral effects. METHOD Thirty-eight participants learned to categorize Mandarin tones while pupillometry was recorded. In a double-blinded design, participants were divided into two taVNS groups that, as in the prior study, differed according to whether taVNS was paired with easier-to-learn tones or harder-to-learn tones. Learning performance and pupillary responses were measured using linear mixed-effects models. RESULTS We found that taVNS did not have any tone-specific or group behavioral or pupillary effects. However, in an exploratory analysis, we observed that taVNS did lead to faster rates of learning on trials paired with stimulation, particularly for those who were stimulated at lower amplitudes. CONCLUSIONS Our results suggest that pupillary responses may not be a reliable marker of locus coeruleus-norepinephrine system activity in humans. However, future research should systematically examine the effects of stimulation amplitude on both behavior and pupillary responses. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.24036666.
Collapse
|
22
|
Graham G, Chimenti MS, Knudtson KL, Grenard DN, Co L, Sumner M, Tchou T, Bieszczad KM. Learning induces unique transcriptional landscapes in the auditory cortex. Hear Res 2023; 438:108878. [PMID: 37659220 PMCID: PMC10529106 DOI: 10.1016/j.heares.2023.108878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 09/04/2023]
Abstract
Learning can induce neurophysiological plasticity in the auditory cortex at multiple timescales. Lasting changes to auditory cortical function that persist over days, weeks, or even a lifetime, require learning to induce de novo gene expression. Indeed, transcription is the molecular determinant for long-term memories to form with a lasting impact on sound-related behavior. However, auditory cortical genes that support auditory learning, memory, and acquired sound-specific behavior are largely unknown. Using an animal model of adult, male Sprague-Dawley rats, this report is the first to identify genome-wide changes in learning-induced gene expression within the auditory cortex that may underlie long-lasting discriminative memory formation of acoustic frequency cues. Auditory cortical samples were collected from animals in the initial learning phase of a two-tone discrimination sound-reward task known to induce sound-specific neurophysiological and behavioral effects. Bioinformatic analyses on gene enrichment profiles from bulk RNA sequencing identified cholinergic synapse (KEGG rno04725), extra-cellular matrix receptor interaction (KEGG rno04512), and neuroactive receptor interaction (KEGG rno04080) among the top biological pathways are likely to be important for auditory discrimination learning. The findings characterize candidate effectors underlying the early stages of changes in cortical and behavioral function to ultimately support the formation of long-term discriminative auditory memory in the adult brain. The molecules and mechanisms identified are potential therapeutic targets to facilitate experiences that induce long-lasting changes to sound-specific auditory function in adulthood and prime for future gene-targeted investigations.
Collapse
Affiliation(s)
- G Graham
- Neuroscience Graduate Program, Rutgers Univ., Piscataway, NJ, USA; Behavioral and Systems Neuroscience, Dept. of Psychology, Rutgers Univ., Piscataway, NJ, USA
| | - M S Chimenti
- Iowa Institute of Human Genetics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - K L Knudtson
- Iowa Institute of Human Genetics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - D N Grenard
- Behavioral and Systems Neuroscience, Dept. of Psychology, Rutgers Univ., Piscataway, NJ, USA
| | - L Co
- Behavioral and Systems Neuroscience, Dept. of Psychology, Rutgers Univ., Piscataway, NJ, USA
| | - M Sumner
- Behavioral and Systems Neuroscience, Dept. of Psychology, Rutgers Univ., Piscataway, NJ, USA
| | - T Tchou
- Behavioral and Systems Neuroscience, Dept. of Psychology, Rutgers Univ., Piscataway, NJ, USA
| | - K M Bieszczad
- Neuroscience Graduate Program, Rutgers Univ., Piscataway, NJ, USA; Behavioral and Systems Neuroscience, Dept. of Psychology, Rutgers Univ., Piscataway, NJ, USA; Rutgers Center for Cognitive Science, Rutgers Univ., Piscataway, NJ, USA; Dept. of Otolaryngology-Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
| |
Collapse
|
23
|
Borland MS, Buell EP, Riley JR, Carroll AM, Moreno NA, Sharma P, Grasse KM, Buell JM, Kilgard MP, Engineer CT. Precise sound characteristics drive plasticity in the primary auditory cortex with VNS-sound pairing. Front Neurosci 2023; 17:1248936. [PMID: 37732302 PMCID: PMC10508341 DOI: 10.3389/fnins.2023.1248936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction Repeatedly pairing a tone with vagus nerve stimulation (VNS) alters frequency tuning across the auditory pathway. Pairing VNS with speech sounds selectively enhances the primary auditory cortex response to the paired sounds. It is not yet known how altering the speech sounds paired with VNS alters responses. In this study, we test the hypothesis that the sounds that are presented and paired with VNS will influence the neural plasticity observed following VNS-sound pairing. Methods To explore the relationship between acoustic experience and neural plasticity, responses were recorded from primary auditory cortex (A1) after VNS was repeatedly paired with the speech sounds 'rad' and 'lad' or paired with only the speech sound 'rad' while 'lad' was an unpaired background sound. Results Pairing both sounds with VNS increased the response strength and neural discriminability of the paired sounds in the primary auditory cortex. Surprisingly, pairing only 'rad' with VNS did not alter A1 responses. Discussion These results suggest that the specific acoustic contrasts associated with VNS can powerfully shape neural activity in the auditory pathway. Methods to promote plasticity in the central auditory system represent a new therapeutic avenue to treat auditory processing disorders. Understanding how different sound contrasts and neural activity patterns shape plasticity could have important clinical implications.
Collapse
Affiliation(s)
- Michael S. Borland
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, United States
| | - Elizabeth P. Buell
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, United States
| | - Jonathan R. Riley
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, United States
| | - Alan M. Carroll
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, United States
| | - Nicole A. Moreno
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, United States
| | - Pryanka Sharma
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, United States
| | - Katelyn M. Grasse
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, United States
- Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, United States
| | - John M. Buell
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, United States
| | - Michael P. Kilgard
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, United States
| | - Crystal T. Engineer
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
24
|
Kumagai S, Shiramatsu TI, Matsumura A, Ishishita Y, Ibayashi K, Onuki Y, Kawai K, Takahashi H. Frequency-specific modulation of oscillatory activity in the rat auditory cortex by vagus nerve stimulation. Brain Stimul 2023; 16:1476-1485. [PMID: 37777110 DOI: 10.1016/j.brs.2023.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND We previously found that vagus nerve stimulation (VNS) strengthened stimulus-evoked activity in the superficial layer of the sensory cortex but not in the deep layer, suggesting that VNS altered the balance between the feedforward (FF) and feedback (FB) pathways. Band-specific oscillatory activities in the cortex could serve as an index of the FF-FB balance, but whether VNS affects cortical oscillations along sensory pathways through neuromodulators remains unclear. HYPOTHESIS VNS modulates the FF-FB balance through the cholinergic and noradrenergic systems, which modulate stimulus gain in the cortex. METHODS We investigated the effects of VNS using electrocorticography in the auditory cortex of 34 Wistar rats under general anesthesia while presenting click stimuli. In the time-frequency analyses, the putative modulation of the FF and FB pathways was estimated using high- and low-frequency power. We assessed, using analysis of variance, how VNS modulates auditory-evoked activities and how the modulation changes with cholinergic and noradrenergic antagonists. RESULTS VNS increased auditory cortical evoked potentials, consistent with results of our previous work. Furthermore, VNS increased auditory-evoked gamma and beta powers and decreased theta power. Local administration of cholinergic antagonists in the auditory cortex selectively disrupted the VNS-induced increase in gamma and beta power, while noradrenergic antagonists disrupted the decrease in theta power. CONCLUSIONS VNS might strengthen the FF pathway through the cholinergic system and attenuate the FB pathway through the noradrenergic system in the auditory cortex. Cortical gain modulation through the VNS-induced neuromodulatory system provides new mechanistic insights into the effect of VNS on auditory processing.
Collapse
Affiliation(s)
- Shinichi Kumagai
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan; Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Tomoyo Isoguchi Shiramatsu
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Akane Matsumura
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yohei Ishishita
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Kenji Ibayashi
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Yoshiyuki Onuki
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Kensuke Kawai
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Hirokazu Takahashi
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
25
|
Graham G, Chimenti MS, Knudtson KL, Grenard DN, Co L, Sumner M, Tchou T, Bieszczad KM. Learning induces unique transcriptional landscapes in the auditory cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.15.536914. [PMID: 37090563 PMCID: PMC10120736 DOI: 10.1101/2023.04.15.536914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Learning can induce neurophysiological plasticity in the auditory cortex at multiple timescales. Lasting changes to auditory cortical function that persist over days, weeks, or even a lifetime, require learning to induce de novo gene expression. Indeed, transcription is the molecular determinant for long-term memories to form with a lasting impact on sound-related behavior. However, auditory cortical genes that support auditory learning, memory, and acquired sound-specific behavior are largely unknown. This report is the first to identify in young adult male rats (Sprague-Dawley) genome-wide changes in learning-induced gene expression within the auditory cortex that may underlie the formation of long-lasting discriminative memory for acoustic frequency cues. Auditory cortical samples were collected from animals in the initial learning phase of a two-tone discrimination sound-reward task known to induce sound-specific neurophysiological and behavioral effects (e.g., Shang et al., 2019). Bioinformatic analyses on gene enrichment profiles from bulk RNA sequencing identified cholinergic synapse (KEGG 04725), extra-cellular matrix receptor interaction (KEGG 04512) , and neuroactive ligand-receptor interaction (KEGG 04080) as top biological pathways for auditory discrimination learning. The findings characterize key candidate effectors underlying changes in cortical function that support the initial formation of long-term discriminative auditory memory in the adult brain. The molecules and mechanisms identified are potential therapeutic targets to facilitate lasting changes to sound-specific auditory function in adulthood and prime for future gene-targeted investigations.
Collapse
Affiliation(s)
- G Graham
- Neuroscience Graduate Program, Rutgers Univ., Piscataway, NJ
- Behavioral and Systems Neuroscience, Dept. of Psychology, Rutgers Univ., Piscataway, NJ
| | - M S Chimenti
- Iowa Institute of Human Genetics, Univ. of Iowa Carver College of Medicine, Iowa City, IA
| | - K L Knudtson
- Iowa Institute of Human Genetics, Univ. of Iowa Carver College of Medicine, Iowa City, IA
| | - D N Grenard
- Behavioral and Systems Neuroscience, Dept. of Psychology, Rutgers Univ., Piscataway, NJ
| | - L Co
- Behavioral and Systems Neuroscience, Dept. of Psychology, Rutgers Univ., Piscataway, NJ
| | - M Sumner
- Behavioral and Systems Neuroscience, Dept. of Psychology, Rutgers Univ., Piscataway, NJ
| | - T Tchou
- Behavioral and Systems Neuroscience, Dept. of Psychology, Rutgers Univ., Piscataway, NJ
| | - K M Bieszczad
- Neuroscience Graduate Program, Rutgers Univ., Piscataway, NJ
- Behavioral and Systems Neuroscience, Dept. of Psychology, Rutgers Univ., Piscataway, NJ
- Rutgers Center for Cognitive Science, Rutgers Univ., Piscataway, NJ
- Dept. of Otolaryngology-Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| |
Collapse
|
26
|
Faraji J, Metz GAS. Toward reframing brain-social dynamics: current assumptions and future challenges. Front Psychiatry 2023; 14:1211442. [PMID: 37484686 PMCID: PMC10359502 DOI: 10.3389/fpsyt.2023.1211442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Evolutionary analyses suggest that the human social brain and sociality appeared together. The two fundamental tools that accelerated the concurrent emergence of the social brain and sociality include learning and plasticity. The prevailing core idea is that the primate brain and the cortex in particular became reorganised over the course of evolution to facilitate dynamic adaptation to ongoing changes in physical and social environments. Encouraged by computational or survival demands or even by instinctual drives for living in social groups, the brain eventually learned how to learn from social experience via its massive plastic capacity. A fundamental framework for modeling these orchestrated dynamic responses is that social plasticity relies upon neuroplasticity. In the present article, we first provide a glimpse into the concepts of plasticity, experience, with emphasis on social experience. We then acknowledge and integrate the current theoretical concepts to highlight five key intertwined assumptions within social neuroscience that underlie empirical approaches for explaining the brain-social dynamics. We suggest that this epistemological view provides key insights into the ontology of current conceptual frameworks driving future research to successfully deal with new challenges and possible caveats in favour of the formulation of novel assumptions. In the light of contemporary societal challenges, such as global pandemics, natural disasters, violent conflict, and other human tragedies, discovering the mechanisms of social brain plasticity will provide new approaches to support adaptive brain plasticity and social resilience.
Collapse
|
27
|
Dávila G, Torres-Prioris MJ, López-Barroso D, Berthier ML. Turning the Spotlight to Cholinergic Pharmacotherapy of the Human Language System. CNS Drugs 2023; 37:599-637. [PMID: 37341896 PMCID: PMC10374790 DOI: 10.1007/s40263-023-01017-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 06/22/2023]
Abstract
Even though language is essential in human communication, research on pharmacological therapies for language deficits in highly prevalent neurodegenerative and vascular brain diseases has received little attention. Emerging scientific evidence suggests that disruption of the cholinergic system may play an essential role in language deficits associated with Alzheimer's disease and vascular cognitive impairment, including post-stroke aphasia. Therefore, current models of cognitive processing are beginning to appraise the implications of the brain modulator acetylcholine in human language functions. Future work should be directed further to analyze the interplay between the cholinergic system and language, focusing on identifying brain regions receiving cholinergic innervation susceptible to modulation with pharmacotherapy to improve affected language domains. The evaluation of language deficits in pharmacological cholinergic trials for Alzheimer's disease and vascular cognitive impairment has thus far been limited to coarse-grained methods. More precise, fine-grained language testing is needed to refine patient selection for pharmacotherapy to detect subtle deficits in the initial phases of cognitive decline. Additionally, noninvasive biomarkers can help identify cholinergic depletion. However, despite the investigation of cholinergic treatment for language deficits in Alzheimer's disease and vascular cognitive impairment, data on its effectiveness are insufficient and controversial. In the case of post-stroke aphasia, cholinergic agents are showing promise, particularly when combined with speech-language therapy to promote trained-dependent neural plasticity. Future research should explore the potential benefits of cholinergic pharmacotherapy in language deficits and investigate optimal strategies for combining these agents with other therapeutic approaches.
Collapse
Affiliation(s)
- Guadalupe Dávila
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Marqués de Beccaria 3, 29010, Malaga, Spain
- Instituto de Investigación Biomédica de Malaga-IBIMA, Malaga, Spain
- Department of Psychobiology and Methodology of Behavioral Sciences, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
- Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| | - María José Torres-Prioris
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Marqués de Beccaria 3, 29010, Malaga, Spain
- Instituto de Investigación Biomédica de Malaga-IBIMA, Malaga, Spain
- Department of Psychobiology and Methodology of Behavioral Sciences, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
- Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| | - Diana López-Barroso
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Marqués de Beccaria 3, 29010, Malaga, Spain
- Instituto de Investigación Biomédica de Malaga-IBIMA, Malaga, Spain
- Department of Psychobiology and Methodology of Behavioral Sciences, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
- Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| | - Marcelo L Berthier
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Marqués de Beccaria 3, 29010, Malaga, Spain.
- Instituto de Investigación Biomédica de Malaga-IBIMA, Malaga, Spain.
- Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain.
| |
Collapse
|
28
|
Rufener KS, Wienke C, Salanje A, Haghikia A, Zaehle T. Effects of transcutaneous auricular vagus nerve stimulation paired with tones on electrophysiological markers of auditory perception. Brain Stimul 2023; 16:982-989. [PMID: 37336282 DOI: 10.1016/j.brs.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Transcutaneous auricular vagus nerve stimulation (taVNS) has been introduced as a non-invasive alternative to invasive vagus nerve stimulation (iVNS). While iVNS paired with tones has been highlighted as a potential effective therapy for the treatment of auditory disorders such as tinnitus, there is still scarce data available confirming the efficacy of non-invasive taVNS. Here, we assessed the effect of taVNS paired with acoustic stimuli on sensory-related electrophysiological responses. METHODS A total of 22 healthy participants were investigated with a taVNS tone-pairing paradigm using a within-subjects design. In a single session pure tones paired with either active taVNS or sham taVNS were repeatedly presented. Novel tones without electrical stimulation served as control condition. Auditory event related potentials and auditory cortex oscillations were compared before and after the tone pairing procedure between stimulation conditions. RESULTS From pre to post pairing, we observed a decrease in the N1 amplitude and in theta power to tones paired with sham taVNS while these electrophysiological measures remained stable for tones paired with active taVNS a pattern mirroring auditory sensory processing of novel, unpaired control tones. CONCLUSION Our results demonstrate the efficacy of a short-term application of non-invasive taVNS to modulate auditory processing in healthy individuals and, thereby, have potential implications for interventions in auditory processing deficits.
Collapse
Affiliation(s)
- Katharina S Rufener
- Department of Child and Adolescent Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke-University Magdeburg, Germany.
| | - Christian Wienke
- Department of Neurology, Otto-von-Guericke-University Magdeburg, Germany
| | - Alena Salanje
- Department of Neurology, Otto-von-Guericke-University Magdeburg, Germany
| | - Aiden Haghikia
- Department of Neurology, Otto-von-Guericke-University Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke-University Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Germany
| | - Tino Zaehle
- Department of Neurology, Otto-von-Guericke-University Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke-University Magdeburg, Germany
| |
Collapse
|
29
|
McDonald RJ, Hong NS, Germaine C, Kolb B. Peripherally-administered amphetamine induces plasticity in medial prefrontal cortex and nucleus accumbens in rats with amygdala lesions: implications for neural models of memory modulation. Front Behav Neurosci 2023; 17:1187976. [PMID: 37358968 PMCID: PMC10285066 DOI: 10.3389/fnbeh.2023.1187976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/12/2023] [Indexed: 06/28/2023] Open
Abstract
The amygdala has been implicated in a variety of functions linked to emotions. One popular view is that the amygdala modulates consolidation in other brain systems thought to be mainly involved in learning and memory processes. This series of experiments represents a further exploration into the role of the amygdala in memory modulation and consolidation. One interesting line of research has shown that drugs of abuse, like amphetamine, produce dendritic changes in select brain regions and these changes are thought to be equivalent to a usurping of normal plasticity processes. We were interested in the possibility that this modulation of plasticity processes would be dependent on interactions with the amygdala. According to the modulation view of amygdala function, amphetamine would activate modulation mechanisms in the amygdala that would alter plasticity processes in other brain regions. If the amygdala was rendered dysfunctional, these effects should not occur. Accordingly, this series of experiments evaluated the effects of extensive neurotoxic amygdala damage on amphetamine-induced dendritic changes in the nucleus accumbens and prefrontal cortex. The results showed that rats with large lesions of the amygdala showed the normal pattern of dendritic changes in these brain regions. This pattern of results suggests that the action of not all memory modulators, activated during emotional events, require the amygdala to impact memory.
Collapse
|
30
|
Zhu F, Elnozahy S, Lawlor J, Kuchibhotla KV. The cholinergic basal forebrain provides a parallel channel for state-dependent sensory signaling to auditory cortex. Nat Neurosci 2023; 26:810-819. [PMID: 36973512 PMCID: PMC10625791 DOI: 10.1038/s41593-023-01289-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 02/23/2023] [Indexed: 03/29/2023]
Abstract
Cholinergic basal forebrain (CBF) signaling exhibits multiple timescales of activity with classic slow signals related to brain and behavioral states and fast, phasic signals reflecting behavioral events, including movement, reinforcement and sensory-evoked responses. However, it remains unknown whether sensory cholinergic signals target the sensory cortex and how they relate to local functional topography. Here we used simultaneous two-channel, two-photon imaging of CBF axons and auditory cortical neurons to reveal that CBF axons send a robust, nonhabituating and stimulus-specific sensory signal to the auditory cortex. Individual axon segments exhibited heterogeneous but stable tuning to auditory stimuli allowing stimulus identity to be decoded from population activity. However, CBF axons displayed no tonotopy and their frequency tuning was uncoupled from that of nearby cortical neurons. Chemogenetic suppression revealed the auditory thalamus as a major source of auditory information to the CBF. Finally, slow fluctuations in cholinergic activity modulated the fast, sensory-evoked signals in the same axons, suggesting that a multiplexed combination of fast and slow signals is projected from the CBF to the auditory cortex. Taken together, our work demonstrates a noncanonical function of the CBF as a parallel channel for state-dependent sensory signaling to the sensory cortex that provides repeated representations of a broad range of sound stimuli at all points on the tonotopic map.
Collapse
Affiliation(s)
- Fangchen Zhu
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Sarah Elnozahy
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Jennifer Lawlor
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Kishore V Kuchibhotla
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA.
- Department of Neuroscience, Johns Hopkins Medical Institute, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
31
|
Berthier ML, Dávila G. Pharmacotherapy for post-stroke aphasia: what are the options? Expert Opin Pharmacother 2023; 24:1221-1228. [PMID: 37263978 DOI: 10.1080/14656566.2023.2221382] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/31/2023] [Indexed: 06/03/2023]
Abstract
INTRODUCTION Aphasia is a common, long-lasting aftermath of stroke lesions. There is an increased integration of pharmacotherapy as an adjunctive strategy to speech and language therapy (SLT) for post-stroke aphasia (PSA). Nevertheless, more research in pharmacotherapy for acute and chronic PSA is necessary, including the election of drugs that target different neurotransmitter systems and deficits in specific language domains. AREAS COVERED This article updates the role of pharmacotherapy for PSA, focusing the spotlight on some already investigated drugs and candidate agents deserving of future research. Refining the precision of drug election would require using multimodal biomarkers to develop personalized treatment approaches. There is a solid need to devise feasible randomized controlled trials adapted to the particularities of the PSA population. The emergent role of multimodal interventions combining one or two drugs with noninvasive brain stimulation to augment SLT is emphasized. EXPERT OPINION Pharmacotherapy can improve language deficits not fully alleviated by SLT. In addition, the 'drug-only' approach can also be adopted when administering SLT is not possible. The primary goal of pharmacotherapy is reducing the overall aphasia severity, although targeting language-specific deficits (i.e. naming, spoken output) also contributes to improving functional communication. Unfortunately, there is still little information for recommending a drug for specific language deficits.
Collapse
Affiliation(s)
- Marcelo L Berthier
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Malaga, Spain
- Instituto de Investigación Biomédica de Malaga - IBIMA, Malaga, Spain
| | - Guadalupe Dávila
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Malaga, Spain
- Instituto de Investigación Biomédica de Malaga - IBIMA, Malaga, Spain
- Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
- Department of Psychobiology and Methodology of Behavioral Sciences, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| |
Collapse
|
32
|
Zhou B, Tomioka R, Song WJ. Temporal profiles of neuronal responses to repeated tone stimuli in the mouse primary auditory cortex. Hear Res 2023; 430:108710. [PMID: 36758331 DOI: 10.1016/j.heares.2023.108710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
How the auditory system processes temporal information of sound has been investigated extensively using repeated stimuli. Recent studies on how the response of neurons in the primary auditory cortex (A1) changes with the progression of stimulus repetition, have reported response temporal profiles of two categories: "adaptation", i.e., gradual decrease, and "facilitation", i.e., gradual increase. To explore the existence of profiles of other categories and to examine the tone-frequency-dependence of the profile category in single neurons, here we studied the response of mouse A1 neurons to four or five tone-trains; each train comprised 10 identical tone pips, with 0.5-s inter-tone-intervals, and the four or five trains differed only in tone frequency. The response to each tone in a train was evaluated using the peak of the ON response, and how the peak response changed with the tone number in the train, i.e., the response temporal profile, was examined. We confirmed the existence of profiles of both "adaptation" and "facilitation" categories; "adaptation" could be further subcategorized into "slow adaptation" and "fast adaptation" profiles, with the latter being encountered more frequently. Moreover, two new categories of non-monotonic profiles were identified: an "adaptation with recovery" profile and a "facilitation followed by adaptation" profile. Examination of single neurons with trains of different tone frequencies revealed that some A1 neurons exhibited profiles of the same category to tone trains of different tone frequencies, whereas others exhibited profiles of different categories, depending on the tone frequency. These results demonstrate the variety in the response temporal profiles of mouse A1 neurons, which may benefit the encoding of individual tones in a train.
Collapse
Affiliation(s)
- Bo Zhou
- Department of Sensory and Cognitive Physiology, Graduate School of Medical Sciences, Kumamoto University 860-8556, Japan
| | - Ryohei Tomioka
- Department of Sensory and Cognitive Physiology, Graduate School of Medical Sciences, Kumamoto University 860-8556, Japan.
| | - Wen-Jie Song
- Department of Sensory and Cognitive Physiology, Graduate School of Medical Sciences, Kumamoto University 860-8556, Japan; Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| |
Collapse
|
33
|
Smart C, Mitchell A, McCutcheon F, Medcalf RL, Thiele A. Tissue-type plasminogen activator induces conditioned receptive field plasticity in the mouse auditory cortex. iScience 2023; 26:105947. [PMID: 36711245 PMCID: PMC9874071 DOI: 10.1016/j.isci.2023.105947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/13/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
Tissue-type plasminogen activator (tPA) is a serine protease that is expressed in various compartments in the brain. It is involved in neuronal plasticity, learning and memory, and addiction. We evaluated whether tPA, exogenously applied, could influence neuroplasticity within the mouse auditory cortex. We used a frequency-pairing paradigm to determine whether neuronal best frequencies shift following the pairing protocol. tPA administration significantly affected the best frequency after pairing, whereby this depended on the pairing frequency relative to the best frequency. When the pairing frequency was above the best frequency, tPA caused a best frequency shift away from the conditioned frequency. tPA significantly widened auditory tuning curves. Our data indicate that regional changes in proteolytic activity within the auditory cortex modulate the fine-tuning of auditory neurons, supporting the function of tPA as a modulator of neuronal plasticity.
Collapse
Affiliation(s)
- Caitlin Smart
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Anna Mitchell
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Fiona McCutcheon
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Robert L. Medcalf
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Alexander Thiele
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
34
|
Assoratgoon I, Shiraishi N, Tagaino R, Ogawa T, Sasaki K. Sensory neuromuscular electrical stimulation for dysphagia rehabilitation: A literature review. J Oral Rehabil 2023; 50:157-164. [PMID: 36357332 DOI: 10.1111/joor.13391] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/23/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUND Dysphagia is a common disorder following a cerebrovascular accident. It can cause detrimental effects on patient's quality of life and nutrition intake, especially in older adults. Neuromuscular electrical stimulation has been one of the management strategies for acceleration of the recovery. This review summarises the current evidence on sensory threshold stimulation of the procedure. METHOD This review compiled data from the Internet database PubMed, Cochrane Library and Scopus using combination of MeSH thesaurus: 'Sensory threshold', 'electrical stimulation', 'neuromuscular stimulation', 'Deglutition', 'Dysphagia'. Eleven studies were intergraded into the review. RESULTS Most of the studies show significant improvement to the outcomes of sensory neuromuscular electrical stimulation treatment. In many cases, the results of the treatment are comparable or superior to motor threshold stimulation and conventional therapy. However, the study design and parameters of the procedure varied greatly without conclusive standardised guidelines. CONCLUSION The sensory neuromuscular electrical stimulation (SNMES) is a viable treatment option for treating oropharyngeal dysphagia. The most suggested application parameters are an intensity at sensory threshold, a frequency of 80 Hz, an impulse time of 700 μs, a combined total duration of 20 h of stimulation in a 2-week period, and placing the electrodes in the submental area of the neck. However, further research is necessary to construct a definitive guideline for clinicians.
Collapse
Affiliation(s)
- Itt Assoratgoon
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.,Chulalongkorn University, Bangkok, Thailand
| | - Naru Shiraishi
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.,Center for Dysphagia of Tohoku University Hospital, Sendai, Japan
| | - Ryo Tagaino
- Center for Dysphagia of Tohoku University Hospital, Sendai, Japan.,Maxillofacial Prosthetics Clinic, Tohoku University Hospital, Sendai, Japan
| | - Toru Ogawa
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Keiichi Sasaki
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
35
|
Chavushyan VA, Simonyan KV, Danielyan MH, Avetisyan LG, Darbinyan LV, Isoyan AS, Lorikyan AG, Hovhannisyan LE, Babakhanyan MA, Sukiasyan LM. Pathology and prevention of brain microvascular and neuronal dysfunction induced by a high-fructose diet in rats. Metab Brain Dis 2023; 38:269-286. [PMID: 36271967 DOI: 10.1007/s11011-022-01098-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/08/2022] [Indexed: 02/03/2023]
Abstract
A high-fructose diet causes metabolic abnormalities in rats, and the cluster of complications points to microvascular and neuronal disorders of the brain. The aim of this study was to evaluate i) the involvement of microvascular disorders and neuronal plasticity in the deleterious effects of a high-fructose diet on the rat brain and ii) a comparative assessment of the effectiveness of Phytocollection therapy (with antidiabetic, antioxidant, and acetylcholinesterase inhibitory activities) compared to Galantamine as first-line therapy for dementia and Diabeton as first-line therapy for hyperglycemia. The calcium adenosine triphosphate non-injection histoangiological method was used to assess capillary network diameter and density. A high-fructose diet resulted in a significant decrease in the diameter and density of the capillary bed, and pharmacological manipulations had a modulatory effect on microcirculatory adaptive mechanisms. In vivo single-unit extracellular recording was used to investigate short-term plasticity in the medial prefrontal cortex. Differences in the parameters of spike background activity and expression of excitatory and inhibitory responses of cortical neurons have been discovered, allowing for flexibility and neuronal function stabilization in pathology and pharmacological prevention. Integration of the coupling mechanism between microvascular function and neuronal spike activity could delay the progressive decline in cognitive function in rats fed a high fructose diet.
Collapse
Affiliation(s)
- V A Chavushyan
- Neuroendocrine Relationships Lab, Orbeli Institute of Physiology NAS RA, 0028, Yerevan, Armenia
| | - K V Simonyan
- Neuroendocrine Relationships Lab, Orbeli Institute of Physiology NAS RA, 0028, Yerevan, Armenia.
| | - M H Danielyan
- Histochemistry and Electron Microscopy Lab, Orbeli Institute of Physiology NAS RA, 0028, Yerevan, Armenia
| | - L G Avetisyan
- Neuroendocrine Relationships Lab, Orbeli Institute of Physiology NAS RA, 0028, Yerevan, Armenia
| | - L V Darbinyan
- Sensorimotor Integration Lab, Orbeli Institute of Physiology NAS RA, 0028, Yerevan, Armenia
| | - A S Isoyan
- Neuroendocrine Relationships Lab, Orbeli Institute of Physiology NAS RA, 0028, Yerevan, Armenia
| | - A G Lorikyan
- Neuroendocrine Relationships Lab, Orbeli Institute of Physiology NAS RA, 0028, Yerevan, Armenia
| | - L E Hovhannisyan
- G.S. Davtyan Institute of Hydroponics Problems NAS RA, 0082, Yerevan, Armenia
| | - M A Babakhanyan
- G.S. Davtyan Institute of Hydroponics Problems NAS RA, 0082, Yerevan, Armenia
| | - L M Sukiasyan
- Neuroendocrine Relationships Lab, Orbeli Institute of Physiology NAS RA, 0028, Yerevan, Armenia
- Yerevan State Medical University After M. Heratsi, 0025, Yerevan, Armenia
| |
Collapse
|
36
|
Bang JW, Chan RW, Parra C, Murphy MC, Schuman JS, Nau AC, Chan KC. Diverging patterns of plasticity in the nucleus basalis of Meynert in early- and late-onset blindness. Brain Commun 2023; 5:fcad119. [PMID: 37101831 PMCID: PMC10123399 DOI: 10.1093/braincomms/fcad119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 02/01/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023] Open
Abstract
Plasticity in the brain is impacted by an individual's age at the onset of the blindness. However, what drives the varying degrees of plasticity remains largely unclear. One possible explanation attributes the mechanisms for the differing levels of plasticity to the cholinergic signals originating in the nucleus basalis of Meynert. This explanation is based on the fact that the nucleus basalis of Meynert can modulate cortical processes such as plasticity and sensory encoding through its widespread cholinergic projections. Nevertheless, there is no direct evidence indicating that the nucleus basalis of Meynert undergoes plastic changes following blindness. Therefore, using multiparametric magnetic resonance imaging, we examined if the structural and functional properties of the nucleus basalis of Meynert differ between early blind, late blind and sighted individuals. We observed that early and late blind individuals had a preserved volumetric size and cerebrovascular reactivity in the nucleus basalis of Meynert. However, we observed a reduction in the directionality of water diffusion in both early and late blind individuals compared to sighted individuals. Notably, the nucleus basalis of Meynert presented diverging patterns of functional connectivity between early and late blind individuals. This functional connectivity was enhanced at both global and local (visual, language and default-mode networks) levels in the early blind individuals, but there were little-to-no changes in the late blind individuals when compared to sighted controls. Furthermore, the age at onset of blindness predicted both global and local functional connectivity. These results suggest that upon reduced directionality of water diffusion in the nucleus basalis of Meynert, cholinergic influence may be stronger for the early blind compared to the late blind individuals. Our findings are important to unravelling why early blind individuals present stronger and more widespread cross-modal plasticity compared to late blind individuals.
Collapse
Affiliation(s)
- Ji Won Bang
- Correspondence may also be addressed to: Ji Won Bang, PhD.
| | - Russell W Chan
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY 10017, USA
| | - Carlos Parra
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY 10017, USA
| | - Matthew C Murphy
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Joel S Schuman
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY 10017, USA
- Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY 10016, USA
- Center for Neural Science, College of Arts and Science, New York University, New York, NY 10003, USA
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY 11201, USA
| | - Amy C Nau
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Korb and Associates, Boston, MA 02215, USA
| | - Kevin C Chan
- Correspondence to: Kevin C. Chan, PhD, Departments of Ophthalmology and Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York University. 222 E 41st Street, Room 362, New York, NY 10017, USA.
| |
Collapse
|
37
|
Hegedüs P, Sviatkó K, Király B, Martínez-Bellver S, Hangya B. Cholinergic activity reflects reward expectations and predicts behavioral responses. iScience 2022; 26:105814. [PMID: 36636356 PMCID: PMC9830220 DOI: 10.1016/j.isci.2022.105814] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Basal forebrain cholinergic neurons (BFCNs) play an important role in associative learning, suggesting that BFCNs may participate in processing stimuli that predict future outcomes. However, the impact of outcome probabilities on BFCN activity remained elusive. Therefore, we performed bulk calcium imaging and recorded spiking of identified cholinergic neurons from the basal forebrain of mice performing a probabilistic Pavlovian cued outcome task. BFCNs responded more to sensory cues that were often paired with reward. Reward delivery also activated BFCNs, with surprising rewards eliciting a stronger response, whereas punishments evoked uniform positive-going responses. We propose that BFCNs differentially weigh predictions of positive and negative reinforcement, reflecting divergent relative salience of forecasting appetitive and aversive outcomes, partially explained by a simple reinforcement learning model of a valence-weighed unsigned prediction error. Finally, the extent of cue-driven cholinergic activation predicted subsequent decision speed, suggesting that the expectation-gated cholinergic firing is instructive to reward-seeking behaviors.
Collapse
Affiliation(s)
- Panna Hegedüs
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, H-1083 Budapest, Hungary,János Szentágothai Doctoral School of Neurosciences, Semmelweis University, H-1085 Budapest, Hungary
| | - Katalin Sviatkó
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, H-1083 Budapest, Hungary,János Szentágothai Doctoral School of Neurosciences, Semmelweis University, H-1085 Budapest, Hungary
| | - Bálint Király
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, H-1083 Budapest, Hungary,Department of Biological Physics, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Sergio Martínez-Bellver
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, H-1083 Budapest, Hungary,Department of Anatomy and Human Embryology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
| | - Balázs Hangya
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, H-1083 Budapest, Hungary,Corresponding author
| |
Collapse
|
38
|
Neuroprotection and Non-Invasive Brain Stimulation: Facts or Fiction? Int J Mol Sci 2022; 23:ijms232213775. [PMID: 36430251 PMCID: PMC9692544 DOI: 10.3390/ijms232213775] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
Non-Invasive Brain Stimulation (NIBS) techniques, such as transcranial Direct Current Stimulation (tDCS) and repetitive Magnetic Transcranial Stimulation (rTMS), are well-known non-pharmacological approaches to improve both motor and non-motor symptoms in patients with neurodegenerative disorders. Their use is of particular interest especially for the treatment of cognitive impairment in Alzheimer's Disease (AD), as well as axial disturbances in Parkinson's (PD), where conventional pharmacological therapies show very mild and short-lasting effects. However, their ability to interfere with disease progression over time is not well understood; recent evidence suggests that NIBS may have a neuroprotective effect, thus slowing disease progression and modulating the aggregation state of pathological proteins. In this narrative review, we gather current knowledge about neuroprotection and NIBS in neurodegenerative diseases (i.e., PD and AD), just mentioning the few results related to stroke. As further matter of debate, we discuss similarities and differences with Deep Brain Stimulation (DBS)-induced neuroprotective effects, and highlight possible future directions for ongoing clinical studies.
Collapse
|
39
|
Seenivasan P, Narayanan R. Efficient information coding and degeneracy in the nervous system. Curr Opin Neurobiol 2022; 76:102620. [PMID: 35985074 PMCID: PMC7613645 DOI: 10.1016/j.conb.2022.102620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 11/25/2022]
Abstract
Efficient information coding (EIC) is a universal biological framework rooted in the fundamental principle that system responses should match their natural stimulus statistics for maximizing environmental information. Quantitatively assessed through information theory, such adaptation to the environment occurs at all biological levels and timescales. The context dependence of environmental stimuli and the need for stable adaptations make EIC a daunting task. We argue that biological complexity is the principal architect that subserves deft execution of stable EIC. Complexity in a system is characterized by several functionally segregated subsystems that show a high degree of functional integration when they interact with each other. Complex biological systems manifest heterogeneities and degeneracy, wherein structurally different subsystems could interact to yield the same functional outcome. We argue that complex systems offer several choices that effectively implement EIC and homeostasis for each of the different contexts encountered by the system.
Collapse
Affiliation(s)
- Pavithraa Seenivasan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India. https://twitter.com/PaveeSeeni
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
40
|
Rodenkirch C, Carmel JB, Wang Q. Rapid Effects of Vagus Nerve Stimulation on Sensory Processing Through Activation of Neuromodulatory Systems. Front Neurosci 2022; 16:922424. [PMID: 35864985 PMCID: PMC9294458 DOI: 10.3389/fnins.2022.922424] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/15/2022] [Indexed: 12/13/2022] Open
Abstract
After sensory information is encoded into neural signals at the periphery, it is processed through multiple brain regions before perception occurs (i.e., sensory processing). Recent work has begun to tease apart how neuromodulatory systems influence sensory processing. Vagus nerve stimulation (VNS) is well-known as an effective and safe method of activating neuromodulatory systems. There is a growing body of studies confirming VNS has immediate effects on sensory processing across multiple sensory modalities. These immediate effects of VNS on sensory processing are distinct from the more well-documented method of inducing lasting neuroplastic changes to the sensory pathways through repeatedly delivering a brief VNS burst paired with a sensory stimulus. Immediate effects occur upon VNS onset, often disappear upon VNS offset, and the modulation is present for all sensory stimuli. Conversely, the neuroplastic effect of pairing sub-second bursts of VNS with a sensory stimulus alters sensory processing only after multiple pairing sessions, this alteration remains after cessation of pairing sessions, and the alteration selectively affects the response properties of neurons encoding the specific paired sensory stimulus. Here, we call attention to the immediate effects VNS has on sensory processing. This review discusses existing studies on this topic, provides an overview of the underlying neuromodulatory systems that likely play a role, and briefly explores the potential translational applications of using VNS to rapidly regulate sensory processing.
Collapse
Affiliation(s)
- Charles Rodenkirch
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
- Jacobs Technion-Cornell Institute, Cornell Tech, New York, NY, United States
- *Correspondence: Charles Rodenkirch,
| | - Jason B. Carmel
- Department of Neurology and Orthopedics, Columbia University Medical Center, New York, NY, United States
| | - Qi Wang
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
- Qi Wang,
| |
Collapse
|
41
|
Király B, Hangya B. Navigating the Statistical Minefield of Model Selection and Clustering in Neuroscience. eNeuro 2022; 9:ENEURO.0066-22.2022. [PMID: 35835556 PMCID: PMC9282170 DOI: 10.1523/eneuro.0066-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 11/21/2022] Open
Abstract
Model selection is often implicit: when performing an ANOVA, one assumes that the normal distribution is a good model of the data; fitting a tuning curve implies that an additive and a multiplicative scaler describes the behavior of the neuron; even calculating an average implicitly assumes that the data were sampled from a distribution that has a finite first statistical moment: the mean. Model selection may be explicit, when the aim is to test whether one model provides a better description of the data than a competing one. As a special case, clustering algorithms identify groups with similar properties within the data. They are widely used from spike sorting to cell type identification to gene expression analysis. We discuss model selection and clustering techniques from a statistician's point of view, revealing the assumptions behind, and the logic that governs the various approaches. We also showcase important neuroscience applications and provide suggestions how neuroscientists could put model selection algorithms to best use as well as what mistakes should be avoided.
Collapse
Affiliation(s)
- Bálint Király
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, H-1083, Budapest, Hungary
- Department of Biological Physics, Eötvös Loránd University, H-1083, Budapest, Hungary
| | - Balázs Hangya
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, H-1083, Budapest, Hungary
| |
Collapse
|
42
|
Hong SZ, Mesik L, Grossman CD, Cohen JY, Lee B, Severin D, Lee HK, Hell JW, Kirkwood A. Norepinephrine potentiates and serotonin depresses visual cortical responses by transforming eligibility traces. Nat Commun 2022; 13:3202. [PMID: 35680879 PMCID: PMC9184610 DOI: 10.1038/s41467-022-30827-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 05/19/2022] [Indexed: 11/18/2022] Open
Abstract
Reinforcement allows organisms to learn which stimuli predict subsequent biological relevance. Hebbian mechanisms of synaptic plasticity are insufficient to account for reinforced learning because neuromodulators signaling biological relevance are delayed with respect to the neural activity associated with the stimulus. A theoretical solution is the concept of eligibility traces (eTraces), silent synaptic processes elicited by activity which upon arrival of a neuromodulator are converted into a lasting change in synaptic strength. Previously we demonstrated in visual cortical slices the Hebbian induction of eTraces and their conversion into LTP and LTD by the retroactive action of norepinephrine and serotonin Here we show in vivo in mouse V1 that the induction of eTraces and their conversion to LTP/D by norepinephrine and serotonin respectively potentiates and depresses visual responses. We also show that the integrity of this process is crucial for ocular dominance plasticity, a canonical model of experience-dependent plasticity.
Collapse
Affiliation(s)
- Su Z Hong
- Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Lukas Mesik
- Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Cooper D Grossman
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Jeremiah Y Cohen
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Boram Lee
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA
| | - Daniel Severin
- Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Hey-Kyoung Lee
- Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Johannes W Hell
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA
| | - Alfredo Kirkwood
- Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, 21218, USA.
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
43
|
Pérez-González D, Schreiner TG, Llano DA, Malmierca MS. Alzheimer's Disease, Hearing Loss, and Deviance Detection. Front Neurosci 2022; 16:879480. [PMID: 35720686 PMCID: PMC9201340 DOI: 10.3389/fnins.2022.879480] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
Age-related hearing loss is a widespread condition among the elderly, affecting communication and social participation. Given its high incidence, it is not unusual that individuals suffering from age-related hearing loss also suffer from other age-related neurodegenerative diseases, a scenario which severely impacts their quality of life. Furthermore, recent studies have identified hearing loss as a relevant risk factor for the development of dementia due to Alzheimer's disease, although the underlying associations are still unclear. In order to cope with the continuous flow of auditory information, the brain needs to separate repetitive sounds from rare, unexpected sounds, which may be relevant. This process, known as deviance detection, is a key component of the sensory perception theory of predictive coding. According to this framework, the brain would use the available incoming information to make predictions about the environment and signal the unexpected stimuli that break those predictions. Such a system can be easily impaired by the distortion of auditory information processing that accompanies hearing loss. Changes in cholinergic neuromodulation have been found to alter auditory deviance detection both in humans and animal models. Interestingly, some theories propose a role for acetylcholine in the development of Alzheimer's disease, the most common type of dementia. Acetylcholine is involved in multiple neurobiological processes such as attention, learning, memory, arousal, sleep and/or cognitive reinforcement, and has direct influence on the auditory system at the levels of the inferior colliculus and auditory cortex. Here we comment on the possible links between acetylcholine, hearing loss, and Alzheimer's disease, and association that is worth further investigation.
Collapse
Affiliation(s)
- David Pérez-González
- Cognitive and Auditory Neuroscience Laboratory (Lab 1), Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Thomas G. Schreiner
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, “Gheorghe Asachi” Technical University of Iasi, Iaşi, Romania
- Department of Neurology, “Gr. T. Popa” University of Medicine and Pharmacy, Iaşi, Romania
| | - Daniel A. Llano
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- The Beckman Institute for Advanced Science and Technology, Urbana, IL, United States
- Carle Neuroscience Institute, Urbana, IL, United States
| | - Manuel S. Malmierca
- Cognitive and Auditory Neuroscience Laboratory (Lab 1), Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Department of Cell Biology and Pathology, Faculty of Medicine, University of Salamanca, Salamanca, Spain
| |
Collapse
|
44
|
Messina A, Corvaia A, Marino C. Definition of Tinnitus. Audiol Res 2022; 12:281-289. [PMID: 35645199 PMCID: PMC9149955 DOI: 10.3390/audiolres12030029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 12/04/2022] Open
Abstract
Tinnitus is generally defined as the perception of sound in the absence of vibration of an external elastic body. If this definition appears useful to differentiate tinnitus from somatosounds, it is not suitable for distinguishing it from psychiatric hallucinations. Nor does this solution define a temporal limit of duration of the perception, which is important for distinguishing pathological tinnitus from those occasional noises that we all perceive from time to time. A complete definition appears necessary not only to achieve homogeneity in epidemiological studies but also to set up correct and personalized therapeutic schemes. An analogy with neuropsychiatric studies and, in particular, the concept of auditory hallucinosis are proposed by the authors to define tinnitus. According to the authors, tinnitus is auditory hallucinosis, and similarly, vertigo is spatial hallucinosis.
Collapse
Affiliation(s)
- Aldo Messina
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98100 Messina, Italy
- Regina Margherita Otoneurological Center, 90145 Palermo, Italy
| | | | - Chiara Marino
- Regina Margherita Otoneurological Center, 90145 Palermo, Italy
| |
Collapse
|
45
|
Milinski L, Nodal FR, Vyazovskiy VV, Bajo VM. Tinnitus: at a crossroad between phantom perception and sleep. Brain Commun 2022; 4:fcac089. [PMID: 35620170 PMCID: PMC9128384 DOI: 10.1093/braincomms/fcac089] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/31/2021] [Accepted: 03/31/2022] [Indexed: 11/25/2022] Open
Abstract
Sensory disconnection from the environment is a hallmark of sleep and is crucial
for sleep maintenance. It remains unclear, however, whether internally generated
percepts—phantom percepts—may overcome such disconnection and, in
turn, how sleep and its effect on sensory processing and brain plasticity may
affect the function of the specific neural networks underlying such phenomena. A
major hurdle in addressing this relationship is the methodological difficulty to
study sensory phantoms, due to their subjective nature and lack of control over
the parameters or neural activity underlying that percept. Here, we explore the
most prevalent phantom percept, subjective tinnitus—or tinnitus for
short—as a model to investigate this. Tinnitus is the permanent
perception of a sound with no identifiable corresponding acoustic source. This
review offers a novel perspective on the functional interaction between brain
activity across the sleep–wake cycle and tinnitus. We discuss
characteristic features of brain activity during tinnitus in the awake and the
sleeping brain and explore its effect on sleep functions and homeostasis. We ask
whether local changes in cortical activity in tinnitus may overcome sensory
disconnection and prevent the occurrence of global restorative sleep and, in
turn, how accumulating sleep pressure may temporarily alleviate the persistence
of a phantom sound. Beyond an acute interaction between sleep and neural
activity, we discuss how the effects of sleep on brain plasticity may contribute
to aberrant neural circuit activity and promote tinnitus consolidation. Tinnitus
represents a unique window into understanding the role of sleep in sensory
processing. Clarification of the underlying relationship may offer novel
insights into therapeutic interventions in tinnitus management.
Collapse
Affiliation(s)
- Linus Milinski
- University of Oxford, Department of Physiology, Anatomy and Genetics, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Fernando R. Nodal
- University of Oxford, Department of Physiology, Anatomy and Genetics, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Vladyslav V. Vyazovskiy
- University of Oxford, Department of Physiology, Anatomy and Genetics, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Victoria M. Bajo
- University of Oxford, Department of Physiology, Anatomy and Genetics, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|
46
|
Dawson J, Abdul-Rahim AH. Paired vagus nerve stimulation for treatment of upper extremity impairment after stroke. Int J Stroke 2022; 17:1061-1066. [PMID: 35377261 DOI: 10.1177/17474930221094684] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The use of a paired vagus nerve stimulation (VNS) system for the treatment of moderate to severe upper extremity motor deficits associated with chronic ischaemic stroke has recently been approved by the U.S Food and Drug Administration. This treatment aims to increase task specific neuroplasticity through activation of cholinergic and noradrenergic networks during rehabilitation therapy. A recent pivotal phase III trial showed that VNS paired with rehabilitation led to improvements in upper extremity impairment and function in people with moderate to severe arm weakness an average of three years after ischaemic stroke. The between group difference following six weeks of in-clinic therapy and 90 days of home exercise therapy was three points on the upper extremity Fugl Meyer score. A clinically meaningful response defined as a greater than or equal to six point improvement was seen in approximately half of people treated with VNS compared to approximately a quarter of people treated with rehabilitation alone. Further post-marketing research should aim to establish whether the treatment is also of use for people with intracerebral haemorrhage, in people with more severe arm weakness, and for other post stroke impairments. In addition, high quality randomised studies of non-invasive VNS are required.
Collapse
Affiliation(s)
- Jesse Dawson
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 9QQ, UK 236381
| | - Azmil Husin Abdul-Rahim
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 9QQ, UK 3526
| |
Collapse
|
47
|
Shin TJ, Kim PJ, Choi B. How general anesthetics work: from the perspective of reorganized connections within the brain. Korean J Anesthesiol 2022; 75:124-138. [PMID: 35130674 PMCID: PMC8980288 DOI: 10.4097/kja.22078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 11/24/2022] Open
Abstract
General anesthesia is critical for various procedures and surgeries. Despite the widespread use of anesthetics, their precise mechanisms remain poorly understood. Anesthetics inevitably act on the brain, primarily through the modulation of target receptors. Even if the action is specific to an individual neuron, however, long-range effects can occur due to the tremendous interconnectedness of neuronal activity. The strength of this connectivity can be understood using mathematical models that allow for the study of neuronal connectivity dynamics. These models also allow researchers to develop hypotheses on the candidate mechanisms of action of different types of anesthesia. This review highlights the theoretical background associated with the study of the mechanisms of action of anesthetics. We propose a candidate framework that describes how anesthetics act on the brain and consciousness in general.
Collapse
|
48
|
Kumar MG, Tan C, Libedinsky C, Yen SC, Tan AYY. A Nonlinear Hidden Layer Enables Actor-Critic Agents to Learn Multiple Paired Association Navigation. Cereb Cortex 2022; 32:3917-3936. [PMID: 35034127 DOI: 10.1093/cercor/bhab456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 11/15/2022] Open
Abstract
Navigation to multiple cued reward locations has been increasingly used to study rodent learning. Though deep reinforcement learning agents have been shown to be able to learn the task, they are not biologically plausible. Biologically plausible classic actor-critic agents have been shown to learn to navigate to single reward locations, but which biologically plausible agents are able to learn multiple cue-reward location tasks has remained unclear. In this computational study, we show versions of classic agents that learn to navigate to a single reward location, and adapt to reward location displacement, but are not able to learn multiple paired association navigation. The limitation is overcome by an agent in which place cell and cue information are first processed by a feedforward nonlinear hidden layer with synapses to the actor and critic subject to temporal difference error-modulated plasticity. Faster learning is obtained when the feedforward layer is replaced by a recurrent reservoir network.
Collapse
Affiliation(s)
- M Ganesh Kumar
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore 119077, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
- Innovation and Design Programme, Faculty of Engineering, National University of Singapore, Singapore 117579, Singapore
| | - Cheston Tan
- Institute for Infocomm Research, Agency for Science, Technology and Research, Singapore 138632, Singapore
| | - Camilo Libedinsky
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore 119077, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
- Department of Psychology, National University of Singapore, Singapore 117570, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore
| | - Shih-Cheng Yen
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore 119077, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
- Innovation and Design Programme, Faculty of Engineering, National University of Singapore, Singapore 117579, Singapore
| | - Andrew Y Y Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
49
|
Liew SL, Lin DJ, Cramer SC. Interventions to Improve Recovery After Stroke. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00061-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
50
|
Franco LM, Yaksi E. Experience-dependent plasticity modulates ongoing activity in the antennal lobe and enhances odor representations. Cell Rep 2021; 37:110165. [PMID: 34965425 PMCID: PMC8739562 DOI: 10.1016/j.celrep.2021.110165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/10/2021] [Accepted: 12/01/2021] [Indexed: 11/28/2022] Open
Abstract
Ongoing neural activity has been observed across several brain regions and is thought to reflect the internal state of the brain. Yet, it is important to understand how ongoing neural activity interacts with sensory experience and shapes sensory representations. Here, we show that the projection neurons of the fruit fly antennal lobe exhibit spatiotemporally organized ongoing activity. After repeated exposure to odors, we observe a gradual and cumulative decrease in the amplitude and number of calcium events occurring in the absence of odor stimulation, as well as a reorganization of correlations between olfactory glomeruli. Accompanying these plastic changes, we find that repeated odor experience decreases trial-to-trial variability and enhances the specificity of odor representations. Our results reveal an odor-experience-dependent modulation of ongoing and sensory-evoked activity at peripheral levels of the fruit fly olfactory system. The fruit fly antennal lobe exhibits spatiotemporally organized ongoing activity Repeated odor experience decreases the amplitude and number of ongoing calcium events Odor experience enhances the robustness and the specificity of odor representations Representations of different odors become more dissimilar upon repeated exposure
Collapse
Affiliation(s)
- Luis M Franco
- Neuroelectronics Research Flanders (NERF), KU Leuven, Leuven 3001, Belgium; VIB Center for the Biology of Disease, KU Leuven, Leuven 3000, Belgium; Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Emre Yaksi
- Neuroelectronics Research Flanders (NERF), KU Leuven, Leuven 3001, Belgium; Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU, Trondheim 7030, Norway.
| |
Collapse
|