1
|
Anilkumar S A, Dutta S, Aboo S, Ismail A. Vitamin D as a modulator of molecular pathways involved in CVDs: Evidence from preclinical studies. Life Sci 2024; 357:123062. [PMID: 39288869 DOI: 10.1016/j.lfs.2024.123062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/27/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Vitamin D deficiency (VDD) is a widespread global health issue, affecting nearly a billion individuals worldwide, and mounting evidence links it to an increased risk of cardiovascular diseases like hypertension, atherosclerosis, and heart failure. The discovery of vitamin D receptors and metabolizing enzymes in cardiac and vascular cells, coupled with experimental studies, underscores the complex relationship between vitamin D and cardiovascular health. This review aims to synthesize and critically evaluate the preclinical evidence elucidating the role of vitamin D in cardiovascular health. We examined diverse preclinical in vitro (cardiomyocyte cell line) models and in vivo models, including knockout mice, diet-induced deficiency, and disease-specific animal models (hypertension, hypertrophy and myocardial infarction). These studies reveal that vitamin D modulates vascular tone, and prevents fibrosis and hypertrophy through effects on major signal transduction pathways (NF-kB, Nrf2, PI3K/AKT/mTOR, Calcineurin/NFAT, TGF-β/Smad, AMPK) and influences epigenetic mechanisms governing inflammation, oxidative stress, and pathological remodeling. In vitro studies elucidate vitamin D's capacity to promote cardiomyocyte differentiation and inhibit pathological remodeling. In vivo studies further uncovered detrimental cardiac effects of VDD, while supplementation with vitamin D in cardiovascular disease (CVD) models demonstrated its protective effects by decreasing inflammation, attenuating hypertrophy, reduction in plaque formation, and improving cardiac function. Hence, this comprehensive review emphasizes the critical role of vitamin D in cardiovascular health and its potential as a preventive/therapeutic strategy in CVDs. However, further research is needed to translate these findings into clinical applications as there are discrepancies between preclinical and clinical studies.
Collapse
Affiliation(s)
- Athira Anilkumar S
- Department of Endocrinology, ICMR-National Institute of Nutrition, Hyderabad, India
| | - Soumam Dutta
- Department of Endocrinology, ICMR-National Institute of Nutrition, Hyderabad, India
| | - Shabna Aboo
- Department of Endocrinology, ICMR-National Institute of Nutrition, Hyderabad, India.
| | - Ayesha Ismail
- Department of Endocrinology, ICMR-National Institute of Nutrition, Hyderabad, India.
| |
Collapse
|
2
|
Nishida M, Mi X, Ishii Y, Kato Y, Nishimura A. Cardiac remodeling: novel pathophysiological mechanisms and therapeutic strategies. J Biochem 2024; 176:255-262. [PMID: 38507681 DOI: 10.1093/jb/mvae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024] Open
Abstract
Morphological and structural remodeling of the heart, including cardiac hypertrophy and fibrosis, has been considered as a therapeutic target for heart failure for approximately three decades. Groundbreaking heart failure medications demonstrating reverse remodeling effects have contributed significantly to medical advancements. However, nearly 50% of heart failure patients still exhibit drug resistance, posing a challenge to the healthcare system. Recently, characteristics of heart failure resistant to ARBs and β-blockers have been defined, highlighting preserved systolic function despite impaired diastolic function, leading to the classification of heart failure with preserved ejection fraction (HFpEF). The pathogenesis and aetiology of HFpEF may be related to metabolic abnormalities, as evidenced by its mimicry through endothelial dysfunction and excessive intake of high-fat diets. Our recent findings indicate a significant involvement of mitochondrial hyper-fission in the progression of heart failure. This mitochondrial pathological remodeling is associated with redox imbalance, especially hydrogen sulphide accumulation due to abnormal electron leak in myocardium. In this review, we also introduce a novel therapeutic strategy for heart failure from the current perspective of mitochondrial redox-metabolic remodeling.
Collapse
Key Words
- Abbreviations: CTGF, connective tissue growth factor
- GEF-H1, guanine nucleotide exchange factor
- HFpEF, heart failure with preserved ejection fraction
- MHC, myosin heavy chain
- MMP, matrix metalloproteinase
- MRTF, myocardin-related transcription factor
- NFAT, nuclear factor of activated T cell
- PICP, procollagen type 1 carboxy-terminal peptide
- PIIINP, procollagen type III amino-terminal
- SMA, smooth muscle actin
- TGF, transforming growth factor
- TRPC, transient receptor potential canonical
- cardiac remodeling
- mitochondria
- redox/energy metabolism
- supersulphide
- transient receptor potential
Collapse
Affiliation(s)
- Motohiro Nishida
- Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Department of Creative Research, Cardiocirculatory Dynamism Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Department of Physiological Sciences, SOKENDAI (School of Life Science), The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Xinya Mi
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yukina Ishii
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuri Kato
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Akiyuki Nishimura
- Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Department of Creative Research, Cardiocirculatory Dynamism Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Department of Physiological Sciences, SOKENDAI (School of Life Science), The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
3
|
Attachaipanich T, Chattipakorn SC, Chattipakorn N. Cardiovascular toxicities by calcineurin inhibitors: Cellular mechanisms behind clinical manifestations. Acta Physiol (Oxf) 2024; 240:e14199. [PMID: 38984711 DOI: 10.1111/apha.14199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024]
Abstract
Calcineurin inhibitors (CNI), including cyclosporine A (CsA) and tacrolimus (TAC), are cornerstones of immunosuppressive therapy in solid organ transplant recipients. While extensively recognized for their capacity to induce nephrotoxicity, hypertension, and dyslipidemia, emerging reports suggest potential direct cardiovascular toxicities associated with CNI. Evidence from both in vitro and in vivo studies has demonstrated direct cardiotoxic impact of CNI, manifesting itself as induction of cardiomyocyte apoptosis, enhanced oxidative stress, inflammatory cell infiltration, and cardiac fibrosis. CNI enhances cellular apoptosis through CaSR via activation of the p38 MAPK pathway and deactivation of the ERK pathway, and enhancement of miR-377 axis. Although CNI could attenuate cardiac hypertrophy in certain animal models, CNI concurrently impaired systolic function, enhanced cardiac fibrosis, and increased the risk of heart failure. Evidence from in vivo studies demonstrated that CNI prolong the duration of action potentials through a decrease in potassium current. CNI also exerted direct effects on endothelial cell injury, inducing apoptosis and enhancing oxidative stress. CNI may induce vascular inflammation through TLR4 via MyD88 and TRIF pathways. In addition, CNI affects vascular function by impairing endothelial-dependent vasodilation and promoting vasoconstriction. Clinical studies in transplant patients also revealed an increased incidence of cardiac remodeling. However, the evidence is constrained by the limited number of participants and potential confounding factors. Several studies indicate differing cardiovascular toxicity profiles between CsA and TAC, and these could be potentially due to their different interactions with calcineurin subunits and calcineurin-independent effects. Further studies are needed to clarify these mechanisms to improve cardiovascular outcomes for transplant patients with CNI.
Collapse
Affiliation(s)
- Tanawat Attachaipanich
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Research Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
4
|
Zhang L, Xie F, Zhang F, Lu B. The potential roles of exosomes in pathological cardiomyocyte hypertrophy mechanisms and therapy: A review. Medicine (Baltimore) 2024; 103:e37994. [PMID: 38669371 PMCID: PMC11049793 DOI: 10.1097/md.0000000000037994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Pathological cardiac hypertrophy, characterized by the enlargement of cardiac muscle cells, leads to serious cardiac conditions and stands as a major global health issue. Exosomes, comprising small lipid bilayer vesicles, are produced by various cell types and found in numerous bodily fluids. They play a pivotal role in intercellular communication by transferring bioactive cargos to recipient cells or activating signaling pathways in target cells. Exosomes from cardiomyocytes, endothelial cells, fibroblasts, and stem cells are key in regulating processes like cardiac hypertrophy, cardiomyocyte survival, apoptosis, fibrosis, and angiogenesis within the context of cardiovascular diseases. This review delves into exosomes' roles in pathological cardiac hypertrophy, first elucidating their impact on cell communication and signaling pathways. It then advances to discuss how exosomes affect key hypertrophic processes, including metabolism, fibrosis, oxidative stress, and angiogenesis. The review culminates by evaluating the potential of exosomes as biomarkers and their significance in targeted therapeutic strategies, thus emphasizing their critical role in the pathophysiology and management of cardiac hypertrophy.
Collapse
Affiliation(s)
- Lijun Zhang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Fang Xie
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Fengmei Zhang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Beiyao Lu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Mehra N, Ali AH, Desai MY. Obstructive hypertrophic cardiomyopathy: a review of new therapies. Future Cardiol 2023; 19:661-670. [PMID: 37933625 DOI: 10.2217/fca-2023-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/13/2023] [Indexed: 11/08/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a phenotypically heterogeneous disease with a genetic basis and variable penetrance. The hallmarks of HCM include dynamic left ventricular outflow tract obstruction, typically caused by asymmetric septal hypertrophy. However, abnormal papillary muscle placement, abnormal mitral valve and subvalvular apparatus and apical hypertrophic forms have also been described. Typical medical treatment has been stagnant for decades, although there have been significant advances in surgical treatment of patients with obstructive HCM. Herein, we describe a new class of drugs targeting the specific pathophysiology of HCM.
Collapse
Affiliation(s)
- Nandini Mehra
- Hypertrophic Cardiomyopathy Center, Heart Vascular Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Adel Hajj Ali
- Hypertrophic Cardiomyopathy Center, Heart Vascular Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Internal Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Milind Y Desai
- Hypertrophic Cardiomyopathy Center, Heart Vascular Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
6
|
Argirò A, Zampieri M, Marchi A, Cappelli F, Del Franco A, Mazzoni C, Cecchi F, Olivotto I. Stage-specific therapy for hypertrophic cardiomyopathy. Eur Heart J Suppl 2023; 25:C155-C161. [PMID: 37125313 PMCID: PMC10132571 DOI: 10.1093/eurheartjsupp/suad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited myocardial disease and is defined by otherwise unexplained left ventricular hypertrophy. The main complications include heart failure and arrhythmias such as atrial fibrillation and ventricular arrhythmias. Current treatment rests on septal reduction therapies, prevention of sudden cardiac death through implantable cardioverter defibrillator, and use of drugs such as beta-blockers, calcium antagonists, or amiodarone. In the last years, new pharmacological agents specifically targeting the pathophysiology of the disease have been developed with encouraging results in terms of functional capacity and symptoms improvement from clinical trials. In this review, we summarize the possible treatment approaches for each phase of the natural history of the disease: pre-phenotype expression, classic phenotype, adverse remodelling, and overt dysfunction.
Collapse
Affiliation(s)
- Alessia Argirò
- Cardiomyopathy Unit, Cardiothoracovascular Department, Careggi University Hospital, Largo Brambilla, 3 50134 Florence, Italy
| | - Mattia Zampieri
- Cardiomyopathy Unit, Cardiothoracovascular Department, Careggi University Hospital, Largo Brambilla, 3 50134 Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Meyer Children Hospital, Florence, Italy
| | - Alberto Marchi
- Cardiomyopathy Unit, Cardiothoracovascular Department, Careggi University Hospital, Largo Brambilla, 3 50134 Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Meyer Children Hospital, Florence, Italy
| | - Francesco Cappelli
- Cardiomyopathy Unit, Cardiothoracovascular Department, Careggi University Hospital, Largo Brambilla, 3 50134 Florence, Italy
| | - Annamaria Del Franco
- Cardiomyopathy Unit, Cardiothoracovascular Department, Careggi University Hospital, Largo Brambilla, 3 50134 Florence, Italy
| | - Carlotta Mazzoni
- Cardiomyopathy Unit, Cardiothoracovascular Department, Careggi University Hospital, Largo Brambilla, 3 50134 Florence, Italy
| | - Franco Cecchi
- Department of Cardiology, IRCCS Istituto Auxologico Italiano, Department of Cardiology, Ospedale San Luca, Milan, Italy
| | - Iacopo Olivotto
- Cardiomyopathy Unit, Cardiothoracovascular Department, Careggi University Hospital, Largo Brambilla, 3 50134 Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Meyer Children Hospital, Florence, Italy
| |
Collapse
|
7
|
Lunde IG, Skrbic B, Sjaastad I, Christensen G, Carlson CR, Tønnessen T. Calcineurin-NFAT dynamics correspond to cardiac remodeling during aortic banding and debanding, mimicking aortic valve replacement. FRONTIERS IN MOLECULAR MEDICINE 2022; 2:980717. [PMID: 39086965 PMCID: PMC11285616 DOI: 10.3389/fmmed.2022.980717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/06/2022] [Indexed: 08/02/2024]
Abstract
Aortic valve stenosis (AS) is a major health problem. Extensive myocardial remodeling increases operative risk and might lead to incomplete reverse remodeling with persistent symptoms after aortic valve replacement (AVR); this makes the optimal timing of AVR a clinical challenge. The pathogenesis behind incomplete reverse remodeling is unclear. Central among signaling pathways in the remodeling heart is the pro-hypertrophic Ca2+-activated calcineurin and its downstream nuclear factor of activated T-cell (NFATc1-c4) transcription factors. We investigated calcineurin-NFATc dynamics in patient and mouse hearts during remodeling and reverse remodeling. Myocardial biopsies were obtained from AS patients during AVR and left ventricles harvested from mice subjected to aortic banding (AB) and debanding (DB). The transcript and protein of the NFATc-responsive gene regulator of calcineurin 1-4 (RCAN1-4) and luciferase activity in NFAT-luciferase mice were used as read-outs for calcineurin-NFATc activity. Calcineurin-NFATc activation was sustained through AB 24 h to 18 weeks and elevated in AS patients. All four NFATc isoforms were elevated in AS, while NFATc4 was persistently elevated during chronic remodeling after AB in mice. NFAT activation remained reversible when 1 week's AB was followed by 1 week's DB and accompanied functional improvement. However, when DB for 1 week followed AB for 4 weeks, NFAT activation was not reversed. In conclusion, calcineurin-NFAT dynamics correspond with cardiac remodeling and reverse remodeling during experimental AB and DB. Our data suggest that calcineurin-NFATc attenuation is important for reverse remodeling and outcomes after AVR for AS.
Collapse
Affiliation(s)
- Ida G. Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Cardiac Research Center, University of Oslo, Oslo, Norway
- Division of Diagnostics and Technology, Akershus University Hospital, Lørenskog, Norway
| | - Biljana Skrbic
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Cardiac Research Center, University of Oslo, Oslo, Norway
- Department of Cardiothoracic Surgery, Oslo University Hospital Ullevaal, Oslo, Norway
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Cardiac Research Center, University of Oslo, Oslo, Norway
| | - Geir Christensen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Cardiac Research Center, University of Oslo, Oslo, Norway
| | - Cathrine R. Carlson
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Cardiac Research Center, University of Oslo, Oslo, Norway
| | - Theis Tønnessen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Cardiac Research Center, University of Oslo, Oslo, Norway
- Department of Cardiothoracic Surgery, Oslo University Hospital Ullevaal, Oslo, Norway
| |
Collapse
|
8
|
Bossuyt J, Borst JM, Verberckmoes M, Bailey LRJ, Bers DM, Hegyi B. Protein Kinase D1 Regulates Cardiac Hypertrophy, Potassium Channel Remodeling, and Arrhythmias in Heart Failure. J Am Heart Assoc 2022; 11:e027573. [PMID: 36172952 DOI: 10.1161/jaha.122.027573] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Structural and electrophysiological remodeling characterize heart failure (HF) enhancing arrhythmias. PKD1 (protein kinase D1) is upregulated in HF and mediates pathological hypertrophic signaling, but its role in K+ channel remodeling and arrhythmogenesis in HF is unknown. Methods and Results We performed echocardiography, electrophysiology, and expression analysis in wild-type and PKD1 cardiomyocyte-specific knockout (cKO) mice following transverse aortic constriction (TAC). PKD1-cKO mice exhibited significantly less cardiac hypertrophy post-TAC and were protected from early decline in cardiac contractile function (3 weeks post-TAC) but not the progression to HF at 7 weeks post-TAC. Wild-type mice exhibited ventricular action potential duration prolongation at 8 weeks post-TAC, which was attenuated in PKD1-cKO, consistent with larger K+ currents via the transient outward current, sustained current, inward rectifier K+ current, and rapid delayed rectifier K+ current and increased expression of corresponding K+ channels. Conversely, reduction of slowly inactivating K+ current was independent of PKD1 in HF. Acute PKD inhibition slightly increased transient outward current in TAC and sham wild-type myocytes but did not alter other K+ currents. Sham PKD1-cKO versus wild-type also exhibited larger transient outward current and faster early action potential repolarization. Tachypacing-induced action potential duration alternans in TAC animals was increased and independent of PKD1, but diastolic arrhythmogenic activities were reduced in PKD1-cKO. Conclusions Our data indicate an important role for PKD1 in the HF-related hypertrophic response and K+ channel downregulation. Therefore, PKD1 inhibition may represent a therapeutic strategy to reduce hypertrophy and arrhythmias; however, PKD1 inhibition may not prevent disease progression and reduced contractility in HF.
Collapse
Affiliation(s)
- Julie Bossuyt
- Department of Pharmacology University of California Davis CA
| | - Johanna M Borst
- Department of Pharmacology University of California Davis CA
| | | | | | - Donald M Bers
- Department of Pharmacology University of California Davis CA
| | - Bence Hegyi
- Department of Pharmacology University of California Davis CA
| |
Collapse
|
9
|
Elezaby A, Dexheimer R, Sallam K. Cardiovascular effects of immunosuppression agents. Front Cardiovasc Med 2022; 9:981838. [PMID: 36211586 PMCID: PMC9534182 DOI: 10.3389/fcvm.2022.981838] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022] Open
Abstract
Immunosuppressive medications are widely used to treat patients with neoplasms, autoimmune conditions and solid organ transplants. Key drug classes, namely calcineurin inhibitors, mammalian target of rapamycin (mTOR) inhibitors, and purine synthesis inhibitors, have direct effects on the structure and function of the heart and vascular system. In the heart, immunosuppressive agents modulate cardiac hypertrophy, mitochondrial function, and arrhythmia risk, while in vasculature, they influence vessel remodeling, circulating lipids, and blood pressure. The aim of this review is to present the preclinical and clinical literature examining the cardiovascular effects of immunosuppressive agents, with a specific focus on cyclosporine, tacrolimus, sirolimus, everolimus, mycophenolate, and azathioprine.
Collapse
Affiliation(s)
- Aly Elezaby
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Ryan Dexheimer
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Karim Sallam
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
- *Correspondence: Karim Sallam
| |
Collapse
|
10
|
Attwaters M, Hughes SM. Cellular and molecular pathways controlling muscle size in response to exercise. FEBS J 2022; 289:1428-1456. [PMID: 33755332 DOI: 10.1111/febs.15820] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/27/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022]
Abstract
From the discovery of ATP and motor proteins to synaptic neurotransmitters and growth factor control of cell differentiation, skeletal muscle has provided an extreme model system in which to understand aspects of tissue function. Muscle is one of the few tissues that can undergo both increase and decrease in size during everyday life. Muscle size depends on its contractile activity, but the precise cellular and molecular pathway(s) by which the activity stimulus influences muscle size and strength remain unclear. Four correlates of muscle contraction could, in theory, regulate muscle growth: nerve-derived signals, cytoplasmic calcium dynamics, the rate of ATP consumption and physical force. Here, we summarise the evidence for and against each stimulus and what is known or remains unclear concerning their molecular signal transduction pathways and cellular effects. Skeletal muscle can grow in three ways, by generation of new syncytial fibres, addition of nuclei from muscle stem cells to existing fibres or increase in cytoplasmic volume/nucleus. Evidence suggests the latter two processes contribute to exercise-induced growth. Fibre growth requires increase in sarcolemmal surface area and cytoplasmic volume at different rates. It has long been known that high-force exercise is a particularly effective growth stimulus, but how this stimulus is sensed and drives coordinated growth that is appropriately scaled across organelles remains a mystery.
Collapse
Affiliation(s)
- Michael Attwaters
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, UK
| | - Simon M Hughes
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, UK
| |
Collapse
|
11
|
Winkle AJ, Nassal DM, Shaheen R, Thomas E, Mohta S, Gratz D, Weinberg SH, Hund TJ. Emerging therapeutic targets for cardiac hypertrophy. Expert Opin Ther Targets 2022; 26:29-40. [PMID: 35076342 PMCID: PMC8885901 DOI: 10.1080/14728222.2022.2031974] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Cardiac hypertrophy is associated with adverse outcomes across cardiovascular disease states. Despite strides over the last three decades in identifying molecular and cellular mechanisms driving hypertrophy, the link between pathophysiological stress stimuli and specific myocyte/heart growth profiles remains unclear. Moreover, the optimal strategy for preventing pathology in the setting of hypertrophy remains controversial. AREAS COVERED This review discusses molecular mechanisms underlying cardiac hypertrophy with a focus on factors driving the orientation of myocyte growth and the impact on heart function. We highlight recent work showing a novel role for the spectrin-based cytoskeleton, emphasizing regulation of myocyte dimensions but not hypertrophy per se. Finally, we consider opportunities for directing the orientation of myocyte growth in response to hypertrophic stimuli as an alternative therapeutic approach. Relevant publications on the topic were identified through Pubmed with open-ended search dates. EXPERT OPINION To define new therapeutic avenues, more precision is required when describing changes in myocyte and heart structure/function in response to hypertrophic stimuli. Recent developments in computational modeling of hypertrophic networks, in concert with more refined experimental approaches will catalyze translational discovery to advance the field and further our understanding of cardiac hypertrophy and its relationship with heart disease.
Collapse
Affiliation(s)
- Alexander J Winkle
- The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, the Ohio State University, Columbus, OH, USA
| | - Drew M Nassal
- The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, the Ohio State University, Columbus, OH, USA
| | - Rebecca Shaheen
- The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, the Ohio State University, Columbus, OH, USA
| | - Evelyn Thomas
- The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, the Ohio State University, Columbus, OH, USA
| | - Shivangi Mohta
- The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, the Ohio State University, Columbus, OH, USA
| | - Daniel Gratz
- The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, the Ohio State University, Columbus, OH, USA
| | - Seth H Weinberg
- The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, the Ohio State University, Columbus, OH, USA
| | - Thomas J Hund
- The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, the Ohio State University, Columbus, OH, USA.,Department of Internal Medicine, College of Medicine, the Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
12
|
Paulino ET, Rodrigues AKBF, Machado MLDP, de Oliveira KRV, Bernardino AC, Quintans-Júnior LJ, Oliveira AP, Ribeiro ÊAN. Alpha-terpineol prevents myocardial damage against isoproterenol-MI induced in Wistar-Kyoto rats: New possible to promote cardiovascular integrity. Life Sci 2021; 290:120087. [PMID: 34740575 DOI: 10.1016/j.lfs.2021.120087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 10/19/2022]
Abstract
Alpha-terpineol (TPN) is one of the major components of the resin obtained from Protium heptaphyllum. This plant has been utilized as medicine by Brazilian indigenous tribes to treat cardiovascular diseases. Scientific reports have shown that the TPN possesses vasorelaxant and antihypertensive effects. This study was conducted to assess the cardioprotective action of TPN against isoproterenol (ISO)-induced cardiotoxicity. Wistar rats were randomly divided into six groups. Rats were orally administered with TPN (25, 50, and 75 mg/kg, respectively) for 15 days, and ISO was administered (85 mg/kg, subcutaneously) on the 14th and 15th days. At the end of the experiment, the hemodynamic, baroreflex test, ECG, biochemical, histological, and morphometric changes were monitored from control and experimental groups, i.e., on the 15th day. ISO-induced myocardial infarcted rats showed an increase in mortality rates, cardiac marker enzymes, tachycardia, hypertrophy, myocardium necrosis, edema, hemorrhagic areas, infiltration of inflammatory cells like lymphocytes, and increased myocardial infarct size. However, pretreatment with TPN significantly inhibited these effects of ISO. The histopathological findings obtained for the myocardium further confirmed the biochemical results. Thus, the present study provides evidence for the efficacy of TPN against ISO-induced myocardial infarction in rats.
Collapse
Affiliation(s)
- Emanuel Tenório Paulino
- Cardiovascular Pharmacology Laboratory, Pharmaceutical Institute Sciences, Federal University of Alagoas, Brazil.
| | | | - Maria Luiza Dal Pont Machado
- Cardiovascular Pharmacology Laboratory, Pharmaceutical Institute Sciences, Federal University of Alagoas, Brazil
| | | | - Alessando César Bernardino
- Cardiovascular Pharmacology Laboratory, Pharmaceutical Institute Sciences, Federal University of Alagoas, Brazil
| | | | - Aldeídia Pereira Oliveira
- Medicinal Plants Research Center, Institute of Biology and Health Science, Federal University of Piauí, Brazil
| | | |
Collapse
|
13
|
Chaklader M, Rothermel BA. Calcineurin in the heart: New horizons for an old friend. Cell Signal 2021; 87:110134. [PMID: 34454008 PMCID: PMC8908812 DOI: 10.1016/j.cellsig.2021.110134] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/10/2021] [Accepted: 08/23/2021] [Indexed: 01/20/2023]
Abstract
Calcineurin, also known as PP2B or PPP3, is a member of the PPP family of protein phosphatases that also includes PP1 and PP2A. Together these three phosphatases carryout the majority of dephosphorylation events in the heart. Calcineurin is distinct in that it is activated by the binding of calcium/calmodulin (Ca2+/CaM) and therefore acts as a node for integrating Ca2+ signals with changes in phosphorylation, two fundamental intracellular signaling cascades. In the heart, calcineurin is primarily thought of in the context of pathological cardiac remodeling, acting through the Nuclear Factor of Activated T-cell (NFAT) family of transcription factors. However, calcineurin activity is also essential for normal heart development and homeostasis in the adult heart. Furthermore, it is clear that NFAT-driven changes in transcription are not the only relevant processes initiated by calcineurin in the setting of pathological remodeling. There is a growing appreciation for the diversity of calcineurin substrates that can impact cardiac function as well as the diversity of mechanisms for targeting calcineurin to specific sub-cellular domains in cardiomyocytes and other cardiac cell types. Here, we will review the basics of calcineurin structure, regulation, and function in the context of cardiac biology. Particular attention will be given to: the development of improved tools to identify and validate new calcineurin substrates; recent studies identifying new calcineurin isoforms with unique properties and targeting mechanisms; and the role of calcineurin in cardiac development and regeneration.
Collapse
Affiliation(s)
- Malay Chaklader
- Departments of Internal Medicine (Division of Cardiology) and Molecular Biology, University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - Beverly A Rothermel
- Departments of Internal Medicine (Division of Cardiology) and Molecular Biology, University of Texas Southwestern Medical Centre, Dallas, TX, USA.
| |
Collapse
|
14
|
Williams RB, Johnson CN. A Review of Calcineurin Biophysics with Implications for Cardiac Physiology. Int J Mol Sci 2021; 22:ijms222111565. [PMID: 34768996 PMCID: PMC8583826 DOI: 10.3390/ijms222111565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/20/2022] Open
Abstract
Calcineurin, also known as protein phosphatase 2B, is a heterodimeric serine threonine phosphatase involved in numerous signaling pathways. During the past 50 years, calcineurin has been the subject of extensive investigation. Many of its cellular and physiological functions have been described, and the underlying biophysical mechanisms are the subject of active investigation. With the abundance of techniques and experimental designs utilized to study calcineurin and its numerous substrates, it is difficult to reconcile the available information. There have been a plethora of reports describing the role of calcineurin in cardiac disease. However, a physiological role of calcineurin in healthy cardiomyocyte function requires clarification. Here, we review the seminal biophysical and structural details that are responsible for the molecular function and inhibition of calcineurin. We then focus on literature describing the roles of calcineurin in cardiomyocyte physiology and disease.
Collapse
Affiliation(s)
- Ryan B. Williams
- Department of Chemistry, Mississippi State University, Starkville, MS 39759, USA;
| | - Christopher N. Johnson
- Department of Chemistry, Mississippi State University, Starkville, MS 39759, USA;
- Center for Arrhythmia Research and Therapeutics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Correspondence:
| |
Collapse
|
15
|
Kamareddine L, Ghantous CM, Allouch S, Al-Ashmar SA, Anlar G, Kannan S, Djouhri L, Korashy HM, Agouni A, Zeidan A. Between Inflammation and Autophagy: The Role of Leptin-Adiponectin Axis in Cardiac Remodeling. J Inflamm Res 2021; 14:5349-5365. [PMID: 34703273 PMCID: PMC8528546 DOI: 10.2147/jir.s322231] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/24/2021] [Indexed: 01/05/2023] Open
Abstract
Cardiac remodeling is the process by which the heart adapts to stressful stimuli, such as hypertension and ischemia/reperfusion; it ultimately leads to heart failure upon long-term exposure. Autophagy, a cellular catabolic process that was originally considered as a mechanism of cell death in response to detrimental stimuli, is thought to be one of the main mechanisms that controls cardiac remodeling and induces heart failure. Dysregulation of the adipokines leptin and adiponectin, which plays essential roles in lipid and glucose metabolism, and in the pathophysiology of the neuroendocrine and cardiovascular systems, has been shown to affect the autophagic response in the heart and to contribute to accelerate cardiac remodeling. The obesity-associated protein leptin is a pro-inflammatory, tumor-promoting adipocytokine whose elevated levels in obesity are associated with acute cardiovascular events, and obesity-related hypertension. Adiponectin exerts anti-inflammatory and anti-tumor effects, and its reduced levels in obesity correlate with the pathogenesis of obesity-associated cardiovascular diseases. Leptin- and adiponectin-induced changes in autophagic flux have been linked to cardiac remodeling and heart failure. In this review, we describe the different molecular mechanisms of hyperleptinemia- and hypoadiponectinemia-mediated pathogenesis of cardiac remodeling and the involvement of autophagy in this process. A better understanding of the roles of leptin, adiponectin, and autophagy in cardiac functions and remodeling, and the exact signal transduction pathways by which they contribute to cardiac diseases may well lead to discovery of new therapeutic agents for the treatment of cardiovascular remodeling.
Collapse
Affiliation(s)
- Layla Kamareddine
- Department Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Crystal M Ghantous
- Department of Nursing and Health Sciences, Faculty of Nursing and Health Sciences, Notre Dame University-Louaize, Keserwan, Lebanon
| | - Soumaya Allouch
- Department of Basic Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Sarah A Al-Ashmar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
- Department of Basic Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Gulsen Anlar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
- Department of Basic Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Surya Kannan
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
- Department of Basic Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Laiche Djouhri
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
- Department of Basic Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Hesham M Korashy
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Abdelali Agouni
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Asad Zeidan
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
- Department of Basic Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
16
|
Coleman RC, Eguchi A, Lieu M, Roy R, Barr EW, Ibetti J, Lucchese AM, Peluzzo AM, Gresham K, Chuprun JK, Koch WJ. A peptide of the N terminus of GRK5 attenuates pressure-overload hypertrophy and heart failure. Sci Signal 2021; 14:14/676/eabb5968. [PMID: 33785612 DOI: 10.1126/scisignal.abb5968] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Aberrant changes in gene expression underlie the pathogenesis and progression of pressure-overload heart failure, leading to maladaptive cardiac hypertrophy, ventricular remodeling, and contractile dysfunction. Signaling through the G protein Gq triggers maladaptation and heart failure, in part through the activation of G protein-coupled receptor kinase 5 (GRK5). Hypertrophic stimuli induce the accumulation of GRK5 in the nuclei of cardiomyocytes, where it regulates pathological gene expression through multiple transcription factors including NFAT. The nuclear targeting of GRK5 is mediated by an amino-terminal (NT) domain that binds to calmodulin (CaM). Here, we sought to prevent GRK5-mediated pathology in pressure-overload maladaptation and heart failure by expressing in cardiomyocytes a peptide encoding the GRK5 NT (GRK5nt) that encompasses the CaM binding domain. In cultured cardiomyocytes, GRK5nt expression abrogated Gq-coupled receptor-mediated hypertrophy, including attenuation of pathological gene expression and the transcriptional activity of NFAT and NF-κB. We confirmed that GRK5nt bound to and blocked Ca2+-CaM from associating with endogenous GRK5, thereby preventing GRK5 nuclear accumulation after pressure overload. We generated mice that expressed GRKnt in a cardiac-specific fashion (TgGRK5nt mice), which exhibited reduced cardiac hypertrophy, ventricular dysfunction, pulmonary congestion, and cardiac fibrosis after chronic transverse aortic constriction. Together, our data support a role for GRK5nt as an inhibitor of pathological GRK5 signaling that prevents heart failure.
Collapse
Affiliation(s)
- Ryan C Coleman
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Akito Eguchi
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Melissa Lieu
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Rajika Roy
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Eric W Barr
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Jessica Ibetti
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Anna-Maria Lucchese
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Amanda M Peluzzo
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Kenneth Gresham
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - J Kurt Chuprun
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Walter J Koch
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
17
|
Bkaily G, Abou Abdallah N, Simon Y, Jazzar A, Jacques D. Vascular smooth muscle remodeling in health and disease. Can J Physiol Pharmacol 2021; 99:171-178. [PMID: 32853532 DOI: 10.1139/cjpp-2020-0399] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In blood vessels, vascular smooth muscle cells (VSMCs) generally exist in two major phenotypes: contractile and non-contractile (synthetic). The contractile phenotype is predominant and includes quiescent or differentiated VSMCs, which function as the regulators of blood vessel diameter and blood flow. According to some literature in the field, contractile VSMCs do not switch to the non-contractile phenotype due to the activation of specific transcription factors that are considered as guardians of the contractile phenotype. However, a vast amount of the literature uses the terms remodeling and phenotype switching of contractile VSMCs interchangeably based mainly on studies dealing with atherosclerosis. The use of the terms remodeling and switching to describe changes in phenotype based on morphological criteria can be confusing. The term remodeling was first used to describe morphological changes in the heart and was soon used to describe phenotype changes of contractile VSMCs based on morphological criteria. The latter were introduced in early studies, and new molecular criteria were later added, including changes in gene expression, which could be irreversible. In this review, we will discuss the different views concerning remodeling and possible switching of contractile VSMCs to a non-contractile phenotype. We conclude that only remodeling of contractile VSMCs may take place upon vascular injury and disease.
Collapse
Affiliation(s)
- Ghassan Bkaily
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| | - Nadia Abou Abdallah
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| | - Yanick Simon
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| | - Ashley Jazzar
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| | - Danielle Jacques
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| |
Collapse
|
18
|
Wang S, Wang Y, Qiu K, Zhu J, Wu Y. RCAN1 in cardiovascular diseases: molecular mechanisms and a potential therapeutic target. Mol Med 2020; 26:118. [PMID: 33267791 PMCID: PMC7709393 DOI: 10.1186/s10020-020-00249-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide. Considerable efforts are needed to elucidate the underlying mechanisms for the prevention and treatment of CVDs. Regulator of calcineurin 1 (RCAN1) is involved in both development/maintenance of the cardiovascular system and the pathogenesis of CVDs. RCAN1 reduction protects against atherosclerosis by reducing the uptake of oxidized low-density lipoproteins, whereas RCAN1 has a protective effect on myocardial ischemia/reperfusion injury, myocardial hypertrophy and intramural hematoma/aortic rupture mainly mediated by maintaining mitochondrial function and inhibiting calcineurin and Rho kinase activity, respectively. In this review, the regulation and the function of RCAN1 are summarized. Moreover, the dysregulation of RCAN1 in CVDs is reviewed. In addition, the beneficial role of RCAN1 reduction in atherosclerosis and the protective role of RCAN1 in myocardial ischemia/reperfusion injury, myocardial hypertrophy and intramural hematoma /aortic rupture are discussed, as well as underlying mechanisms. Furthermore, the therapeutic potential and challenges of targeting RCAN1 for CVDs treatment are also discussed.
Collapse
Affiliation(s)
- Shuai Wang
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jianshe South Road No. 45, Rencheng District, Jining, 272013, Shandong, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jianshe South Road No. 45, Rencheng District, Jining, 272013, Shandong, China
| | - Yuqing Wang
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jianshe South Road No. 45, Rencheng District, Jining, 272013, Shandong, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jianshe South Road No. 45, Rencheng District, Jining, 272013, Shandong, China.,Cheeloo College of Medicine, Shandong University, Wenhua West Road No. 44, Lixia District, JinanShandong, 250012, China
| | - Kaixin Qiu
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jianshe South Road No. 45, Rencheng District, Jining, 272013, Shandong, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jianshe South Road No. 45, Rencheng District, Jining, 272013, Shandong, China.,Cheeloo College of Medicine, Shandong University, Wenhua West Road No. 44, Lixia District, JinanShandong, 250012, China
| | - Jin Zhu
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jianshe South Road No. 45, Rencheng District, Jining, 272013, Shandong, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jianshe South Road No. 45, Rencheng District, Jining, 272013, Shandong, China
| | - Yili Wu
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jianshe South Road No. 45, Rencheng District, Jining, 272013, Shandong, China. .,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jianshe South Road No. 45, Rencheng District, Jining, 272013, Shandong, China.
| |
Collapse
|
19
|
Li H, Shi H, Zhang F, Xue H, Wang L, Tian J, Xu J, Han Q. LncRNA Tincr regulates PKCɛ expression in a miR-31-5p-dependent manner in cardiomyocyte hypertrophy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:2495-2506. [PMID: 32157348 DOI: 10.1007/s00210-020-01847-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 02/28/2020] [Indexed: 12/16/2022]
Abstract
Cardiomyocyte hypertrophy is a fatal factor in heart disease resulting in heart failure and even mortality. Although many studies have been focusing on the pathogenesis of cardiomyocyte hypertrophy, the exact molecular mechanisms are still unexclusive. In this study, we first found that the expression level of lncRNA Tincr was significantly decreased in the myocardial tissues of TAC mouse models of cardiomyocyte hypertrophy, and this result was further confirmed in H9C2 cells, a widely used rat myoblast cell lines. More intriguingly, we demonstrated that the aberration of Tincr is essential to the pathogenesis of cardiomyocyte hypertrophy, indicated by the re-induction of Tincr improving the heart functions of hypertrophic mice. In mechanism, we identified miR-31-5p as a direct target of Tincr using a widely used online bioinformatics tool StarBase, and this result was further experimentally validated using dual-luciferase reporter assay and real-time PCR. Also, we identified PRKCE as a direct target of miR-31-5p, and loss function of miR-31-5p significantly blocks the positive regulatory effect of Tincr on PRKCE expression in H9C2 cells. The knockdown of Tincr resulted in increased cardiomyocyte size, and, however, inhibition of miR-31-5p or overexpression of PRKCE significantly reversed the increased cardiomyocyte size. Taken together, our study showed that a novel Tincr-miR-31-5p axis targeting PRKCE was involved in cardiomyocyte hypertrophy, indicating that it may provide potential therapy in cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Hao Li
- The First Clinical Medical School, Shanxi Medical University, No. 56 Xinjian South Road, Taiyuan, 030001, Shanxi, People's Republic of China
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Hongtao Shi
- The First Clinical Medical School, Shanxi Medical University, No. 56 Xinjian South Road, Taiyuan, 030001, Shanxi, People's Republic of China
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Fan Zhang
- The First Clinical Medical School, Shanxi Medical University, No. 56 Xinjian South Road, Taiyuan, 030001, Shanxi, People's Republic of China
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Honghong Xue
- The First Clinical Medical School, Shanxi Medical University, No. 56 Xinjian South Road, Taiyuan, 030001, Shanxi, People's Republic of China
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Lei Wang
- The First Clinical Medical School, Shanxi Medical University, No. 56 Xinjian South Road, Taiyuan, 030001, Shanxi, People's Republic of China
- The Affiliated Cardiovascular Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Jing Tian
- The First Clinical Medical School, Shanxi Medical University, No. 56 Xinjian South Road, Taiyuan, 030001, Shanxi, People's Republic of China
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Jianrong Xu
- The First Clinical Medical School, Shanxi Medical University, No. 56 Xinjian South Road, Taiyuan, 030001, Shanxi, People's Republic of China
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Qinghua Han
- The First Clinical Medical School, Shanxi Medical University, No. 56 Xinjian South Road, Taiyuan, 030001, Shanxi, People's Republic of China.
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.
| |
Collapse
|
20
|
Takano APC, Senger N, Barreto-Chaves MLM. The endocrinological component and signaling pathways associated to cardiac hypertrophy. Mol Cell Endocrinol 2020; 518:110972. [PMID: 32777452 DOI: 10.1016/j.mce.2020.110972] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 07/14/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023]
Abstract
Although myocardial growth corresponds to an adaptive response to maintain cardiac contractile function, the cardiac hypertrophy is a condition that occurs in many cardiovascular diseases and typically precedes the onset of heart failure. Different endocrine factors such as thyroid hormones, insulin, insulin-like growth factor 1 (IGF-1), angiotensin II (Ang II), endothelin (ET-1), catecholamines, estrogen, among others represent important stimuli to cardiomyocyte hypertrophy. Thus, numerous endocrine disorders manifested as changes in the local environment or multiple organ systems are especially important in the context of progression from cardiac hypertrophy to heart failure. Based on that information, this review summarizes experimental findings regarding the influence of such hormones upon signalling pathways associated with cardiac hypertrophy. Understanding mechanisms through which hormones differentially regulate cardiac hypertrophy could open ways to obtain therapeutic approaches that contribute to prevent or delay the onset of heart failure related to endocrine diseases.
Collapse
Affiliation(s)
| | - Nathalia Senger
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | | |
Collapse
|
21
|
Zhang X, Lei F, Wang XM, Deng KQ, Ji YX, Zhang Y, Li H, Zhang XD, Lu Z, Zhang P. NULP1 Alleviates Cardiac Hypertrophy by Suppressing NFAT3 Transcriptional Activity. J Am Heart Assoc 2020; 9:e016419. [PMID: 32805187 PMCID: PMC7660797 DOI: 10.1161/jaha.120.016419] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background The development of pathological cardiac hypertrophy involves the coordination of a series of transcription activators and repressors, while their interplay to trigger pathological gene reprogramming remains unclear. NULP1 (nuclear localized protein 1) is a member of the basic helix-loop-helix family of transcription factors and its biological functions in pathological cardiac hypertrophy are barely understood. Methods and Results Immunoblot and immunostaining analyses showed that NULP1 expression was consistently reduced in the failing hearts of patients and hypertrophic mouse hearts and rat cardiomyocytes. Nulp1 knockout exacerbates aortic banding-induced cardiac hypertrophy pathology, which was significantly blunted by transgenic overexpression of Nulp1. Signal pathway screening revealed the nuclear factor of activated T cells (NFAT) pathway to be dramatically suppressed by NULP1. Coimmunoprecipitation showed that NULP1 directly interacted with the topologically associating domain of NFAT3 via its C-terminal region, which was sufficient to suppress NFAT3 transcriptional activity. Inactivation of the NFAT pathway by VIVIT peptides in vivo rescued the aggravated pathogenesis of cardiac hypertrophy resulting from Nulp1 deficiency. Conclusions NULP1 is an endogenous suppressor of NFAT3 signaling under hypertrophic stress and thus negatively regulates the pathogenesis of cardiac hypertrophy. Targeting overactivated NFAT by NULP1 may be a novel therapeutic strategy for the treatment of pathological cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Cardiology College of Life Sciences Zhongnan Hospital of Wuhan UniversityWuhan University Wuhan China.,Institute of Model Animal Wuhan University Wuhan China
| | - Fang Lei
- Institute of Model Animal Wuhan University Wuhan China
| | - Xiao-Ming Wang
- School of Basic Medical Sciences Wuhan University Wuhan China.,Institute of Model Animal Wuhan University Wuhan China
| | - Ke-Qiong Deng
- Department of Cardiology College of Life Sciences Zhongnan Hospital of Wuhan UniversityWuhan University Wuhan China.,Institute of Model Animal Wuhan University Wuhan China
| | - Yan-Xiao Ji
- Institute of Model Animal Wuhan University Wuhan China.,Medical Science Research Center Zhongnan Hospital of Wuhan University Wuhan China
| | - Yan Zhang
- Institute of Model Animal Wuhan University Wuhan China
| | - Hongliang Li
- School of Basic Medical Sciences Wuhan University Wuhan China.,Institute of Model Animal Wuhan University Wuhan China.,Medical Science Research Center Zhongnan Hospital of Wuhan University Wuhan China.,Department of Cardiology Renmin Hospital of Wuhan University Wuhan China
| | - Xiao-Dong Zhang
- Department of Cardiology College of Life Sciences Zhongnan Hospital of Wuhan UniversityWuhan University Wuhan China
| | - Zhibing Lu
- Department of Cardiology College of Life Sciences Zhongnan Hospital of Wuhan UniversityWuhan University Wuhan China
| | - Peng Zhang
- Department of Cardiology College of Life Sciences Zhongnan Hospital of Wuhan UniversityWuhan University Wuhan China.,Institute of Model Animal Wuhan University Wuhan China.,Medical Science Research Center Zhongnan Hospital of Wuhan University Wuhan China
| |
Collapse
|
22
|
Guan Y, Liu L, Jia Q, Jin X, Pang Y, Meng F, Zhang X, Shen H. The Role of Cell Growth-Related Gene Copy Number Variation in Autoimmune Thyroid Disease. Biol Trace Elem Res 2020; 195:409-416. [PMID: 31494809 DOI: 10.1007/s12011-019-01880-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/20/2019] [Indexed: 01/05/2023]
Abstract
Autoimmune thyroid disease (AITD) is a recurrent and refractory clinical endocrine disease. Some studies have shown that the incidence of AITD is not only related to iodine, a kind of environmental factor, but that susceptibility genes also play a crucial role in its pathogenesis. Since research on susceptibility genes is still underway, the aims of this study were to assess the association between copy number variations (CNVs) and AITD, to identify genes related to susceptibility to AITD, and to explore the risk factors in the occurrence of AITD. Blood samples from five AITD patients and five controls from each area were assessed by chromosome microarray to identify candidate genes. The copy number (CN) of the candidate genes and urinary iodine levels were determined in adults, including 158 AITD patients and 181 controls, from areas having different iodine statuses. The cell growth-related genes, glypican 5 (GPC5), B9 domain containing 2 (B9D2), and ankyrin repeat and suppressor of cytokine signaling [SOCS] box-containing protein family 11 (ASB11), were selected as the candidate genes. The distribution of GPC5, B9D2, and ASB11 CNVs in AITD patients and controls was significantly different, and high urinary iodine levels and GPC5 CNVs are risk factors for AITD. There was no significant association between urinary iodine level and CNVs of the candidate genes. High urinary iodine levels and GPC5 CNVs are risk factors for AITD, but an association with the occurrence of AITD was not found.
Collapse
Affiliation(s)
- Yunfeng Guan
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
- Harbin Center for Disease Control and Prevention, Harbin, China
| | - Lixiang Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
| | - Qingzhen Jia
- Institute for Endemic Disease Prevention and Treatment of Shanxi Province, Linfen, Shanxi, China
| | - Xing Jin
- Department of Epidemiology, School of Public Health, Dalian Medical University, Dalian, China
| | - Yi Pang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
| | - Fangang Meng
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
| | - Xiaoye Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
| | - Hongmei Shen
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China.
- Key Laboratory of Etiology and Epidemiology, National Health and Family Planning Commission, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China.
| |
Collapse
|
23
|
Knottnerus SJG, Mengarelli I, Wüst RCI, Baartscheer A, Bleeker JC, Coronel R, Ferdinandusse S, Guan K, IJlst L, Li W, Luo X, Portero VM, Ulbricht Y, Visser G, Wanders RJA, Wijburg FA, Verkerk AO, Houtkooper RH, Bezzina CR. Electrophysiological Abnormalities in VLCAD Deficient hiPSC-Cardiomyocytes Can Be Improved by Lowering Accumulation of Fatty Acid Oxidation Intermediates. Int J Mol Sci 2020; 21:ijms21072589. [PMID: 32276429 PMCID: PMC7177397 DOI: 10.3390/ijms21072589] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 12/14/2022] Open
Abstract
Patients with very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) can present with life-threatening cardiac arrhythmias. The pathophysiological mechanism is unknown. We reprogrammed fibroblasts from one mildly and one severely affected VLCADD patient, into human induced pluripotent stem cells (hiPSCs) and differentiated these into cardiomyocytes (VLCADD-CMs). VLCADD-CMs displayed shorter action potentials (APs), more delayed afterdepolarizations (DADs) and higher systolic and diastolic intracellular Ca2+ concentration ([Ca2+]i) than control CMs. The mitochondrial booster resveratrol mitigated the biochemical, electrophysiological and [Ca2+]i changes in the mild but not in the severe VLCADD-CMs. Accumulation of potentially toxic intermediates of fatty acid oxidation was blocked by substrate reduction with etomoxir. Incubation with etomoxir led to marked prolongation of AP duration and reduced DADs and [Ca2+]i in both VLCADD-CMs. These results provide compelling evidence that reduced accumulation of fatty acid oxidation intermediates, either by enhanced fatty acid oxidation flux through increased mitochondria biogenesis (resveratrol) or by inhibition of fatty acid transport into the mitochondria (etomoxir), rescues pro-arrhythmia defects in VLCADD-CMs and open doors for new treatments.
Collapse
Affiliation(s)
- Suzan J. G. Knottnerus
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, 1105 AZ Amsterdam, The Netherlands; (S.J.G.K.); (R.C.I.W.); (J.C.B.); (S.F.); (L.I.); (G.V.); (R.J.A.W.)
- Department of Paediatric Metabolic Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands
| | - Isabella Mengarelli
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (I.M.); (A.B.); (R.C.); (V.M.P.); (A.O.V.)
| | - Rob C. I. Wüst
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, 1105 AZ Amsterdam, The Netherlands; (S.J.G.K.); (R.C.I.W.); (J.C.B.); (S.F.); (L.I.); (G.V.); (R.J.A.W.)
| | - Antonius Baartscheer
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (I.M.); (A.B.); (R.C.); (V.M.P.); (A.O.V.)
| | - Jeannette C. Bleeker
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, 1105 AZ Amsterdam, The Netherlands; (S.J.G.K.); (R.C.I.W.); (J.C.B.); (S.F.); (L.I.); (G.V.); (R.J.A.W.)
- Department of Paediatric Metabolic Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands
| | - Ruben Coronel
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (I.M.); (A.B.); (R.C.); (V.M.P.); (A.O.V.)
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, 1105 AZ Amsterdam, The Netherlands; (S.J.G.K.); (R.C.I.W.); (J.C.B.); (S.F.); (L.I.); (G.V.); (R.J.A.W.)
| | - Kaomei Guan
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, 01069 Dresden, Germany; (K.G.); (W.L.); (X.L.); (Y.U.)
| | - Lodewijk IJlst
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, 1105 AZ Amsterdam, The Netherlands; (S.J.G.K.); (R.C.I.W.); (J.C.B.); (S.F.); (L.I.); (G.V.); (R.J.A.W.)
| | - Wener Li
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, 01069 Dresden, Germany; (K.G.); (W.L.); (X.L.); (Y.U.)
| | - Xiaojing Luo
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, 01069 Dresden, Germany; (K.G.); (W.L.); (X.L.); (Y.U.)
| | - Vincent M. Portero
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (I.M.); (A.B.); (R.C.); (V.M.P.); (A.O.V.)
| | - Ying Ulbricht
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, 01069 Dresden, Germany; (K.G.); (W.L.); (X.L.); (Y.U.)
| | - Gepke Visser
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, 1105 AZ Amsterdam, The Netherlands; (S.J.G.K.); (R.C.I.W.); (J.C.B.); (S.F.); (L.I.); (G.V.); (R.J.A.W.)
- Department of Paediatric Metabolic Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands
| | - Ronald J. A. Wanders
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, 1105 AZ Amsterdam, The Netherlands; (S.J.G.K.); (R.C.I.W.); (J.C.B.); (S.F.); (L.I.); (G.V.); (R.J.A.W.)
| | - Frits A. Wijburg
- Department of Paediatric Metabolic Diseases, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Arie O. Verkerk
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (I.M.); (A.B.); (R.C.); (V.M.P.); (A.O.V.)
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Riekelt H. Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, 1105 AZ Amsterdam, The Netherlands; (S.J.G.K.); (R.C.I.W.); (J.C.B.); (S.F.); (L.I.); (G.V.); (R.J.A.W.)
- Correspondence: (R.H.H.); (C.R.B.)
| | - Connie R. Bezzina
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (I.M.); (A.B.); (R.C.); (V.M.P.); (A.O.V.)
- Correspondence: (R.H.H.); (C.R.B.)
| |
Collapse
|
24
|
Gilbert G, Demydenko K, Dries E, Puertas RD, Jin X, Sipido K, Roderick HL. Calcium Signaling in Cardiomyocyte Function. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035428. [PMID: 31308143 DOI: 10.1101/cshperspect.a035428] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Rhythmic increases in intracellular Ca2+ concentration underlie the contractile function of the heart. These heart muscle-wide changes in intracellular Ca2+ are induced and coordinated by electrical depolarization of the cardiomyocyte sarcolemma by the action potential. Originating at the sinoatrial node, conduction of this electrical signal throughout the heart ensures synchronization of individual myocytes into an effective cardiac pump. Ca2+ signaling pathways also regulate gene expression and cardiomyocyte growth during development and in pathology. These fundamental roles of Ca2+ in the heart are illustrated by the prevalence of altered Ca2+ homeostasis in cardiovascular diseases. Indeed, heart failure (an inability of the heart to support hemodynamic needs), rhythmic disturbances, and inappropriate cardiac growth all share an involvement of altered Ca2+ handling. The prevalence of these pathologies, contributing to a third of all deaths in the developed world as well as to substantial morbidity makes understanding the mechanisms of Ca2+ handling and dysregulation in cardiomyocytes of great importance.
Collapse
Affiliation(s)
- Guillaume Gilbert
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Kateryna Demydenko
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Eef Dries
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Rosa Doñate Puertas
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Xin Jin
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Karin Sipido
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - H Llewelyn Roderick
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| |
Collapse
|
25
|
Pitoulis FG, Terracciano CM. Heart Plasticity in Response to Pressure- and Volume-Overload: A Review of Findings in Compensated and Decompensated Phenotypes. Front Physiol 2020; 11:92. [PMID: 32116796 PMCID: PMC7031419 DOI: 10.3389/fphys.2020.00092] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/27/2020] [Indexed: 12/20/2022] Open
Abstract
The adult human heart has an exceptional ability to alter its phenotype to adapt to changes in environmental demand. This response involves metabolic, mechanical, electrical, and structural alterations, and is known as cardiac plasticity. Understanding the drivers of cardiac plasticity is essential for development of therapeutic agents. This is particularly important in contemporary cardiology, which uses treatments with peripheral effects (e.g., on kidneys, adrenal glands). This review focuses on the effects of different hemodynamic loads on myocardial phenotype. We examine mechanical scenarios of pressure- and volume overload, from the initial insult, to compensated, and ultimately decompensated stage. We discuss how different hemodynamic conditions occur and are underlined by distinct phenotypic and molecular changes. We complete the review by exploring how current basic cardiac research should leverage available cardiac models to study mechanical load in its different presentations.
Collapse
|
26
|
Oldfield CJ, Duhamel TA, Dhalla NS. Mechanisms for the transition from physiological to pathological cardiac hypertrophy. Can J Physiol Pharmacol 2020; 98:74-84. [DOI: 10.1139/cjpp-2019-0566] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The heart is capable of responding to stressful situations by increasing muscle mass, which is broadly defined as cardiac hypertrophy. This phenomenon minimizes ventricular wall stress for the heart undergoing a greater than normal workload. At initial stages, cardiac hypertrophy is associated with normal or enhanced cardiac function and is considered to be adaptive or physiological; however, at later stages, if the stimulus is not removed, it is associated with contractile dysfunction and is termed as pathological cardiac hypertrophy. It is during physiological cardiac hypertrophy where the function of subcellular organelles, including the sarcolemma, sarcoplasmic reticulum, mitochondria, and myofibrils, may be upregulated, while pathological cardiac hypertrophy is associated with downregulation of these subcellular activities. The transition of physiological cardiac hypertrophy to pathological cardiac hypertrophy may be due to the reduction in blood supply to hypertrophied myocardium as a consequence of reduced capillary density. Oxidative stress, inflammatory processes, Ca2+-handling abnormalities, and apoptosis in cardiomyocytes are suggested to play a critical role in the depression of contractile function during the development of pathological hypertrophy.
Collapse
Affiliation(s)
- Christopher J. Oldfield
- Faculty of Kinesiology & Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Todd A. Duhamel
- Faculty of Kinesiology & Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Naranjan S. Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
27
|
Cao M, Yuan W, Peng M, Mao Z, Zhao Q, Sun X, Yan J. Role of CyPA in cardiac hypertrophy and remodeling. Biosci Rep 2019; 39:BSR20193190. [PMID: 31825469 PMCID: PMC6928530 DOI: 10.1042/bsr20193190] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022] Open
Abstract
Pathological cardiac hypertrophy is a complex process and eventually develops into heart failure, in which the heart responds to various intrinsic or external stress, involving increased interstitial fibrosis, cell death and cardiac dysfunction. Studies have shown that oxidative stress is an important mechanism for this maladaptation. Cyclophilin A (CyPA) is a member of the cyclophilin (CyPs) family. Many cells secrete CyPA to the outside of the cells in response to oxidative stress. CyPA from blood vessels and the heart itself participate in a variety of signaling pathways to regulate the production of reactive oxygen species (ROS) and mediate inflammation, promote cardiomyocyte hypertrophy and proliferation of cardiac fibroblasts, stimulate endothelial injury and vascular smooth muscle hyperplasia, and promote the dissolution of extracellular matrix (ECM) by activating matrix metalloproteinases (MMPs). The events triggered by CyPA cause a decline of diastolic and systolic function and finally lead to the occurrence of heart failure. This article aims to introduce the role and mechanism of CyPA in cardiac hypertrophy and remodeling, and highlights its potential role as a disease biomarker and therapeutic target.
Collapse
Affiliation(s)
- Mengfei Cao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, China
| | - Wei Yuan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, China
| | - Meiling Peng
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, China
| | - Ziqi Mao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, China
| | - Qianru Zhao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, China
| | - Xia Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, China
| | - Jinchuan Yan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, China
| |
Collapse
|
28
|
Vagnozzi RJ, Maillet M, Sargent MA, Khalil H, Johansen AKZ, Schwanekamp JA, York AJ, Huang V, Nahrendorf M, Sadayappan S, Molkentin JD. An acute immune response underlies the benefit of cardiac stem cell therapy. Nature 2019; 577:405-409. [PMID: 31775156 PMCID: PMC6962570 DOI: 10.1038/s41586-019-1802-2] [Citation(s) in RCA: 371] [Impact Index Per Article: 74.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 11/08/2019] [Indexed: 02/07/2023]
Abstract
Clinical trials using adult stem cells to regenerate damaged heart tissue continue to this day1,2 despite ongoing questions of efficacy and a lack of mechanistic understanding of the underlying biologic effect3. The rationale for these cell therapy trials is derived from animal studies that show a modest but reproducible improvement in cardiac function in models of cardiac ischemic injury4,5. Here we examined the mechanistic basis for cell therapy in mice after ischemia/reperfusion (I/R) injury, and while heart function was enhanced, it was not associated with new cardiomyocyte production. Cell therapy improved heart function through an acute sterile immune response characterized by the temporal and regional induction of CCR2+ and CX3CR1+ macrophages. Intra-cardiac injection of 2 distinct types of adult stem cells, freeze/thaw-killed cells or a chemical inducer of the innate immune response similarly induced regional CCR2+ and CX3CR1+ macrophage accumulation and provided functional rejuvenation to the I/R-injured heart. This selective macrophage response altered cardiac fibroblast activity, reduced border zone extracellular matrix (ECM) content, and enhanced the mechanical properties of the injured area. The functional benefit of cardiac cell therapy is thus due to an acute inflammatory-based wound healing response that rejuvenates the mechanical properties of the infarcted area of the heart.
Collapse
Affiliation(s)
- Ronald J Vagnozzi
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Marjorie Maillet
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Michelle A Sargent
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hadi Khalil
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Anne Katrine Z Johansen
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jennifer A Schwanekamp
- Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, OH, USA
| | - Allen J York
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Vincent Huang
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Matthias Nahrendorf
- Center for Systems Biology, Department of Imaging, Cardiovascular Research Center, Massachusetts General Hospital of the Harvard Medical School, Boston, MA, USA
| | - Sakthivel Sadayappan
- Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, OH, USA
| | - Jeffery D Molkentin
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. .,Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
29
|
Heizmann CW. Ca 2+-Binding Proteins of the EF-Hand Superfamily: Diagnostic and Prognostic Biomarkers and Novel Therapeutic Targets. Methods Mol Biol 2019; 1929:157-186. [PMID: 30710273 DOI: 10.1007/978-1-4939-9030-6_11] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A multitude of Ca2+-sensor proteins containing the specific Ca2+-binding motif (helix-loop-helix, called EF-hand) are of major clinical relevance in a many human diseases. Measurements of troponin, the first intracellular Ca-sensor protein to be discovered, is nowadays the "gold standard" in the diagnosis of patients with acute coronary syndrome (ACS). Mutations have been identified in calmodulin and linked to inherited ventricular tachycardia and in patients affected by severe cardiac arrhythmias. Parvalbumin, when introduced into the diseased heart by gene therapy to increase contraction and relaxation speed, is considered to be a novel therapeutic strategy to combat heart failure. S100 proteins, the largest subgroup with the EF-hand protein family, are closely associated with cardiovascular diseases, various types of cancer, inflammation, and autoimmune pathologies. The intention of this review is to summarize the clinical importance of this protein family and their use as biomarkers and potential drug targets, which could help to improve the diagnosis of human diseases and identification of more selective therapeutic interventions.
Collapse
Affiliation(s)
- Claus W Heizmann
- Department of Pediatrics, Division of Clinical Chemistry and Biochemistry, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
30
|
Priya R, Paredes MF, Karayannis T, Yusuf N, Liu X, Jaglin X, Graef I, Alvarez-Buylla A, Fishell G. Activity Regulates Cell Death within Cortical Interneurons through a Calcineurin-Dependent Mechanism. Cell Rep 2019; 22:1695-1709. [PMID: 29444424 DOI: 10.1016/j.celrep.2018.01.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 09/26/2017] [Accepted: 12/30/2017] [Indexed: 02/03/2023] Open
Abstract
We demonstrate that cortical interneurons derived from ventral eminences, including the caudal ganglionic eminence, undergo programmed cell death. Moreover, with the exception of VIP interneurons, this occurs in a manner that is activity-dependent. In addition, we demonstrate that, within interneurons, Calcineurin, a calcium-dependent protein phosphatase, plays a critical role in sequentially linking activity to maturation (E15-P5) and survival (P5-P20). Specifically, embryonic inactivation of Calcineurin results in a failure of interneurons to morphologically mature and prevents them from undergoing apoptosis. By contrast, early postnatal inactivation of Calcineurin increases apoptosis. We conclude that Calcineurin serves a dual role of promoting first the differentiation of interneurons and, subsequently, their survival.
Collapse
Affiliation(s)
- Rashi Priya
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Mercedes Francisca Paredes
- Department of Neurological Surgery, The Eli and Edythe Broad Center of Regeneration Medicine, Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Theofanis Karayannis
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Nusrath Yusuf
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA; Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Xingchen Liu
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Xavier Jaglin
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA; Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Isabella Graef
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Arturo Alvarez-Buylla
- Department of Neurological Surgery, The Eli and Edythe Broad Center of Regeneration Medicine, Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gord Fishell
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA; Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE; Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Stanley Center at the Broad Institute, 75 Ames Street, Cambridge, MA 02142, USA.
| |
Collapse
|
31
|
Hegyi B, Bers DM, Bossuyt J. CaMKII signaling in heart diseases: Emerging role in diabetic cardiomyopathy. J Mol Cell Cardiol 2019; 127:246-259. [PMID: 30633874 DOI: 10.1016/j.yjmcc.2019.01.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 01/04/2019] [Indexed: 02/07/2023]
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) is upregulated in diabetes and significantly contributes to cardiac remodeling with increased risk of cardiac arrhythmias. Diabetes is frequently associated with atrial fibrillation, coronary artery disease, and heart failure, which may further enhance CaMKII. Activation of CaMKII occurs downstream of neurohormonal stimulation (e.g. via G-protein coupled receptors) and involve various posttranslational modifications including autophosphorylation, oxidation, S-nitrosylation and O-GlcNAcylation. CaMKII signaling regulates diverse cellular processes in a spatiotemporal manner including excitation-contraction and excitation-transcription coupling, mechanics and energetics in cardiac myocytes. Chronic activation of CaMKII results in cellular remodeling and ultimately arrhythmogenic alterations in Ca2+ handling, ion channels, cell-to-cell coupling and metabolism. This review addresses the detrimental effects of the upregulated CaMKII signaling to enhance the arrhythmogenic substrate and trigger mechanisms in the heart. We also briefly summarize preclinical studies using kinase inhibitors and genetically modified mice targeting CaMKII in diabetes. The mechanistic understanding of CaMKII signaling, cardiac remodeling and arrhythmia mechanisms may reveal new therapeutic targets and ultimately better treatment in diabetes and heart disease in general.
Collapse
Affiliation(s)
- Bence Hegyi
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Donald M Bers
- Department of Pharmacology, University of California Davis, Davis, CA, USA.
| | - Julie Bossuyt
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| |
Collapse
|
32
|
Unudurthi SD, Nassal D, Greer-Short A, Patel N, Howard T, Xu X, Onal B, Satroplus T, Hong D, Lane C, Dalic A, Koenig SN, Lehnig AC, Baer LA, Musa H, Stanford KI, Smith S, Mohler PJ, Hund TJ. βIV-Spectrin regulates STAT3 targeting to tune cardiac response to pressure overload. J Clin Invest 2018; 128:5561-5572. [PMID: 30226828 DOI: 10.1172/jci99245] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 09/13/2018] [Indexed: 01/19/2023] Open
Abstract
Heart failure (HF) remains a major source of morbidity and mortality in the US. The multifunctional Ca2+/calmodulin-dependent kinase II (CaMKII) has emerged as a critical regulator of cardiac hypertrophy and failure, although the mechanisms remain unclear. Previous studies have established that the cytoskeletal protein βIV-spectrin coordinates local CaMKII signaling. Here, we sought to determine the role of a spectrin-CaMKII complex in maladaptive remodeling in HF. Chronic pressure overload (6 weeks of transaortic constriction [TAC]) induced a decrease in cardiac function in WT mice but not in animals expressing truncated βIV-spectrin lacking spectrin-CaMKII interaction (qv3J mice). Underlying the observed differences in function was an unexpected differential regulation of STAT3-related genes in qv3J TAC hearts. In vitro experiments demonstrated that βIV-spectrin serves as a target for CaMKII phosphorylation, which regulates its stability. Cardiac-specific βIV-spectrin-KO (βIV-cKO) mice showed STAT3 dysregulation, fibrosis, and decreased cardiac function at baseline, similar to what was observed with TAC in WT mice. STAT3 inhibition restored normal cardiac structure and function in βIV-cKO and WT TAC hearts. Our studies identify a spectrin-based complex essential for regulation of the cardiac response to chronic pressure overload. We anticipate that strategies targeting the new spectrin-based "statosome" will be effective at suppressing maladaptive remodeling in response to chronic stress.
Collapse
Affiliation(s)
- Sathya D Unudurthi
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Drew Nassal
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Amara Greer-Short
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Nehal Patel
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Taylor Howard
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Xianyao Xu
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Birce Onal
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Tony Satroplus
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Deborah Hong
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Cemantha Lane
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Alyssa Dalic
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Sara N Koenig
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Physiology and Cell Biology, and
| | - Adam C Lehnig
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Physiology and Cell Biology, and
| | - Lisa A Baer
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Physiology and Cell Biology, and
| | - Hassan Musa
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Kristin I Stanford
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Physiology and Cell Biology, and
| | - Sakima Smith
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Peter J Mohler
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Physiology and Cell Biology, and.,Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Thomas J Hund
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA.,Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
33
|
Ansari MA, Iqubal A, Ekbbal R, Haque SE. Effects of nimodipine, vinpocetine and their combination on isoproterenol-induced myocardial infarction in rats. Biomed Pharmacother 2018; 109:1372-1380. [PMID: 30551388 DOI: 10.1016/j.biopha.2018.10.199] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/22/2018] [Accepted: 10/31/2018] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Myocardial infarction (MI) remains a major cause of morbidity and mortality worldwide. Nimodipine is a calcium (Ca2+) channel blocker as well as a PDE1 inhibitor and primarily used in subarachnoid haemorrhage (SAH) due to its blood-brain barrier crossing property. Nimodipine and vinpocetine inhibit the degradation of phosphodiester bond which increases cGMP and cAMP levels causing vasodilation. MATERIAL AND METHODS We have divided rats randomly into Group I - Vehicle control; Group II - Toxic control (ISO 85 mg/kg, i.p.); Group III, IV and V - Nimodipine (5, 10 and 15 mg/kg, i.p. respectively) with ISO; Group VI- Nimodipine (15 mg/kg) alone; Group VII - Nimodipine + Vinpocetine (10 mg/kg + 10 mg/kg) with ISO; Group VIII - Nimodipine + Vinpocetine (10 mg/kg + 10 mg/kg) alone; Group IX- Diltiazem (25 mg/kg, p.o) with ISO; Group X- Diltiazem (25 mg/kg) alone and Group XI- Vinpocetine (10 mg/kg, p.o.) with ISO for 7 days. After 24 h of the last dose, haemodynamics were assessed then animals were sacrificed and biochemical, histopathological and ultrastructural changes were measured. RESULTS Treatment with ISO significantly deviated the haemodynamic parameters (HR, SAP, DAP and MAP), biochemical parameters (CK-MB, LDH, SGOT, cGMP and Troponin-T) and antioxidant markers (TBARS, SOD, CAT, GSH, GPx, GST and GR). Haemotoxylin and eosin staining of the cardiac tissue and ultrastructural study also indicated significant myocardial damage. Pretreatment with nimodipine (10 and 15 mg/kg, i.p), vinpocetine (10 mg/kg, p.o) and their combination significantly restored the antioxidant status, haemodynamic profile, cellular architecture and ultrastructural changes in the heart. CONCLUSION Nimodipine and vinpocetine both showed cardioprotection when given alone. However, their combination showed better restoration in terms of oxidative stress, cardiac membrane damage, haemodynamics, histopathology and ultrastructural changes.
Collapse
Affiliation(s)
- Mohd Asif Ansari
- Department of Pharmacology, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, New Delhi, 110062, India
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, New Delhi, 110062, India
| | - Rustam Ekbbal
- Department of Pharmacology, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, New Delhi, 110062, India
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
34
|
Coronary arterial vasculature in the pathophysiology of hypertrophic cardiomyopathy. Pflugers Arch 2018; 471:769-780. [PMID: 30370501 DOI: 10.1007/s00424-018-2224-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 10/16/2018] [Indexed: 02/07/2023]
Abstract
Alterations in the coronary vascular system are likely associated with a mismatch between energy demand and energy supply and critical in triggering the cascade of events that leads to symptomatic hypertrophic cardiomyopathy. Targeting the early events, particularly vascular remodeling, may be a key approach to developing effective treatments. Improvement in our understanding of hypertrophic cardiomyopathy began with the results of early biophysical studies, proceeded to genetic analyses pinpointing the mutational origin, and now pertains to imaging of the metabolic and flow-related consequences of such mutations. Microvascular dysfunction has been an ongoing hot topic in the imaging of genetic cardiomyopathies marked by its histologically significant remodeling and has proven to be a powerful asset in determining prognosis for these patients as well as enlightening scientists on a potential pathophysiological cascade that may begin early during the developmental process. Here, we discuss questions that continue to remain on the mechanistic processes leading to microvascular dysfunction, its correlation to the morphological changes in the vessels, and its contribution to disease progression.
Collapse
|
35
|
Lovato TL, Cripps RM. High Heart: A Role for Calcineurin Signaling in Hypoxia-Influenced Cardiac Growth. ACTA ACUST UNITED AC 2017; 10:CIRCGENETICS.117.001919. [PMID: 28986459 DOI: 10.1161/circgenetics.117.001919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- TyAnna L Lovato
- From the Department of Biology, University of New Mexico, Albuquerque, NM
| | - Richard M Cripps
- From the Department of Biology, University of New Mexico, Albuquerque, NM
| |
Collapse
|
36
|
Zarndt R, Walls SM, Ocorr K, Bodmer R. Reduced Cardiac Calcineurin Expression Mimics Long-Term Hypoxia-Induced Heart Defects in Drosophila. CIRCULATION. CARDIOVASCULAR GENETICS 2017; 10:e001706. [PMID: 28986453 PMCID: PMC5669044 DOI: 10.1161/circgenetics.117.001706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 07/28/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Hypoxia is often associated with cardiopulmonary diseases, which represent some of the leading causes of mortality worldwide. Long-term hypoxia exposures, whether from disease or environmental condition, can cause cardiomyopathy and lead to heart failure. Indeed, hypoxia-induced heart failure is a hallmark feature of chronic mountain sickness in maladapted populations living at high altitude. In a previously established Drosophila heart model for long-term hypoxia exposure, we found that hypoxia caused heart dysfunction. Calcineurin is known to be critical in cardiac hypertrophy under normoxia, but its role in the heart under hypoxia is poorly understood. METHODS AND RESULTS In the present study, we explore the function of calcineurin, a gene candidate we found downregulated in the Drosophila heart after lifetime and multigenerational hypoxia exposure. We examined the roles of 2 homologs of Calcineurin A, CanA14F, and Pp2B in the Drosophila cardiac response to long-term hypoxia. We found that knockdown of these calcineurin catalytic subunits caused cardiac restriction under normoxia that are further aggravated under hypoxia. Conversely, cardiac overexpression of Pp2B under hypoxia was lethal, suggesting that a hypertrophic signal in the presence of insufficient oxygen supply is deleterious. CONCLUSIONS Our results suggest a key role for calcineurin in cardiac remodeling during long-term hypoxia with implications for diseases of chronic hypoxia, and it likely contributes to mechanisms underlying these disease states.
Collapse
Affiliation(s)
- Rachel Zarndt
- From the Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute (R.Z., S.M.W., K.O., R.B.) and Biomedical Sciences Graduate Program, School of Medicine, University of California at San Diego (R.Z.), La Jolla, CA
| | - Stanley M Walls
- From the Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute (R.Z., S.M.W., K.O., R.B.) and Biomedical Sciences Graduate Program, School of Medicine, University of California at San Diego (R.Z.), La Jolla, CA
| | - Karen Ocorr
- From the Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute (R.Z., S.M.W., K.O., R.B.) and Biomedical Sciences Graduate Program, School of Medicine, University of California at San Diego (R.Z.), La Jolla, CA.
| | - Rolf Bodmer
- From the Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute (R.Z., S.M.W., K.O., R.B.) and Biomedical Sciences Graduate Program, School of Medicine, University of California at San Diego (R.Z.), La Jolla, CA.
| |
Collapse
|
37
|
Fowler CA, Núñez Hernandez MF, O'Donnell SE, Yu L, Shea MA. Backbone and side-chain resonance assignments of (Ca 2+) 4-calmodulin bound to beta calcineurin A CaMBD peptide. BIOMOLECULAR NMR ASSIGNMENTS 2017; 11:275-280. [PMID: 28815458 PMCID: PMC5693717 DOI: 10.1007/s12104-017-9762-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/09/2017] [Indexed: 06/07/2023]
Abstract
Calcineurin (CaN) is a heterodimeric and highly conserved serine/threonine phosphatase (PP2B) that plays a critical role in coupling calcium signals to physiological processes including embryonic cardiac development, NF-AT-regulated gene expression in immune responses, and apoptosis. The catalytic subunit (CaNA) has three isoforms (α, β, and γ,) in humans and seven isoforms in Paramecium. In all eukaryotes, the EF-hand protein calmodulin (CaM) regulates CaN activity in a calcium-dependent manner. The N- and C-domains of CaM (CaMN and CaMC) recognize a CaM-binding domain (CaMBD) within an intrinsically disordered region of CaNA that precedes the auto-inhibitory domain (AID) of CaNA. Here we present nearly complete 1H, 13C, and 15N resonance assignments of (Ca2+)4-CaM bound to a peptide containing the CaMBD sequence in the beta isoform of CaNA (βCaNA-CaMBDp). Its secondary structure elements predicted from the assigned chemical shifts were in good agreement with those observed in the high-resolution structures of (Ca2+)4-CaM bound to CaMBDs of multiple enzymes. Based on the reported literature, the CaMBD of the α isoform of CaNA can bind to CaM in two opposing orientations which may influence the regulatory function of CaM. Because a high resolution structure of (Ca2+)4-CaM bound to βCaNA-CaMBDp has not been reported, our studies serve as a starting point for determining the solution structure of this complex. This will demonstrate the preferred orientation of (Ca2+)4-CaM on the CaMBD as well as the orientations of CaMN and CaMC relative to each other and to the AID of βCaNA.
Collapse
Affiliation(s)
- C Andrew Fowler
- NMR Facility, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa, IA, 52242-1109, USA
| | - Maria F Núñez Hernandez
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa, IA, 52242-1109, USA
| | - Susan E O'Donnell
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa, IA, 52242-1109, USA
| | - Liping Yu
- NMR Facility, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa, IA, 52242-1109, USA
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa, IA, 52242-1109, USA
| | - Madeline A Shea
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa, IA, 52242-1109, USA.
| |
Collapse
|
38
|
Dewenter M, von der Lieth A, Katus HA, Backs J. Calcium Signaling and Transcriptional Regulation in Cardiomyocytes. Circ Res 2017; 121:1000-1020. [DOI: 10.1161/circresaha.117.310355] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Calcium (Ca
2+
) is a universal regulator of various cellular functions. In cardiomyocytes, Ca
2+
is the central element of excitation–contraction coupling, but also impacts diverse signaling cascades and influences the regulation of gene expression, referred to as excitation–transcription coupling. Disturbances in cellular Ca
2+
-handling and alterations in Ca
2+
-dependent gene expression patterns are pivotal characteristics of failing cardiomyocytes, with several excitation–transcription coupling pathways shown to be critically involved in structural and functional remodeling processes. Thus, targeting Ca
2+
-dependent transcriptional pathways might offer broad therapeutic potential. In this article, we (1) review cytosolic and nuclear Ca
2+
dynamics in cardiomyocytes with respect to their impact on Ca
2+
-dependent signaling, (2) give an overview on Ca
2+
-dependent transcriptional pathways in cardiomyocytes, and (3) discuss implications of excitation–transcription coupling in the diseased heart.
Collapse
Affiliation(s)
- Matthias Dewenter
- From the Department of Molecular Cardiology and Epigenetics (M.D., A.v.d.L., J.B.) and Department of Cardiology (H.A.K.), Heidelberg University, Germany; and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany (M.D., A.v.d.L., H.A.K., J.B.)
| | - Albert von der Lieth
- From the Department of Molecular Cardiology and Epigenetics (M.D., A.v.d.L., J.B.) and Department of Cardiology (H.A.K.), Heidelberg University, Germany; and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany (M.D., A.v.d.L., H.A.K., J.B.)
| | - Hugo A. Katus
- From the Department of Molecular Cardiology and Epigenetics (M.D., A.v.d.L., J.B.) and Department of Cardiology (H.A.K.), Heidelberg University, Germany; and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany (M.D., A.v.d.L., H.A.K., J.B.)
| | - Johannes Backs
- From the Department of Molecular Cardiology and Epigenetics (M.D., A.v.d.L., J.B.) and Department of Cardiology (H.A.K.), Heidelberg University, Germany; and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany (M.D., A.v.d.L., H.A.K., J.B.)
| |
Collapse
|
39
|
Guo R, Hua Y, Rogers O, Brown TE, Ren J, Nair S. Cathepsin K knockout protects against cardiac dysfunction in diabetic mice. Sci Rep 2017; 7:8703. [PMID: 28821796 PMCID: PMC5562704 DOI: 10.1038/s41598-017-09037-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/14/2017] [Indexed: 12/16/2022] Open
Abstract
Diabetes is a major risk factor for cardiovascular disease and the lysosomal cysteine protease cathepsin K plays a critical role in cardiac pathophysiology. To expand upon our previous findings, we tested the hypothesis that, knockout of cathepsin K protects against diabetes-associated cardiac anomalies. Wild-type and cathepsin K knockout mice were rendered diabetic by streptozotocin (STZ) injections. Body weight, organ mass, fasting blood glucose, energy expenditure, cardiac geometry and function, cardiac histomorphology, glutathione levels and protein levels of cathepsin K and those associated with Ca2+ handling, calcineurin/NFAT signaling, insulin signaling, cardiac apoptosis and fibrosis were determined. STZ-induced diabetic mice exhibited distinct cardiac dysfunction, dampened intracellular calcium handling, alterations in cardiac morphology, and elevated cardiomyocyte apoptosis, which were mitigated in the cathepsin K knockout mice. Additionally, cathepsin K knockout mice attenuated cardiac oxidative stress and calcineurin/NFAT signaling in diabetic mice. In cultured H9c2 myoblasts, pharmacological inhibition of cathepsin K, or treatment with calcineurin inhibitor rescued cells from high-glucose triggered oxidative stress and apoptosis. Therefore, cathepsin K may represent a potential target in treating diabetes-associated cardiac dysfunction.
Collapse
Affiliation(s)
- Rui Guo
- School of Pharmacy, College of Health Sciences and the Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, WY, 82071, USA
| | - Yinan Hua
- School of Pharmacy, College of Health Sciences and the Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, WY, 82071, USA
| | - Olivia Rogers
- School of Pharmacy, College of Health Sciences and the Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, WY, 82071, USA
| | - Travis E Brown
- School of Pharmacy, College of Health Sciences and the Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, WY, 82071, USA
| | - Jun Ren
- School of Pharmacy, College of Health Sciences and the Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, WY, 82071, USA
| | - Sreejayan Nair
- School of Pharmacy, College of Health Sciences and the Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, WY, 82071, USA.
| |
Collapse
|
40
|
Liu J, Chen D, Liu X, Liu Z. Cyclosporine A attenuates cardiac dysfunction induced by sepsis via inhibiting calcineurin and activating AMPK signaling. Mol Med Rep 2017; 15:3739-3746. [PMID: 28393192 DOI: 10.3892/mmr.2017.6421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 01/26/2017] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to investigate whether cyclosporine A (CSA) improved cardiac dysfunction at an early stage of sepsis. Male Wistar rats were randomly divided into the following three groups: the sham‑operated control group, the cecal ligation puncture (CLP) procedure‑induced sepsis group and the CSA intervention group. Cecal ligation was performed to generate a sepsis model. At different time points (2, 6, 12, 24 and 72 h) following sepsis induction, blood pressure, cardiac function, and non‑esterified free fatty acid (NEFA) levels in the plasma and myocardia were measured, and the expression levels of components associated with the AMP‑activated protein kinase (AMPK)‑acetyl CoA carboxylase (ACC)‑carnitine palmitoyl transferase 1 (CPT1) signaling pathway were compared among the three groups. Sepsis induced a decrease in blood pressure and cardiac function at 24 h following sepsis induction in the CLP group, and CSA treatment ameliorated these pathophysiological alterations. In addition, rats in the CLP group exhibited significant increases in calcineurin activity and NEFA accumulation in the heart when compared with those in the sham group. These effects were attenuated by CSA treatment. Mechanistically, the activity of the AMPK‑ACC‑CPT1 pathway was enhanced by CSA treatment. The present study revealed that CSA treatment increases cardiac function at an early stage of sepsis in rats. This treatment partially suppresses calcineurin activity while activating the AMPK‑TCC‑CPT1 pathway.
Collapse
Affiliation(s)
- Jingmiao Liu
- Department of Emergency Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Da Chen
- Department of Emergency Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiaowei Liu
- Department of Emergency Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhi Liu
- Department of Emergency Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
41
|
Dorn GW. Canon Fodder-A Case for Contrarian Science. Circ Res 2016; 119:584-6. [PMID: 27539970 DOI: 10.1161/circresaha.116.309519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Gerald W Dorn
- From the Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO.
| |
Collapse
|
42
|
Matsa E, Burridge PW, Yu KH, Ahrens JH, Termglinchan V, Wu H, Liu C, Shukla P, Sayed N, Churko JM, Shao N, Woo NA, Chao AS, Gold JD, Karakikes I, Snyder MP, Wu JC. Transcriptome Profiling of Patient-Specific Human iPSC-Cardiomyocytes Predicts Individual Drug Safety and Efficacy Responses In Vitro. Cell Stem Cell 2016; 19:311-25. [PMID: 27545504 PMCID: PMC5087997 DOI: 10.1016/j.stem.2016.07.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 04/20/2016] [Accepted: 07/15/2016] [Indexed: 01/24/2023]
Abstract
Understanding individual susceptibility to drug-induced cardiotoxicity is key to improving patient safety and preventing drug attrition. Human induced pluripotent stem cells (hiPSCs) enable the study of pharmacological and toxicological responses in patient-specific cardiomyocytes (CMs) and may serve as preclinical platforms for precision medicine. Transcriptome profiling in hiPSC-CMs from seven individuals lacking known cardiovascular disease-associated mutations and in three isogenic human heart tissue and hiPSC-CM pairs showed greater inter-patient variation than intra-patient variation, verifying that reprogramming and differentiation preserve patient-specific gene expression, particularly in metabolic and stress-response genes. Transcriptome-based toxicology analysis predicted and risk-stratified patient-specific susceptibility to cardiotoxicity, and functional assays in hiPSC-CMs using tacrolimus and rosiglitazone, drugs targeting pathways predicted to produce cardiotoxicity, validated inter-patient differential responses. CRISPR/Cas9-mediated pathway correction prevented drug-induced cardiotoxicity. Our data suggest that hiPSC-CMs can be used in vitro to predict and validate patient-specific drug safety and efficacy, potentially enabling future clinical approaches to precision medicine.
Collapse
Affiliation(s)
- Elena Matsa
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Paul W Burridge
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kun-Hsing Yu
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Biomedical Informatics Training Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John H Ahrens
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vittavat Termglinchan
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Haodi Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chun Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Praveen Shukla
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nazish Sayed
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jared M Churko
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ningyi Shao
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nicole A Woo
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alexander S Chao
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph D Gold
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ioannis Karakikes
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
43
|
Taghli-Lamallem O, Plantié E, Jagla K. Drosophila in the Heart of Understanding Cardiac Diseases: Modeling Channelopathies and Cardiomyopathies in the Fruitfly. J Cardiovasc Dev Dis 2016; 3:jcdd3010007. [PMID: 29367558 PMCID: PMC5715700 DOI: 10.3390/jcdd3010007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 01/23/2016] [Accepted: 02/06/2016] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular diseases and, among them, channelopathies and cardiomyopathies are a major cause of death worldwide. The molecular and genetic defects underlying these cardiac disorders are complex, leading to a large range of structural and functional heart phenotypes. Identification of molecular and functional mechanisms disrupted by mutations causing channelopathies and cardiomyopathies is essential to understanding the link between an altered gene and clinical phenotype. The development of animal models has been proven to be efficient for functional studies in channelopathies and cardiomyopathies. In particular, the Drosophila model has been largely applied for deciphering the molecular and cellular pathways affected in these inherited cardiac disorders and for identifying their genetic modifiers. Here we review the utility and the main contributions of the fruitfly models for the better understanding of channelopathies and cardiomyopathies. We also discuss the investigated pathological mechanisms and the discoveries of evolutionarily conserved pathways which reinforce the value of Drosophila in modeling human cardiac diseases.
Collapse
Affiliation(s)
- Ouarda Taghli-Lamallem
- GReD (Genetics, Reproduction and Development laboratory), INSERM U1103, CNRS UMR6293, University of Clermont-Ferrand, 28 place Henri-Dunant, 63000 Clermont-Ferrand, France.
| | - Emilie Plantié
- GReD (Genetics, Reproduction and Development laboratory), INSERM U1103, CNRS UMR6293, University of Clermont-Ferrand, 28 place Henri-Dunant, 63000 Clermont-Ferrand, France.
| | - Krzysztof Jagla
- GReD (Genetics, Reproduction and Development laboratory), INSERM U1103, CNRS UMR6293, University of Clermont-Ferrand, 28 place Henri-Dunant, 63000 Clermont-Ferrand, France.
| |
Collapse
|
44
|
González Arbeláez LF, Ciocci Pardo A, Fantinelli JC, Mosca SM. Cyclosporine-A mimicked the ischemic pre- and postconditioning-mediated cardioprotection in hypertensive rats: Role of PKCε. Exp Mol Pathol 2016; 100:266-75. [PMID: 26844384 DOI: 10.1016/j.yexmp.2016.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/07/2016] [Accepted: 01/29/2016] [Indexed: 12/11/2022]
Abstract
Our aim was to assess the action of cyclosporine-A (CsA) against reperfusion injury in spontaneously hypertensive rats (SHR) compared to the effects of ischemic pre- (IP) and postconditioning (IPC), examining the role played by PKCε. Isolated hearts were submitted to the following protocols: IC: 45 min global ischemia (GI) and 1h reperfusion (R); IP: a cycle of 5 min GI and 10 min of R prior to 45 min-GI; and IPC: three cycles of 30s-GI/30s-R at the start of R. Other hearts of the IC, IP and IPC groups received CsA (mitochondrial permeability transition pore inhibitor) or chelerythrine (Che, non-selective PKC inhibitor). Infarct size (IS) was assessed. TBARS and reduced glutathione (GSH) content - as parameters of oxidative damage, the expression of P-Akt, P-GSK-3β, P-PKCε and cytochrome c (Cyc) release - as an index of mitochondrial permeability and the response of isolated mitochondria to Ca(2+) were also measured. IS similarly decreased in preconditioned, postconditioned and CsA treated heart showing the highest values in the combinations IP+CsA and IPC+CsA. TBARS decreased and GSH was partially preserved after all interventions. The content of P-Akt, P-GSK-3β and P-PKCε increased in cytosol and decreased in mitochondria after IP and IPC. In CsA treated hearts these enzymes increased in both fractions reaching the highest values. Cyc release was attenuated and the response of mitochondria to Ca(2+) was improved by the interventions. The beneficial effects of IP and IPC were annulled when PKC was inhibited with Che. A PKCε/VDAC association was also detected. These data show that, in SHR, the CsA treatment mimicked and reinforced the cardioprotective action afforded by IP and IPC in which PKCε-mediated attenuation of mitochondrial permeability appears as the main mechanism involved.
Collapse
|
45
|
|
46
|
Barzegar-Fallah A, Alimoradi H, Razmi A, Dehpour AR, Asgari M, Shafiei M. Inhibition of calcineurin/NFAT pathway plays an essential role in renoprotective effect of tropisetron in early stage of diabetic nephropathy. Eur J Pharmacol 2015; 767:152-9. [DOI: 10.1016/j.ejphar.2015.10.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 11/28/2022]
|
47
|
Bazzazi H, Sang L, Dick IE, Joshi-Mukherjee R, Yang W, Yue DT. Novel fluorescence resonance energy transfer-based reporter reveals differential calcineurin activation in neonatal and adult cardiomyocytes. J Physiol 2015; 593:3865-84. [PMID: 26096996 PMCID: PMC4575574 DOI: 10.1113/jp270510] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/16/2015] [Indexed: 12/26/2022] Open
Abstract
Novel fluorescence resonance energy transfer-based genetically encoded reporters of calcineurin are constructed by fusing the two subunits of calcineurin with P2A-based linkers retaining the expected native conformation of calcineurin. Calcineurin reporters display robust responses to calcium transients in HEK293 cells. The sensor responses are correlated with NFATc1 translocation dynamics in HEK293 cells. The sensors are uniformly distributed in neonatal myocytes and respond efficiently to single electrically evoked calcium transients and show cumulative activation at frequencies of 0.5 and 1 Hz. In adult myocytes, the calcineurin sensors appear to be localized to the cardiac z-lines, and respond to cumulative calcium transients at frequencies of 0.5 and 1 Hz. The phosphatase calcineurin is a central component of many calcium signalling pathways, relaying calcium signals from the plasma membrane to the nucleus. It has critical functions in a multitude of systems, including immune, cardiac and neuronal. Given the widespread importance of calcineurin in both normal and pathological conditions, new tools that elucidate the spatiotemporal dynamics of calcineurin activity would be invaluable. Here we develop two separate genetically encoded fluorescence resonance energy transfer (FRET)-based sensors of calcineurin activation, DuoCaN and UniCaN. Both sensors showcase a large dynamic range and rapid response kinetics, differing primarily in the linker structure between the FRET pairs. Both sensors were calibrated in HEK293 cells and their responses correlated well with NFAT translocation to the nucleus, validating the biological relevance of the sensor readout. The sensors were subsequently expressed in neonatal rat ventricular myocytes and acutely isolated adult guinea pig ventricular myocytes. Both sensors demonstrated robust responses in myocytes and revealed kinetic differences in calcineurin activation during changes in pacing rate for neonatal versus adult myocytes. Finally, mathematical modelling combined with quantitative FRET measurements provided novel insights into the kinetics and integration of calcineurin activation in response to myocyte Ca transients. In all, DuoCaN and UniCaN stand as valuable new tools for understanding the role of calcineurin in normal and pathological signalling.
Collapse
Affiliation(s)
- Hojjat Bazzazi
- Departments of Biomedical Engineering and Neuroscience, Centre for Cell Dynamics, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Lingjie Sang
- Departments of Biomedical Engineering and Neuroscience, Centre for Cell Dynamics, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Ivy E Dick
- Departments of Biomedical Engineering and Neuroscience, Centre for Cell Dynamics, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Rosy Joshi-Mukherjee
- Departments of Biomedical Engineering and Neuroscience, Centre for Cell Dynamics, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Wanjun Yang
- Departments of Biomedical Engineering and Neuroscience, Centre for Cell Dynamics, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | | |
Collapse
|
48
|
|
49
|
Li W, Bell HW, Ahnn J, Lee SK. Regulator of Calcineurin (RCAN-1) Regulates Thermotaxis Behavior in Caenorhabditis elegans. J Mol Biol 2015; 427:3457-3468. [PMID: 26232604 DOI: 10.1016/j.jmb.2015.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 07/03/2015] [Accepted: 07/09/2015] [Indexed: 11/15/2022]
Abstract
Regulator of calcineurin (RCAN) is a calcineurin-interacting protein that inhibits calcineurin phosphatase when overexpressed, often upregulated under neuropathological conditions with impaired learning and memory processes, such as Down syndrome or Alzheimer's disease. Thermotactic behavior in the nematode Caenorhabditis elegans is a form of memory in which calcineurin signaling plays a pivotal role in the thermosensation of AFD neurons. In this study, we found that rcan-1 deletion mutants exhibited cryophilic behavior dependent on tax-6, which was rescued by expressing rcan-1 in AFD neurons. Interaction between RCAN-1 and TAX-6 requires the conserved PxIxIT motif of RCAN-1, without which thermotactic behavior could not be fully rescued. In addition, the loss of crh-1/CREB suppressed the thermotaxis phenotypes of rcan-1 and tax-6 mutants, indicating that crh-1 is crucial in thermotaxis memory in these mutants. Taken together, our results suggest that rcan-1 is an inhibitory regulator of tax-6 and that it acts in the formation of thermosensory behavioral memory in C. elegans.
Collapse
Affiliation(s)
- Weixun Li
- Department of Life Sciences, School of Natural Science, Hanyang University, Seoul 133-791, Republic of Korea; BK21 PLUS Life Science for Bio-Defense Research Team, Hanyang University, Seoul 133-791, Republic of Korea; Research Institute for Natural Science, Hanyang University, Seoul 133-791, Republic of Korea
| | - Harold W Bell
- National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA; Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Joohong Ahnn
- Department of Life Sciences, School of Natural Science, Hanyang University, Seoul 133-791, Republic of Korea; BK21 PLUS Life Science for Bio-Defense Research Team, Hanyang University, Seoul 133-791, Republic of Korea; Research Institute for Natural Science, Hanyang University, Seoul 133-791, Republic of Korea.
| | - Sun-Kyung Lee
- Department of Life Sciences, School of Natural Science, Hanyang University, Seoul 133-791, Republic of Korea; BK21 PLUS Life Science for Bio-Defense Research Team, Hanyang University, Seoul 133-791, Republic of Korea; Research Institute for Natural Science, Hanyang University, Seoul 133-791, Republic of Korea.
| |
Collapse
|
50
|
Spaich S, Katus HA, Backs J. Ongoing controversies surrounding cardiac remodeling: is it black and white-or rather fifty shades of gray? Front Physiol 2015; 6:202. [PMID: 26257654 PMCID: PMC4510775 DOI: 10.3389/fphys.2015.00202] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/03/2015] [Indexed: 01/02/2023] Open
Abstract
Cardiac remodeling describes the heart's multimodal response to a myriad of external or intrinsic stimuli and stressors most of which are probably only incompletely elucidated to date. Over many years the signaling molecules involved in these remodeling processes have been dichotomized according to a classic antagonistic view of black and white, i.e., attributed either a solely maladaptive or entirely beneficial character. By dissecting controversies, recent developments and shifts in perspective surrounding the three major cardiac signaling molecules calcineurin (Cn), protein kinase A (PKA) and calcium/calmodulin-dependent kinase II (CaMKII), this review challenges this dualistic view and advocates the nature and dignity of each of these key mediators of cardiac remodeling as a multilayered, highly context-sensitive and sophisticated continuum that can be markedly swayed and influenced by a multitude of environmental factors and crosstalk mechanisms. Furthermore this review delineates the importance and essential contributions of degradation and proteolysis to cardiac plasticity and homeostasis and finally aims to integrate the various aspects of protein synthesis and turnover into a comprehensive picture.
Collapse
Affiliation(s)
- Sebastian Spaich
- Research Unit Cardiac Epigenetics, Department of Cardiology, Angiology and Pneumology, University of HeidelbergHeidelberg, Germany
- German Centre for Cardiovascular Research, Partner Site Heidelberg/MannheimHeidelberg, Germany
- Department of Cardiology, Angiology and Pneumology, University of HeidelbergHeidelberg, Germany
| | - Hugo A. Katus
- Research Unit Cardiac Epigenetics, Department of Cardiology, Angiology and Pneumology, University of HeidelbergHeidelberg, Germany
- German Centre for Cardiovascular Research, Partner Site Heidelberg/MannheimHeidelberg, Germany
- Department of Cardiology, Angiology and Pneumology, University of HeidelbergHeidelberg, Germany
| | - Johannes Backs
- Research Unit Cardiac Epigenetics, Department of Cardiology, Angiology and Pneumology, University of HeidelbergHeidelberg, Germany
- German Centre for Cardiovascular Research, Partner Site Heidelberg/MannheimHeidelberg, Germany
| |
Collapse
|