1
|
Pohar J, Simon Q, Fillatreau S. Antigen-Specificity in the Thymic Development and Peripheral Activity of CD4 +FOXP3 + T Regulatory Cells. Front Immunol 2018; 9:1701. [PMID: 30083162 PMCID: PMC6064734 DOI: 10.3389/fimmu.2018.01701] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/10/2018] [Indexed: 01/12/2023] Open
Abstract
CD4+Foxp3+ T regulatory cells (Treg) are essential for the life of the organism, in particular because they protect the host against its own autoaggressive CD4+Foxp3- T lymphocytes (Tconv). Treg distinctively suppress autoaggressive immunity while permitting efficient defense against infectious diseases. This split effect indicates that Treg activity is controlled in an antigen-specific manner. This specificity is achieved first by the formation of the Treg repertoire during their development, and second by their activation in the periphery. This review presents novel information on the antigen-specificity of Treg development in the thymus, and Treg function in the periphery. These aspects have so far remained imprecisely understood due to the lack of knowledge of the actual antigens recognized by Treg during the different steps of their life, so that most previous studies have been performed using artificial antigens. However, recent studies identified some antigens mediating the positive selection of autoreactive Treg in the thymus, and the function of Treg in the periphery in autoimmune and allergic disorders. These investigations emphasized the remarkable specificity of Treg development and function. Indeed, the development of autoreactive Treg in the thymus was found to be mediated by single autoantigens, so that the absence of one antigen led to a dramatic loss of Treg reacting toward that antigen. The specificity of Treg development is important because the constitution of the Treg repertoire, and especially the presence of holes in this repertoire, was found to crucially influence human immunopathology. Indeed, it was found that the development of human immunopathology was permitted by the lack of Treg against the antigens driving the autoimmune or allergic T cell responses rather than by the impairment of Treg activation or function. The specificity of Treg suppression in the periphery is therefore intimately associated with the mechanisms shaping the formation of the Treg repertoire during their development. This novel information refines significantly our understanding of the antigen-specificity of Treg protective function, which is required to envision how these cells distinctively regulate unwanted immune responses as well as for the development of appropriate approaches to optimally harness them therapeutically in autoimmune, malignant, and infectious diseases.
Collapse
Affiliation(s)
- Jelka Pohar
- Institut Necker-Enfants Malades, INSERM U1151-CNRS UMR 8253, Paris, France
| | - Quentin Simon
- Institut Necker-Enfants Malades, INSERM U1151-CNRS UMR 8253, Paris, France
| | - Simon Fillatreau
- Institut Necker-Enfants Malades, INSERM U1151-CNRS UMR 8253, Paris, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,AP-HP, Hôpital Necker Enfants Malades, Paris, France
| |
Collapse
|
2
|
Stress-testing the relationship between T cell receptor/peptide-MHC affinity and cross-reactivity using peptide velcro. Proc Natl Acad Sci U S A 2018; 115:E7369-E7378. [PMID: 30021852 DOI: 10.1073/pnas.1802746115] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
T cell receptors (TCRs) bind to peptide-major histocompatibility complex (pMHC) with low affinity (Kd ∼ μM), which is generally assumed to facilitate cross-reactive TCR "scanning" of ligands. To understand the relationship between TCR/pMHC affinity and cross-reactivity, we sought to engineer an additional weak interaction, termed "velcro," between the TCR and pMHC to probe the specificities of TCRs at relatively low and high affinities. This additional interaction was generated through an eight-amino acid peptide library covalently linked to the N terminus of the MHC-bound peptide. Velcro was selected through an affinity-based isolation and was subsequently shown to enhance the cognate TCR/pMHC affinity in a peptide-dependent manner by ∼10-fold. This was sufficient to convert a nonstimulatory ultra-low-affinity ligand into a stimulatory ligand. An X-ray crystallographic structure revealed how velcro interacts with the TCR. To probe TCR cross-reactivity, we screened TCRs against yeast-displayed pMHC libraries with and without velcro, and found that the peptide cross-reactivity profiles of low-affinity (Kd > 100 μM) and high-affinity (Kd ∼ μM) TCR/pMHC interactions are remarkably similar. The conservation of recognition of the TCR for pMHC across affinities reveals the nature of low-affinity ligands for which there are important biological functions and has implications for understanding the specificities of affinity-matured TCRs.
Collapse
|
3
|
Gonçalves P, Ferrarini M, Molina-Paris C, Lythe G, Vasseur F, Lim A, Rocha B, Azogui O. A new mechanism shapes the naïve CD8 + T cell repertoire: the selection for full diversity. Mol Immunol 2017; 85:66-80. [PMID: 28212502 DOI: 10.1016/j.molimm.2017.01.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 01/16/2017] [Accepted: 01/28/2017] [Indexed: 12/17/2022]
Abstract
During thymic T cell differentiation, TCR repertoires are shaped by negative, positive and agonist selection. In the thymus and in the periphery, repertoires are also shaped by strong inter-clonal and intra-clonal competition to survive death by neglect. Understanding the impact of these events on the T cell repertoire requires direct evaluation of TCR expression in peripheral naïve T cells. Several studies have evaluated TCR diversity, with contradictory results. Some of these studies had intrinsic technical limitations since they used material obtained from T cell pools, preventing the direct evaluation of clonal sizes. Indeed with these approaches, identical TCRs may correspond to different cells expressing the same receptor, or to several amplicons from the same T cell. We here overcame this limitation by evaluating TCRB expression in individual naïve CD8+ T cells. Of the 2269 Tcrb sequences we obtained from 13 mice, 99% were unique. Mathematical analysis of the data showed that the average number of naïve peripheral CD8+ T cells expressing the same TCRB is 1.1 cell. Since TCRA co-expression studies could only increase repertoire diversity, these results reveal that the number of naïve T cells with unique TCRs approaches the number of naïve cells. Since thymocytes undergo multiple rounds of divisions after TCRB rearrangement and 3-5% of thymocytes survive thymic selection events the number of cells expressing the same TCRB was expected to be much higher. Thus, these results suggest a new repertoire selection mechanism, which strongly selects for full TCRB diversity.
Collapse
Affiliation(s)
- Pedro Gonçalves
- Lymphocyte Population Biology Unit, CNRS URA 196, Institut Pasteur, Paris, France; INSERM, U1151, CNRS, UMR8253, Faculté de Médecine Paris Descartes, Paris, France.
| | - Marco Ferrarini
- Department of Applied Mathematics, University of Leeds, Leeds LS29JT, UK
| | | | - Grant Lythe
- Department of Applied Mathematics, University of Leeds, Leeds LS29JT, UK
| | - Florence Vasseur
- Lymphocyte Population Biology Unit, CNRS URA 196, Institut Pasteur, Paris, France; INSERM, U1151, CNRS, UMR8253, Faculté de Médecine Paris Descartes, Paris, France
| | - Annik Lim
- Lymphocyte Population Biology Unit, CNRS URA 196, Institut Pasteur, Paris, France
| | - Benedita Rocha
- Lymphocyte Population Biology Unit, CNRS URA 196, Institut Pasteur, Paris, France; INSERM, U1151, CNRS, UMR8253, Faculté de Médecine Paris Descartes, Paris, France.
| | - Orly Azogui
- INSERM, U1151, CNRS, UMR8253, Faculté de Médecine Paris Descartes, Paris, France
| |
Collapse
|
4
|
McDonald BD, Bunker JJ, Erickson SA, Oh-Hora M, Bendelac A. Crossreactive αβ T Cell Receptors Are the Predominant Targets of Thymocyte Negative Selection. Immunity 2015; 43:859-69. [PMID: 26522985 PMCID: PMC4654978 DOI: 10.1016/j.immuni.2015.09.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 06/28/2015] [Accepted: 09/23/2015] [Indexed: 11/18/2022]
Abstract
The precise impact of thymic positive and negative selection on the T cell receptor (TCR) repertoire remains controversial. Here, we used unbiased, high-throughput cloning and retroviral expression of individual pre-selection TCRs to provide a direct assessment of these processes at the clonal level in vivo. We found that 15% of random TCRs induced signaling and directed positive (7.5%) or negative (7.5%) selection, depending on strength of signal, whereas the remaining 85% failed to induce signaling or selection. Most negatively selected TCRs exhibited promiscuous crossreactivity toward multiple other major histocompatibility complex (MHC) haplotypes. In contrast, TCRs that were positively selected or non-selected were minimally crossreactive. Negative selection of crossreactive TCRs led to clonal deletion but also recycling into intestinal CD4(-)CD8β(-) intraepithelial lymphocytes (iIELs). Thus, broadly crossreactive TCRs arise at low frequency in the pre-selection repertoire but constitute the primary drivers of thymic negative selection and iIEL lineage differentiation.
Collapse
Affiliation(s)
- Benjamin D McDonald
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Jeffrey J Bunker
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Steven A Erickson
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Masatsugu Oh-Hora
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Albert Bendelac
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Department of Pathology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
5
|
Takada K, Takahama Y. Positive-Selection-Inducing Self-Peptides Displayed by Cortical Thymic Epithelial Cells. Adv Immunol 2015; 125:87-110. [DOI: 10.1016/bs.ai.2014.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Rane S, Das R, Ranganathan V, Prabhu S, Das A, Mattoo H, Durdik JM, George A, Rath S, Bal V. Peripheral residence of naïve CD4 T cells induces MHC class II-dependent alterations in phenotype and function. BMC Biol 2014; 12:106. [PMID: 25528158 PMCID: PMC4306244 DOI: 10.1186/s12915-014-0106-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 12/05/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND As individual naïve CD4 T lymphocytes circulate in the body after emerging from the thymus, they are likely to have individually varying microenvironmental interactions even in the absence of stimulation via specific target recognition. It is not clear if these interactions result in alterations in their activation, survival and effector programming. Naïve CD4 T cells show unimodal distribution for many phenotypic properties, suggesting that the variation is caused by intrinsic stochasticity, although underlying variation due to subsets created by different histories of microenvironmental interactions remains possible. To explore this possibility, we began examining the phenotype and functionality of naïve CD4 T cells differing in a basic unimodally distributed property, the CD4 levels, as well as the causal origin of these differences. RESULTS We examined separated CD4hi and CD4lo subsets of mouse naïve CD4 cells. CD4lo cells were smaller with higher CD5 levels and lower levels of the dual-specific phosphatase (DUSP)6-suppressing micro-RNA miR181a, and responded poorly with more Th2-skewed outcomes. Human naïve CD4lo and CD4hi cells showed similar differences. Naïve CD4lo and CD4hi subsets of thymic single-positive CD4 T cells did not show differences whereas peripheral naïve CD4lo and CD4hi subsets of T cell receptor (TCR)-transgenic T cells did. Adoptive transfer-mediated parking of naïve CD4 cells in vivo lowered CD4 levels, increased CD5 and reactive oxygen species (ROS) levels and induced hyporesponsiveness in them, dependent, at least in part, on availability of major histocompatibility complex class II (MHCII) molecules. ROS scavenging or DUSP inhibition ameliorated hyporesponsiveness. Naïve CD4 cells from aged mice showed lower CD4 levels and cell sizes, higher CD5 levels, and hyporesponsiveness and Th2-skewing reversed by DUSP inhibition. CONCLUSIONS Our data show that, underlying a unimodally distributed property, the CD4 level, there are subsets of naïve CD4 cells that vary in the time spent in the periphery receiving MHCII-mediated signals and show resultant alteration of phenotype and functionality via ROS and DUSP activity. Our findings also suggest the feasibility of potential pharmacological interventions for improved CD4 T cell responses during vaccination of older people via either anti-oxidant or DUSP inhibitor small molecules.
Collapse
Affiliation(s)
- Sanket Rane
- National Institute of Immunology, New Delhi, 110067, India.
| | - Rituparna Das
- National Institute of Immunology, New Delhi, 110067, India. .,Current address: Yale Cancer Center, Sterling Hall of Medicine, New Haven, USA.
| | - Vidya Ranganathan
- National Institute of Immunology, New Delhi, 110067, India. .,Current address: Division of Genetics & Development, Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada.
| | - Savit Prabhu
- National Institute of Immunology, New Delhi, 110067, India. .,Current address: Pediatric Biology Centre, Translational Health Sciences and Technology Institute, Gurgaon, India.
| | - Arundhoti Das
- National Institute of Immunology, New Delhi, 110067, India.
| | - Hamid Mattoo
- National Institute of Immunology, New Delhi, 110067, India. .,Current address: MGH Cancer Center, Charlestown, USA.
| | - Jeannine Marie Durdik
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA.
| | - Anna George
- National Institute of Immunology, New Delhi, 110067, India.
| | - Satyajit Rath
- National Institute of Immunology, New Delhi, 110067, India.
| | - Vineeta Bal
- National Institute of Immunology, New Delhi, 110067, India.
| |
Collapse
|
7
|
Revisiting thymic positive selection and the mature T cell repertoire for antigen. Immunity 2014; 41:181-90. [PMID: 25148022 DOI: 10.1016/j.immuni.2014.07.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Indexed: 12/11/2022]
Abstract
To support effective host defense, the T cell repertoire must balance breadth of recognition with sensitivity for antigen. The concept that T lymphocytes are positively selected in the thymus is well established, but how this selection achieves such a repertoire has not been resolved. Here we suggest that it is direct linkage between self and foreign antigen recognition that produces the necessary blend of TCR diversity and specificity in the mature peripheral repertoire, enabling responses to a broad universe of unpredictable antigens while maintaining an adequate number of highly sensitive T cells in a population of limited size. Our analysis also helps to explain how diversity and frequency of antigen-reactive cells in a T cell repertoire are adjusted in animals of vastly different size scale to enable effective antipathogen responses and suggests a possible binary architecture in the TCR repertoire that is divided between germline-related optimal binding and diverse recognition.
Collapse
|
8
|
Khailaie S, Robert PA, Toker A, Huehn J, Meyer-Hermann M. A signal integration model of thymic selection and natural regulatory T cell commitment. THE JOURNAL OF IMMUNOLOGY 2014; 193:5983-96. [PMID: 25392533 DOI: 10.4049/jimmunol.1400889] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The extent of TCR self-reactivity is the basis for selection of a functional and self-tolerant T cell repertoire and is quantified by repeated engagement of TCRs with a diverse pool of self-peptides complexed with self-MHC molecules. The strength of a TCR signal depends on the binding properties of a TCR to the peptide and the MHC, but it is not clear how the specificity to both components drives fate decisions. In this study, we propose a TCR signal-integration model of thymic selection that describes how thymocytes decide among distinct fates, not only based on a single TCR-ligand interaction, but taking into account the TCR stimulation history. These fates are separated based on sustained accumulated signals for positive selection and transient peak signals for negative selection. This spans up the cells into a two-dimensional space where they are either neglected, positively selected, negatively selected, or selected as natural regulatory T cells (nTregs). We show that the dynamics of the integrated signal can serve as a successful basis for extracting specificity of thymocytes to MHC and detecting the existence of cognate self-peptide-MHC. It allows to select a self-MHC-biased and self-peptide-tolerant T cell repertoire. Furthermore, nTregs in the model are enriched with MHC-specific TCRs. This allows nTregs to be more sensitive to activation and more cross-reactive than conventional T cells. This study provides a mechanistic model showing that time integration of TCR-mediated signals, as opposed to single-cell interaction events, is needed to gain a full view on the properties emerging from thymic selection.
Collapse
Affiliation(s)
- Sahamoddin Khailaie
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Philippe A Robert
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; Institut de Génétique Moléculaire de Montpellier, Centre National de la Recherche Scientifique, 34293 Montpellier, France
| | - Aras Toker
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; and
| | - Jochen Huehn
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; and
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; Institute for Biochemistry, Biotechnology, and Bioinformatics, University of Technology Braunschweig, 38106 Braunschweig, Germany
| |
Collapse
|
9
|
Lymphocyte repertoire selection and intracellular self/non-self-discrimination: historical overview. Immunol Cell Biol 2014; 93:297-304. [PMID: 25385066 DOI: 10.1038/icb.2014.96] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/19/2014] [Accepted: 10/15/2014] [Indexed: 02/07/2023]
Abstract
Immunological self/non-self-discrimination is conventionally seen as an extracellular event, involving interactions been receptors on T cells pre-educated to discriminate and peptides bound to major histocompatibility complex proteins (pMHCs). Mechanisms by which non-self peptides might first be sorted intracellularly to distinguish them from the vast excess of self-peptides have long been called for. Recent demonstrations of endogenous peptide-specific clustering of pMHCs on membrane rafts are indicative of intracellular enrichment before surface display. The clustering could follow the specific aggregation of a foreign protein that exceeded its solubility limit in the crowded intracellular environment. Predominantly entropy-driven, this homoaggregation would colocalize identical peptides, thus facilitating their collective presentation. Concentrations of self-proteins are fine-tuned over evolutionary time to avoid this. Disparate observations, such as pyrexia and female susceptibility to autoimmune disease, can be explained in terms of the need to cosegregate cognate pMHC complexes internally before extracellular display.
Collapse
|
10
|
Lo WL, Solomon BD, Donermeyer DL, Hsieh CS, Allen PM. T cell immunodominance is dictated by the positively selecting self-peptide. eLife 2014; 3:e01457. [PMID: 24424413 PMCID: PMC3885792 DOI: 10.7554/elife.01457] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Naive T cell precursor frequency determines the magnitude of immunodominance. While a broad T cell repertoire requires diverse positively selecting self-peptides, how a single positively selecting ligand influences naive T cell precursor frequency remains undefined. We generated a transgenic mouse expressing a naturally occurring self-peptide, gp250, that positively selects an MCC-specific TCR, AND, as the only MHC class II I-E(k) ligand to study the MCC highly organized immunodominance hierarchy. The single gp250/I-E(k) ligand greatly enhanced MCC-tetramer(+) CD4(+) T cells, and skewed MCC-tetramer(+) population toward V11α(+)Vβ3(+), a major TCR pair in MCC-specific immunodominance. The gp250-selected V11α(+)Vβ3(+) CD4(+) T cells had a significantly increased frequency of conserved MCC-preferred CDR3 features. Our studies establish a direct and causal relationship between a selecting self-peptide and the specificity of the selected TCRs. Thus, an immunodominant T cell response can be due to a dominant positively selecting self-peptide. DOI: http://dx.doi.org/10.7554/eLife.01457.001.
Collapse
Affiliation(s)
- Wan-Lin Lo
- Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, United States
| | | | | | | | | |
Collapse
|
11
|
Mandl JN, Monteiro JP, Vrisekoop N, Germain RN. T cell-positive selection uses self-ligand binding strength to optimize repertoire recognition of foreign antigens. Immunity 2013; 38:263-274. [PMID: 23290521 PMCID: PMC3785078 DOI: 10.1016/j.immuni.2012.09.011] [Citation(s) in RCA: 236] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 09/28/2012] [Indexed: 01/19/2023]
Abstract
Developing T cells express diverse antigen receptors whose specificities are not prematched to the foreign antigens they eventually encounter. Past experiments have revealed that thymocytes must productively signal in response to self antigens to mature and enter the peripheral T cell pool (positive selection), but how this process enhances effective mature T cell responses to foreign antigen is not fully understood. Here we have documented an unsuspected connection between thymic recognition events and foreign antigen-driven T cell responses. We find that the strength of self-reactivity is a clone-specific property unexpectedly directly related to the strength of T cell receptor (TCR) binding to presented foreign antigen. T cells with receptors showing stronger interaction with self dominate in responses to infections and accumulate in aging individuals, revealing that positive selection contributes to effective immunity by skewing the mature TCR repertoire toward highly effective recognition of pathogens that pose a danger to the host.
Collapse
Affiliation(s)
- Judith N. Mandl
- Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - João P. Monteiro
- Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Nienke Vrisekoop
- Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Ronald N. Germain
- Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
12
|
Self-peptides in TCR repertoire selection and peripheral T cell function. Curr Top Microbiol Immunol 2013; 373:49-67. [PMID: 23612987 DOI: 10.1007/82_2013_319] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The vertebrate antigen receptors are anticipatory in their antigen recognition and display a vast diversity. Antigen receptors are assembled through V(D)J recombination, in which one of each Variable, (Diverse), and Joining gene segment are randomly utilized and recombined. Both gene rearrangement and mutational insertion are generated through randomness; therefore, the process of antigen receptors generation requires a rigorous testing system to select every receptor which is useful to recognize foreign antigens, but which would cause no harm to self cells. In the case of T cell receptors (TCR), such a quality control responsibility rests in thymic positive and negative selection. In this review, we focus on the critical involvement of self-peptides in the generation of a T cell repertoire, discuss the role of T cell thymic development in shaping the specificity of TCR repertoire, and directing function fitness of mature T cells in periphery. Here, we consider thymic positive selection to be not merely a one-time maturing experience for an individual T cell, but a life-long imprinting which influences the function of each individual T cell in periphery.
Collapse
|
13
|
Abstract
Successful allogeneic hematopoietic stem cell transplantation (HSCT) and solid organ transplantation require development of a degree of immune tolerance against allogeneic antigens. T lymphocytes play a critical role in allograft rejection, graft failure, and graft-versus-host disease (GVHD). T-cell tolerance occurs by two different mechanisms: (1) depletion of self-reactive T cells during their maturation in the thymus (central tolerance), and (2) suppression/elimination of self-reactive mature T cells in the periphery (peripheral tolerance). Induction of transplant tolerance improves transplantation outcomes. Adoptive immunotherapy with immune suppressor cells including regulatory T cells, natural killer (NK)-T cells, veto cells, and facilitating cells are promising therapies for modulation of immune tolerance. Achieving mixed chimerism with the combination of thymic irradiation and T-cell-depleting antibodies, costimulatory molecule blockade with/without inhibitory signal activation, and elimination of alloreactive T cells with varying methods including pre- or post-transplant cyclophosphamide administration appear to be effective in inducing transplant tolerance.
Collapse
Affiliation(s)
- Onder Alpdogan
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | | |
Collapse
|
14
|
Takamiya T, Wongsawad P, Tajima N, Shioda N, Lu JF, Wen CL, Wu JB, Handa T, Iijima H, Kitanaka S, Yukawa T. Identification of dendrobium species used for herbal medicines based on ribosomal DNA internal transcribed spacer sequence. Biol Pharm Bull 2011; 34:779-82. [PMID: 21532173 DOI: 10.1248/bpb.34.779] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Stems of genus Dendrobium (Orchidaceae) have been traditionally used as an herbal medicine (Dendrobii Herba) in Eastern Asia. Although demand for Dendrobium is increasing rapidly, wild resources are decreasing due to over-collection. This study aimed to identify plant sources of Dendrobii Herba on the market based on sequences of the internal transcribed spacer (ITS) regions of nuclear ribosomal DNA. We constructed an ITS1-5.8S-ITS2 sequence database of 196 Dendrobium species, and the database was employed to identify 21 herbal samples. We found that 13 Dendrobium species (D. catenatum, D. cucullatum, D. denudans, D. devonianum, D. eriiflorum, D. hancockii, D. linawianum, D. lituiflorum, D. loddigesii, D. polyanthum, D. primulinum, D. regium, and D. transparens) were possibly used as plant sources of Dendrobii Herba, and unidentified species allied to D. denudans, D. eriiflorum, D. gregulus, or D. hemimelanoglossum were also used as sources. Furthermore, it is clear that D. catenatum is one of the most important sources of Dendrobii Herba (5 out of 21 samples).
Collapse
|
15
|
Ebert PJR, Li QJ, Huppa JB, Davis MM. Functional development of the T cell receptor for antigen. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 92:65-100. [PMID: 20800817 PMCID: PMC4887107 DOI: 10.1016/s1877-1173(10)92004-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
For over three decades now, the T cell receptor (TCR) for antigen has not ceased to challenge the imaginations of cellular and molecular immunologists alike. T cell antigen recognition transcends every aspect of adaptive immunity: it shapes the T cell repertoire in the thymus and directs T cell-mediated effector functions in the periphery, where it is also central to the induction of peripheral tolerance. Yet, despite its central position, there remain many questions unresolved: how can one TCR be specific for one particular peptide-major histocompatibility complex (pMHC) ligand while also binding other pMHC ligands with an immunologically relevant affinity? And how can a T cell's extreme specificity (alterations of single methyl groups in their ligand can abrogate a response) and sensitivity (single agonist ligands on a cell surface are sufficient to trigger a measurable response) emerge from TCR-ligand interactions that are so low in affinity? Solving these questions is intimately tied to a fundamental understanding of molecular recognition dynamics within the many different contexts of various T cell-antigen presenting cell (APC) contacts: from the thymic APCs that shape the TCR repertoire and guide functional differentiation of developing T cells to the peripheral APCs that support homeostasis and provoke antigen responses in naïve, effector, memory, and regulatory T cells. Here, we discuss our recent findings relating to T cell antigen recognition and how this leads to the thymic development of foreign-antigen-responsive alphabetaT cells.
Collapse
Affiliation(s)
- Peter J R Ebert
- The Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | |
Collapse
|
16
|
Crites TJ, Varma R. On the issue of peptide recognition in T cell development. SELF/NONSELF 2010; 1:55-61. [PMID: 21559177 PMCID: PMC3091603 DOI: 10.4161/self.1.1.10962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/16/2009] [Accepted: 12/17/2009] [Indexed: 11/19/2022]
Abstract
CD4-CD8 double positive (DP) thymocytes undergo a differentiation process in the thymus where they are selected based on their ability to recognize peptide antigens presented on self major histocompatibility complex (MHC) molecules. The first stage of this process is positive selection, a quality-control mechanism which ensures that the T cell receptors (TCR) presented on developing thymocytes can transmit signals via peptides presented on either MHC class I (MHC1) or MHC class II (MHC2) molecules. Work over the past decade has revealed that the peptides that drive positive selection of both CD4 and CD8 lineage cells deliver only weak TCR signals. In line with these observations, specialized protein degradation machineries have been discovered in the thymic cortex that presumably generate specialized low-affinity peptide repertoires for presentation on MHC1 and MHC2 molecules. TCR signals transduced through these weak-affinity ligands in the early stages of positive selection alter the kinetics of expression of CD4 and CD8 molecules and play a crucial role in commitment of thymocytes to either the CD4 or CD8 lineages. In this work, we review the experiments that explore the peptide repertoires that are presented to developing thymocytes during positive selection, the observed signaling patterns that lead to CD4 versus CD8 lineage commitment, and speculate about how specialized organization of the signaling machinery in DP thymocytes may allow for efficient transduction of weak signals during the course of positive selection.
Collapse
Affiliation(s)
- Travis J Crites
- Laboratory of Cellular and Molecular Immunology; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, MD USA
| | | |
Collapse
|
17
|
Oh KI, Seo JN. Expression pattern of immunoproteasome subunits in human thymus. Immune Netw 2009; 9:285-8. [PMID: 20157616 PMCID: PMC2816962 DOI: 10.4110/in.2009.9.6.285] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 12/07/2009] [Accepted: 12/10/2009] [Indexed: 01/18/2023] Open
Abstract
The expression pattern of immunoproteasomes in human thymus has not been analyzed but may have important consequences during thymic selection. Here we examined the expression patterns of immunoproteasome subunits in fetal and adult thymic tissues by immunohistochemistry and found that all three subunits are expressed in both cortical and medullary stromal cells. These data suggest that thymic selection in human can be affected by peptide repertoires generated by immunoproteasomes.
Collapse
Affiliation(s)
- Kwon Ik Oh
- Department of Pathology, Hallym University College of Medicine, Chuncheon 200-702, Korea
| | | |
Collapse
|
18
|
Wang B, Primeau TM, Myers N, Rohrs HW, Gross ML, Lybarger L, Hansen TH, Connolly JM. A single peptide-MHC complex positively selects a diverse and specific CD8 T cell repertoire. Science 2009; 326:871-4. [PMID: 19892989 DOI: 10.1126/science.1177627] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pathogen recognition by T cells is dependent on their exquisite specificity for self-major histocompatibility complex (MHC) molecules presenting a bound peptide. Although this specificity results from positive and negative selection of developing T cells in the thymus, the relative contribution of these two processes remains controversial. To address the relation between the selecting peptide-MHC complex and the specificity of mature T cells, we generated transgenic mice that express a single peptide-MHC class I complex. We demonstrate that positive selection of CD8 T cells in these mice results in an MHC-specific repertoire. Although selection on a single complex is peptide promiscuous, mature T cells are highly peptide specific. Thus, positive selection imparts MHC and peptide specificity on the peripheral CD8 T cell repertoire.
Collapse
Affiliation(s)
- Baomei Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Antigen presentation in the thymus for positive selection and central tolerance induction. Nat Rev Immunol 2009; 9:833-44. [DOI: 10.1038/nri2669] [Citation(s) in RCA: 383] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Ebert PJR, Jiang S, Xie J, Li QJ, Davis MM. An endogenous positively selecting peptide enhances mature T cell responses and becomes an autoantigen in the absence of microRNA miR-181a. Nat Immunol 2009; 10:1162-9. [PMID: 19801983 PMCID: PMC3762483 DOI: 10.1038/ni.1797] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 09/01/2009] [Indexed: 11/09/2022]
Abstract
Thymic positive selection is based on the interactions of T cell antigen receptors (TCRs) with self peptide-major histocompatibility complex (MHC) ligands, but the identity of selecting peptides for MHC class II-restricted TCRs and the functional consequences of this peptide specificity are not clear. Here we identify several endogenous self peptides that positively selected the MHC class II-restricted 5C.C7 TCR. The most potent of these also enhanced mature T cell activation, which supports the hypothesis that one function of positive selection is to produce T cells that can use particular self peptide-MHC complexes for activation and/or homeostasis. We also show that inhibiting the microRNA miR-181a resulted in maturation of T cells that overtly reacted toward these erstwhile positively selecting peptides. Therefore, miR-181a helps to guarantee the clonal deletion of particular moderate-affinity clones by modulating the TCR signaling threshold of thymocytes.
Collapse
Affiliation(s)
- Peter J R Ebert
- The Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | | | |
Collapse
|
21
|
Lo WL, Felix NJ, Walters JJ, Rohrs H, Gross ML, Allen PM. An endogenous peptide positively selects and augments the activation and survival of peripheral CD4+ T cells. Nat Immunol 2009; 10:1155-61. [PMID: 19801984 PMCID: PMC2764840 DOI: 10.1038/ni.1796] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 08/31/2009] [Indexed: 11/16/2022]
Abstract
Although CD4+ and CD8+ T cells differ in their positively selecting signal strength, endogenous positively selecting ligands have only been identified for MHC class I-restricted T cell receptors (TCRs). Here we screened for ligands that can positively select MHC class II-restricted TCRs, using thymocytes from four I-Ek restricted TCR transgenic mice and a large panel of self peptides. One peptide, gp250, induced positive selection of AND CD4+ T cells, had no homology with the AND TCR agonist ligand, and was recognized with a high degree of specificity. gp250 acted as a co-agonist to initiate activation and enhance survival of peripheral AND CD4+ T cells. Thus, positively selecting ligands play critical roles in thymocyte development and in the activation and maintenance of peripheral T cells.
Collapse
Affiliation(s)
- Wan-Lin Lo
- Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | | |
Collapse
|
22
|
Ebert PJR, Ehrlich LIR, Davis MM. Low ligand requirement for deletion and lack of synapses in positive selection enforce the gauntlet of thymic T cell maturation. Immunity 2008; 29:734-45. [PMID: 18993085 DOI: 10.1016/j.immuni.2008.09.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 07/18/2008] [Accepted: 09/09/2008] [Indexed: 11/16/2022]
Abstract
Immature double-positive (CD4(+)CD8(+)) thymocytes respond to negatively selecting peptide-MHC ligands by forming an immune synapse that sustains contact with the antigen-presenting cell (APC). Using fluorescently labeled peptides, we showed that as few as two agonist ligands could promote APC contact and subsequent apoptosis in reactive thymocytes. Furthermore, we showed that productive signaling for positive selection, as gauged by nuclear translocation of a green fluorescent protein (GFP)-labeled NFATc construct, did not involve formation of a synapse between thymocytes and selecting epithelial cells in reaggregate thymus cultures. Antibody blockade of endogenous positively selecting ligands prevented NFAT nuclear accumulation in such cultures and reversed NFAT accumulation in previously stimulated thymocytes. Together, these data suggest a "gauntlet" model in which thymocytes mature by continually acquiring and reacquiring positively selecting signals without sustained contact with epithelial cells, thereby allowing them to sample many cell surfaces for potentially negatively selecting ligands.
Collapse
Affiliation(s)
- Peter J R Ebert
- Howard Hughes Medical Institute and The Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|
23
|
Truscott SM, Lybarger L, Martinko JM, Mitaksov VE, Kranz DM, Connolly JM, Fremont DH, Hansen TH. Disulfide bond engineering to trap peptides in the MHC class I binding groove. THE JOURNAL OF IMMUNOLOGY 2007; 178:6280-9. [PMID: 17475856 DOI: 10.4049/jimmunol.178.10.6280] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Immunodominant peptides in CD8 T cell responses to pathogens and tumors are not always tight binders to MHC class I molecules. Furthermore, antigenic peptides that bind weakly to the MHC can be problematic when designing vaccines to elicit CD8 T cells in vivo or for the production of MHC multimers for enumerating pathogen-specific T cells in vitro. Thus, to enhance peptide binding to MHC class I, we have engineered a disulfide bond to trap antigenic peptides into the binding groove of murine MHC class I molecules expressed as single-chain trimers or SCTs. These SCTs with disulfide traps, termed dtSCTs, oxidized properly in the endoplasmic reticulum, transited to the cell surface, and were recognized by T cells. Introducing a disulfide trap created remarkably tenacious MHC/peptide complexes because the peptide moiety of the dtSCT was not displaced by high-affinity competitor peptides, even when relatively weak binding peptides were incorporated into the dtSCT. This technology promises to be useful for DNA vaccination to elicit CD8 T cells, in vivo study of CD8 T cell development, and construction of multivalent MHC/peptide reagents for the enumeration and tracking of T cells-particularly when the antigenic peptide has relatively weak affinity for the MHC.
Collapse
Affiliation(s)
- Steven M Truscott
- Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
João C. Immunoglobulin is a highly diverse self-molecule that improves cellular diversity and function during immune reconstitution. Med Hypotheses 2007; 68:158-61. [PMID: 16890385 DOI: 10.1016/j.mehy.2006.05.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 05/19/2006] [Accepted: 05/23/2006] [Indexed: 10/24/2022]
Abstract
Paradoxically, human B cell immune deficiencies are associated with increased susceptibility to viral and fungi infections, which are T cell immunity related infections. Also, some viral infections occurring in immune depressed patients such as cytomegalovirus infections are recommended to be treated with intravenous immunoglobulin (IVIg) in combination with antiviral therapy. This fact has no clear biological explanation but it has been shown to be successful. Recently, B cells and immunoglobulin were identified as essential elements driving T cell receptor (TCR) diversity generation. Idiotype peptides of B cell immunoglobulin may be the driving force for the antigen presenting function of B cells and other antigen presenting cells to influence the T cell repertoire. This seems to be another relevance of Jerne's idiotypic network and another function of immunoglobulin. Since T cells function depends on the diversity of the TCR repertoire, means to increase the diversity of the T cell repertoire may improve T cell function in situations characterized by a contracted TCR repertoire, such as AIDS, primary immunodeficiency, cancer, autoimmunity and following chemotherapy and hematopoietic precursors transplantation. The clinical hypothesis here put forward is that B cells and/or immunoglobulin may be used therapeutically aiming to increase and potentially to restore T cell repertoire diversity improving T cell function in situations implicating a contracted T cell repertoire. The fact that immunoglobulin influence the composition of T cell repertoire by increasing its diversity allows a much wider application of this molecule in the clinical practice. Here is presented a novel reasoning for the use of IVIg in humans, which should be explored. All the situations where immune reconstitution occurs are potentially a target for this therapeutically mechanism, aiming to fast and improve the diversity of the reconstituted immune repertoires. This new role of Ig molecule, an old and widely therapeutically used molecule, may help to explain several effects that IVIg have in the T cell compartment, such as modulation of the activation and function of effectors T cells. The idea that immunoglobulin is essential in the generation and maintenance of a diverse compartment of T cells, affecting T cell function via that mechanism suggests a promising approach to medical conditions involving immune reconstitution. Furthermore, it represents a new paradigm of understanding the immune system as a complex, interdependent web of cells/cell products that inter-affect each other generation, function and survival.
Collapse
Affiliation(s)
- Cristina João
- Internal Medicine Department-Hematology Division, Mayo Clinic, Stabile building, 6th floor, 200th Street SW, Rochester, MN, USA.
| |
Collapse
|
25
|
Mellanby RJ, Koonce CH, Monti A, Phillips JM, Cooke A, Bikoff EK. Loss of Invariant Chain Protects Nonobese Diabetic Mice against Type 1 Diabetes. THE JOURNAL OF IMMUNOLOGY 2006; 177:7588-98. [PMID: 17114428 DOI: 10.4049/jimmunol.177.11.7588] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The invariant (Ii) chain acts as an essential chaperone to promote MHC class II surface expression, Ag presentation, and selection of CD4(+) T cells. We have examined its role in the development of type 1 diabetes in NOD mice and show that Ii chain-deficient NOD mice fail to develop type 1 diabetes. Surprisingly, Ii chain functional loss fails to disrupt in vitro presentation of islet Ags, in the context of NOD I-A(g7) molecules. Moreover, pathogenic effector cells could be shown to be present in Ii chain-deficient NOD mice because they were able to transfer diabetes to NOD.scid recipients. The ability of these cells to transfer diabetes was markedly enhanced by depletion of CD25 cells coupled with in vivo anti-CD25 treatment of recipient mice. The numbers of CD4(+)CD25(+)Foxp3(+) T cells in thymus and periphery of Ii chain-deficient NOD mice were similar to those found in normal NOD mice, in contrast to conventional CD4(+) T cells whose numbers were reduced. This suggests that regulatory T cells are unaffected in their selection and survival by the absence of Ii chain and that an alteration in the balance of effector to regulatory T cells contributes to diabetes prevention.
Collapse
Affiliation(s)
- Richard J Mellanby
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
It is generally accepted in immunology that while T and B cells collaborate for the production of antibodies in response to protein antigens, T cells develop and function in the absence of B cells. However, B cell-deficient subjects and mice have unexplained cellular immune defects. Here, we examined the contribution of B cells/Ig to the generation of diversity and function of T cells. Mice lacking B cells and Ig (JH(-/-)) or having oligoclonal B cells (QM) had a profoundly contracted T cell receptor (TCR) Vbeta repertoire: 0.08 and 1.3% of wild type, respectively. Rejection of H-Y-incompatible skin grafts in QM and JH(-/-) mice was significantly delayed (median, 43 and 22 days, respectively) compared to wild-type mice (median, 16 days). Furthermore, reduction of the TCR Vbeta diversity by thymectomy in wild-type mice significantly increased survival of H-Y-incompatible skin grafts, and reconstitution of the T cell diversity in QM mice with Ig Fab fragments significantly decreased survival of the skin grafts. These results indicate that B cells and/or Ig "help" T cells through the generation and maintenance of T cell diversity, improving T cell function. Our results may have important implications for therapy and immune reconstitution in the context of AIDS, cancer, autoimmunity and post-myeloablative treatments.
Collapse
Affiliation(s)
- Cristina João
- Internal Medicine Department, Division of Hematology, Mayo Clinic, Rochester, MN, USA.
| | | | | |
Collapse
|
27
|
Abstract
The endosomal pathway of antigen presentation leads to the display of peptides on major histocompatibility complex (MHC) class II molecules at the cell surface of antigen-presenting cells (APCs). The pathway involves two major steps, invariant chain degradation and antigen processing, which take place in the late endosomes/lysosomes. So far, of the known lysosomal proteases, only cathepsin L and cathepsin S have been shown to have a non-redundant role in endosomal presentation in vivo. Besides being engaged in the degradation of invariant chain, these enzymes also mediate the processing of antigens in distinct cell types. Surprisingly, these enzymes are active in different types of APCs, and this defined expression pattern seems to be enforced by regulatory mechanisms acting on multiple levels.
Collapse
Affiliation(s)
- Lianne C Hsing
- Department of Immunology, Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | |
Collapse
|
28
|
Silk JD, Schoendorf D, Bartok I, Chai JG, Gray D, Simpson E, Dyson J. Mixed-haplotype MHC class II molecules select functional CD4+ T cells. Mol Immunol 2005; 42:1129-39. [PMID: 15829303 DOI: 10.1016/j.molimm.2004.11.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Indexed: 11/20/2022]
Abstract
MHC class II molecules are formed from polymorphic alpha and beta chains. While pairing of chains is most efficient within class II isotypes and haplotypes, limited pairing and surface expression of mixed-haplotype and -isotype class II molecules is common. The function of such molecules in antigen presentation has been established by the unique restriction of responses in F1 mice. However, it has not been established whether mixed class II molecules are able to mediate selection of functional T cells and how the reduced avidity of the TCR/MHC interaction influences the repertoire. In this report we have addressed these issues through the production of mice expressing solely mixed-haplotype class II molecules. The mixed class II molecules promote selection of a small CD4+ T cell repertoire with modified TCR use. The selected CD4+ T cells are functional in vivo and in vitro.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/metabolism
- Antigen Presentation
- B-Lymphocytes/immunology
- Bone Marrow Cells
- CD4-Positive T-Lymphocytes/immunology
- Cell Culture Techniques
- Cells, Cultured
- Crosses, Genetic
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Flow Cytometry
- Gamma Rays
- Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology
- Haplotypes/genetics
- Haplotypes/immunology
- Histocompatibility Antigens Class II/chemistry
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Inbred Strains
- Mice, Transgenic
- Models, Molecular
- Molecular Sequence Data
- Receptors, Antigen, T-Cell/immunology
- Selection, Genetic
- Sequence Homology, Amino Acid
- Skin Transplantation/immunology
- Spleen/cytology
Collapse
Affiliation(s)
- Jonathan D Silk
- Transplantation Biology Group, Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, Du Cane Road, London W12 ONN, UK
| | | | | | | | | | | | | |
Collapse
|
29
|
Ploss A, Tran A, Menet E, Leiner I, Pamer EG. Cross-recognition of N-formylmethionine peptides is a general characteristic of H2-M3-restricted CD8+ T cells. Infect Immun 2005; 73:4423-6. [PMID: 15972542 PMCID: PMC1168546 DOI: 10.1128/iai.73.7.4423-4426.2005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
H2-M3-restricted CD8+ T cells can exhibit cross-reactivity to different bacterially derived N-formylmethionine peptides. The extent of this promiscuity is unclear. We deleted the nonredundant fMIVTLF epitope and found that Listeria monocytogenes still primed fMIVTLF-specific T cells. Thus, cross-reactivity appears to be a more general characteristic of H2-M3-restricted T cells.
Collapse
Affiliation(s)
- Alexander Ploss
- Infectious Diseases Service, Department of Medicine and Laboratory of Antimicrobial Immunity, Immunology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
30
|
Cheunsuk S, Lian ZX, Yang GX, Gershwin ME, Gruen JR, Bowlus CL. Prss16 is not required for T-cell development. Mol Cell Biol 2005; 25:789-96. [PMID: 15632078 PMCID: PMC543420 DOI: 10.1128/mcb.25.2.789-796.2005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
PRSS16 is a serine protease expressed exclusively in cortical thymic epithelial cells (cTEC) of the thymus, suggesting that it plays a role in the processing of peptide antigens during the positive selection of T cells. Moreover, the human PRSS16 gene is encoded in a region near the class I major histocompatibility complex (MHC) that has been linked to type 1 diabetes mellitus susceptibility. The mouse orthologue Prss16 is conserved in genetic structure, sequence, and pattern of expression. To study the role of Prss16 in thymic development, we generated a deletion mutant of Prss16 and characterized T-lymphocyte populations and MHC class II expression on cortical thymic epithelial cells. Prss16-deficient mice develop normally, are fertile, and show normal thymic morphology, cellularity, and anatomy. The total numbers and frequencies of thymocytes and splenic T-cell populations did not differ from those of wild-type controls. Surface expression of MHC class II on cTEC was also similar in homozygous mutant and wild-type animals, and invariant chain degradation was not impaired by deletion of Prss16. These findings suggest that Prss16 is not required for quantitatively normal T-cell development.
Collapse
Affiliation(s)
- Saijai Cheunsuk
- Division of Gastroenterology, Department of Internal Medicine, UC Davis Medical Center, 4150 V St., PSSB 3500, Sacramento, CA 95817, USA
| | | | | | | | | | | |
Collapse
|
31
|
Sinha P, Chi HH, Kim HR, Clausen BE, Pederson B, Sercarz EE, Forster I, Moudgil KD. Mouse lysozyme-M knockout mice reveal how the self-determinant hierarchy shapes the T cell repertoire against this circulating self antigen in wild-type mice. THE JOURNAL OF IMMUNOLOGY 2004; 173:1763-71. [PMID: 15265906 DOI: 10.4049/jimmunol.173.3.1763] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We have studied T cell tolerance to defined determinants within ML-M using wild-type (WT; ML-M(+/+)) and LysMcre (ML-M(-/-)) C3H (H-2(k)) mice to determine the relative contribution of ML-M-derived epitopes vs those from other self Ags in selection of the ML-M-specific T cell repertoire. ML-M was totally nonimmunogenic in WT mice, but was rendered immunogenic in LysMcre mice. Most of the response to ML-M in LysMcre mice was directed to the immunodominant determinant region 105-119. This determinant is spontaneously displayed (without adding exogenous ML-M) by macrophages of WT, but not LysMcre, mice and is stimulatory for peptide 105-119 (p105-119)-primed T cells. Moreover, neonatal tolerization of LysMcre mice with p105-119 or ML-M abrogated the T cell response to subsequent challenge with ML-M or p105-119. Furthermore, p95-109 and p110-125 of ML-M were immunogenic in LysMcre mice, but not in WT mice, thereby representing subdominant, tolerance-inducing epitopes of ML-M. As expected, the T cell repertoire to cryptic ML determinants in WT mice was also intact in LysMcre mice. Furthermore, the pattern of response to the related homologue of ML-M, hen eggwhite lysozyme, was similar in these two groups of mice. Thus, several codominant T cell determinants within ML-M contribute significantly to tolerance induction, and the anti-cryptic T cell repertoire to ML-M was positively selected on non-ML-M self ligands. These results reveal that the induction of self tolerance to a multideterminant protein follows the quantitative hierarchy of self-determinant expression and are of relevance in understanding the pathogenesis of autoimmunity.
Collapse
Affiliation(s)
- Pratima Sinha
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
João C, Ogle BM, Gay-Rabinstein C, Platt JL, Cascalho M. B cell-dependent TCR diversification. THE JOURNAL OF IMMUNOLOGY 2004; 172:4709-16. [PMID: 15067046 DOI: 10.4049/jimmunol.172.8.4709] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
T cell diversity was once thought to depend on the interaction of T cell precursors with thymic epithelial cells. Recent evidence suggests, however, that diversity might arise through the interaction of developing T cells with other cells, the identity of which is not known. In this study we show that T cell diversity is driven by B cells and Ig. The TCR V beta diversity of thymocytes in mice that lack B cells and Ig is reduced to 6 x 10(2) from wild-type values of 1.1 x 10(8); in mice with oligoclonal B cells, the TCR V beta diversity of thymocytes is 0.01% that in wild-type mice. Adoptive transfer of diverse B cells or administration of polyclonal Ig increases thymocyte diversity in mice that lack B cells 8- and 7-fold, respectively, whereas adoptive transfer of monoclonal B cells or monoclonal Ig does not. These findings reveal a heretofore unrecognized and vital function of B cells and Ig for generation of T cell diversity and suggest a potential approach to immune reconstitution.
Collapse
Affiliation(s)
- Cristina João
- Transplantation Biology Program, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
33
|
Faro J, Velasco S, González-Fernández A, Bandeira A. The impact of thymic antigen diversity on the size of the selected T cell repertoire. THE JOURNAL OF IMMUNOLOGY 2004; 172:2247-55. [PMID: 14764693 DOI: 10.4049/jimmunol.172.4.2247] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The TCR repertoire of a normal animal is shaped in the thymus by ligand-specific positive- and negative-selection events. These processes are believed to be determined at the single-cell level primarily by the affinity of the TCR-ligand interactions. The relationships among all the variables involved are still unknown due to the complexity of the interactions and the lack of quantitative analysis of those parameters. In this study, we developed a quantitative model of thymic selection that provides estimates of the fractions of positively and negatively selected thymocytes in the cortex and in the medulla, as well as upper-bound ranges for the number of selecting ligands required for the generation of a normal diverse TCR repertoire. Fitting the model to current estimates of positive- and negative-selected thymocytes leads to specific predictions. The results indicate the following: 1) the bulk of thymocyte death takes place in the cortex, and it is due to neglect; 2) the probability of a thymocyte to be negatively selected in the cortex is at least 10-fold lower than in the medulla; 3) <60 ligands are involved in cortical positive selection; and 4) negative selection in the medulla is constrained by a large diversity of selecting ligands on medullary APCs.
Collapse
Affiliation(s)
- Jose Faro
- Departamento de Física Aplicada, Universidad de Salamanca, Salamanca, Spain.
| | | | | | | |
Collapse
|
34
|
Honey K, Forbush K, Jensen PE, Rudensky AY. Effect of Decreasing the Affinity of the Class II-Associated Invariant Chain Peptide on the MHC Class II Peptide Repertoire in the Presence or Absence of H-2M1. THE JOURNAL OF IMMUNOLOGY 2004; 172:4142-50. [PMID: 15034026 DOI: 10.4049/jimmunol.172.7.4142] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The class II-associated invariant chain peptide (CLIP) region of the invariant chain (Ii) directly influences MHC class II presentation by occupying the MHC class II peptide-binding groove, thereby preventing premature loading of peptides. Different MHC class II alleles exhibit distinct affinities for CLIP, and a low affinity interaction has been associated with decreased dependence upon H-2M and increased susceptibility to rheumatoid arthritis, suggesting that decreased CLIP affinity alters the MHC class II-bound peptide repertoire, thereby promoting autoimmunity. To examine the role of CLIP affinity in determining the MHC class II peptide repertoire, we generated transgenic mice expressing either wild-type human Ii or human Ii containing a CLIP region of low affinity for MHC class II. Our data indicate that although degradation intermediates of Ii containing a CLIP region with decreased affinity for MHC class II do not remain associated with I-A(b), this does not substantially alter the peptide repertoire bound by MHC class II or increase autoimmune susceptibility in the mice. This implies that the affinity of the CLIP:MHC class II interaction is not a strong contributory factor in determining the probability of developing autoimmunity. In contrast, in the absence of H-2M, MHC class II peptide repertoire diversity is enhanced by decreasing the affinity of CLIP for MHC class II, although MHC class II cell surface expression is reduced. Thus, we show clearly, in vivo, the critical chaperone function of H-2M, which preserves MHC class II molecules for high affinity peptide binding upon dissociation of Ii degradation intermediates.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigen Presentation/genetics
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Antigens, Differentiation, B-Lymphocyte/physiology
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Dose-Response Relationship, Immunologic
- Down-Regulation/immunology
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/metabolism
- Histocompatibility Antigens Class II/physiology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Molecular Sequence Data
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Protein Binding/immunology
- Spleen/cytology
- Spleen/immunology
- Spleen/metabolism
Collapse
Affiliation(s)
- Karen Honey
- Department of Immunology and Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
35
|
Hori S, Takahashi T, Sakaguchi S. Control of autoimmunity by naturally arising regulatory CD4+ T cells. Adv Immunol 2004; 81:331-71. [PMID: 14711059 DOI: 10.1016/s0065-2776(03)81008-8] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Naturally acquired immunological self-tolerance is not entirely accounted for by clonal deletion, anergy, and ignorance. It is now well established that the T cell-repertoire of healthy individuals harbors self-reactive lymphocytes with a potential to cause autoimmune disease and these lymphocytes are under dominant control by a unique subpopulation of CD4+ T cells now called regulatory T cells. Efforts to delineate these Treg cells naturally present in normal individuals have revealed that they are enriched in the CD25+ CD4+ population. The identification of the CD25 molecule as a useful marker for naturally arising CD4+ regulatory T cells has made it possible to investigate many key aspects of their immunobiology, including their antigen specificities and the cellular/molecular pathways involved in their development and their mechanisms of action. Furthermore, reduction or dysfunction of the CD25+ CD4+ regulatory T cell population can be responsible for certain autoimmune diseases in humans.
Collapse
Affiliation(s)
- Shohei Hori
- Laboratory of Immunopathology, Research Center for Allergy and Immunology, The Institute for Physical and Chemical Research (RIKEN), Yokohama 230-0045, Japan
| | | | | |
Collapse
|
36
|
Morgan DJ, Nugent CT, Raveney BJE, Sherman LA. In a Transgenic Model of Spontaneous Autoimmune Diabetes, Expression of a Protective Class II MHC Molecule Results in Thymic Deletion of Diabetogenic CD8+ T Cells. THE JOURNAL OF IMMUNOLOGY 2004; 172:1000-8. [PMID: 14707073 DOI: 10.4049/jimmunol.172.2.1000] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
H-2(d) mice expressing both the influenza virus hemagglutinin (HA) as a transgene-encoded protein on pancreatic islet beta cells (InsHA), as well as the Clone 4 TCR specific for the dominant H-2K(d)-restricted HA epitope, can be protected from the development of spontaneous autoimmune diabetes by expression of the H-2(b) haplotype. Protection occurs due to the deletion of K(d)HA-specific CD8+ T cells. This was unexpected as neither the presence of the InsHA transgene nor H-2(b), individually, resulted in thymic deletion. Further analyses revealed that thymic deletion required both a hybrid MHC class II molecule, Ebeta(b) Ealpha(d), and the K(d) molecule presenting the HA epitope, which together synergize to effect deletion of CD4+CD8+ thymocytes. This surprising example of protection from autoimmunity that maps to a class II MHC molecule, yet effects an alteration in the CD8+ T cell repertoire, suggests that selective events in the thymus represent the integrated strength of signal delivered to each cell through recognition of a variety of different MHC-peptide ligands.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- CD4 Antigens/biosynthesis
- CD4 Antigens/physiology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/pathology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Clonal Deletion/genetics
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 1/prevention & control
- Disease Models, Animal
- H-2 Antigens/biosynthesis
- H-2 Antigens/genetics
- H-2 Antigens/immunology
- H-2 Antigens/physiology
- Hemagglutinin Glycoproteins, Influenza Virus/biosynthesis
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Histocompatibility Antigen H-2D
- Histocompatibility Antigens Class II/biosynthesis
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/physiology
- Insulin/genetics
- Insulin/immunology
- Islets of Langerhans/immunology
- Islets of Langerhans/metabolism
- Islets of Langerhans/virology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Promoter Regions, Genetic/immunology
- Rats
- Receptors, Antigen, T-Cell/biosynthesis
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Thymus Gland/pathology
Collapse
Affiliation(s)
- David J Morgan
- University of Bristol, School of Medical Sciences, Bristol, United Kingdom
| | | | | | | |
Collapse
|
37
|
Abstract
The thymus is a complex epithelial organ in which thymocyte development is dependent upon the sequential contribution of morphologically and phenotypically distinct stromal cell compartments. It is these microenvironments that provide the unique combination of cellular interactions, cytokines, and chemokines to induce thymocyte precursors to undergo a differentiation program that leads to the generation of functional T cells. Despite the indispensable role of thymic epithelium in the generation of T cells, the mediators of this process and the differentiation pathway undertaken by the primordial thymic epithelial cells are not well defined. There is a lack of lineage-specific cell-surface-associated markers, which are needed to characterize putative thymic epithelial stem cell populations. This review explores the role of thymic stromal cells in T-cell development and thymic organogenesis, as well as the molecular signals that contribute to the growth and expansion of primordial thymic epithelial cells. It highlights recent advances in these areas, which have allowed for a lineage relationship amongst thymic epithelial cell subsets to be proposed. While many fundamental questions remain to be addressed, collectively these works have broadened our understanding of how the thymic epithelium becomes specialized in the ability to support thymocyte differentiation. They should also facilitate the development of novel, rationally based therapeutic strategies for the regeneration and manipulation of thymic function in the treatment of many clinical conditions in which defective T cells have an important etiological role.
Collapse
Affiliation(s)
- Jason Gill
- Department of Pathology and Immunology, Monash University, Faculty of Medicine, Nursing and Health Sciences, Alfred Medical Research and Education Precinct, Prahran, Australia.
| | | | | | | | | | | |
Collapse
|
38
|
Marx A, Müller-Hermelink HK, Ströbel P. The Role of Thymomas in the Development of Myasthenia Gravis. Ann N Y Acad Sci 2003; 998:223-36. [PMID: 14592880 DOI: 10.1196/annals.1254.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Thymic pathology occurs in 80-90% of myasthenia gravis patients. Significant associations between different thymic alterations and clinical findings are discussed. To highlight peculiarities in thymoma-associated myasthenia gravis, we briefly review myasthenia gravis associated with thymic lymphofollicular hyperplasia (TFH) and thymic atrophy.
Collapse
Affiliation(s)
- Alexander Marx
- Institute of Pathology, University of Würzburg, D-97080 Würzburg, Germany.
| | | | | |
Collapse
|
39
|
Abstract
A functional immune system requires the selection of T lymphocytes expressing receptors that are major histocompatibility complex restricted but tolerant to self-antigens. This selection occurs predominantly in the thymus, where lymphocyte precursors first assemble a surface receptor. In this review we summarize the current state of the field regarding the natural ligands and molecular factors required for positive and negative selection and discuss a model for how these disparate outcomes can be signaled via the same receptor. We also discuss emerging data on the selection of regulatory T cells. Such cells require a high-affinity interaction with self-antigens, yet differentiate into regulatory cells instead of being eliminated.
Collapse
Affiliation(s)
- Timothy K Starr
- Center for Immunology and the Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis 55455, USA.
| | | | | |
Collapse
|
40
|
Viret C, He X, Janeway CA. Altered positive selection due to corecognition of floppy peptide/MHC II conformers supports an integrative model of thymic selection. Proc Natl Acad Sci U S A 2003; 100:5354-9. [PMID: 12700352 PMCID: PMC154349 DOI: 10.1073/pnas.0831129100] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Thymocytes bearing the E alpha 52-68/I-A(b) complex-specific 1H3.1 alpha beta T cell antigen receptor are positively selected in Ab-Ep [Ab-Ep transgenic, invariant chain (Ii)(-/-), I-A beta(b-/-)] mice, where I-A(b) molecules present only E alpha 52-68. Although Ii reintroduction led to deletion, I-A beta(b) reintroduction disrupted positive selection. T cell antigen receptor transgenic Ab-Ep I-A beta(b+) mice had a large thymus with an increased absolute number of CD4(+)CD8(+) cells and no overt signs of deletion. Unlike Ab-Ep Ii(+) antigen-presenting cells, Ab-Ep I-A beta(b+) antigen-presenting cells did not activate 1H3.1 T cells. However, their capacity to present E alpha 52-68 was intact. Thus, positive selection of 1H3.1 thymocytes on the tight compact E alpha 52-68/I-A(b) complex is neutralized by the corecognition of loose compact self-peptide/I-A(b) conformers that do not interfere with the cognate activation of mature 1H3.1 T cells. The data support the notion that the integration of distinct signals generated by the simultaneous recognition of multiple self-peptide/MHC complexes directs intrathymic selection of T cells.
Collapse
Affiliation(s)
- Christophe Viret
- Howard Hughes Medical Institute and Section of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | |
Collapse
|
41
|
Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003; 4:330-6. [PMID: 12612578 DOI: 10.1038/ni904] [Citation(s) in RCA: 5753] [Impact Index Per Article: 261.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2003] [Accepted: 02/05/2003] [Indexed: 11/08/2022]
Abstract
CD4+CD25+ regulatory T cells are essential for the active suppression of autoimmunity. Here we report that the forkhead transcription factor Foxp3 is specifically expressed in CD4+CD25+ regulatory T cells and is required for their development. The lethal autoimmune syndrome observed in Foxp3-mutant scurfy mice and Foxp3-null mice results from a CD4+CD25+ regulatory T cell deficiency and not from a cell-intrinsic defect of CD4+CD25- T cells. CD4+CD25+ regulatory T cells rescue disease development and preferentially expand when transferred into neonatal Foxp3-deficient mice. Furthermore, ectopic expression of Foxp3 confers suppressor function on peripheral CD4+CD25- T cells. Thus, Foxp3 is a critical regulator of CD4+CD25+ regulatory T cell development and function.
Collapse
Affiliation(s)
- Jason D Fontenot
- Howard Hughes Medical Institute, Department of Immunology, University of Washington, Box 357370, Seattle, WA 98195, USA
| | | | | |
Collapse
|
42
|
Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003. [DOI: 78495111110.1038/ni904' target='_blank'>'"<>78495111110.1038/ni904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [78495111110.1038/ni904','', '10.1126/science.283.5398.67')">Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
78495111110.1038/ni904" />
|
43
|
Dao T, Blander JM, Sant'Angelo DB. Recognition of a specific self-peptide: self-MHC class II complex is critical for positive selection of thymocytes expressing the D10 TCR. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:48-54. [PMID: 12496382 DOI: 10.4049/jimmunol.170.1.48] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We examined the specificity of positive and negative selection by using transgenic mice carrying a variant of the D10 TCR. We demonstrate that a point mutation at position 51 within the CDR2alpha segment significantly reduces the avidity of this TCR for its cognate ligand, but does not impact recognition of nonself MHC class II molecules. Although structural studies have suggested that this TCR site interacts with the MHC class II beta-chain, the avidity of this TCR for its ligand and the function of the T cell can be reconstituted by a point mutation in the bound antigenic peptide. These data demonstrate that the bound peptide can indirectly alter TCR interactions by influencing MHC structure. Remarkably, reducing the avidity of this TCR for a specific antigenic peptide-MHC ligand has a dramatic impact on thymic selection. Positive selection of thymocytes expressing this TCR is nearly completely blocked, whereas negative selection on allogenic MHC class II molecules remains intact. Therefore, the recognition of self that promotes positive selection of the D10 TCR is highly peptide-specific.
Collapse
MESH Headings
- Alleles
- Animals
- Arginine/genetics
- Autoantigens/metabolism
- Cell Differentiation/immunology
- Cell Line
- Complementarity Determining Regions/genetics
- Complementarity Determining Regions/physiology
- Conalbumin/metabolism
- Down-Regulation/genetics
- Down-Regulation/immunology
- Epitopes, T-Lymphocyte/biosynthesis
- Epitopes, T-Lymphocyte/genetics
- Glycine/genetics
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/metabolism
- Histocompatibility Antigens Class II/physiology
- Leucine/genetics
- Lymphocyte Count
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Peptides/immunology
- Peptides/metabolism
- Point Mutation
- Receptors, Antigen, T-Cell, alpha-beta/antagonists & inhibitors
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Serine/genetics
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Transgenes/immunology
Collapse
Affiliation(s)
- Tao Dao
- Laboratory of T Cell Immunobiology, Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | |
Collapse
|
44
|
Romero P, Valmori D, Pittet MJ, Zippelius A, Rimoldi D, Lévy F, Dutoit V, Ayyoub M, Rubio-Godoy V, Michielin O, Guillaume P, Batard P, Luescher IF, Lejeune F, Liénard D, Rufer N, Dietrich PY, Speiser DE, Cerottini JC. Antigenicity and immunogenicity of Melan-A/MART-1 derived peptides as targets for tumor reactive CTL in human melanoma. Immunol Rev 2002; 188:81-96. [PMID: 12445283 DOI: 10.1034/j.1600-065x.2002.18808.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Some cancer patients mount spontaneous T- and B-cell responses against their tumor cells. Autologous tumor reactive CD8 cytolytic T lymphocyte (CTL) and CD4 T-cell clones as well as antibodies from these patients have been used for the identification of genes encoding the target antigens. This knowledge opened the way for new approaches to the immunotherapy of cancer. In this review, we describe the characterization of the structure-function properties of the melanocyte/melanoma tumor antigen Melan-A/MART-1, the assessment of the T-cell repertoire available against this antigen in healthy individuals, and the analysis of naturally acquired and/or vaccine-induced CTL responses to this antigen in patients with metastatic melanoma.
Collapse
Affiliation(s)
- Pedro Romero
- Division of Clinical Onco-Immunology, Ludwig Institute for Cancer Research, Lausanne branch, University Hospital (CHUV), Lausanne, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Inoue M, Marx A, Zettl A, Ströbel P, Müller-Hermelink HK, Starostik P. Chromosome 6 suffers frequent and multiple aberrations in thymoma. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:1507-13. [PMID: 12368223 PMCID: PMC1867301 DOI: 10.1016/s0002-9440(10)64426-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Thymoma is the most frequent tumor arising in human thymus. In this study, we performed a detailed mapping of deleted regions on chromosome 6 shown previously to harbor the most frequent genetic aberrations in this cancer. We analyzed 40 thymomas using 41 microsatellites. Two hundred ninety-four (23.5%) of 1253 informative genotypes showed loss of heterozygosity (LOH), only 39 (2.4%) were positive for microsatellite instability (MSI). Genetic aberrations on chromosome 6 were found in 31 of 40 cases (77.5%) in five hot spots. The most frequent LOHs (48.6%) occurred in region 6q25.2 within a 0.7-Mb interval flanked by markers D6S441 and D6S290. Another hot spot showing LOH in 32.4% of tumors was located between markers D6S442 and D6S1708 (0.4 Mb apart) on 6q25.2-25.3, just 1.1 Mb from the D6S441-D6S290 deletions. The third hot spot (30%) showing LOH appeared in region 6p21.31 including the MHC locus (markers D6S1666-D6S1560, 1 Mb apart). The fourth hot spot (26.3%) was detected on 6q14.1-14.3 (D6S1596-D6S284, 5.2 Mb apart). Some tumors (21.6%) showed LOHs within a fifth hot spot on 6q21 (D6S447-D6S1592, 0.3 Mb apart). Thus, several tumor suppressor genes on chromosome 6 seem to be involved in the pathogenesis of thymoma.
Collapse
Affiliation(s)
- Masayoshi Inoue
- Institute of Pathology, Würzburg University, Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
46
|
Pittet MJ, Zippelius A, Valmori D, Speiser DE, Cerottini JC, Romero P. Degeneracy instead of specificity: is this a solution to cancer immunotherapy? Trends Immunol 2002. [DOI: 10.1016/s1471-4906(02)02266-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Honey K, Nakagawa T, Peters C, Rudensky A. Cathepsin L regulates CD4+ T cell selection independently of its effect on invariant chain: a role in the generation of positively selecting peptide ligands. J Exp Med 2002; 195:1349-58. [PMID: 12021314 PMCID: PMC2193748 DOI: 10.1084/jem.20011904] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
CD4+ T cells are positively selected in the thymus on peptides presented in the context of major histocompatibility complex class II molecules expressed on cortical thymic epithelial cells. Molecules regulating this peptide presentation play a role in determining the outcome of positive selection. Cathepsin L mediates invariant chain processing in cortical thymic epithelial cells, and animals of the I-A(b) haplotype deficient in this enzyme exhibit impaired CD4+ T cell selection. To determine whether the selection defect is due solely to the block in invariant chain cleavage we analyzed cathepsin L-deficient mice expressing the I-A(q) haplotype which has little dependence upon invariant chain processing for peptide presentation. Our data indicate the cathepsin L defect in CD4+ T cell selection is haplotype independent, and thus imply it is independent of invariant chain degradation. This was confirmed by analysis of I-A(b) mice deficient in both cathepsin L and invariant chain. We show that the defect in positive selection in the cathepsin L-/- thymus is specific for CD4+ T cells that can be selected in a wild-type and provide evidence that the repertoire of T cells selected differs from that in wild-type mice, suggesting cortical thymic epithelial cells in cathepsin L knockout mice express an altered peptide repertoire. Thus, we propose a novel role for cathepsin L in regulating positive selection by generating the major histocompatibility complex class II bound peptide ligands presented by cortical thymic epithelial cells.
Collapse
MESH Headings
- Animals
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Antigens, Differentiation, T-Lymphocyte/immunology
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Bone Marrow Transplantation
- CD4 Antigens/immunology
- CD4 Antigens/metabolism
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8 Antigens/immunology
- CD8 Antigens/metabolism
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cathepsin L
- Cathepsins/genetics
- Cathepsins/metabolism
- Cysteine Endopeptidases
- Flow Cytometry
- Gene Deletion
- Histocompatibility Antigens Class II/immunology
- Histocompatibility Antigens Class II/metabolism
- Lectins, C-Type
- Ligands
- Mice
- Mice, Knockout
- Thymus Gland/cytology
- Thymus Gland/immunology
Collapse
Affiliation(s)
- Karen Honey
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
48
|
Barton GM, Beers C, deRoos P, Eastman SR, Gomez ME, Forbush KA, Rudensky AY. Positive selection of self-MHC-reactive T cells by individual peptide-MHC class II complexes. Proc Natl Acad Sci U S A 2002; 99:6937-42. [PMID: 12011451 PMCID: PMC124507 DOI: 10.1073/pnas.102645699] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
If T cells require specific interactions with MHC-bound peptides during positive selection, then the specificities of T cells selected by one peptide should be distinct from those selected by another. We have examined positive selection of CD4 T cells in four strains of mice, each overexpressing a different peptide-1-A(b)(A(b)) complex. We show that a subset of CD4 T cells is selected by the overexpressed peptide and that the specificities of the CD4 T cells, as measured by reactivity to wild-type antigen-presenting cells, vary greatly depending on which peptide is overexpressed. These differences in specificity are mediated through positive selection not negative selection. Each of the four peptide-A(b) complexes appears to adopt a different conformation, and these differences correlate with the differences in reactivity. Our results suggest that individual peptide-MHC complexes positively select different subsets of self-MHC-reactive T cells and that the conformation of the peptide-MHC complex may contribute to this process.
Collapse
Affiliation(s)
- Gregory M Barton
- Molecular and Cellular Biology Program, Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Sant'Angelo DB, Janeway CA. Negative selection of thymocytes expressing the D10 TCR. Proc Natl Acad Sci U S A 2002; 99:6931-6. [PMID: 12011450 PMCID: PMC124506 DOI: 10.1073/pnas.102182499] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have analyzed the patterns of positive and negative selection of thymocytes expressing the T cell antigen receptor (TCR) from the D10.G4.1 T cell clone. This TCR confers reactivity to several non-self MHC class II alleles with a remarkably broad range of avidities. Therefore, negative selection can be studied when induced by high-, intermediate-, or low-avidity interactions with endogenous peptide-MHC complexes, all within the same TCR transgenic system. These data directly demonstrate that MHC class II-peptide ligands that fail to activate mature T cells can promote negative selection of immature thymocytes. Additionally, we show that negative selection of thymocytes can occur at two distinct "time points" during development depending on the avidity of the TCR for the MHC-peptide complex. Finally, we show that the self-peptide repertoire plays a significant role in selection because alteration of the self-peptide repertoire by disruption of the H2-Ma gene drastically alters selection of D10 TCR-expressing thymocytes.
Collapse
Affiliation(s)
- Derek B Sant'Angelo
- Section of Immunobiology, Yale University School of Medicine and the Howard Hughes Medical Institute, New Haven, CT 06520, USA.
| | | |
Collapse
|
50
|
Shamshiev A, Gober HJ, Donda A, Mazorra Z, Mori L, De Libero G. Presentation of the same glycolipid by different CD1 molecules. J Exp Med 2002; 195:1013-21. [PMID: 11956292 PMCID: PMC2193693 DOI: 10.1084/jem.20011963] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Five CD1 molecules are expressed in humans and it is unclear whether they have specialized or redundant functions. We found that sulfatide is a promiscuous CD1-binding ligand and have isolated T cell clones that are specific for sulfatide and restricted by distinct CD1 molecules. These clones have been used to compare the capacity of different CD1 to present the same glycolipid, to induce effector functions, and to form persistent immunogenic complexes. CD1a, CD1b, and CD1c molecules similarly load sulfatide on the cell surface without processing, and prime Th1 and Th2 responses. Stimulation by sulfatide-loaded CD1a persists much longer than that by CD1b and CD1c in living cells. Use of recombinant soluble CD1a confirmed the prolonged capacity to stimulate T cells. Moreover, other glycosphingolipids bind to all CD1, which suggests the presence of additional promiscuous ligands. Thus, group I CD1 molecules present an overlapping set of self-glycolipids, even though they are quite divergent from an evolutionary point of view.
Collapse
Affiliation(s)
- A Shamshiev
- Experimental Immunology, Department of Research, University Hospital, 4031 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|