1
|
Weitzberg E, Ingelman-Sundberg M, Lundberg JO, Engberg G, Schulte G, Lauschke VM. The 75-Year Anniversary of the Department of Physiology and Pharmacology at Karolinska Institutet-Examples of Recent Accomplishments and Future Perspectives. Pharmacol Rev 2024; 76:1089-1101. [PMID: 39414365 DOI: 10.1124/pharmrev.124.001433] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/09/2024] [Indexed: 10/18/2024] Open
Abstract
Karolinska Institutet is a medical university encompassing 21 departments distributed across three departmental or campus groups. Pharmacological research has a long and successful tradition at the institute with a multitude of seminal findings in the areas of neuronal control of vasodilatation, cardiovascular pharmacology, neuropsychopharmacology, receptor pharmacology, and pharmacogenomics that resulted in, among many other recognitions, two Nobel prizes in Physiology and Medicine, one in 1970 to Ulf von Euler for his discovery of the processes involved in storage, release, and inactivation of neurotransmitters and the other in 1982 to Sune Bergström and Bengt Samuelsson for their work on prostaglandins and the discovery of leukotrienes. Pharmacology at Karolinska Institutet has over the last decade been ranked globally among the top 10 according to the QS World University Ranking. With the Department of Physiology and Pharmacology now celebrating its 75-year anniversary, we wanted to take this as an opportunity to showcase recent research achievements and how they paved the way for current activities at the department. We emphasize examples from preclinical and clinical research where the dpartment's integrative environment and robust infrastructure have successfully facilitated the translation of findings into clinical applications and patient benefits. The close collaboration between preclinical scientists and clinical researchers across various disciplines, along with a strong network of partnerships within the department and beyond, positions us to continue leading world-class pharmacological research at the Department of Physiology and Pharmacology for decades to come. SIGNIFICANCE STATEMENT: Pharmacological research at Karolinska Institutet has a long and successful history. Given the 75-year anniversary of the Department of Physiology and Pharmacology, this perspective provides an overview of recent departmental achievements and future trajectories. For these developments, interdisciplinary and intersectoral collaborations and a clear focus on result translation are key elements to continue its legacy of world-leading pharmacological research.
Collapse
Affiliation(s)
- Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.W., M.I.-S., J.O.L., G.E., G.S., V.M.L.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tübingen, Tübingen, Germany (V.M.L.)
| | - Magnus Ingelman-Sundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.W., M.I.-S., J.O.L., G.E., G.S., V.M.L.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tübingen, Tübingen, Germany (V.M.L.)
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.W., M.I.-S., J.O.L., G.E., G.S., V.M.L.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tübingen, Tübingen, Germany (V.M.L.)
| | - Göran Engberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.W., M.I.-S., J.O.L., G.E., G.S., V.M.L.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tübingen, Tübingen, Germany (V.M.L.)
| | - Gunnar Schulte
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.W., M.I.-S., J.O.L., G.E., G.S., V.M.L.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tübingen, Tübingen, Germany (V.M.L.)
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.W., M.I.-S., J.O.L., G.E., G.S., V.M.L.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tübingen, Tübingen, Germany (V.M.L.)
| |
Collapse
|
2
|
Sagheddu C, Devoto P, Aroni S, Saba P, Pistis M, Gessa GL. Combined α 2- and D 2-receptor blockade activates noradrenergic and dopaminergic neurons, but extracellular dopamine in the prefrontal cortex is determined by uptake and release from noradrenergic terminals. Front Pharmacol 2023; 14:1238115. [PMID: 37680715 PMCID: PMC10482411 DOI: 10.3389/fphar.2023.1238115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/10/2023] [Indexed: 09/09/2023] Open
Abstract
Experimental and clinical evidence indicates a deficit of release and function of dopamine in schizophrenia and suggests that α2-adrenoceptor antagonists rescue dopamine deficit and improve the antipsychotic efficacy of D2-receptor antagonists. In anesthetized male rats, we investigated how the blockade of α2- and D2-receptors by atipamezole and raclopride, respectively, modified the firing of noradrenergic neurons in the locus coeruleus (LC) and dopaminergic neurons in the ventral tegmental area (VTA). In freely moving rats, we studied how atipamezole and raclopride modified extracellular noradrenaline, dopamine, and DOPAC levels in the medial prefrontal cortex (mPFC) through microdialysis. When administered alone, atipamezole activated LC noradrenaline but not VTA dopamine cell firing. Combined with raclopride, atipamezole activated dopamine cell firing above the level produced by raclopride. Atipamezole increased extracellular dopamine to the same level, whether administered alone or combined with raclopride. In the presence of the noradrenaline transporter (NET) inhibitor, atipamezole combined with raclopride increased extracellular dopamine beyond the level produced by either compound administered alone. The results suggest that a) the D2-autoreceptor blockade is required for LC noradrenaline to activate VTA cell firing; b) the level of dopamine released from dopaminergic terminals is determined by NET; c) the elevation of extracellular dopamine levels in the mPFC is the resultant of dopamine uptake and release from noradrenergic terminals, independent of dopaminergic cell firing and release; and d) LC noradrenergic neurons are an important target for treatments to improve the prefrontal deficit of dopamine in neuropsychiatric pathologies.
Collapse
Affiliation(s)
- Claudia Sagheddu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Paola Devoto
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
- The Guy Everett Laboratory, University of Cagliari, Cagliari, Italy
| | - Sonia Aroni
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Pierluigi Saba
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
- The Guy Everett Laboratory, University of Cagliari, Cagliari, Italy
| | - Marco Pistis
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
- Neuroscience Institute of CNR, Cagliari, Italy
- Unit of Clinical Pharmacology, University Hospital of Cagliari, Cagliari, Italy
| | - Gian Luigi Gessa
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
- The Guy Everett Laboratory, University of Cagliari, Cagliari, Italy
- Neuroscience Institute of CNR, Cagliari, Italy
| |
Collapse
|
3
|
Frau R, Devoto P, Aroni S, Saba P, Sagheddu C, Siddi C, Santoni M, Carli M, Gessa GL. The potent α 2-adrenoceptor antagonist RS 79948 also inhibits dopamine D 2 -receptors: Comparison with atipamezole and raclopride. Neuropharmacology 2022; 217:109192. [PMID: 35850212 DOI: 10.1016/j.neuropharm.2022.109192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022]
Abstract
Neurochemical, electrophysiological and behavioral evidence indicate that the potent α2-adrenoceptor antagonist RS 79948 is also a dopamine (DA) D2 receptor antagonist. Thus, results from ligand binding and adenylate cyclase activity indicate that RS 79948 binds to D2 receptors and antagonized D2 receptor-mediated inhibition of cAMP synthesis at nanomolar concentrations. RESULTS: from microdialysis indicated that RS 79948 shared with the selective α2-adrenergic antagonist atipamezole the ability to increase the co-release of DA and norepinephrine (NE) from noradrenergic terminals in the medial prefrontal cortex (mPFC), except that RS 79948-induced DA release persisted after noradrenergic denervation, unlike atipamezole effect, indicating that RS 79948 releases DA from dopaminergic terminals as well. Similarly to the D2 antagonist raclopride, but unlike atipamezole, RS 79948 increased extracellular DA and DOPAC in the caudate nucleus. Electrophysiological results indicate that RS 79948 shared with raclopride the ability to activate the firing of ventral tegmental area (VTA) DA neurons, while atipamezole was ineffective. RESULTS: from behavioral studies indicated that RS 79948 exerted effects mediated by independent, cooperative and contrasting inhibition of α2-and D2 receptors. Thus, RS 79948, but not atipamezole, prevented D2-autoreceptor mediated hypomotility produced by a small dose of quinpirole. RS 79948 potentiated, more effectively than atipamezole, quinpirole-induced motor stimulation. RS 79948 antagonized, less effectively than atipamezole, raclopride-induced catalepsy. Future studies should clarify if the dual α2-adrenoceptor- and D2-receptor antagonistic action might endow RS 79948 with potential therapeutic relevance in the treatment of schizophrenia, drug dependence, depression and Parkinson's disease.
Collapse
Affiliation(s)
- Roberto Frau
- Department of Biomedical Sciences, Section of Neurosciences and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria, Monserrato, CA, Italy; The Guy Everett Laboratory for Neuroscience, University of Cagliari, Cittadella Universitaria, Monserrato, CA, Italy
| | - Paola Devoto
- Department of Biomedical Sciences, Section of Neurosciences and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria, Monserrato, CA, Italy; The Guy Everett Laboratory for Neuroscience, University of Cagliari, Cittadella Universitaria, Monserrato, CA, Italy.
| | - Sonia Aroni
- Department of Biomedical Sciences, Section of Neurosciences and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria, Monserrato, CA, Italy
| | - Pierluigi Saba
- Department of Biomedical Sciences, Section of Neurosciences and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria, Monserrato, CA, Italy
| | - Claudia Sagheddu
- Department of Biomedical Sciences, Section of Neurosciences and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria, Monserrato, CA, Italy
| | - Carlotta Siddi
- Department of Biomedical Sciences, Section of Neurosciences and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria, Monserrato, CA, Italy
| | - Michele Santoni
- Department of Biomedical Sciences, Section of Neurosciences and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria, Monserrato, CA, Italy
| | - Marco Carli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Gian Luigi Gessa
- Department of Biomedical Sciences, Section of Neurosciences and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria, Monserrato, CA, Italy; The Guy Everett Laboratory for Neuroscience, University of Cagliari, Cittadella Universitaria, Monserrato, CA, Italy
| |
Collapse
|
4
|
Danek PJ, Daniel WA. Long-Term Treatment with Atypical Antipsychotic Iloperidone Modulates Cytochrome P450 2D (CYP2D) Expression and Activity in the Liver and Brain via Different Mechanisms. Cells 2021; 10:cells10123472. [PMID: 34943983 PMCID: PMC8700221 DOI: 10.3390/cells10123472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 01/16/2023] Open
Abstract
CYP2D enzymes engage in the synthesis of endogenous neuroactive substances (dopamine, serotonin) and in the metabolism of neurosteroids. The present work investigates the effect of iloperidone on CYP2D enzyme expression and activity in rat brains and livers. Iloperidone exerted a weak direct inhibitory effect on CYP2D activity in vitro in the liver and brain microsomes (Ki = 11.5 μM and Ki = 462 μM, respectively). However, a two-week treatment with iloperidone (1 mg/kg ip.) produced a significant decrease in the activity of liver CYP2D, which correlated positively with the reduced CYP2D1, CYP2D2 and CYP2D4 protein and mRNA levels. Like in the liver, iloperidone reduced CYP2D activity and protein levels in the frontal cortex and cerebellum but enhanced these levels in the nucleus accumbens, striatum and substantia nigra. Chronic iloperidone did not change the brain CYP2D4 mRNA levels, except in the striatum, where they were significantly increased. In conclusion, by affecting CYP2D activity in the brain, iloperidone may modify its pharmacological effect, via influencing the rate of dopamine and serotonin synthesis or the metabolism of neurosteroids. By elevating the CYP2D expression/activity in the substantia nigra and striatum (i.e., in the dopaminergic nigrostriatal pathway), iloperidone may attenuate extrapyramidal symptoms, while by decreasing the CYP2D activity and metabolism of neurosteroiods in the frontal cortex and cerebellum, iloperidone can have beneficial effects in the treatment of schizophrenia. In the liver, pharmacokinetic interactions involving chronic iloperidone and CYP2D substrates are likely to occur.
Collapse
|
5
|
Zeng F, Fan Y, Brown RW, Drew Gill W, Price JB, Jones TC, Zhu MY. Effects of Manipulation of Noradrenergic Activities on the Expression of Dopaminergic Phenotypes in Aged Rat Brains. ASN Neuro 2021; 13:17590914211055064. [PMID: 34812056 PMCID: PMC8613899 DOI: 10.1177/17590914211055064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
This study investigated the effects of the pharmacological manipulation of noradrenergic activities on dopaminergic phenotypes in aged rats. Results showed that the administration of L-threo-3,4-dihydroxyphenylserine (L-DOPS) for 21 days significantly increased the expression of tyrosine hydroxylase (TH) and dopamine transporter (DAT) in the striatum and substantia nigra (SN) of 23-month-old rats. Furthermore, this treatment significantly increased norepinephrine/DA concentrations in the striatum and caused a deficit of sensorimotor gating as measured by prepulse inhibition (PPI). Next, old rats were injected with the α2-adrenoceptor antagonist 2-methoxy idazoxan or β2-adrenoceptor agonist salmeterol for 21 days. Both drugs produced similar changes of TH and DAT in the striatum and SN. Moreover, treatments with L-DOPS, 2-methoxy idazoxan, or salmeterol significantly increased the protein levels of phosphorylated Akt in rat striatum and SN. However, although a combination of 2-methoxy idazoxan and salmeterol resulted in a deficit of PPI in these rats, the administration of 2-methoxy idazoxan alone showed an opposite behavioral change. The in vitro experiments revealed that treatments with norepinephrine markedly increased mRNAs and proteins of ATF2 and CBP/p300 and reduced mRNA and proteins of HDAC2 and HDAC5 in MN9D cells. A ChIP assay showed that norepinephrine significantly increased CBP/p300 binding or reduced HDAC2 and HDAC5 binding on the TH promoter. The present results indicate that facilitating noradrenergic activity in the brain can improve the functions of dopaminergic neurons in aged animals. While this improvement may have biochemically therapeutic indication for the status involving the degeneration of dopaminergic neurons, it may not definitely include behavioral improvements, as indicated by using 2-methoxy idazoxan only.
Collapse
Affiliation(s)
- Fei Zeng
- Department of Neurology, Renmin Hospital of the Wuhan University, China.,Departments of Biomedical Sciences, Quillen College of Medicine, 4154East Tennessee State University, USA
| | - Yan Fan
- Departments of Biomedical Sciences, Quillen College of Medicine, 4154East Tennessee State University, USA.,Department of Biochemistry, Nantong University College of Medicine, China
| | - Russell W Brown
- Departments of Biomedical Sciences, Quillen College of Medicine, 4154East Tennessee State University, USA
| | - Wesley Drew Gill
- Departments of Biomedical Sciences, Quillen College of Medicine, 4154East Tennessee State University, USA
| | - Jennifer B Price
- Department of Biological Sciences, College of Arts and Sciences, 4154East Tennessee State University, USA
| | - Thomas C Jones
- Department of Biological Sciences, College of Arts and Sciences, 4154East Tennessee State University, USA
| | - Meng-Yang Zhu
- Departments of Biomedical Sciences, Quillen College of Medicine, 4154East Tennessee State University, USA
| |
Collapse
|
6
|
Selection of Essential Neural Activity Timesteps for Intracortical Brain-Computer Interface Based on Recurrent Neural Network. SENSORS 2021; 21:s21196372. [PMID: 34640699 PMCID: PMC8512903 DOI: 10.3390/s21196372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 11/29/2022]
Abstract
Intracortical brain–computer interfaces (iBCIs) translate neural activity into control commands, thereby allowing paralyzed persons to control devices via their brain signals. Recurrent neural networks (RNNs) are widely used as neural decoders because they can learn neural response dynamics from continuous neural activity. Nevertheless, excessively long or short input neural activity for an RNN may decrease its decoding performance. Based on the temporal attention module exploiting relations in features over time, we propose a temporal attention-aware timestep selection (TTS) method that improves the interpretability of the salience of each timestep in an input neural activity. Furthermore, TTS determines the appropriate input neural activity length for accurate neural decoding. Experimental results show that the proposed TTS efficiently selects 28 essential timesteps for RNN-based neural decoders, outperforming state-of-the-art neural decoders on two nonhuman primate datasets (R2=0.76±0.05 for monkey Indy and CC=0.91±0.01 for monkey N). In addition, it reduces the computation time for offline training (reducing 5–12%) and online prediction (reducing 16–18%). When visualizing the attention mechanism in TTS, the preparatory neural activity is consecutively highlighted during arm movement, and the most recent neural activity is highlighted during the resting state in nonhuman primates. Selecting only a few essential timesteps for an RNN-based neural decoder provides sufficient decoding performance and requires only a short computation time.
Collapse
|
7
|
Devoto P, Sagheddu C, Santoni M, Flore G, Saba P, Pistis M, Gessa GL. Noradrenergic Source of Dopamine Assessed by Microdialysis in the Medial Prefrontal Cortex. Front Pharmacol 2020; 11:588160. [PMID: 33071798 PMCID: PMC7538903 DOI: 10.3389/fphar.2020.588160] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/07/2020] [Indexed: 01/03/2023] Open
Abstract
Previous results indicate that dopamine (DA) release in the medial prefrontal cortex (mPFC) is modified by α2 adrenoceptor- but not D2 DA receptor- agonists and antagonists, suggesting that DA measured by microdialysis in the mPFC originates from noradrenergic terminals. Accordingly, noradrenergic denervation was found to prevent α2-receptor-mediated rise and fall of extracellular DA induced by atipamezole and clonidine, respectively, in the mPFC. The present study was aimed to determine whether DA released by dopaminergic terminals in the mPFC is not detected by in vivo microdialysis because is readily taken up by norepinephrine transporter (NET). Accordingly, the D2-antagonist raclopride increased the electrical activity of DA neurons in the ventral tegmental area (VTA) and enhanced extracellular DOPAC but failed to modify DA in the mPFC. However, in rats whose NET was either inactivated by nisoxetine or eliminated by noradrenergic denervation, raclopride still elevated extracellular DOPAC and activated dopaminergic activity, but also increased DA. Conversely, the D2-receptor agonist quinpirole reduced DOPAC but failed to modify DA in the mPFC in control rats. However, in rats whose NET was eliminated by noradrenergic denervation or inhibited by locally perfused nisoxetine, quinpirole maintained its ability to reduce DOPAC but acquired that of reducing DA. Moreover, raclopride and quinpirole, when locally perfused into the mPFC of rats subjected to noradrenergic denervation, were able to increase and decrease, respectively, extracellular DA levels, while being ineffective in control rats. Transient inactivation of noradrenergic neurons by clonidine infusion into the locus coeruleus, a condition where NET is preserved, was found to reduce extracellular NE and DA in the mPFC, whereas noradrenergic denervation, a condition where NET is eliminated, almost totally depleted extracellular NE but increased DA. Both transient inactivation and denervation of noradrenergic neurons were found to reduce the number of spontaneously active DA neurons and their bursting activity in the VTA. The results indicate that DA released in the mPFC by dopaminergic terminals is not detected by microdialysis unless DA clearance from extracellular space is inactivated. They support the hypothesis that noradrenergic terminals are the main source of DA measured by microdialysis in the mPFC during physiologically relevant activities.
Collapse
Affiliation(s)
- Paola Devoto
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.,"Guy Everett" Laboratory, University of Cagliari, Cagliari, Italy
| | - Claudia Sagheddu
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Michele Santoni
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Giovanna Flore
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Pierluigi Saba
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Marco Pistis
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.,Section of Cagliari, Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Gian Luigi Gessa
- "Guy Everett" Laboratory, University of Cagliari, Cagliari, Italy.,Section of Cagliari, Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| |
Collapse
|
8
|
Silkis IG. The Possible Mechanism of the Appearance of Nightmares in Post-Traumatic Stress Disorder and Approaches to Their Prevention. NEUROCHEM J+ 2019. [DOI: 10.1134/s1819712419030127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
9
|
Devoto P, Flore G, Saba P, Scheggi S, Mulas G, Gambarana C, Spiga S, Gessa GL. Noradrenergic terminals are the primary source of α 2-adrenoceptor mediated dopamine release in the medial prefrontal cortex. Prog Neuropsychopharmacol Biol Psychiatry 2019; 90:97-103. [PMID: 30472147 DOI: 10.1016/j.pnpbp.2018.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 11/29/2022]
Abstract
In various psychiatric disorders, deficits in dopaminergic activity in the prefrontal cortex (PFC) are implicated. Treatments involving selective augmentation of dopaminergic activity in the PFC primarily depend on the inhibition of α2-adrenoreceptors singly or in combination with the inhibition of the norepinephrine transporter (NET). We aimed to clarify the relative contribution of dopamine (DA) release from noradrenergic and dopaminergic terminals to DA output induced by blockade of α2-adrenoreceptors and NET. To this end, we assessed whether central noradrenergic denervation modified catecholamine output in the medial PFC (mPFC) of rats elicited by atipamezole (an α2-adrenoreceptor antagonist), nisoxetine (an NET inhibitor), or their combination. Intraventricular administration of anti-dopamine-beta-hydroxylase-saporin (aDBH) caused a loss of DBH-positive fibers in the mPFC and almost total depletion of tissue and extracellular NE level; however, it did not reduce tissue DA level but increased extracellular DA level by 70% in the mPFC. Because noradrenergic denervation should have caused a loss of NET and reduced NE level at α2-adrenoceptors, the actual effect of an aDBH-induced lesion on DA output elicited by blockade of α2-adrenoceptors and NET was evaluated by comparing denervated and control rats following blockade of α2-adrenoceptors and NET with atipamezole and nisoxetine, respectively. In the control rats, extracellular NE and DA levels increased by approximately 150% each with 3 mg/kg atipamezole; 450% and 230%, respectively, with 3 mg/kg nisoxetine; and 2100% and 600%, respectively, with combined atipamezole and nisoxetine. In the denervated rats, consistent with the loss of NET, nisoxetine failed to modify extracellular DA level, whereas atipamezole, despite the lack of NE-induced stimulation of α2-adrenoceptors, increased extracellular DA level by approximately 30%. Overall, these results suggest that atipamezole-induced DA release mainly originated from noradrenergic terminals, possibly through the inhibition of α2-autoreceptors. Furthermore, while systemic and local administration of the α2-adrenoceptor agonist clonidine into the mPFC of the controls rats reduced extracellular NE level by 80% and 60%, respectively, and extracellular DA level by 50% and 60%, respectively, it failed to reduce DA output in the denervated rats, consistent with the loss of α2-autoreceptors. To eliminate the possibility that denervation reduced DA release potential via the effects at dopaminergic terminals in the mPFC, the effect of systemic administration of the D2-DA antagonist raclopride (0.5 mg/kg IP) on DA output was analyzed. In the control rats, raclopride was found to be ineffective when administered alone, but it increased extracellular DA level by 380% following NET inhibition with nisoxetine. In the denervated rats, as expected due to the loss of NET, raclopride-alone or with nisoxetine-increased DA release to approximately the same level as that observed in the control rats after NET inhibition. Overall, these results suggest that noradrenergic terminals in the mPFC are the primary source of DA released by blockade of α2-adrenoreceptors and NET and that α2-autoreceptors, and not α2-heteroreceptors, mediate DA output induced by α2-adrenoceptor blockade.
Collapse
Affiliation(s)
- Paola Devoto
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy; Guy Everett Laboratory, University of Cagliari, Cagliari, Italy; National Institute of Neuroscience, INN, Section of Cagliari, Italy.
| | - Giovanna Flore
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Pierluigi Saba
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Simona Scheggi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Giovanna Mulas
- Dept. of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Carla Gambarana
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Saturnino Spiga
- Dept. of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Gian Luigi Gessa
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy; Guy Everett Laboratory, University of Cagliari, Cagliari, Italy; National Research Council, CNR, Institute of Neuroscience, Cagliari, Italy
| |
Collapse
|
10
|
Long-Term Effects of Iloperidone on Cerebral Serotonin and Adrenoceptor Subtypes. J Mol Neurosci 2018; 66:59-67. [DOI: 10.1007/s12031-018-1133-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/19/2018] [Indexed: 01/29/2023]
|
11
|
Uys MM, Shahid M, Harvey BH. Therapeutic Potential of Selectively Targeting the α 2C-Adrenoceptor in Cognition, Depression, and Schizophrenia-New Developments and Future Perspective. Front Psychiatry 2017; 8:144. [PMID: 28855875 PMCID: PMC5558054 DOI: 10.3389/fpsyt.2017.00144] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 07/24/2017] [Indexed: 12/12/2022] Open
Abstract
α2A- and α2C-adrenoceptors (ARs) are the primary α2-AR subtypes involved in central nervous system (CNS) function. These receptors are implicated in the pathophysiology of psychiatric illness, particularly those associated with affective, psychotic, and cognitive symptoms. Indeed, non-selective α2-AR blockade is proposed to contribute toward antidepressant (e.g., mirtazapine) and atypical antipsychotic (e.g., clozapine) drug action. Both α2C- and α2A-AR share autoreceptor functions to exert negative feedback control on noradrenaline (NA) release, with α2C-AR heteroreceptors regulating non-noradrenergic transmission (e.g., serotonin, dopamine). While the α2A-AR is widely distributed throughout the CNS, α2C-AR expression is more restricted, suggesting the possibility of significant differences in how these two receptor subtypes modulate regional neurotransmission. However, the α2C-AR plays a more prominent role during states of low endogenous NA activity, while the α2A-AR is relatively more engaged during states of high noradrenergic tone. Although augmentation of conventional antidepressant and antipsychotic therapy with non-selective α2-AR antagonists may improve therapeutic outcome, animal studies report distinct yet often opposing roles for the α2A- and α2C-ARs on behavioral markers of mood and cognition, implying that non-selective α2-AR antagonism may compromise therapeutic utility both in terms of efficacy and side-effect liability. Recently, several highly selective α2C-AR antagonists have been identified that have allowed deeper investigation into the function and utility of the α2C-AR. ORM-13070 is a useful positron emission tomography ligand, ORM-10921 has demonstrated antipsychotic, antidepressant, and pro-cognitive actions in animals, while ORM-12741 is in clinical development for the treatment of cognitive dysfunction and neuropsychiatric symptoms in Alzheimer's disease. This review will emphasize the importance and relevance of the α2C-AR as a neuropsychiatric drug target in major depression, schizophrenia, and associated cognitive deficits. In addition, we will present new prospects and future directions of investigation.
Collapse
Affiliation(s)
- Madeleine Monique Uys
- Division of Pharmacology, Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | | | - Brian Herbert Harvey
- Division of Pharmacology, Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
12
|
Uys M, Shahid M, Sallinen J, Dreyer W, Cockeran M, Harvey BH. The α2C-adrenoceptor antagonist, ORM-10921, has antipsychotic-like effects in social isolation reared rats and bolsters the response to haloperidol. Prog Neuropsychopharmacol Biol Psychiatry 2016; 71:108-16. [PMID: 27381554 DOI: 10.1016/j.pnpbp.2016.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/28/2016] [Accepted: 07/01/2016] [Indexed: 02/04/2023]
Abstract
Early studies suggest that selective α2C-adrenoceptor (AR)-antagonism has anti-psychotic-like and pro-cognitive properties. However, this has not been demonstrated in an animal model of schizophrenia with a neurodevelopmental construct. The beneficial effects of clozapine in refractory schizophrenia and associated cognitive deficits have, among others, been associated with its α2C-AR modulating activity. Altered brain-derived neurotrophic factor (BDNF) has been linked to schizophrenia and cognitive deficits. We investigated whether the α2C-AR antagonist, ORM-10921, could modulate sensorimotor gating and cognitive deficits, as well as alter striatal BDNF levels in the social isolation reared (SIR) model of schizophrenia, comparing its effects to clozapine and the typical antipsychotic, haloperidol, the latter being devoid of α2C-AR-activity. Moreover, the ability of ORM-10921 to augment the effects of haloperidol on the above parameters was also investigated. Animals received subcutaneous injection of either ORM-10921 (0.01mg/kg), clozapine (5mg/kg), haloperidol (0.2mg/kg), haloperidol (0.2mg/kg)+ORM-10921 (0.01mg/kg) or vehicle once daily for 14days, followed by assessment of novel object recognition (NOR), prepulse inhibition (PPI) of startle response and striatal BDNF levels. SIR significantly attenuated NOR memory as well as PPI, and reduced striatal BDNF levels vs. social controls. Clozapine, ORM-10921 and haloperidol+ORM-10921, but not haloperidol alone, significantly improved SIR-associated deficits in PPI and NOR, with ORM-10921 also significantly improving PPI deficits vs. haloperidol-treated SIR animals. Haloperidol+ORM-10921 significantly reversed reduced striatal BDNF levels in SIR rats. α2C-AR-antagonism improves deficits in cognition and sensorimotor gating in a neurodevelopmental animal model of schizophrenia and bolsters the effects of a typical antipsychotic, supporting a therapeutic role for α2C-AR-antagonism in schizophrenia.
Collapse
Affiliation(s)
- Madeleine Uys
- Division of Pharmacology, North-West University (Potchefstroom Campus), Potchefstroom 2520, South Africa.
| | | | | | - Walter Dreyer
- Center of Excellence for Pharmaceutical Sciences, North-West University (Potchefstroom Campus), Hoffman Street, Potchefstroom 2520, South Africa.
| | - Marike Cockeran
- Medicines Usage in South Africa, North-West University (Potchefstroom Campus), Hoffman Street, Potchefstroom 2520, South Africa.
| | - Brian H Harvey
- Center of Excellence for Pharmaceutical Sciences, North-West University (Potchefstroom Campus), Hoffman Street, Potchefstroom 2520, South Africa.
| |
Collapse
|
13
|
Marcus MM, Björkholm C, Malmerfelt A, Möller A, Påhlsson N, Konradsson-Geuken Å, Feltmann K, Jardemark K, Schilström B, Svensson TH. Alpha7 nicotinic acetylcholine receptor agonists and PAMs as adjunctive treatment in schizophrenia. An experimental study. Eur Neuropsychopharmacol 2016; 26:1401-1411. [PMID: 27474687 DOI: 10.1016/j.euroneuro.2016.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/14/2016] [Accepted: 07/02/2016] [Indexed: 10/21/2022]
Abstract
Nicotine has been found to improve cognition and reduce negative symptoms in schizophrenia and a genetic and pathophysiological link between the α7 nicotinic acetylcholine receptors (nAChRs) and schizophrenia has been demonstrated. Therefore, there has been a large interest in developing drugs affecting the α7 nAChRs for schizophrenia. In the present study we investigated, in rats, the effects of a selective α7 agonist (PNU282987) and a α7 positive allosteric modulator (PAM; NS1738) alone and in combination with the atypical antipsychotic drug risperidone for their utility as adjunct treatment in schizophrenia. Moreover we also investigated their utility as adjunct treatment in depression in combination with the SSRI citalopram. We found that NS1738 and to some extent also PNU282987, potentiated a subeffective dose of risperidone in the conditioned avoidance response test. Both drugs also potentiated the effect of a sub-effective concentration of risperidone on NMDA-induced currents in pyramidal cells of the medial prefrontal cortex. Moreover, NS1738 and PNU282987 enhanced recognition memory in the novel object recognition test, when given separately. Both drugs also potentiated accumbal but not prefrontal risperidone-induced dopamine release. Finally, PNU282987 reduced immobility in the forced swim test, indicating an antidepressant-like effect. Taken together, our data support the utility of drugs targeting the α7 nAChRs, perhaps especially α7 PAMs, to potentiate the effect of atypical antipsychotic drugs. Moreover, our data suggest that α7 agonists and PAMs can be used to ameliorate cognitive symptoms in schizophrenia and depression.
Collapse
Affiliation(s)
- Monica M Marcus
- Department of Physiology and Pharmacology, Section of Neuropsychopharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Carl Björkholm
- Department of Physiology and Pharmacology, Section of Neuropsychopharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Anna Malmerfelt
- Department of Physiology and Pharmacology, Section of Neuropsychopharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Annie Möller
- Department of Physiology and Pharmacology, Section of Neuropsychopharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Ninni Påhlsson
- Department of Physiology and Pharmacology, Section of Neuropsychopharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Åsa Konradsson-Geuken
- Department of Physiology and Pharmacology, Section of Neuropsychopharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Kristin Feltmann
- Department of Physiology and Pharmacology, Section of Neuropsychopharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Kent Jardemark
- Department of Physiology and Pharmacology, Section of Neuropsychopharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Björn Schilström
- Department of Physiology and Pharmacology, Section of Neuropsychopharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Torgny H Svensson
- Department of Physiology and Pharmacology, Section of Neuropsychopharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| |
Collapse
|
14
|
Jentsch JD, Taylor JR, Roth RH. Phencyclidine Model of Frontal Cortical Dysfunction in Nonhuman Primates. Neuroscientist 2016. [DOI: 10.1177/107385840000600409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Long-term intake of noncompetitive N-methyl-D-aspartate (NMDA)/glutamate receptor antagonists, such as phencyclidine (PCP), can simulate schizophrenia-like symptomatology in human subjects and can produce aberrant behavior in animals. The behavioral changes produced by PCP in animals have been suggested to model certain primary symptoms of idiopathic psychotic disorders, and the neurobiological substrates affected by PCP have been implicated in the pathophysiology of schizophrenia. This review considers the validity of PCP-induced behaviors in animals as a model of the human disorder, and a developing hypothesis of PCP-induced neurochemical dysfunction within the prefrontal cortex is presented. The behavioral and neurochemical effects of PCP may support the notion that altered glutamatergic/dopaminergic interactions within prefrontal cortex contribute to the cognitive dysfunction of schizophrenia.
Collapse
Affiliation(s)
- J. David Jentsch
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jane R. Taylor
- Department of Pyschiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Robert H. Roth
- Department of Pharmacology, Department of Pyschiatry, Yale University School of Medicine, New Haven, Connecticut,
| |
Collapse
|
15
|
Roth BL, Lopez E, Patel S, Kroeze WK. The Multiplicity of Serotonin Receptors: Uselessly Diverse Molecules or an Embarrassment of Riches? Neuroscientist 2016. [DOI: 10.1177/107385840000600408] [Citation(s) in RCA: 242] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A large number of 5-HT receptors (>15) have been identified by molecular cloning technology over the past 10 years. This review briefly summarizes available information regarding the functional and therapeutic implications of serotonin receptor diversity for neurology and psychiatry. 5-HT receptors are divided into seven main families: 5-HT1, 5-HT2, 5-HT3, 5-HT4, 5-HT5, 5-HT6, and 5-HT7. Several families (e.g., 5-HT1 family) have many members (e.g., 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E, 5-HT1F), each of which is encoded by a distinct gene product. In addition to the genomic diversity of 5-HT receptors, splice variants and editing isoforms exist for many of the 5-HT receptors, making the family even more diverse. Evidence that is summarized in this review suggests that 5-HT receptors represent novel therapeutic targets for a number of neurologic and psychiatric diseases including migraine headaches, chronic pain conditions, schizophrenia, anxiety, depression, eating disorders, obsessive compulsive disorder, pervasive developmental disorders, and obesity-related conditions (Type II diabetes, hypertension, obesity syndromes). It is possible that sub-type-selective serotonergic agents may revolutionize the treatment for a number of medical, psychiatric, and neurological disorders.
Collapse
Affiliation(s)
- Bryan L. Roth
- Department of Psychiatry, Department of Biochemistry, Department of Neuroscience, Case Western Reserve University Medical School, Cleveland, Ohio,
| | - Estelle Lopez
- Department of Biochemistry, Case Western Reserve University Medical School, Cleveland, Ohio
| | - Shamil Patel
- Department of Biochemistry, Case Western Reserve University Medical School, Cleveland, Ohio
| | - Wesley K. Kroeze
- Department of Biochemistry, Case Western Reserve University Medical School, Cleveland, Ohio
| |
Collapse
|
16
|
Castelli MP, Spiga S, Perra A, Madeddu C, Mulas G, Ennas MG, Gessa GL. α2A adrenergic receptors highly expressed in mesoprefrontal dopamine neurons. Neuroscience 2016; 332:130-9. [PMID: 27365174 DOI: 10.1016/j.neuroscience.2016.06.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 12/21/2022]
Abstract
α2 adrenoreceptors (α2-ARs) play a key role in the control of noradrenaline and dopamine release in the medial prefrontal cortex (mPFC). Here, using UV-laser microdissection-based quantitative mRNA expression in individual neurons we show that in hTH-GFP rats, a transgenic line exhibiting intense and specific fluorescence in dopaminergic (DA) neurons, α2A adrenoreceptor (α2A-AR) mRNA is expressed at high and low levels in DA cells in the ventral tegmental area (VTA) and substantia nigra compacta (SNc), respectively. Confocal microscopy fluorescence immunohistochemistry revealed that α2A-AR immunoreactivity colocalized with tyrosine hydroxylase (TH) in nearly all DA cells in the VTA and SNc, both in hTH-GFP rats and their wild-type Sprague-Dawley (SD) counterparts. α2A-AR immunoreactivity was also found in DA axonal projections to the mPFC and dorsal caudate in the hTH-GFP and in the anterogradely labeled DA axonal projections from VTA to mPFC in SD rats. Importantly, the α2A-AR immunoreactivity localized in the DA cells of VTA and in their fibers in the mPFC was much higher than that in DA cells of SNc and their fibers in dorsal caudate, respectively. The finding that α2A-ARs are highly expressed in the cell bodies and axons of mesoprefrontal dopaminergic neurons provides a morphological basis to the vast functional evidence that somatodendritic and nerve-terminal α2A-AR receptors control dopaminergic activity and dopamine release in the prefrontal cortex. This finding raises the question whether α2A-ARs might function as autoreceptors in the mesoprefrontal dopaminergic neurons, replacing the lack of D2 autoreceptors.
Collapse
Affiliation(s)
- M Paola Castelli
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; Center of Excellence "Neurobiology of Addiction", University of Cagliari, 09042 Monserrato, Italy.
| | - Saturnino Spiga
- Department of Life and Environmental Sciences, University of Cagliari, 09126 Cagliari, Italy
| | - Andrea Perra
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Camilla Madeddu
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Giovanna Mulas
- Department of Life and Environmental Sciences, University of Cagliari, 09126 Cagliari, Italy
| | - M Grazia Ennas
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Gian Luigi Gessa
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; Guy Everett Laboratory" University of Cagliari, 09042 Monserrato, Italy
| |
Collapse
|
17
|
Synthesis and pharmacological evaluation of piperidine (piperazine)-substituted benzoxazole derivatives as multi-target antipsychotics. Bioorg Med Chem Lett 2015; 25:5299-305. [PMID: 26483200 DOI: 10.1016/j.bmcl.2015.09.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/05/2015] [Accepted: 09/18/2015] [Indexed: 12/11/2022]
Abstract
The present study describes the optimization of a series of novel benzoxazole-piperidine (piperazine) derivatives combining high dopamine D2 and serotonin 5-HT1A, 5-HT2A receptor affinities. Of these derivatives, the pharmacological features of compound 29 exhibited high affinities for the DA D2, 5-HT1A and 5-HT2A receptors, but low affinities for the 5-HT2C and histamine H1 receptors and human ether-a-go-go-related gene (hERG) channels. Furthermore, compound 29 reduced apomorphine-induced climbing and 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI)-induced head twitching without observable catalepsy, even at the highest dose tested. Thus, compound 29 is a promising candidate as a multi-target antipsychotic treatment.
Collapse
|
18
|
Langer SZ. α2-Adrenoceptors in the treatment of major neuropsychiatric disorders. Trends Pharmacol Sci 2015; 36:196-202. [PMID: 25771972 DOI: 10.1016/j.tips.2015.02.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 02/07/2015] [Accepted: 02/13/2015] [Indexed: 12/16/2022]
Abstract
Presynaptic autoreceptors mediate a retrograde transfer of information by a negative feedback mechanism mediated by the transmitter of the neuron, and fulfill an autoregulatory function in neurotransmission in the peripheral and central nervous system (CNS). Starting with norepinephrine (NE), it was later reported that an autoreceptor-mediated negative feedback mechanism exists for other neurotransmitters, including dopamine (DA), serotonin, acetylcholine, histamine, GABA, and glutamate. This feedback mechanism regulates calcium-dependent transmitter release and synthesis through terminal presynaptic autoreceptors, while the firing rate of the neuron is regulated through somatodendritic autoreceptors.
Collapse
Affiliation(s)
- Salomon Z Langer
- Synaptic Pharma Ltd, 8 Herzel Rosenblum St Apt 4650, Tel Aviv 69379, Israel.
| |
Collapse
|
19
|
Serotonin in antipsychotic drugs action. Behav Brain Res 2015; 277:125-35. [DOI: 10.1016/j.bbr.2014.07.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 07/17/2014] [Accepted: 07/18/2014] [Indexed: 12/13/2022]
|
20
|
Ennis RC, Asico LD, Armando I, Yang J, Feranil JB, Jurgens JA, Escano CS, Yu P, Wang X, Sibley DR, Jose PA, Villar VAM. Dopamine D₁-like receptors regulate the α₁A-adrenergic receptor in human renal proximal tubule cells and D₁-like dopamine receptor knockout mice. Am J Physiol Renal Physiol 2014; 307:F1238-48. [PMID: 25339698 DOI: 10.1152/ajprenal.00119.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The homeostatic control of blood pressure hinges upon the delicate balance between prohypertensinogenic and antihypertensinogenic systems. D₁-like dopamine receptors [dopamine D₁ and D₅ receptors (D₁Rs and D₅Rs, respectively)] and the α₁A-adrenergic receptor (α₁A-AR) are expressed in the renal proximal tubule and engender opposing effects on Na(+) transport, i.e., natriuresis (via D₁Rs and D5Rs) or antinatriuresis (via α₁A-ARs). We tested the hypothesis that the D₁R/D₅R regulates the α₁A-AR. D₁-like dopamine receptors coimmunoprecipitated, colocalized, and cofractionated with α₁A-ARs in lipid rafts in immortalized human renal proximal tubule cells. Long-term treatment with the D₁R/D₅R agonist fenoldopam resulted in decreased D₁R and D₅R expression but increased α₁A-AR abundance in the plasma membrane. Short-term fenoldopam treatment stimulated the translocation of Na(+)-K(+)-ATPase from the plasma membrane to the cytosol that was partially reversed by an α₁A-AR agonist, which by itself induced Na(+)-K(+)-ATPase translocation from the cytosol to the plasma membrane. The α₁A-AR-specific agonist A610603 also minimized the ability of fenoldopam to inhibit Na(+)-K(+)-ATPase activity. To determine the interaction among D₁Rs, D₅Rs, and α₁A-ARs in vivo, we used phenylephrine and A610603 to decrease Na(+) excretion in several D1-like dopamine receptor knockout mouse strains. Phenylephrine and A61603 treatment resulted in a partial reduction of urinary Na(+) excretion in wild-type mice and its abolition in D1R knockout, D₅R knockout, and D₁R-D₅R double-knockout mice. Our results demonstrate the ability of the D₁-like dopamine receptors to regulate the expression and activity of α₁A-AR. Elucidating the intricacies of the interaction among these receptors is crucial for a better understanding of the crosstalk between anti- and pro-hypertensive systems.
Collapse
Affiliation(s)
- Riley Charles Ennis
- Thomas Jefferson High School for Science and Technology, Alexandria, Virgina
| | - Laureano D Asico
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ines Armando
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jian Yang
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jun B Feranil
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Julie A Jurgens
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Crisanto S Escano
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Peiying Yu
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Xiaoyan Wang
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - David R Sibley
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Pedro A Jose
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland; Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Van Anthony M Villar
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland;
| |
Collapse
|
21
|
Kamińska K, Gołembiowska K, Rogóż Z. Effect of risperidone on the fluoxetine-induced changes in extracellular dopamine, serotonin and noradrenaline in the rat frontal cortex. Pharmacol Rep 2014; 65:1144-51. [PMID: 24399710 DOI: 10.1016/s1734-1140(13)71472-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/24/2013] [Indexed: 10/25/2022]
Abstract
BACKGROUND Several clinical reports have documented a beneficial effect of the addition of a low dose of risperidone to the ongoing treatment with antidepressants, in particular selective serotonin reuptake inhibitors, in the treatment of drug resistant depression. The aim of our study was to understand the mechanism of the clinical efficacy of a combination of fluoxetine (FLU) and risperidone (RIS) in drug-resistant depression. We studied the effect of FLU and RIS, given separately or jointly on the extracellular levels of dopamine (DA), serotonin (5-HT) and noradrenaline (NA) in the rat frontal cortex. METHODS Animals were given single intraperitoneal injections of RIS at a doses of 0.1 or 1 mg/kg and FLU at a dose of 10 mg/kg. The release of DA, 5-HT and NA in the rat frontal cortex was investigated using microdialysis in freely moving animals. The extracellular level of DA, 5-HT and NA was assayed by HPLC with coulochemical detection. RESULTS RIS (0.1 and 1 mg/kg) and FLU (10 mg/kg) increased the extracellular level of cortical DA, 5-HT and NA. Co-treatment of both drugs was more effective in increasing DA release than administration of each of the drugs alone at doses of RIS 1 mg/kg and FLU 10 mg/kg. Co-treatment of FLU and RIS 0.1 mg/kg was more potent than FLU alone, while the effect of joint injection of FLU and RIS 1 mg/kg was stronger than RIS 1 mg/kg alone on 5-HT release. The combination of FLU with both doses of RIS was not effective in increasing NA release as compared to drugs given alone. CONCLUSIONS Our data indicate that the effect of the combined administration of RIS and FLU on DA and 5-HT release in the rat frontal cortex may be of crucial importance to the pharmacotherapy of drug resistant depression.
Collapse
Affiliation(s)
- Katarzyna Kamińska
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland.
| | | | | |
Collapse
|
22
|
Devoto P, Flore G, Saba P, Bini V, Gessa GL. The dopamine beta-hydroxylase inhibitor nepicastat increases dopamine release and potentiates psychostimulant-induced dopamine release in the prefrontal cortex. Addict Biol 2014; 19:612-22. [PMID: 23289939 DOI: 10.1111/adb.12026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The dopamine-beta-hydroxylase inhibitor nepicastat has been shown to reproduce disulfiram ability to suppress the reinstatement of cocaine seeking after extinction in rats. To clarify its mechanism of action, we examined the effect of nepicastat, given alone or in association with cocaine or amphetamine, on catecholamine release in the medial prefrontal cortex and the nucleus accumbens, two key regions involved in the reinforcing and motivational effects of cocaine and in the reinstatement of cocaine seeking. Nepicastat effect on catecholamines was evaluated by microdialysis in freely moving rats. Nepicastat reduced noradrenaline release both in the medial prefrontal cortex and in the nucleus accumbens, and increased dopamine release in the medial prefrontal cortex but not in the nucleus accumbens. Moreover, nepicastat markedly potentiated cocaine- and amphetamine-induced extracellular dopamine accumulation in the medial prefrontal cortex but not in the nucleus accumbens. Extracellular dopamine accumulation produced by nepicastat alone or by its combination with cocaine or amphetamine was suppressed by the α2 -adrenoceptor agonist clonidine. It is suggested that nepicastat, by suppressing noradrenaline synthesis and release, eliminated the α2 -adrenoceptor mediated inhibitory mechanism that constrains dopamine release and cocaine- and amphetamine-induced dopamine release from noradrenaline or dopamine terminals in the medial prefrontal cortex.
Collapse
Affiliation(s)
- Paola Devoto
- Department of Biomedical Sciences; Neuroscience and Clinical Pharmacology Division; University of Cagliari; Italy
- Center of Excellence ‘Neurobiology of Addiction’; University of Cagliari; Italy
- ‘Guy Everett Laboratory’; University of Cagliari; Italy
| | - Giovanna Flore
- Department of Medical Sciences ‘M. Aresu’; University of Cagliari; Italy
| | - Pierluigi Saba
- Department of Biomedical Sciences; Neuroscience and Clinical Pharmacology Division; University of Cagliari; Italy
| | - Valentina Bini
- Department of Biomedical Sciences; Neuroscience and Clinical Pharmacology Division; University of Cagliari; Italy
| | - Gian Luigi Gessa
- Department of Biomedical Sciences; Neuroscience and Clinical Pharmacology Division; University of Cagliari; Italy
- Center of Excellence ‘Neurobiology of Addiction’; University of Cagliari; Italy
- ‘Guy Everett Laboratory’; University of Cagliari; Italy
| |
Collapse
|
23
|
Kamińska K, Gołembiowska K, Rogóż Z. The effect of risperidone on the mirtazapine-induced changes in extracellular monoamines in the rat frontal cortex. Pharmacol Rep 2014; 66:984-90. [PMID: 25443725 DOI: 10.1016/j.pharep.2014.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/21/2014] [Accepted: 06/05/2014] [Indexed: 11/25/2022]
Abstract
BACKGROUND The aim of our study was to understand the mechanism of clinical efficacy of the combination of an antidepressant and risperidone in drug-resistant depression. METHODS We studied the effect of an antidepressant (mirtazapine) and risperidone (atypical antipsychotic), given separately or jointly on extracellular levels of dopamine (DA), serotonin (5-HT) and noradrenaline (NA) in the rat frontal cortex. The animals were given a single intraperitoneal injection of risperidone (1mg/kg) and mirtazapine (10 and 20mg/kg). The release of monoamines in the rat frontal cortex was investigated using a microdialysis in freely moving animals, and monoamine levels were assayed by HPLC with coulochemical detection. RESULTS Risperidone increased the cortical extracellular levels of DA, 5-HT and NA. Similarly, mirtazapine dose-dependently increased the cortical extracellular levels of the monoamines studied. A combination of mirtazapine either at the higher dose (20mg/kg) or at both doses (10 and 20mg/kg) with risperidone produced a significant effect on DA and NA release, respectively compared to the effect of any drug given alone. The increase in the DA (but not NA) release induced by mirtazapine plus risperidone was partly blocked by the selective 5-HT1A antagonist WAY 100635 (0.2mg/kg). CONCLUSIONS Our data indicate that the increase of cortical extracellular levels of DA and NA by combined administration of mirtazapine and risperidone may be of crucial importance to the pharmacotherapy of drug resistant depression, and that, among other mechanisms, 5-HT1A, 5-HT2A, α2-adrenergic and histamine H1 receptors may play some role in this effect.
Collapse
Affiliation(s)
- Katarzyna Kamińska
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Krystyna Gołembiowska
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Zofia Rogóż
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland.
| |
Collapse
|
24
|
α2-Adrenoceptors are targets for antipsychotic drugs. Psychopharmacology (Berl) 2014; 231:801-12. [PMID: 24488407 DOI: 10.1007/s00213-014-3459-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 01/11/2014] [Indexed: 01/29/2023]
Abstract
RATIONALE Almost all antipsychotic drugs (APDs), irrespective of whether they belong to the first-generation (e.g. haloperidol) or second-generation (e.g. clozapine), are dopamine D2 receptor antagonists. Second-generation APDs, which differ from first-generation APDs in possessing a lower propensity to induce extrapyramidal side effects, target a variety of monoamine receptors such as serotonin (5-hydroxytryptamine) receptors (e.g. 5-HT1A, 5-HT2A, 5-HT2C, 5-HT6, 5-HT7) and α1- and α2-adrenoceptors in addition to their antagonist effects at D2 receptors. OBJECTIVE This short review is focussed on the potential role of α2-adrenoceptors in the antipsychotic therapy. RESULTS Schizophrenia is characterised by three categories of symptoms: positive symptoms, negative symptoms and cognitive deficits. α2-Adrenoceptors are classified into three distinct subtypes in mammals, α2A, α2B and α2C. Whereas the α2B-adrenoceptor seems to play only a minor role in the brain, activation of postsynaptic α2A-adrenoceptors in the prefrontal cortex improves cognitive functions. Preclinical models such as D-amphetamine-induced locomotion, the conditioned avoidance response and the pharmacological N-methyl-D-aspartate receptor hypofunction model have shown that α2C-adrenoceptor blockade or the combination of D2 receptor antagonists with idazoxan (α2A/2C-adrenoceptor antagonist) could be useful in schizophrenia. A potential benefit of a treatment combination of first-generation APDs with the α2A/2C-adrenoceptor antagonists idazoxan or mirtazapine was also demonstrated in patients with schizophrenia. CONCLUSIONS It is concluded that α2-adrenoceptors may be promising targets in the antipsychotic therapy.
Collapse
|
25
|
Jantschak F, Brosda J, Franke RT, Fink H, Möller D, Hübner H, Gmeiner P, Pertz HH. Pharmacological profile of 2-bromoterguride at human dopamine D2, porcine serotonin 5-hydroxytryptamine 2A, and α2C-adrenergic receptors, and its antipsychotic-like effects in rats. J Pharmacol Exp Ther 2013; 347:57-68. [PMID: 23863695 DOI: 10.1124/jpet.113.205997] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dopaminergic, serotonergic, and adrenergic receptors are targets for therapeutic actions in schizophrenia. Dopamine D2 receptor partial agonists such as aripiprazole represent a treatment option for patients with this severe disorder. The ineffectiveness of terguride, another D2 receptor partial agonist, in treating schizophrenia was recently attributed to its considerably high intrinsic activity at D2 receptors. In this study, we used functional assays for recombinant D2 receptors and native 5-hydroxytryptamine 2A (5-HT2A), α2C-adrenergic, and histamine H1 receptors to compare the pharmacological properties of terguride and three of its halogenated derivatives (2-chloro-, 2-bromo-, 2-iodoterguride) with those of aripiprazole. Subsequently, we studied the antidopaminergic effects of 2-bromoterguride using amphetamine-induced locomotion (AIL). Its influence on spontaneous behavior was tested in the open field. Extrapyramidal side effect (EPS) liability was evaluated by catalepsy test. In a guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPγS) binding assay, 2-chloro-, 2-bromo-, and 2-iodoterguride produced intrinsic activities at human D2short (hD2S) receptors that were half as high as the intrinsic activity for terguride; aripiprazole lacked agonist activity. 2-Bromoterguride and aripiprazole activated D2S receptor-mediated inhibition of cAMP accumulation to the same extent; intrinsic activity was half as high as that of terguride. All compounds tested behaved as antagonists at human D2long/Gαo (hD2L/Gαo) receptors. Compared with aripiprazole, terguride and its derivatives displayed higher affinity at porcine 5-HT2A receptors and α2C-adrenoceptors and lower affinity at H1 receptors. 2-Bromoterguride inhibited AIL and did not induce catalepsy in rats. Because of its in vitro and in vivo properties, 2-bromoterguride may be a strong candidate for the treatment of schizophrenia with a lower risk to induce EPS.
Collapse
Affiliation(s)
- F Jantschak
- Institute of Pharmacy, Free University of Berlin, Berlin, Germany (F.J., H.H.P.); Institute of Pharmacology and Toxicology, School of Veterinary Medicine, Free University of Berlin, Berlin, Germany (J.B., R.T.F., H.F.); and Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Erlangen, Germany (D.M., H.H., P.G.)
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Björkholm C, Jardemark K, Marcus MM, Malmerfelt A, Nyberg S, Schilström B, Svensson TH. Role of concomitant inhibition of the norepinephrine transporter for the antipsychotic effect of quetiapine. Eur Neuropsychopharmacol 2013; 23:709-20. [PMID: 22732518 DOI: 10.1016/j.euroneuro.2012.05.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/24/2012] [Accepted: 05/29/2012] [Indexed: 10/28/2022]
Abstract
Quetiapine alleviates both positive and negative symptoms as well as certain cognitive impairments in schizophrenia despite a low D2 receptor occupancy and may also be used as monotherapy in bipolar and major depressive disorder. The mechanisms underlying the broad clinical utility of quetiapine remain to be clarified, but may be related to the potent inhibition of the norepinephrine transporter (NET) by norquetiapine, the major metabolite of quetiapine in humans. Since norquetiapine is not formed in rodents we here investigated in rats whether NET-inhibition may, in principle, contribute to the clinical effectiveness of quetiapine and allow for its low D2 receptor occupancy, by combining quetiapine with the selective NET-inhibitor reboxetine. Antipsychotic-like activity was assessed using the conditioned avoidance response (CAR) test, dopamine output in the medial prefrontal cortex (mPFC) and the nucleus accumbens was measured using in vivo microdialysis, and NMDA receptor-mediated transmission was measured using intracellular electrophysiological recordings in pyramidal cells of the mPFC in vitro. Adjunct reboxetine potentiated the suppression of CAR by quetiapine. Moreover, concomitant administration of quetiapine and reboxetine resulted in a synergistic increase in cortical, but not accumbal, dopamine output. The combination of low, clinically relevant concentrations of quetiapine (60 nM) and reboxetine (20 nM) markedly facilitated cortical NMDA receptor-mediated transmission in contrast to either drug alone, an effect that could be inhibited by the D₁ receptor antagonist SCH23390. We conclude that concomitant NET-inhibition by norquetiapine may contribute to the overall antipsychotic effectiveness of quetiapine in spite of its relatively low level of D₂ occupancy.
Collapse
Affiliation(s)
- Carl Björkholm
- Section of Neuropsychopharmacology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
27
|
Sallinen J, Holappa J, Koivisto A, Kuokkanen K, Chapman H, Lehtimäki J, Piepponen P, Mijatovic J, Tanila H, Virtanen R, Sirviö J, Haapalinna A. Pharmacological Characterisation of a Structurally Novel α2C-Adrenoceptor Antagonist ORM-10921 and its Effects in Neuropsychiatric Models. Basic Clin Pharmacol Toxicol 2013; 113:239-49. [DOI: 10.1111/bcpt.12090] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 05/23/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Jukka Sallinen
- Orion Corporation; Orion Pharma; Research and Development; Turku; Finland
| | - Johanna Holappa
- Orion Corporation; Orion Pharma; Research and Development; Turku; Finland
| | - Ari Koivisto
- Orion Corporation; Orion Pharma; Research and Development; Turku; Finland
| | - Katja Kuokkanen
- Orion Corporation; Orion Pharma; Research and Development; Turku; Finland
| | - Hugh Chapman
- Orion Corporation; Orion Pharma; Research and Development; Turku; Finland
| | - Jyrki Lehtimäki
- Orion Corporation; Orion Pharma; Research and Development; Turku; Finland
| | - Petteri Piepponen
- Division of Pharmacology and Toxicology; University of Helsinki; Helsinki; Finland
| | - Jelena Mijatovic
- Division of Pharmacology and Toxicology; University of Helsinki; Helsinki; Finland
| | - Heikki Tanila
- Department of Neurobiology; A. I. Virtanen Institute; University of Eastern Finland and CNServices Ltd; Kuopio; Finland
| | - Raimo Virtanen
- Orion Corporation; Orion Pharma; Research and Development; Turku; Finland
| | - Jouni Sirviö
- Department of Neurobiology; Sauloner Ltd.; Kuopio; Finland
| | - Antti Haapalinna
- Orion Corporation; Orion Pharma; Research and Development; Turku; Finland
| |
Collapse
|
28
|
Chen Y, Wang S, Xu X, Liu X, Yu M, Zhao S, Liu S, Qiu Y, Zhang T, Liu BF, Zhang G. Synthesis and Biological Investigation of Coumarin Piperazine (Piperidine) Derivatives as Potential Multireceptor Atypical Antipsychotics. J Med Chem 2013; 56:4671-90. [DOI: 10.1021/jm400408r] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yin Chen
- Systems Biology Theme, Department
of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan
430074, China
- Jiangsu Nhwa Pharmaceutical Co., Ltd., 69 Democratic South Road, Xuzhou, Jiangsu
221116, China
| | - Songlin Wang
- Systems Biology Theme, Department
of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan
430074, China
| | - Xiangqing Xu
- Jiangsu Nhwa Pharmaceutical Co., Ltd., 69 Democratic South Road, Xuzhou, Jiangsu
221116, China
| | - Xin Liu
- Systems Biology Theme, Department
of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan
430074, China
| | - Minquan Yu
- Jiangsu Nhwa Pharmaceutical Co., Ltd., 69 Democratic South Road, Xuzhou, Jiangsu
221116, China
| | - Song Zhao
- Jiangsu Nhwa Pharmaceutical Co., Ltd., 69 Democratic South Road, Xuzhou, Jiangsu
221116, China
| | - Shicheng Liu
- Jiangsu Nhwa Pharmaceutical Co., Ltd., 69 Democratic South Road, Xuzhou, Jiangsu
221116, China
| | - Yinli Qiu
- Jiangsu Nhwa Pharmaceutical Co., Ltd., 69 Democratic South Road, Xuzhou, Jiangsu
221116, China
| | - Tan Zhang
- Jiangsu Nhwa Pharmaceutical Co., Ltd., 69 Democratic South Road, Xuzhou, Jiangsu
221116, China
| | - Bi-Feng Liu
- Systems Biology Theme, Department
of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan
430074, China
| | - Guisen Zhang
- Systems Biology Theme, Department
of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan
430074, China
- Jiangsu Nhwa Pharmaceutical Co., Ltd., 69 Democratic South Road, Xuzhou, Jiangsu
221116, China
| |
Collapse
|
29
|
Neurovascular coupling to D2/D3 dopamine receptor occupancy using simultaneous PET/functional MRI. Proc Natl Acad Sci U S A 2013; 110:11169-74. [PMID: 23723346 DOI: 10.1073/pnas.1220512110] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study employed simultaneous neuroimaging with positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) to demonstrate the relationship between changes in receptor occupancy measured by PET and changes in brain activity inferred by fMRI. By administering the D2/D3 dopamine receptor antagonist [(11)C]raclopride at varying specific activities to anesthetized nonhuman primates, we mapped associations between changes in receptor occupancy and hemodynamics [cerebral blood volume (CBV)] in the domains of space, time, and dose. Mass doses of raclopride above tracer levels caused increases in CBV and reductions in binding potential that were localized to the dopamine-rich striatum. Moreover, similar temporal profiles were observed for specific binding estimates and changes in CBV. Injection of graded raclopride mass doses revealed a monotonic coupling between neurovascular responses and receptor occupancies. The distinct CBV magnitudes between putamen and caudate at matched occupancies approximately matched literature differences in basal dopamine levels, suggesting that the relative fMRI measurements reflect basal D2/D3 dopamine receptor occupancy. These results can provide a basis for models that relate dopaminergic occupancies to hemodynamic changes in the basal ganglia. Overall, these data demonstrate the utility of simultaneous PET/fMRI for investigations of neurovascular coupling that correlate neurochemistry with hemodynamic changes in vivo for any receptor system with an available PET tracer.
Collapse
|
30
|
Modulation of haloperidol-induced patterns of the transcription factor Nur77 and Nor-1 expression by serotonergic and adrenergic drugs in the mouse brain. Int J Neuropsychopharmacol 2012; 15:509-21. [PMID: 21524335 PMCID: PMC4807123 DOI: 10.1017/s1461145711000630] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Different patterns of expression of the transcription factors of Nur77 and Nor-1 are induced following acute administration of typical and atypical antipsychotic drugs. The pharmacological profile of atypical antipsychotics suggests that serotonergic and/or adrenergic receptors might contribute to these reported differences. In order to test this possibility, we examined the abilities of serotonin 5-HT(1A) and 5-HT(2A/2C), and α₁- and α₂-adrenergic receptor drugs to modify the pattern of Nur77 (NR4A1) and Nor-1 (NR4A3) mRNA expression induced by haloperidol. Various groups of mice were treated with either saline, DOI, a 5-HT(2A/2C) agonist, MDL11939, a 5-HT(2A) antagonist, 8-OH-DPAT, a 5-HT(1A) agonist, prazosin, an α₁-adrenergic antagonist and idazoxan, an α₂-adrenergic antagonist, alone or in combination with haloperidol. The 5-HT(2A/2C) agonist DOI alone significantly increased Nur77 expression in the medial striatum and nucleus accumbens. DOI reduced Nor-1 expression, while MDL11939 increased the expression of this transcript in the cortex. Prazosin reduced Nur77 expression in the dorsal striatum and nucleus accumbens. Interestingly, 8-OH-DPAT and MDL11939 partially prevented haloperidol-induced Nur77 up-regulation, while MDL11939 completely abolished Nor-1 expression in the striatum. In addition, MDL11939 decreased haloperidol-induced Nur77 and Nor-1 mRNA levels in the ventral tegmental area. On the contrary, idazoxan (α₂ antagonist) consistently potentiated haloperidol-induced Nur77, but not Nor-1 mRNA levels in the striatum, whereas prazosin (α₁ antagonist) remained without effect. Taken together, these results show the ability of a 5-HT(1A) agonist or a 5-HT(2A) antagonist to reduce haloperidol-induced Nur77 and Nor-1 striatal expression, suggesting that these serotonin receptor subtypes participate in the differential pattern of gene expression induced by typical and atypical antipsychotic drugs.
Collapse
|
31
|
Frånberg O, Marcus MM, Svensson TH. Involvement of 5-HT2A receptor and α2-adrenoceptor blockade in the asenapine-induced elevation of prefrontal cortical monoamine outflow. Synapse 2012; 66:650-60. [DOI: 10.1002/syn.21551] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 02/14/2012] [Indexed: 12/30/2022]
|
32
|
Liégeois JF, Deville M, Dilly S, Lamy C, Mangin F, Résimont M, Tarazi FI. New Pyridobenzoxazepine Derivatives Derived from 5-(4-Methylpiperazin-1-yl)-8-chloro-pyrido[2,3-b][1,5]benzoxazepine (JL13): Chemical Synthesis and Pharmacological Evaluation. J Med Chem 2012; 55:1572-82. [DOI: 10.1021/jm2013419] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jean-François Liégeois
- Laboratory
of Medicinal Chemistry,
Drug Research Center, University of Liège, avenue de l’Hôpital 1 (B36), B-4000 Liège
1, Belgium
| | - Marine Deville
- Laboratory
of Medicinal Chemistry,
Drug Research Center, University of Liège, avenue de l’Hôpital 1 (B36), B-4000 Liège
1, Belgium
| | - Sébastien Dilly
- Laboratory
of Medicinal Chemistry,
Drug Research Center, University of Liège, avenue de l’Hôpital 1 (B36), B-4000 Liège
1, Belgium
| | - Cédric Lamy
- Laboratory
of Medicinal Chemistry,
Drug Research Center, University of Liège, avenue de l’Hôpital 1 (B36), B-4000 Liège
1, Belgium
| | - Floriane Mangin
- Laboratory
of Medicinal Chemistry,
Drug Research Center, University of Liège, avenue de l’Hôpital 1 (B36), B-4000 Liège
1, Belgium
| | - Mélissa Résimont
- Laboratory
of Medicinal Chemistry,
Drug Research Center, University of Liège, avenue de l’Hôpital 1 (B36), B-4000 Liège
1, Belgium
| | - Frank I. Tarazi
- Department of
Psychiatry and
Neuroscience Program, Harvard Medical School and McLean Hospital, Boston, Massachusetts, United States
| |
Collapse
|
33
|
Hecht EM, Landy DC. Alpha-2 receptor antagonist add-on therapy in the treatment of schizophrenia; a meta-analysis. Schizophr Res 2012; 134:202-6. [PMID: 22169246 DOI: 10.1016/j.schres.2011.11.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 11/20/2011] [Accepted: 11/28/2011] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Reduced dopaminergic activity in the pre-frontal cortex may partially explain the negative symptoms of schizophrenia. Animal models have shown that adding an alpha-2 adrenergic receptor antagonist to a D2 antagonist can efflux dopamine into the frontal cortex increasing dopaminergic activity. Trials of alpha-2 antagonist add-on therapy in humans have been limited by small sample sizes. Therefore, a meta-analysis was conducted to determine if adding an alpha-2 antagonist to a D2 antagonist improves schizophrenia treatment by reducing negative symptoms. METHODS Randomized, placebo-controlled trials of the addition of an alpha-2 antagonist to a D2 antagonist were identified through a PubMed search. Treatment effects were measured using schizophrenia rating scales and meta-analyzed as standardized mean differences using random effects models. RESULTS Eight unique studies were identified, each including 18 to 41 patients and lasting four to eight weeks. The overall effect size of add-on alpha-2 therapy across the eight trials was an improvement of 0.16 (95% C.I., -.30 to 0.62) for positive symptoms, 0.84 (95% C.I., .17 to 1.51) for negative symptoms, 0.28 (95% C.I., -.08 to 0.64) for general symptoms, and .80 (95% C.I., .15 to 1.46) for symptoms overall. Negative symptom improvements were independent of improvements in depressive symptoms, measured using the Hamilton depression rating scale, for 3 of the 5 studies. CONCLUSIONS Add-on agents with alpha-2 antagonist activity appear to improve the efficacy of D2 antagonists for the treatment of schizophrenia by reducing negative symptoms. These results support conducting a more definitive confirmatory clinical trial.
Collapse
|
34
|
The α₂-adrenergic antagonist idazoxan counteracts prepulse inhibition deficits caused by amphetamine or dizocilpine in rats. Psychopharmacology (Berl) 2012; 219:99-108. [PMID: 21710169 DOI: 10.1007/s00213-011-2377-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 06/08/2011] [Indexed: 10/18/2022]
Abstract
RATIONALE Prepulse inhibition (PPI) is the reduction in startle response magnitude when intense stimuli are closely preceded by other weak stimuli. Animal models used to investigate sensorimotor gating deficits include both the stimulation of dopamine receptors (e.g., amphetamine or apomorphine) and the blockade of NMDA-glutamate receptors (e.g., dizocilpine or phencyclidine). OBJECTIVES We assessed the effects of idazoxan (an α(2)-adrenergic antagonist) on amphetamine- and dizocilpine-induced PPI disruptions in adult female Sprague-Dawley rats. METHODS In experiment 1, rats were tested for PPI in a bimodal paradigm with an acoustic prepulse and a tactile startle stimulus. Interactions of amphetamine (1 mg/kg) and idazoxan (0.5, 1, and 2 mg/kg) were assessed, with all rats receiving all drug doses in a counterbalanced order. In experiment 2, dizocilpine (0.05 mg/kg) and idazoxan (0.5, 1, and 2 mg/kg) interactions were analyzed. RESULTS Amphetamine (1 mg/kg) caused a significant reduction in PPI. Both the 1- and 2-mg/kg doses of idazoxan significantly counteracted this effect. Dizocilpine (.05 mg/kg) effectively inhibited PPI, and the 2-mg/kg idazoxan dose significantly counteracted this impairment. CONCLUSIONS These results suggest that the effectiveness of atypical antipsychotics such as clozapine in counteracting sensorimotor gating deficits reported in previous studies (e.g., Swerdlow and Geyer, Pharmacol Biochem Behav 44:741-744, 1993; Bakshi et al., J Pharmacol Exp Ther 271:787-794, 1994) may be related to their α(2)-antagonist effects, which may be a critical mechanism of the therapeutic effects of atypical antipsychotics in schizophrenia.
Collapse
|
35
|
Marcus MM, Jardemark K, Malmerfelt A, Gertow J, Konradsson-Geuken Å, Svensson TH. Augmentation by escitalopram, but not citalopram or R-citalopram, of the effects of low-dose risperidone: Behavioral, biochemical, and electrophysiological evidence. Synapse 2011; 66:277-90. [DOI: 10.1002/syn.21510] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 11/05/2011] [Indexed: 12/21/2022]
|
36
|
Elsworth JD, Groman SM, Jentsch JD, Valles R, Shahid M, Wong E, Marston H, Roth RH. Asenapine effects on cognitive and monoamine dysfunction elicited by subchronic phencyclidine administration. Neuropharmacology 2011; 62:1442-52. [PMID: 21875607 DOI: 10.1016/j.neuropharm.2011.08.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 08/15/2011] [Accepted: 08/16/2011] [Indexed: 12/22/2022]
Abstract
PURPOSE Repeated, intermittent administration of the psychotropic NMDA antagonist phencyclidine (PCP) to laboratory animals causes impairment in cognitive and executive functions, modeling important sequelae of schizophrenia; these effects are thought to be due to a dysregulation of neurotransmission within the prefrontal cortex. Atypical antipsychotic drugs have been reported to have measurable, if incomplete, effects on cognitive dysfunction in this model, and these effects may be due to their ability to normalize a subset of the physiological deficits occurring within the prefrontal cortex. Asenapine is an atypical antipsychotic approved in the US for the treatment of schizophrenia and for the treatment, as monotherapy or adjunctive therapy to lithium or valproate, of acute manic or mixed episodes associated bipolar I disorder. To understand its cognitive and neurochemical actions more fully, we explored the effects of short- and long-term dosing with asenapine on measures of cognitive and motor function in normal monkeys and in those previously exposed for 2 weeks to PCP; we further studied the impact of treatment with asenapine on dopamine and serotonin turnover in discrete brain regions from the same cohort. METHODS Monkeys were trained to perform reversal learning and object retrieval procedures before twice daily administration of PCP (0.3 mg/kg intra-muscular) or saline for 14 days. Tests confirmed cognitive deficits in PCP-exposed animals before beginning twice daily administration of saline (control) or asenapine (50, 100, or 150 μg/kg, intra-muscular). Dopamine and serotonin turnover were assessed in 15 specific brain regions by high-pressure liquid chromatography measures of the ratio of parent amine to its major metabolite. RESULTS On average, PCP-treated monkeys made twice as many errors in the reversal task as did control monkeys. Asenapine facilitated reversal learning performance in PCP-exposed monkeys, with improvements at trend level after 1 week of administration and reaching significance after 2-4 weeks of dosing. In week 4, the improvement with asenapine 150 μg/kg (p = 0.01) rendered the performance of PCP-exposed monkeys indistinguishable from that of normal monkeys without compromising fine motor function. Asenapine administration (150 μg/kg twice daily) produced an increase in dopamine and serotonin turnover in most brain regions of control monkeys and asenapine (50-150 μg/kg) increased dopamine and serotonin turnover in several brain regions of subchronic PCP-treated monkeys. No significant changes in the steady-state levels of dopamine or serotonin were observed in any brain region except for the central amygdala, in which a significant depletion of dopamine was observed in PCP-treated control monkeys; asenapine treatment reversed this dopamine depletion. A significant decrease in serotonin utilization was observed in the orbitofrontal cortex and nucleus accumbens in PCP monkeys, which may underlie poor reversal learning. In the same brain regions, dopamine utilization was not affected. Asenapine ameliorated this serotonin deficit in a dose-related manner that matched its efficacy for reversing the cognitive deficit. CONCLUSIONS In this model of cognitive dysfunction, asenapine produced substantial gains in executive functions that were maintained with long-term administration. The cognition-enhancing effects of asenapine and the neurochemical changes in serotonin and dopamine turnover seen in this study are hypothesized to be primarily related to its potent serotonergic and noradrenergic receptor binding properties, and support the potential for asenapine to reduce cognitive dysfunction in patients with schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- John D Elsworth
- Neuropsychopharmacology Research Unit, Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Neuroendocrine system plays an important role in modulating our body functions and emotions. At the same time, emotions implicate a pivotal role in the regulation of brain function and neuroendocrine system. Negative affective states such as depression and stress are associated with premature mortality and increase the risk of various fatal diseases. It has been suggested that positive affective states are protective and improve our health and productiveness. Several potential mechanisms have been posited to account for these associations including improved health behaviour, direct physiological benefits, enhanced resistance and recovery from stress among individuals with high versus low positive emotional resources. This review summarises information concerning the neuronal and hormonal systems in mood, impact of negative and positive affective states on the level of cortisol, epinephrine, serotonin, dopamine and endorphins. The functional correlation of neuronal and hormonal systems in the development of diseases and their ability to enhance health-relevant biological processes are also evaluated.
Collapse
Affiliation(s)
- Jobin Mathew
- .Department of Zoology, CMS College Kottayam, Kerala, India
| | - Cheramadathikudyl Scariya Paulose
- Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin, Kerala, India
| |
Collapse
|
38
|
Holly EN, Ebrecht B, Prus AJ. The neurotensin-1 receptor agonist PD149163 inhibits conditioned avoidance responding without producing catalepsy in rats. Eur Neuropsychopharmacol 2011; 21:526-31. [PMID: 21277173 PMCID: PMC3110992 DOI: 10.1016/j.euroneuro.2010.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 10/27/2010] [Accepted: 12/18/2010] [Indexed: 12/12/2022]
Abstract
Agonists for neurotensin (NT)-1 receptors have produced antipsychotic-like effects in many animals, including reversal of prepulse inhibition deficits and psychostimulant-induced increases in spontaneous activity. The present study sought to provide a basic assessment of the putative antipsychotic effects of PD149163 in rats using a two way conditioned avoidance response task, which is highly validated for screening antipsychotic drugs, and an inclined grid assessment, which is used to assess extrapyramidal side effect liability. PD149163 (0.0625-8.0 mg/kg) significantly suppressed conditioned avoidance responding (CAR) following administration of a 1.0 or 8.0 mg/kg dose. PD149163 failed to significantly increase catalepsy scores. The typical antipsychotic drug haloperidol (0.01-1.0 mg/kg) significantly suppressed CAR at a 0.1, 0.3, and 1.0 mg/kg dose, and a significant increase in catalepsy scores was found at the 1.0 mg/kg dose. The atypical antipsychotic drug clozapine (2.5-10.0 mg/kg) also produced a significant inhibition of CAR, which occurred following administration of a 10.0 mg/kg dose. Clozapine failed to significantly increase catalepsy scores. Finally, D-amphetamine (1.0 mg/kg), serving as a negative control, failed to suppress CAR or increase catalepsy scores. These data further suggest that PD149163 may have atypical antipsychotic-like properties.
Collapse
Affiliation(s)
- Elizabeth N Holly
- Psychology Department, Northern Michigan University, 1401 Presque Isle Ave., Marquette, Michigan, USA
| | | | | |
Collapse
|
39
|
Selective enhancement of mesocortical dopaminergic transmission by noradrenergic drugs: therapeutic opportunities in schizophrenia. Int J Neuropsychopharmacol 2011; 14:53-68. [PMID: 20701825 DOI: 10.1017/s1461145710000908] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The superior efficacy of atypical vs. classical antipsychotic drugs to treat negative symptoms and cognitive deficits in schizophrenia appears related to their ability to enhance mesocortical dopamine (DA) function. Given that noradrenergic (NE) transmission contributes to cortical DA output, we assessed the ability of NE-targeting drugs to modulate DA release in medial prefrontal cortex (mPFC) and nucleus accumbens (NAc), with the aim of selectively increasing mesocortical DA. Extracellular DA was measured using brain microdialysis in rat mPFC and NAc after local/systemic drug administration, electrical stimulation and selective brain lesions. Local GBR12909 [a selective DA transporter (DAT) inhibitor] administration increased DA output more in NAc than in mPFC whereas reboxetine [a selective NE transporter (NET) inhibitor] had an opposite regional profile. DA levels increased comparably in both regions of control rats after local nomifensine (DAT+NET inhibitor) infusion, but this effect was much lower in PFC of NE-lesioned rats (DSP-4) and in NAc of 6-OHDA-lesioned rats. Electrical stimulation of the locus coeruleus preferentially enhanced DA output in mPFC. Consistently, the administration of reboxetine+RX821002 (an α2-adrenoceptor antagonist) dramatically enhanced DA output in mPFC (but not NAc). This effect also occurred when reboxetine+RX821002 were co-administered with haloperidol or clozapine. The preferential contribution of the NE system to PFC DA allows selective enhancement of DA transmission by simultaneously blocking NET and α2-adrenoceptors, thus preventing the autoreceptor-mediated negative feedback on NE activity. Our results highlight the importance of NET and α2-adrenoceptors as targets for treating negative/cognitive symptoms in schizophrenia and related psychiatric disorders.
Collapse
|
40
|
Evaluation of the effects of α2 adrenoceptor antagonism with the D2 receptor antagonist raclopride on conditioned avoidance responding in rats. Behav Pharmacol 2010; 21:654-9. [PMID: 20729715 DOI: 10.1097/fbp.0b013e32833e7efd] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The α2 adrenoceptor antagonist idazoxan, when combined with a subeffective dose of the D2 receptor antagonist raclopride or other D2 receptor antagonists, produces inhibition of conditioned avoidance responding (CAR) in rats, an effect predictive of antipsychotic effects. In other models, this treatment combination indicates putative atypical antipsychotic effects as well, and has led to a α2/D2 receptor hypothesis for atypicality. However, this hypothesis would be better supported if other α2 adrenoceptor antagonists were investigated and the role of the alternative mechanisms, particularly 5-HT1A receptor agonism, for the behavioral effects of idazoxan were evaluated. This study sought to further test the α2/D2 receptor hypothesis by assessing the effects of α2, D2 and 5-HT1A receptor ligands on CAR in rats. Raclopride significantly reduced CAR. Administration of idazoxan or the α2 adrenoceptor antagonist yohimbine with a subeffective dose of raclopride also significantly reduced CAR. Pretreatment with the 5-HT1A receptor antagonist WAY100635 failed to significantly reverse the inhibition of CAR produced by the idazoxan and raclopride treatment combination. To the extent that 5-HT1A receptor antagonism failed to block the effects of idazoxan in combination with raclopride on CAR, α2 adrenoceptor antagonism alone appears to potentiate the putative antipsychotic effects produced through D2 receptor antagonism.
Collapse
|
41
|
Zeng C, Jose PA. Dopamine receptors: important antihypertensive counterbalance against hypertensive factors. Hypertension 2010; 57:11-7. [PMID: 21098313 DOI: 10.1161/hypertensionaha.110.157727] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing City 400042, China.
| | | |
Collapse
|
42
|
Abstract
Tonic and phasic dopamine release is implicated in learning, motivation, and motor functions. However, the relationship between spike patterns in dopaminergic neurons, the extracellular concentration of dopamine, and activation of dopamine receptors remains unresolved. In the present study, we develop a computational model of dopamine signaling that give insight into the relationship between the dynamics of release and occupancy of D(1) and D(2) receptors. The model is derived from first principles using experimental data. It has no free parameters and offers unbiased estimation of the boundaries of dopaminergic volume transmission. Bursts primarily increase occupancy of D(1) receptors, whereas pauses translate into low occupancy of D(1) and D(2) receptors. Phasic firing patterns, composed of bursts and pauses, reduce the average D(2) receptor occupancy and increase average D(1) receptor occupancy compared with equivalent tonic firing. Receptor occupancy is crucially dependent on synchrony and the balance between tonic and phasic firing modes. Our results provide quantitative insight in the dynamics of volume transmission and complement experimental data obtained with electrophysiology, positron emission tomography, microdialysis, amperometry, and voltammetry.
Collapse
|
43
|
Ponten H, Kullingsjö J, Lagerkvist S, Martin P, Pettersson F, Sonesson C, Waters S, Waters N. In vivo pharmacology of the dopaminergic stabilizer pridopidine. Eur J Pharmacol 2010; 644:88-95. [DOI: 10.1016/j.ejphar.2010.07.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 06/18/2010] [Accepted: 07/11/2010] [Indexed: 11/27/2022]
|
44
|
Semenova S, Markou A. The alpha2 adrenergic receptor antagonist idazoxan, but not the serotonin-2A receptor antagonist M100907, partially attenuated reward deficits associated with nicotine, but not amphetamine, withdrawal in rats. Eur Neuropsychopharmacol 2010; 20:731-46. [PMID: 20627663 PMCID: PMC3545706 DOI: 10.1016/j.euroneuro.2010.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 04/01/2010] [Accepted: 05/04/2010] [Indexed: 11/27/2022]
Abstract
Based on phenomenological similarities between anhedonia (reward deficits) associated with drug withdrawal and the negative symptoms of schizophrenia, we showed previously that the atypical antipsychotic clozapine attenuated reward deficits associated with psychostimulant withdrawal. Antagonism of alpha(2) adrenergic and 5-HT(2A) receptors may contribute to these effects of clozapine. We investigated here whether blockade of alpha(2) or 5-HT(2A) receptors by idazoxan and M100907, respectively, would reverse anhedonic aspects of psychostimulant withdrawal. Idazoxan treatment facilitated recovery from spontaneous nicotine, but not amphetamine, withdrawal by attenuating reward deficits and increase the number of somatic signs. Thus, alpha(2) adrenoceptor blockade may have beneficial effects against nicotine withdrawal and may be involved in the effects of clozapine previously observed. M100907 worsened the anhedonia associated with nicotine and amphetamine withdrawal, suggesting that monotherapy with M100907 may exacerbate the expression of the negative symptoms of schizophrenia or nicotine withdrawal symptoms in people, including schizophrenia patients, attempting to quit smoking.
Collapse
Affiliation(s)
- Svetlana Semenova
- Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive, M/C 0603, La Jolla, CA 92093-0603, USA.
| | | |
Collapse
|
45
|
Synthesis and in vitro binding studies of piperazine-alkyl-naphthamides: Impact of homology and sulphonamide/carboxamide bioisosteric replacement on the affinity for 5-HT1A, α2A, D4.2, D3 and D2L receptors. Bioorg Med Chem Lett 2010; 20:5199-202. [DOI: 10.1016/j.bmcl.2010.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 06/30/2010] [Accepted: 07/01/2010] [Indexed: 11/17/2022]
|
46
|
Adjunctive alpha2-adrenoceptor blockade enhances the antipsychotic-like effect of risperidone and facilitates cortical dopaminergic and glutamatergic, NMDA receptor-mediated transmission. Int J Neuropsychopharmacol 2010; 13:891-903. [PMID: 19835668 DOI: 10.1017/s1461145709990794] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Compared to both first- and second-generation antipsychotic drugs (APDs), clozapine shows superior efficacy in treatment-resistant schizophrenia. In contrast to most APDs clozapine possesses high affinity for alpha2-adrenoceptors, and clinical and preclinical studies provide evidence that the alpha2-adrenoceptor antagonist idazoxan enhances the antipsychotic efficacy of typical D2 receptor antagonists as well as olanzapine. Risperidone has lower affinity for alpha2-adrenoceptors than clozapine but higher than most other APDs. Here we examined, in rats, the effects of adding idazoxan to risperidone on antipsychotic effect using the conditioned avoidance response (CAR) test, extrapyramidal side-effect (EPS) liability using the catalepsy test, brain dopamine efflux using in-vivo microdialysis in freely moving animals, cortical N-methyl-D-aspartate (NMDA) receptor-mediated transmission using intracellular electrophysiological recording in vitro, and ex-vivo autoradiography to assess the in-vivo alpha2A- and alpha2C-adrenoceptor occupancies by risperidone. The dose of risperidone needed for antipsychotic effect in the CAR test was approximately 0.4 mg/kg, which produced 11% and 17% in-vivo receptor occupancy at alpha2A- and alpha2C-adrenoceptors, respectively. Addition of idazoxan (1.5 mg/kg) to a low dose of risperidone (0.25 mg/kg) enhanced the suppression of CAR, but did not enhance catalepsy. Both cortical dopamine release and NMDA receptor-mediated responses were enhanced. These data propose that the therapeutic effect of risperidone in schizophrenia can be enhanced and its EPS liability reduced by adjunctive treatment with an alpha2-adrenoceptor antagonist, and generally support the notion that the potent alpha2-adrenoceptor antagonistic action of clozapine may be highly important for its unique efficacy in schizophrenia.
Collapse
|
47
|
Marcus MM, Jardemark K, Malmerfelt A, Björkholm C, Svensson TH. Reboxetine enhances the olanzapine-induced antipsychotic-like effect, cortical dopamine outflow and NMDA receptor-mediated transmission. Neuropsychopharmacology 2010; 35:1952-61. [PMID: 20463659 PMCID: PMC3055636 DOI: 10.1038/npp.2010.69] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Preclinical data have shown that addition of the selective norepinephrine transporter (NET) inhibitor reboxetine increases the antipsychotic-like effect of the D(2/3) antagonist raclopride and, in parallel, enhances cortical dopamine output. Subsequent clinical results suggested that adding reboxetine to stable treatments with various antipsychotic drugs (APDs) may improve positive, negative and depressive symptoms in schizophrenia. In this study, we investigated in rats the effects of adding reboxetine to the second-generation APD olanzapine on: (i) antipsychotic efficacy, using the conditioned avoidance response (CAR) test, (ii) extrapyramidal side effect (EPS) liability, using a catalepsy test, (iii) dopamine efflux in the medial prefrontal cortex and the nucleus accumbens, using in vivo microdialysis in freely moving animals and (iv) cortical N-methyl-D-aspartate (NMDA) receptor-mediated transmission, using intracellular electrophysiological recording in vitro. Reboxetine (6 mg/kg) enhanced the suppression of CAR induced by a suboptimal dose (1.25 mg/kg), but not an optimal (2.5 mg/kg) dose of olanzapine without any concomitant catalepsy. Addition of reboxetine to the low dose of olanzapine also markedly increased cortical dopamine outflow and facilitated prefrontal NMDA receptor-mediated transmission. Our data suggest that adjunctive treatment with a NET inhibitor may enhance the therapeutic effect of low-dose olanzapine in schizophrenia without increasing EPS liability and add an antidepressant action, thus in principle allowing for a dose reduction of olanzapine with a concomitant reduction of dose-related side effects, such as EPS and weight gain.
Collapse
Affiliation(s)
- Monica M Marcus
- Section of Neuropsychopharmacology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Kent Jardemark
- Section of Neuropsychopharmacology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Malmerfelt
- Section of Neuropsychopharmacology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Carl Björkholm
- Section of Neuropsychopharmacology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Torgny H Svensson
- Section of Neuropsychopharmacology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden,Department of Physiology and Pharmacology, Karolinska Institutet, Nanna Svartz väg 2, Stockholm, S 171 77, Sweden. Tel: +46 852 487 921, Fax: 468 308 424, E-mail:
| |
Collapse
|
48
|
Prus AJ, Zornio PA, Schuck CJ, Heerts T, Jacobson SM, Winiarski DA. Discriminative stimulus properties of idazoxan: mediation by both α2 adrenoceptor antagonism and 5-HT1A receptor agonism. Drug Dev Res 2010. [DOI: 10.1002/ddr.20370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
49
|
Jardemark K, Marcus MM, Shahid M, Svensson TH. Effects of asenapine on prefrontal N-methyl-D-aspartate receptor-mediated transmission: Involvement of dopamine D1 receptors. Synapse 2010; 64:870-4. [DOI: 10.1002/syn.20803] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
50
|
Rominger A, Mille E, Böning G, Wängler B, Josef Gildehaus F, Arszol C, Bartenstein P, Cumming P. α2-Adrenergic drugs modulate the binding of [18F]fallypride to dopamine D2/3 receptors in striatum of living mouse. Synapse 2010; 64:654-7. [DOI: 10.1002/syn.20785] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|