1
|
Kerry R, Ingram B, Abbas HK, Ahlborn G. An Investigation of the Spatial Arrangement of Mycotoxin Build-Up in Corn Stored Under Different Environmental Conditions. Toxins (Basel) 2024; 16:508. [PMID: 39728766 PMCID: PMC11728487 DOI: 10.3390/toxins16120508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/12/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024] Open
Abstract
Mycotoxins are toxins produced by fungi that contaminate many key food crops as they grow in the field and during storage. Specific mycotoxins are produced by different fungi. Each type of fungus and mycotoxin have their own optimal temperatures and water activities for growth and production. The legislative limits for various mycotoxins in foodstuffs to protect human health vary between countries but all commodities have their levels evaluated based on the concentrations from one aggregated grain sample. This approach assumes that the variation in toxin levels is uniform and random without spatial trends. This study investigates the spatial distribution of four mycotoxins (aflatoxin, deoxynivalenol, fumonisin and zearalenone) in bins of clean and dirty corn when stored in an environmental cabinet for two months under different temperature and humidity conditions. The bins of clean and dirty corn each had 12 CO2/humidity/temperature sensors installed in three layers, and samples were extracted for mycotoxin analysis from locations close to each sensor following storage. Using Mann-Whitney U and Kruskal-Wallis H statistical tests, significant differences were found between mycotoxin levels attributable to the different environmental conditions and spatial locations of samples. Variations in aflatoxin and zearalenone concentrations were most pronounced for the range of temperature and humidity conditions chosen. By understanding the patterns of spatial variability in mycotoxin concentrations and identifying zones at high risk of contamination, as well as what conditions are favorable, targeted interventions could be implemented to reduce food waste. This work also has implications for how levels of mycotoxins in foodstuffs are sampled and measured.
Collapse
Affiliation(s)
- Ruth Kerry
- Department of Geography, Brigham Young University, Provo, UT 84602, USA
| | - Ben Ingram
- Facultad de Ingeniería, Universidad de Talca, Camino a Los Niches Km. 1, Curicó 3344158, Chile
| | | | - Gene Ahlborn
- Department of Nutrition, Dietetics & Food Science, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
2
|
Zhu Y, Li W, Yang J, Li Z, Li Q, Xiao L, Tan T, Li J. Photonic Microbead Array Digital Time-Resolved Fluorescence Ultrasensitive Platform for Simultaneous Detection of Multiple Mycotoxins. Anal Chem 2024; 96:16842-16853. [PMID: 39388602 DOI: 10.1021/acs.analchem.4c03589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Limitations in the sensitivity, linear detection range, and cross-reaction of lateral flow immunoassays mainly hamper their application in rapid screening for multiple targets. In this work, we designed a new time-resolved fluorescence immunoassay (TRFIA) platform to overcome these limitations. This platform uses europium chelate polystyrene (PS@Eu) nanoparticles conjugated with monoclonal antibodies to sense multiple mycotoxins. We employed a competitive TRFIA protocol in which the conjugated PS@Eu was used on the surfaces of photonic microbead arrays (PMAs). The TRFIA signal of PMAs on the pad was recorded with the digital time-resolved fluorescence reader. The developed TRFIA shows wide detection linear ranges (0.01-1000 ng/mL for DON, 0.1-100 ng/mL for OTA, and 0.01-100 ng/mL for AFB1), low limits of detection (LODs) (7.9 pg/mL for DON, 18 pg/mL for OTA, and 7.7 pg/mL for AFB1), good specificity, good recovery ratios (76.68-117.26%), and good reproducibility in grain samples. The simulated fluorescence enhancement effect of PMA indicated that the electric field distribution on the surface of PS@Eu on PMA is twice higher than that on the surface of PS@Eu. The new TRFIA for three kinds of mycotoxins was 1000-fold more sensitive than the classical TRFIA, and it has great potential application in rapid screening for multiple targets.
Collapse
Affiliation(s)
- Yuting Zhu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Wei Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Jing Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Ziqiang Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Qianjin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Liwen Xiao
- Nanjing Microdetection Bio-Tech Co., Ltd., Nanjing 210031, China
| | - Ting Tan
- Nanjing Microdetection Bio-Tech Co., Ltd., Nanjing 210031, China
| | - Jianlin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
3
|
Soman SS, Samad SA, Venugopalan P, Kumawat N, Kumar S. Microfluidic paper analytic device (μPAD) technology for food safety applications. BIOMICROFLUIDICS 2024; 18:031501. [PMID: 38706979 PMCID: PMC11068414 DOI: 10.1063/5.0192295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/15/2024] [Indexed: 05/07/2024]
Abstract
Foodborne pathogens, food adulterants, allergens, and toxic chemicals in food can cause major health hazards to humans and animals. Stringent quality control measures at all stages of food processing are required to ensure food safety. There is, therefore, a global need for affordable, reliable, and rapid tests that can be conducted at different process steps and processing sites, spanning the range from the sourcing of food to the end-product acquired by the consumer. Current laboratory-based food quality control tests are well established, but many are not suitable for rapid on-site investigations and are costly. Microfluidic paper analytical devices (μPADs) are a fast-growing field in medical diagnostics that can fill these gaps. In this review, we describe the latest developments in the applications of microfluidic paper analytic device (μPAD) technology in the food safety sector. State-of-the-art μPAD designs and fabrication methods, microfluidic assay principles, and various types of μPAD devices with food-specific applications are discussed. We have identified the prominent research and development trends and future directions for maximizing the value of microfluidic technology in the food sector and have highlighted key areas for improvement. We conclude that the μPAD technology is promising in food safety applications by using novel materials and improved methods to enhance the sensitivity and specificity of the assays, with low cost.
Collapse
Affiliation(s)
- Soja Saghar Soman
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, P.O. Box 129188, UAE
| | - Shafeek Abdul Samad
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, P.O. Box 129188, UAE
| | | | - Nityanand Kumawat
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, P.O. Box 129188, UAE
| | | |
Collapse
|
4
|
Wang Y, Luo C, Lou X, Li F, Huang Y, Xia F. Fluorescent Selectivity-Enhanced FRET Based on 3D Photonic Crystals for Multianalyte Sensing. Anal Chem 2024; 96:1630-1639. [PMID: 38217493 DOI: 10.1021/acs.analchem.3c04547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
Fluorescence resonance energy transfer (FRET) finds widespread utility in biochemical sensing, single-molecule experiments, cell physiology, and various other domains due to its inherent simplicity and high sensitivity. Nevertheless, the efficiency of energy transfer between the FRET donor and acceptor is significantly contingent on the local photonic environment, a factor that limits its application in complex systems or multianalyte detections. Here, a fluorescent selectivity-enhanced acridine orange (AO)-aflatoxins (AFs) FRET system based on a range of 3D topological photonic crystals (PCs) was developed with the aim of enhancing the selectivity and discrimination capabilities of FRET. By exploring the angle-dependent characteristics of the photonic stopband, the stopband distribution across different 3D topological PCs pixels was investigated. This approach led to selective fluorescence enhancement in PCs that matched the stopbands, enabling the successful discrimination of six distinct aflatoxins and facilitating complex multianalysis of moldy food samples. In particular, the stopband, which was strategically positioned within the blue-purple structural color range, exhibited a strong alignment with the fluorescence peaks of both the FRET donor and acceptor. This alignment allowed the 3D three-pointed star PCs to be effectively employed for the identification of mixed samples containing six distinct aflatoxins as well as the detection of real aflatoxin samples present in moldy potatoes, bread, oats, and peanuts. Impressively, this approach achieved a remarkable accuracy rate of 100%. This innovative strategy not only presents a novel avenue for developing a multitarget discrimination analysis system but also offers a convenient pretreatment method for the quantitative detection of various aflatoxins.
Collapse
Affiliation(s)
- Yanyan Wang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Cihui Luo
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Fengyu Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Jinan University, Guangzhou 510632, China
| | - Yu Huang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| |
Collapse
|
5
|
Serebrennikova KV, Samokhvalov AV, Zherdev AV, Dzantiev BB. A Fluorescence Resonance Energy Transfer Aptasensor for Aflatoxin B1 Based on Ligand-Induced ssDNA Displacement. Molecules 2023; 28:7889. [PMID: 38067619 PMCID: PMC10707992 DOI: 10.3390/molecules28237889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
In this study, a fluorescence resonance energy transfer (FRET)-based aptasensor for the detection of aflatoxin B1 (AFB1) was designed using a carboxyfluorescein (FAM)-labeled aptamer and short complementary DNA (cDNA) labeled with low molecular quencher RTQ1. The sensing principle was based on the detection of restored FAM-aptamer fluorescence due to the ligand-induced displacement of cDNA in the presence of AFB1, leading to the destruction of the aptamer/cDNA duplex and preventing the convergence of FAM and RTQ1 at the effective FRET distance. Under optimal sensing conditions, a linear correlation was obtained between the fluorescence intensity of the FAM-aptamer and the AFB1 concentration in the range of 2.5-208.3 ng/mL with the detection limit of the assay equal to 0.2 ng/mL. The assay time was 30 min. The proposed FRET aptasensor has been successfully validated by analyzing white wine and corn flour samples, with recovery ranging from 76.7% to 91.9% and 84.0% to 86.5%, respectively. This work demonstrates the possibilities of labeled cDNA as an effective and easily accessible tool for sensitive AFB1 detection. The homogeneous FRET aptasensor is an appropriate choice for contaminant screening in complex matrices.
Collapse
Affiliation(s)
| | | | | | - Boris B. Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russia; (K.V.S.); (A.V.S.); (A.V.Z.)
| |
Collapse
|
6
|
Xu G, Wang C, Yu H, Li Y, Zhao Q, Zhou X, Li C, Liu M. Structural basis for high-affinity recognition of aflatoxin B1 by a DNA aptamer. Nucleic Acids Res 2023; 51:7666-7674. [PMID: 37351632 PMCID: PMC10415127 DOI: 10.1093/nar/gkad541] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
The 26-mer DNA aptamer (AF26) that specifically binds aflatoxin B1 (AFB1) with nM-level high affinity is rare among hundreds of aptamers for small molecules. Despite its predicted stem-loop structure, the molecular basis of its high-affinity recognition of AFB1 remains unknown. Here, we present the first high-resolution nuclear magnetic resonance structure of AFB1-AF26 aptamer complex in solution. AFB1 binds to the 16-residue loop region of the aptamer, inducing it to fold into a compact structure through the assembly of two bulges and one hairpin structure. AFB1 is tightly enclosed within a cavity formed by the bulges and hairpin, held in a place between the G·C base pair, G·G·C triple and multiple T bases, mainly through strong π-π stacking, hydrophobic and donor atom-π interactions, respectively. We further revealed the mechanism of the aptamer in recognizing AFB1 and its analogue AFG1 with only one-atom difference and introduced a single base mutation at the binding site of the aptamer to increase the discrimination between AFB1 and AFG1 based on the structural insights. This research provides an important structural basis for understanding high-affinity recognition of the aptamer, and for further aptamer engineering, modification and applications.
Collapse
Affiliation(s)
- Guohua Xu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
| | - Chen Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
- Department of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Hao Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
- Department of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yapiao Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
- Department of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P.R. China
- Department of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
| |
Collapse
|
7
|
Wu K, Liu M, Wang H, Rajput SA, Al Zoubi OM, Wang S, Qi D. Effect of zearalenone on aflatoxin B1-induced intestinal and ovarian toxicity in pregnant and lactating rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 258:114976. [PMID: 37148750 DOI: 10.1016/j.ecoenv.2023.114976] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/12/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023]
Abstract
Aflatoxin B1 (AFB1) and zearalenone (ZEN) cause serious damage to mammals, but few studies have investigated the impacts of these toxins on pregnant and lactating mammals. This study investigated the effects of ZEN on AFB1-induced intestinal and ovarian toxicity in pregnant and lactating rats. Based on the results, AFB1 reduces the digestion, absorption, and antioxidant capacity in the intestine, increases intestinal mucosal permeability, destroys intestinal mechanical barriers, and increases pathogenic bacteria' relative abundances. Simultaneously, ZEN can exacerbate the intestinal injury caused by AFB1. The intestines of the offspring were also damaged, but the damage was less severe than that observed for the dams. While AFB1 activates various signalling pathways in the ovary and affects genes related to endoplasmic reticulum stress, apoptosis, and inflammation, ZEN may exacerbate or antagonize the AFB1 toxicity on gene expression in the ovary through key node genes and abnormally expressed genes. Our study found that mycotoxins can not only directly damage the ovaries and affect gene expression in the ovaries but can also impact ovarian health by disrupting intestinal microbes. Mycotoxins are an important environmental pathogenic factor for intestinal and ovarian disease in pregnancy and lactation mammals.
Collapse
Affiliation(s)
- Kuntan Wu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Minjie Liu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huanbin Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shahid Ali Rajput
- Department of Animal Feed and Production, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan 60000, Pakistan
| | - Omar Mahmoud Al Zoubi
- Biology Department, Faculty of Science Yanbu, Taibah University, Yanbu El-Bahr 46423, Saudi Arabia
| | - Shuai Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Desheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
8
|
Aflatoxin Susceptible Food Consumption Frequency, Prevalence, and Levels in Household Foodstuffs in Southwestern Uganda. J FOOD QUALITY 2023. [DOI: 10.1155/2023/4769432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Contamination of household foodstuffs by aflatoxins has been associated with many illnesses, especially hepatocellular cancer and malnutrition. Aflatoxins are toxins produced by fungi, especially Aspergillus flavus and Aspergillus parasiticus, usually found in food. Literature concerning the S.W. Ugandan foods that are the main aflatoxicosis route and therefore need most aflatoxin preventive measure is scanty. The current study determined the aflatoxin-susceptible food consumption frequency, prevalence, and levels of aflatoxins in selected foodstuffs in households in S.W. Uganda to establish the main food route of aflatoxicosis. Following a food frequency questionnaire, flour samples of common foodstuffs, namely, groundnuts, maize, millet, and sorghum, were randomly picked from seven districts of Southwest Uganda and analyzed for the presence and levels of aflatoxins using competitive ELISA. On average, maize and groundnut were found to be the most frequently consumed foods (seven times a week) by every family. Groundnuts had the highest mean aflatoxin level (96.5 ± 13.37 μg/kg), ranging from 6.2 to 297.3 μg/kg. Over 90% of the groundnut samples had mean aflatoxin levels greater than 10 μg/kg, the East African regulatory limit. Maize flour had a mean aflatoxin level of 34.1 ± 14.1 μg/kg, with one sample registering 336.5 μg/kg. This study found that groundnuts were the main food-route for aflatoxicosis followed by maize flour. In addition, the study re-affirmed the high prevalence and levels of aflatoxins in common food stuff in households in S.W. Uganda reported by previous studies. This study recommends further studies to elucidate its association with the observed recent increase in diseases like hepatocellular cancer and malnutrition in the region.
Collapse
|
9
|
Li X, Yao L, Xiong B, Wu Y, Chen S, Xu Z, Qiu SX. Inhibitory Mechanism of Pinosylvin Monomethyl Ether against Aspergillus flavus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15840-15847. [PMID: 36448783 DOI: 10.1021/acs.jafc.2c07240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Control of Aspergillus flavus is beneficial for the agricultural economy and food safety. Stilbenes exhibit antifungal properties through an unknown mechanism. Here, six stilbenes isolated from Cajanus cajan were screened for anti-A. flavus activity. Among them, pinosylvin monomethyl ether (PME) showed the strongest anti-A. flavus activity and has a broad antifungal spectrum with negligible hemolysis within the concentration range measured. PME inhibited the spore germination of A. flavus and the accumulation of aflatoxin B1. Mechanistic studies showed that PME could bind the cell membrane phospholipids, resulting in increased permeability and decreased fluidity. Further metabolic analysis showed that PME caused the lysis of cell membranes and subsequent collapse of spores, which resulted in a cell wall autolysis-like phenotype. Structure-activity relationship analysis revealed the importance of maintaining amphiphilicity harmony by substituent groups for the antifungal activity of stilbenes. Together, natural stilbenes are promising antifungal lead compounds worthy of further exploration and research for potential application in the food, pharmaceutical, and agricultural industries.
Collapse
Affiliation(s)
- Xiancai Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China
| | - Liyuan Yao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Binghong Xiong
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China
| | - Yaodan Wu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Shaohua Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhifang Xu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China
| | - Sheng-Xiang Qiu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China
| |
Collapse
|
10
|
Baba Mohammadi S, Rezaie MR, Zareie N. Formulation of Aflatoxins B1 & B2 reduction in corn by low level gamma irradiation. Toxicon 2022; 218:83-87. [PMID: 36116738 DOI: 10.1016/j.toxicon.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/29/2022] [Accepted: 09/12/2022] [Indexed: 11/19/2022]
Abstract
Corn is one of the main food items for humans and animals. Contamination of corn with aflatoxin during harvest, storage, and transport is one of the human problems. Different methods for removing and inactivating aflatoxin in corn have been introduced so far. In this research, using the gamma radiation caused by radioactive granite, the reduction of corn aflatoxin was investigated with practical and simulation methods. In a practical method by simulation result, the aflatoxin reduction as a function of time and granite gamma radiation dose in corn were calculated. The simulation was done with the Mont Carlo N-Particle X version (MCNPX) code that based on the Monte Carlo method. Results show that the relationship between the percentage of aflatoxin reduction and the irradiation time (t (day)) is 0.017 × t. Due to the low-level gamma dose of granite, the percentage of protein, fat, and vitamins in corn does not change with granite irradiation. Therefore, the results show that the use of low granite gamma radiation to reduce aflatoxin can improve physicochemical properties, reduce aflatoxin levels and increase the antioxidant properties of corn, which has ultimately reduced the risk of developing cancer caused by aflatoxin.
Collapse
Affiliation(s)
- Sharareh Baba Mohammadi
- Department of Nuclear Engineering, Faculty of Sciences and Modern Technologies, Graduate University of Advanced Technology, Kerman, Iran
| | - Mohammad Raza Rezaie
- Department of Nuclear Engineering, Faculty of Sciences and Modern Technologies, Graduate University of Advanced Technology, Kerman, Iran.
| | - Neda Zareie
- Department of Nuclear Engineering, Faculty of Sciences and Modern Technologies, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
11
|
Zhang J, Gao L, Chai B, Zhao J, Yang Z, Yang K. Electrochemical aptasensor for aflatoxin B1 detection using cerium dioxide nanoparticle supported on iron-porphyrinic metal–organic framework as signal probes. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Yin S, Niu L, Liu Y. Recent Progress on Techniques in the Detection of Aflatoxin B 1 in Edible Oil: A Mini Review. Molecules 2022; 27:6141. [PMID: 36234684 PMCID: PMC9573432 DOI: 10.3390/molecules27196141] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Contamination of agricultural products and foods by aflatoxin B1 (AFB1) is becoming a serious global problem, and the presence of AFB1 in edible oil is frequent and has become inevitable, especially in underdeveloped countries and regions. As AFB1 results from a possible degradation of aflatoxins and the interaction of the resulting toxic compound with food components, it could cause chronic disease or severe cancers, increasing morbidity and mortality. Therefore, rapid and reliable detection methods are essential for checking AFB1 occurrence in foodstuffs to ensure food safety. Recently, new biosensor technologies have become a research hotspot due to their characteristics of speed and accuracy. This review describes various technologies such as chromatographic and spectroscopic techniques, ELISA techniques, and biosensing techniques, along with their advantages and weaknesses, for AFB1 control in edible oil and provides new insight into AFB1 detection for future work. Although compared with other technologies, biosensor technology involves the cross integration of multiple technologies, such as spectral technology and new nano materials, and has great potential, some challenges regarding their stability, cost, etc., need further studies.
Collapse
Affiliation(s)
- Shipeng Yin
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Road, Binhu District, Wuxi 214122, China
| | - Liqiong Niu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Yuanfa Liu
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Road, Binhu District, Wuxi 214122, China
| |
Collapse
|
13
|
Liu Y, Zhang J, Wang Z, Ma J, Wang K, Rao D, Zhang M, Lin Y, Wu Y, Yang Z, Dong L, Ding Z, Zhang X, Fan J, Shi Y, Gao Q. Multi-omics characterization reveals the pathogenesis of liver focal nodular hyperplasia. iScience 2022; 25:104921. [PMID: 36060063 PMCID: PMC9436768 DOI: 10.1016/j.isci.2022.104921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/17/2022] [Accepted: 08/08/2022] [Indexed: 11/10/2022] Open
Abstract
The molecular landscape and pathogenesis of focal nodular hyperplasia (FNH) have yet to be elucidated. We performed multi-omics approaches on FNH and paired normal liver tissues from 22 patients, followed by multi-level bioinformatic analyses and experimental validations. Generally, FNH had low mutation burden with low variant allele frequencies, and the mutation frequency significantly correlated with proliferation rate. Although no recurrently deleterious genomic events were found, some putative tumor suppressors or oncogenes were involved. Mutational signatures indicated potential impaired mismatch function and possible poison contact. Integrated analyses unveiled a group of FNH specific endothelial cells that uniquely expressed SOST and probably had strong interaction with fibroblasts through PDGFB/PDGFRB pathway to promote fibrosis. Notably, in one atypical FNH (patient No.11) with pronounced copy number variations, we observed a unique immune module. Most FNH are benign, but molecularly atypical FNH still exist; endothelial cell derived PDGFB probably promotes the fibrogenic process in FNH. FNHs are genetically stable, but high mutation cases exist FNHs have unique transcriptomic modules, and they alter in atypical FNH FNH has a unique type of SOST-expressing endothelial cells that may promote fibrosis
Collapse
|
14
|
Cao L, Wu L, Li C, Tu Y, Wu H, Shen B, Meng J, Hao X, Yan B, Li F, Xia F, Huang Y. Underwater
Superoleophobic‐Oleophilic
Chips for Femtomolar Aflatoxins Identification. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Liwei Cao
- College of Chemistry and Materials Science Jinan University Guangzhou 510632 China
| | - Lizhen Wu
- College of Chemistry and Materials Science Jinan University Guangzhou 510632 China
| | - Cheng Li
- College of Chemistry and Materials Science Jinan University Guangzhou 510632 China
| | - Yidan Tu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano‐Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry China University of Geosciences Wuhan 430074 China
| | - Hao Wu
- College of Chemistry and Materials Science Jinan University Guangzhou 510632 China
| | - Bin Shen
- College of Chemistry and Materials Science Jinan University Guangzhou 510632 China
| | - Jianxin Meng
- College of Chemistry and Materials Science Jinan University Guangzhou 510632 China
| | - Xin‐Qi Hao
- School of Materials Science and Engineering Zhengzhou University Zhengzhou 450001 China
| | - Bing Yan
- School of Environmental Studies China University of Geosciences Wuhan 430074 China
| | - Feng‐yu Li
- College of Chemistry and Materials Science Jinan University Guangzhou 510632 China
- School of Materials Science and Engineering Zhengzhou University Zhengzhou 450001 China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano‐Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry China University of Geosciences Wuhan 430074 China
- Zhejiang Institute China University of Geosciences Hangzhou 311305 China
| | - Yu Huang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano‐Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry China University of Geosciences Wuhan 430074 China
- Zhejiang Institute China University of Geosciences Hangzhou 311305 China
| |
Collapse
|
15
|
Singh AK, Sri S, Garimella LBVS, Dhiman TK, Sen S, Solanki PR. Graphene Quantum Dot-Based Optical Sensing Platform for Aflatoxin B1 Detection via the Resonance Energy Transfer Phenomenon. ACS APPLIED BIO MATERIALS 2022; 5:1179-1186. [PMID: 35179346 DOI: 10.1021/acsabm.1c01224] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An optical sensing platform for the detection of an important mycotoxin, aflatoxin B1 (AFB1), in the absence of a bioactive environment is explored. In this work, a fluorescence-based sensing technique was designed by combining graphene quantum dots (GQDs) and AFB1 via fluorescence quenching, where AFB1 acts as the quencher of GQD fluorescence. GQDs were synthesized through a single-step hydrothermal reaction from the leaves of "curry tree" (Murraya Koenigii) at 200 °C. The fluorescent GQDs were quenched by AFB1 (quencher), which itself is detecting the analyte. Hence, this study reports the direct sensing of the mycotoxin AFB1 without the involvement of inhibitors or biological entities. The possible mode of quenching is the nonradiative resonance energy transfer between the GQDs and the AFB1 molecules. This innovative sensor could detect AFB1 in the range from 5 to 800 ng mL-1 with a detection limit of 0.158 ng mL-1. The interferent study was also carried out in the presence of different mycotoxins and carbohydrates (d-fructose, cellulose, and starch), which demonstrated the high selectivity and robustness of the sensor in the complex sample matrix. The recovery percentage of the spiked samples was also calculated to be up to 106.8%. Thus, this study reports the first GQD based optical sensor for AFB1.
Collapse
Affiliation(s)
- Avinash Kumar Singh
- Special Centre for Nanoscience, Jawaharlal Nehru University (JNU), New Delhi 110067, India.,School of Physical Sciences, JNU, New Delhi 110067, India
| | - Smriti Sri
- Special Centre for Nanoscience, Jawaharlal Nehru University (JNU), New Delhi 110067, India
| | | | - Tarun Kumar Dhiman
- Special Centre for Nanoscience, Jawaharlal Nehru University (JNU), New Delhi 110067, India
| | - Sobhan Sen
- School of Physical Sciences, JNU, New Delhi 110067, India
| | - Pratima R Solanki
- Special Centre for Nanoscience, Jawaharlal Nehru University (JNU), New Delhi 110067, India
| |
Collapse
|
16
|
Aruna V, Sneha A, Harshitha DS. Hepatocellular carcinoma—An updated review. THERANOSTICS AND PRECISION MEDICINE FOR THE MANAGEMENT OF HEPATOCELLULAR CARCINOMA 2022:11-31. [DOI: 10.1016/b978-0-323-98806-3.00022-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
17
|
Lv Y, Yang Y, Wu R, Xu Y, Li J, Li N, Shen H, Chai Y, Li LS. A CdSe/ZnS core/shell competitive quantum dot-based fluorescence-linked immunosorbent assay for the sensitive and accurate detection of aflatoxin B1 in corn sample. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01223-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
Wang L, Huang W, Sha Y, Yin H, Liang Y, Wang X, Shen Y, Wu X, Wu D, Wang J. Co-Cultivation of Two Bacillus Strains for Improved Cell Growth and Enzyme Production to Enhance the Degradation of Aflatoxin B 1. Toxins (Basel) 2021; 13:toxins13070435. [PMID: 34206659 PMCID: PMC8309871 DOI: 10.3390/toxins13070435] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022] Open
Abstract
Bacillus sp. H16v8 and Bacillus sp. HGD9229 were identified as Aflatoxin B1 (AFB1) degrader in nutrient broth after a 12 h incubation at 37 °C. The degradation efficiency of the two-strain supernatant on 100 μg/L AFB1 was higher than the bacterial cells and cell lysate. Moreover, degradations of AFB1 were strongly affected by the metal ions in which Cu2+ stimulated the degradation and Zn2+ inhibited the degradation. The extracellular detoxifying enzymes produced by co-cultivation of two strains were isolated and purified by ultrafiltration. The molecular weight range of the detoxifying enzymes was 20-25 kDa by SDS-PAGE. The co-culture of two strains improved the total cell growth with the enhancement of the total protein content and detoxifying enzyme production. The degradation efficiency of the supernatant from mixed cultures increased by 87.7% and 55.3% compared to Bacillus sp. H16v8 and HGD9229, individually. Moreover, after the degradation of AFB1, the four products of the lower toxicity were identified by LC-Triple TOF-MS with the two proposed hypothetical degradation pathways.
Collapse
Affiliation(s)
- Le Wang
- College of Biological Engineering, National Engineering Laboratory for Wheat & Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; (L.W.); (W.H.); (Y.S.); (Y.L.); (X.W.); (Y.S.); (X.W.)
| | - Wei Huang
- College of Biological Engineering, National Engineering Laboratory for Wheat & Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; (L.W.); (W.H.); (Y.S.); (Y.L.); (X.W.); (Y.S.); (X.W.)
| | - Yu Sha
- College of Biological Engineering, National Engineering Laboratory for Wheat & Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; (L.W.); (W.H.); (Y.S.); (Y.L.); (X.W.); (Y.S.); (X.W.)
| | - Haicheng Yin
- College of Biological Engineering, National Engineering Laboratory for Wheat & Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; (L.W.); (W.H.); (Y.S.); (Y.L.); (X.W.); (Y.S.); (X.W.)
- Correspondence: (H.Y.); (J.W.)
| | - Ying Liang
- College of Biological Engineering, National Engineering Laboratory for Wheat & Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; (L.W.); (W.H.); (Y.S.); (Y.L.); (X.W.); (Y.S.); (X.W.)
| | - Xin Wang
- College of Biological Engineering, National Engineering Laboratory for Wheat & Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; (L.W.); (W.H.); (Y.S.); (Y.L.); (X.W.); (Y.S.); (X.W.)
| | - Yan Shen
- College of Biological Engineering, National Engineering Laboratory for Wheat & Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; (L.W.); (W.H.); (Y.S.); (Y.L.); (X.W.); (Y.S.); (X.W.)
| | - Xingquan Wu
- College of Biological Engineering, National Engineering Laboratory for Wheat & Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; (L.W.); (W.H.); (Y.S.); (Y.L.); (X.W.); (Y.S.); (X.W.)
| | - Dapeng Wu
- School of Environment, Henan Normal University, Xinxiang 453001, China;
| | - Jinshui Wang
- College of Biological Engineering, National Engineering Laboratory for Wheat & Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; (L.W.); (W.H.); (Y.S.); (Y.L.); (X.W.); (Y.S.); (X.W.)
- Correspondence: (H.Y.); (J.W.)
| |
Collapse
|
19
|
Singh AK, Lakshmi GBVS, Dhiman TK, Kaushik A, Solanki PR. Bio-Active Free Direct Optical Sensing of Aflatoxin B1 and Ochratoxin A Using a Manganese Oxide Nano-System. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2020.621681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aflatoxins-B1 (AFB1) and Ochratoxin-A (OchA) are the two types of major mycotoxin produced by Aspergillus flavus, Aspergillus parasiticus fungi, Aspergillus carbonarius, Aspergillus niger, and Penicillium verrocusumv. These toxins are mainly found in metabolite cereals, corn, coffee beans, and other oil-containing food items. Excessive consumption of these toxins can be carcinogenic and lead to cancer. Thus, their rapid testing became essential for food quality control. Herein, manganese oxide nanoparticles (MnO2 nps) have been proposed to explore the interaction with AFB1 and OchA using UV-visible spectroscopy. MnO2 nps were synthesized using the co-precipitation method. They were pure and crystalline with an average crystallite size of 5–6 nm. In the UV-vis study, the maximum absorbance for MnO2 nps was observed around 260 nm. The maximum absorbance for AFB1 and OchA was observed at 365 and 380 nm, respectively, and its intensity enhanced with the addition of MnO2 nps. Sequential changes were observed with varying the concentration of AFB1 and OchA with a fixed concentration of MnO2 nps, resulting in proper interaction. The binding constant (kb) and Gibbs free energy for MnO2 nps-AFB1 and OchA were observed as 1.62 × 104 L g−1 and 2.67 × 104 L g−1, and −24.002 and −25.256 kJ/mol, respectively. The limit of detection for AFB1 and OchA was measured as 4.08 and 10.84 ng/ml, respectively. This bio‐active free direct sensing approach of AFB1 and OchA sensing can be promoted as a potential analytical tool to estimate food quality rapidly and affordable manner at the point of use.
Collapse
|
20
|
Huang W, Liu M, Xiao B, Zhang J, Song M, Li Y, Cao Z. Aflatoxin B 1 disrupts blood-testis barrier integrity by reducing junction protein and promoting apoptosis in mice testes. Food Chem Toxicol 2021; 148:111972. [PMID: 33421461 DOI: 10.1016/j.fct.2021.111972] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/11/2020] [Accepted: 12/31/2020] [Indexed: 01/08/2023]
Abstract
Aflatoxin B1 (AFB1) is an unavoidable food and environmental contaminant, which can lead to disorders in spermatogenesis and its mechanism remains unclear. The blood-testis barrier (BTB) is responsible for ensuring normal spermatogenesis in testes. Therefore, we hypothesized that disruption of the BTB was involved in AFB1-induced spermatogenesis disorders. To confirm our hypothesis, male Kunming mice were orally gavaged AFB1 (0, 0.375, 0.75, or 1.5 mg/kg) for 30 days. Primarily, we first proved that AFB1 disrupted the BTB integrity. Then, AFB1 decreased BTB-related junction protein expression and elevated Sertoli cell apoptosis, which were associated with oxidative stress. Additionally, AFB1 upregulated the p-p38 MAPK/p38 MAPK ratio. These results collectively indicated that AFB1 disrupted the BTB via reducing the expression of BTB-related junction protein and promoting apoptosis in mice testes, which were associated with the oxidative stress-mediated p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Wanyue Huang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Menglin Liu
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Bonan Xiao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jian Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Miao Song
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Zheng Cao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
21
|
|
22
|
Liu A, Zheng Y, Liu L, Chen S, He L, Ao X, Yang Y, Liu S. Decontamination of Aflatoxins by Lactic Acid Bacteria. Curr Microbiol 2020; 77:3821-3830. [PMID: 32979055 DOI: 10.1007/s00284-020-02220-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 09/17/2020] [Indexed: 10/23/2022]
Abstract
Aflatoxins are toxic secondary metabolic products, which exert great hazards to human and animal health. Decontaminating aflatoxins from food ingredients to a threshold level is a prime concern for avoiding risks to the consumers. Biological decontamination processes of aflatoxins have received widespread attention due to their mild and environmental-friendly nature. Many reports have been published on the decontamination of aflatoxins by microorganisms, especially lactic acid bacteria (LAB), a well-explored probiotic and generally recognized as safe. The present review aims at updating the decontamination of produced aflatoxins using LAB, with an emphasis on the decontamination mechanism and influence factors for decontamination. This comprehensive analysis provides insights into the binding mechanisms between LAB and aflatoxins, facilitating the theoretical and practical application of LAB for decontaminating hazardous substances in food and agriculture.
Collapse
Affiliation(s)
- Aiping Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, People's Republic of China.
| | - Yiliu Zheng
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Lang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Shujuan Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Li He
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Xiaoling Ao
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Yong Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, People's Republic of China.
| |
Collapse
|
23
|
A target-induced amperometic aptasensor for sensitive zearalenone detection by CS@AB-MWCNTs nanocomposite as enhancers. Food Chem 2020; 340:128128. [PMID: 33010646 DOI: 10.1016/j.foodchem.2020.128128] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 01/20/2023]
Abstract
In this research, a novel signal-on aptasensor for highly sensitive detection of zearalenone (ZEN) was reported based on target-induced amplification strategy. Specifically, chitosan functionalized acetylene black and multi-walled carbon nanotubes (CS@AB-MWCNTs) nanocomposite with large specific surface area and excellent conductivity was synthesized and served as the sensing platform. In addition, carboxylated graphene oxide-labeled ZEN binding aptamer (CGO-ZBA) would specifically recognized with ZEN to detach from the electrode, allowing the electrochemical signal of [Fe(CN)6]3-/4- increased more obviously. Under the optimal conditions, the proposed aptasensor exhibited exceptional detection performances for ZEN with a linear range from 10 fg mL-1 to 1 ng mL-1 and a low limit of detection of 3.64 fg mL-1. Given its great sensitivity, excellent selectivity, satisfactory stability and reproducibility, this method would provide a promising application for ZEN and other biomolecules by replacing the corresponding nucleicacidsequences.
Collapse
|
24
|
Singh P, Callicott KA, Orbach MJ, Cotty PJ. Molecular Analysis of S-morphology Aflatoxin Producers From the United States Reveals Previously Unknown Diversity and Two New Taxa. Front Microbiol 2020; 11:1236. [PMID: 32625180 PMCID: PMC7315800 DOI: 10.3389/fmicb.2020.01236] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/14/2020] [Indexed: 01/12/2023] Open
Abstract
Aflatoxins are highly toxic carcinogens that detrimentally influence profitability of agriculture and the health of humans and domestic animals. Several phylogenetically distinct fungi within Aspergillus section Flavi have S-morphology (average sclerotial size < 400 μm), and consistently produce high concentrations of aflatoxins in crops. S-morphology fungi have been implicated as important etiologic agents of aflatoxin contamination in the United States (US), but little is known about the diversity of these fungi. The current study characterized S-morphology fungi (n = 494) collected between 2002 and 2017, from soil and maize samples, in US regions where aflatoxin contamination is a perennial problem. Phylogenetic analyses based on sequences of the calmodulin (1.9 kb) and nitrate reductase (2.1 kb) genes resolved S-morphology isolates from the US into four distinct clades: (1) Aspergillus flavus S-morphotype (89.7%); (2) Aspergillus agricola sp. nov. (2.4%); (3) Aspergillus texensis (2.2%); and (4) Aspergillus toxicus sp. nov. (5.7%). All four S-morphology species produced high concentrations of aflatoxins in maize at 25, 30, and 35°C, but only the A. flavus S-morphotype produced unacceptable aflatoxin concentrations at 40°C. Genetic typing of A. flavus S isolates using 17 simple sequence repeat markers revealed high genetic diversity, with 202 haplotypes from 443 isolates. Knowledge of the occurrence of distinct species and haplotypes of S-morphology fungi that are highly aflatoxigenic under a range of environmental conditions may provide insights into the etiology, epidemiology, and management of aflatoxin contamination in North America.
Collapse
Affiliation(s)
- Pummi Singh
- School of Plant Sciences, The University of Arizona, Tucson, AZ, United States
| | - Kenneth A. Callicott
- United States Department of Agriculture, Agricultural Research Service, Tucson, AZ, United States
| | - Marc J. Orbach
- School of Plant Sciences, The University of Arizona, Tucson, AZ, United States
| | - Peter J. Cotty
- School of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
25
|
Zhang L, Wang H, Zhang X, Li X, Yu HZ. Indirect Competitive Immunoassay on a Blu-ray Disc for Digitized Quantitation of Food Toxins. ACS Sens 2020; 5:1239-1245. [PMID: 32237719 DOI: 10.1021/acssensors.0c00440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We report herein a Blu-ray disc technology enabled immunoassay (namely, assay-on-a-Blu-ray) protocol for the quantitation of food toxins. In particular, commercial Blu-ray discs (BDs) are activated as substrates to create indirect competitive immunoassays with the aid of microfluidic channel plates for the quantitation of aflatoxins; an unmodified Blu-ray drive is employed to read the digitized signal (error counts generated from gold/silver-particle-enhanced binding sites); and a free disc-quality control software is adapted to process the raw data. The performance of this BD-based digital detection platform has been tested for the quantitation of aflatoxin B1 (AFB1) in spiked corn samples and validated with standard high-performance liquid chromatography measurements. The detection limit attained is as low as 0.27 ppb with a dynamic response range up to 200 ppb, which meets the standards established by government agencies worldwide for food products. We truly believe that the application potential of such a BD-technology-based, portable device for multiplex on-site quantitative analysis of food products as well as environmental and biomedical samples in real time is unlimited.
Collapse
Affiliation(s)
- Lingling Zhang
- College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Hairong Wang
- College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Xiaoliang Zhang
- College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Xiaochun Li
- College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Hua-Zhong Yu
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
26
|
Zhang W, Wu W, Cai C, Hu X, Li H, Bai Y, Zhang Z, Li P. A Sensitive, Point-of-Care Detection of Small Molecules Based on a Portable Barometer: Aflatoxins In Agricultural Products. Toxins (Basel) 2020; 12:158. [PMID: 32138273 PMCID: PMC7150834 DOI: 10.3390/toxins12030158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 12/22/2022] Open
Abstract
Sensitive and point-of-care detection of small toxic molecules plays a key role in food safety. Aflatoxin, a typical small toxic molecule, can cause serious healthcare and economic issues, thereby promoting the development of sensitive and point-of-care detection. Although ELISA is one of the official detection methods, it cannot fill the gap between sensitivity and point-of-care application because it requires a large-scale microplate reader. To employ portable readers in food safety, Pt-catalysis has attracted increasing attention due to its portability and reliability. In this study, we developed a sensitive point-of-care aflatoxin detection (POCAD) method via a portable handheld barometer. We synthesized and characterized Au@PtNPs and Au@PtNPs conjugated with a second antibody (Au@PtNPs-IgG). A competitive immunoassay was established based on the homemade monoclonal antibody against aflatoxins. Au@PtNPs-IgG was used to catalyze the production of O2 from H2O2 in a sealed vessel. The pressure of O2 was then recorded by a handheld barometer. The aflatoxin concentration was inversely proportional to the pressure recorded via the barometer reading. After optimization, a limit of detection of 0.03 ng/mL and a linear range from 0.09 to 16.0 ng/mL were achieved. Recovery was recorded as 83.1%-112.0% along with satisfactory results regarding inner- and inter-assay precision (relative standard deviation, RSD < 6.4%). Little cross-reaction was observed. Additionally, the POCAD was validated by high-performance liquid chromatography (HPLC) by using peanut and corn samples. The portable POCAD exhibits strong potential for applications in the on-site detection of small toxic molecules to ensure food safety.
Collapse
Affiliation(s)
- Weiqi Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.Z.); (W.W.); (C.C.); (X.H.); (H.L.); (Y.B.); (P.L.)
| | - Wenqin Wu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.Z.); (W.W.); (C.C.); (X.H.); (H.L.); (Y.B.); (P.L.)
| | - Chong Cai
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.Z.); (W.W.); (C.C.); (X.H.); (H.L.); (Y.B.); (P.L.)
| | - Xiaofeng Hu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.Z.); (W.W.); (C.C.); (X.H.); (H.L.); (Y.B.); (P.L.)
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan 430062, China
| | - Hui Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.Z.); (W.W.); (C.C.); (X.H.); (H.L.); (Y.B.); (P.L.)
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan 430062, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
- Laboratory of Risk Assessment for Oilseeds Products, Wuhan, Ministry of Agriculture, Wuhan 430062, China
| | - Yizhen Bai
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.Z.); (W.W.); (C.C.); (X.H.); (H.L.); (Y.B.); (P.L.)
| | - Zhaowei Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.Z.); (W.W.); (C.C.); (X.H.); (H.L.); (Y.B.); (P.L.)
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan 430062, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
- Laboratory of Risk Assessment for Oilseeds Products, Wuhan, Ministry of Agriculture, Wuhan 430062, China
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.Z.); (W.W.); (C.C.); (X.H.); (H.L.); (Y.B.); (P.L.)
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan 430062, China
- Laboratory of Risk Assessment for Oilseeds Products, Wuhan, Ministry of Agriculture, Wuhan 430062, China
| |
Collapse
|
27
|
|
28
|
Developing Gold Nanoparticles-Conjugated Aflatoxin B1 Antifungal Strips. Int J Mol Sci 2019; 20:ijms20246260. [PMID: 31842251 PMCID: PMC6941036 DOI: 10.3390/ijms20246260] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/07/2019] [Accepted: 12/10/2019] [Indexed: 12/25/2022] Open
Abstract
Lateral flow immunochromatographic assays are a powerful diagnostic tool for point-of-care tests, based on their simplicity, specificity, and sensitivity. In this study, a rapid and sensitive gold nanoparticle (AuNP) immunochromatographic strip is produced for detecting aflatoxin B1 (AFB1) in suspicious fungi-contaminated food samples. The 10 nm AuNPs were encompassed by bovine serum albumin (BSA) and AFB1 antibody. Thin-layer chromatography, gel electrophoresis and nuclear magnetic resonance spectroscopy were employed for analysing the chemical complexes. Various concentrations of AFB1 antigen (0-16 ng/mL) were tested with AFB1 antibody-BSA-AuNPs (conjugated AuNPs) and then analysed by scanning electron microscopy, ultraviolet-visible spectroscopy, and Zetasizer. The results showed that the AFB1 antibody was coupled to BSA by the N-hydroxysuccinimide ester method. The AuNPs application has the potential to contribute to AFB1 detection by monitoring a visible colour change from red to purple-blue, with a detection limit of 2 ng/mL in a 96-well plate. The lateral flow immunochromatographic strip tests are rapid, taking less than 10 min., and they have a detection capacity of 10 ng/g. The smartphone analysis of strips provided the results in 3 s, with a detection limit of 0.3 ng/g for AFB1 when the concentration was below 10 ng/g. Excellent agreement was found with AFB1 determination by high-performance liquid chromatography in the determination of AFB1 among 20 samples of peanuts, corn, rice, and bread.
Collapse
|
29
|
Huang W, Cao Z, Zhang J, Ji Q, Li Y. Aflatoxin B 1 promotes autophagy associated with oxidative stress-related PI3K/AKT/mTOR signaling pathway in mice testis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113317. [PMID: 31610502 DOI: 10.1016/j.envpol.2019.113317] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/05/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Aflatoxin B1 (AFB1) is a hazard environmental pollutants and the most toxic one of all the aflatoxins. AFB1 can cause a serious impairment to testicular development and spermatogenesis, yet the underlying mechanisms remain inconclusive. Oxidative stress acts as a master mechanism of AFB1 toxicity, and can promote autophagy. Abnormal autophagy resulted in testicular damage and spermatogenesis disorders. The objective of this study was to explore the effect of AFB1 on autophagy in mice testis and its potential mechanisms. In this study, male mice were intragastrically administered with 0, 0.375, 0.75 or 1.5 mg/kg body weight AFB1 for 30 days. We found that AFB1 induced testicular damage, reduced serum testosterone level and impaired sperm quality accompanied with the elevation of oxidative stress and germ cell apoptosis. Interestingly, we observed increasing numbers of autophagosomes in AFB1-exposed mice testis. Meanwhile, AFB1 caused testis abnormal autophagy with the characterization of increased expressions of LC3, Beclin-1, Atg5 and p62. Furthermore, AFB1 downregulated the expressions of PI3K, p-AKT and p-mTOR in mice testis. Taken together, our data indicated AFB1 induced testicular damage and promoted autophagy, which were associated with oxidative stress-related PI3K/AKT/mTOR signaling pathway in mice testis.
Collapse
Affiliation(s)
- Wanyue Huang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zheng Cao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jian Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Qiang Ji
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
30
|
Alberts J, Rheeder J, Gelderblom W, Shephard G, Burger HM. Rural Subsistence Maize Farming in South Africa: Risk Assessment and Intervention models for Reduction of Exposure to Fumonisin Mycotoxins. Toxins (Basel) 2019; 11:toxins11060334. [PMID: 31212811 PMCID: PMC6628387 DOI: 10.3390/toxins11060334] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/27/2019] [Accepted: 05/14/2019] [Indexed: 11/20/2022] Open
Abstract
Maize is a staple crop in rural subsistence regions of southern Africa, is mainly produced for direct household consumption and is often contaminated with high levels of mycotoxins. Chronic exposure to mycotoxins is a risk factor for human diseases as it is implicated in the development of cancer, neural tube defects as well as stunting in children. Although authorities may set maximum levels, these regulations are not effective in subsistence farming communities. As maize is consumed in large quantities, exposure to mycotoxins will surpass safe levels even where the contamination levels are below the regulated maximum levels. It is clear that the lowering of exposure in these communities requires an integrated approach. Detailed understanding of agricultural practices, mycotoxin occurrence, climate change/weather patterns, human exposure and risk are warranted to guide adequate intervention programmes. Risk communication and creating awareness in affected communities are also critical. A range of biologically based products for control of mycotoxigenic fungi and mycotoxins in maize have been developed and commercialised. Application of these methods is limited due to a lack of infrastructure and resources. Other challenges regarding integration and sustainability of technological and community-based mycotoxin reduction strategies include (i) food security, and (ii) the traditional use of mouldy maize.
Collapse
Affiliation(s)
- Johanna Alberts
- Mycotoxicology Research Group, Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, Bellville 7535, South Africa.
| | - John Rheeder
- Mycotoxicology Research Group, Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, Bellville 7535, South Africa.
| | - Wentzel Gelderblom
- Mycotoxicology Research Group, Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, Bellville 7535, South Africa.
| | - Gordon Shephard
- Mycotoxicology Research Group, Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, Bellville 7535, South Africa.
| | - Hester-Mari Burger
- Mycotoxicology Research Group, Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, Bellville 7535, South Africa.
| |
Collapse
|
31
|
Bakhtavar MA, Afzal I, Basra SMA, Wahid A. Implementing the ‘dry chain’ during storage reduces losses and maintains quality of maize grain. Food Secur 2019. [DOI: 10.1007/s12571-019-00905-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
32
|
GO-amplified fluorescence polarization assay for high-sensitivity detection of aflatoxin B 1 with low dosage aptamer probe. Anal Bioanal Chem 2019; 411:1107-1115. [PMID: 30612175 DOI: 10.1007/s00216-018-1540-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/29/2018] [Accepted: 12/05/2018] [Indexed: 12/12/2022]
Abstract
Aflatoxin B1 (AFB1) is the most toxic mycotoxin of the aflatoxins (AFs) and shows carcinogenic, teratogenic and mutagenic effects in humans and animals. AFB1 is widely seen in cereal products such as rice and wheat. This research proposed a low-cost, high-sensitivity fluorescence polarization (FP) assay for detection of AFB1 using aptamer biosensors based on graphene oxide (GO). The aptamers labelled with fluorescein amidite (FAM) were adsorbed on the surface of GO through π-π stacking and electrostatic interaction, thus forming aptamer/GO macromolecular complexes. Under these conditions, the local rotation of fluorophores was limited and the system had a high FP value. When there was AFB1 in the system, aptamers were dissociated from the GO surface and combined with AFB1 owing to their specificity to form aptamer/AFB1 complexes. As a result, large changes were observed in the molecular weights of aptamers before, and after, the combination, therefore leading to the apparent changes in FP value. The results showed that when only 10 nM of aptamer was used, the changes in FP and the AFB1 concentration had a favourable linear relationship within 0.05 to 5 nM of AFB1, and the lowest detection limit (LOD) was 0.05 nM. In addition, the recoveries of rice sample extract ranged from 89.2% to 112%. The method is simple, highly sensitive, cost-efficient and shows potential application prospects.
Collapse
|
33
|
Huang P, Liu Q, Wang J, Ma Z, Lu J, Kong W. Development of an economic ultrafast liquid chromatography with tandem mass spectrometry method for trace analysis of multiclass mycotoxins in Polygonum multiflorum. J Sep Sci 2018; 42:491-500. [PMID: 30462887 DOI: 10.1002/jssc.201800602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/25/2018] [Accepted: 10/25/2018] [Indexed: 01/21/2023]
Abstract
Rapid, economic, and highly effective determination of multiple mycotoxins in complex matrices has given huge challenges for the analytical method. In this study, an economic analytical strategy based on sensitive and rapid ultrafast liquid chromatography coupled to hybrid triple quadrupole/linear ion trap mass spectrometry technique was developed for the determination of seven mycotoxins of different chemical classes (aflatoxin B1 , B2 , G1 , and G2 , ochratoxin A, T-2 toxin, and HT-2 toxin) in Polygonum multiflorum. Target mycotoxins were completely extracted using a modified quick, easy, cheap effective, rugged, and safe method without additional clean-up steps. The types of extraction solvents and adsorbents for the extraction procedure were optimized to achieve high recoveries and reduce coextractives in the final extracts. Due to significant matrix effects for all analytes (≤68.9% and ≥110.0%), matrix-matched calibration curves were introduced for reliable quantification, exploring excellent linearity for the seven mycotoxins with coefficients of determination >0.9992. The method allowed high sensitivity with limit of detection in the range of 0.031-2.5 μg/kg and limit of quantitation in the range of 0.078-6.25 μg/kg, as well as satisfactory precision with relative standard deviations lower than 8%. Recovery rates were between 74.3 and 119.8% with relative standard deviations below 7.43%. The proposed method was successfully applied for 24 batches of P. multiflorum samples, and six samples were found to be positive with aflatoxin B1 , B2 , G1 , or ochratoxin A. The method with significant advantages, including minimum analytical time, low time and solvent consumption, and high sensitivity, would be a preferred candidate for economic analysis of multiclass mycotoxins in complex matrices.
Collapse
Affiliation(s)
- Pinxuan Huang
- Pharmacy College, Jinzhou Medical University, Jinzhou, P. R. China.,Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, P. R. China
| | - Qiutao Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, P. R. China.,Shenzhen Key Laboratory of Drug Quality Standard Research, Shenzhen Institute for Drug Control, Shenzhen, P. R. China
| | - Jiabo Wang
- China Military Institute of Chinese Medicine, 302 Military Hospital, Beijing, P. R. China
| | - Zhijie Ma
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Jinghua Lu
- Pharmacy College, Jinzhou Medical University, Jinzhou, P. R. China
| | - Weijun Kong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, P. R. China
| |
Collapse
|
34
|
Microbiological Quality and Risk Assessment for Aflatoxins in Groundnuts and Roasted Cashew Nuts Meant for Human Consumption. J Toxicol 2018; 2018:1308748. [PMID: 30046306 PMCID: PMC6038661 DOI: 10.1155/2018/1308748] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/23/2018] [Accepted: 04/01/2018] [Indexed: 11/17/2022] Open
Abstract
Nuts are one of the commonly consumed snacks but poor handling and storage practices can make them prone to foodborne infections. The study aimed at assessing the microbiological quality and risk assessment for aflatoxins in groundnuts and cashew nuts consumed in selected locations in Nigeria. The moisture content, colony counts, incidence of pathogenic bacteria, aflatoxin contamination, and risk assessment for aflatoxins were evaluated using standard methods. The moisture content and total viable count ranged from 5.00–8.60% and 5.5–89 × 103 cfug−1, respectively, while the fungal count was between 4–24 × 103 and 1.0–4.5 × 102 cfug−1, respectively. Eleven fungal species belonging to 5 genera were isolated from the nuts, with Aspergillus flavus, Rhizopus oryzae, and Fusarium oxysporum having the highest percentage occurrence of 50%. In addition, the aflatoxin concentration ranged 0.1–6.8 and 29–33.78 ng kg−1 for cashew nuts and groundnuts, respectively. The margin of exposure (MOE) to aflatoxin contamination was 6.10 for groundnuts and 1000 for cashew nuts and the nuts consumers were at a risk of exposure to foodborne diseases and aflatoxin contamination with mean exposure values of 27.96 and 0.17 ng kg−1bwday−1, respectively. The risk of primary liver cancer for groundnuts and cashew nuts consumers was also estimated to be 1.38 and 0.01 canceryear−1100,000−1person, respectively. This calls for mitigation measures from appropriate governmental organizations.
Collapse
|
35
|
Zhou J, Tang L, Wang J, Wang JS. Aflatoxin B1 Disrupts Gut-Microbial Metabolisms of Short-Chain Fatty Acids, Long-Chain Fatty Acids, and Bile Acids in Male F344 Rats. Toxicol Sci 2018; 164:453-464. [DOI: 10.1093/toxsci/kfy102] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Jun Zhou
- Interdisciplinary Toxicology Program
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia 30602
| | - Lili Tang
- Interdisciplinary Toxicology Program
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia 30602
| | - Jincheng Wang
- Interdisciplinary Toxicology Program
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia 30602
| | - Jia-Sheng Wang
- Interdisciplinary Toxicology Program
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
36
|
Oulkar D, Goon A, Dhanshetty M, Khan Z, Satav S, Banerjee K. High-sensitivity direct analysis of aflatoxins in peanuts and cereal matrices by ultra-performance liquid chromatography with fluorescence detection involving a large volume flow cell. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2018; 53:255-260. [PMID: 29278977 DOI: 10.1080/03601234.2017.1410416] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This paper reports a sensitive and cost effective method of analysis for aflatoxins B1, B2, G1 and G2. The sample preparation method was primarily optimised in peanuts, followed by its validation in a range of peanut-processed products and cereal (rice, corn, millets) matrices. Peanut slurry [12.5 g peanut + 12.5 mL water] was extracted with methanol: water (8:2, 100 mL), cleaned through an immunoaffinity column and thereafter measured directly by ultra-performance liquid chromatography-fluorescence (UPLC-FLD) detection, within a chromatographic runtime of 5 minutes. The use of a large volume flow cell in the FLD nullified the requirement of any post-column derivatisation and provided the lowest ever reported limits of quantification of 0.025 for B1 and G1 and 0.01 μg/kg for B2 and G2. The single laboratory validation of the method provided acceptable selectivity, linearity, recovery and precision for reliable quantifications in all the test matrices as well as demonstrated compliance with the EC 401/2006 guidelines for analytical quality control of aflatoxins in foodstuffs.
Collapse
Affiliation(s)
- Dasharath Oulkar
- a National Referral Laboratory , ICAR-National Research Centre for Grapes, Manjri Farm , Pune , Maharashtra , India
| | - Arnab Goon
- a National Referral Laboratory , ICAR-National Research Centre for Grapes, Manjri Farm , Pune , Maharashtra , India
| | - Manisha Dhanshetty
- a National Referral Laboratory , ICAR-National Research Centre for Grapes, Manjri Farm , Pune , Maharashtra , India
| | - Zareen Khan
- a National Referral Laboratory , ICAR-National Research Centre for Grapes, Manjri Farm , Pune , Maharashtra , India
| | - Sagar Satav
- a National Referral Laboratory , ICAR-National Research Centre for Grapes, Manjri Farm , Pune , Maharashtra , India
| | - Kaushik Banerjee
- a National Referral Laboratory , ICAR-National Research Centre for Grapes, Manjri Farm , Pune , Maharashtra , India
| |
Collapse
|
37
|
Ultrasensitive detection of aflatoxin B1 and its major metabolite aflatoxin M1 using aptasensors: A review. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.12.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
38
|
Jackson LW, Pryor BM. Degradation of aflatoxin B 1 from naturally contaminated maize using the edible fungus Pleurotus ostreatus. AMB Express 2017; 7:110. [PMID: 28582971 PMCID: PMC5457385 DOI: 10.1186/s13568-017-0415-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 11/13/2022] Open
Abstract
Aflatoxins are highly carcinogenic secondary metabolites that can contaminate approximately 25% of crops and that cause or exacerbate multiple adverse health conditions, especially in Sub-Saharan Africa and South and Southeast Asia. Regulation and decontamination of aflatoxins in high exposure areas is lacking. Biological detoxification methods are promising because they are assumed to be cheaper and more environmentally friendly compared to chemical alternatives. White-rot fungi produce non-specific enzymes that are known to degrade aflatoxin in in situ and ex situ experiments. The aims of this study were to (1) decontaminate aflatoxin B1 (AFB1) in naturally contaminated maize with the edible, white-rot fungus Pleurotus ostreatus (oyster mushroom) using a solid-state fermentation system that followed standard cultivation techniques, and to (2) and to assess the risk of mutagenicity in the resulting breakdown products and mushrooms. Vegetative growth and yield characteristics of P. ostreatus were not inhibited by the presence of AFB1. AFB1 was degraded by up to 94% by the Blue strain. No aflatoxin could be detected in P. ostreatus mushrooms produced from AFB1-contaminated maize. Moreover, the mutagenicity of breakdown products from the maize substrate, and reversion of breakdown products to the parent compound, were minimal. These results suggest that P. ostreatus significantly degrades AFB1 in naturally contaminated maize under standard cultivation techniques to levels that are acceptable for some livestock fodder, and that using P. ostreatus to bioconvert crops into mushrooms can reduce AFB1-related losses.
Collapse
|
39
|
Lee HS, Lindahl J, Nguyen-Viet H, Khong NV, Nghia VB, Xuan HN, Grace D. An investigation into aflatoxin M 1 in slaughtered fattening pigs and awareness of aflatoxins in Vietnam. BMC Vet Res 2017; 13:363. [PMID: 29183385 PMCID: PMC5706150 DOI: 10.1186/s12917-017-1297-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 11/22/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aflatoxin M1 (AFM1) is a hydroxylated metabolite formed after aflatoxin B1 (AFB1) is consumed by humans and animals; it can be detected in urine, milk and blood. It is well recognized that AFB1 is toxic to humans and other animals. The International Agency for Research on Cancer (IARC) classifies aflatoxins as group 1 carcinogens and AFM1 as group 2B carcinogen. The main objective of this study was to evaluate the exposure of pigs to aflatoxins as well as to assess the public awareness of aflatoxins among people in five provinces in Vietnam. RESULTS A total of 1920 urine samples were collected from slaughterhouses located in five provinces. Overall, the positive rate of AFM1 was 53.90% (95% confidence interval 51.64-56.15) using a cut-off of 0.15 μg/kg (range: limit of detection to 13.66 μg/kg, median: 0.2 μg/kg and mean: 0.63 μg/kg). A total of 252 people from the general population were interviewed from 5 provinces, and overall 67.86% reported being aware of aflatoxins. We also found that men and more highly educated had significantly increased awareness of aflatoxins compared to the females and primary/secondary school group. The respective odds ratios (ORs) were as follows: "male" group (OR: 2.64), "high school educated" group (OR: 3.40) and "college/university or more educated" group (OR: 10.20). CONCLUSIONS We can conclude that pigs in Vietnam are exposed to aflatoxins to varying degrees, and there may be a risk that pork products could contain AFM1. Further investigation is needed into the possible health impacts as well as to aid in establishing regulations for animal feed to reduce the health impacts in humans and animals.
Collapse
Affiliation(s)
- Hu Suk Lee
- International Livestock Research Institute, Regional Office for East and Southeast Asia, Room 301-302, B1 Building, Van Phuc Diplomatic Compound, 298 Kim Ma Street, Ba Dinh District, Hanoi, Vietnam
| | - Johanna Lindahl
- International Livestock Research Institute, Nairobi, Kenya
- Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Hung Nguyen-Viet
- International Livestock Research Institute, Regional Office for East and Southeast Asia, Room 301-302, B1 Building, Van Phuc Diplomatic Compound, 298 Kim Ma Street, Ba Dinh District, Hanoi, Vietnam
| | - Nguyen Viet Khong
- National Institute of Veterinary Research, 86 Truong Chinh, Phuong Mai, Dong Da, Hanoi, Vietnam
| | - Vuong Bui Nghia
- National Institute of Veterinary Research, 86 Truong Chinh, Phuong Mai, Dong Da, Hanoi, Vietnam
| | - Huyen Nguyen Xuan
- National Institute of Veterinary Research, 86 Truong Chinh, Phuong Mai, Dong Da, Hanoi, Vietnam
| | - Delia Grace
- International Livestock Research Institute, Nairobi, Kenya
| |
Collapse
|
40
|
Li X, Yang F, Wong JXH, Yu HZ. Integrated Smartphone-App-Chip System for On-Site Parts-Per-Billion-Level Colorimetric Quantitation of Aflatoxins. Anal Chem 2017; 89:8908-8916. [DOI: 10.1021/acs.analchem.7b01379] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Xiaochun Li
- Key
Laboratory of Advanced Transducers and Intelligent Control Systems
(Ministry of Education and Shanxi Province), College of Physics and
Optoelectronics, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P.R. China
| | - Fan Yang
- Key
Laboratory of Advanced Transducers and Intelligent Control Systems
(Ministry of Education and Shanxi Province), College of Physics and
Optoelectronics, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P.R. China
| | - Jessica X. H. Wong
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Hua-Zhong Yu
- Key
Laboratory of Advanced Transducers and Intelligent Control Systems
(Ministry of Education and Shanxi Province), College of Physics and
Optoelectronics, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P.R. China
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
41
|
Zu J, Zhuang G, Liang P, Cui F, Wang F, Zheng H, Liang X. Estimating age-related incidence of HBsAg seroclearance in chronic hepatitis B virus infections of China by using a dynamic compartmental model. Sci Rep 2017; 7:2912. [PMID: 28588249 PMCID: PMC5460177 DOI: 10.1038/s41598-017-03080-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 04/24/2017] [Indexed: 02/08/2023] Open
Abstract
The age-specific seroclearance pattern of hepatitis B surface antigen (HBsAg) in chronic hepatitis B virus (HBV) infections of China remains unclear. In this study, based on three national serosurvey data of hepatitis B in China, we propose an age- and time-dependent discrete model and use the method of non-linear least squares to estimate the age-specific annual rate of HBsAg seroclearance. We found that the HBsAg seroclearance in chronic HBV infections of China aged 1–59 years occurred at an average annual rate of 1.80% (95% CI, 1.54–2.06%) from 1993 to 2006. The HBsAg seroclearance occurred predominantly in the early childhood, 20–24 and 35–39 year age groups. Moreover, our model estimated that HBsAg seroclearance resulted in 23.38% of the decrease of total HBsAg prevalence for population aged 1–59 years in 2006. It also prevented 9.30% of new HBV infections (about 7.43 million people) and 9.95% of HBV-related deaths (about 0.25 million people) from 1993 to 2006. This study develops a new and efficient method to estimate the age-specific incidence of HBsAg seroclearance at a population-level and evaluate its effect.
Collapse
Affiliation(s)
- Jian Zu
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P.R. China. .,Department of Ecology and Evolution, The University of Chicago, Chicago, IL, 60637, USA.
| | - Guihua Zhuang
- School of Public Health, Xi'an Jiaotong University, Health Science Center, Xi'an, Shaanxi, 710061, P.R. China.
| | - Peifeng Liang
- Department of Medical Statistics, Ningxia People' Hospital, Yinchuan, Ningxia, 750002, P.R. China
| | - Fuqiang Cui
- Chinese Center for Disease Control and Prevention, Beijing, 100050, P.R. China
| | - Fuzhen Wang
- Chinese Center for Disease Control and Prevention, Beijing, 100050, P.R. China
| | - Hui Zheng
- Chinese Center for Disease Control and Prevention, Beijing, 100050, P.R. China
| | - Xiaofeng Liang
- Chinese Center for Disease Control and Prevention, Beijing, 100050, P.R. China.
| |
Collapse
|
42
|
Lee H, Nguyen-Viet H, Lindahl J, Thanh H, Khanh T, Hien L, Grace D. A survey of aflatoxin B1 in maize and awareness of aflatoxins in Vietnam. WORLD MYCOTOXIN J 2017. [DOI: 10.3920/wmj2016.2144] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vietnam is a tropical country with high temperature and precipitation, which may provide good conditions for fungal growth. A few limited studies have been conducted to evaluate the level of aflatoxin B1 in maize in Vietnam. In addition, no studies have been conducted to evaluate the perception and knowledge of aflatoxins in Vietnam. Therefore, the main objective of this study was to determine the levels of aflatoxin B1 for human and animal consumption in maize and evaluate perceptions and knowledge of aflatoxins among people across the country. A total of 2,370 samples were collected from six provinces and analysed using ELISA. Among collected samples, 799 samples (33.71%, 95% confidence interval (CI): 31.81-35.66%) and 687 samples (28.98%, 95%CI: 27.17-30.86%) had levels above 2 µg/kg and 5 µg/kg, respectively [range from below limit of detection (LOD) to 34.8 µg/kg; of the samples above LOD, the mean was 13.1 µg/kg and median was 11.2 µg/kg]. A total of 551 people were interviewed from 6 provinces. The survey showed that awareness of aflatoxins (question: Have you heard about aflatoxins?) in southern Vietnam [An Giang (25%), Dak Lak (23.23%) and Dong Nai (6%)] was relatively higher than in provinces in northern Vietnam. We believe that this analysed information can be useful to better understand the epidemiology of aflatoxins in different provinces. This study also produces evidence on potential risk to humans and animals in Vietnam as well as demographic factors (such as gender and level of education) significantly influencing knowledge of aflatoxins. In conclusion, this paper points to the importance of raising the awareness of the risks with aflatoxins, bearing in mind the gender aspect during capacity development.
Collapse
Affiliation(s)
- H.S. Lee
- International Livestock Research Institute (ILRI), Dept. of Food Safety and Zoonoses, Room 301-302, B1 Building, Van Phuc Diplomatic Compound, 298 Kim Ma Street, Ba Dinh District, Hanoi 00100, Vietnam
| | - H. Nguyen-Viet
- International Livestock Research Institute (ILRI), Dept. of Food Safety and Zoonoses, Room 301-302, B1 Building, Van Phuc Diplomatic Compound, 298 Kim Ma Street, Ba Dinh District, Hanoi 00100, Vietnam
| | - J. Lindahl
- International Livestock Research Institute (ILRI), Dept. of Food Safety and Zoonoses, 30709 Naivasha Rd, Nairobi, Kenya
- Swedish University of Agricultural Sciences, Institutionen för kliniska vetenskaper, P.O. Box 7054, 750 07 Uppsala, Sweden
| | - H.M. Thanh
- Plant Protection Research Institute (PPRI), Duc thang commune, Dong Ngac, Tu Liem District, Hanoi 084, Vietnam
| | - T.N. Khanh
- Plant Protection Research Institute (PPRI), Duc thang commune, Dong Ngac, Tu Liem District, Hanoi 084, Vietnam
| | - L.T.T. Hien
- Plant Protection Research Institute (PPRI), Duc thang commune, Dong Ngac, Tu Liem District, Hanoi 084, Vietnam
| | - D. Grace
- International Livestock Research Institute (ILRI), Dept. of Food Safety and Zoonoses, 30709 Naivasha Rd, Nairobi, Kenya
| |
Collapse
|
43
|
Abstract
Forensic phytopathology is the application of plant pathology to legal or criminal matters. It is an emerging field. The existing literature focuses mainly on potential agricultural bioterrorism threats to the United States. Here we try to take a broader view including agricultural bioterrorism, mycoherbicide applications to eradicate plants used for illegal drugs, civil cases involving charges of sale or movement of diseased plants, and mycotoxins. In several of the examples given the evidence is inconclusive, but the examples are no less interesting for that.
Collapse
|
44
|
Ji N, Diao E, Li X, Zhang Z, Dong H. Detoxification and safety evaluation of aflatoxin B1 in peanut oil using alkali refining. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:4009-14. [PMID: 26694215 DOI: 10.1002/jsfa.7592] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 12/11/2015] [Accepted: 12/11/2015] [Indexed: 05/26/2023]
Abstract
BACKGROUND Aflatoxin B1 (AFB1 ) is often detected in peanut oil, which comes from contaminated peanuts. AFB1 in peanut oil seriously threatens the health of consumers. However, there are few methods to effectively remove AFB1 in peanut oil. This study aimed to use an alkali-refining method to degrade AFB1 in peanut oil efficiently without increasing the equipment of oil and fat refining. RESULTS The optimum detoxifying conditions of AFB1 in peanut oil with alkali refining were established using response surface methodology (RSM), and the safety of peanut oil after being refined with alkali was evaluated based on the Ames tests and HepG2 cell viability. The results showed that AFB1 in peanut oil was decreased from 34.78 to 0.37 µg kg(-1) (98.94% reduction) under the optimum detoxifying conditions, i.e. when the initial temperature of alkali refining was 43.51 °C, the amount of excess alkali was 0.30%, the content of alkali solution was 23.42% and the end temperature of alkali refining was 77.07 °C. The acid value and color of peanut oil refined by alkali were improved significantly, while the peroxide value was increased within an acceptable level. The safety of peanut oil contaminated by AFB1 was improved significantly after being refined with alkali. CONCLUSION These results indicate that alkali refining is an effective method for removing AFB1 in peanut oil. The optimum detoxifying conditions of AFB1 in peanut oil with alkali refining could be used to guide the production of oil companies for ensuring food safety. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ning Ji
- College of Food Science and Engineering, Shandong Agricultural University, No. 61, Daizong Street, Taian, 271018, China
| | - Enjie Diao
- College of Food Science and Engineering, Shandong Agricultural University, No. 61, Daizong Street, Taian, 271018, China
| | - Xiangyang Li
- College of Food Science and Engineering, Shandong Agricultural University, No. 61, Daizong Street, Taian, 271018, China
| | - Zheng Zhang
- College of Food Science and Engineering, Shandong Agricultural University, No. 61, Daizong Street, Taian, 271018, China
| | - Haizhou Dong
- College of Food Science and Engineering, Shandong Agricultural University, No. 61, Daizong Street, Taian, 271018, China
| |
Collapse
|
45
|
Chauhan NM, Washe AP, Minota T. Fungal infection and aflatoxin contamination in maize collected from Gedeo zone, Ethiopia. SPRINGERPLUS 2016; 5:753. [PMID: 27386236 PMCID: PMC4912514 DOI: 10.1186/s40064-016-2485-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 06/01/2016] [Indexed: 12/02/2022]
Abstract
Aflatoxins contamination of maize exhibits a serious threat to human and animal health over the past few decades. To protect the safety of food commodities, regular monitoring for afltoxins in food is necessary. In the proposed study, we have followed a rapid and sensitive biosensor approach as well as thin layer chromatography method for quantification of aflatoxins. Our data demonstrate that all the samples tested were beyond the safety level of aflatoxins as determined by Food and Drug Administration and European Union. Results of fungal mycoflora evidenced the massive presence of Aspergillus species (75 %) followed by Fusarium (11 %), Penicillium (8 %) and Trichoderma (6 %) as characterized by biochemical and sporulation properties. Use of internationally developed biosensor for detection of fungal toxin in this work is the first approach that was utilized in the developing country like Ethiopia. In the end, we conclude that fungal contaminant and there metabolites are potential threat to the agricultural industry and require urgent intervention.
Collapse
Affiliation(s)
- Nitin M Chauhan
- College of Natural and Computational Sciences, Dilla University, P.O. Box 419, Dilla, Ethiopia
| | - Alemayehu P Washe
- College of Natural and Computational Sciences, Dilla University, P.O. Box 419, Dilla, Ethiopia
| | - Tesfaye Minota
- College of Natural and Computational Sciences, Dilla University, P.O. Box 419, Dilla, Ethiopia
| |
Collapse
|
46
|
Chauhan R, Singh J, Sachdev T, Basu T, Malhotra BD. Recent advances in mycotoxins detection. Biosens Bioelectron 2016; 81:532-545. [PMID: 27019032 DOI: 10.1016/j.bios.2016.03.004] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/25/2016] [Accepted: 03/03/2016] [Indexed: 01/01/2023]
Abstract
Mycotoxins contamination in both food and feed is inevitable. Mycotoxin toxicity in foodstuff can occur at very low concentrations necessitating early availability of sensitive and reliable methods for their detection. The present research thrust is towards the development of a user friendly biosensor for mycotoxin detection at both academic and industrial levels to replace conventional expensive chromatographic and ELISA techniques. This review critically analyzes the recent research trend towards the construction of immunosensor, aptasensor, enzymatic sensors and others for mycotoxin detection with a reference to label and label free methods, synthesis of new materials including nano dimension, and transuding techniques. Technological aspects in the development of biosensors for mycotoxin detection, current challenges and future prospects are also included to provide a overview and suggestions for future research directions.
Collapse
Affiliation(s)
- Ruchika Chauhan
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida, India.
| | - Jay Singh
- Department of Applied Chemistry & Polymer Technology, Delhi Technological University, Delhi 110042, India.
| | - Tushar Sachdev
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida, India.
| | - T Basu
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida, India.
| | - B D Malhotra
- Department of Biotechnology, Delhi Technological University, Delhi, India.
| |
Collapse
|
47
|
Chen X, Murdoch R, Shafer DJ, Ajuwon KM, Applegate TJ. Cytotoxicity of various chemicals and mycotoxins in fresh primary duck embryonic fibroblasts: a comparison to HepG2 cells. J Appl Toxicol 2016; 36:1437-45. [PMID: 26889939 DOI: 10.1002/jat.3298] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/16/2015] [Accepted: 01/04/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Xi Chen
- Department of Animal Sciences; Purdue University; West Lafayette IN 47906 USA
| | | | | | - Kolapo M. Ajuwon
- Department of Animal Sciences; Purdue University; West Lafayette IN 47906 USA
| | - Todd J. Applegate
- Department of Animal Sciences; Purdue University; West Lafayette IN 47906 USA
| |
Collapse
|
48
|
Aydın M, Aydın S, Bacanlı M, Başaran N. Aflatoxin levels in chronic hepatitis B patients with cirrhosis or hepatocellular carcinoma in Balıkesir, Turkey. J Viral Hepat 2015; 22:926-35. [PMID: 25894298 DOI: 10.1111/jvh.12410] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 02/23/2015] [Indexed: 01/03/2023]
Abstract
Aflatoxins, the secondary metabolites produced by species of naturally occurring Aspergilli, are commonly found in food such as cereals, dried fruits and juice, wine, beer and spices. They are hepatotoxic and are well known human carcinogens based on evidence from human studies. Aflatoxins are an environmental risk factor for the development of hepatocellular carcinoma (HCC). Chronic hepatitis B-infected patients are at increased risk of cirrhosis, hepatic failure and liver cancer. This study was designed to determine the serum aflatoxin B1 (AFB1 ), aflatoxin B2 (AFB2 ), aflatoxin G1 (AFG1 ) and aflatoxin G2 (AFG2 ) concentrations using high-pressure liquid chromatography (HPLC) in hepatitis B-infected patients with or without cirrhosis and liver cancer, alongside healthy controls in Balıkesir, Turkey. The mean AFB1 and total AF levels in patients without liver cancer and cirrhosis were significantly higher than healthy controls. The mean AFB1 and total AF levels in patients with chronic hepatitis B and HCC were significantly higher than infected patients with or without cirrhosis. These results suggest that patients with chronic hepatitis B who are exposed to AFs are at increased risk for developing HCC, which might be prevented by reducing consumption of contaminated foods.
Collapse
Affiliation(s)
- M Aydın
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Istanbul Hospital of Başkent University, Istanbul, Turkey
| | - S Aydın
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - M Bacanlı
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - N Başaran
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
49
|
Grubisha LC, Cotty PJ. Genetic Analysis of the Aspergillus flavus Vegetative Compatibility Group to Which a Biological Control Agent That Limits Aflatoxin Contamination in U.S. Crops Belongs. Appl Environ Microbiol 2015; 81:5889-99. [PMID: 26092465 PMCID: PMC4551228 DOI: 10.1128/aem.00738-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/16/2015] [Indexed: 12/27/2022] Open
Abstract
Some filamentous fungi in Aspergillus section Flavi produce carcinogenic secondary compounds called aflatoxins. Aflatoxin contamination is routinely managed in commercial agriculture with strains of Aspergillus flavus that do not produce aflatoxins. These non-aflatoxin-producing strains competitively exclude aflatoxin producers and reshape fungal communities so that strains with the aflatoxin-producing phenotype are less frequent. This study evaluated the genetic variation within naturally occurring atoxigenic A. flavus strains from the endemic vegetative compatibility group (VCG) YV36. AF36 is a strain of VCG YV36 and was the first fungus used in agriculture for aflatoxin management. Genetic analyses based on mating-type loci, 21 microsatellite loci, and a single nucleotide polymorphism (SNP) in the aflC gene were applied to a set of 237 YV36 isolates collected from 1990 through 2005 from desert legumes and untreated fields and from fields previously treated with AF36 across the southern United States. One haplotype dominated across time and space. No recombination with strains belonging to VCGs other than YV36 was detected. All YV36 isolates carried the SNP in aflC that prevents aflatoxin biosynthesis and the mat1-2 idiomorph at the mating-type locus. These results suggest that VCG YV36 has a clonal population structure maintained across both time and space. These results demonstrate the genetic stability of atoxigenic strains belonging to a broadly distributed endemic VCG in both untreated populations and populations where the short-term frequency of VCG YV36 has increased due to applications of a strain used to competitively exclude aflatoxin producers. This work supports the hypothesis that strains of this VCG are not involved in routine genetic exchange with aflatoxin-producing strains.
Collapse
Affiliation(s)
- Lisa C Grubisha
- U.S. Department of Agriculture, Agricultural Research Service, Tucson, Arizona, USA
| | - Peter J Cotty
- U.S. Department of Agriculture, Agricultural Research Service, Tucson, Arizona, USA School of Plant Sciences, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
50
|
Xu GB, He G, Bai HH, Yang T, Zhang GL, Wu LW, Li GY. Indole Alkaloids from Chaetomium globosum. JOURNAL OF NATURAL PRODUCTS 2015; 78:1479-85. [PMID: 26125976 DOI: 10.1021/np5007235] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Guo-Bo Xu
- Key
Laboratory of Environmental and Applied Microbiology, Chengdu Institute
of Biology, Chinese Academy of Sciences, Chengdu 610041, People’s Republic of China
- School
of Pharmacy, Guiyang Medical College, Guiyang, Guizhou 550004, People’s Republic of China
| | - Gu He
- State
Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy,
West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Huan-Huan Bai
- Key
Laboratory of Environmental and Applied Microbiology, Chengdu Institute
of Biology, Chinese Academy of Sciences, Chengdu 610041, People’s Republic of China
| | - Tao Yang
- Key
Laboratory of Environmental and Applied Microbiology, Chengdu Institute
of Biology, Chinese Academy of Sciences, Chengdu 610041, People’s Republic of China
| | - Guo-Lin Zhang
- Key
Laboratory of Environmental and Applied Microbiology, Chengdu Institute
of Biology, Chinese Academy of Sciences, Chengdu 610041, People’s Republic of China
| | - Lin-Wei Wu
- Key
Laboratory of Environmental and Applied Microbiology, Chengdu Institute
of Biology, Chinese Academy of Sciences, Chengdu 610041, People’s Republic of China
| | - Guo-You Li
- Key
Laboratory of Environmental and Applied Microbiology, Chengdu Institute
of Biology, Chinese Academy of Sciences, Chengdu 610041, People’s Republic of China
| |
Collapse
|