1
|
Okunomiya T, Watanabe D, Banno H, Kondo T, Imamura K, Takahashi R, Inoue H. Striosome Circuitry Stimulation Inhibits Striatal Dopamine Release and Locomotion. J Neurosci 2025; 45:e0457242024. [PMID: 39622644 PMCID: PMC11756628 DOI: 10.1523/jneurosci.0457-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 01/24/2025] Open
Abstract
The mammalian striatum is divided into two types of anatomical structures: the island-like, μ-opioid receptor (MOR)-rich striosome compartment and the surrounding matrix compartment. Both compartments have two types of spiny projection neurons (SPNs), dopamine receptor D1 (D1R)-expressing direct pathway SPNs (dSPNs) and dopamine receptor D2 (D2R)-expressing indirect pathway SPNs. These compartmentalized structures have distinct roles in the development of movement disorders, although the functional significance of the striosome compartment for motor control and dopamine regulation remains to be elucidated. The aim of this study was to explore the roles of striosome in locomotion and dopamine dynamics in freely moving mice. We targeted striosomal MOR-expressing neurons with male MOR-CreER mice, which express tamoxifen-inducible Cre recombinase under MOR promoter, and Cre-dependent adeno-associated virus vector. The targeted neuronal population consisted mainly of dSPNs. We found that the Gq-coupled designer receptor exclusively activated by designer drugs (DREADD)-based chemogenetic stimulation of striatal MOR-expressing neurons caused a decrease in the number of contralateral rotations and total distance traveled. Wireless fiber photometry with a genetically encoded dopamine sensor revealed that chemogenetic stimulation of striatal MOR-expressing neurons suppressed dopamine signals in the dorsal striatum of freely moving mice. Furthermore, the decrease in mean dopamine signal and the reduction of transients were associated with ipsilateral rotational shift and decrease of average speed, respectively. Thus, a subset of striosomal dSPNs inhibits contralateral rotation, locomotion, and dopamine release in contrast to the role of pan-dSPNs. Our results suggest that striatal MOR-expressing neurons have distinct roles in motor control and dopamine regulation.
Collapse
Affiliation(s)
- Taro Okunomiya
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto 606-8507, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
- iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto 619-0237, Japan
| | - Dai Watanabe
- Department of Biological Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Haruhiko Banno
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto 606-8507, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Takayuki Kondo
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
- iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto 619-0237, Japan
- Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto 606-8507, Japan
| | - Keiko Imamura
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
- iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto 619-0237, Japan
- Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto 606-8507, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- KURA, Kyoto University, Research Administration Building, Kyoto 606-8501, Japan
| | - Haruhisa Inoue
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto 606-8507, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
- iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto 619-0237, Japan
- Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto 606-8507, Japan
| |
Collapse
|
2
|
Setoyama H, Ota S, Yoshida M, Kawashima S, Kusumoto-Yoshida I, Kashiwadani H, Kuwaki T. Activation of the nucleus accumbens promotes place preference and counteracts stress-induced hyperthermia. iScience 2024; 27:111197. [PMID: 39759072 PMCID: PMC11700644 DOI: 10.1016/j.isci.2024.111197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/16/2024] [Accepted: 10/15/2024] [Indexed: 01/07/2025] Open
Abstract
Positive affect promotes mental health and physical well-being, which may involve modifications in the autonomic nervous system activity. Here, we examine, using chemogenetic techniques, the effects of nucleus accumbens (NAc) activation on affect and body temperature regulation as a proxy of autonomic function. A conditioned place preference test revealed that nucleus accumbens activation induced positive affect. Chemogenetic and natural activations inhibited intruder stress-induced hyperthermia and prostaglandin E2-induced fever. Chemogenetic inhibition did not show a negative affect but canceled the positive affect induced by the natural stimulus of chocolate or sucrose. Counting of c-Fos expression confirmed chemogenetic and sucrose-induced activation of the NAc. Our findings indicate that nucleus accumbens activation modifies a component of autonomic nervous activity and that this mechanism may underscore the link between positive affect and physical well-being. Applying our observations to humans may reduce fever side reactions of vaccines by employing preventive treatments that induce positive affect.
Collapse
Affiliation(s)
- Honami Setoyama
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Shintaro Ota
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Mayuko Yoshida
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Shigetaka Kawashima
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Ikue Kusumoto-Yoshida
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hideki Kashiwadani
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tomoyuki Kuwaki
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
3
|
Slater C, Liu Y, Weiss E, Yu K, Wang Q. The Neuromodulatory Role of the Noradrenergic and Cholinergic Systems and Their Interplay in Cognitive Functions: A Focused Review. Brain Sci 2022; 12:890. [PMID: 35884697 PMCID: PMC9320657 DOI: 10.3390/brainsci12070890] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 12/15/2022] Open
Abstract
The noradrenergic and cholinergic modulation of functionally distinct regions of the brain has become one of the primary organizational principles behind understanding the contribution of each system to the diversity of neural computation in the central nervous system. Decades of work has shown that a diverse family of receptors, stratified across different brain regions, and circuit-specific afferent and efferent projections play a critical role in helping such widespread neuromodulatory systems obtain substantial heterogeneity in neural information processing. This review briefly discusses the anatomical layout of both the noradrenergic and cholinergic systems, as well as the types and distributions of relevant receptors for each system. Previous work characterizing the direct and indirect interaction between these two systems is discussed, especially in the context of higher order cognitive functions such as attention, learning, and the decision-making process. Though a substantial amount of work has been done to characterize the role of each neuromodulator, a cohesive understanding of the region-specific cooperation of these two systems is not yet fully realized. For the field to progress, new experiments will need to be conducted that capitalize on the modular subdivisions of the brain and systematically explore the role of norepinephrine and acetylcholine in each of these subunits and across the full range of receptors expressed in different cell types in these regions.
Collapse
Affiliation(s)
- Cody Slater
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120th Street, New York, NY 10027, USA; (C.S.); (Y.L.); (E.W.); (K.Y.)
- Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Yuxiang Liu
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120th Street, New York, NY 10027, USA; (C.S.); (Y.L.); (E.W.); (K.Y.)
| | - Evan Weiss
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120th Street, New York, NY 10027, USA; (C.S.); (Y.L.); (E.W.); (K.Y.)
| | - Kunpeng Yu
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120th Street, New York, NY 10027, USA; (C.S.); (Y.L.); (E.W.); (K.Y.)
| | - Qi Wang
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120th Street, New York, NY 10027, USA; (C.S.); (Y.L.); (E.W.); (K.Y.)
| |
Collapse
|
4
|
Fleming W, Lee J, Briones BA, Bolkan SS, Witten IB. Cholinergic interneurons mediate cocaine extinction in male mice through plasticity across medium spiny neuron subtypes. Cell Rep 2022; 39:110874. [PMID: 35649378 PMCID: PMC9196889 DOI: 10.1016/j.celrep.2022.110874] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 03/07/2022] [Accepted: 05/05/2022] [Indexed: 11/28/2022] Open
Abstract
Cholinergic interneurons (ChINs) in the nucleus accumbens (NAc) have been implicated in the extinction of drug associations, as well as related plasticity in medium spiny neurons (MSNs). However, since most previous work relied on artificial manipulations, whether endogenous acetylcholine signaling relates to drug associations is unclear. Moreover, despite great interest in the opposing effects of dopamine on MSN subtypes, whether ChIN-mediated effects vary by MSN subtype is also unclear. Here, we find that high endogenous acetylcholine event frequency correlates with greater extinction of cocaine-context associations across male mice. Additionally, extinction is associated with a weakening of glutamatergic synapses across MSN subtypes. Manipulating ChIN activity bidirectionally controls both the rate of extinction and the associated plasticity at MSNs. Our findings indicate that NAc ChINs mediate drug-context extinction by reducing glutamatergic synaptic strength across MSN subtypes, and that natural variation in acetylcholine signaling may contribute to individual differences in extinction.
Collapse
Affiliation(s)
- Weston Fleming
- Princeton Neuroscience Institute, Princeton, NJ 08544, USA
| | - Junuk Lee
- Princeton Neuroscience Institute, Princeton, NJ 08544, USA
| | - Brandy A Briones
- Princeton Neuroscience Institute, Princeton, NJ 08544, USA; Department of Psychology, Princeton University, Princeton, NJ 08544, USA
| | - Scott S Bolkan
- Princeton Neuroscience Institute, Princeton, NJ 08544, USA
| | - Ilana B Witten
- Princeton Neuroscience Institute, Princeton, NJ 08544, USA; Department of Psychology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
5
|
The α7 nAChR allosteric modulator PNU-120596 amends neuroinflammatory and motor consequences of parkinsonism in rats: Role of JAK2/NF-κB/GSk3β/ TNF-α pathway. Biomed Pharmacother 2022; 148:112776. [PMID: 35272136 DOI: 10.1016/j.biopha.2022.112776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/01/2022] [Accepted: 02/27/2022] [Indexed: 11/20/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder and a leading cause of disability. The current gold standard for PD treatment, L-Dopa, has limited clinical efficacy and multiple side effects. Evidence suggests that activation of α7 nicotinic acetylcholine receptors (α7nAChRs) abrogates neuronal and inflammatory insults. Here we tested whether PNU-120596 (PNU), a type II positive allosteric modulator of α7 nAChR, has a critical role in regulating motor dysfunction and neuroinflammation correlated with the associated PD dysfunction. Neuroprotective mechanisms were investigated through neurobehavioral, molecular, histopathological, and immunohistochemical studies. PNU reversed motor incoordination and hypokinesia induced via the intrastriatal injection of 6-hydroxydopamine and manifested by lower falling latency in the rotarod test, short ambulation time and low rearing incidence in open field test. Tyrosine hydroxylase immunostaining showed a significant restoration of dopaminergic neurons following PNU treatment, in addition to histopathological restoration in nigrostriatal tissues. PNU halted striatal neuroinflammation manifested as a suppressed expression of JAK2/NF-κB/GSk3β accompanied by a parallel decline in the protein expression of TNF-α in nigrostriatal tissue denoting the modulator anti-inflammatory capacity. Moreover, the protective effects of PNU were partially reversed by the α7 nAChR antagonist, methyllycaconitine, indicating the role of α7 nAChR modulation in the mechanism of action of PNU. This is the first study to reveal the positive effects of PNU-120596 on motor derangements of PD via JAK2/NF-κB/GSk3β/ TNF-α neuroinflammatory pathways, which could offer a potential therapeutic strategy for PD.
Collapse
|
6
|
Liu C, Cai X, Ritzau-Jost A, Kramer PF, Li Y, Khaliq ZM, Hallermann S, Kaeser PS. An action potential initiation mechanism in distal axons for the control of dopamine release. Science 2022; 375:1378-1385. [PMID: 35324301 PMCID: PMC9081985 DOI: 10.1126/science.abn0532] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Information flow in neurons proceeds by integrating inputs in dendrites, generating action potentials near the soma, and releasing neurotransmitters from nerve terminals in the axon. We found that in the striatum, acetylcholine-releasing neurons induce action potential firing in distal dopamine axons. Spontaneous activity of cholinergic neurons produced dopamine release that extended beyond acetylcholine-signaling domains, and traveling action potentials were readily recorded from dopamine axons in response to cholinergic activation. In freely moving mice, dopamine and acetylcholine covaried with movement direction. Local inhibition of nicotinic acetylcholine receptors impaired dopamine dynamics and affected movement. Our findings uncover an endogenous mechanism for action potential initiation independent of somatodendritic integration and establish that this mechanism segregates the control of dopamine signaling between axons and somata.
Collapse
Affiliation(s)
- Changliang Liu
- Department of Neurobiology, Harvard Medical School; Boston, United States
| | - Xintong Cai
- Department of Neurobiology, Harvard Medical School; Boston, United States
| | - Andreas Ritzau-Jost
- Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig University; Leipzig, Germany
| | - Paul F. Kramer
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health; Bethesda, United States
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences; Beijing, China
| | - Zayd M. Khaliq
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health; Bethesda, United States
| | - Stefan Hallermann
- Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig University; Leipzig, Germany
| | - Pascal S. Kaeser
- Department of Neurobiology, Harvard Medical School; Boston, United States
| |
Collapse
|
7
|
Tohge R, Kaneko S, Morise S, Oki M, Takenouchi N, Murakami A, Nakamura M, Kusaka H, Yakushiji Y. Zonisamide attenuates the severity of levodopa-induced dyskinesia via modulation of the striatal serotonergic system in a rat model of Parkinson's disease. Neuropharmacology 2021; 198:108771. [PMID: 34474045 DOI: 10.1016/j.neuropharm.2021.108771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 12/25/2022]
Abstract
Glutamate, GABA, acetylcholine, dopamine, and serotonin interact with each other to regulate the flow of neural information in the striatum. Serotonin type 1A receptor (5HT1A) is primarily expressed on glutamatergic nerve terminals, and 5HT1B is expressed on GABAergic medium spiny neurons (MSNs). Zonisamide (ZNS) reportedly improves the off period without worsening levodopa-induced dyskinesia (LID) in patients with advanced Parkinson's disease. In this study, LID model rats were prepared by administrating levodopa to unilaterally 6-OHDA-lesioned rats. We analyzed changes in serotonergic neurotransmission of LID model rats to elucidate the relationship between LID and the serotonergic system and pathomechanism of the anti-dyskinetic effects of ZNS. Abnormal involuntary movements (AIMs) were most severe in intermittently levodopa-treated rats but milder in rats intermittently medicated with levodopa and ZNS. Continuously levodopa-infused rats or intermittently ZNS-injected rats did not develop AIMs, and no differences in the expression of brain-derived neurotrophic factor, 5-HT transporter, 5HT1A, and 5HT1B mRNA between the lesioned striatum and normal side were observed. Expression of 5HT1B mRNA was elevated in the lesioned striatum of intermittently levodopa-treated rats, but this elevation was normalized by concomitant use of ZNS. The severity of AIMs was correlated with the ratio of 5HT1B to 5HT1A mRNA expression in the lesioned striatum, indicating that the anti-LID effect of ZNS is based on inhibition via 5HT1B receptors to direct pathway MSNs sensitized by intermittent levodopa treatment. Selectively acting serotonergic drugs, especially those that lower the 5HT1B to 5HT1A ratio, are promising new therapeutic agents to attenuate LID development.
Collapse
Affiliation(s)
- Rie Tohge
- Department of Neurology, Kansai Medical University, Hirakata city, Osaka, Japan
| | - Satoshi Kaneko
- Department of Neurology, Kansai Medical University, Hirakata city, Osaka, Japan.
| | - Satoshi Morise
- Department of Neurology, Kansai Medical University, Hirakata city, Osaka, Japan
| | - Mitsuaki Oki
- Department of Neurology, Kansai Medical University, Hirakata city, Osaka, Japan
| | - Norihiro Takenouchi
- Department of Neurology, Kansai Medical University, Hirakata city, Osaka, Japan
| | - Aya Murakami
- Department of Neurology, Kansai Medical University, Hirakata city, Osaka, Japan
| | - Masataka Nakamura
- Department of Neurology, Kansai Medical University, Hirakata city, Osaka, Japan
| | - Hirofumi Kusaka
- Department of Neurology, Kansai Medical University, Hirakata city, Osaka, Japan
| | - Yusuke Yakushiji
- Department of Neurology, Kansai Medical University, Hirakata city, Osaka, Japan
| |
Collapse
|
8
|
Suzuki E, Momiyama T. M1 muscarinic acetylcholine receptor-mediated inhibition of GABA release from striatal medium spiny neurons onto cholinergic interneurons. Eur J Neurosci 2020; 53:796-813. [PMID: 33270289 DOI: 10.1111/ejn.15074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/10/2020] [Accepted: 11/24/2020] [Indexed: 11/26/2022]
Abstract
Acetylcholine (ACh) modulates neurotransmitter release in the central nervous system. Although GABAergic transmission onto the striatal cholinergic interneurons (ChIN) is modulated by dopamine receptors, cholinergic modulation of the same synapse is still unknown. In the present study, modulatory roles of ACh in the GABAergic transmission from striatal medium spiny neurons (MSNs) onto ChIN were investigated using optogenetics and whole-cell patch-clamp technique in juvenile and young-adult mice brain slices. GABAA receptor-mediated inhibitory postsynaptic currents (IPSCs) were evoked by focal electrical- or blue-light stimulation. Bath application of carbachol, a muscarinic ACh receptor agonist, suppressed the amplitude of IPSCs in a concentration-dependent manner in both age groups. A choline esterase inhibitor, physostigmine, also suppressed the amplitude of IPSCs. In the presence of a membrane permeable M1 muscarine receptor antagonist, pirenzepine, carbachol-induced suppression of IPSCs was antagonized, whereas a M2 muscarine receptor antagonist, a M4 receptor antagonist, or a membrane impermeable M1 receptor antagonist did not antagonize carbachol-induced suppression of IPSCs. Retrograde cannabinoid cascade via cannabinoid receptor 1 was not involved in carbachol-induced inhibition. Furthermore, carbachol did not affect amplitude of inward currents induced by puff application of GABA, whereas coefficient of variation of IPSCs was significantly increased by carbachol. These results suggest that activation of presynaptic M1 muscarine receptors located on the GABAergic terminals including intracellular organelle of MSNs inhibits GABA release onto ChIN.
Collapse
Affiliation(s)
- Etsuko Suzuki
- Department of Pharmacology, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Toshihiko Momiyama
- Department of Pharmacology, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| |
Collapse
|
9
|
Moshitzky G, Shoham S, Madrer N, Husain AM, Greenberg DS, Yirmiya R, Ben-Shaul Y, Soreq H. Cholinergic Stress Signals Accompany MicroRNA-Associated Stereotypic Behavior and Glutamatergic Neuromodulation in the Prefrontal Cortex. Biomolecules 2020; 10:E848. [PMID: 32503154 PMCID: PMC7355890 DOI: 10.3390/biom10060848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/24/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
Stereotypic behavior (SB) is common in emotional stress-involved psychiatric disorders and is often attributed to glutamatergic impairments, but the underlying molecular mechanisms are unknown. Given the neuro-modulatory role of acetylcholine, we sought behavioral-transcriptomic links in SB using TgR transgenic mice with impaired cholinergic transmission due to over-expression of the stress-inducible soluble 'readthrough' acetylcholinesterase-R splice variant AChE-R. TgR mice showed impaired organization of behavior, performance errors in a serial maze test, escape-like locomotion, intensified reaction to pilocarpine and reduced rearing in unfamiliar situations. Small-RNA sequencing revealed 36 differentially expressed (DE) microRNAs in TgR mice hippocampi, 8 of which target more than 5 cholinergic transcripts. Moreover, compared to FVB/N mice, TgR prefrontal cortices displayed individually variable changes in over 400 DE mRNA transcripts, primarily acetylcholine and glutamate-related. Furthermore, TgR brains presented c-fos over-expression in motor behavior-regulating brain regions and immune-labeled AChE-R excess in the basal ganglia, limbic brain nuclei and the brain stem, indicating a link with the observed behavioral phenotypes. Our findings demonstrate association of stress-induced SB to previously unknown microRNA-mediated perturbations of cholinergic/glutamatergic networks and underscore new therapeutic strategies for correcting stereotypic behaviors.
Collapse
Affiliation(s)
- Gilli Moshitzky
- The Institute of Life Sciences and The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (G.M.); (N.M.); (A.M.H.); (D.S.G.)
| | - Shai Shoham
- Herzog Medical Center, Givat Shaul, P.O. Box 3900, Jerusalem 9103702, Israel;
| | - Nimrod Madrer
- The Institute of Life Sciences and The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (G.M.); (N.M.); (A.M.H.); (D.S.G.)
| | - Amir Mouhammed Husain
- The Institute of Life Sciences and The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (G.M.); (N.M.); (A.M.H.); (D.S.G.)
| | - David S. Greenberg
- The Institute of Life Sciences and The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (G.M.); (N.M.); (A.M.H.); (D.S.G.)
| | - Raz Yirmiya
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel;
| | - Yoram Ben-Shaul
- Department of Medical Neurobiology, The Institute of Medical Research Israel-Canada, Jerusalem 9112102, Israel;
| | - Hermona Soreq
- The Institute of Life Sciences and The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (G.M.); (N.M.); (A.M.H.); (D.S.G.)
| |
Collapse
|
10
|
Abstract
Motor control in the striatum is an orchestra played by various neuronal populations. Loss of harmony due to dopamine deficiency is considered the primary pathological cause of the symptoms of Parkinson’s disease (PD). Recent progress in experimental approaches has enabled us to examine the striatal circuitry in a much more comprehensive manner, not only reshaping our understanding of striatal functions in movement regulation but also leading to new opportunities for the development of therapeutic strategies for treating PD. In addition to dopaminergic innervation, giant aspiny cholinergic interneurons (ChIs) within the striatum have long been recognized as a critical node for balancing dopamine signaling and regulating movement. With the roles of ChIs in motor control further uncovered and more specific manipulations available, striatal ChIs and their corresponding receptors are emerging as new promising therapeutic targets for PD. This review summarizes recent progress in functional studies of striatal circuitry and discusses the translational implications of these new findings for the treatment of PD.
Collapse
|
11
|
Su J, Li Z, Yamashita A, Kusumoto-Yoshida I, Isomichi T, Hao L, Kuwaki T. Involvement of the Nucleus Accumbens in Chocolate-induced Cataplexy. Sci Rep 2020; 10:4958. [PMID: 32188934 PMCID: PMC7080740 DOI: 10.1038/s41598-020-61823-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/04/2020] [Indexed: 11/09/2022] Open
Abstract
Happiness is key for both mental and physical well-being. To further understand the brain mechanisms involved, we utilized the cataplexy that occurs in narcoleptic animal models as a quantitative behavioral measure because it is triggered by actions associated with happiness, such as laughter in humans and palatable foods in mice. Here we report that the rostral part of the nucleus accumbens (NAc) shell is strongly activated during the beginning of chocolate-induced cataplexy in orexin neuron-ablated mice. We made a local lesion in the NAc using ibotenic acid and observed the animals' behavior. The number of cataplexy bouts was negatively correlated to the lesion size. We also examined the hedonic response to palatable food by measuring the number of tongue protrusions in response to presentation of honey, which was also found to be negatively correlated to the lesion size. Next, we used clozapine N-oxide to either activate or inactivate the NAc through viral DREADD expression. As expected, the number of cataplexy bouts increased with activation and decreased with inactivation, and saline control injections showed no changes. Hedonic response in the DREADD experiment varied and showed both increases and decreases across mice. These results demonstrated that the rostral part of the NAc plays a crucial role in triggering cataplexy and hedonic orofacial movements. Since the NAc is also implicated in motivated behavior, we propose that the NAc is one of the key brain structures involved in happiness and is a driving force for positive emotion-related behaviors.
Collapse
Affiliation(s)
- Jingyang Su
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Zhi Li
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Akira Yamashita
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Ikue Kusumoto-Yoshida
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takuto Isomichi
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Liying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Tomoyuki Kuwaki
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
12
|
Cansler HL, Wright KN, Stetzik LA, Wesson DW. Neurochemical organization of the ventral striatum's olfactory tubercle. J Neurochem 2020; 152:425-448. [PMID: 31755104 PMCID: PMC7042089 DOI: 10.1111/jnc.14919] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/08/2019] [Accepted: 11/17/2019] [Indexed: 12/11/2022]
Abstract
The ventral striatum is a collection of brain structures, including the nucleus accumbens, ventral pallidum and the olfactory tubercle (OT). While much attention has been devoted to the nucleus accumbens, a comprehensive understanding of the ventral striatum and its contributions to neurological diseases requires an appreciation for the complex neurochemical makeup of the ventral striatum's other components. This review summarizes the rich neurochemical composition of the OT, including the neurotransmitters, neuromodulators and hormones present. We also address the receptors and transporters involved in each system as well as their putative functional roles. Finally, we end with briefly reviewing select literature regarding neurochemical changes in the OT in the context of neurological disorders, specifically neurodegenerative disorders. By overviewing the vast literature on the neurochemical composition of the OT, this review will serve to aid future research into the neurobiology of the ventral striatum.
Collapse
Affiliation(s)
- Hillary L Cansler
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
| | - Katherine N Wright
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| | - Lucas A Stetzik
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
| | - Daniel W Wesson
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| |
Collapse
|
13
|
Fricchione G, Beach S. Cingulate-basal ganglia-thalamo-cortical aspects of catatonia and implications for treatment. HANDBOOK OF CLINICAL NEUROLOGY 2019; 166:223-252. [PMID: 31731912 DOI: 10.1016/b978-0-444-64196-0.00012-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The catatonic syndrome is an example of a multifactorial neurobehavioral disorder that causes much morbidity and mortality but also has the potential to unlock the mystery of how motivation and movement interact to produce behavior. In this chapter, an attempt is made to understand better the catatonic syndrome through the lens of neurobiology and neuropathophysiology updated by recent studies in molecular biology, genomics, inflammasomics, neuroimaging, neural network theory, and neuropsychopathology. This will result in a neurostructural model for the catatonic syndrome that centers on paralimbic regions including the anterior and midcingulate cortices, as they interface with striatal and thalamic nodes in the salience decision-making network. Examination of neurologic disorders like the abulic syndrome, which includes in its extreme catatonic form, akinetic mutism, will identify the cingulate cortex and paralimbic neighbors as regions of interest. This exploration has the potential to unlock mysteries of the brain cascade from motivation to movement and to clarify catatonia therapeutics. Such a synthesis may also help us discern meaning inherent in this complex neurobehavioral syndrome.
Collapse
Affiliation(s)
- Gregory Fricchione
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| | - Scott Beach
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
14
|
Howe M, Ridouh I, Allegra Mascaro AL, Larios A, Azcorra M, Dombeck DA. Coordination of rapid cholinergic and dopaminergic signaling in striatum during spontaneous movement. eLife 2019; 8:e44903. [PMID: 30920369 PMCID: PMC6457892 DOI: 10.7554/elife.44903] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 03/26/2019] [Indexed: 01/02/2023] Open
Abstract
Interplay between dopaminergic and cholinergic neuromodulation in the striatum is crucial for movement control, with prominent models proposing pro-kinetic and anti-kinetic effects of dopamine and acetylcholine release, respectively. However, the natural, movement-related signals of striatum cholinergic neurons and their relationship to simultaneous variations in dopamine signaling are unknown. Here, functional optical recordings in mice were used to establish rapid cholinergic signals in dorsal striatum during spontaneous movements. Bursts across the cholinergic population occurred at transitions between movement states and were marked by widespread network synchronization which diminished during sustained locomotion. Simultaneous cholinergic and dopaminergic recordings revealed distinct but coordinated sub-second signals, suggesting a new model where cholinergic population synchrony signals rapid changes in movement states while dopamine signals the drive to enact or sustain those states.
Collapse
Affiliation(s)
- Mark Howe
- Department of NeurobiologyNorthwestern UniversityEvanstonUnited States
| | - Imane Ridouh
- Department of NeurobiologyNorthwestern UniversityEvanstonUnited States
| | | | - Alyssa Larios
- Department of NeurobiologyNorthwestern UniversityEvanstonUnited States
| | - Maite Azcorra
- Department of NeurobiologyNorthwestern UniversityEvanstonUnited States
| | - Daniel A Dombeck
- Department of NeurobiologyNorthwestern UniversityEvanstonUnited States
| |
Collapse
|
15
|
Mellone M, Zianni E, Stanic J, Campanelli F, Marino G, Ghiglieri V, Longhi A, Thiolat ML, Li Q, Calabresi P, Bezard E, Picconi B, Di Luca M, Gardoni F. NMDA receptor GluN2D subunit participates to levodopa-induced dyskinesia pathophysiology. Neurobiol Dis 2019; 121:338-349. [DOI: 10.1016/j.nbd.2018.09.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/11/2018] [Accepted: 09/23/2018] [Indexed: 12/17/2022] Open
|
16
|
Trudeau LE, El Mestikawy S. Glutamate Cotransmission in Cholinergic, GABAergic and Monoamine Systems: Contrasts and Commonalities. Front Neural Circuits 2018; 12:113. [PMID: 30618649 PMCID: PMC6305298 DOI: 10.3389/fncir.2018.00113] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/03/2018] [Indexed: 11/13/2022] Open
Abstract
Multiple discoveries made since the identification of vesicular glutamate transporters (VGLUTs) two decades ago revealed that many neuronal populations in the brain use glutamate in addition to their "primary" neurotransmitter. Such a mode of cotransmission has been detected in dopamine (DA), acetylcholine (ACh), serotonin (5-HT), norepinephrine (NE) and surprisingly even in GABA neurons. Interestingly, work performed by multiple groups during the past decade suggests that the use of glutamate as a cotransmitter takes different forms in these different populations of neurons. In the present review, we will provide an overview of glutamate cotransmission in these different classes of neurons, highlighting puzzling differences in: (1) the proportion of such neurons expressing a VGLUT in different brain regions and at different stages of development; (2) the sub-cellular localization of the VGLUT; (3) the localization of the VGLUT in relation to the neurons' other vesicular transporter; and (4) the functional role of glutamate cotransmission.
Collapse
Affiliation(s)
- Louis-Eric Trudeau
- CNS Research Group, Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Salah El Mestikawy
- Department of Psychiatry, Faculty of Medicine, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.,Sorbonne Universités, Université Pierre et Marie Curie UM 119-CNRS UMR 8246-INSERM U1130, Neurosciences Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), Paris, France
| |
Collapse
|
17
|
Hikida T. [Homeostatic regulation of basal ganglia circuit for flexible behavior]. Nihon Yakurigaku Zasshi 2018; 152:295-298. [PMID: 30531100 DOI: 10.1254/fpj.152.295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Behavioral inflexibility has been reported in various psychiatric disorders including drug addiction and schizophrenia. Considerable evidence has demonstrated a critical role for the basal ganglia in the flexibility of behavioral strategies. These processes are guided by the activity of two discrete neuron types, dopamine D1- or D2-receptor expressing medium spiny neurons (D1-/D2-MSNs) in the basal ganglia circuit. We used a reversible neurotransmission blocking technique to examine the role of D1- and D2-MSNs in the acquisition and reversal learning of a place discrimination task in the IntelliCage. We demonstrated that D1- and D2-MSNs do not mediate the acquisition of the task, but that suppression of activity in D2-MSNs impairs reversal learning and increased perseverative errors. Additionally, global knockout of the dopamine D2L receptor isoform produced a similar behavioral phenotype to D2-MSN-blocked mice. We also showed that D2L receptors are necessary for visual discrimination and reversal learning. These results suggest that D2L receptors and D2-MSNs have a critical role in the homeostatic regulation of basal ganglia circuit for flexible behaviors.
Collapse
Affiliation(s)
- Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University
| |
Collapse
|
18
|
Pappas SS, Li J, LeWitt TM, Kim JK, Monani UR, Dauer WT. A cell autonomous torsinA requirement for cholinergic neuron survival and motor control. eLife 2018; 7:36691. [PMID: 30117805 PMCID: PMC6115190 DOI: 10.7554/elife.36691] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/16/2018] [Indexed: 12/14/2022] Open
Abstract
Cholinergic dysfunction is strongly implicated in dystonia pathophysiology. Previously (Pappas et al., 2015;4:e08352), we reported that Dlx5/6-Cre mediated forebrain deletion of the DYT1 dystonia protein torsinA (Dlx-CKO) causes abnormal twisting and selective degeneration of dorsal striatal cholinergic interneurons (ChI) (Pappas et al., 2015). A central question raised by that work is whether the ChI loss is cell autonomous or requires torsinA loss from neurons synaptically connected to ChIs. Here, we addressed this question by using ChAT-Cre mice to conditionally delete torsinA from cholinergic neurons ('ChAT-CKO'). ChAT-CKO mice phenocopy the Dlx-CKO phenotype of selective dorsal striatal ChI loss and identify an essential requirement for torsinA in brainstem and spinal cholinergic neurons. ChAT-CKO mice are tremulous, weak, and exhibit trunk twisting and postural abnormalities. These findings are the first to demonstrate a cell autonomous requirement for torsinA in specific populations of cholinergic neurons, strengthening the connection between torsinA, cholinergic dysfunction and dystonia pathophysiology.
Collapse
Affiliation(s)
- Samuel S Pappas
- Department of Neurology, University of Michigan, Ann Arbor, United States
| | - Jay Li
- Department of Neurology, University of Michigan, Ann Arbor, United States.,Cell and Molecular Biology Program, University of Michigan, Ann Arbor, United States
| | - Tessa M LeWitt
- Department of Neurology, University of Michigan, Ann Arbor, United States
| | - Jeong-Ki Kim
- Department of Cell Biology, Columbia University Medical Center, New York, United States.,Center for Motor Neuron Biology and Disease, Columbia University Medical Center, New York, United States.,Department of Pathology, Columbia University Medical Center, New York, United States
| | - Umrao R Monani
- Department of Cell Biology, Columbia University Medical Center, New York, United States.,Center for Motor Neuron Biology and Disease, Columbia University Medical Center, New York, United States.,Department of Pathology, Columbia University Medical Center, New York, United States
| | - William T Dauer
- Department of Neurology, University of Michigan, Ann Arbor, United States.,Cell and Molecular Biology Program, University of Michigan, Ann Arbor, United States.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, United States
| |
Collapse
|
19
|
Myslivecek J, Farar V, Valuskova P. M(4) muscarinic receptors and locomotor activity regulation. Physiol Res 2018; 66:S443-S455. [PMID: 29355372 DOI: 10.33549/physiolres.933796] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
M(4) muscarinic receptors (M(4) MR) represent a subfamily of G-protein coupled receptors serving a substantial role in spontaneous locomotor activity regulation, cognition and modulation of cholinergic system. With increasing body of literature discussing the role of M(4) MR some controversies arose. Thus, we try here to summarize the current evidence regarding the M(4) MR, with the special focus on their role in Locomotor activity control. We review the molecular function of M(4) MR in specific brain areas implicated in locomotor regulation, and shortly in other CNS processes that could be connected to locomotor activity. We also focus on brain areas implicated in locomotor activity biorhythm changes like suprachiasmatic nucleus, subparaventricular zone posterior hypothalamic area, striatum and thalamus. Gender-related aspects and differences in locomotor activity in males and females are discussed further.
Collapse
Affiliation(s)
- J Myslivecek
- Institute of Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | |
Collapse
|
20
|
Aitken P, Zheng Y, Smith PF. Ethovision™ analysis of open field behaviour in rats following bilateral vestibular loss. J Vestib Res 2018; 27:89-101. [PMID: 29064826 DOI: 10.3233/ves-170612] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Bilateral vestibular loss (BVL) causes a unique behavioural syndrome in rodents, with symptoms such as locomotor hyperactivity and changes in exploratory behaviour. Many of these symptoms appear to be indirect consequences of the loss of vestibular reflex function and are difficult to explain. Although such symptoms have been reported before, there have been few systematic studies of the effects of BVL using automated digital tracking systems in which many behavioural symptoms can be measured simultaneously with high precision. In this study, data were obtained from rats with BVL induced by intratympanic sodium arsanilate injections (n = 7) or sham injections (n = 8) and their behaviour in the open field was measured at 3 days and 23 days post-injection using Ethovision™ tracking software. BVL rats demonstrated reduced thigmotaxis, with more time spent in the central zones. Twenty-three days post-injection, BVL animals showed increased locomotor activity in the open field. The increase in activity was also reflected in the number of transitions between each zone of the field. In addition to increased activity, BVL animals showed increased whole body rotations following lesions. Using linear discriminant analysis (LDA) and random forest classification (RFC), we were able to show that the indirect behavioural effects of BVL, excluding direct measurement of vestibular reflex function, could correctly predict whether animals had received a BVL with a high degree of accuracy at both day 3 and day 23 post-BVL (83% and 100% for LDA, and 100% and 100% for RFC, respectively). RFC has been similarly successful in classifying other hyperactivity syndromes such as attention deficit hyperactivity disorder. These results suggest that BVL results in a unique behavioural signature that can identify vestibular loss in rats even without direct vestibular reflex measurements.
Collapse
Affiliation(s)
- Phillip Aitken
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Yiwen Zheng
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Brain Research New Zealand Centre of Research Excellence for Hearing and Balance Research, University of Auckland, New Zealand.,The Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, New Zealand
| | - Paul F Smith
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Brain Research New Zealand Centre of Research Excellence for Hearing and Balance Research, University of Auckland, New Zealand.,The Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, New Zealand
| |
Collapse
|
21
|
Conti MM, Chambers N, Bishop C. A new outlook on cholinergic interneurons in Parkinson's disease and L-DOPA-induced dyskinesia. Neurosci Biobehav Rev 2018; 92:67-82. [PMID: 29782883 DOI: 10.1016/j.neubiorev.2018.05.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 01/05/2018] [Accepted: 05/16/2018] [Indexed: 02/07/2023]
Abstract
Traditionally, dopamine (DA) and acetylcholine (ACh) striatal systems were considered antagonistic and imbalances or aberrant signaling between these neurotransmitter systems could be detrimental to basal ganglia activity and pursuant motor function, such as in Parkinson's disease (PD) and L-DOPA-induced dyskinesia (LID). Herein, we discuss the involvement of cholinergic interneurons (ChIs) in striatally-mediated movement in a healthy, parkinsonian, and dyskinetic state. ChIs integrate numerous neurotransmitter signals using intrinsic glutamate, serotonin, and DA receptors and convey the appropriate transmission onto nearby muscarinic and nicotinic ACh receptors to produce movement. In PD, severe DA depletion causes abnormal rises in ChI activity which promote striatal signaling to attenuate normal movement. When treating PD with L-DOPA, hyperkinetic side effects, or LID, develop due to increased striatal DA; however, the role of ChIs and ACh transmission, until recently has been unclear. Fortunately, new technology and pharmacological agents have facilitated understanding of ChI function and ACh signaling in the context of LID, thus offering new opportunities to modify existing and discover future therapeutic strategies in movement disorders.
Collapse
Affiliation(s)
- Melissa M Conti
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA.
| | - Nicole Chambers
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA.
| | - Christopher Bishop
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA.
| |
Collapse
|
22
|
Rizzi G, Tan KR. Dopamine and Acetylcholine, a Circuit Point of View in Parkinson's Disease. Front Neural Circuits 2017; 11:110. [PMID: 29311846 PMCID: PMC5744635 DOI: 10.3389/fncir.2017.00110] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/14/2017] [Indexed: 12/30/2022] Open
Abstract
Data from the World Health Organization (National Institute on Aging, 2011) and the National Institutes of Health (He et al., 2016) predicts that while today the worldwide population over 65 years of age is estimated around 8.5%, this number will reach an astounding 17% by 2050. In this framework, solving current neurodegenerative diseases primarily associated with aging becomes more pressing than ever. In 2017, we celebrate a grim 200th anniversary since the very first description of Parkinson’s disease (PD) and its related symptomatology. Two centuries after this debilitating disease was first identified, finding a cure remains a hopeful goal rather than an attainable objective on the horizon. Tireless work has provided insight into the characterization and progression of the disease down to a molecular level. We now know that the main motor deficits associated with PD arise from the almost total loss of dopaminergic cells in the substantia nigra pars compacta. A concomitant loss of cholinergic cells entails a cognitive decline in these patients, and current therapies are only partially effective, often inducing side-effects after a prolonged treatment. This review covers some of the recent developments in the field of Basal Ganglia (BG) function in physiology and pathology, with a particular focus on the two main neuromodulatory systems known to be severely affected in PD, highlighting some of the remaining open question from three main stand points: - Heterogeneity of midbrain dopamine neurons. - Pairing of dopamine (DA) sub-circuits. - Dopamine-Acetylcholine (ACh) interaction. A vast amount of knowledge has been accumulated over the years from experimental conditions, but very little of it is reflected or used at a translational or clinical level. An initiative to implement the knowledge that is emerging from circuit-based approaches to tackle neurodegenerative disorders like PD will certainly be tremendously beneficial.
Collapse
Affiliation(s)
| | - Kelly R Tan
- Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
23
|
Okada K, Nishizawa K, Setogawa S, Hashimoto K, Kobayashi K. Task-dependent function of striatal cholinergic interneurons in behavioural flexibility. Eur J Neurosci 2017; 47:1174-1183. [PMID: 29119611 DOI: 10.1111/ejn.13768] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/04/2017] [Accepted: 10/31/2017] [Indexed: 01/16/2023]
Abstract
Flexible switching of behaviours depends on integrative functioning through the neural circuit connecting the prefrontal cortex and the dorsomedial striatum (DMS). Although cholinergic interneurons modulate striatal outputs by diverse synaptic mechanisms, the roles of cholinergic interneurons in the DMS appear to vary among different models used to validate behavioural flexibility. Here, we conducted immunotoxin-mediated cell targeting of DMS cholinergic interneurons and examined the functions of these interneurons in behavioural flexibility, with the learning conditions differing in trial spacing and discrimination type in a modified T-maze. Elimination of the DMS cholinergic cell group normally spared reversal learning in place discrimination with an intertrial interval (ITI) of 15 s, but it impaired the reversal performance in response discrimination with the same ITI. In contrast, DMS cholinergic elimination resulted in enhanced reversal performance in both place and response discrimination tasks with a 10-min ITI and accelerated the reversal of response discrimination with a 20-min ITI. Our previous study also showed an enhanced influence of cholinergic targeting on place reversal learning with a 20-min ITI, and the present results demonstrate that DMS cholinergic interneurons act to inhibit both place and response reversal performance with a relatively longer ITI, whereas their functions differ between types of reversal performance in the tasks with a shorter ITI. These findings suggest distinct roles of the DMS cholinergic cell group in behavioural flexibility dependent on the trial spacing and discrimination type constituting the learning tasks.
Collapse
Affiliation(s)
- Kana Okada
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Kayo Nishizawa
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Susumu Setogawa
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Kouichi Hashimoto
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| |
Collapse
|
24
|
Involvement of Striatal Cholinergic Interneurons and M1 and M4 Muscarinic Receptors in Motor Symptoms of Parkinson's Disease. J Neurosci 2017; 36:9161-72. [PMID: 27581457 DOI: 10.1523/jneurosci.0873-16.2016] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/16/2016] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED Over the last decade, striatal cholinergic interneurons (ChIs) have reemerged as key actors in the pathophysiology of basal-ganglia-related movement disorders. However, the mechanisms involved are still unclear. In this study, we address the role of ChI activity in the expression of parkinsonian-like motor deficits in a unilateral nigrostriatal 6-hydroxydopamine (6-OHDA) lesion model using optogenetic and pharmacological approaches. Dorsal striatal photoinhibition of ChIs in lesioned ChAT(cre/cre) mice expressing halorhodopsin in ChIs reduces akinesia, bradykinesia, and sensorimotor neglect. Muscarinic acetylcholine receptor (mAChR) blockade by scopolamine produces similar anti-parkinsonian effects. To decipher which of the mAChR subtypes provides these beneficial effects, systemic and intrastriatal administration of the selective M1 and M4 mAChR antagonists telenzepine and tropicamide, respectively, were tested in the same model of Parkinson's disease. The two compounds alleviate 6-OHDA lesion-induced motor deficits. Telenzepine produces its beneficial effects by blocking postsynaptic M1 mAChRs expressed on medium spiny neurons (MSNs) at the origin of the indirect striatopallidal and direct striatonigral pathways. The anti-parkinsonian effects of tropicamide were almost completely abolished in mutant lesioned mice that lack M4 mAChRs specifically in dopamine D1-receptor-expressing neurons, suggesting that postsynaptic M4 mAChRs expressed on direct MSNs mediate the antiakinetic action of tropicamide. The present results show that altered cholinergic transmission via M1 and M4 mAChRs of the dorsal striatum plays a pivotal role in the occurrence of motor symptoms in Parkinson's disease. SIGNIFICANCE STATEMENT The striatum, where dopaminergic and cholinergic systems interact, is the pivotal structure of basal ganglia involved in pathophysiological changes underlying Parkinson's disease. Here, using optogenetic and pharmacological approaches, we investigated the involvement of striatal cholinergic interneurons (ChIs) and muscarinic receptor subtypes (mAChRs) in the occurrence of a wide range of motor deficits such as akinesia, bradykinesia, motor coordination, and sensorimotor neglect after unilateral nigrostriatal 6-hydroxydopamine lesion in mice. Our results show that photoinhibition of ChIs in the dorsal striatum and pharmacological blockade of muscarinic receptors, specifically postsynaptic M1 and M4 mAChRs, alleviate lesion-induced motor deficits. The present study points to these receptor subtypes as potential targets for the symptomatic treatment of parkinsonian-like motor symptoms.
Collapse
|
25
|
Compulsive Social Behavior Emerges after Selective Ablation of Striatal Cholinergic Interneurons. J Neurosci 2017; 37:2849-2858. [PMID: 28193688 DOI: 10.1523/jneurosci.3460-16.2017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/23/2017] [Accepted: 01/27/2017] [Indexed: 12/14/2022] Open
Abstract
The mechanisms underlying social dysfunction in neuropsychiatric conditions such as obsessive-compulsive disorder and Tourette syndrome remain uncertain. However, it is known that dysfunctions in basal ganglia, including a reduced number of striatal cholinergic interneurons (SCIN), are involved in their pathophysiology. To explore the role of SCIN in relation to perseverative behaviors, we characterized a new transgenic mouse model in which inducible ablation of SCIN is achieved with high efficiency in a cell-type- and region-specific manner. Mice were subjected to extensive behavioral testing, including assessment of social behaviors, and corticostriatal functional connectivity was evaluated in vivo Selective SCIN ablation leads to altered social interactions together with exacerbated spontaneously emitted repetitive behaviors. Lesioned mice showed normal motor coordination, balance, and general locomotion. Interestingly, only environmentally driven, but not self-directed, repetitive behaviors were exacerbated in lesioned mice. Remarkably, in mice with SCIN ablation, the normal pattern of social exploration was replayed continuously. The emerging pattern of social interactions is highly predictable and invariant across time. In vivo electrophysiological recordings indicate that SCIN ablation results in an increase of the functional connectivity between different cortical areas and the motor, but not associative, region of the striatum. Our results identify a role of SCIN in suppressing perseverative behaviors, including socially related ones. In sum, SCIN ablation in mice leads to exacerbated ritualistic-like behaviors that affect social performance, providing a link between SCIN dysfunction and the social impairments present in psychiatric disorders.SIGNIFICANCE STATEMENT We sought to uncover the impact of striatal cholinergic interneuron (SCIN) degeneration on perseverative behaviors related to obsessive-compulsive disorder (OCD) and Tourette syndrome (TS). We found that extensive SCIN ablation results in exacerbated social interactions, in which normal social contacts were replayed continuously in a highly stereotyped, ritualistic pattern. SCIN ablation also leads to an increase in other spontaneously emitted repetitive behaviors without alteration of motor coordination, balance, or locomotion. Moreover, we identify an increase of functional connectivity between frontal cortical areas and the motor region of the striatum as a putative substrate for the observed behavioral alterations. Therefore, perseveration induced by SCIN ablation extends to social performance as occurs in neuropsychiatric conditions such as OCD and TS.
Collapse
|
26
|
Nagatsu T, Nagatsu I. Tyrosine hydroxylase (TH), its cofactor tetrahydrobiopterin (BH4), other catecholamine-related enzymes, and their human genes in relation to the drug and gene therapies of Parkinson's disease (PD): historical overview and future prospects. J Neural Transm (Vienna) 2016; 123:1255-1278. [PMID: 27491309 DOI: 10.1007/s00702-016-1596-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/14/2016] [Indexed: 12/21/2022]
Abstract
Tyrosine hydroxylase (TH), which was discovered at the National Institutes of Health (NIH) in 1964, is a tetrahydrobiopterin (BH4)-requiring monooxygenase that catalyzes the first and rate-limiting step in the biosynthesis of catecholamines (CAs), such as dopamine, noradrenaline, and adrenaline. Since deficiencies of dopamine and noradrenaline in the brain stem, caused by neurodegeneration of dopamine and noradrenaline neurons, are mainly related to non-motor and motor symptoms of Parkinson's disease (PD), we have studied human CA-synthesizing enzymes [TH; BH4-related enzymes, especially GTP-cyclohydrolase I (GCH1); aromatic L-amino acid decarboxylase (AADC); dopamine β-hydroxylase (DBH); and phenylethanolamine N-methyltransferase (PNMT)] and their genes in relation to PD in postmortem brains from PD patients, patients with CA-related genetic diseases, mice with genetically engineered CA neurons, and animal models of PD. We purified all human CA-synthesizing enzymes, produced their antibodies for immunohistochemistry and immunoassay, and cloned all human genes, especially the human TH gene and the human gene for GCH1, which synthesizes BH4 as a cofactor of TH. This review discusses the historical overview of TH, BH4-, and other CA-related enzymes and their genes in relation to the pathophysiology of PD, the development of drugs, such as L-DOPA, and future prospects for drug and gene therapy for PD, especially the potential of induced pluripotent stem (iPS) cells.
Collapse
Affiliation(s)
- Toshiharu Nagatsu
- Department of Pharmacology, School of Medicine, Fujita Health University, Toyoake, Aichi, 470-1192, Japan.
- Department of Brain Functions, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, 464-8601, Japan.
| | - Ikuko Nagatsu
- Department of Anatomy, School of Medicine, Fujita Health University, Toyoake, 470-1192, Japan
| |
Collapse
|
27
|
Inoue R, Suzuki T, Nishimura K, Miura M. Nicotinic acetylcholine receptor-mediated GABAergic inputs to cholinergic interneurons in the striosomes and the matrix compartments of the mouse striatum. Neuropharmacology 2016; 105:318-328. [DOI: 10.1016/j.neuropharm.2016.01.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 12/30/2015] [Accepted: 01/20/2016] [Indexed: 10/22/2022]
|
28
|
Morissette M, Morin N, Grégoire L, Rajput A, Rajput AH, Di Paolo T. Brain α7 nicotinic acetylcholine receptors in MPTP-lesioned monkeys and parkinsonian patients. Biochem Pharmacol 2016; 109:62-69. [DOI: 10.1016/j.bcp.2016.03.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/29/2016] [Indexed: 10/22/2022]
|
29
|
Reappraising striatal D1- and D2-neurons in reward and aversion. Neurosci Biobehav Rev 2016; 68:370-386. [PMID: 27235078 DOI: 10.1016/j.neubiorev.2016.05.021] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/16/2016] [Accepted: 05/22/2016] [Indexed: 12/31/2022]
Abstract
The striatum has been involved in complex behaviors such as motor control, learning, decision-making, reward and aversion. The striatum is mainly composed of medium spiny neurons (MSNs), typically divided into those expressing dopamine receptor D1, forming the so-called direct pathway, and those expressing D2 receptor (indirect pathway). For decades it has been proposed that these two populations exhibit opposing control over motor output, and recently, the same dichotomy has been proposed for valenced behaviors. Whereas D1-MSNs mediate reinforcement and reward, D2-MSNs have been associated with punishment and aversion. In this review we will discuss pharmacological, genetic and optogenetic studies that indicate that there is still controversy to what concerns the role of striatal D1- and D2-MSNs in this type of behaviors, highlighting the need to reconsider the early view that they mediate solely opposing aspects of valenced behaviour.
Collapse
|
30
|
Nishimura K, Doi D, Samata B, Murayama S, Tahara T, Onoe H, Takahashi J. Estradiol Facilitates Functional Integration of iPSC-Derived Dopaminergic Neurons into Striatal Neuronal Circuits via Activation of Integrin α5β1. Stem Cell Reports 2016; 6:511-524. [PMID: 26997644 PMCID: PMC4834042 DOI: 10.1016/j.stemcr.2016.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 12/11/2022] Open
Abstract
For cell transplantation therapy for Parkinson's disease (PD) to be realized, the grafted neurons should be integrated into the host neuronal circuit to restore the lost neuronal function. Here, using wheat-germ agglutinin-based transsynaptic tracing, we show that integrin α5 is selectively expressed in striatal neurons that are innervated by midbrain dopaminergic (DA) neurons. In addition, we found that integrin α5β1 was activated by the administration of estradiol-2-benzoate (E2B) in striatal neurons of adult female rats. Importantly, we observed that the systemic administration of E2B into hemi-parkinsonian rat models facilitates the functional integration of grafted DA neurons derived from human induced pluripotent stem cells into the host striatal neuronal circuit via the activation of integrin α5β1. Finally, methamphetamine-induced abnormal rotation was recovered earlier in E2B-administered rats than in rats that received other regimens. Our results suggest that the simultaneous administration of E2B with stem cell-derived DA progenitors can enhance the efficacy of cell transplantation therapy for PD. Integrin α5 is expressed in striatal neurons innervated by nigral DA neurons Administration of E2B activates integrin α5β1 in the rat striatum E2B facilitates integration of grafted iPSC-derived DA neurons into host striatum
Collapse
Affiliation(s)
- Kaneyasu Nishimura
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Daisuke Doi
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Bumpei Samata
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shigeo Murayama
- Department of Neuropathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Tokyo 173-0015, Japan
| | - Tsuyoshi Tahara
- Bio-function Imaging Team, RIKEN Center for Life Science Technologies, Kobe 650-0047, Japan
| | - Hirotaka Onoe
- Bio-function Imaging Team, RIKEN Center for Life Science Technologies, Kobe 650-0047, Japan
| | - Jun Takahashi
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
31
|
Shen W, Plotkin JL, Francardo V, Ko WKD, Xie Z, Li Q, Fieblinger T, Wess J, Neubig RR, Lindsley CW, Conn PJ, Greengard P, Bezard E, Cenci MA, Surmeier DJ. M4 Muscarinic Receptor Signaling Ameliorates Striatal Plasticity Deficits in Models of L-DOPA-Induced Dyskinesia. Neuron 2016; 88:762-73. [PMID: 26590347 DOI: 10.1016/j.neuron.2015.10.039] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 09/09/2015] [Accepted: 10/08/2015] [Indexed: 10/22/2022]
Abstract
A balanced interaction between dopaminergic and cholinergic signaling in the striatum is critical to goal-directed behavior. But how this interaction modulates corticostriatal synaptic plasticity underlying learned actions remains unclear--particularly in direct-pathway spiny projection neurons (dSPNs). Our studies show that in dSPNs, endogenous cholinergic signaling through M4 muscarinic receptors (M4Rs) promoted long-term depression of corticostriatal glutamatergic synapses, by suppressing regulator of G protein signaling type 4 (RGS4) activity, and blocked D1 dopamine receptor dependent long-term potentiation (LTP). Furthermore, in a mouse model of L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia (LID) in Parkinson's disease (PD), boosting M4R signaling with positive allosteric modulator (PAM) blocked aberrant LTP in dSPNs, enabled LTP reversal, and attenuated dyskinetic behaviors. An M4R PAM also was effective in a primate LID model. Taken together, these studies identify an important signaling pathway controlling striatal synaptic plasticity and point to a novel pharmacological strategy for alleviating LID in PD patients.
Collapse
Affiliation(s)
- Weixing Shen
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Joshua L Plotkin
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Veronica Francardo
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Wai Kin D Ko
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; Motac Neuroscience, Manchester M13 9XX, UK
| | - Zhong Xie
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Qin Li
- Motac Neuroscience, Manchester M13 9XX, UK
| | - Tim Fieblinger
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard R Neubig
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Craig W Lindsley
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - P Jeffrey Conn
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Paul Greengard
- Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, NY 10065, USA
| | - Erwan Bezard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; Motac Neuroscience, Manchester M13 9XX, UK
| | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
32
|
Optogenetic activation of striatal cholinergic interneurons regulates L-dopa-induced dyskinesias. Neurobiol Dis 2016; 91:47-58. [PMID: 26921469 DOI: 10.1016/j.nbd.2016.02.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 01/26/2016] [Accepted: 02/23/2016] [Indexed: 11/23/2022] Open
Abstract
L-dopa-induced dyskinesias (LIDs) are a serious complication of L-dopa therapy for Parkinson's disease. Emerging evidence indicates that the nicotinic cholinergic system plays a role in LIDs, although the pathways and mechanisms are poorly understood. Here we used optogenetics to investigate the role of striatal cholinergic interneurons in LIDs. Mice expressing cre-recombinase under the control of the choline acetyltransferase promoter (ChAT-Cre) were lesioned by unilateral injection of 6-hydroxydopamine. AAV5-ChR2-eYFP or AAV5-control-eYFP was injected into the dorsolateral striatum, and optical fibers implanted. After stable virus expression, mice were treated with L-dopa. They were then subjected to various stimulation protocols for 2h and LIDs rated. Continuous stimulation with a short duration optical pulse (1-5ms) enhanced LIDs. This effect was blocked by the general muscarinic acetylcholine receptor (mAChR) antagonist atropine indicating it was mAChR-mediated. By contrast, continuous stimulation with a longer duration optical pulse (20ms to 1s) reduced LIDs to a similar extent as nicotine treatment (~50%). The general nicotinic acetylcholine receptor (nAChR) antagonist mecamylamine blocked the decline in LIDs with longer optical pulses showing it was nAChR-mediated. None of the stimulation regimens altered LIDs in control-eYFP mice. Lesion-induced motor impairment was not affected by optical stimulation indicating that cholinergic transmission selectively regulates LIDs. Longer pulse stimulation increased the number of c-Fos expressing ChAT neurons, suggesting that changes in this immediate early gene may be involved. These results demonstrate that striatal cholinergic interneurons play a critical role in LIDs and support the idea that nicotine treatment reduces LIDs via nAChR desensitization.
Collapse
|
33
|
Dopamine and Its Actions in the Basal Ganglia System. INNOVATIONS IN COGNITIVE NEUROSCIENCE 2016. [DOI: 10.1007/978-3-319-42743-0_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Miyazaki I, Murakami S, Torigoe N, Kitamura Y, Asanuma M. Neuroprotective effects of levetiracetam target xCT in astrocytes in parkinsonian mice. J Neurochem 2015; 136:194-204. [DOI: 10.1111/jnc.13405] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 01/19/2023]
Affiliation(s)
- Ikuko Miyazaki
- Department of Brain Science; Okayama University Graduate School of Medicine; Dentistry and Pharmaceutical Sciences; Okayama Japan
- Department of Medical Neurobiology; Okayama University Graduate School of Medicine; Dentistry and Pharmaceutical Sciences; Okayama Japan
| | - Shinki Murakami
- Department of Brain Science; Okayama University Graduate School of Medicine; Dentistry and Pharmaceutical Sciences; Okayama Japan
- Department of Medical Neurobiology; Okayama University Graduate School of Medicine; Dentistry and Pharmaceutical Sciences; Okayama Japan
- SAIDO Co.; Fukuoka Japan
| | - Nao Torigoe
- Department of Clinical Pharmacy; Okayama University Graduate School of Medicine; Dentistry and Pharmaceutical Sciences; Okayama Japan
| | - Yoshihisa Kitamura
- Department of Clinical Pharmacy; Okayama University Graduate School of Medicine; Dentistry and Pharmaceutical Sciences; Okayama Japan
| | - Masato Asanuma
- Department of Brain Science; Okayama University Graduate School of Medicine; Dentistry and Pharmaceutical Sciences; Okayama Japan
- Department of Medical Neurobiology; Okayama University Graduate School of Medicine; Dentistry and Pharmaceutical Sciences; Okayama Japan
| |
Collapse
|
35
|
Pappas SS, Darr K, Holley SM, Cepeda C, Mabrouk OS, Wong JMT, LeWitt TM, Paudel R, Houlden H, Kennedy RT, Levine MS, Dauer WT. Forebrain deletion of the dystonia protein torsinA causes dystonic-like movements and loss of striatal cholinergic neurons. eLife 2015; 4:e08352. [PMID: 26052670 PMCID: PMC4473728 DOI: 10.7554/elife.08352] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 06/07/2015] [Indexed: 12/12/2022] Open
Abstract
Striatal dysfunction plays an important role in dystonia, but the striatal cell types that contribute to abnormal movements are poorly defined. We demonstrate that conditional deletion of the DYT1 dystonia protein torsinA in embryonic progenitors of forebrain cholinergic and GABAergic neurons causes dystonic-like twisting movements that emerge during juvenile CNS maturation. The onset of these movements coincides with selective degeneration of dorsal striatal large cholinergic interneurons (LCI), and surviving LCI exhibit morphological, electrophysiological, and connectivity abnormalities. Consistent with the importance of this LCI pathology, murine dystonic-like movements are reduced significantly with an antimuscarinic agent used clinically, and we identify cholinergic abnormalities in postmortem striatal tissue from DYT1 dystonia patients. These findings demonstrate that dorsal LCI have a unique requirement for torsinA function during striatal maturation, and link abnormalities of these cells to dystonic-like movements in an overtly symptomatic animal model. DOI:http://dx.doi.org/10.7554/eLife.08352.001 Dystonia is disorder of the nervous system that causes people to suffer from abnormal and involuntary twisting movements. These movements are triggered, in part, by irregularities in a part of the brain called the striatum. The most common view among researchers is that dystonia is caused by abnormal activity in an otherwise structurally normal nervous system. But, recent findings indicate that the degeneration of small populations of nerve cells in the brain may be important. The striatum is made up of several different types of nerve cells, but it is poorly understood which of these are affected in dystonia. One type of dystonia, which most often occurs in children, is caused by a defect in a protein called torsinA. Pappas et al. have now discovered that deleting the gene for torsinA from particular populations of nerve cells in the brains of mice (including a population in the striatum) causes abnormal twisting movements. Like people with dystonia, these mice developed the abnormal movements as juveniles, and the movements were suppressed with ‘anti-cholinergic’ medications. Pappas et al. then analyzed brain tissue from these mice and revealed that the twisting movements began at the same time that a single type of cell in the striatum—called ‘cholinergic interneurons’—degenerated. Postmortem studies of brain tissue from dystonia patients also revealed abnormalities of these neurons. Together these findings challenge the notion that dystonia occurs in a structurally normal nervous system and reveal that cholinergic interneurons in the striatum specifically require torsinA to survive. Following on from this work, the next challenges are to identify what causes the selective loss of cholinergic interneurons, and to investigate how this cell loss affects the activity within the striatum. DOI:http://dx.doi.org/10.7554/eLife.08352.002
Collapse
Affiliation(s)
- Samuel S Pappas
- Department of Neurology, University of Michigan, Ann Arbor, United States
| | - Katherine Darr
- Department of Neurology, University of Michigan, Ann Arbor, United States
| | - Sandra M Holley
- Intellectual and Developmental Disabilities Research Center, Brain Research Institute, Semel Institute for Neuroscience, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Brain Research Institute, Semel Institute for Neuroscience, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Omar S Mabrouk
- Department of Pharmacology, University of Michigan, Ann Arbor, United States
| | - Jenny-Marie T Wong
- Department of Chemistry, University of Michigan, Ann Arbor, United States
| | - Tessa M LeWitt
- Department of Neurology, University of Michigan, Ann Arbor, United States
| | - Reema Paudel
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| | - Henry Houlden
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| | - Robert T Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, United States
| | - Michael S Levine
- Intellectual and Developmental Disabilities Research Center, Brain Research Institute, Semel Institute for Neuroscience, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - William T Dauer
- Department of Neurology, University of Michigan, Ann Arbor, United States
| |
Collapse
|
36
|
Bajic D, Soiza-Reilly M, Spalding AL, Berde CB, Commons KG. Endogenous cholinergic neurotransmission contributes to behavioral sensitization to morphine. PLoS One 2015; 10:e0117601. [PMID: 25647082 PMCID: PMC4315441 DOI: 10.1371/journal.pone.0117601] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 12/29/2014] [Indexed: 12/15/2022] Open
Abstract
Neuroplasticity in the mesolimbic dopaminergic system is critical for behavioral adaptations associated with opioid reward and addiction. These processes may be influenced by cholinergic transmission arising from the laterodorsal tegmental nucleus (LDTg), a main source of acetylcholine to mesolimbic dopaminergic neurons. To examine this possibility we asked if chronic systemic morphine administration affects expression of genes in ventral and ventrolateral periaqueductal gray at the level of the LDTg using rtPCR. Specifically, we examined gene expression changes in the area of interest using Neurotransmitters and Receptors PCR array between chronic morphine and saline control groups. Analysis suggested that chronic morphine administration led to changes in expression of genes associated, in part, with cholinergic neurotransmission. Furthermore, using a quantitative immunofluorescent technique, we found that chronic morphine treatment produced a significant increase in immunolabeling of the cholinergic marker (vesicular acetylcholine transporter) in neurons of the LDTg. Finally, systemic administration of the nonselective and noncompetitive neuronal nicotinic antagonist mecamylamine (0.5 or 2 mg/kg) dose-dependently blocked the expression, and to a lesser extent the development, of locomotor sensitization. The same treatment had no effect on acute morphine antinociception, antinociceptive tolerance or dependence to chronic morphine. Taken together, the results suggest that endogenous nicotinic cholinergic neurotransmission selectively contributes to behavioral sensitization to morphine and this process may, in part, involve cholinergic neurons within the LDTg.
Collapse
Affiliation(s)
- Dusica Bajic
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA, 02115, United States of America
- Department of Anaesthesia, Harvard Medical School, 25 Shattuck St., Boston, MA, 02115, United States of America
| | - Mariano Soiza-Reilly
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA, 02115, United States of America
- Department of Anaesthesia, Harvard Medical School, 25 Shattuck St., Boston, MA, 02115, United States of America
| | - Allegra L. Spalding
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA, 02115, United States of America
| | - Charles B. Berde
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA, 02115, United States of America
- Department of Anaesthesia, Harvard Medical School, 25 Shattuck St., Boston, MA, 02115, United States of America
| | - Kathryn G. Commons
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA, 02115, United States of America
- Department of Anaesthesia, Harvard Medical School, 25 Shattuck St., Boston, MA, 02115, United States of America
| |
Collapse
|
37
|
Abstract
The motor and learning functions of the striatum are critically dependent on synaptic transmission from midbrain dopamine neurons and striatal cholinergic interneurons (CINs). Both neural populations alter their discharge in vivo in response to salient sensory stimuli, albeit in opposite directions. Whereas midbrain dopamine neurons respond to salient stimuli with a brief burst of activity, CINs exhibit a distinct pause in firing that is often followed by a period of increased excitability. Although this "pause-rebound" sensory response requires dopaminergic signaling, the precise mechanisms underlying the modulation of CIN firing by dopaminergic afferents remain unclear. Here, we show that phasic activation of nigrostriatal afferents in a mouse striatal slice preparation is sufficient to evoke a pause-rebound response in CINs. Using a combination of optogenetic, electrophysiological, and pharmacological approaches, we demonstrate that synaptically released dopamine inhibits CINs through type 2 dopamine receptors, while another unidentified transmitter mediates the delayed excitation. These findings imply that, in addition to their direct effects on striatal projection neurons, midbrain dopamine neurons indirectly modulate striatal output by dynamically controlling cholinergic tone. In addition, our data suggest that phasic dopaminergic activity may directly participate in the characteristic pause-rebound sensory response that CINs exhibit in vivo in response to salient and conditioned stimuli.
Collapse
|
38
|
Okada K, Nishizawa K, Fukabori R, Kai N, Shiota A, Ueda M, Tsutsui Y, Sakata S, Matsushita N, Kobayashi K. Enhanced flexibility of place discrimination learning by targeting striatal cholinergic interneurons. Nat Commun 2014; 5:3778. [DOI: 10.1038/ncomms4778] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 04/01/2014] [Indexed: 01/15/2023] Open
|
39
|
Jacob CP, Weber H, Retz W, Kittel-Schneider S, Heupel J, Renner T, Lesch KP, Reif A. Acetylcholine-metabolizing butyrylcholinesterase (BCHE) copy number and single nucleotide polymorphisms and their role in attention-deficit/hyperactivity syndrome. J Psychiatr Res 2013; 47:1902-8. [PMID: 24041656 DOI: 10.1016/j.jpsychires.2013.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 07/12/2013] [Accepted: 08/07/2013] [Indexed: 11/18/2022]
Abstract
A previous genome-wide screen for copy number variations (CNVs) in attention deficit/hyperactivity disorder (ADHD) revealed a de novo chromosome 3q26.1 deletion in one of the patients. Candidate genes at this locus include the acetylcholine-metabolizing butyrylcholinesterase (BCHE) expressing gene (OMIM #177400), which is of particular interest. The present study investigates the hypothesis that the heterozygous deletion of the BCHE gene is associated with adult ADHD (aADHD). Ina first step, we screened 348 aADHD patients and 352 controls for stretches of loss of heterozygosity (LOH) across the entire BCHE gene to screen for the deletion. Our second aim was to clarify whether BCHE single nucleotide polymorphisms (SNPs) themselves influence the risk towards ADHD. Putative functional consequences of associated SNPs as well as their un-typed proxies were predicted by several bioinformatic tools. 96 individuals displayed entirely homozygous genotype reads in all 12 examined SNPs, making them possible candidates to harbor a heterozygous BCHE deletion. DNA from these 96 probands was further analyzed by real-time PCR using a BCHE-specific CNV assay. However, no deletion was found. Of the 12 tag SNPs that passed inclusion criteria, rs4680612 and rs829508 were significantly associated with aADHD, as their minor alleles occurred more often in cases than in controls (p = 0.018 and p = 0.039, respectively). The risk variant rs4680612 is located in the transcriptional control region of the gene and predicted to disrupt a binding site for MYT-1, which has previously been associated with mental disorders. However, when examining a second independent adult ADHD sample of 353 cases, the association did not replicate. When looking up the deletion in three genome-wide screens for CNV in ADHD and combining it with the present study, it became apparent that 3 from a total of 1030 ADHD patients, but none of 5787 controls, featured a deletion of the BCHE promoter region including rs4680612 (p = 0.00004). Taken together, there are several lines of evidence suggesting a potential involvement of BCHE in the etiopathology of ADHD, as a rare hemizygous deletion as well as a common SNP in the same region are associated with disease, although with different penetrance. Both variations result in the disruption of the binding site of the transcription factor MYT-1 suggesting epistatic effects of BCHE and MYT-1 in the pathogenesis of ADHD. As we were not able to replicate the SNP association, our findings should be considered preliminary and call for larger studies in extended phenotypes.
Collapse
Affiliation(s)
- Christian P Jacob
- Department of Psychiatry and Psychotherapy, University of Wuerzburg, Fuechsleinstr. 15, 97080 Wuerzburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Miyazaki I, Asanuma M, Murakami S, Takeshima M, Torigoe N, Kitamura Y, Miyoshi K. Targeting 5-HT1A receptors in astrocytes to protect dopaminergic neurons in parkinsonian models. Neurobiol Dis 2013; 59:244-56. [DOI: 10.1016/j.nbd.2013.08.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 08/08/2013] [Indexed: 12/13/2022] Open
|
41
|
Ponterio G, Tassone A, Sciamanna G, Riahi E, Vanni V, Bonsi P, Pisani A. Powerful inhibitory action of mu opioid receptors (MOR) on cholinergic interneuron excitability in the dorsal striatum. Neuropharmacology 2013; 75:78-85. [PMID: 23891638 DOI: 10.1016/j.neuropharm.2013.07.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/12/2013] [Accepted: 07/03/2013] [Indexed: 11/18/2022]
Abstract
Cholinergic interneurons (ChIs) of dorsal striatum play a key role in motor control and in behavioural learning. Neuropeptides regulate cholinergic transmission and mu opioid receptor (MOR) activation modulates striatal acetylcholine release. However, the mechanisms underlying this effect are yet uncharacterized. Here, we examined the electrophysiological responses of ChIs to the selective MOR agonist, DAMGO {[D-Ala2-MePhe4-Gly(ol)5] enkephalin}. We observed a robust, dose-dependent inhibition of spontaneous firing activity (0.06-3 μM) which was reversible upon drug washout and blocked by the selective antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP) (1 μM). Voltage-clamp analysis of the reversal potential of the DAMGO effect did not provide univocal results, indicating the involvement of multiple membrane conductances. The MOR-dependent effect persisted in the presence of GABAA and ionotropic glutamate receptor antagonists, ruling out an indirect effect. Additionally, it depended upon G-protein activation, as it was prevented by intrapipette GDP-β-S. Because D2 dopamine receptors (D2R) and MOR share a common post-receptor signalling pathway, occlusion experiments were performed with maximal doses of both D2R and MOR agonists. The D2R agonist quinpirole decreased spike discharge, which was further reduced by adding DAMGO. Then, D2R or MOR antagonists were used to challenge the response to the respective agonists, DAMGO or quinpirole. No cross-effect was observed, suggesting that the two receptors act independently. Our findings demonstrate a postsynaptic inhibitory modulation by MOR on ChIs excitability. Such opioidergic regulation of cholinergic transmission might contribute to shape information processing in basal ganglia circuits, and represent a potential target for pharmacological intervention.
Collapse
Affiliation(s)
- G Ponterio
- Department of System Medicine, University of Rome "Tor Vergata", via Montpellier, Rome 00133, Italy; Laboratory of Neurophysiology and Plasticity, Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - A Tassone
- Laboratory of Neurophysiology and Plasticity, Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - G Sciamanna
- Laboratory of Neurophysiology and Plasticity, Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - E Riahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; (d)Physiology Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - V Vanni
- Laboratory of Neurophysiology and Plasticity, Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - P Bonsi
- Laboratory of Neurophysiology and Plasticity, Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - A Pisani
- Department of System Medicine, University of Rome "Tor Vergata", via Montpellier, Rome 00133, Italy; Laboratory of Neurophysiology and Plasticity, Fondazione Santa Lucia, IRCCS, Rome, Italy.
| |
Collapse
|
42
|
Asanuma M, Miyazaki I, Diaz-Corrales FJ, Shimizu M, Tanaka KI, Ogawa N. Pramipexole has ameliorating effects on levodopa-induced abnormal dopamine turnover in parkinsonian striatum and quenching effects on dopamine-semiquinone generatedin vitro. Neurol Res 2013; 27:533-9. [PMID: 15978181 DOI: 10.1179/016164105x22093] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES AND METHODS To clarify the effects of a non-ergot dopamine agonist pramipexole on levodopa-induced abnormal dopamine metabolism in the parkinsonian model, we examined striatal changes in dopamine and its metabolites after repeated administration of pramipexole and/or levodopa using 6-hydroxydopamine-lesioned hemi-parkinsonian mice. Moreover, the effects of pramipexole on dopamine-semiquinones were also accessed using an in vitro dopamine-semiquinone generating system to elucidate its neuroprotective property against dopamine quinone-induced neurotoxicity that appears as dopamine neuron-specific oxidative stress. RESULTS Combined administration of pramipexole (0.5 or 1 mg/kg/day, 7 days) selectively suppressed the levodopa-induced (50 mg/kg/day) increase of striatal dopamine turnover in the parkinsonian side, but not in the non-lesioned side. In addition to the antioxidant properties previously reported, it was clarified that pramipexole scavenged dopamine-semiquinones generated in a dose-dependent manner either in simultaneous incubation or post-incubation. DISCUSSION The neurotoxicity of dopamine quinones that appear as dopaminergic neuron-specific oxidative stress has recently been known to play a role in the pathogenesis of Parkinson's disease and neurotoxin-induced parkinsonism. Therefore, the present results revealed that pramipexole possesses neuroprotective effects against abnormal dopamine metabolism in excessively levodopa-administered parkinsonian brains and against cytotoxic dopamine quinones generated from excess dopamine, preventing consequently dopaminergic neuronal damage induced by excess dopamine or levodopa.
Collapse
Affiliation(s)
- Masato Asanuma
- Department of Brain Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | | | | | | | | | | |
Collapse
|
43
|
Signals through the striatopallidal indirect pathway stop movements by phasic excitation in the substantia nigra. J Neurosci 2013; 33:7583-94. [PMID: 23616563 DOI: 10.1523/jneurosci.4932-12.2013] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The striatum and subthalamic nucleus (STN) are the input stations of the basal ganglia and receive excitatory afferents from the cerebral cortex. The basal ganglia control voluntary movements through three parallel pathways mediated by the input stations: the hyperdirect pathway, which conveys direct cortical inputs to the substantia nigra pars reticulata (SNr), the output nucleus, through the STN; the direct pathway, which arises from striatal neurons expressing dopamine D1 receptors and projects to the SNr; and the indirect pathway, which arises from striatal neurons expressing dopamine D2 receptors (D2Rs) and projects indirectly to the SNr by way of the globus pallidus (GP) and STN. Our previous study showed that immunotoxin-mediated cell targeted ablation of D2R-expressing striatal neurons in mice induced motor hyperactivity. To elucidate the mechanism underlying the hyperactivity, here we examined neuronal activity in the GP and SNr. The ablation of D2R-expressing striatal neurons had little effect on spontaneous activity in the GP and SNr, but induced dramatic changes in the cortically evoked triphasic response composed of early excitation, inhibition, and late excitation in the GP and SNr (i.e., reduced inhibition in the GP, and reduced late excitation in the GP and SNr). In contrast, the ablation of striatal cholinergic interneurons, which also express D2Rs, did not show such effects. Therefore, the reduction of the cortically evoked late excitation in the SNr seems to be responsible for hyperactivity. These observations suggest that phasic late excitation in the SNr through the striatopallidal indirect pathway plays a key role in stopping movements.
Collapse
|
44
|
Asanuma M, Miyazaki I, Diaz-Corrales FJ, Higashi Y, Namba M, Ogawa N. Transplantation of melanocytes obtained from the skin ameliorates apomorphine-induced abnormal behavior in rodent hemi-parkinsonian models. PLoS One 2013; 8:e65983. [PMID: 23776585 PMCID: PMC3680415 DOI: 10.1371/journal.pone.0065983] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 04/30/2013] [Indexed: 11/18/2022] Open
Abstract
Tyrosinase, which catalyzes both the hydroxylation of tyrosine and consequent oxidation of L-DOPA to form melanin in melanocytes, is also expressed in the brain, and oxidizes L-DOPA and dopamine. Replacement of dopamine synthesis by tyrosinase was reported in tyrosine hydroxylase null mice. To examine the potential benefits of autograft cell transplantation for patients with Parkinson’s disease, tyrosinase-producing cells including melanocytes, were transplanted into the striatum of hemi-parkinsonian model rats or mice lesioned with 6-hydroxydopamine. Marked improvement in apomorphine-induced rotation was noted at day 40 after intrastriatal melanoma cell transplantation. Transplantation of tyrosinase cDNA-transfected hepatoma cells, which constitutively produce L-DOPA, resulted in marked amelioration of the asymmetric apomorphine-induced rotation in hemi-parkinsonian mice and the effect was present up to 2 months. Moreover, parkinsonian mice transplanted with melanocytes from the back skin of black newborn mice, but not from albino mice, showed marked improvement in the apomorphine-induced rotation behavior up to 3 months after the transplantation. Dopamine-positive signals were seen around the surviving transplants in these experiments. Taken together with previous studies showing dopamine synthesis and metabolism by tyrosinase, these results highlight therapeutic potential of intrastriatal autograft cell transplantation of melanocytes in patients with Parkinson’s disease.
Collapse
Affiliation(s)
- Masato Asanuma
- Department of Brain Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | | | | | | | | | | |
Collapse
|
45
|
Yamaguchi T, Danjo T, Pastan I, Hikida T, Nakanishi S. Distinct roles of segregated transmission of the septo-habenular pathway in anxiety and fear. Neuron 2013; 78:537-44. [PMID: 23602500 DOI: 10.1016/j.neuron.2013.02.035] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2013] [Indexed: 11/27/2022]
Abstract
The posterior septum consisting of the triangular septum (TS) and the bed nucleus of the anterior commissure (BAC) is predominantly linked with the medial habenula (MHb) and has been implicated in the control of anxiety and fear responses. However, its anatomical and functional linkage has largely remained elusive. We established a transgenic mouse model in which the TS and BAC projection neurons were visualized by GFP fluorescence and selectively eliminated by immunotoxin-mediated cell targeting. The linkage between the TS/BAC and the MHb constitutes two parallel pathways composed of the TS-ventral MHb, the core part of the interpeduncular nucleus (IPN), and the BAC-dorsal MHb, the peripheral part of the IPN. Ablation of the TS and BAC projection neurons selectively impaired anxiety and enhanced fear responses and learning, respectively. Inputs from the TS and BAC to the MHb are thus segregated by two parallel pathways and play specialized roles in controlling emotional behaviors.
Collapse
Affiliation(s)
- Takashi Yamaguchi
- Department of Systems Biology, Osaka Bioscience Institute, Suita, Osaka 565-0874, Japan
| | | | | | | | | |
Collapse
|
46
|
Opposing regulation of dopaminergic activity and exploratory motor behavior by forebrain and brainstem cholinergic circuits. Nat Commun 2013; 3:1172. [PMID: 23132022 DOI: 10.1038/ncomms2144] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 09/20/2012] [Indexed: 12/30/2022] Open
Abstract
Dopamine transmission is critical for exploratory motor behaviour. A key regulator is acetylcholine; forebrain acetylcholine regulates striatal dopamine release, whereas brainstem cholinergic inputs regulate the transition of dopamine neurons from tonic to burst firing modes. How these sources of cholinergic activity combine to control dopamine efflux and exploratory motor behaviour is unclear. Here we show that mice lacking total forebrain acetylcholine exhibit enhanced frequency-dependent striatal dopamine release and are hyperactive in a novel environment, whereas mice lacking rostral brainstem acetylcholine are hypoactive. Exploratory motor behaviour is normalized by the removal of both cholinergic sources. Involvement of dopamine in the exploratory motor phenotypes observed in these mutants is indicated by their altered sensitivity to the dopamine D2 receptor antagonist raclopride. These results support a model in which forebrain and brainstem cholinergic systems act in tandem to regulate striatal dopamine signalling for proper control of motor activity.
Collapse
|
47
|
Guzman MS, De Jaeger X, Drangova M, Prado MAM, Gros R, Prado VF. Mice with selective elimination of striatal acetylcholine release are lean, show altered energy homeostasis and changed sleep/wake cycle. J Neurochem 2013; 124:658-69. [PMID: 23240572 DOI: 10.1111/jnc.12128] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 11/20/2012] [Accepted: 12/07/2012] [Indexed: 01/21/2023]
Abstract
Cholinergic neurons are known to regulate striatal circuits; however, striatal-dependent physiological outcomes influenced by acetylcholine (ACh) are still poorly under;?>stood. Here, we used vesicular acetylcholine transporter (VAChT)(D2-Cre-flox/flox) mice, in which we selectively ablated the vesicular acetylcholine transporter in the striatum to dissect the specific roles of striatal ACh in metabolic homeostasis. We report that VAChT(D) (2-Cre-flox/flox) mice are lean at a young age and maintain this lean phenotype with time. The reduced body weight observed in these mutant mice is not attributable to reduced food intake or to a decrease in growth rate. In addition, changed activity could not completely explain the lean phenotype, as only young VAChT(D) (2-Cre-flox/flox) mice showed increased physical activity. Interestingly, VAChT(D) (2-Cre-flox/flox) mice show several metabolic changes, including increased plasma levels of insulin and leptin. They also show increased periods of wakefulness when compared with littermate controls. Taken together, our data suggest that striatal ACh has an important role in the modulation of metabolism and highlight the importance of striatum cholinergic tone in the regulation of energy expenditure. These new insights on how cholinergic neurons influence homeostasis open new avenues for the search of drug targets to treat obesity.
Collapse
Affiliation(s)
- Monica S Guzman
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Neural processing faces three rather different, and perniciously tied, communication problems. First, computation is radically distributed, yet point-to-point interconnections are limited. Second, the bulk of these connections are semantically uniform, lacking differentiation at their targets that could tag particular sorts of information. Third, the brain's structure is relatively fixed, and yet different sorts of input, forms of processing, and rules for determining the output are appropriate under different, and possibly rapidly changing, conditions. Neuromodulators address these problems by their multifarious and broad distribution, by enjoying specialized receptor types in partially specific anatomical arrangements, and by their ability to mold the activity and sensitivity of neurons and the strength and plasticity of their synapses. Here, I offer a computationally focused review of algorithmic and implementational motifs associated with neuromodulators, using decision making in the face of uncertainty as a running example.
Collapse
|
49
|
Zhang X, Lu L, Liu S, Ye W, Wu J, Zhang X. Acetylcholinesterase deficiency decreases apoptosis in dopaminergic neurons in the neurotoxin model of Parkinson's disease. Int J Biochem Cell Biol 2012. [PMID: 23201480 DOI: 10.1016/j.biocel.2012.11.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The apoptosis pathway has been proposed to be involved in causing neuronal cell death in the pathogenesis of Parkinson's disease. However, the details of this pathway are poorly understood. Previous research has shown increased acetylcholinesterase expression during apoptosis in various cell types, which suggests that acetylcholinesterase has a potential role in neuronal cell death. In this study, we found that acetylcholinesterase protein expression increased and caspase-3 was activated in PC12 cells treated with 1-methyl-4-phenylpyridinium. Furthermore, the genetic or pharmacological inhibition of acetylcholinesterase was shown to protect PC12 cells from MPP+ induced apoptotic cell death. To study the function of acetylcholinesterase as a mechanism of neuronal cell death in vivo, we subsequently established a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine Parkinson's disease mouse model utilizing acetylcholinesterase-deficient mice. Studies in these mice revealed reduced dopaminergic neuron loss and lower expression levels of apoptotic proteins in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated heterozygous mice compared to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated wild-type mice. We conclude that it is highly probable that acetylcholinesterase is involved in the pathogenesis of the neurotoxin model of Parkinson's disease via apoptosis. Specifically, a deficiency or inhibition of acetylcholinesterase can decrease apoptosis and protect dopaminergic neurons in the neurotoxin model of Parkinson's disease.
Collapse
Affiliation(s)
- Xuejin Zhang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of Chinese Academy of Sciences, 320 YueYang Road, Shanghai 200031, PR China
| | | | | | | | | | | |
Collapse
|
50
|
Laplante F, Dufresne MM, Ouboudinar J, Ochoa-Sanchez R, Sullivan RM. Reduction in cholinergic interneuron density in the nucleus accumbens attenuates local extracellular dopamine release in response to stress or amphetamine. Synapse 2012; 67:21-9. [PMID: 23034725 DOI: 10.1002/syn.21612] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 09/26/2012] [Accepted: 09/27/2012] [Indexed: 01/24/2023]
Abstract
Depletion of cholinergic interneurons in the ventral striatum (nucleus accumbens or N.Acc.) in adult rats increases the locomotor activating effects of amphetamine. It also impairs sensorimotor gating processes, an effect reversed by the antipsychotic haloperidol. These behavioral effects are suggestive of pronounced hyper-responsiveness of the mesolimbic dopamine (DA) projection to the N.Acc. However, it is unclear whether local cholinergic depletion results predominantly in exaggerated presynaptic DA release or a postsynaptic upregulation of DAergic function. The purpose of the present study is to test the former possibility by employing in vivo voltammetry to examine changes in the levels of extracellular DA within the N.Acc. in response to either mild tail pinch stress or amphetamine administration. While both cholinergic-lesioned and control rats showed reliable stress-induced increases in extracellular DA on two consecutive test days, those in the lesioned rats were significantly less pronounced. In response to amphetamine, a separate cohort of lesioned rats also exhibited smaller increases in extracellular DA release than controls, despite showing greater locomotor activity. Moreover, the increased behavioral response to amphetamine in lesioned rats coincided temporally with decreasing levels of DA in the N.Acc. The results confirm that cholinergic depletion within the N.Acc. suppresses presynaptic DA release and suggest that lesion-induced behavioral effects are more likely due to postsynaptic DA receptor upregulation. The results are also discussed in the context of schizophrenia, where post mortem studies have revealed a selective loss of cholinergic interneurons within the ventral striatum.
Collapse
Affiliation(s)
- François Laplante
- Department of Psychiatry, McGill University, Montréal, Quebec, Canada
| | | | | | | | | |
Collapse
|