1
|
Leana-Sandoval G, Kolli AV, Chinn CA, Madrid A, Lo I, Sandoval MA, Vera VA, Simms J, Wood MA, Diaz-Alonso J. The GluA1 cytoplasmic tail regulates intracellular AMPA receptor trafficking and synaptic transmission onto dentate gyrus GABAergic interneurons, gating response to novelty. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.01.626277. [PMID: 39677714 PMCID: PMC11643017 DOI: 10.1101/2024.12.01.626277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The GluA1 subunit, encoded by the putative schizophrenia-associated gene GRIA1, is required for activity-regulated AMPA receptor (AMPAR) trafficking, and plays a key role in cognitive and affective function. The cytoplasmic, carboxy-terminal domain (CTD) is the most divergent region across AMPAR subunits. The GluA1 CTD has received considerable attention for its role during long-term potentiation (LTP) at CA1 pyramidal neuron synapses. However, its function at other synapses and, more broadly, its contribution to different GluA1-dependent processes, is poorly understood. Here, we used mice with a constitutive truncation of the GluA1 CTD to dissect its role regulating AMPAR localization and function as well as its contribution to cognitive and affective processes. We found that GluA1 CTD truncation affected AMPAR subunit levels and intracellular trafficking. ΔCTD GluA1 mice exhibited no memory deficits, but presented exacerbated novelty-induced hyperlocomotion and dentate gyrus granule cell (DG GC) hyperactivity, among other behavioral alterations. Mechanistically, we found that AMPAR EPSCs onto DG GABAergic interneurons were significantly reduced, presumably underlying, at least in part, the observed changes in neuronal activity and behavior. In summary, this study dissociates CTD-dependent from CTD-independent GluA1 functions, unveiling the GluA1 CTD as a crucial hub regulating AMPAR function in a cell type-specific manner.
Collapse
Affiliation(s)
- Gerardo Leana-Sandoval
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| | - Ananth V Kolli
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| | - Carlene A Chinn
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
- Department of Neurobiology & Behavior, University of California at Irvine, CA, 92697, USA
| | - Alexis Madrid
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| | - Iris Lo
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Matthew A Sandoval
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| | - Vanessa Alizo Vera
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
- Department of Neurobiology & Behavior, University of California at Irvine, CA, 92697, USA
| | - Jeffrey Simms
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Marcelo A Wood
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
- Department of Neurobiology & Behavior, University of California at Irvine, CA, 92697, USA
| | - Javier Diaz-Alonso
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| |
Collapse
|
2
|
Weisend JE, Carlson AP, Shuttleworth CW. Spreading Depolarization Induces a Transient Potentiation of Excitatory Synaptic Transmission. Neuroscience 2024; 551:323-332. [PMID: 38821241 PMCID: PMC11246225 DOI: 10.1016/j.neuroscience.2024.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Spreading depolarization (SD) is a slowly propagating wave of prolonged activation followed by a period of synaptic suppression. Some prior reports have shown potentiation of synaptic transmission after recovery from synaptic suppression and noted similarities with the phenomenon of long-term potentiation (LTP). Since SD is increasingly recognized as participating in diverse neurological disorders, it is of interest to determine whether SD indeed leads to a generalized and sustained long-term strengthening of synaptic connections. We performed a characterization of SD-induced potentiation, and tested whether distinctive features of SD, including adenosine accumulation and swelling, contribute to reports of SD-induced plasticity. Field excitatory postsynaptic potentials (fEPSPs) were recorded in the hippocampal CA1 subregion of murine brain slices, and SD elicited using focal microinjection of KCl. A single SD was sufficient to induce a consistent potentiation of slope and amplitude of fEPSPs. Both AMPA- and NMDA-receptor mediated components were enhanced. Potentiation peaked ∼20 min after SD recovery and was sustained for ∼30 min. However, fEPSP amplitude and slope decayed over an extended 2-hour recording period and was estimated to reach baseline after ∼3 h. Potentiation was saturated after a single SD and adenosine A1 receptor activation did not mask additional potentiation. Induction of LTP with theta-burst stimulation was not altered by prior induction of SD and molecular mediators known to block LTP induction did not block SD-induced potentiation. Together, these results indicate an intermediate duration potentiation that is distinct from hippocampal LTP and may have implications for circuit function for 1-2 h following SD.
Collapse
Affiliation(s)
- Jordan E Weisend
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Andrew P Carlson
- Department of Neurosurgery, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - C William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| |
Collapse
|
3
|
Miranda M, Silva A, Morici JF, Coletti MA, Belluscio M, Bekinschtein P. Retrieval of contextual memory can be predicted by CA3 remapping and is differentially influenced by NMDAR activity in rat hippocampus subregions. PLoS Biol 2024; 22:e3002706. [PMID: 38950066 PMCID: PMC11244845 DOI: 10.1371/journal.pbio.3002706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 07/12/2024] [Accepted: 06/12/2024] [Indexed: 07/03/2024] Open
Abstract
Episodic memory is essential to navigate in a changing environment by recalling past events, creating new memories, and updating stored information from experience. Although the mechanisms for acquisition and consolidation have been profoundly studied, much less is known about memory retrieval. Hippocampal spatial representations are key for retrieval of contextually guided episodic memories. Indeed, hippocampal place cells exhibit stable location-specific activity which is thought to support contextual memory, but can also undergo remapping in response to environmental changes. It is unclear if remapping is directly related to the expression of different episodic memories. Here, using an incidental memory recognition task in rats, we showed that retrieval of a contextually guided memory is reflected by the levels of CA3 remapping, demonstrating a clear link between external cues, hippocampal remapping, and episodic memory retrieval that guides behavior. Furthermore, we describe NMDARs as key players in regulating the balance between retrieval and memory differentiation processes by controlling the reactivation of specific memory traces. While an increase in CA3 NMDAR activity boosts memory retrieval, dentate gyrus NMDAR activity enhances memory differentiation. Our results contribute to understanding how the hippocampal circuit sustains a flexible balance between memory formation and retrieval depending on the environmental cues and the internal representations of the individual. They also provide new insights into the molecular mechanisms underlying the contributions of hippocampal subregions to generate this balance.
Collapse
Affiliation(s)
- Magdalena Miranda
- Laboratorio de Memoria y Cognición Molecular, Instituto de Neurociencia Cognitiva y Traslacional, CONICET-Fundación INECO-Universidad Favaloro, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Azul Silva
- Laboratorio Bases neuronales del comportamiento, Departamento de Ciencias Fisiológicas, Facultad de Ciencias Médicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- CONICET—Universidad de Buenos Aires, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Juan Facundo Morici
- Laboratorio de Memoria y Cognición Molecular, Instituto de Neurociencia Cognitiva y Traslacional, CONICET-Fundación INECO-Universidad Favaloro, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Marcos Antonio Coletti
- Laboratorio Bases neuronales del comportamiento, Departamento de Ciencias Fisiológicas, Facultad de Ciencias Médicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- CONICET—Universidad de Buenos Aires, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Mariano Belluscio
- Laboratorio Bases neuronales del comportamiento, Departamento de Ciencias Fisiológicas, Facultad de Ciencias Médicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- CONICET—Universidad de Buenos Aires, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Pedro Bekinschtein
- Laboratorio de Memoria y Cognición Molecular, Instituto de Neurociencia Cognitiva y Traslacional, CONICET-Fundación INECO-Universidad Favaloro, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
4
|
Taylor KR, Barron T, Hui A, Spitzer A, Yalçin B, Ivec AE, Geraghty AC, Hartmann GG, Arzt M, Gillespie SM, Kim YS, Maleki Jahan S, Zhang H, Shamardani K, Su M, Ni L, Du PP, Woo PJ, Silva-Torres A, Venkatesh HS, Mancusi R, Ponnuswami A, Mulinyawe S, Keough MB, Chau I, Aziz-Bose R, Tirosh I, Suvà ML, Monje M. Glioma synapses recruit mechanisms of adaptive plasticity. Nature 2023; 623:366-374. [PMID: 37914930 PMCID: PMC10632140 DOI: 10.1038/s41586-023-06678-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 09/26/2023] [Indexed: 11/03/2023]
Abstract
The role of the nervous system in the regulation of cancer is increasingly appreciated. In gliomas, neuronal activity drives tumour progression through paracrine signalling factors such as neuroligin-3 and brain-derived neurotrophic factor1-3 (BDNF), and also through electrophysiologically functional neuron-to-glioma synapses mediated by AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors4,5. The consequent glioma cell membrane depolarization drives tumour proliferation4,6. In the healthy brain, activity-regulated secretion of BDNF promotes adaptive plasticity of synaptic connectivity7,8 and strength9-15. Here we show that malignant synapses exhibit similar plasticity regulated by BDNF. Signalling through the receptor tropomyosin-related kinase B16 (TrkB) to CAMKII, BDNF promotes AMPA receptor trafficking to the glioma cell membrane, resulting in increased amplitude of glutamate-evoked currents in the malignant cells. Linking plasticity of glioma synaptic strength to tumour growth, graded optogenetic control of glioma membrane potential demonstrates that greater depolarizing current amplitude promotes increased glioma proliferation. This potentiation of malignant synaptic strength shares mechanistic features with synaptic plasticity17-22 that contributes to memory and learning in the healthy brain23-26. BDNF-TrkB signalling also regulates the number of neuron-to-glioma synapses. Abrogation of activity-regulated BDNF secretion from the brain microenvironment or loss of glioma TrkB expression robustly inhibits tumour progression. Blocking TrkB genetically or pharmacologically abrogates these effects of BDNF on glioma synapses and substantially prolongs survival in xenograft models of paediatric glioblastoma and diffuse intrinsic pontine glioma. Together, these findings indicate that BDNF-TrkB signalling promotes malignant synaptic plasticity and augments tumour progression.
Collapse
Affiliation(s)
- Kathryn R Taylor
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Tara Barron
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Alexa Hui
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Avishay Spitzer
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Belgin Yalçin
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Alexis E Ivec
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Anna C Geraghty
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Griffin G Hartmann
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Marlene Arzt
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Shawn M Gillespie
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Yoon Seok Kim
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Samin Maleki Jahan
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Helena Zhang
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Kiarash Shamardani
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Minhui Su
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Lijun Ni
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Peter P Du
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Pamelyn J Woo
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Arianna Silva-Torres
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Humsa S Venkatesh
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Rebecca Mancusi
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Anitha Ponnuswami
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Sara Mulinyawe
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Michael B Keough
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Isabelle Chau
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Razina Aziz-Bose
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Mario L Suvà
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- Department of Pediatrics, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University, Stanford, CA, USA.
- Department of Neurosurgery, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford California, Stanford, CA, USA.
| |
Collapse
|
5
|
Andreska T, Lüningschrör P, Wolf D, McFleder RL, Ayon-Olivas M, Rattka M, Drechsler C, Perschin V, Blum R, Aufmkolk S, Granado N, Moratalla R, Sauer M, Monoranu C, Volkmann J, Ip CW, Stigloher C, Sendtner M. DRD1 signaling modulates TrkB turnover and BDNF sensitivity in direct pathway striatal medium spiny neurons. Cell Rep 2023; 42:112575. [PMID: 37252844 DOI: 10.1016/j.celrep.2023.112575] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 03/09/2023] [Accepted: 05/14/2023] [Indexed: 06/01/2023] Open
Abstract
Disturbed motor control is a hallmark of Parkinson's disease (PD). Cortico-striatal synapses play a central role in motor learning and adaption, and brain-derived neurotrophic factor (BDNF) from cortico-striatal afferents modulates their plasticity via TrkB in striatal medium spiny projection neurons (SPNs). We studied the role of dopamine in modulating the sensitivity of direct pathway SPNs (dSPNs) to BDNF in cultures of fluorescence-activated cell sorting (FACS)-enriched D1-expressing SPNs and 6-hydroxydopamine (6-OHDA)-treated rats. DRD1 activation causes enhanced TrkB translocation to the cell surface and increased sensitivity for BDNF. In contrast, dopamine depletion in cultured dSPN neurons, 6-OHDA-treated rats, and postmortem brain of patients with PD reduces BDNF responsiveness and causes formation of intracellular TrkB clusters. These clusters associate with sortilin related VPS10 domain containing receptor 2 (SORCS-2) in multivesicular-like structures, which apparently protects them from lysosomal degradation. Thus, impaired TrkB processing might contribute to disturbed motor function in PD.
Collapse
Affiliation(s)
- Thomas Andreska
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany
| | - Patrick Lüningschrör
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany
| | - Daniel Wolf
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany
| | - Rhonda L McFleder
- Department of Neurology, University Hospital Wuerzburg, 97080 Wuerzburg, Germany
| | - Maurilyn Ayon-Olivas
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany
| | - Marta Rattka
- Department of Neurology, University Hospital Wuerzburg, 97080 Wuerzburg, Germany
| | - Christine Drechsler
- Department of Microbiology, Biocenter, Julius-Maximilians-University Wuerzburg, 97074 Wuerzburg, Germany
| | - Veronika Perschin
- Imaging Core Facility of the Biocenter, Julius-Maximilians-University Wuerzburg, 97074 Wuerzburg, Germany
| | - Robert Blum
- Department of Neurology, University Hospital Wuerzburg, 97080 Wuerzburg, Germany
| | - Sarah Aufmkolk
- Department of Biotechnology and Biophysics, Julius-Maximilians-University Wuerzburg, 97074 Wuerzburg, Germany; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Noelia Granado
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; CIBERNED, Instituto de Salud Carlos III, 28002 Madrid, Spain
| | - Rosario Moratalla
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; CIBERNED, Instituto de Salud Carlos III, 28002 Madrid, Spain
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Julius-Maximilians-University Wuerzburg, 97074 Wuerzburg, Germany
| | - Camelia Monoranu
- Department for Neuropathology, Julius-Maximilians-University Wuerzburg, 97080 Wuerzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital Wuerzburg, 97080 Wuerzburg, Germany
| | - Chi Wang Ip
- Department of Neurology, University Hospital Wuerzburg, 97080 Wuerzburg, Germany
| | - Christian Stigloher
- Imaging Core Facility of the Biocenter, Julius-Maximilians-University Wuerzburg, 97074 Wuerzburg, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany.
| |
Collapse
|
6
|
Huang M, Bin NR, Rai J, Ma K, Chow CH, Eide S, Harada H, Xiao J, Feng D, Sun HS, Feng ZP, Gaisano HY, Pessin JE, Monnier PP, Okamoto K, Zhang L, Sugita S. Neuronal SNAP-23 is critical for synaptic plasticity and spatial memory independently of NMDA receptor regulation. iScience 2023; 26:106664. [PMID: 37168570 PMCID: PMC10165271 DOI: 10.1016/j.isci.2023.106664] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/30/2023] [Accepted: 04/06/2023] [Indexed: 05/13/2023] Open
Abstract
SNARE-mediated membrane fusion plays a crucial role in presynaptic vesicle exocytosis and also in postsynaptic receptor delivery. The latter is considered particularly important for synaptic plasticity and learning and memory, yet the identity of the key SNARE proteins remains elusive. Here, we investigate the role of neuronal synaptosomal-associated protein-23 (SNAP-23) by analyzing pyramidal-neuron specific SNAP-23 conditional knockout (cKO) mice. Electrophysiological analysis of SNAP-23 deficient neurons using acute hippocampal slices showed normal basal neurotransmission in CA3-CA1 synapses with unchanged AMPA and NMDA currents. Nevertheless, we found theta-burst stimulation-induced long-term potentiation (LTP) was vastly diminished in SNAP-23 cKO slices. Moreover, unlike syntaxin-4 cKO mice where both basal neurotransmission and LTP decrease manifested changes in a broad set of behavioral tasks, deficits of SNAP-23 cKO are more limited to spatial memory. Our data reveal that neuronal SNAP-23 is selectively crucial for synaptic plasticity and spatial memory without affecting basal glutamate receptor function.
Collapse
Affiliation(s)
- Mengjia Huang
- Division of Experimental & Translational Neuroscience, Krembil Brain Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Na-Ryum Bin
- Division of Experimental & Translational Neuroscience, Krembil Brain Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jayant Rai
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G1X5, Canada
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ke Ma
- Division of Experimental & Translational Neuroscience, Krembil Brain Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Department of Pediatrics, The First Hospital of Jilin University, Changchun 130021, China
| | - Chun Hin Chow
- Division of Experimental & Translational Neuroscience, Krembil Brain Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sarah Eide
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hidekiyo Harada
- Donald K. Johnson Eye Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Jianbing Xiao
- Division of Experimental & Translational Neuroscience, Krembil Brain Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Anatomy, Harbin Medical University, Harbin 150081, China
| | - Daorong Feng
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Hong-Shuo Sun
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Anatomy, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Zhong-Ping Feng
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Herbert Y. Gaisano
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jeffrey E. Pessin
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Philippe P. Monnier
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Donald K. Johnson Eye Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Kenichi Okamoto
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G1X5, Canada
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Liang Zhang
- Division of Experimental & Translational Neuroscience, Krembil Brain Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shuzo Sugita
- Division of Experimental & Translational Neuroscience, Krembil Brain Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
7
|
Gall CM, Le AA, Lynch G. Sex differences in synaptic plasticity underlying learning. J Neurosci Res 2023; 101:764-782. [PMID: 33847004 PMCID: PMC10337639 DOI: 10.1002/jnr.24844] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 11/09/2022]
Abstract
Although sex differences in learning behaviors are well documented, sexual dimorphism in the synaptic processes of encoding is only recently appreciated. Studies in male rodents have built upon the discovery of long-term potentiation (LTP), and acceptance of this activity-dependent increase in synaptic strength as a mechanism of encoding, to identify synaptic receptors and signaling activities that coordinate the activity-dependent remodeling of the subsynaptic actin cytoskeleton that is critical for enduring potentiation and memory. These molecular substrates together with other features of LTP, as characterized in males, have provided an explanation for a range of memory phenomena including multiple stages of consolidation, the efficacy of spaced training, and the location of engrams at the level of individual synapses. In the present report, we summarize these findings and describe more recent results from our laboratories showing that in females the same actin regulatory mechanisms are required for hippocampal LTP and memory but, in females only, the engagement of both modulatory receptors such as TrkB and synaptic signaling intermediaries including Src and ERK1/2 requires neuron-derived estrogen and signaling through membrane-associated estrogen receptor α (ERα). Moreover, in association with the additional ERα involvement, females exhibit a higher threshold for hippocampal LTP and spatial learning. We propose that the distinct LTP threshold in females contributes to as yet unappreciated sex differences in information processing and features of learning and memory.
Collapse
Affiliation(s)
- Christine M. Gall
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Aliza A. Le
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Gary Lynch
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| |
Collapse
|
8
|
Jiang F, Bello ST, Gao Q, Lai Y, Li X, He L. Advances in the Electrophysiological Recordings of Long-Term Potentiation. Int J Mol Sci 2023; 24:ijms24087134. [PMID: 37108295 PMCID: PMC10138642 DOI: 10.3390/ijms24087134] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Understanding neuronal firing patterns and long-term potentiation (LTP) induction in studying learning, memory, and neurological diseases is critical. However, recently, despite the rapid advancement in neuroscience, we are still constrained by the experimental design, detection tools for exploring the mechanisms and pathways involved in LTP induction, and detection ability of neuronal action potentiation signals. This review will reiterate LTP-related electrophysiological recordings in the mammalian brain for nearly 50 years and explain how excitatory and inhibitory neural LTP results have been detected and described by field- and single-cell potentials, respectively. Furthermore, we focus on describing the classic model of LTP of inhibition and discuss the inhibitory neuron activity when excitatory neurons are activated to induce LTP. Finally, we propose recording excitatory and inhibitory neurons under the same experimental conditions by combining various electrophysiological technologies and novel design suggestions for future research. We discussed different types of synaptic plasticity, and the potential of astrocytes to induce LTP also deserves to be explored in the future.
Collapse
Affiliation(s)
- Feixu Jiang
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
| | | | - Qianqian Gao
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
| | - Yuanying Lai
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
| | - Xiao Li
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
- Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Ling He
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
- Research Institute of City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
9
|
Kweon J, Vigne MM, Jones RN, Carpenter LL, Brown JC. Practice makes plasticity: 10-Hz rTMS enhances LTP-like plasticity in musicians and athletes. Front Neural Circuits 2023; 17:1124221. [PMID: 37025991 PMCID: PMC10070804 DOI: 10.3389/fncir.2023.1124221] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/24/2023] [Indexed: 04/08/2023] Open
Abstract
Motor skill learning has been linked to functional and structural changes in the brain. Musicians and athletes undergo intensive motor training through the practice of an instrument or sport and have demonstrated use-dependent plasticity that may be subserved by long-term potentiation (LTP) processes. We know less, however, about whether the brains of musicians and athletes respond to plasticity-inducing interventions, such as repetitive transcranial magnetic stimulation (rTMS), differently than those without extensive motor training. In a pharmaco-rTMS study, we evaluated motor cortex excitability before and after an rTMS protocol in combination with oral administration of D-cycloserine (DCS) or placebo. In a secondary covariate analysis, we compared results between self-identified musicians and athletes (M&As) and non-musicians and athletes (non-M&As). Three TMS measures of cortical physiology were used to evaluate plasticity. We found that M&As did not have higher baseline corticomotor excitability. However, a plasticity-inducing protocol (10-Hz rTMS in combination with DCS) strongly facilitated motor-evoked potentials (MEPs) in M&As, but only weakly in non-M&As. Placebo and rTMS produced modest facilitation in both groups. Our findings suggest that motor practice and learning create a neuronal environment more responsive to plasticity-inducing events, including rTMS. These findings may explain one factor contributing to the high inter-individual variability found with MEP data. Greater capacity for plasticity holds implications for learning paradigms, such as psychotherapy and rehabilitation, by facilitating LTP-like activation of key networks, including recovery from neurological/mental disorders.
Collapse
Affiliation(s)
- Jamie Kweon
- Neuromodulation Research Facility, TMS Clinic, Butler Hospital, Providence, RI, United States
| | - Megan M. Vigne
- Neuromodulation Research Facility, TMS Clinic, Butler Hospital, Providence, RI, United States
| | - Richard N. Jones
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, United States
- Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Linda L. Carpenter
- Neuromodulation Research Facility, TMS Clinic, Butler Hospital, Providence, RI, United States
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Joshua C. Brown
- Neuromodulation Research Facility, TMS Clinic, Butler Hospital, Providence, RI, United States
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, United States
- Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI, United States
- *Correspondence: Joshua C. Brown
| |
Collapse
|
10
|
Brown JC, Higgins ES, George MS. Synaptic Plasticity 101: The Story of the AMPA Receptor for the Brain Stimulation Practitioner. Neuromodulation 2022; 25:1289-1298. [PMID: 35088731 PMCID: PMC10479373 DOI: 10.1016/j.neurom.2021.09.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/10/2021] [Accepted: 09/08/2021] [Indexed: 02/04/2023]
Abstract
The fields of Neurobiology and Neuromodulation have never been closer. Consequently, the phrase "synaptic plasticity" has become very familiar to non-basic scientists, without actually being very familiar. We present the "Story of the AMPA receptor," an easy-to-understand "10,000 ft" narrative overview of synaptic plasticity, oriented toward the brain stimulation clinician or scientist without basic science training. Neuromodulation is unparalleled in its capacity to both modulate and probe plasticity, yet many are not comfortable with their grasp of the topic. Here, we describe the seminal discoveries that defined the canonical mechanisms of long-term potentiation (LTP), long-term depression (LTD), and homeostatic plasticity. We then provide a conceptual framework for how plasticity at the synapse is accomplished, describing the functional roles of N-methyl-d-aspartate (NMDA) receptors and calcium, their effect on calmodulin, phosphatases (ie, calcineurin), kinases (ie, calcium/calmodulin-dependent protein kinase [CaMKII]), and structural "scaffolding" proteins (ie, post-synaptic density protein [PSD-95]). Ultimately, we describe how these affect the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor. More specifically, AMPA receptor delivery to (LTP induction), removal from (LTD), or recycling within (LTP maintenance) the synapse is determined by the status of phosphorylation and protein binding at specific sites on the tails of AMPA receptor subunits: GluA1 and GluA2. Finally, we relate these to transcranial magnetic stimulation (TMS) treatment, highlighting evidences for LTP as the basis of high-frequency TMS therapy, and briefly touch on the role of plasticity for other brain stimulation modalities. In summary, we present Synaptic Plasticity 101 as a singular introductory reference for those less familiar with the mechanisms of synaptic plasticity.
Collapse
Affiliation(s)
- Joshua C Brown
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA; Department of Neurology, Medical University of South Carolina, Charleston, SC, USA; Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA.
| | - Edmund S Higgins
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Mark S George
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA; Ralph Johnson VA Medical Center, Charleston, SC, USA
| |
Collapse
|
11
|
Díaz-Alonso J, Nicoll RA. AMPA receptor trafficking and LTP: Carboxy-termini, amino-termini and TARPs. Neuropharmacology 2021; 197:108710. [PMID: 34271016 PMCID: PMC9122021 DOI: 10.1016/j.neuropharm.2021.108710] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/28/2021] [Accepted: 07/08/2021] [Indexed: 12/11/2022]
Abstract
AMPA receptors (AMPARs) are fundamental elements in excitatory synaptic transmission and synaptic plasticity in the CNS. Long term potentiation (LTP), a form of synaptic plasticity which contributes to learning and memory formation, relies on the accumulation of AMPARs at the postsynapse. This phenomenon requires the coordinated recruitment of different elements in the AMPAR complex. Based on recent research reviewed herein, we propose an updated AMPAR trafficking and LTP model which incorporates both extracellular as well as intracellular mechanisms. This article is part of the special Issue on 'Glutamate Receptors - AMPA receptors'.
Collapse
Affiliation(s)
- Javier Díaz-Alonso
- Department of Anatomy and Neurobiology, USA; Center for the Neurobiology of Learning and Memory, University of California at Irvine, USA.
| | - Roger A Nicoll
- Departments of Cellular and Molecular Pharmacology, USA; Physiology, University of California at San Francisco, USA.
| |
Collapse
|
12
|
Hayashi Y. Molecular mechanism of hippocampal long-term potentiation - Towards multiscale understanding of learning and memory. Neurosci Res 2021; 175:3-15. [PMID: 34375719 DOI: 10.1016/j.neures.2021.08.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022]
Abstract
Long-term potentiation (LTP) of synaptic transmission is considered to be a cellular counterpart of learning and memory. Activation of postsynaptic NMDA type glutamate receptor (NMDA-R) induces trafficking of AMPA type glutamate receptors (AMPA-R) and other proteins to the synapse in sequential fashion. At the same time, the dendritic spine expands for long-term and modulation of actin underlies this (structural LTP or sLTP). How these changes persist despite constant diffusion and turnover of the component proteins have been the central focus of the current LTP research. Signaling triggered by Ca2+-influx via NMDA-R triggers kinase including Ca2+/calmodulin-dependent protein kinase II (CaMKII). CaMKII can sustain longer-term biochemical signaling by forming a reciprocally-activating kinase-effector complex with its substrate proteins including Tiam1, thereby regulating persistence of the downstream signaling. Furthermore, activated CaMKII can condense at the synapse through the mechanism of liquid-liquid phase separation (LLPS). This increases the binding capacity at the synapse, thereby contributing to the maintenance of enlarged protein complexes. It may also serve as the synapse tag, which captures newly synthesized proteins.
Collapse
Affiliation(s)
- Yasunori Hayashi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan.
| |
Collapse
|
13
|
Interleukin-6: A neuro-active cytokine contributing to cognitive impairment in Duchenne muscular dystrophy? Cytokine 2020; 133:155134. [DOI: 10.1016/j.cyto.2020.155134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/24/2022]
|
14
|
Purkey AM, Dell’Acqua ML. Phosphorylation-Dependent Regulation of Ca 2+-Permeable AMPA Receptors During Hippocampal Synaptic Plasticity. Front Synaptic Neurosci 2020; 12:8. [PMID: 32292336 PMCID: PMC7119613 DOI: 10.3389/fnsyn.2020.00008] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/18/2020] [Indexed: 01/28/2023] Open
Abstract
Experience-dependent learning and memory require multiple forms of plasticity at hippocampal and cortical synapses that are regulated by N-methyl-D-aspartate receptors (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type ionotropic glutamate receptors (NMDAR, AMPAR). These plasticity mechanisms include long-term potentiation (LTP) and depression (LTD), which are Hebbian input-specific mechanisms that rapidly increase or decrease AMPAR synaptic strength at specific inputs, and homeostatic plasticity that globally scales-up or -down AMPAR synaptic strength across many or even all inputs. Frequently, these changes in synaptic strength are also accompanied by a change in the subunit composition of AMPARs at the synapse due to the trafficking to and from the synapse of receptors lacking GluA2 subunits. These GluA2-lacking receptors are most often GluA1 homomeric receptors that exhibit higher single-channel conductance and are Ca2+-permeable (CP-AMPAR). This review article will focus on the role of protein phosphorylation in regulation of GluA1 CP-AMPAR recruitment and removal from hippocampal synapses during synaptic plasticity with an emphasis on the crucial role of local signaling by the cAMP-dependent protein kinase (PKA) and the Ca2+calmodulin-dependent protein phosphatase 2B/calcineurin (CaN) that is coordinated by the postsynaptic scaffold protein A-kinase anchoring protein 79/150 (AKAP79/150).
Collapse
Affiliation(s)
| | - Mark L. Dell’Acqua
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
15
|
Behuet S, Cremer JN, Cremer M, Palomero-Gallagher N, Zilles K, Amunts K. Developmental Changes of Glutamate and GABA Receptor Densities in Wistar Rats. Front Neuroanat 2019; 13:100. [PMID: 31920569 PMCID: PMC6933313 DOI: 10.3389/fnana.2019.00100] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/02/2019] [Indexed: 12/02/2022] Open
Abstract
Neurotransmitters and their receptors are key molecules of signal transduction and subject to various changes during pre- and postnatal development. Previous studies addressed ontogeny at the level of neurotransmitters and expression of neurotransmitter receptor subunits. However, developmental changes in receptor densities to this day are not well understood. Here, we analyzed developmental changes in excitatory glutamate and inhibitory γ-aminobutyric acid (GABA) receptors in adjacent sections of the rat brain by means of quantitative in vitro receptor autoradiography. Receptor densities of the ionotropic glutamatergic receptors α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), kainate and N-methyl-D-aspartate (NMDA) as well as of the ionotropic GABAA and metabotropic GABAB receptors were investigated using specific high-affinity ligands. For each receptor binding site, significant density differences were demonstrated in the investigated regions of interest [olfactory bulb, striatum, hippocampus, and cerebellum] and developmental stages [postnatal day (P) 0, 10, 20, 30 and 90]. In particular, we showed that the glutamatergic and GABAergic receptor densities were already present between P0 and P10 in all regions of interest, which may indicate the early relevance of these receptors for brain development. A transient increase of glutamatergic receptor densities in the hippocampus was found, indicating their possible involvement in synaptic plasticity. We demonstrated a decline of NMDA receptor densities in the striatum and hippocampus from P30 to P90, which could be due to synapse elimination, a process that redefines neuronal networks in postnatal brains. Furthermore, the highest increase in GABAA receptor densities from P10 to P20 coincides with the developmental shift from excitatory to inhibitory GABA transmission. Moreover, the increase from P10 to P20 in GABAA receptor densities in the cerebellum corresponds to a point in time when functional GABAergic synapses are formed. Taken together, the present data reveal differential changes in glutamate and GABA receptor densities during postnatal rat brain development, which may contribute to their specific functions during ontogenesis, thus providing a deeper understanding of brain ontogenesis and receptor function.
Collapse
Affiliation(s)
- Sabrina Behuet
- Institute of Neuroscience and Medicine (INM-1), Jülich Research Centre, Jülich, Germany
| | | | - Markus Cremer
- Institute of Neuroscience and Medicine (INM-1), Jülich Research Centre, Jülich, Germany
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Jülich Research Centre, Jülich, Germany.,Cécile and Oskar Vogt Institute of Brain Research, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Jülich Research Centre, Jülich, Germany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Jülich Research Centre, Jülich, Germany.,Cécile and Oskar Vogt Institute of Brain Research, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
16
|
Reyes-Garcia SZ, de Almeida ACG, Ortiz-Villatoro NN, Scorza FA, Cavalheiro EA, Scorza CA. Robust Network Inhibition and Decay of Early-Phase LTP in the Hippocampal CA1 Subfield of the Amazon Rodent Proechimys. Front Neural Circuits 2018; 12:81. [PMID: 30337859 PMCID: PMC6180286 DOI: 10.3389/fncir.2018.00081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 09/13/2018] [Indexed: 01/28/2023] Open
Abstract
Background: Diverse forms of long-term potentiation (LTP) have been described, but one of the most investigated is encountered in the glutamatergic synapses of the hippocampal cornu Ammonis (CA1) subfield. However, little is known about synaptic plasticity in wildlife populations. Laboratory animals are extremely inbred populations that have been disconnected from their natural environment and so their essential ecological aspects are entirely absent. Proechimys are small rodents from Brazil’s Amazon rainforest and their nervous systems have evolved to carry out specific tasks of their unique ecological environment. It has also been shown that long-term memory duration did not persist for 24-h in Proechimys, in contrast to Wistar rats, when both animal species were assessed by the plus-maze discrimination avoidance task and object recognition test. Methods: In this work, different protocols, such as theta burst, single tetanic burst or multiple trains of high frequency stimulation (HFS), were used to induce LTP in hippocampal brain slices of Proechimys and Wistar rats. Results: A protocol-independent fast decay of early-phase LTP at glutamatergic synapses of the CA1 subfield was encountered in Proechimys. Long-term depression (LTD) and baseline paired-pulse facilitation (PPF) were investigated but no differences were found between animal species. Input/output (I/O) relationships suggested lower excitability in Proechimys in comparison to Wistar rats. Bath application of d-(-)-2-amino-5-phosphonopentanoicacid (D-AP5) and CNQX prevented the induction of LTP in both Proechimys and Wistar. However, in marked contrast to Wistar rats, LTP induction was not facilitated by the GABAA antagonist in the Amazon rodents, even higher concentrations failed to facilitate LTP in Proechimys. Next, the effects of GABAA inhibition on spontaneous activity as well as evoked field potentials (FPs) were evaluated in CA1 pyramidal cells. Likewise, much lower activity was detected in Proechimys brain slices in comparison to those of the Wistar rats. Conclusions: These findings suggest a possible high inhibitory tone in the CA1 network mediated by GABAA receptors in the Amazon rodents. Currently, neuroscience research still seeks to reveal molecular pathways that control learning and memory processes, Proechimys may prove useful in identifying such mechanisms in complement to traditional animal models.
Collapse
Affiliation(s)
- Selvin Z Reyes-Garcia
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.,Departamento de Ciencias Morfológicas, Facultad de Ciencias Médicas, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Antônio-Carlos Guimarães de Almeida
- Laboratório de Neurociência Experimental e Computacional, Departamento de Engenharia de Biossistemas, Universidade Federal de São João del-Rei, São João del-Rei, Brazil
| | - Nancy N Ortiz-Villatoro
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fulvio A Scorza
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Esper A Cavalheiro
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Carla A Scorza
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
17
|
Lodge D, Watkins JC, Bortolotto ZA, Jane DE, Volianskis A. The 1980s: D-AP5, LTP and a Decade of NMDA Receptor Discoveries. Neurochem Res 2018; 44:516-530. [PMID: 30284673 PMCID: PMC6420420 DOI: 10.1007/s11064-018-2640-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/12/2018] [Accepted: 09/17/2018] [Indexed: 01/02/2023]
Abstract
In the 1960s and 70s, biochemical and pharmacological evidence was pointing toward glutamate as a synaptic transmitter at a number of distinct receptor classes, known as NMDA and non-NMDA receptors. The field, however, lacked a potent and highly selective antagonist to block these putative postsynaptic receptors. So, the discoveries in the early 1980s of d-AP5 as a selective NMDA receptor antagonist and of its ability to block synaptic events and plasticity were a major breakthrough leading to an explosion of knowledge about this receptor subtype. During the next 10 years, the role of NMDA receptors was established in synaptic transmission, long-term potentiation, learning and memory, epilepsy, pain, among others. Hints at pharmacological heterogeneity among NMDA receptors were followed by the cloning of separate subunits. The purpose of this review is to recognize the important contributions made in the 1980s by Graham L. Collingridge and other key scientists to the advances in our understanding of the functions of NMDA receptors throughout the central nervous system.
Collapse
Affiliation(s)
- D Lodge
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - J C Watkins
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Z A Bortolotto
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - D E Jane
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - A Volianskis
- School of Clinical Sciences, University of Bristol, Bristol, UK.
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
18
|
Galaj E, Seepersad N, Dakmak Z, Ranaldi R. Blockade of NMDA receptors blocks the acquisition of cocaine conditioned approach in rats. Eur J Pharmacol 2017; 818:480-485. [PMID: 29157983 DOI: 10.1016/j.ejphar.2017.11.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 11/13/2017] [Accepted: 11/16/2017] [Indexed: 10/18/2022]
Abstract
Conditioned stimuli (CSs) exert motivational effects on both adaptive and pathological reward-related behaviors, including drug taking and seeking. We developed a paradigm that allows us to investigate the neuropharmacology by which previously neutral stimuli acquire the capacity to function as CSs and elicit (intravenous) cocaine conditioned approach and used this paradigm to test the role of NMDA receptor stimulation in the acquisition of cocaine conditioned approach. Rats were injected systemically with the NMDA receptor antagonist, MK-801, before the start of 4 consecutive conditioning sessions, each of which consisted of 20 randomly presented light/tone (CS) presentations paired with cocaine infusion contingent upon nose pokes. Rats later were subjected to a CS-only test. To test the role of NMDA receptor stimulation in the already established conditioned approach, rats were injected with MK-801 prior to the CS-only test that occurred after 18 CS-cocaine conditioning sessions. Blockade of NMDA receptors significantly impaired the acquisition of cocaine-conditioned approach as indicated by the emission of significantly fewer nose pokes and significantly longer latencies to nose poke during CS presentations. When MK-801 treatment was applied after the acquisition of conditioned approach responding it had no effect on these measures. These results suggest that NMDA receptor stimulation plays an important role in the acquisition of reward-related conditioned responses driven by intravenous cocaine-associated CSs.
Collapse
Affiliation(s)
- Ewa Galaj
- Neuropsychology Doctoral Program, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Neal Seepersad
- Department of Psychology, Queens College, City University of New York, Flushing, NY 11367, USA
| | - Zena Dakmak
- Department of Psychology, Queens College, City University of New York, Flushing, NY 11367, USA
| | - Robert Ranaldi
- Neuropsychology Doctoral Program, The Graduate Center of the City University of New York, New York, NY 10016, USA; Department of Psychology, Queens College, City University of New York, Flushing, NY 11367, USA.
| |
Collapse
|
19
|
Kim WB, Cho JH. Encoding of Discriminative Fear Memory by Input-Specific LTP in the Amygdala. Neuron 2017; 95:1129-1146.e5. [PMID: 28823727 DOI: 10.1016/j.neuron.2017.08.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/09/2017] [Accepted: 08/01/2017] [Indexed: 02/07/2023]
Abstract
In auditory fear conditioning, experimental subjects learn to associate an auditory conditioned stimulus (CS) with an aversive unconditioned stimulus. With sufficient training, animals fear conditioned to an auditory CS show fear response to the CS, but not to irrelevant auditory stimuli. Although long-term potentiation (LTP) in the lateral amygdala (LA) plays an essential role in auditory fear conditioning, it is unknown whether LTP is induced selectively in the neural pathways conveying specific CS information to the LA in discriminative fear learning. Here, we show that postsynaptically expressed LTP is induced selectively in the CS-specific auditory pathways to the LA in a mouse model of auditory discriminative fear conditioning. Moreover, optogenetically induced depotentiation of the CS-specific auditory pathways to the LA suppressed conditioned fear responses to the CS. Our results suggest that input-specific LTP in the LA contributes to fear memory specificity, enabling adaptive fear responses only to the relevant sensory cue. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Woong Bin Kim
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Jun-Hyeong Cho
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
20
|
Abstract
Synapses are essential units for the flow of information in the brain. Over the last 70 years, synapses have been widely studied in multiple animal models including worms, fruit flies, and rodents. In comparison, the study of human synapses has evolved significantly slower, mainly because of technical limitations. However, three novel methods allowing the analysis of molecular, morphological, and functional properties of human synapses may expand our knowledge of the human brain. Here, we briefly describe these methods, and evaluate how the information provided by each unique approach may contribute to the functional and anatomical analysis of the synaptic component of human brain circuitries. In particular, using tissue from cryopreserved human brains, synaptic plasticity can be studied in isolated synaptosomes by fluorescence analysis of single-synapse long-term potentiation (FASS-LTP), and subpopulations of synapses can be thoroughly assessed in the ribbons of brain tissue by array tomography (AT). Currently, it is also possible to quantify synaptic density in the living human brain by positron emission tomography (PET), using a novel synaptic radio-ligand. Overall, data provided by FASS-LTP, AT, and PET may significantly contribute to the global understanding of synaptic structure and function in both healthy and diseased human brains, thus directly impacting translational research.
Collapse
Affiliation(s)
- G Aleph Prieto
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Carl W Cotman
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| |
Collapse
|
21
|
Nicoll RA. A Brief History of Long-Term Potentiation. Neuron 2017; 93:281-290. [DOI: 10.1016/j.neuron.2016.12.015] [Citation(s) in RCA: 547] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/08/2016] [Accepted: 12/08/2016] [Indexed: 12/19/2022]
|
22
|
Pharmacological Rescue of Long-Term Potentiation in Alzheimer Diseased Synapses. J Neurosci 2016; 37:1197-1212. [PMID: 27986924 DOI: 10.1523/jneurosci.2774-16.2016] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/05/2016] [Accepted: 12/09/2016] [Indexed: 01/05/2023] Open
Abstract
Long-term potentiation (LTP) is an activity-dependent and persistent increase in synaptic transmission. Currently available techniques to measure LTP are time-intensive and require highly specialized expertise and equipment, and thus are not well suited for screening of multiple candidate treatments, even in animal models. To expand and facilitate the analysis of LTP, here we use a flow cytometry-based method to track chemically induced LTP by detecting surface AMPA receptors in isolated synaptosomes: fluorescence analysis of single-synapse long-term potentiation (FASS-LTP). First, we demonstrate that FASS-LTP is simple, sensitive, and models electrically induced LTP recorded in intact circuitries. Second, we conducted FASS-LTP analysis in two well-characterized Alzheimer's disease (AD) mouse models (3xTg and Tg2576) and, importantly, in cryopreserved human AD brain samples. By profiling hundreds of synaptosomes, our data provide the first direct evidence to support the idea that synapses from AD brain are intrinsically defective in LTP. Third, we used FASS-LTP for drug evaluation in human synaptosomes. Testing a panel of modulators of cAMP and cGMP signaling pathways, FASS-LTP identified vardenafil and Bay-73-6691 (phosphodiesterase-5 and -9 inhibitors, respectively) as potent enhancers of LTP in synaptosomes from AD cases. These results indicate that our approach could provide the basis for protocols to study LTP in both healthy and diseased human brains, a previously unattainable goal. SIGNIFICANCE STATEMENT Learning and memory depend on the ability of synapses to strengthen in response to activity. Long-term potentiation (LTP) is a rapid and persistent increase in synaptic transmission that is thought to be affected in Alzheimer's disease (AD). However, direct evidence of LTP deficits in human AD brain has been elusive, primarily due to methodological limitations. Here, we analyze LTP in isolated synapses from AD brain using a novel approach that allows testing LTP in cryopreserved brain. Our analysis of hundreds of synapses supports the idea that AD-diseased synapses are intrinsically defective in LTP. Further, we identified pharmacological agents that rescue LTP in AD, thus opening up a new avenue for drug screening and evaluation of strategies for alleviating memory impairments.
Collapse
|
23
|
Concurrent antagonism of NMDA and AMPA receptors in the ventral tegmental area reduces the expression of conditioned approach learning in rats. Behav Brain Res 2015; 298:142-9. [PMID: 26542814 DOI: 10.1016/j.bbr.2015.10.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 10/09/2015] [Accepted: 10/29/2015] [Indexed: 02/06/2023]
Abstract
Conditioned stimuli (CSs) come to function as CSs by acquiring the capacity to activate the same mesocorticolimbic dopamine (DA) neurons activated by primary rewards, producing conditioned activation of these neurons and their associated motivational states. This model stipulates that CSs activate mesocorticolimbic DA systems through the activation of glutamate receptors on DA neurons in the ventral tegmental area (VTA). We tested the hypothesis that glutamate receptor stimulation in the VTA is necessary for the expression of conditioned approach. Rats were tested in a conditioned approach protocol that consisted of 7 consecutive conditioning sessions (light presentations and food were paired), one session with no light or food and one test session with only light stimulus (CS-only) presentations. The number of head entries during the CS and pre-CS (baseline) periods was used to calculate difference scores. Bilateral VTA microinjections of glutamate receptor antagonists were made prior to the CS-only session. Kynurenic acid (ionotropic glutamate receptor antagonist; 1.125-4.5 μg/0.5 μl) significantly reduced difference scores compared to vehicle (0 μg), whereas MCPG (metabotropic glutamate receptor antagonist; 1.875-7.5 μg), AP-5 (NMDA antagonist; 0.03125-2.0 μg), and NBQX (AMPA antagonist; 0.5-4.0 μg) had no effects. When AP-5 and NBQX were administered simultaneously at doses of 0.25/4.0 and 2.0/4.0 μg, respectively, the combination significantly reduced the difference scores compared to 0/0 μg, indicating a reduction in the expression of conditioned approach. These findings indicate that expression of conditioned approach learning requires NMDA or AMPA receptor stimulation in the VTA.
Collapse
|
24
|
Maren S. Out with the old and in with the new: Synaptic mechanisms of extinction in the amygdala. Brain Res 2015; 1621:231-8. [PMID: 25312830 PMCID: PMC4394019 DOI: 10.1016/j.brainres.2014.10.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/04/2014] [Indexed: 12/22/2022]
Abstract
Considerable research indicates that long-term synaptic plasticity in the amygdala underlies the acquisition of emotional memories, including those learned during Pavlovian fear conditioning. Much less is known about the synaptic mechanisms involved in other forms of associative learning, including extinction, that update fear memories. Extinction learning might reverse conditioning-related changes (e.g., depotentiation) or induce plasticity at inhibitory synapses (e.g., long-term potentiation) to suppress conditioned fear responses. Either mechanism must account for fear recovery phenomena after extinction, as well as savings of extinction after fear recovery. This article is part of a Special Issue entitled SI: Brain and Memory.
Collapse
Affiliation(s)
- Stephen Maren
- Department of Psychology and Institute for Neuroscience, Texas A&M University, USA
| |
Collapse
|
25
|
Modes and nodes explain the mechanism of action of vortioxetine, a multimodal agent (MMA): modifying serotonin's downstream effects on glutamate and GABA (gamma amino butyric acid) release. CNS Spectr 2015; 20:331-6. [PMID: 26062900 DOI: 10.1017/s1092852915000334] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Vortioxetine is an antidepressant with multiple pharmacologic modes of action at targets where serotonin neurons connect with other neurons. These actions modify the release of both glutamate and GABA (gamma amino butyric acid) within various brain circuits.
Collapse
|
26
|
Abstract
Conditioned fear requires neural activity in the basolateral amygdala (BLA) and medial prefrontal cortex (mPFC), structures that are densely interconnected at the synaptic level. Previous work has suggested that anatomical subdivisions of mPFC make distinct contributions to fear expression and inhibition, and that the functional output of this processing is relayed to the BLA complex. However, it remains unknown whether synaptic plasticity in mPFC-BLA networks contributes to fear memory encoding. Here we use optogenetics and ex vivo electrophysiology to reveal the impact of fear conditioning on BLA excitatory and feedforward inhibitory circuits formed by projections from infralimbic (IL) and prelimbic (PL) cortices. In naive mice, these pathways recruit equivalent excitation and feedforward inhibition in BLA principal neurons. However, fear learning leads to a selective decrease in inhibition:excitation balance in PL circuits that is attributable to a postsynaptic increase in AMPA receptor function. These data suggest a pathway-specific mechanism for fear memory encoding by adjustment of mPFC-BLA transmission. Upon reengagement of PL by conditioned cues, these modifications may serve to amplify emotional responses.
Collapse
|
27
|
Markad PR, Rohokale RS, Pawar NJ, Dhavale DD. d-Glucose based synthesis of proline–serine C–C linked central and right hand core of a kaitocephalin-a glutamate receptor antagonist. RSC Adv 2015. [DOI: 10.1039/c5ra17442b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synthesis of the proline–serine core of kaitocephalin starting from d-glucose, utilizing the Jocic–Reeve and Corey–Link reaction sequence as key steps.
Collapse
Affiliation(s)
- Pramod R. Markad
- Department of Chemistry
- Garware Research Centre
- Savitribai Phule Pune University (Formerly University of Pune)
- Pune-411007
- India
| | - Rajendra S. Rohokale
- Department of Chemistry
- Garware Research Centre
- Savitribai Phule Pune University (Formerly University of Pune)
- Pune-411007
- India
| | - Nitin J. Pawar
- Department of Chemistry
- Garware Research Centre
- Savitribai Phule Pune University (Formerly University of Pune)
- Pune-411007
- India
| | - Dilip D. Dhavale
- Department of Chemistry
- Garware Research Centre
- Savitribai Phule Pune University (Formerly University of Pune)
- Pune-411007
- India
| |
Collapse
|
28
|
Blockade of lysosomal acid ceramidase induces GluN2B-dependent Tau phosphorylation in rat hippocampal slices. Neural Plast 2014; 2014:196812. [PMID: 25276436 PMCID: PMC4170924 DOI: 10.1155/2014/196812] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/24/2014] [Accepted: 08/08/2014] [Indexed: 12/13/2022] Open
Abstract
The lysosomal acid ceramidase, an enzyme known to limit intracellular ceramide accumulation, has been reported to be defective in neurodegenerative disorders. We show here that rat hippocampal slices, preincubated with the acid ceramidase inhibitor (ACI) d-NMAPPD, exhibit increased N-methyl-D-aspartate (NMDA) receptor-mediated field excitatory postsynaptic potentials (fEPSPs) in CA1 synapses. The ACI by itself did not interfere with either paired pulse facilitation or alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor-mediated fEPSPs, indicating that its influence on synaptic transmission is postsynaptic in origin and specific to the NMDA subtype of glutamate receptors. From a biochemical perspective, we observed that Tau phosphorylation at the Ser262 epitope was highly increased in hippocampal slices preincubated with the ACI, an effect totally prevented by the global NMDA receptor antagonist D/L(−)-2-amino-5-phosphonovaleric acid (AP-5), the calcium chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA), and the GluN2B (but not the GluN2A) receptor antagonist RO25-6981. On the other hand, preincubation of hippocampal slices with the compound KN-62, an inhibitor known to interfere with calcium/calmodulin-dependent protein kinase II (CaMKII), totally abolished the effect of ACI on Tau phosphorylation at Ser262 epitopes. Collectively, these results provide experimental evidence that ceramides play an important role in regulating Tau phosphorylation in the hippocampus via a mechanism dependent on GluN2B receptor subunits and CaMKII activation.
Collapse
|
29
|
Cantanelli P, Sperduti S, Ciavardelli D, Stuppia L, Gatta V, Sensi SL. Age-Dependent Modifications of AMPA Receptor Subunit Expression Levels and Related Cognitive Effects in 3xTg-AD Mice. Front Aging Neurosci 2014; 6:200. [PMID: 25140151 PMCID: PMC4122177 DOI: 10.3389/fnagi.2014.00200] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 07/21/2014] [Indexed: 12/22/2022] Open
Abstract
GluA1, GluA2, GluA3, and GluA4 are the constitutive subunits of amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), the major mediators of fast excitatory transmission in the mammalian central nervous system. Most AMPARs are Ca2+-impermeable because of the presence of the GluA2 subunit. GluA2 mRNA undergoes an editing process that results in a Q–R substitution, a key factor in the regulation of AMPAR Ca2+-permeability. AMPARs lacking GluA2 or containing the unedited subunit are permeable to Ca2+ and Zn2+. The phenomenon physiologically modulates synaptic plasticity while, in pathologic conditions, leads to increased vulnerability to excitotoxic neuronal death. Given the importance of these subunits, we have therefore evaluated possible associations between changes in expression levels of AMPAR subunits and development of cognitive deficits in 3xTg-AD mice, a widely investigated transgenic mouse model of Alzheimer’s disease (AD). With quantitative real-time PCR analysis, we assayed hippocampal mRNA expression levels of GluA1–4 subunits occurring in young [3 months of age (m.o.a.)] and old (12 m.o.a) Tg-AD mice and made comparisons with levels found in age-matched wild type (WT) mice. Efficiency of GluA2 RNA editing was also analyzed. All animals were cognitively tested for learning short- and long-term spatial memory with the Morris Water Maze (MWM) navigation task. 3xTg-AD mice showed age-dependent decreases of mRNA levels for all the AMPAR subunits, with the exception of GluA2. Editing remained fully efficient with aging in 3xTg-AD and WT mice. A one-to-one correlation analysis between MWM performances and GluA1–4 mRNA expression profiles showed negative correlations between GluA2 levels and MWM performances in young 3xTg-AD mice. On the contrary, positive correlations between GluA2 mRNA and MWM performances were found in young WT mice. Our data suggest that increases of AMPARs that contain GluA1, GluA3, and GluA4 subunits may help in maintaining cognition in pre-symptomatic 3xTg-AD mice.
Collapse
Affiliation(s)
- Pamela Cantanelli
- Molecular Neurology Unit, Center of Excellence on Aging (CeSI), "G. d'Annunzio" University , Chieti , Italy
| | - Samantha Sperduti
- Functional Genetics Unit, Center of Excellence on Aging (CeSI), "G. d'Annunzio" University , Chieti , Italy ; Department of Psychological Sciences, School of Medicine and Health Sciences, "G. d'Annunzio" University , Chieti , Italy
| | - Domenico Ciavardelli
- Molecular Neurology Unit, Center of Excellence on Aging (CeSI), "G. d'Annunzio" University , Chieti , Italy ; School of Human and Social Science, Kore University of Enna , Enna , Italy
| | - Liborio Stuppia
- Functional Genetics Unit, Center of Excellence on Aging (CeSI), "G. d'Annunzio" University , Chieti , Italy ; Department of Psychological Sciences, School of Medicine and Health Sciences, "G. d'Annunzio" University , Chieti , Italy
| | - Valentina Gatta
- Functional Genetics Unit, Center of Excellence on Aging (CeSI), "G. d'Annunzio" University , Chieti , Italy ; Department of Psychological Sciences, School of Medicine and Health Sciences, "G. d'Annunzio" University , Chieti , Italy
| | - Stefano Luca Sensi
- Molecular Neurology Unit, Center of Excellence on Aging (CeSI), "G. d'Annunzio" University , Chieti , Italy ; Department of Neuroscience and Imaging, "G. d'Annunzio" University , Chieti , Italy ; Department of Neurology, Institute for Memory Impairments and Neurological Disorders, University of California Irvine , Irvine, CA , USA ; Department of Pharmacology, Institute for Memory Impairments and Neurological Disorders, University of California Irvine , Irvine, CA , USA
| |
Collapse
|
30
|
|
31
|
Hippocampal long-term potentiation is disrupted during expression and extinction but is restored after reinstatement of morphine place preference. J Neurosci 2014; 34:527-38. [PMID: 24403152 DOI: 10.1523/jneurosci.2838-13.2014] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Learned associations between environmental cues and morphine use play an important role in the maintenance and/or relapse of opioid addiction. Although previous studies suggest that context-dependent morphine treatment alters glutamatergic transmission and synaptic plasticity in the hippocampus, their role in morphine conditioned place preference (CPP) and reinstatement remains unknown. We investigated changes in synaptic plasticity and NMDAR expression in the hippocampus after the expression, extinction, and reinstatement of morphine CPP. Here we report that morphine CPP is associated with increased basal synaptic transmission, impaired hippocampal long-term potentiation (LTP), and increased synaptic expression of the NR1 and NR2b NMDAR subunits. Changes in synaptic plasticity, synaptic NR1 and NR2b expression, and morphine CPP were absent when morphine was not paired with a specific context. Furthermore, hippocampal LTP was impaired and synaptic NR2b expression was increased after extinction of morphine CPP, indicating that these alterations in plasticity may be involved in the mechanisms underlying the learning of drug-environment associations. After extinction of morphine CPP, a priming dose of morphine was sufficient to reinstate morphine CPP and was associated with LTP that was indistinguishable from saline control groups. In contrast, morphine CPP extinguished mice that received a saline priming dose did not show CPP and had disrupted hippocampal LTP. Finally, we found that reinstatement of morphine CPP was prevented by the selective blockade of the NR2b subunit in the hippocampus. Together, these data suggest that alterations in synaptic plasticity and glutamatergic transmission play an important role in the reinstatement of morphine CPP.
Collapse
|
32
|
Fakira AK, Portugal GS, Carusillo B, Melyan Z, Morón JA. Increased small conductance calcium-activated potassium type 2 channel-mediated negative feedback on N-methyl-D-aspartate receptors impairs synaptic plasticity following context-dependent sensitization to morphine. Biol Psychiatry 2014; 75:105-14. [PMID: 23735878 PMCID: PMC3992971 DOI: 10.1016/j.biopsych.2013.04.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 04/17/2013] [Accepted: 04/29/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND Hippocampal long-term potentiation (LTP) is impaired following repeated morphine administration paired with a novel context. This procedure produces locomotor sensitization that can be abolished by blocking calcium (Ca(2+))-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) in the hippocampus. However, the mechanisms underlying LTP impairment remain unclear. Here, we investigate the role of N-methyl-D-aspartate receptors (NMDARs), AMPARs, and small conductance Ca(2+)-activated potassium type 2 (SK2) channels in LTP induction after context-dependent sensitization to morphine. METHODS Mice were treated with saline or escalating doses of morphine (5, 8, 10, and 15 mg/kg) every 12 hours in a locomotor activity chamber and a challenge dose of 5 mg/kg morphine was given 1 week later. After the challenge, the hippocampi were removed to assay phosphatase 2A (PP2A) activity, NMDAR, and SK2 channel synaptic expression or to perform electrophysiological recordings. RESULTS Impaired hippocampal LTP, which accompanied morphine-induced context-dependent sensitization, could not be restored by blocking Ca(2+)-permeable AMPARs. Context-dependent sensitization to morphine altered hippocampal NMDAR subunit composition and enhanced the SK2 channel-mediated negative feedback on NMDAR. Increased PP2A activity observed following context-dependent sensitization suggests that the potentiated SK2 channel effect on NMDAR was mediated by increased SK2 sensitivity to Ca(2+). Finally, inhibition of SK2 channel or PP2A activity restored LTP. CONCLUSIONS Our studies demonstrate that the SK2 channel-NMDAR feedback loop plays a role in opiate-induced impairment of hippocampal plasticity and that the positive modulation of SK2 channels occurs via increases in PP2A activity. This provides further evidence that small conductance Ca(2+)-activated potassium channels play a role in drug-induced plasticity.
Collapse
Affiliation(s)
- Amanda K Fakira
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University Medical Center, New York, New York
| | - George S Portugal
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University Medical Center, New York, New York
| | - Brianna Carusillo
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University Medical Center, New York, New York
| | - Zare Melyan
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University Medical Center, New York, New York
| | - Jose A Morón
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University Medical Center, New York, New York.
| |
Collapse
|
33
|
Padamsey Z, Emptage N. Two sides to long-term potentiation: a view towards reconciliation. Philos Trans R Soc Lond B Biol Sci 2013; 369:20130154. [PMID: 24298155 DOI: 10.1098/rstb.2013.0154] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Almost since the discovery of long-term potentiation (LTP) in the hippocampus, its locus of expression has been debated. Throughout the years, convincing evidence has accumulated to suggest that LTP can be supported either presynaptically, by an increase in transmitter release, or postsynaptically, by an increase in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor number. However, whereas postsynaptic enhancement appears to be consistently obtained across studies following LTP induction, presynaptic enhancement is not as reliably observed. Such discrepancies, along with the failure to convincingly identify a retrograde messenger required for presynaptic change, have led to the general view that LTP is mainly supported postsynaptically, and certainly, research within the field for the past decade has been heavily focused on the postsynaptic locus. Here, we argue that LTP can be expressed at either synaptic locus, but that pre- and postsynaptic forms of LTP are dissociable phenomena mediated by distinct mechanistic processes, which are sensitive to different patterns of neuronal activity. This view of LTP helps to reconcile discrepancies across the literature and may put to rest a decades-long debate.
Collapse
Affiliation(s)
- Zahid Padamsey
- Department of Pharmacology, University of Oxford, , Oxford OX1 3QT, UK
| | | |
Collapse
|
34
|
Schmunk G, Gargus JJ. Channelopathy pathogenesis in autism spectrum disorders. Front Genet 2013; 4:222. [PMID: 24204377 PMCID: PMC3817418 DOI: 10.3389/fgene.2013.00222] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 10/09/2013] [Indexed: 01/12/2023] Open
Abstract
Autism spectrum disorder (ASD) is a syndrome that affects normal brain development and is characterized by impaired social interaction as well as verbal and non-verbal communication and by repetitive, stereotypic behavior. ASD is a complex disorder arising from a combination of multiple genetic and environmental factors that are independent from racial, ethnic and socioeconomical status. The high heritability of ASD suggests a strong genetic basis for the disorder. Furthermore, a mounting body of evidence implies a role of various ion channel gene defects (channelopathies) in the pathogenesis of autism. Indeed, recent genome-wide association, and whole exome- and whole-genome resequencing studies linked polymorphisms and rare variants in calcium, sodium and potassium channels and their subunits with susceptibility to ASD, much as they do with bipolar disorder, schizophrenia and other neuropsychiatric disorders. Moreover, animal models with these genetic variations recapitulate endophenotypes considered to be correlates of autistic behavior seen in patients. An ion flux across the membrane regulates a variety of cell functions, from generation of action potentials to gene expression and cell morphology, thus it is not surprising that channelopathies have profound effects on brain functions. In the present work, we summarize existing evidence for the role of ion channel gene defects in the pathogenesis of autism with a focus on calcium signaling and its downstream effects.
Collapse
Affiliation(s)
- Galina Schmunk
- Department of Physiology and Biophysics, University of California Irvine, CA, USA ; UCI Center for Autism Research and Treatment, School of Medicine, University of California Irvine, CA, USA
| | | |
Collapse
|
35
|
A multifunctional pipette for localized drug administration to brain slices. J Neurosci Methods 2013; 219:292-6. [PMID: 23969260 DOI: 10.1016/j.jneumeth.2013.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 07/11/2013] [Accepted: 08/10/2013] [Indexed: 11/23/2022]
Abstract
We have developed a superfusion method utilizing an open-volume microfluidic device for administration of pharmacologically active substances to selected areas in brain slices with high spatio-temporal resolution. The method consists of a hydrodynamically confined flow of the active chemical compound, which locally stimulates neurons in brain slices, applied in conjunction with electrophysiological recording techniques to analyze the response. The microfluidic device, which is a novel free-standing multifunctional pipette, allows diverse superfusion experiments, such as testing the effects of different concentrations of drugs or drug candidates on neurons in different cell layers with high positional accuracy, affecting only a small number of cells. We demonstrate herein the use of the method with electrophysiological recordings of pyramidal cells in hippocampal and prefrontal cortex brain slices from rats, determine the dependence of electric responses on the distance of the superfusion device from the recording site, document a multifold gain in solution exchange time as compared to whole slice perfusion, and show that the device is able to store and deliver up to four solutions in a series. Localized solution delivery by means of open-volume microfluidic technology also reduces reagent consumption and tissue culture expenses significantly, while allowing more data to be collected from a single tissue slice, thus reducing the number of laboratory animals to be sacrificed for a study.
Collapse
|
36
|
Uthayathas S, Parameshwaran K, Karuppagounder SS, Ahuja M, Dhanasekaran M, Suppiramaniam V. Selective inhibition of phosphodiesterase 5 enhances glutamatergic synaptic plasticity and memory in mice. Synapse 2013; 67:741-7. [PMID: 23620198 DOI: 10.1002/syn.21676] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 04/11/2013] [Indexed: 01/06/2023]
Abstract
Phosphodiesterases (PDEs) belong to a family of proteins that control metabolism of cyclic nucleotides. Targeting PDE5, for enhancing cellular function, is one of the therapeutic strategies for male erectile dysfunction. We have investigated whether in vivo inhibition of PDE5, which is expressed in several brain regions, will enhance memory and synaptic transmission in the hippocampus of healthy mice. We have found that acute administration of sildenafil, a specific PDE5 inhibitor, enhanced hippocampus-dependent memory tasks. To elucidate the underlying mechanism in the memory enhancement, effects of sildenafil on long-term potentiation (LTP) were measured. The level of LTP was significantly elevated, with concomitant increases in basal synaptic transmission, in mice treated with sildenafil (1 mg/kg/day) for 15 days compared to control mice. These results suggest that moderate PDE5 inhibition enhances memory by increasing synaptic plasticity and transmission in the hippocampus.
Collapse
Affiliation(s)
- Subramaniam Uthayathas
- Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, Auburn, Alabama; Department of Pharmacology, Howard University College of Medicine, Washington, DC
| | | | | | | | | | | |
Collapse
|
37
|
Moreth J, Kroker KS, Schwanzar D, Schnack C, von Arnim CAF, Hengerer B, Rosenbrock H, Kussmaul L. Globular and protofibrillar aβ aggregates impair neurotransmission by different mechanisms. Biochemistry 2013; 52:1466-76. [PMID: 23374097 DOI: 10.1021/bi3016444] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In Alzheimer's disease, substantial evidence indicates the causative role of soluble amyloid β (Aβ) aggregates. Although a variety of Aβ assemblies have been described, the debate about their individual relevance is still ongoing. One critical issue hampering this debate is the use of different methods for the characterization of endogenous and synthetic peptide and their intrinsic limitations for distinguishing Aβ aggregates. Here, we used different protocols for the establishment of prefibrillar Aβ assemblies with varying morphologies and sizes and compared them in a head-to-head fashion. Aggregation was characterized via the monomeric peptide over time until spheroidal, protofibrillar, or fibrillar Aβ aggregates were predominant. It could be shown that a change in the ionic environment induced a structural rearrangement, which consequently confounds the delineation of a measured neurotoxicity toward a distinct Aβ assembly. Here, neuronal binding and hippocampal neurotransmission were found to be suitable to account for the synaptotoxicity to different Aβ assemblies, based on the stability of the applied Aβ aggregates in these settings. In contrast to monomeric or fibrillar Aβ, different prefibrillar Aβ aggregates targeted neurons and impaired hippocampal neurotransmission with nanomolar potency, albeit by different modalities. Spheroidal Aβ aggregates inhibited NMDAR-dependent long-term potentiation, as opposed to protofibrillar Aβ aggregates, which inhibited AMPAR-dominated basal neurotransmission. In addition, a provoked structural conversion of spheroidal to protofibrillar Aβ assemblies resulted in a time-dependent suppression of basal neurotransmission, indicative of a mechanistic switch in synaptic impairment. Thus, we emphasize the importance of addressing the metastability of prefacto characterized Aβ aggregates in assigning a biological effect.
Collapse
Affiliation(s)
- Jens Moreth
- Department of CNS Diseases Research Germany, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse, Biberach an der Riss D-88397, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Tse YC, Bagot RC, Wong TP. Dynamic regulation of NMDAR function in the adult brain by the stress hormone corticosterone. Front Cell Neurosci 2012; 6:9. [PMID: 22408607 PMCID: PMC3294281 DOI: 10.3389/fncel.2012.00009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 02/17/2012] [Indexed: 12/18/2022] Open
Abstract
Stress and corticosteroids dynamically modulate the expression of synaptic plasticity at glutamatergic synapses in the developed brain. Together with alpha-amino-3-hydroxy-methyl-4-isoxazole propionic acid receptors (AMPAR), N-methyl-D-aspartate receptors (NMDAR) are critical mediators of synaptic function and are essential for the induction of many forms of synaptic plasticity. Regulation of NMDAR function by cortisol/corticosterone (CORT) may be fundamental to the effects of stress on synaptic plasticity. Recent reports of the efficacy of NMDAR antagonists in treating certain stress-associated psychopathologies further highlight the importance of understanding the regulation of NMDAR function by CORT. Knowledge of how corticosteroids regulate NMDAR function within the adult brain is relatively sparse, perhaps due to a common belief that NMDAR function is stable in the adult brain. We review recent results from our laboratory and others demonstrating dynamic regulation of NMDAR function by CORT in the adult brain. In addition, we consider the issue of how differences in the early life environment may program differential sensitivity to modulation of NMDAR function by CORT and how this may influence synaptic function during stress. Findings from these studies demonstrate that NMDAR function in the adult hippocampus remains sensitive to even brief exposures to CORT and that the capacity for modulation of NMDAR may be programmed, in part, by the early life environment. Modulation of NMDAR function may contribute to dynamic regulation of synaptic plasticity and adaptation in the face of stress, however, enhanced NMDAR function may be implicated in mechanisms of stress-related psychopathologies including depression.
Collapse
Affiliation(s)
- Yiu Chung Tse
- Neuroscience Division, Douglas Mental Health University Institute, McGill University, Montreal QC, Canada
| | | | | |
Collapse
|
39
|
Kullmann DM. The Mother of All Battles 20 years on: is LTP expressed pre- or postsynaptically? J Physiol 2012; 590:2213-6. [PMID: 22351632 DOI: 10.1113/jphysiol.2011.221127] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The early 1990s saw an intense debate over the locus of expression of NMDA receptor-dependent LTP. This provided an impetus for intense research into the mechanisms of modulation and trafficking of glutamate receptors and presynaptic vesicles. As new forms of LTP are discovered at different synapses, a simple resolution of the pre- versus postsynaptic debate seems increasingly remote.
Collapse
Affiliation(s)
- Dimitri M Kullmann
- UCL Institute of Neurology, University College London, London WC1N 3BG, UK.
| |
Collapse
|
40
|
Kanju PM, Parameshwaran K, Sims-Robinson C, Uthayathas S, Josephson EM, Rajakumar N, Dhanasekaran M, Suppiramaniam V. Selective cholinergic depletion in medial septum leads to impaired long term potentiation and glutamatergic synaptic currents in the hippocampus. PLoS One 2012; 7:e31073. [PMID: 22355337 PMCID: PMC3280283 DOI: 10.1371/journal.pone.0031073] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 01/02/2012] [Indexed: 12/02/2022] Open
Abstract
Cholinergic depletion in the medial septum (MS) is associated with impaired hippocampal-dependent learning and memory. Here we investigated whether long term potentiation (LTP) and synaptic currents, mediated by alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors in the CA1 hippocampal region, are affected following cholinergic lesions of the MS. Stereotaxic intra-medioseptal infusions of a selective immunotoxin, 192-saporin, against cholinergic neurons or sterile saline were made in adult rats. Four days after infusions, hippocampal slices were made and LTP, whole cell, and single channel (AMPA or NMDA receptor) currents were recorded. Results demonstrated impairment in the induction and expression of LTP in lesioned rats. Lesioned rats also showed decreases in synaptic currents from CA1 pyramidal cells and synaptosomal single channels of AMPA and NMDA receptors. Our results suggest that MS cholinergic afferents modulate LTP and glutamatergic currents in the CA1 region of the hippocampus, providing a potential synaptic mechanism for the learning and memory deficits observed in the rodent model of selective MS cholinergic lesioning.
Collapse
Affiliation(s)
- Patrick M. Kanju
- Department of Pharmacal Sciences, Auburn University, Auburn, Alabama, United States of America
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Kodeeswaran Parameshwaran
- Department of Pharmacal Sciences, Auburn University, Auburn, Alabama, United States of America
- Department of Pathobiology, Auburn University, Auburn, Alabama, United States of America
| | - Catrina Sims-Robinson
- Department of Pharmacal Sciences, Auburn University, Auburn, Alabama, United States of America
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Subramaniam Uthayathas
- Department of Pharmacal Sciences, Auburn University, Auburn, Alabama, United States of America
- Department of Neurology, School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Eleanor M. Josephson
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, Alabama, United States of America
| | - Nagalingam Rajakumar
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, Canada
| | | | - Vishnu Suppiramaniam
- Department of Pharmacal Sciences, Auburn University, Auburn, Alabama, United States of America
- * E-mail:
| |
Collapse
|
41
|
Ramanathan G, Atchison WD. Ca2+ entry pathways in mouse spinal motor neurons in culture following in vitro exposure to methylmercury. Neurotoxicology 2011; 32:742-50. [PMID: 21839771 DOI: 10.1016/j.neuro.2011.07.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 06/06/2011] [Accepted: 07/13/2011] [Indexed: 12/29/2022]
Abstract
Methylmercury (MeHg) is a widespread environmental toxicant with major actions on the central nervous system. Among the neurons reportedly affected in cases of Hg poisoning are motor neurons; however, the direct cellular effects of MeHg on motor neurons have not been reported. Ratiometric fluorescence imaging, using the Ca(2+)-sensitive fluorophore fura-2, was used to examine the effect of MeHg on Ca(2+) homeostasis in primary cultures of mouse spinal motor neurons. In vitro MeHg exposure at concentrations (0.1-2 μM) known to affect other neurons in culture differentially, induced a biphasic rise in fura-2 fluorescence ratio indicating an increase in [Ca(2+)](i). The time-to-onset of these fura-2 fluorescence ratio changes was inversely correlated with MeHg concentration. TPEN (20 μM), a non-Ca(2+), divalent cation chelator, reduced the amplitude of the increase in fura-2 fluorescence induced by MeHg in the first phase, indicating that both Ca(2+) and non-Ca(2+) divalent cations contribute to the MeHg-induced effect. When examining various Ca(2+) entry pathways as possible targets contributing to Ca(2+) influx, we found that excitatory amino acid receptor blockers MK-801 (15 μM), and AP-5 (100 μM)-both NMDA receptor-operated ion channel blockers, CNQX (20 μM), a non-NMDA receptor blocker, and the voltage-dependent Ca(2+) channel blockers nifedipine (1 μM) and ω-conotoxin-GVIA (1 μM) all significantly delayed the development of increased Ca(2+) caused by MeHg. The voltage-dependent Na(+) channel blocker tetrodotoxin (TTX, 1 μM) did not alter the MeHg-induced increases in fura-2 fluorescence ratio. Thus, MeHg alters Ca(2+) homeostasis in mouse spinal motor neurons through excitatory amino acid receptor-mediated pathways, and nifedipine and ω-conotoxin-GVIA-sensitive pathways. Spinal motor neurons are highly sensitive to this effect of acute exposure to MeHg.
Collapse
Affiliation(s)
- Gunasekaran Ramanathan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
42
|
Lyons MR, West AE. Mechanisms of specificity in neuronal activity-regulated gene transcription. Prog Neurobiol 2011; 94:259-95. [PMID: 21620929 PMCID: PMC3134613 DOI: 10.1016/j.pneurobio.2011.05.003] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 05/05/2011] [Accepted: 05/05/2011] [Indexed: 02/06/2023]
Abstract
The brain is a highly adaptable organ that is capable of converting sensory information into changes in neuronal function. This plasticity allows behavior to be accommodated to the environment, providing an important evolutionary advantage. Neurons convert environmental stimuli into long-lasting changes in their physiology in part through the synaptic activity-regulated transcription of new gene products. Since the neurotransmitter-dependent regulation of Fos transcription was first discovered nearly 25 years ago, a wealth of studies have enriched our understanding of the molecular pathways that mediate activity-regulated changes in gene transcription. These findings show that a broad range of signaling pathways and transcriptional regulators can be engaged by neuronal activity to sculpt complex programs of stimulus-regulated gene transcription. However, the shear scope of the transcriptional pathways engaged by neuronal activity raises the question of how specificity in the nature of the transcriptional response is achieved in order to encode physiologically relevant responses to divergent stimuli. Here we summarize the general paradigms by which neuronal activity regulates transcription while focusing on the molecular mechanisms that confer differential stimulus-, cell-type-, and developmental-specificity upon activity-regulated programs of neuronal gene transcription. In addition, we preview some of the new technologies that will advance our future understanding of the mechanisms and consequences of activity-regulated gene transcription in the brain.
Collapse
Affiliation(s)
- Michelle R Lyons
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
43
|
Ricci V, Martinotti G, Gelfo F, Tonioni F, Caltagirone C, Bria P, Angelucci F. Chronic ketamine use increases serum levels of brain-derived neurotrophic factor. Psychopharmacology (Berl) 2011; 215:143-8. [PMID: 21161184 DOI: 10.1007/s00213-010-2121-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 11/26/2010] [Indexed: 10/18/2022]
Abstract
RATIONALE Ketamine is a non-competitive N-methyl-D: -aspartate (NMDA) receptor antagonist which interferes with the action of excitatory amino acids (EAAs) including glutamate and aspartate. The use of ketamine at subanaesthetic doses has increased because of its psychotomimetic properties. However, long-term ketamine abuse may interfere with memory processes and inhibit the induction of long-term potentiation (LTP) in the hippocampus, an effect probably mediated by its NMDA antagonist action. Neurotrophins such as brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) serve as survival factors for selected populations of central nervous system neurons, including cholinergic and dopaminergic neurons. In addition, neurotrophins, particularly BDNF, may regulate LTP in the hippocampus and influence synaptic plasticity. OBJECTIVES The purpose of this study was to test the hypothesis that ketamine use in humans is associated with altered serum levels of neurotrophins. METHODS We measured by enzyme-linked immunosorbent assay the NGF and BDNF serum levels in two groups of subjects: frequent ketamine users and healthy subjects. RESULTS Our data show that BDNF serum levels were increased in chronic ketamine users as compared to healthy subjects, while NGF levels were not affected by ketamine use. CONCLUSION These findings suggest that chronic ketamine intake is associated with increases in BDNF serum levels in humans. Other studies are needed to explore the pharmacological and molecular mechanism by which ketamine, and/or other NMDA antagonists, may induce modification in the production and utilization of BDNF and alter normal brain function.
Collapse
Affiliation(s)
- Valerio Ricci
- Department of Clinical and Behavioural Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
44
|
Yang Q, Liao ZH, Xiao YX, Lin QS, Zhu YS, Li ST. Hippocampal synaptic metaplasticity requires the activation of NR2B-containing NMDA receptors. Brain Res Bull 2010; 84:137-43. [PMID: 21184813 DOI: 10.1016/j.brainresbull.2010.12.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 12/09/2010] [Accepted: 12/15/2010] [Indexed: 11/17/2022]
Abstract
The potential to exhibit synaptic plasticity itself is modulated by previous synaptic activity, which has been termed as metaplasticity. In this paper, we demonstrated that the activation of N-methyl-d-aspartate (NMDA) receptor 2B (NR2B) subunit in NNDA receptors was required for hippocampal metaplasticity at Schaffer collateral-commissural fiber-CA1 synapses. Brief 5 Hz priming stimulation did not cause long-term synaptic plasticity; however, it could result in the inhibition of subsequently evoked long-term potentiation (LTP). Meanwhile, the application of selective antagonists for NR2B subunit of NMDA receptors after delivering priming stimulation could block the metaplasticity. In contrast, LTP induction was not affected by NR2B antagonists in slices without pre-treatment of priming stimulation. These results indicated that the activation of NR2B-containing NMDA receptors was required for metaplasticity.
Collapse
Affiliation(s)
- Qian Yang
- Laboratory of Synaptic Signaling and Behavioral Neurosciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | | | | | | | | | | |
Collapse
|
45
|
Jia Y, Gall CM, Lynch G. Presynaptic BDNF promotes postsynaptic long-term potentiation in the dorsal striatum. J Neurosci 2010; 30:14440-5. [PMID: 20980601 PMCID: PMC2972744 DOI: 10.1523/jneurosci.3310-10.2010] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 08/03/2010] [Accepted: 08/28/2010] [Indexed: 01/04/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) facilitates the formation of long-term potentiation (LTP) in hippocampus, but whether this involves release from presynaptic versus postsynaptic pools is unclear. We therefore tested whether BDNF is essential for LTP in dorsal striatum, a structure in which the neurotrophin is present only in afferent terminals. Whole-cell recordings were collected from medium spiny neurons in striatal slices prepared from adult mice. High-frequency stimulation (HFS) of neocortical afferents produced a rapid and stable NMDA receptor-dependent potentiation. The ratio of AMPA to NMDA receptor-mediated components of the EPSPs was substantially increased after inducing potentiation, suggesting that the response enhancement involved postsynaptic changes. In accord with this, paired-pulse response ratios, a measure of transmitter release kinetics, were reduced by elevated calcium but not by LTP. Infusion of the BDNF scavenger TrkB-Fc blocked the formation of potentiation, beginning with the second minute after HFS, without reducing responses to HFS. These results suggest that presynaptic pools of BDNF can act within 2 min of HFS to support the formation of a postsynaptic form of LTP in striatum.
Collapse
Affiliation(s)
| | - Christine M. Gall
- Departments of Anatomy and Neurobiology
- Neurobiology and Behavior, and
| | - Gary Lynch
- Departments of Anatomy and Neurobiology
- Psychiatry and Human Behavior, University of California, Irvine, California 92697
| |
Collapse
|
46
|
Cabezas C, Buño W. BDNF is required for the induction of a presynaptic component of the functional conversion of silent synapses. Hippocampus 2010; 21:374-85. [DOI: 10.1002/hipo.20754] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
47
|
Zellner MR, Ranaldi R. How conditioned stimuli acquire the ability to activate VTA dopamine cells: a proposed neurobiological component of reward-related learning. Neurosci Biobehav Rev 2009; 34:769-80. [PMID: 19914285 DOI: 10.1016/j.neubiorev.2009.11.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 11/09/2009] [Accepted: 11/10/2009] [Indexed: 02/04/2023]
Abstract
The ability to learn about conditioned stimuli (CS) associated with rewards is a crucial adaptive mechanism. Activity in the mesocorticolimbic dopamine (DA) system, as well as in the ventral tegmental area (VTA), is correlated with responding to and learning about CSs. The mechanism by which VTA neurons become activated by signals associated with conditioned stimuli is not fully understood. Our model suggests that NMDA receptor stimulation in the VTA allows originally weak glutamate signals carrying information about environmental stimuli, coincident with strong excitation correlated with primary rewards, to be strengthened and thereby acquire the ability to activate VTA neurons in themselves, producing approach. Furthermore, once synaptic strengthening occurs, the model suggests that NMDA receptor stimulation in VTA is not necessary for the expression of reward-related learning. In this review we survey evidence that VTA cells respond to cues associated with primary rewards, that this responding is acquired, and that the VTA possesses the attributes to function as a site of integration of signals of primary and conditioned stimuli.
Collapse
Affiliation(s)
- Margaret R Zellner
- Laboratory of Neurobiology & Behavior, The Rockefeller University, New York, NY, United States
| | | |
Collapse
|
48
|
Yamin G. NMDA receptor-dependent signaling pathways that underlie amyloid beta-protein disruption of LTP in the hippocampus. J Neurosci Res 2009; 87:1729-36. [PMID: 19170166 DOI: 10.1002/jnr.21998] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disease in the elderly population, is characterized by the hippocampal deposition of fibrils formed by amyloid beta-protein (A beta), a 40- to 42-amino-acid peptide. The folding of A beta into neurotoxic oligomeric, protofibrillar, and fibrillar assemblies is believed to mediate the key pathologic event in AD. The hippocampus is especially susceptible in AD and early degenerative symptoms include significant deficits in the performance of hippocampal-dependent cognitive abilities such as spatial learning and memory. Transgenic mouse models of AD that express C-terminal segments or mutant variants of amyloid precursor protein, the protein from which A beta is derived, exhibit age-dependent spatial memory impairment and attenuated long-term potentiation (LTP) in the hippocampal CA1 and dentate gyrus (DG) regions. Recent experimental evidence suggests that A beta disturbs N-methyl-D-aspartic acid (NMDA) receptor-dependent LTP induction in the CA1 and DG both in vivo and in vitro. Furthermore, these studies suggest that A beta specifically interferes with several major signaling pathways downstream of the NMDA receptor, including the Ca(2+)-dependent protein phosphatase calcineurin, Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), protein phosphatase 1, and cAMP response element-binding protein (CREB). The influence of A beta on each of these downstream effectors of NMDA is reviewed in this article. Additionally, other mechanisms of LTP modulation, such as A beta attenuation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor currents, are briefly discussed.
Collapse
Affiliation(s)
- Ghiam Yamin
- Medical Scientist Training Program (MSTP), David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA.
| |
Collapse
|
49
|
Brenner ED, Feinberg P, Runko S, Coruzzi GM. A mutation in the Proteosomal Regulatory Particle AAA-ATPase-3 in Arabidopsis impairs the light-specific hypocotyl elongation response elicited by a glutamate receptor agonist, BMAA. PLANT MOLECULAR BIOLOGY 2009; 70:523-533. [PMID: 19412571 DOI: 10.1007/s11103-009-9489-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 04/03/2009] [Indexed: 05/27/2023]
Abstract
BMAA is a cycad-derived glutamate receptor agonist that causes a two- to three-fold increase in hypocotyl elongation on Arabidopsis seedlings grown in the light. To probe the role of plant glutamate receptors and their downstream mediators, we utilized a previously described genetic screen to identify a novel, BMAA insensitive morphology (bim) mutant, bim409. The normal BMAA-induced hypocotyl elongation response observed on wild-type seedlings grown in the light is impaired in the bim409 mutant. This BMAA-induced phenotype is light-specific, as the bim409 mutant exhibits normal hypocotyl elongation in etiolated (dark grown) plants (+ or - BMAA). The mutation in bim409 was identified to be in a gene encoding the Proteosomal Regulatory Particle AAA-ATPase-3 (RPT3). Possible roles of the proteosome in Glu-mediated signaling in plants is discussed.
Collapse
Affiliation(s)
- Eric D Brenner
- The International Plant Science Center, The New York Botanical Garden, 200th and Kazimiroff Blvd., Bronx, NY 10458, USA.
| | | | | | | |
Collapse
|
50
|
Wang Y, Greig NH, Yu QS, Mattson MP. Presenilin-1 mutation impairs cholinergic modulation of synaptic plasticity and suppresses NMDA currents in hippocampus slices. Neurobiol Aging 2009; 30:1061-8. [PMID: 18068871 PMCID: PMC2717610 DOI: 10.1016/j.neurobiolaging.2007.10.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 10/10/2007] [Accepted: 10/18/2007] [Indexed: 11/25/2022]
Abstract
Presenilin-1 (PS1) mutations cause many cases of early-onset inherited Alzheimer's disease, in part, by increasing the production of neurotoxic forms of amyloid beta-peptide (Abeta). However, Abeta-independent effects of mutant PS1 on neuronal Ca(2+) homeostasis and sensitivity to excitatory neurotransmitters have been reported. Here we show that cholinergic modulation of hippocampal synaptic plasticity is impaired in PS1 mutant knockin (PS1KI) mice. Whereas activation of muscarinic receptors enhances LTP at CA1 synapses of normal mice, it impairs LTP in PS1KI mice. Similarly, mutant PS1 impairs the ability of the cholinesterase inhibitor phenserine to enhance LTP. The NMDA current is decreased in CA1 neurons of PS1KI mice and is restored by intracellular Ca(2+)chelation. Similar alterations in acetylcholine and NMDA receptor-mediated components of synaptic plasticity are evident in 3xTgAD mice with PS1, amyloid precursor protein and tau mutations, suggesting that the adverse effects of mutant PS1 on synaptic plasticity can occur in the absence or presence of amyloid and tau pathologies.
Collapse
Affiliation(s)
- Yue Wang
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Gerontology Research Center, Baltimore, MD 21224, USA.
| | | | | | | |
Collapse
|