1
|
Deng Z, Richardson DR. The Myc Family and the Metastasis Suppressor NDRG1: Targeting Key Molecular Interactions with Innovative Therapeutics. Pharmacol Rev 2023; 75:1007-1035. [PMID: 37280098 DOI: 10.1124/pharmrev.122.000795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/07/2023] [Accepted: 05/01/2023] [Indexed: 06/08/2023] Open
Abstract
Cancer is a leading cause of death worldwide, resulting in ∼10 million deaths in 2020. Major oncogenic effectors are the Myc proto-oncogene family, which consists of three members including c-Myc, N-Myc, and L-Myc. As a pertinent example of the role of the Myc family in tumorigenesis, amplification of MYCN in childhood neuroblastoma strongly correlates with poor patient prognosis. Complexes between Myc oncoproteins and their partners such as hypoxia-inducible factor-1α and Myc-associated protein X (MAX) result in proliferation arrest and pro-proliferative effects, respectively. Interactions with other proteins are also important for N-Myc activity. For instance, the enhancer of zest homolog 2 (EZH2) binds directly to N-Myc to stabilize it by acting as a competitor against the ubiquitin ligase, SCFFBXW7, which prevents proteasomal degradation. Heat shock protein 90 may also be involved in N-Myc stabilization since it binds to EZH2 and prevents its degradation. N-Myc downstream-regulated gene 1 (NDRG1) is downregulated by N-Myc and participates in the regulation of cellular proliferation via associating with other proteins, such as glycogen synthase kinase-3β and low-density lipoprotein receptor-related protein 6. These molecular interactions provide a better understanding of the biologic roles of N-Myc and NDRG1, which can be potentially used as therapeutic targets. In addition to directly targeting these proteins, disrupting their key interactions may also be a promising strategy for anti-cancer drug development. This review examines the interactions between the Myc proteins and other molecules, with a special focus on the relationship between N-Myc and NDRG1 and possible therapeutic interventions. SIGNIFICANCE STATEMENT: Neuroblastoma is one of the most common childhood solid tumors, with a dismal five-year survival rate. This problem makes it imperative to discover new and more effective therapeutics. The molecular interactions between major oncogenic drivers of the Myc family and other key proteins; for example, the metastasis suppressor, NDRG1, may potentially be used as targets for anti-neuroblastoma drug development. In addition to directly targeting these proteins, disrupting their key molecular interactions may also be promising for drug discovery.
Collapse
Affiliation(s)
- Zhao Deng
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia (Z.D., D.R.R.), and Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan (D.R.R.)
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia (Z.D., D.R.R.), and Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan (D.R.R.)
| |
Collapse
|
2
|
Butler D, Ambite I, Wan MLY, Tran TH, Wullt B, Svanborg C. Immunomodulation therapy offers new molecular strategies to treat UTI. Nat Rev Urol 2022; 19:419-437. [PMID: 35732832 PMCID: PMC9214477 DOI: 10.1038/s41585-022-00602-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2022] [Indexed: 12/13/2022]
Abstract
Innovative solutions are needed for the treatment of bacterial infections, and a range of antibacterial molecules have been explored as alternatives to antibiotics. A different approach is to investigate the immune system of the host for new ways of making the antibacterial defence more efficient. However, the immune system has a dual role as protector and cause of disease: in addition to being protective, increasing evidence shows that innate immune responses can become excessive and cause acute symptoms and tissue pathology during infection. This role of innate immunity in disease suggests that the immune system should be targeted therapeutically, to inhibit over-reactivity. The ultimate goal is to develop therapies that selectively attenuate destructive immune response cascades, while augmenting the protective antimicrobial defence but such treatment options have remained underexplored, owing to the molecular proximity of the protective and destructive effects of the immune response. The concept of innate immunomodulation therapy has been developed successfully in urinary tract infections, based on detailed studies of innate immune activation and disease pathogenesis. Effective, disease-specific, immunomodulatory strategies have been developed by targeting specific immune response regulators including key transcription factors. In acute pyelonephritis, targeting interferon regulatory factor 7 using small interfering RNA or treatment with antimicrobial peptide cathelicidin was protective and, in acute cystitis, targeting overactive effector molecules such as IL-1β, MMP7, COX2, cAMP and the pain-sensing receptor NK1R has been successful in vivo. Furthermore, other UTI treatment strategies, such as inhibiting bacterial adhesion and vaccination, have also shown promise. Hyperactivation of innate immunity is a disease determinant in urinary tract infections (UTIs). Modulation of innate immunity has promise as a therapy for UTIs. In this Review, the authors discuss potential mechanisms and immunomodulatory therapeutic strategies in UTIs. Excessive innate immune responses to infection cause symptoms and pathology in acute pyelonephritis and acute cystitis. Innate immunomodulation therapy is, therefore, a realistic option for treating these conditions. Targeting excessive innate immune responses at the level of transcription has been successful in animal models. Innate immunomodulation therapy reduces excessive inflammation and tissue pathology and accelerates bacterial clearance from infected kidneys and bladders in mice. Innate immunomodulation therapy also accelerates the clearance of antibiotic-resistant bacterial strains.
Collapse
Affiliation(s)
- Daniel Butler
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Ines Ambite
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Murphy Lam Yim Wan
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Thi Hien Tran
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Björn Wullt
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Catharina Svanborg
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
3
|
The Role of Non-Coding RNAs in the Regulation of the Proto-Oncogene MYC in Different Types of Cancer. Biomedicines 2021; 9:biomedicines9080921. [PMID: 34440124 PMCID: PMC8389562 DOI: 10.3390/biomedicines9080921] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 01/17/2023] Open
Abstract
Alterations in the expression level of the MYC gene are often found in the cells of various malignant tumors. Overexpressed MYC has been shown to stimulate the main processes of oncogenesis: uncontrolled growth, unlimited cell divisions, avoidance of apoptosis and immune response, changes in cellular metabolism, genomic instability, metastasis, and angiogenesis. Thus, controlling the expression of MYC is considered as an approach for targeted cancer treatment. Since c-Myc is also a crucial regulator of many cellular processes in healthy cells, it is necessary to find ways for selective regulation of MYC expression in tumor cells. Many recent studies have demonstrated that non-coding RNAs play an important role in the regulation of the transcription and translation of this gene and some RNAs directly interact with the c-Myc protein, affecting its stability. In this review, we summarize current data on the regulation of MYC by various non-coding RNAs that can potentially be targeted in specific tumor types.
Collapse
|
4
|
Kurbegovic A, Trudel M. The master regulators Myc and p53 cellular signaling and functions in polycystic kidney disease. Cell Signal 2020; 71:109594. [PMID: 32145315 DOI: 10.1016/j.cellsig.2020.109594] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 01/08/2023]
Abstract
The transcription factors Myc and p53 associated with oncogenesis play determinant roles in a human genetic disorder, autosomal dominant polycystic kidney disease (ADPKD), that was coined early in ADPKD etiology a «neoplasia in disguise ». These factors are interdependent master cell regulators of major biological processes including proliferation, apoptosis, cell growth, metabolism, inflammation, fibrosis and differentiation that are all modulated in ADPKD. Myc and p53 proteins evolved to respond and carry out overlapping functions via opposing mechanisms of action. Studies in human ADPKD kidneys, caused by mutations in the PKD1 or PKD2 genes, reveal reduced p53 expression and high expression of Myc in the cystic tubular epithelium. Myc and p53 via direct interaction act respectively, as transcriptional activator and repressor of PKD1 gene expression, consistent with increased renal PKD1 levels in ADPKD. Mouse models generated by Pkd1 and Pkd2 gene dosage dysregulation reproduce renal cystogenesis with activation of Myc expression and numerous signaling pathways, strikingly similar to those determined in human ADPKD. In fact, upregulation of renal Myc expression is also detected in virtually all non-orthologous animal models of PKD. A definitive causal connection of Myc with cystogenesis was established by renal overexpression of Myc in transgenic mice that phenocopies human ADPKD. The network of activated signaling pathways in human and mouse cystogenesis individually or in combination can target Myc as a central node of PKD pathogenesis. One or many of the multiple functions of Myc upon activation can play a role in every phases of ADPKD development and lend credence to the notion of "Myc addiction" for cystogenesis. We propose that the residual p53 levels are conducive to an ADPKD biological program without cancerogenesis while a "p53 dependent annihilation" mechanism would be permissive to oncogenesis. Of major importance, Myc ablation in orthologous mouse models or direct inhibition in non-orthologous mouse model significantly delays cystogenesis consistent with pharmacologic or genetic inhibition of Myc upstream regulator or downstream targets in the mouse. Together, these studies on PKD proteins upon dysregulation not only converged on Myc as a focal point but also attribute to Myc upregulation a causal and « driver » role in pathogenesis. This review will present and discuss our current knowledge on Myc and p53, focused on PKD mouse models and ADPKD.
Collapse
Affiliation(s)
- Almira Kurbegovic
- Institut de Recherches Cliniques de Montréal, Molecular Genetics and Development, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Marie Trudel
- Institut de Recherches Cliniques de Montréal, Molecular Genetics and Development, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
5
|
Rutledge EA, Lindström NO, Michos O, McMahon AP. Genetic manipulation of ureteric bud tip progenitors in the mammalian kidney through an Adamts18 enhancer driven tet-on inducible system. Dev Biol 2020; 458:164-176. [PMID: 31734175 PMCID: PMC6995766 DOI: 10.1016/j.ydbio.2019.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 11/22/2022]
Abstract
The ureteric epithelial progenitor (UEP) population within the embryonic kidney generates the arborized epithelial network of the kidney's collecting system and plays a critical role in the expansion and induction of the surrounding nephron progenitor pool. Adamts18 shows UEP- restricted expression in the kidney and progenitor tip-restricted expression in several other organs undergoing branching epithelial growth. Adamts18 is encoded by 23 exons. Genetic removal of genomic sequence spanning exons 1 to 3 led to a specific loss of Adamts18 expression in UEPs, suggesting this region may encode a UEP-specific enhancer. Intron 2 (3 kb) was shown to have enhancer activity driving expression of the doxycycline inducible tet-on transcriptional regulator (rtTA) in an Adamts18en-rtTA transgenic mouse strain. Crossing Adamts18en-rtTA mice to a doxycycline dependent GFP reporter mouse enabled the live imaging of embryonic kidney explants. This facilitated the analysis of ureteric epithelial branching events at the cellular level. Ablation of UEPs at the initiation of ureteric bud outgrowth through the doxycycline-mediated induction of Diphtheria Toxin A (DTA) generated a range of phenotypes from complete kidneys agenesis, to duplex kidneys with double ureters. The latter outcome points to the potential of regulative processes to restore UEPs. In contrast, overexpression of YAP prior to ureteric bud outgrowth led to a complete failure of kidney development. Elevating YAP levels at later stages retarded branching growth. A similar phenotype was observed with the overexpression of MYC within the branch-tip localized UEP population. These experiments showcase the utility of the Adamts18en-rtTA transgenic model to the investigation of cellular and molecular events specific to branch tip progenitors within the mammalian kidney complementing existing CRE-dependent genetic tools. Further, the illustrative examples point to areas where new insight may be gained into the regulation of UEP programs.
Collapse
Affiliation(s)
- Elisabeth A Rutledge
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, CA, 90089, USA
| | - Nils O Lindström
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, CA, 90089, USA
| | - Odysse Michos
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Basel, 4058, Switzerland
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, CA, 90089, USA.
| |
Collapse
|
6
|
Comerford SA, Hinnant EA, Chen Y, Bansal H, Klapproth S, Rakheja D, Finegold MJ, Lopez-Terrada D, O'Donnell KA, Tomlinson GE, Hammer RE. Hepatoblastoma modeling in mice places Nrf2 within a cancer field established by mutant β-catenin. JCI Insight 2016; 1:e88549. [PMID: 27734029 DOI: 10.1172/jci.insight.88549] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aberrant wnt/β-catenin signaling and amplification/overexpression of Myc are associated with hepatoblastoma (HB), the most prevalent type of childhood liver cancer. To address their roles in the pathogenesis of HB, we generated mice in which Myc and mutant β-catenin were targeted to immature cells of the developing mouse liver. Perinatal coexpression of both genes promoted the preferential development of HBs over other tumor types in neonatal mice, all of which bore striking resemblance to their human counterparts. Integrated analysis indicated that tumors emerged as a consequence of Myc-driven alterations in hepatoblast fate in a background of pan-hepatic injury, inflammation, and nuclear factor (erythroid-derived 2)-like 2/Nrf2-dependent antioxidant signaling, which was specifically associated with expression of mutant β-catenin but not Myc. Immunoprofiling of human HBs confirmed that approximately 50% of tumors demonstrated aberrant activation of either Myc or Nfe2l2/Nrf2, while knockdown of Nrf2 in a cell line-derived from a human HB with NFE2L2 gene amplification reduced tumor cell growth and viability. Taken together, these data indicate that β-catenin creates a protumorigenic hepatic environment in part by indirectly activating Nrf2 and implicate oxidative stress as a possible driving force for a subset of β-catenin-driven liver tumors in children.
Collapse
Affiliation(s)
| | - Elizabeth A Hinnant
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yidong Chen
- Department of Epidemiology and Biostatistics and.,Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Hima Bansal
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | | | - Dinesh Rakheja
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Dolores Lopez-Terrada
- Department of Pathology, and.,Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| | - Kathryn A O'Donnell
- Department of Molecular Biology.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Gail E Tomlinson
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.,Department of Pediatrics, University of Texas Health Science Center at San Antonio and Greehey Children's Cancer Research Institute, San Antonio, Texas, USA
| | - Robert E Hammer
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
7
|
Zinin N, Adameyko I, Wilhelm M, Fritz N, Uhlén P, Ernfors P, Henriksson MA. MYC proteins promote neuronal differentiation by controlling the mode of progenitor cell division. EMBO Rep 2014; 15:383-91. [PMID: 24599748 PMCID: PMC3989669 DOI: 10.1002/embr.201337424] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 12/09/2013] [Accepted: 12/15/2013] [Indexed: 12/12/2022] Open
Abstract
The role of MYC proteins in somatic stem and progenitor cells during development is poorly understood. We have taken advantage of a chick in vivo model to examine their role in progenitor cells of the developing neural tube. Our results show that depletion of endogenous MYC in radial glial precursors (RGPs) is incompatible with differentiation and conversely, that overexpression of MYC induces neurogenesis independently of premature or upregulated expression of proneural gene programs. Unexpectedly, the neurogenic function of MYC depends on the integrity of the polarized neural tissue, in contrast to the situation in dissociated RGPs where MYC is mitogenic. Within the polarized RGPs of the neural tube, MYC drives differentiation by inhibiting Notch signaling and by increasing neurogenic cell division, eventually resulting in a depletion of progenitor cells. These results reveal an unexpected role of MYC in the control of stemness versus differentiation of neural stem cells in vivo.
Collapse
Affiliation(s)
- Nikolay Zinin
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska InstitutetStockholm, Sweden
| | - Igor Adameyko
- Department of Medical Biochemistry and Biophysics (MBB), Karolinska InstitutetStockholm, Sweden
| | - Margareta Wilhelm
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska InstitutetStockholm, Sweden
| | - Nicolas Fritz
- Department of Medical Biochemistry and Biophysics (MBB), Karolinska InstitutetStockholm, Sweden
| | - Per Uhlén
- Department of Medical Biochemistry and Biophysics (MBB), Karolinska InstitutetStockholm, Sweden
| | - Patrik Ernfors
- Department of Medical Biochemistry and Biophysics (MBB), Karolinska InstitutetStockholm, Sweden
| | | |
Collapse
|
8
|
Abstract
The study of MYC has led to pivotal discoveries in cancer biology, induced pluripotency, and transcriptional regulation. In this review, continuing advances in our understanding of the function of MYC as a transcription factor and how its transcriptional activity controls normal vertebrate development and contributes to developmental disorders is discussed.
Collapse
Affiliation(s)
- Peter J Hurlin
- Shriners Hospitals for Children Portland, Portland, Oregon 97239
| |
Collapse
|
9
|
Moosvi Z, Rekha K. c-Myc oncogene expression in selected odontogenic cysts and tumors: An immunohistochemical study. J Oral Maxillofac Pathol 2013; 17:51-6. [PMID: 23798830 PMCID: PMC3687189 DOI: 10.4103/0973-029x.110725] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Aim: To investigate the role of c-Myc oncogene in selected odontogenic cysts and tumors. Materials and Methods: Ten cases each of ameloblastoma, adenomatoid odontogenic tumor (AOT), odontogenic keratocyst (OKC), dentigerous cyst, and radicular cyst were selected and primary monoclonal mouse anti-human c-Myc antibody was used in a dilution of 1: 50. Statistical Analysis was performed using Mann Whitney U test. Results: 80% positivity was observed in ameloblastoma, AOT and OKC; 50% positivity in radicular cyst and 20% positivity in dentigerous cyst. Comparison of c-Myc expression between ameloblastoma and AOT did not reveal significant results. Similarly, no statistical significance was observed when results of OKC were compared with ameloblastoma and AOT. In contrast, significant differences were seen on comparison of dentigerous cyst with ameloblastoma and AOT and radicular cyst with AOT. Conclusion: From the above data we conclude that (1) Ameloblastoma and AOT have similar proliferative potential and their biologic behavior cannot possibly be attributed to it. (2) OKC has an intrinsic growth potential which is absent in other cysts and reinforces its classification as keratocystic odontogenic tumor.
Collapse
Affiliation(s)
- Zama Moosvi
- Department of Oral Pathology, HKES' SN Dental College, Gulbarga, Karnataka, India
| | | |
Collapse
|
10
|
Potvin É, Beuret L, Cadrin-Girard JF, Carter M, Roy S, Tremblay M, Charron J. Cooperative action of multiple cis-acting elements is required for N-myc expression in branchial arches: specific contribution of GATA3. Mol Cell Biol 2010; 30:5348-63. [PMID: 20855530 PMCID: PMC2976382 DOI: 10.1128/mcb.00353-09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 05/02/2009] [Accepted: 08/07/2010] [Indexed: 01/05/2023] Open
Abstract
The precise expression of the N-myc proto-oncogene is essential for normal mammalian development, whereas altered N-myc gene regulation is known to be a determinant factor in tumor formation. Using transgenic mouse embryos, we show that N-myc sequences from kb -8.7 to kb +7.2 are sufficient to reproduce the N-myc embryonic expression profile in developing branchial arches and limb buds. These sequences encompass several regulatory elements dispersed throughout the N-myc locus, including an upstream limb bud enhancer, a downstream somite enhancer, a branchial arch enhancer in the second intron, and a negative regulatory element in the first intron. N-myc expression in the limb buds is under the dominant control of the limb bud enhancer. The expression in the branchial arches necessitates the interplay of three regulatory domains. The branchial arch enhancer cooperates with the somite enhancer region to prevent an inhibitory activity contained in the first intron. The characterization of the branchial arch enhancer has revealed a specific role of the transcription factor GATA3 in the regulation of N-myc expression. Together, these data demonstrate that correct N-myc developmental expression is achieved via cooperation of multiple positive and negative regulatory elements.
Collapse
Affiliation(s)
- Éric Potvin
- Centre de Recherche en Cancérologie de l'Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec, Canada
| | - Laurent Beuret
- Centre de Recherche en Cancérologie de l'Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec, Canada
| | - Jean-François Cadrin-Girard
- Centre de Recherche en Cancérologie de l'Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec, Canada
| | - Marcelle Carter
- Centre de Recherche en Cancérologie de l'Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec, Canada
| | - Sophie Roy
- Centre de Recherche en Cancérologie de l'Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec, Canada
| | - Michel Tremblay
- Centre de Recherche en Cancérologie de l'Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec, Canada
| | - Jean Charron
- Centre de Recherche en Cancérologie de l'Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec, Canada
| |
Collapse
|
11
|
Couillard M, Trudel M. C-myc as a modulator of renal stem/progenitor cell population. Dev Dyn 2009; 238:405-14. [DOI: 10.1002/dvdy.21841] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
12
|
Abstract
In the majority of human tumors, expression of the c-MYC oncogene becomes constitutive. Here, we report that c-MYC directly regulates the expression of AP4 via CACGTG motifs in the first intron of the AP4 gene. Induction of AP4 was required for c-MYC-mediated cell cycle reentry of anti-estrogen arrested breast cancer cells and mitogen-mediated repression of the CDK inhibitor p21. AP4 directly repressed p21 by occupying four CAGCTG motifs in the p21 promoter via its basic region. AP4 levels declined after DNA damage, and ectopic AP4 interfered with p53-mediated cell cycle arrest and sensitized cells to apoptosis induced by DNA damaging agents. AP4 expression blocked induction of p21 by TGF-beta in human keratinocytes and interfered with up-regulation of p21 and cell cycle arrest during monoblast differentiation. Notably, AP4 is specifically expressed in colonic progenitor and colorectal carcinoma cells. In conclusion, our results indicate that c-MYC employs AP4 to maintain cells in a proliferative, progenitor-like state.
Collapse
|
13
|
Yigit B, Bozkurt N, Yaylim I, Titiz I, Isbir T. Analysis of L-myc gene polymorphism in patients with renal failure outcome to renal transplant. Transplant Proc 2006; 38:1267-9. [PMID: 16797278 DOI: 10.1016/j.transproceed.2006.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2005] [Indexed: 11/21/2022]
Abstract
BACKGROUND Abnormalities of cell numbers and apoptosis have been observed in renal failure. As uncontrolled expression of c-myc is known to induce apoptosis, we thought that polymorphism in the other myc gene, L-myc gene, which is structually similar to c-myc and reported to be expressed in the kidney, may have a role in the induction of apoptosis and thus have role in chronic renal failure. The aim of this study was to investigate the relationship between the distribution of L-myc genotypes and renal failure. METHODS In the present study we examined 101 chronic renal failure patients who had either live or cadaveric renal transplants and 105 healthy individuals, for L-myc gene polymorphism by polymerase chain reactions and restriction fragment length polymorphism techniques. RESULTS Among our patient group, the distribution of the LL, LS, and SS genotypes was 24% (n=25), 71% (n=71), and 5% (n=5), respectively, versus 41% (n=43), 47% (n=49), and 12% (n=13) in our control group. The distribution of genotypes was significantly different between our patients and the control group (chi2=12.281; P=.002). The frequency of the S allele was significantly higher in the patient group (chi2=6.122; P=.013). CONCLUSION Our study showed that having an S allele in the L-myc gene may increase the risk of renal failure.
Collapse
Affiliation(s)
- B Yigit
- Haydarpasa Numune Research and Educational Hospital, Renal Transplantation Unit, Department of Molecular Medicine, Istanbul University, Turkey
| | | | | | | | | |
Collapse
|
14
|
Hallikas O, Palin K, Sinjushina N, Rautiainen R, Partanen J, Ukkonen E, Taipale J. Genome-wide prediction of mammalian enhancers based on analysis of transcription-factor binding affinity. Cell 2006; 124:47-59. [PMID: 16413481 DOI: 10.1016/j.cell.2005.10.042] [Citation(s) in RCA: 350] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Revised: 09/21/2005] [Accepted: 10/21/2005] [Indexed: 12/21/2022]
Abstract
Understanding the regulation of human gene expression requires knowledge of the "second genetic code," which consists of the binding specificities of transcription factors (TFs) and the combinatorial code by which TF binding sites are assembled to form tissue-specific enhancer elements. Using a novel high-throughput method, we determined the DNA binding specificities of GLIs 1-3, Tcf4, and c-Ets1, which mediate transcriptional responses to the Hedgehog (Hh), Wnt, and Ras/MAPK signaling pathways. To identify mammalian enhancer elements regulated by these pathways on a genomic scale, we developed a computational tool, enhancer element locator (EEL). We show that EEL can be used to identify Hh and Wnt target genes and to predict activated TFs based on changes in gene expression. Predictions validated in transgenic mouse embryos revealed the presence of multiple tissue-specific enhancers in mouse c-Myc and N-Myc genes, which has implications for organ-specific growth control and tumor-type specificity of oncogenes.
Collapse
Affiliation(s)
- Outi Hallikas
- Molecular and Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
15
|
Pelengaris S, Khan M. The c-MYC oncoprotein as a treatment target in cancer and other disorders of cell growth. Expert Opin Ther Targets 2005; 7:623-42. [PMID: 14498825 DOI: 10.1517/14728222.7.5.623] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The c-MYC proto-oncogene is essential for cellular proliferation but, paradoxically, may also promote cell death. Deregulated expression of c-MYC is present in most, if not all, human cancers, and is associated with a poor prognosis. However, given that human tumours at diagnosis generally carry multiple genetic lesions that have accumulated during (although they are not necessarily essential for) tumour progression, it has proved difficult to attribute a specific role to any given single factor or indeed to explore the therapeutic potential of selectively mitigating their biological functions. Regulatable transgenic mouse models of oncogenesis have shed light on these issues, influenced our thinking about cancer and provided encouragement for the future development of cancer therapies based on targeting individual oncogenes such as c-MYC. Although still in its infancy, encouraging results have been reported using antisense oligodeoxynucleotide-based methods, as well as other approaches to interfere with MYC expression both in vitro and in vivo.
Collapse
Affiliation(s)
- Stella Pelengaris
- Molecular Medicine, Biomedical Research Institute, University of Warwick, Coventry, CV4 7AL, UK.
| | | |
Collapse
|
16
|
Hipfner DR, Cohen SM. Connecting proliferation and apoptosis in development and disease. Nat Rev Mol Cell Biol 2004; 5:805-15. [PMID: 15459661 DOI: 10.1038/nrm1491] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cells grow and divide rapidly during embryonic and postnatal development. Net tissue growth reflects the balance between the addition of new cells and the elimination of existing cells by programmed cell death. Cells compete for growth and survival factors to ensure an appropriate balance between the addition and elimination of cells. Elaborate mechanisms ensure that cells do not evade these constraints, and thereby prevent uncontrolled proliferation.
Collapse
Affiliation(s)
- David R Hipfner
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 169117, Heidelberg, Germany.
| | | |
Collapse
|
17
|
Kehrer-Sawatzki H, Kluwe L, Sandig C, Kohn M, Wimmer K, Krammer U, Peyrl A, Jenne DE, Hansmann I, Mautner VF. High frequency of mosaicism among patients with neurofibromatosis type 1 (NF1) with microdeletions caused by somatic recombination of the JJAZ1 gene. Am J Hum Genet 2004; 75:410-23. [PMID: 15257518 PMCID: PMC1182020 DOI: 10.1086/423624] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Accepted: 06/21/2004] [Indexed: 11/03/2022] Open
Abstract
Detailed analyses of 20 patients with sporadic neurofibromatosis type 1 (NF1) microdeletions revealed an unexpected high frequency of somatic mosaicism (8/20 [40%]). This proportion of mosaic deletions is much higher than previously anticipated. Of these deletions, 16 were identified by a screen of unselected patients with NF1. None of the eight patients with mosaic deletions exhibited the mental retardation and facial dysmorphism usually associated with NF1 microdeletions. Our study demonstrates the importance of a general screening for NF1 deletions, regardless of a special phenotype, because of a high estimated number of otherwise undetected mosaic NF1 microdeletions. In patients with mosaicism, the proportion of cells with the deletion was 91%-100% in peripheral leukocytes but was much lower (51%-80%) in buccal smears or peripheral skin fibroblasts. Therefore, the analysis of other tissues than blood is recommended, to exclude mosaicism with normal cells in patients with NF1 microdeletions. Furthermore, our study reveals breakpoint heterogeneity. The classic 1.4-Mb deletion was found in 13 patients. These type I deletions encompass 14 genes and have breakpoints in the NF1 low-copy repeats. However, we identified a second major type of NF1 microdeletion, which spans 1.2 Mb and affects 13 genes. This type II deletion was found in 8 (38%) of 21 patients and is mediated by recombination between the JJAZ1 gene and its pseudogene. The JJAZ1 gene, which is completely deleted in patients with type I NF1 microdeletions and is disrupted in deletions of type II, is highly expressed in brain structures associated with learning and memory. Thus, its haploinsufficiency might contribute to mental impairment in patients with constitutional NF1 microdeletions. Conspicuously, seven of the eight mosaic deletions are of type II, whereas only one was a classic type I deletion. Therefore, the JJAZ1 gene is a preferred target of strand exchange during mitotic nonallelic homologous recombination. Although type I NF1 microdeletions occur by interchromosomal recombination during meiosis, our findings imply that type II deletions are mediated by intrachromosomal recombination during mitosis. Thus, NF1 microdeletions acquired during mitotic cell divisions differ from those occurring in meiosis and are caused by different mechanisms.
Collapse
|
18
|
Li Y, Zhang H, Choi SC, Litingtung Y, Chiang C. Sonic hedgehog signaling regulates Gli3 processing, mesenchymal proliferation, and differentiation during mouse lung organogenesis. Dev Biol 2004; 270:214-31. [PMID: 15136151 DOI: 10.1016/j.ydbio.2004.03.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2004] [Revised: 03/03/2004] [Accepted: 03/08/2004] [Indexed: 01/17/2023]
Abstract
Lack of Sonic hedgehog (Shh) signaling, mediated by the Gli proteins, leads to severe pulmonary hypoplasia. However, the precise role of Gli genes in lung development is not well established. We show Shh signaling prevents Gli3 proteolysis to generate its repressor forms (Gli3R) in the developing murine lung. In Shh(-/-) or cyclopamine-treated wild-type (WT) lung, we found that Gli3R level is elevated, and this upregulation appears to contribute to defects in proliferation and differentiation observed in the Shh(-/-) mesenchyme, where Gli3 is normally expressed. In agreement, we found Shh(-/-);Gli3(-/-) lungs exhibit enhanced growth potential. Vasculogenesis is also enhanced; in contrast, bronchial myogenesis remains absent in Shh(-/-);Gli3(-/-) compared with Shh(-/-) lungs. Genes upregulated in Shh(-/-);Gli3(-/-) relative to Shh(-/-) lung include Wnt2 and, surprisingly, Foxf1 whose expression has been reported to be Shh-dependent. Cyclins D1, D2, and D3 antibody labelings also reveal distinct expression patterns in the normal and mutant lungs. We found significant repression of Tbx2 and Tbx3, both linked to inhibition of cellular senescence, in Shh(-/-) and partial derepression in Shh(-/-); Gli3(-/-) lungs, while Tbx4 and Tbx5 expressions are less affected in the mutants. Our findings shed light on the role of Shh signaling on Gli3 processing in lung growth and differentiation by regulating several critical genes.
Collapse
Affiliation(s)
- Yina Li
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232-8240, USA
| | | | | | | | | |
Collapse
|
19
|
Kohn M, Steinbach P, Hameister H, Kehrer-Sawatzki H. A comparative expression analysis of four MRX genes regulating intracellular signalling via small GTPases. Eur J Hum Genet 2004; 12:29-37. [PMID: 14673471 DOI: 10.1038/sj.ejhg.5201085] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The X chromosomal mental retardation genes have attained high interest in the past. A rough classification distinguishes syndromal mental retardation (MRXS) and nonsyndromal mental retardation (MRX) conditions. The latter are suggested to be responsible for human specific development of cognitive abilities. These genes have been shown to be engaged in chromatin remodelling or in intracellular signalling. During this analysis, we have compared the expression pattern in the mouse of four genes from the latter class of MRX genes: Ophn1, Arhgef6 (also called alphaPix), Pak3, and Gdi1. Ophn1, Pak3, and Gdi1 show a specific neuronal expression pattern with a certain overlap that allows to assign these signalling molecules to the same functional context. We noticed the highest expression of these genes in the dentate gyrus and cornu ammonis of the hippocampus, in structures engaged in learning and memory. A completely different expression pattern was observed for Arhgef6. In the CNS, it is expressed in ventricular zones, where neuronal progenitor cells are located. But Arhgef6 expression is also found in other non-neural tissues. Our analysis provides evidence that these signalling molecules are involved in different spatio-temporal expression domains of common signalling cascades and that for most tissues considerable functional redundancy of Rho-mediated signalling pathways exists.
Collapse
Affiliation(s)
- Matthias Kohn
- Department of Human Genetics, University of Ulm, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | | | | | | |
Collapse
|
20
|
Karsten SL, Kudo LC, Jackson R, Sabatti C, Kornblum HI, Geschwind DH. Global analysis of gene expression in neural progenitors reveals specific cell-cycle, signaling, and metabolic networks. Dev Biol 2003; 261:165-82. [PMID: 12941627 DOI: 10.1016/s0012-1606(03)00274-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The genetic programs underlying neural stem cell (NSC) proliferation and pluripotentiality have only been partially elucidated. We compared the gene expression profile of proliferating neural stem cell cultures (NS) with cultures differentiated for 24 h (DC) to identify functionally coordinated alterations in gene expression associated with neural progenitor proliferation. The majority of differentially expressed genes (65%) were upregulated in NS relative to DC. Microarray analysis of this in vitro system was followed by high throughput screening in situ hybridization to identify genes enriched in the germinal neuroepithelium, so as to distinguish those expressed in neural progenitors from those expressed in more differentiated cells in vivo. NS cultures were characterized by the coordinate upregulation of genes involved in cell cycle progression, DNA synthesis, and metabolism, not simply related to general features of cell proliferation, since many of the genes identified were highly enriched in the CNS ventricular zones and not widely expressed in other proliferating tissues. Components of specific metabolic and signal transduction pathways, and several transcription factors, including Sox3, FoxM1, and PTTG1, were also enriched in neural progenitor cultures. We propose a putative network of gene expression linking cell cycle control to cell fate pathways, providing a framework for further investigations of neural stem cell proliferation and differentiation.
Collapse
Affiliation(s)
- Stanislav L Karsten
- Department of Neurology, UCLA School of Medicine, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | | | | | | | | | | |
Collapse
|
21
|
Shiina H, Igawa M, Shigeno K, Terashima M, Deguchi M, Yamanaka M, Ribeiro-Filho L, Kane CJ, Dahiya R. Beta-catenin mutations correlate with over expression of C-myc and cyclin D1 Genes in bladder cancer. J Urol 2002; 168:2220-6. [PMID: 12394763 DOI: 10.1016/s0022-5347(05)64359-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE We hypothesized that over expression of c-myc and cyclin D1 genes is transcriptionally activated by beta-catenin mutation independent of gene amplification in bladder cancer. To test this hypothesis we investigated the relationship of beta-catenin mutation to c-myc and cyclin D1 mRNA with special reference to the changes in copy number of the 2 genes. MATERIALS AND METHODS Genomic DNA and total RNA were extracted from 59 bladder cancer specimens and from 31 histologically normal specimens of bladder mucosa. We performed beta-catenin deletion screening by polymerase chain reaction (PCR) using primers spanning exons 3 (including the glycogen synthase kinase-3beta consensus motif), 5 and 6. Mutational changes in beta-catenin in exons 3, 5 and 6 were detected by each PCR-single strand conformational polymorphism analysis followed by direct DNA sequencing. mRNA expression and copy numbers of c-myc and cyclin D1 were determined by semiquantitative reverse transcriptase-PCR and competitive genomic PCR. RESULTS Missense mutations of beta-catenin found in grade 3 bladder cancer were involved in the consensus motif of glycogen synthase kinase-3beta in exon 3. These cancers showed strong intracellular accumulation of beta-catenin and intense expression of c-myc and cyclin D1 mRNA compared with samples lacking the beta-catenin mutation. When grade 3 cancers were compared, expression levels of c-myc and cyclin D1 mRNA were still higher in those with versus without the beta-catenin mutation. In bladder cancers with beta-catenin mutations copy numbers of the c-myc and cyclin D1 genes did not amplify. CONCLUSIONS Bladder cancer harboring a beta-catenin mutation may represent aggressive biological behavior with enhanced proliferating activity. These findings are important for understanding the role of beta-catenin mutation in the pathogenesis of bladder cancer.
Collapse
Affiliation(s)
- Hiroaki Shiina
- Department of Urology, Shimane Medical University, Izumo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
??-Catenin Mutations Correlate with Over Expression of C-myc and Cyclin D1 Genes in Bladder Cancer. J Urol 2002. [DOI: 10.1097/00005392-200211000-00102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Abstract
Deregulated expression of c-MYC occurs in a broad range of human cancers and is often associated with poor prognosis, indicating a key role for this oncogene in tumour progression. However, as established human tumours often bear multiple genetic lesions, it is difficult to determine whether c-MYC is instrumental in the initiation/progression of the tumour, or indeed whether inactivating c-MYC would lead to tumour regression. Regulatable transgenic mouse models of oncogenesis have shed light on these issues and provide hope for effective cancer therapies.
Collapse
Affiliation(s)
- Stella Pelengaris
- Molecular Medicine Research Centre, University of Warwick, Coventry CV4 7AL, UK.
| | | | | |
Collapse
|
24
|
Kirito K, Osawa M, Morita H, Shimizu R, Yamamoto M, Oda A, Fujita H, Tanaka M, Nakajima K, Miura Y, Ozawa K, Komatsu N. A functional role of Stat3 in in vivo megakaryopoiesis. Blood 2002; 99:3220-7. [PMID: 11964286 DOI: 10.1182/blood.v99.9.3220] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The signal transducer and activator of transcription 3 (Stat3), a member of the Stat family of proteins, is commonly activated by thrombopoietic cytokines including thrombopoietin (TPO), interleukin (IL)-6, and interleukin-11. This finding strongly suggested that Stat3 has an important role in megakaryopoiesis and thrombopoiesis. To clarify the functional role of Stat3 in in vivo megakaryopoiesis and thrombopoiesis, we generated transgenic mice overexpressing a dominant-negative Stat3, Stat3F, to suppress the function of endogenous Stat3. To accomplish the selective expression of Stat3F in megakaryocytic lineage cells, we used the regulatory gene region of GATA-1 transcription factor selectively expressed in megakaryocytic and erythroid lineage cells. Two independent transgenic (Tg) mice lines were established. It was confirmed by Western blotting analysis that Stat3F proteins were highly expressed in the platelets from the Tg mice. In addition, it was found that Stat3 activation induced by TPO stimulation was drastically suppressed in these Tg mice compared with littermates. These findings indicate that Stat3F works well in the Tg mice. Platelet counts were within the normal range in steady-state conditions and were recovered normally from transient thrombocytopenia induced by antiplatelet serum injection. Interestingly, the platelet recovery from myelosuppression after 5-fluorouracil treatment was significantly delayed in the Tg mice. Collectively, our results strongly suggest that Stat3 plays an important role in the early stage of megakaryopoiesis, presumably through the expansion of megakaryocytic progenitor cells.
Collapse
Affiliation(s)
- Keita Kirito
- Division of Hematology, Department of Medicine, Jichi Medical School, Tochigi, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sarkar SA, Sharma RP. Expression of c-Myc and other apoptosis-related genes in Swiss Webster mouse fetuses after maternal exposure to all trans-retinoic acid. Reprod Toxicol 2002; 16:245-52. [PMID: 12128097 DOI: 10.1016/s0890-6238(02)00023-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Myc family of genes regulates proliferation, differentiation, and apoptosis. Temporal expression of Myc family genes and several pro-apoptotic genes were investigated during Swiss Webster mice organogenesis after maternal treatment with an oral dose of 100 mg/kg trans-retinoic acid (RA) or vehicle on day 10 post-coitum. Reverse transcriptase-polymerase chain reaction and ribonuclease protection assay revealed decreased c-myc expression at 48 h followed by an increase at 72 h in fetuses from RA-treated dams. Increased c-Myc protein was detected at 72 h in the RA-treated group. In utero RA-treatment resulted in decreased expression of max, mad, caspases, bax, and bad genes at 48 h. Terminal uridinetriphosphate nick end-labeling (TUNEL) analysis revealed increased apoptosis at 24-48 h, followed by decreased apoptosis 72 h after in utero RA-exposure, which correlated with the decreased expression of pro-apoptotic genes noted at 48 h. Further investigations are needed to understand the role of Myc family genes during RA-mediated teratogenesis.
Collapse
Affiliation(s)
- Suparna A Sarkar
- Department of Physiology and Pharmacology, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602-7389, USA
| | | |
Collapse
|
26
|
Abstract
Our knowledge on the regulation of the N-myc proto-oncogene expression comes mostly from in vitro studies. Very few in vivo analyses have been performed to identify the regulatory elements involved in N-myc developmental expression. In the present study, we defined DNA regions required for the regulated expression of N-myc during early embryogenesis. We showed that the expression of N-myc driven by the human N-myc sequences previously described to control N-myc expression in appropriate cell types in vitro cannot rescue the mouse N-myc mutant phenotype, suggesting that regulatory elements necessary for N-myc embryonic expression were missing. To identify the regulatory DNA regions involved in N-myc expression, transgenic mouse lines carrying N-myc/lacZ reporter constructs were generated. Beta-galactosidase staining analysis at different stages of gestation revealed that >16 kb of mouse N-myc genomic sequences are required to recapitulate the entire spatiotemporal expression pattern of the endogenous N-myc gene between embryonic d 8.5 and 11.5. This observation supported the notion that the sequences previously identified by in vitro assays were not sufficient to reproduce the N-myc embryonic expression pattern. However, regulatory elements that can direct specific expression in the visceral arches, the limb buds, the CNS, and the dorsal root ganglia are included into the mouse N-myc genomic sequences tested. Altogether, these findings indicated that the regulation of the spatiotemporal expression pattern of N-myc during development necessitates multiple regulatory DNA elements.
Collapse
Affiliation(s)
- Jean Charron
- Center of Research on Cancer, University Laval, CHUQ, L'Hôtel-Dieu de Québec, Québec, Québec G1R 2J6, Canada.
| | | | | |
Collapse
|
27
|
Grandori C, Cowley SM, James LP, Eisenman RN. The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol 2001; 16:653-99. [PMID: 11031250 DOI: 10.1146/annurev.cellbio.16.1.653] [Citation(s) in RCA: 989] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Myc/Max/Mad network comprises a group of transcription factors whose distinct interactions result in gene-specific transcriptional activation or repression. A great deal of research indicates that the functions of the network play roles in cell proliferation, differentiation, and death. In this review we focus on the Myc and Mad protein families and attempt to relate their biological functions to their transcriptional activities and gene targets. Both Myc and Mad, as well as the more recently described Mnt and Mga proteins, form heterodimers with Max, permitting binding to specific DNA sequences. These DNA-bound heterodimers recruit coactivator or corepressor complexes that generate alterations in chromatin structure, which in turn modulate transcription. Initial identification of target genes suggests that the network regulates genes involved in the cell cycle, growth, life span, and morphology. Because Myc and Mad proteins are expressed in response to diverse signaling pathways, the network can be viewed as a functional module which acts to convert environmental signals into specific gene-regulatory programs.
Collapse
Affiliation(s)
- C Grandori
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA.
| | | | | | | |
Collapse
|
28
|
Koch P, Bohlmann I, Schäfer M, Hansen-Hagge TE, Kiyoi H, Wilda M, Hameister H, Bartram CR, Janssen JW. Identification of a novel putative Ran-binding protein and its close homologue. Biochem Biophys Res Commun 2000; 278:241-9. [PMID: 11071879 DOI: 10.1006/bbrc.2000.3788] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the process of cloning genes at the breakpoint of t(5;14) (q34;q11), a recurring translocation in acute lymphoblastic leukemia, we isolated and characterized a novel gene at 5q34, and a close human homologue (66% amino acid identity) located at 8p11-12. The presence of an importin-beta N-terminal domain at their N-terminus, their size of approximately 110 kD, their nuclear localization and the identity of the homologue to a gene of a recently submitted RanGTP binding protein (RanBP16), suggest that its protein is a novel member of the importin-beta superfamily of nuclear transport receptors, therefore called RanBP17. Northern blot analysis of human tissues revealed a ubiquitous expression pattern of the RanBP16 gene and a very restricted expression pattern of the RanBP17 gene, showing high expression in testis and pancreas. Both genes are evolutionary conserved and show a high (99 and 94%) amino acid conservation with their murine counterparts and a striking similarity (40%) to a protein product of Caenorhabditis elegans (C35A5.8).
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Northern
- Caenorhabditis elegans
- Cell Nucleus/metabolism
- Chromosomes, Human, Pair 5
- Chromosomes, Human, Pair 8
- Cloning, Molecular
- DNA, Complementary/metabolism
- Gene Library
- HeLa Cells
- Humans
- In Situ Hybridization
- Karyopherins
- Male
- Mice
- Microscopy, Fluorescence
- Molecular Sequence Data
- Nuclear Proteins/metabolism
- Pancreas/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Software
- Testis/metabolism
- Tissue Distribution
- ran GTP-Binding Protein/biosynthesis
- ran GTP-Binding Protein/genetics
- ran GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
- P Koch
- Institute of Human Genetics, University of Heidelberg, Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Gregory MA, Xiao Q, Cornwall GA, Lutterbach B, Hann SR. B-Myc is preferentially expressed in hormonally-controlled tissues and inhibits cellular proliferation. Oncogene 2000; 19:4886-95. [PMID: 11039906 DOI: 10.1038/sj.onc.1203851] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The myc family of genes plays an important role in several cellular processes including proliferation, apoptosis, differentiation, and transformation. B-myc, a relatively new and largely unstudied member of the myc family, encodes a protein that is highly homologous to the N-terminal transcriptional regulatory domain of c-Myc. Here, we show that high level B-myc expression is restricted to specific mouse tissues, primarily hormonally-controlled tissues, with the highest level of expression in the epididymis. We also report the identification of the endogenous B-Myc protein from mouse tissues. Like other Myc family proteins, B-Myc is a short-lived nuclear protein which is phosphorylated on residues Ser-60 and Ser-68. Rapid proteolysis of B-Myc occurs via the ubiquitin-proteasome pathway. Finally, we found that overexpression of B-Myc significantly slows the growth of Rat la fibroblasts and COS cells suggesting B-Myc functions as an inhibitor of cellular proliferation.
Collapse
Affiliation(s)
- M A Gregory
- Department of Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2175, USA
| | | | | | | | | |
Collapse
|
30
|
Malynn BA, de Alboran IM, O'Hagan RC, Bronson R, Davidson L, DePinho RA, Alt FW. N- myc can functionally replace c- myc in murine development, cellular growth, and differentiation. Genes Dev 2000. [DOI: 10.1101/gad.14.11.1390] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Members of the myc family of cellular oncogenes have been implicated as transcriptional regulators in pathways that govern cellular proliferation and death. In addition, N-myc andc-myc are essential for completion of murine embryonic development. However, the basis for the evolutionary conservation ofmyc gene family has remained unclear. To elucidate this issue, we have generated mice in which the endogenous c-myccoding sequences have been replaced with N-myc coding sequences. Strikingly, mice homozygous for this replacement mutation can survive into adulthood and reproduce. Moreover, when expressed from the c-myc locus, N-myc is similarly regulated and functionally complementary to c-myc in the context of various cellular growth and differentiation processes. Therefore, themyc gene family must have evolved, to a large extent, to facilitate differential patterns of expression.
Collapse
|
31
|
Levesque BM, Vosatka RJ, Nielsen HC. Dihydrotestosterone stimulates branching morphogenesis, cell proliferation, and programmed cell death in mouse embryonic lung explants. Pediatr Res 2000; 47:481-91. [PMID: 10759155 DOI: 10.1203/00006450-200004000-00012] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Early gestation lung development is characterized by branching morphogenesis of the airways and basic lung structure formation. Androgens delay late-gestation lung development if the androgen exposure begins in early gestation. We hypothesized that there would be effects of early gestation androgens on lung development. Embryonic mouse lungs (d 11.5) were cultured with dihydrotestosterone (DHT), DHT plus flutamide, or with nothing as controls. Branching morphogenesis was significantly increased after 24, 48, and 72 h of culture. This effect was blocked by simultaneous flutamide treatment. Fetal sex did not influence the DHT response. DHT increased cell proliferation as measured by [3H]thymidine incorporation into DNA. Autoradiography showed prominent [3H]thymidine labeling of epithelia and mesenchyme in regions of new bud formation. DHT treatment significantly increased the thymidine-labeling index of fibroblasts and airway epithelial cells. Programmed cell death, which is found in developing organs in association with cell proliferation during structure formation and tissue remodeling, was studied using terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end labeling assay. In control lungs, programmed cell death occurred in the peripheral mesenchyme surrounding newly forming buds and underlying airway branch points. DHT treatment increased programmed cell death in association with increased branching morphogenesis. Evaluation of near-adjacent sections (control and DHT-treated lungs) showed that apoptotic mesenchymal cells were flanked by [3H]thymidine-labeled fibroblasts and epithelial cells, suggesting a coordination of these processes in the progression of branching morphogenesis. We conclude that androgen enhances the process of early lung morphogenesis by increasing cell proliferation and programmed cell death and by promoting the structural progression of branching morphogenesis.
Collapse
Affiliation(s)
- B M Levesque
- Division of Newborn Medicine, Floating Hospital for Children at New England Medical Center, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
32
|
Yu J, Angelin-Duclos C, Greenwood J, Liao J, Calame K. Transcriptional repression by blimp-1 (PRDI-BF1) involves recruitment of histone deacetylase. Mol Cell Biol 2000; 20:2592-603. [PMID: 10713181 PMCID: PMC85475 DOI: 10.1128/mcb.20.7.2592-2603.2000] [Citation(s) in RCA: 266] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
B-lymphocyte-induced maturation protein (Blimp-1) is a transcriptional repressor that is considered to be a master regulator of terminal B-cell development because it is sufficient to trigger differentiation in the BCL(1)-cell model. Transcription of the c-myc gene is repressed by Blimp-1 during B-cell differentiation. In this study, we have explored the mechanism by which Blimp-1 represses transcription by using Gal4-fusion protein assays and assays in which Blimp-1 represses the natural c-myc promoter. The results show that Blimp-1 represses the c-myc promoter by an active mechanism that is independent of the adjacently bound activator YY1. Blimp-1 contains two regions that independently associate with histone deacetylase (HDAC) and endogenous Blimp-1 in nuclear extracts binds in vitro to the c-myc Blimp-1 site in a complex containing HDAC. The functional importance of recruiting HDAC for Blimp-1-dependent repression of c-myc transcription is supported by two experiments. First, the HDAC inhibitor tricostatin A inhibits Blimp-1-dependent repression in cotransfection assays. Second, a chromatin immunoprecipitation assay shows that expression of Blimp-1 causes deacetylation of histone H3 associated with the c-myc promoter, and this deacetylation depends on the Blimp-1 binding site in the c-myc promoter.
Collapse
Affiliation(s)
- J Yu
- Departments of Biochemistry and Molecular Biophysics, Cellular and Molecular Studies, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
33
|
Holappa K, Mustonen M, Parvinen M, Vihko P, Rajaniemi H, Kellokumpu S. Primary structure of a sperm cell anion exchanger and its messenger ribonucleic acid expression during spermatogenesis. Biol Reprod 1999; 61:981-6. [PMID: 10491633 DOI: 10.1095/biolreprod61.4.981] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Chloride/bicarbonate (Cl-/HCO(3)-) exchangers are a family of proteins (anion exchanger [AE] gene family) that regulate many vital cellular processes such as intracellular pH, cell volume, and Cl- concentration. They may also be involved in the regulation of sperm cell motility and acrosome reaction during fertilization, as these two phenomena are bicarbonate dependent, and we have previously shown that a polypeptide immunologically related to erythrocyte band 3 is expressed in mammalian sperm cells. We have now identified this putative sperm cell anion exchanger as the AE2 isoform of this gene family. First, we determined its complete primary structure from the human testis lambda gt 11 cDNA library. The cloned sequence was found to consist of 3896 base pairs (bp) with an open reading frame of 3726 bp, and to be almost identical to the previously published human genomic AE2 sequence. Only four amino acid disparities were found between these two sequences. Second, our in situ hybridization analyses showed that AE2 mRNA is expressed in developing sperm cells, indicating that the cloned sequence corresponds to the sperm cell AE. Our reverse transcription-polymerase chain reaction analyses suggested further that the expression of AE2 mRNA was variable to some extent during the epithelial cell cycle. Strongest expression was observed at stages VII-XIV except for stage X, i.e., when major structural and morphological changes take place. These results suggest that the full-length AE2 isoform regulates HCO(3)- transport in mature sperm cells and thus their motility in vivo.
Collapse
Affiliation(s)
- K Holappa
- University of Oulu, Department of Anatomy and Cell Biology, FIN-90401 Oulu, Finland.
| | | | | | | | | | | |
Collapse
|
34
|
McArthur GA, Laherty CD, Quéva C, Hurlin PJ, Loo L, James L, Grandori C, Gallant P, Shiio Y, Hokanson WC, Bush AC, Cheng PF, Lawrence QA, Pulverer B, Koskinen PJ, Foley KP, Ayer DE, Eisenman RN. The Mad protein family links transcriptional repression to cell differentiation. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:423-33. [PMID: 10384307 DOI: 10.1101/sqb.1998.63.423] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- G A McArthur
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1042, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wang ZR, Liu W, Smith ST, Parrish RS, Young SR. c-myc and chromosome 8 centromere studies of ovarian cancer by interphase FISH. Exp Mol Pathol 1999; 66:140-8. [PMID: 10409442 DOI: 10.1006/exmp.1999.2259] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Forty tumor specimens from patients with ovarian cancer were studied for amplification of the c-myc oncogene relative to chromosome 8 centromere number using dual-color FISH. Interphase cytogenetic analysis showed amplification of the c-myc oncogene in 40% (16/40) of tumors using the standard oncogene:centromere ratio method of analysis. Eleven of these showed moderate amplification of c-myc, and 5 samples showed high amplification. Eight of the sixteen (50%) amplified tumors were polysomic centromere 8 as were 14 of the 24 (58%) non-amplified tumors. In previously reported work with these samples, the oncogene HER-2/neu, the chromosome 17 centromere, and the tumor suppressor gene p53 had been studied. When using the standard oncogene:centromere ratio criteria, 5 samples had amplification of both the c-myc and the HER-2/neu oncogenes, 5 samples had HER-2/neu amplification but not c-myc, 11 samples had c-myc amplification but not HER-2/neu, and 19 samples had neither oncogene amplified. The p53 gene was found to be deleted in 22.5% (9/40) of samples. The loss of the p53 gene did not appear to have any clinical correlation. The presence of an extra centromere 8 also did not appear to have any clinical correlation. The Kaplan-Meier survival curve for those patients who have c-myc amplification, while not statistically significant, appears to show a trend toward poorer survival. The survival curve for patients whose tumors have HER-2/neu amplification shows no clinical significance. It is of great interest, however, that the Kaplan-Meier plot of survival for patients whose tumors have amplification of both c-myc and HER-2/neu shows a significant difference (P = 0.047). The median survival times of the doubly amplified patient group and the non-doubly amplified groups were 12 and 43 months, respectively. This is the first study of the oncogene c-myc using FISH. The results suggest that the amplification of c-myc may indicate a poorer patient survival and that the amplification of both c-myc and HER-2/neu in combination may be a better prognostic indicator of poor patient survival.
Collapse
Affiliation(s)
- Z R Wang
- Department of Obstetrics and Gynecology, University of South Carolina School of Medicine
| | | | | | | | | |
Collapse
|
36
|
Leach RE, Rout UK, Schultz JF, Saunders DE, Armant DR. Ethanol Elevates c-Myc Levels in Cultured Mouse Preimplantation Embryos. Alcohol Clin Exp Res 1999. [DOI: 10.1111/j.1530-0277.1999.tb04183.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
37
|
Christoph F, Schmidt B, Schmitz-Dräger BJ, Schulz WA. Over-expression and amplification of the c-myc gene in human urothelial carcinoma. Int J Cancer 1999; 84:169-73. [PMID: 10096250 DOI: 10.1002/(sici)1097-0215(19990420)84:2<169::aid-ijc13>3.0.co;2-f] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
To understand the mechanisms underlying increased expression of Myc protein in human urinary bladder cancer, expression of c-myc mRNA and the copy number of the c-myc gene were determined. Expression of mRNA was measured by quantitative RT-PCR in 40 urothelial carcinomas and in 18 histologically normal mucosae. Mean expression in tumors was significantly increased (3.23+/-2.63 AU vs. 1.90+/-0.95 AU, p < 0.023) and exceeded the highest level in normal mucosa in 15 (37.5%) tumors. The c-myc gene copy number was higher than in leukocytes and normal bladder mucosa in 14 of 40 tumors, but only 3 among these showed a more than 4-fold increase indicative of gene amplification. Most, but not all, tumors with elevated expression displayed an increased gene copy number (p < 0.0001). In line with other studies of the protein level, no significant association either of c-myc mRNA over-expression or of increased gene copy number with tumor stage or grade was observed. The data indicate that elevated mRNA expression as a consequence of increases in c-myc gene copy number often underlies Myc protein over-expression in bladder cancer. This increase may be a consequence of, most frequently, chromosome 8q gain and, occasionally, gene amplification, while in some tumors deregulation of mRNA expression occurs without evident changes in the c-myc gene copy number.
Collapse
Affiliation(s)
- F Christoph
- Urologische Klinik, Heinrich-Heine-Universität, Düsseldorf, Germany
| | | | | | | |
Collapse
|
38
|
FitzGerald MJ, Arsura M, Bellas RE, Yang W, Wu M, Chin L, Mann KK, DePinho RA, Sonenshein GE. Differential effects of the widely expressed dMax splice variant of Max on E-box vs initiator element-mediated regulation by c-Myc. Oncogene 1999; 18:2489-98. [PMID: 10229200 DOI: 10.1038/sj.onc.1202611] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
dMax, a naturally occurring splice variant of the Myc binding protein Max, lacks the DNA binding basic region and helix 1 of the Helix-Loop-Helix domain; dMax interacts with c-Myc in vitro and in vivo, and inhibits E-box Myc site driven transcription in transient transfection assays. Here we have investigated the expression, function and interactions of dMax. RT/PCR analyses detected dmax mRNA in multiple tissues of the developing, newborn and adult mouse. Functionally, dMax reduced the ability of c-Myc to cooperate with the progression factor A-Myb to promote S phase entry of quiescent smooth muscle cells. In contrast, dMax failed to ablate inhibition of initiator element (Inr)-mediated transcription by c-Myc in Jurkat T cells. In in vitro protein:protein association assays, dMax interacted with c-Myc, N-Myc, L-Myc, Mad1, Mxi1, Mad3 and Mad4, but not with itself or wild-type Max. These interactions required an intact leucine zipper. Inhibition of E-box-mediated transactivation by induction of dMax overexpression resulted in apoptosis of WEHI 231 B cells. Thus, dMax is a widely expressed, naturally occurring protein, with the capacity to bind most members of the Myc/Max superfamily; dMax has little effect on Inr-mediated repression by c-Myc, but can significantly decrease E-box-mediated events promoting proliferation and cell survival.
Collapse
Affiliation(s)
- M J FitzGerald
- Department of Biochemistry, Boston University School of Medicine, Massachusetts 02118, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Izadnegahdar MF, Rathanaswami P, Shah RM. Effects of EGF and TGFbeta1 on c-myc gene expression and DNA synthesis in embryonic hamster palate mesenchymal cells. Anat Rec (Hoboken) 1999; 254:453-64. [PMID: 10203253 DOI: 10.1002/(sici)1097-0185(19990401)254:4<453::aid-ar1>3.0.co;2-g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Previous work has shown that cell proliferation is a major contributor to the early palate morphogenesis in mammals. The present study was undertaken to examine the effect of EGF, TGFbeta1 and their combination on proliferation (measured by DNA synthesis) and on the expression of a growth related proto-oncogene, c-myc, in embryonic hamster palate mesenchymal cells (HPMC). Vertically developing hamster palatal shelves were dissected on day 11 of gestation, and trypsinized, and primary cultures were grown in DMEM + 10% serum at 37 degrees C and 5% CO2. Following appropriate growth factor treatment of HPMC, DNA synthesis was measured by scintillation counting and extracted RNA was subjected to Northern blot analysis. In serum-starved, pre-confuent cultures treated with EGF (20 ng/ml), DNA synthesis was stimulated in the presence of 2.5% serum. In contrast, treatment of HPMC with TGFbeta1 (10 ng/ml) in the presence or absence of EGF/serum for 24 hr, or HPMC pre-treatment with TGFbeta1 (30 min) followed by EGF/serum (24 hr), resulted in an arrest of DNA synthesis. Northern blot analysis of RNA extracted from HPMC showed that as serum-starved, growth-arrested cells progressed through G0 to G1 phase of the cell cycle, following EGF treatment, c-myc was expressed by 1 hr and declined thereafter. In contrast, TGFbeta1 did not support expression of c-myc. Following pre- or co-treatment with TGFbeta1, the EGF +/- serum-induced expression of c-myc was seen between 1 and 6 hr. It appears that EGF-induced expression of c-myc may be involved in advancing the HPMC in G1, and thus may contribute to the onset of DNA synthesis in HPMC. Since co- or pre-treatment with TGFbeta1 did not inhibit EGF/serum induced expression of c-myc, it is possible that growth arresting effect of TGFbeta1 may not be exerted directly through inhibition or blockage of c-myc expression.
Collapse
Affiliation(s)
- M F Izadnegahdar
- Faculty of Dentistry, The University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
40
|
Batsché E, Muchardt C, Behrens J, Hurst HC, Crémisi C. RB and c-Myc activate expression of the E-cadherin gene in epithelial cells through interaction with transcription factor AP-2. Mol Cell Biol 1998; 18:3647-58. [PMID: 9632747 PMCID: PMC108947 DOI: 10.1128/mcb.18.7.3647] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
E-cadherin plays a pivotal role in the biogenesis of the first epithelium during development, and its down-regulation is associated with metastasis of carcinomas. We recently reported that inactivation of RB family proteins by simian virus 40 large T antigen (LT) in MDCK epithelial cells results in a mesenchymal conversion associated with invasiveness and a down-regulation of c-Myc. Reexpression of RB or c-Myc in such cells allows the reexpression of epithelial markers including E-cadherin. Here we show that both RB and c-Myc specifically activate transcription of the E-cadherin promoter in epithelial cells but not in NIH 3T3 mesenchymal cells. This transcriptional activity is mediated in both cases by the transcription factor AP-2. In vitro AP-2 and RB interaction involves the N-terminal domain of AP-2 and the oncoprotein binding domain and C-terminal domain of RB. In vivo physical interaction between RB and AP-2 was demonstrated in MDCK and HaCat cells. In LT-transformed MDCK cells, LT, RB, and AP-2 were all coimmunoprecipitated by each of the corresponding antibodies, and a mutation of the RB binding domain of the oncoprotein inhibited its binding to both RB and AP-2. Taken together, our results suggest that there is a tripartite complex between LT, RB, and AP-2 and that the physical and functional interactions between LT and AP-2 are mediated by RB. Moreover, they define RB and c-Myc as coactivators of AP-2 in epithelial cells and shed new light on the significance of the LT-RB complex, linking it to the dedifferentiation processes occurring during tumor progression. These data confirm the important role for RB and c-Myc in the maintenance of the epithelial phenotype and reveal a novel mechanism of gene activation by c-Myc.
Collapse
Affiliation(s)
- E Batsché
- CJF INSERM 94-02, Université René Descartes, 75270 Paris cedex 06, France
| | | | | | | | | |
Collapse
|
41
|
Hansen-Hagge TE, Janssen JW, Hameister H, Papa FR, Zechner U, Seriu T, Jauch A, Becke D, Hochstrasser M, Bartram CR. An evolutionarily conserved gene on human chromosome 5q33-q34, UBH1, encodes a novel deubiquitinating enzyme. Genomics 1998; 49:411-8. [PMID: 9615226 DOI: 10.1006/geno.1998.5275] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
While cloning breakpoint sequences of a leukemia patient exhibiting a t(5; 14) translocation, we identified a pseudogenic variant of a novel multigene family in proximity to the breakpoint. Chromosomal in situ hybridization suggested that the gene family is clustered on human chromosome 5q33-q34. The gene family is evolutionarily conserved. Northern blot analysis of mouse tissues revealed low-level expression of a functional member of this gene family in almost all samples. Marked levels of transcripts were detected by in situ hybridization in the retina, the olfactory epithelium, the peripheral neuronal ganglia, and distinct areas of the gut. The predicted protein displays striking similarity to a hypothetical protein of Caenorhabditis elegans (R10E11.3.) and to two yeast deubiquitinating enzymes, Ubp9 and Ubp13, albeit to a lesser extent. We expressed the putative coding region of the human gene in Escherichia coli and demonstrated that it indeed bears deubiquitinating activity based on its ability to cleave ubiquitin from a ubiquitin-beta-galactosidase fusion protein. This new deubiquitinating enzyme has been named UBH1, for ubiquitin hydrolyzing enzyme 1.
Collapse
|
42
|
Abstract
The mechanisms involved in the formation and the differentiation of the liver remain unclear despite extensive studies. To investigate these events in mouse hepatic development, we have taken advantage of the N-myc mutant mouse line which exhibits abnormal liver development. N-myc mutant embryos die between 11.5 and 12.5 days postcoitum most probably from heart failure. In the present study, we report that at 11.5 days of gestation, extensive apoptosis restricted to the hepatocytes occurred in N-myc mutant liver when compared to wild-type samples. Moreover, the number of hematopoietic cells is reduced in the mutant liver. During early liver organogenesis, the N-myc gene is expressed in tissues involved in the induction and the differentiation of the hepatocytes. At 11.5 days postcoitum, both c-myc and N-myc genes are expressed in the liver. While c-myc is expressed at a high level in the organ per se, N-myc expression is mostly confined to the peripheral layer of the liver which will generate the Glisson's capsule. Taken together, the expression pattern of N-myc in the liver and the specific apoptosis of hepatocytes observed in N-myc mutants indicate that N-myc is required for hepatocyte survival and suggest that it is involved in the genetic cascade leading to normal liver development.
Collapse
Affiliation(s)
- S Giroux
- Centre de recherche en cancérologie de l'Université Laval, Québec, Canada
| | | |
Collapse
|
43
|
Trudel M, Lanoix J, Barisoni L, Blouin MJ, Desforges M, L'Italien C, D'Agati V. C-myc-induced apoptosis in polycystic kidney disease is Bcl-2 and p53 independent. J Exp Med 1997; 186:1873-84. [PMID: 9382886 PMCID: PMC2199149 DOI: 10.1084/jem.186.11.1873] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The SBM mouse is a unique transgenic model of polycystic kidney disease (PKD) induced by the dysregulated expression of c-myc in renal tissue. In situ hybridization analysis demonstrated intense signal for the c-myc transgene overlying tubular cystic epithelium in SBM mice. Renal proliferation index in SBM kidneys was 10-fold increased over nontransgenic controls correlating with the presence of epithelial hyperplasia. The specificity of c-myc for the proliferative potential of epithelial cells was demonstrated by substitution of c-myc with the proto-oncogene c-fos or the transforming growth factor (TGF)-alpha within the same construct. No renal abnormalities were detected in 13 transgenic lines established, indicating that the PKD phenotype is dependent on functions specific to c-myc. We also investigated another well characterized function of c-myc, the regulation of apoptosis through pathways involving p53 and members of the bcl-2 family, which induce and inhibit apoptosis, respectively. The SBM kidney tissues, which overexpress c-myc, displayed a markedly elevated (10-100-fold) apoptotic index. However, no significant difference in bcl-2, bax, or p53 expression was observed in SBM kidney compared with controls. Direct proof that the heightened renal cellular apoptosis in PKD is not occurring through p53 was obtained by successive matings between SBM and p53(-/-) mice. All SBM offspring, irrespective of their p53 genotype, developed PKD with increased renal epithelial apoptotic index. In addition, overexpression of both bcl-2 and c-myc in double transgenic mice (SBB+/SBM+) also produced a similar PKD phenotype with a high apoptotic rate, showing that c-myc can bypass bcl-2 in vivo. Thus, the in vivo c-myc apoptotic pathway in SBM mice occurs through a p53- and bcl-2-independent mechanism. We conclude that the pathogenesis of PKD is c-myc specific and involves a critical imbalance between the opposing processes of cell proliferation and apoptosis.
Collapse
Affiliation(s)
- M Trudel
- Institut de Recherches Cliniques de Montréal, Faculté de Médecine de l'Université de Montréal, Montréal, Québec, Canada H2W 1R7
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Mammalian nephrogenesis constitutes a series of complex developmental processes in which there is a differentiation and rapid proliferation of pluripotent cells leading to the formation of a defined sculpted tissue mass, and this is followed by a continuum of cell replication and terminal differentiation. Metanephrogenesis ensues with the intercalation of epithelial ureteric bud into loosely organized metanephric mesenchyme. Such an interaction is reciprocal, such that the intercalating ureteric bud induces the conversion of metanephric mesenchyme into an epithelial phenotype, while the mesenchyme stimulates the iterations of the ureteric bud. The induced mesenchyme then undergoes a series of developmental stages to form a mature glomerulus and tubular segments of the kidney. Coincidental with the formation of these nephric elements, the developing kidney is vascularized by the process of vasculogenesis and angiogenesis. Thus, the process of metanephric development is quite complex, and it involves a diverse group of molecules who's biological activities are inter-linked with one another and they regulate, in a concerted manner, the differentiation and maturation of the mammalian kidney. This diverse group of molecules include extracellular matrix (ECM) proteins and their receptors, ECM-degrading enzymes and their inhibitors, growth factors and their receptors, proto-oncogenes and transcription factors. A large body of literature data are available, which suggest a critical role of these molecules in metanephric development, and this review summarizes the recent developments that relate to metanephrogenesis.
Collapse
Affiliation(s)
- E I Wallner
- Department of Medicine, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
45
|
Sakano S, Murata Y, Iwata H, Sato K, Ito T, Kurokouchi K, Seo H. Protooncogene expression in osteogenesis induced by bone morphogenetic protein. Clin Orthop Relat Res 1997:240-6. [PMID: 9170386 DOI: 10.1097/00003086-199705000-00032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this study, changes in the expression of protooncogenes c-fos and c-myc messenger ribonucleic acid were investigated in mice after implantation of bone morphogenetic protein. The expression of c-fos showed a biphasic pattern. The first increase was observed on Day 1 with the aggregation of round cells. The second increase was observed on Day 7 with the appearance of chondroblasts. The amount of c-myc messenger ribonucleic acid showed the sustained high levels from Days 2 to 7. During this period, the proliferation of mesenchymal cells was histologically evident. After Day 11, the expression of c-fos and c-myc decreased and remained at low levels despite the progress in chondroosteogenesis. The protooncogenes c-fos and c-myc appear to increase before calcification in the process of bone morphogenetic protein induced bone and cartilage development.
Collapse
Affiliation(s)
- S Sakano
- Department of Orthopaedic Surgery, Nagoya University School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Domashenko AD, Latham KE, Hatton KS. Expression of myc-family, myc-interacting, and myc-target genes during preimplantation mouse development. Mol Reprod Dev 1997; 47:57-65. [PMID: 9110315 DOI: 10.1002/(sici)1098-2795(199705)47:1<57::aid-mrd8>3.0.co;2-p] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Previous studies indicated that members of the myc gene family may be essential for preimplantation development. Other studies revealed that preimplantation embryos lacking c-myc, N-myc, or L-myc are viable, indicating that these genes are either not essential for preimplantation development or can be substituted for functionally by other myc gene family members. To investigate the possible role of these genes during preimplantation development, we determined the temporal patterns of expression of four members of the myc gene family, genes encoding myc-associated proteins, and four putative MYC target genes. We observed a sequential pattern of myc gene expression, with the L-myc mRNA expressed as a maternal transcript, the c-myc mRNA expressed during the 4-cell through morula stages, and the B-myc mRNA expressed highly at the morula and blastocysts stages. B-myc was the predominant family member expressed during preimplantation development. The mxi mRNA was not detectable and the mad mRNA was detectable only as a maternal transcript. The max mRNA, however, was expressed both as a maternal mRNA and as an embryonic message throughout most of preimplantation development. Three putative MYC target genes (Odc, cyclin E, and prothymosin-alpha) were transcriptionally induced during the 2-cell stage, and their mRNAs increased sharply in abundance during development to the morula and blastocyst stages. Another putative MYC target gene, cyclin A, was expressed both as a maternal mRNA and as an embryonic transcript. These data support the view that the expression of myc target genes may be supported initially through the expression of maternally inherited MYC proteins and corresponding mRNAs and that subsequent stage-specific changes in expression of myc genes, myc-associated genes, and myc target genes may control early differentiative events around the time of implantation.
Collapse
Affiliation(s)
- A D Domashenko
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | |
Collapse
|
47
|
Hurlin PJ, Quéva C, Eisenman RN. Mnt, a novel Max-interacting protein is coexpressed with Myc in proliferating cells and mediates repression at Myc binding sites. Genes Dev 1997; 11:44-58. [PMID: 9000049 DOI: 10.1101/gad.11.1.44] [Citation(s) in RCA: 195] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The small constitutively expressed bHLHZip protein Max is known to form sequence-specific DNA binding heterodimers with members of both the Myc and Mad families of bHLHZip proteins. Myc:Max complexes activate transcription, promote proliferation, and block terminal differentiation. In contrast, Mad:Max heterodimers act as transcriptional repressors, have an antiproliferative effect, and are induced upon differentiation in a wide variety of cell types. We have identified a novel bHLHZip Max-binding protein, Mnt, which belongs to neither the Myc nor the Mad families and which is coexpressed with Myc in a number of proliferating cell types. Mnt:Max heterodimers act as transcriptional repressors and efficiently suppress Myc-dependent activation from a promoter containing proximal CACGTG sites. Transcription repression by Mnt maps to a 13-amino-acid amino-terminal region related to the Sin3 interaction domain (SID) of Mad proteins. We show that this region of Mnt mediates interaction with mSin3 corepressor proteins and that its deletion converts Mnt from a repressor to an activator. Furthermore, wild-type Mnt suppresses Myc+Ras cotransformation of primary cells, whereas Mnt containing a SID deletion cooperates with Ras in the absence of Myc to transform cells. This suggests that Mnt and Myc regulate an overlapping set of target genes in vivo. When mnt is expressed as a transgene under control of the beta-actin promoter in mice the transgenic embryos exhibit a delay in development and die during mid-gestation, when c- and N-Myc functions are critical. We propose that Mnt:Max:Sin3 complexes normally function to restrict Myc:Max activities associated with cell proliferation.
Collapse
Affiliation(s)
- P J Hurlin
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98104, USA
| | | | | |
Collapse
|
48
|
Sakatsume O, Tsutsui H, Wang Y, Gao H, Tang X, Yamauchi T, Murata T, Itakura K, Yokoyama KK. Binding of THZif-1, a MAZ-like zinc finger protein to the nuclease-hypersensitive element in the promoter region of the c-MYC protooncogene. J Biol Chem 1996; 271:31322-33. [PMID: 8940139 DOI: 10.1074/jbc.271.49.31322] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A detailed analysis is reported of the binding of the zinc finger protein THZif-1 to the nuclease-hypersensitive element (NHE) in the promoter region of the c-MYC gene using the electrophoretic mobility shift assay and a series of mutants of a fusion protein composed of glutathione S-transferase and THZif-1. The THZif-1 protein bound specifically to the single-stranded (ss) pyrimidine-rich DNA of the NHE (ss c-myc NHE-C) with an apparent dissociation constant (Kd (app)) of 0.077 microM. By contrast, no binding to the single-stranded purine-rich DNA of the NHE (ss c-myc NHE-G) was detected. Moreover, the binding affinity of THZif-1 protein was 2-fold higher for the single-stranded 5-methyl-2'-deoxycytidine derivative of NHE (ss c-myc NHE-me5C) than for the unmethylated NHE. In the case of the binding of THZif-1 to methylated double-stranded (ds) NHE (ds c-myc NHE-me5CG), no significant binding to the DNA was observed. The decrease in binding to DNA of THZif-1 was significant in the case of mutated ds c-myc NHE, in which more than two sites of deoxycytidine residues were methylated. However, the binding affinity of THZif-1 protein for methylated and for unmethylated triple-helical DNA of the NHE was almost identical. Moreover, the domain of the THZif-1 protein that made the major contribution to binding to ss c-myc NHE-C or ss c-myc NHE-me5C corresponded to the amino-terminal second zinc finger motif. Taken together, the results indicate that the THZif-1 protein exhibits preferential DNA-binding activity with ss c-myc NHE-C, ds c-myc NHE-CG, and ts c-myc NHE but not with ss c-myc NHE-G and ds c-myc NHE-me5CG in vitro.
Collapse
Affiliation(s)
- O Sakatsume
- Tsukuba Life Science Center, RIKEN (The Institute of Physical and Chemical Research), 3-1-1 Koyadai, Tsukuba, Ibaraki 305, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Zechner U, Reule M, Orth A, Bonhomme F, Strack B, Hameister H, Fundele R. An X-chromosome linked locus contributes to abnormal placental development in mouse interspecific hybrid. Nat Genet 1996; 12:398-403. [PMID: 8630493 DOI: 10.1038/ng0496-398] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Interspecific hybridization between closely related species is commonly associated with decreased fertility or viability of F1 hybrids. Thus, in mouse interspecific hybrids, several different hybrid sterility genes that impair gametogenesis of the male hybrids have been described. We describe a novel effect in hybrids between different mouse species that manifests itself in abnormal growth of the placenta. Opposite phenotypes, that is, placental hypotrophy versus hypertrophy, are observed in reciprocal crosses and backcrosses. The severity of the phenotype, which is mainly caused by abnormal development of the spongiotrophoblast, is influenced by the sex of the conceptus. In general, placental hypertrophy is associated with increased fetal growth. Hypotrophy of the placenta frequently leads to growth impairment or death of the fetus. One of the major genetic determinants of placental growth maps to the proximal part of the mouse X chromosome.
Collapse
Affiliation(s)
- U Zechner
- Abteilung Medizinische Genetik der Universität Ulm, Germany
| | | | | | | | | | | | | |
Collapse
|
50
|
Hatton KS, Mahon K, Chin L, Chiu FC, Lee HW, Peng D, Morgenbesser SD, Horner J, DePinho RA. Expression and activity of L-Myc in normal mouse development. Mol Cell Biol 1996; 16:1794-804. [PMID: 8657155 PMCID: PMC231166 DOI: 10.1128/mcb.16.4.1794] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
To determine the role of L-Myc in normal mammalian development and its functional relationship to other members of the Myc family, we determined the normal patterns of L-myc gene expression in the developing mouse by RNA in situ hybridization and assessed the phenotypic impact of L-Myc deficiency produced through standard gene targeting methodology. L-myc transcripts were detected in the developing kidney and lung as well as in both the proliferative and the differentiative zones of the brain and neural tube. Despite significant expression of L-myc in developing mouse tissue, homozygous null L-myc mice were found to be viable, reproductively competent, and represented in expected frequencies from heterozygous matings. A detailed histological survey of embryonic and adult tissues, characterization of an embryonic neuronal marker, and measurement of cellular proliferation in situ did not reveal any congenital abnormalities. The lack of an apparent phenotype associated with L-Myc deficiency indicates that L-Myc is dispensable for gross morphological development and argues against a unique role for L-Myc in early central nervous system development as had been previously suggested. Although overlapping expression patterns among myc family members raise the possibility of complementation of L-Myc deficiency by other Myc oncoproteins, compensatory changes in the levels of c- and/or N-myc transcripts were not detected in homozygous null L-myc mice.
Collapse
Affiliation(s)
- K S Hatton
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | | | |
Collapse
|